Compare commits

...

315 Commits

Author SHA1 Message Date
Evan Lohn
d5f66ac146 feat: cloud usage limits (#7192) 2026-01-04 06:51:12 +00:00
Yuhong Sun
241fc8f877 feat: Deep Research Internal Search Tuning (#7193) 2026-01-03 22:54:23 -08:00
Jamison Lahman
f1ea41b519 chore(whitespace): ignore refactor rev (#7191) 2026-01-02 23:52:48 -08:00
Jamison Lahman
ed3f72bc75 refactor(whitespace): rm react fragment (#7190) 2026-01-02 23:49:39 -08:00
Jamison Lahman
2247e3cf8e chore(fe): rm unnecessary spacer from chat ui (#7189) 2026-01-02 23:42:54 -08:00
Jamison Lahman
47c49d86e8 chore(fe): improve human chat responsiveness (#7187) 2026-01-02 23:26:52 -08:00
Yuhong Sun
8c11330d46 feat: Easy send message nonstreaming (#7186) 2026-01-02 19:46:54 -08:00
Chris Weaver
22ac22c17d feat: improve display for models that are no longer present (#7184) 2026-01-03 02:39:06 +00:00
Yuhong Sun
c0a6a0fb4a feat: nonstreaming send chat message api (#7181) 2026-01-03 02:33:17 +00:00
Chris Weaver
7f31a39dc2 fix: regenerate models stuck in perma loading state (#7182)
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
2026-01-03 02:18:34 +00:00
Yuhong Sun
f1f61690e3 chore: spacing (#7183) 2026-01-02 17:57:55 -08:00
Jamison Lahman
8c3e17bbe5 revert: "chore(pre-commit): run uv-sync in active venv" (#7178) 2026-01-03 01:16:01 +00:00
Yuhong Sun
a1ab3678a0 chore: Plugin issue (#7179) 2026-01-02 16:43:51 -08:00
Yuhong Sun
2d79ed7bb4 New send message api (#7167) 2026-01-02 23:57:54 +00:00
Justin Tahara
f472fd763e fix(braintrust): Span Attributes Association (#7174) 2026-01-02 15:20:10 -08:00
Jamison Lahman
e47b2fccb4 chore(playwright): fix Exa configure tests (#7176) 2026-01-02 15:10:54 -08:00
acaprau
17a6fc4ebf chore(opensearch): Add external dep tests for OpenSearchClient (#7155) 2026-01-02 22:28:46 +00:00
acaprau
391c8c5cf7 feat(opensearch): Add OpenSearch client (#7137)
flakey connector tests are failing for reasons unrelated to this pr. all other tests pass.
2026-01-02 14:11:14 -08:00
Jamison Lahman
d0e3ee1055 chore(deployments): prefer release environment (#6997) 2026-01-02 22:00:33 +00:00
Jamison Lahman
dc760cf580 chore(playwright): prefer baseURL (#7171) 2026-01-02 13:30:10 -08:00
Justin Tahara
d49931fce1 fix(braintrust): Fix Tenant ID to Token Association (#7173) 2026-01-02 13:10:34 -08:00
Jamison Lahman
41d1d265a0 chore(docker): .dockerignore /tests/ (#7172) 2026-01-02 20:19:52 +00:00
Chris Weaver
45a2207662 chore: cleanup old LLM provider update mechanism (#7170) 2026-01-02 20:14:27 +00:00
Justin Tahara
725ed6a523 fix(braintrust): Updating naming for metric (#7168) 2026-01-02 20:06:43 +00:00
acaprau
2452671420 feat(opensearch): Add OpenSearch queries (#7133) 2026-01-02 19:05:43 +00:00
Jamison Lahman
a4a767f146 fix(ollama): rm unsupported tool_choice option (#7156) 2026-01-02 18:55:57 +00:00
Wenxi
8304fbd14c fix: don't pass selected tab to connector specific config (#7165) 2026-01-02 18:19:33 +00:00
Jamison Lahman
7db7d4c965 chore(docker): publish inference_model_server port 9000 in dev (#7166) 2026-01-02 10:04:45 -08:00
SubashMohan
2cc2b5aee9 feat(image-generation): e2e tests (#7164) 2026-01-02 19:13:59 +05:30
SubashMohan
0c35ffe468 feat(config): Image generation frontend (#7019) 2026-01-02 11:36:57 +00:00
SubashMohan
adece3f812 Tests/theme (#7163)
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-02 16:14:13 +05:30
Jamison Lahman
b44349e67d chore(blame): introduce .git-blame-ignore-revs to ignore refactors (#7162) 2026-01-01 22:23:34 -08:00
Jamison Lahman
3134e5f840 refactor(whitespace): rm temporary react fragments (#7161) 2026-01-01 22:10:31 -08:00
dependabot[bot]
5b8223b6af chore(deps): bump qs from 6.14.0 to 6.14.1 in /web (#7147)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
2026-01-02 05:05:00 +00:00
Jamison Lahman
30ab85f5a0 chore(fe): follow up styling fixes to #7129 (#7160) 2026-01-01 19:58:43 -08:00
Jamison Lahman
daa343c30b perf(chat): memoize chat messages (#7157)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2026-01-01 19:10:18 -08:00
devin-ai-integration[bot]
c67936a4c1 fix: non-thinking responses not displaying until page refresh (#7123)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: roshan@onyx.app <rohod04@gmail.com>
Co-authored-by: Wenxi <wenxi@onyx.app>
Co-authored-by: Chris <chris@onyx.app>
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
Co-authored-by: Nikolas Garza <90273783+nmgarza5@users.noreply.github.com>
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
Co-authored-by: Raunak Bhagat <r@rabh.io>
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
Co-authored-by: SubashMohan <subashmohan75@gmail.com>
Co-authored-by: Justin Tahara <105671973+justin-tahara@users.noreply.github.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: roshan <38771624+rohoswagger@users.noreply.github.com>
2026-01-01 21:15:55 +00:00
Jamison Lahman
4578c268ed perf(chat): consildate chat UI layout style (#7129) 2026-01-01 13:10:47 -08:00
roshan
7658917fe8 feat: running evals locally (#7145) 2026-01-01 18:39:08 +00:00
roshan
fd4695d5bd feat: add tool call validation to eval cli (#7144)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
2026-01-01 15:46:05 +00:00
devin-ai-integration[bot]
a25362a709 fix: check stop signal during active streaming (#7151)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: roshan@onyx.app <rohod04@gmail.com>
2026-01-01 15:33:03 +00:00
SubashMohan
1eb4962861 refactor: White-labelling (#6938) 2026-01-01 09:55:58 +00:00
Nikolas Garza
aa1c956608 fix: Duplicate model provider sections for unenriched LLM models (#7148) 2026-01-01 03:03:40 +00:00
Chris Weaver
19e5c47f85 fix: when onboarding flow shows up (#7154) 2025-12-31 18:29:36 -08:00
Chris Weaver
872a2ed58a feat: add new models to cloud (#7149) 2026-01-01 01:50:26 +00:00
Jessica Singh
42047a4dce feat(tools): extend open_url to handle indexed content urls (#6822) 2026-01-01 01:31:28 +00:00
Chris Weaver
a3a9847d76 fix: onboarding display (#7153) 2025-12-31 17:19:00 -08:00
Yuhong Sun
3ade17c380 chore: fix linter issues (#7122) 2025-12-31 16:48:33 -08:00
Chris Weaver
9150ba1905 fix: skip failing tests (#7152) 2026-01-01 00:08:46 +00:00
Justin Tahara
cb14e84750 feat(connectors): Add Deletion Popup (#7054) 2025-12-31 22:12:57 +00:00
Chris Weaver
c916517342 feat: add auto LLM model updates from GitHub config (#6830)
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-31 14:02:08 -08:00
Justin Tahara
45b902c950 fix(desktop): Disable reload on Mac (#7141) 2025-12-31 21:06:02 +00:00
Nikolas Garza
981b43e47b fix: prevent Slack federated search query multiplication (#7125) 2025-12-31 20:41:50 +00:00
Yuhong Sun
b5c45cbce0 Chat Flow Readme (#7142) 2025-12-31 11:15:48 -08:00
Yuhong Sun
451f10343e Update README.md (#7140) 2025-12-31 10:11:31 -08:00
SubashMohan
ceeed2a562 Feat/image config backend (#6961) 2025-12-31 11:39:32 +00:00
SubashMohan
bcc7a7f264 refactor(modals): All modals use new Modal component (#6729) 2025-12-31 07:54:08 +00:00
SubashMohan
972ef34b92 Fix/input combobox dropdown (#7015) 2025-12-31 13:01:03 +05:30
Raunak Bhagat
9d11d1f218 feat: Refreshed agent creation page (#6241)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-31 05:09:07 +00:00
Chris Weaver
4db68853cd fix: openai provider identification on the admin panel (#7135) 2025-12-31 02:14:46 +00:00
Wenxi
b08fafc66b fix: make litellm testing script prettier (#7136) 2025-12-30 18:08:25 -08:00
Wenxi
1e61bf401e fix: lazy load tracing providers to avoid spamming logs when not configured (#7134) 2025-12-31 02:03:33 +00:00
Chris Weaver
0541c2989d fix: downgrade (#7132) 2025-12-31 01:45:41 +00:00
Yuhong Sun
743b996698 fix: Remove Default Reminder (#7131) 2025-12-31 00:55:16 +00:00
Chris Weaver
16e77aebfc refactor: onboarding forms (#7105) 2025-12-30 16:56:13 -08:00
Yuhong Sun
944f4a2464 fix: reenable force search parameter (#7130) 2025-12-31 00:27:17 +00:00
Nikolas Garza
67db7c0346 fix: suppress Jest act() warning spam in test output (#7127) 2025-12-30 22:32:15 +00:00
Jamison Lahman
8e47cd4e4f chore(fe): baseline align inline code spans (#7128) 2025-12-30 22:21:59 +00:00
devin-ai-integration[bot]
e8a4fca0a3 fix: persist onboarding flow until user explicitly finishes (#7111)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Chris <chris@onyx.app>
2025-12-30 21:42:04 +00:00
Wenxi
6d783ca691 fix: gemini default location global (#7124) 2025-12-30 21:15:57 +00:00
Yuhong Sun
283317bd65 chore: prompts (#7108) 2025-12-30 12:22:21 -08:00
acaprau
2afbc74224 feat: Add OpenSearch schema (#7118) 2025-12-30 19:55:34 +00:00
acaprau
5b273de8be chore: Add script to restart OpenSearch container (#7110) 2025-12-30 19:48:30 +00:00
roshan
a0a24147b5 fix: stop-generation for deep research (#7050)
Co-authored-by: Raunak Bhagat <r@rabh.io>
Co-authored-by: acaprau <48705707+acaprau@users.noreply.github.com>
Co-authored-by: Justin Tahara <105671973+justin-tahara@users.noreply.github.com>
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-12-30 19:17:28 +00:00
roshan
fd31da3159 chore: clean up stop signal redis fence (#7119) 2025-12-30 18:55:21 +00:00
Yuhong Sun
cd76ac876b fix: MIT integration tests (#7121) 2025-12-30 10:51:36 -08:00
Jamison Lahman
8f205172eb chore(gha): ensure uv cache is pruned before upload (#7120) 2025-12-30 10:50:08 -08:00
roshan
be70fa21e3 fix: stop-generation for non-deep research (#7045)
Co-authored-by: Raunak Bhagat <r@rabh.io>
Co-authored-by: acaprau <48705707+acaprau@users.noreply.github.com>
Co-authored-by: Justin Tahara <105671973+justin-tahara@users.noreply.github.com>
2025-12-30 18:41:20 +00:00
roshan
0687bddb6f fix: popover max height setting (#7093)
Co-authored-by: Cursor Agent <cursoragent@cursor.com>
2025-12-30 18:40:54 +00:00
roshan
73091118e3 fix: rendering parallel research agents cleanly (#7078) 2025-12-30 18:40:45 +00:00
Wenxi
bf8590a637 feat: add z indices for confirmation modal (#7114) 2025-12-30 18:40:16 +00:00
Chris Weaver
8a6d597496 perf: update web/STANDARDS.md + add standards to CLAUDE.md / AGENTS.md (#7039)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-12-30 09:36:58 -08:00
Jamison Lahman
f0bc538f60 chore(fe): fix some Text that should be spans (#7112) 2025-12-30 08:06:15 -08:00
Jamison Lahman
0b6d9347bb fix(ux): Share Chat modal uses CopyIconButton (#7116) 2025-12-30 08:05:02 -08:00
Raunak Bhagat
415538f9f8 refactor: Improve form field components (#7104) 2025-12-29 23:26:56 -08:00
Jamison Lahman
969261f314 chore(desktop): disable nightly builds (#7115) 2025-12-29 22:42:39 -08:00
Jamison Lahman
eaa4d5d434 chore(desktop): remove duplicate startup log, onyx-desktop (#7113) 2025-12-29 19:58:25 -08:00
acaprau
19e6900d96 chore: Add opensearch-py 3.0.0 (#7103) 2025-12-30 03:50:22 +00:00
Jamison Lahman
f3535b94a0 chore(docker): add healthchecks (#7089)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-12-29 19:29:16 -08:00
Jamison Lahman
383aa222ba chore(fe): refresh chat Stack Trace button (#7092) 2025-12-29 18:29:58 -08:00
Yuhong Sun
f32b21400f chore: Fix Tests (#7107) 2025-12-29 17:24:40 -08:00
Jamison Lahman
5d5e71900e chore(fe): Text default span follow up (#7106) 2025-12-29 17:22:09 -08:00
Yuhong Sun
06ce7484b3 chore: docker compose no MCP server (#7100) 2025-12-29 16:40:15 -08:00
Jamison Lahman
700db01b33 chore(fe): make Text component default to span (#7096) 2025-12-29 16:30:09 -08:00
acaprau
521e9f108f fix: The update method for the new Vespa interface should correctly handle None chunk_count (#7098) 2025-12-30 00:23:37 +00:00
Yuhong Sun
1dfb62bb69 chore: Remove unused resources from model server (#7094) 2025-12-29 16:18:37 -08:00
Wenxi
14a1b3d197 fix: get_tenant_users script invalid sql stmt (#7097) 2025-12-29 23:58:11 +00:00
Chris Weaver
f3feac84f3 refactor: llm provider forms (#7006) 2025-12-29 14:09:52 -08:00
roshan
d6e7c11c92 fix: think tool newline unescaping (#7086)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-29 20:34:12 +00:00
Jamison Lahman
d66eef36d3 feat(ux): include a copy button for chat stack traces (#7091) 2025-12-29 19:59:38 +00:00
Wenxi
05fd974968 refactor: let litellm handle translating reasoning_effort to anthropic thinking (#7090) 2025-12-29 19:55:54 +00:00
roshan
ad882e587d fix: parallel tool tab hover (#7083)
Co-authored-by: Cursor Agent <cursoragent@cursor.com>
2025-12-29 18:01:39 +00:00
Jamison Lahman
f2b1f20161 chore(gha): playwright and integration are optional on merge_group (#7080) 2025-12-29 17:42:50 +00:00
Raunak Bhagat
6ec3b4c6cf feat: Add warnings support to Formik input layouts (#7087) 2025-12-29 09:30:30 -08:00
roshan
529a2e0336 chore: bolding enhancement (#7002)
Co-authored-by: Cursor Agent <cursoragent@cursor.com>
2025-12-29 03:27:37 +00:00
Wenxi
35602519c5 feat: add litellm debugging scripts (#7085)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-28 14:30:12 -08:00
Wenxi
7e0b773247 feat: centralized llm provider names (#7084) 2025-12-28 20:50:37 +00:00
Wenxi
924b5e5c70 refactor: stopgap cleanup core litellm arg processing (#7065) 2025-12-28 19:54:54 +00:00
Chris Weaver
cfcb09070d fix: improve URL handling (#7079) 2025-12-27 21:09:31 -08:00
Jamison Lahman
27b0fee3c4 chore(pre-commit): rm check-yaml (#7081) 2025-12-27 12:16:13 -08:00
Jamison Lahman
5617e86b14 chore(tests): use pytest-alembic to validate migrations (#7069) 2025-12-27 19:16:49 +00:00
Jamison Lahman
b909eb0205 chore(alembic): fix new_chat_history downgrade (#7073) 2025-12-27 16:56:56 +00:00
Raunak Bhagat
2a821134c0 refactor: Improve shared components (#7077) 2025-12-26 22:37:47 -08:00
Raunak Bhagat
ad632e4440 fix: Update context API (#7076) 2025-12-26 22:02:00 -08:00
Raunak Bhagat
153e313021 refactor: reorganize hooks to web/src/hooks directory (#7071) 2025-12-26 21:01:40 -08:00
Raunak Bhagat
abc80d7feb feat: add actions-layouts and improve input-layouts (#7072) 2025-12-26 21:01:17 -08:00
Jamison Lahman
1a96e894fe chore(deps): pin uv in CI (#7074) 2025-12-26 20:40:05 -08:00
Jamison Lahman
5a09a73df8 chore(tests): delete skipped migration tests (#7070) 2025-12-27 04:19:59 +00:00
Jamison Lahman
02723291b3 chore(gha): remove fetch-depth: 0 from playwright (#7066) 2025-12-27 02:10:20 +00:00
Justin Tahara
324388fefc chore(envvar): Cleaning up Unused EnvVars (#7067) 2025-12-26 17:57:32 -08:00
Justin Tahara
4a119e869b chore(envvar): Cleanup Unused envvars (#7056) 2025-12-27 01:32:52 +00:00
Jamison Lahman
20127ba115 chore(docker): move docker-bake.hcl to toplevel (#7064) 2025-12-27 01:04:05 +00:00
Justin Tahara
3d6344073d fix(ui): Align Web Search Page (#7061) 2025-12-26 16:17:28 -08:00
Justin Tahara
7dd98b717b fix(ui): Align Performance Pages (#7062) 2025-12-26 16:05:34 -08:00
Wenxi
0ce5667444 fix: default to global region for gemini models (#7060) 2025-12-26 23:08:17 +00:00
Wenxi
b03414e643 chore: removed unnecessary monkey patch (#7058) 2025-12-26 22:41:09 +00:00
Jamison Lahman
7a67de2d72 chore(github): make PR template instructions comments (#7053) 2025-12-26 21:00:14 +00:00
roshan
300bf58715 fix: remove dr feature flag (#7052) 2025-12-26 20:58:08 +00:00
Justin Tahara
b2bd0ddc50 fix(chat): Custom Agent Chat Rename (#7051) 2025-12-26 20:46:40 +00:00
Justin Tahara
a3d847b05c fix(ui): Copy Traceback button (#7049) 2025-12-26 19:29:29 +00:00
acaprau
d529d0672d fix: test_connector_pause_while_indexing keeps timing out, lower the number of docs to wait for to 4 from 16 (#6976) 2025-12-26 17:33:57 +00:00
Raunak Bhagat
f98a5e1119 fix: Overlay ordering bug (#7048) 2025-12-26 09:00:29 -08:00
Raunak Bhagat
6ec0b09139 feat: Add small icons + scripts + readme to Opal (#7046) 2025-12-26 08:06:57 -08:00
roshan
53691fc95a chore: refactor search tool renderer (#7044) 2025-12-25 22:04:11 -05:00
Jamison Lahman
3400e2a14d chore(desktop): skip desktop on beta tags (#7043) 2025-12-25 13:41:05 -08:00
roshan
d8cc1f7a2c chore: clean up unused feature flag (#7042) 2025-12-25 16:35:53 -05:00
roshan
2098e910dd chore: clean up search renderer v2 (#7041) 2025-12-25 16:31:26 -05:00
Jamison Lahman
e5491d6f79 revert: "chore(fe): enable reactRemoveProperties" (#7040) 2025-12-25 12:00:52 -08:00
Raunak Bhagat
a8934a083a feat: Add useOnChangeValue hook and update form components (#7036) 2025-12-25 11:40:39 -08:00
Chris Weaver
80e9507e01 fix: google index names (#7038) 2025-12-25 17:56:22 +00:00
Raunak Bhagat
60d3be5fe2 refactor: Improve form hook to handle events directly (#7035) 2025-12-25 02:16:47 -08:00
Raunak Bhagat
b481cc36d0 refactor: Update form field components to use new hook (#7034) 2025-12-25 01:54:07 -08:00
Raunak Bhagat
65c5da8912 feat: Create new InputDatePicker component (#7023) 2025-12-24 23:23:47 -08:00
Jamison Lahman
0a0366e6ca chore(fe): enable reactRemoveProperties (#7030) 2025-12-25 05:12:36 +00:00
Jamison Lahman
84a623e884 chore(fe): remove reliance on data-testid prop (#7031) 2025-12-24 20:44:28 -08:00
roshan
6b91607b17 chore: feature flag for deep research (#7022) 2025-12-24 21:38:34 -05:00
Wenxi
82fb737ad9 fix: conditional tool choice param for anthropic (#7029) 2025-12-25 00:25:19 +00:00
Justin Tahara
eed49e699e fix(docprocessing): Cleaning up Events (#7025) 2025-12-24 12:25:43 -08:00
Justin Tahara
3cc7afd334 fix(chat): Copy functionality (#7027) 2025-12-24 12:22:02 -08:00
Jamison Lahman
bcbfd28234 chore(fe): "Copy code"->"Copy" (#7018) 2025-12-24 11:38:02 -08:00
Rohit V
faa47d9691 chore(docs): update docker compose command in CONTRIBUTING.md (#7020)
Co-authored-by: Rohit V <rohit.v@thoughtspot.com>
2025-12-24 11:18:12 -08:00
Wenxi
6649561bf3 fix: multiple tool calls unit test (#7026) 2025-12-24 18:08:12 +00:00
Wenxi
026cda0468 fix: force tool with openai (#7024) 2025-12-24 09:37:14 -08:00
Raunak Bhagat
64297e5996 feat: add formik field components and helpers (#7017)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-24 08:09:24 -08:00
Raunak Bhagat
c517137c0a refactor: Update CSS stylings for SidebarTab component (#7016) 2025-12-23 22:56:06 -08:00
SubashMohan
cbfbe0bbbe fix(onboarding): Azure llm url parsing (#6950) 2025-12-24 12:17:31 +05:30
Raunak Bhagat
13ca4c6650 refactor: remove icon prop from UserFilesModal (#7014) 2025-12-23 22:35:42 -08:00
Raunak Bhagat
e8d9e36d62 refactor: SidebarTab fixes (#7012)
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
2025-12-24 06:06:06 +00:00
Jamison Lahman
77e4f3c574 fix(fe): right sidebar buttons dont inherit href (#7007)
Co-authored-by: Raunak Bhagat <r@rabh.io>
2025-12-24 04:41:22 +00:00
Chris Weaver
2bdc06201a fix: improve scrollbar for code blocks (#7013) 2025-12-24 03:38:09 +00:00
Yuhong Sun
077ba9624c fix: parallel tool call with openai (#7010) 2025-12-23 19:07:23 -08:00
Raunak Bhagat
81eb1a1c7c fix: Fix import error (#7011) 2025-12-23 19:00:10 -08:00
Yuhong Sun
1a16fef783 feat: DEEP RESEARCH ALPHA HUZZAH (#7001) 2025-12-23 18:45:43 -08:00
Yuhong Sun
027692d5eb chore: bump litellm version (#7009) 2025-12-23 18:09:21 -08:00
Raunak Bhagat
3a889f7069 refactor: Add more comprehensive layout components (#6989) 2025-12-23 17:54:32 -08:00
Raunak Bhagat
20d67bd956 feat: Add new components to refresh-components (#6991)
Co-authored-by: Nikolas Garza <90273783+nmgarza5@users.noreply.github.com>
2025-12-23 17:53:59 -08:00
acaprau
8d6b6accaf feat(new vector db interface): Plug in retrievals for Vespa (#6966) 2025-12-23 23:30:59 +00:00
Chris Weaver
ed76b4eb55 fix: masking (#7003) 2025-12-23 23:23:03 +00:00
Raunak Bhagat
7613c100d1 feat: update icons (#6988) 2025-12-23 15:11:33 -08:00
Raunak Bhagat
c52d3412de refactor: add more helpful utility hooks (#6987) 2025-12-23 14:38:13 -08:00
Jamison Lahman
96b6162b52 chore(desktop): fix windows version (#6999) 2025-12-23 22:21:30 +00:00
Yuhong Sun
502ed8909b chore: Tuning Deep Research (#7000) 2025-12-23 14:19:20 -08:00
roshan
8de75dd033 feat: deep research (#6936)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
Co-authored-by: Cursor Agent <cursoragent@cursor.com>
2025-12-23 21:24:27 +00:00
Wenxi
74e3668e38 chore: cleanup drupal connector nits (#6998) 2025-12-23 21:24:21 +00:00
Justin Tahara
2475a9ef92 fix(gdrive): Investigation Logging (#6996) 2025-12-23 13:26:44 -08:00
rexjohannes
690f54c441 feat: Drupal Wiki connector (#4773)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-23 19:28:23 +00:00
Jamison Lahman
71bb0c029e chore(desktop): deployment automation for the desktop app (#6990) 2025-12-23 09:20:59 -08:00
Yuhong Sun
ccf890a129 Small Tuning (#6986) 2025-12-22 20:13:17 -08:00
acaprau
a7bfdebddf feat(new vector db interface): Implement retrievals for Vespa (#6963) 2025-12-23 03:00:38 +00:00
Yuhong Sun
6fc5ca12a3 Fine grained Braintrust tracing (#6985) 2025-12-22 19:08:49 -08:00
Wenxi
8298452522 feat: add open book icon (#6984) 2025-12-22 19:00:31 -08:00
Wenxi
2559327636 fix: allow chat file previewing and fix csv rendering (#6915) 2025-12-23 02:08:42 +00:00
Yuhong Sun
ef185ce2c8 feat: DR Tab for intermediate reports and Index increment for final report section end (#6983) 2025-12-22 18:10:45 -08:00
Wenxi
a04fee5cbd feat: add optional image parsing for docx (#6981) 2025-12-22 17:45:44 -08:00
Justin Tahara
e507378244 fix(vertex-ai): Bump Default Batch Size (#6982) 2025-12-22 17:21:55 -08:00
Justin Tahara
e6be3f85b2 fix(gemini): No Asyncio (#6980) 2025-12-23 01:07:40 +00:00
acaprau
cc96e303ce feat(new vector db interface): Plug in delete for Vespa (#6867)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-12-23 00:54:52 +00:00
Nikolas Garza
e0fcb1f860 feat(fe): speed up pre-commit TypeScript type checking with tsgo (#6978) 2025-12-23 00:22:42 +00:00
roshan
f5442c431d feat: add PacketException handling (#6968) 2025-12-23 00:09:51 +00:00
acaprau
652e5848e5 feat(new vector db interface): Implement delete for Vespa (#6866)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-12-22 23:58:32 +00:00
Wenxi
3fa1896316 fix: download cloud svg (#6977) 2025-12-22 14:54:33 -08:00
roshan
f855ecab11 feat: add dr loop tracing (#6971) 2025-12-22 21:35:29 +00:00
Jamison Lahman
fd26176e7d revert: "fix(fe): make recent chat sidebar buttons links" (#6967) 2025-12-22 12:12:48 -08:00
Justin Tahara
8986f67779 fix(docprocessing): Reusing Threads (#6916) 2025-12-22 19:03:46 +00:00
Nikolas Garza
42f2d4aca5 feat(teams): Enable Auto Sync Permissions for Teams connector (#6648) 2025-12-22 18:57:01 +00:00
Evan Lohn
7116d24a8c fix: small MCP UI changes (#6862) 2025-12-22 18:09:36 +00:00
Justin Tahara
7f4593be32 fix(vertex): Infinite Embedding (#6917) 2025-12-22 10:43:11 -08:00
Wenxi
f47e25e693 feat(ingestion): restore delete api (#6962) 2025-12-22 10:06:43 -08:00
acaprau
877184ae97 feat(new vector db interface): Plug in update for Vespa (#6792) 2025-12-22 16:25:13 +00:00
acaprau
54961ec8ef fix: test_multi_llm.py::test_multiple_tool_calls callsite fix (#6959) 2025-12-22 08:06:13 -08:00
Raunak Bhagat
e797971ce5 fix: Layout fix + CSR updates (#6958)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-22 08:00:39 -08:00
Jamison Lahman
566cca70d8 chore(fe): conditionally render header on chatSession (#6955) 2025-12-22 02:37:01 -08:00
Jamison Lahman
be2d0e2b5d chore(fe): prevent header continuous render (#6954) 2025-12-22 00:46:21 -08:00
Jamison Lahman
692f937ca4 chore(fmt): fix prettier (#6953) 2025-12-22 00:30:21 -08:00
Jamison Lahman
11de1ceb65 chore(ts): typedRoutes = true (#6930) 2025-12-22 00:21:44 -08:00
Jamison Lahman
19993b4679 chore(chat): refactor chat header (#6952)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-22 00:20:46 -08:00
Yuhong Sun
9063827782 Enable DR on the backend (#6948) 2025-12-21 18:25:24 -08:00
Yuhong Sun
0cc6fa49d7 DR Minor tweaking (#6947) 2025-12-21 17:23:52 -08:00
roshan
3f3508b668 fix: sanitize postgres to remove nul characters (#6934) 2025-12-22 00:19:25 +00:00
Jamison Lahman
1c3a88daf8 perf(chat): avoid re-rendering chat on ChatInput change (#6945) 2025-12-21 16:15:34 -08:00
Yuhong Sun
92f30bbad9 Fix misalignment in DR failed agents (#6946) 2025-12-21 15:07:45 -08:00
Yuhong Sun
4abf43d85b DR bug fixes (#6944) 2025-12-21 14:56:52 -08:00
Jamison Lahman
b08f9adb23 chore(perf): frontend stats overlay in dev (#6840)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-21 22:12:54 +00:00
Yuhong Sun
7a915833bb More correct packet handling (#6943) 2025-12-21 13:48:27 -08:00
Jamison Lahman
9698b700e6 fix(desktop): Linux-specific fixes (#6928) 2025-12-21 20:39:52 +00:00
Jamison Lahman
fd944acc5b fix(fe): chat content links use proper hrefs (#6939) 2025-12-21 12:09:20 -08:00
Yuhong Sun
a1309257f5 Log (#6937) 2025-12-20 23:28:28 -08:00
Yuhong Sun
6266dc816d feat: Deep Research Citation Handling (#6935) 2025-12-20 22:46:20 -08:00
Jamison Lahman
83c011a9e4 chore(deps): upgrade urllib3 2.6.1->2.6.2 (#6932) 2025-12-20 20:21:10 -08:00
Yuhong Sun
8d1ac81d09 Citation Processing (#6933) 2025-12-20 20:08:24 -08:00
Yuhong Sun
d8cd4c9928 feat: DR fix a couple issues with saving (#6931) 2025-12-20 18:28:04 -08:00
Jamison Lahman
5caa4fdaa0 fix(chat): attached images are flush right (#6927) 2025-12-20 07:20:14 -08:00
Jamison Lahman
f22f33564b fix(fe): ensure error messages have padding (#6926) 2025-12-20 07:03:27 -08:00
Jamison Lahman
f86d282a47 chore(fe): ensure chat padding on medium size viewport (#6925) 2025-12-20 06:38:16 -08:00
Jamison Lahman
ece1edb80f fix(fe): make recent chat sidebar buttons links (#6924) 2025-12-20 06:04:59 -08:00
Jamison Lahman
c9c17e19f3 fix(chat): only scroll to bottom on page load (#6923) 2025-12-20 05:01:56 -08:00
Jamison Lahman
40e834e0b8 fix(fe): make "New Session" button a link (#6922) 2025-12-20 04:29:22 -08:00
Jamison Lahman
45bd82d031 fix(style): floating scroll down is z-sticky (#6921) 2025-12-20 04:12:48 -08:00
Yuhong Sun
27c1619c3d feat: hyperparams (#6920) 2025-12-19 20:32:00 -08:00
Yuhong Sun
8cfeb85c43 feat: Deep Research packets streaming done (#6919) 2025-12-19 20:23:02 -08:00
Yuhong Sun
491b550ebc feat: Deep Research more stuff (#6918) 2025-12-19 19:14:22 -08:00
Chris Weaver
1a94dfd113 fix: reasoning width (#6914) 2025-12-20 02:24:46 +00:00
Jamison Lahman
bcd9d7ae41 fix(install): handle non-semver docker-compose versions (#6913) 2025-12-19 18:17:44 -08:00
Vinit
98b4353632 fix: use consistent INSTALL_ROOT instead of pwd for deployment paths (#6680)
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
2025-12-20 01:25:51 +00:00
Yuhong Sun
f071b280d4 feat: Deep Research packets (#6912) 2025-12-19 17:18:56 -08:00
acaprau
f7ebaa42fc feat(new vector db interface): Implement update for Vespa (#6790) 2025-12-20 00:56:23 +00:00
Justin Tahara
11737c2069 fix(vespa): Handling Rate Limits (#6878) 2025-12-20 00:52:11 +00:00
Jamison Lahman
1712253e5f fix(fe): Set up provider logos are equal size (#6900) 2025-12-20 00:50:31 +00:00
Yuhong Sun
de8f292fce feat: DR packets cont (#6910) 2025-12-19 16:47:03 -08:00
Jamison Lahman
bbe5058131 chore(mypy): "ragas.metrics" [import-not-found] (#6909) 2025-12-19 16:35:45 -08:00
Yuhong Sun
45fc5e3c97 chore: Tool interface (#6908) 2025-12-19 16:12:21 -08:00
Yuhong Sun
5c976815cc Mypy (#6906) 2025-12-19 15:50:30 -08:00
Justin Tahara
3ea4b6e6cc feat(desktop): Make Desktop App (#6690)
Co-authored-by: Jamison Lahman <jamison@lahman.dev>
2025-12-19 15:49:21 -08:00
Yuhong Sun
7b75c0049b chore: minor refactor (#6905) 2025-12-19 15:37:27 -08:00
Yuhong Sun
04bdce55f4 chore: Placement used in more places (#6904) 2025-12-19 15:07:48 -08:00
Yuhong Sun
2446b1898e chore: Test Manager class (#6903) 2025-12-19 14:58:55 -08:00
Yuhong Sun
6f22a2f656 chore: Update Packet structure to make the positioning info an object (#6899) 2025-12-19 14:12:39 -08:00
Justin Tahara
e307a84863 fix(agents): Fix User File Search (#6895) 2025-12-19 21:42:28 +00:00
Chris Weaver
2dd27f25cb feat: allow cmd+click on connector rows in admin panel (#6894) 2025-12-19 21:39:23 +00:00
Nikolas Garza
e402c0e3b4 fix: fix Icon React Compiler error in LLMPopover when searching models (#6891) 2025-12-19 21:16:41 +00:00
Jamison Lahman
2721c8582a chore(pre-commit): run uv-sync in active venv (#6898) 2025-12-19 13:44:00 -08:00
Yuhong Sun
43c8b7a712 feat: Deep Research substep initial (#6896) 2025-12-19 13:30:25 -08:00
acaprau
f473b85acd feat(new vector db interface): Plug in hybrid_retrieval for Vespa (#6752) 2025-12-19 21:03:19 +00:00
Nikolas Garza
02cd84c39a fix(slack): limit thread context fetch to top N messages by relevance (#6861) 2025-12-19 20:26:30 +00:00
Raunak Bhagat
46d17d6c64 fix: Fix header on AgentsNavigationPage (#6873) 2025-12-19 20:15:44 +00:00
Jamison Lahman
10ad536491 chore(mypy): enable warn-unused-ignores (#6893) 2025-12-19 12:00:30 -08:00
acaprau
ccabc1a7a7 feat(new vector db interface): Implement hybrid_retrieval for Vespa (#6750) 2025-12-19 19:32:48 +00:00
Chris Weaver
8e262e4da8 feat: make first runs be high priority (#6871) 2025-12-19 19:05:15 +00:00
Raunak Bhagat
79dea9d901 Revert "refactor: Consolidate chat and agents contexts" (#6872)
Co-authored-by: Nikolas Garza <90273783+nmgarza5@users.noreply.github.com>
2025-12-19 11:11:33 -08:00
Yuhong Sun
2f650bbef8 chore: Matplotlib for mypy (#6892) 2025-12-19 10:47:59 -08:00
Jamison Lahman
021e67ca71 chore(pre-commit): "Check lazy imports" prefers active venv (#6890) 2025-12-19 10:04:02 -08:00
roshan
87ae024280 fix icon button z-index (#6889) 2025-12-19 09:52:47 -08:00
SubashMohan
5092429557 Feat/tests GitHub perm sync (#6882) 2025-12-19 17:26:55 +00:00
Nikolas Garza
dc691199f5 fix: persist user-selected connector sources on follow-up messages (#6865) 2025-12-19 17:26:48 +00:00
Jamison Lahman
1662c391f0 fix(fe): chat attachment alignment regression (#6884) 2025-12-19 07:44:34 -08:00
Jamison Lahman
08aefbc115 fix(style): bottom message padding on small screen (#6883) 2025-12-19 06:50:43 -08:00
Jamison Lahman
fb6342daa9 fix(style): chat page is flush left on small screens (#6881) 2025-12-19 06:37:35 -08:00
Jamison Lahman
4e7adcc9ee chore(devtools): pass debug auth token with server-side requests (#6836) 2025-12-19 04:07:53 -08:00
Wenxi
aa4b3d8a24 fix(tests): add research agent tool to tool seeding test (#6877) 2025-12-18 23:09:18 -08:00
Wenxi
f3bc459b6e fix(anthropic): parse chat history tool calls correctly for anthropic models (#6876) 2025-12-18 22:28:34 -08:00
Yuhong Sun
87cab60b01 feat: Deep Research Tool (#6875) 2025-12-18 20:30:36 -08:00
Yuhong Sun
08ab73caf8 fix: Reasoning (#6874) 2025-12-18 19:00:13 -08:00
Justin Tahara
675761c81e fix(users): Clean up Invited Users who are Active (#6857) 2025-12-19 01:43:32 +00:00
Raunak Bhagat
18e15c6da6 refactor: Consolidate chat and agents contexts (#6834) 2025-12-19 01:31:02 +00:00
Yuhong Sun
e1f77e2e17 feat: Deep Research works till the end (#6870) 2025-12-18 17:18:08 -08:00
Justin Tahara
4ef388b2dc fix(tf): Instance Configurability (#6869) 2025-12-18 17:15:05 -08:00
Justin Tahara
031485232b fix(admin): Sidebar Scroll (#6853) 2025-12-19 00:39:27 +00:00
Wenxi
c0debefaf6 fix(bandaid): admin pages bottom padding (#6856) 2025-12-18 16:49:32 -08:00
Nikolas Garza
bbebe5f201 fix: reset actions popover to main menu on open (#6863) 2025-12-19 00:24:01 +00:00
Yuhong Sun
ac9cb22fee feat: deep research continued (#6864) 2025-12-18 15:51:13 -08:00
Wenxi
5e281ce2e6 refactor: unify mimetype and file extensions (#6849) 2025-12-18 23:08:26 +00:00
Chris Weaver
9ea5b7a424 chore: better cloud metrics (#6851) 2025-12-18 22:47:41 +00:00
Justin Tahara
e0b83fad4c fix(web): Avoiding Bot Detection issues (#6845) 2025-12-18 22:43:38 +00:00
Chris Weaver
7191b9010d fix: handle 401s in attachment fetching (#6858)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-18 14:52:05 -08:00
Yuhong Sun
fb3428ed37 feat: deep research more dev stuff (#6854) 2025-12-18 14:09:46 -08:00
Chris Weaver
444ad297da chore: remove fast model (#6841) 2025-12-18 20:38:13 +00:00
roshan
f46df421a7 fix: correct tool response pairing for parallel tool calls in llm_loop (#6846) 2025-12-18 11:46:34 -08:00
Yuhong Sun
98a2e12090 feat: DR continued work (#6848) 2025-12-18 11:36:34 -08:00
Jamison Lahman
36bfa8645e chore(gha): run playwright and jest similar to other tests (#6844) 2025-12-18 18:41:16 +00:00
roshan
56e71d7f6c fix: text view auto focus on button (#6843) 2025-12-18 10:18:43 -08:00
roshan
e0d172615b fix: TextView tooltip z-index (#6842) 2025-12-18 10:11:40 -08:00
Shahar Mazor
bde52b13d4 feat: add file management capabilities (#5623)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Wenxi <wenxi@onyx.app>
2025-12-18 17:40:24 +00:00
SubashMohan
b273d91512 feat(actions): add passthrough auth (#6665) 2025-12-18 10:58:52 +00:00
Jamison Lahman
1fbe76a607 fix(fe): center-align credential update icons (#6837) 2025-12-18 02:43:24 -08:00
Jamison Lahman
6ee7316130 fix(fe): avoid chat message shift on hover (#6835) 2025-12-17 23:44:09 -08:00
Raunak Bhagat
51802f46bb fix: Open sub menu on tool force (#6813) 2025-12-18 05:16:43 +00:00
Jamison Lahman
d430444424 fix(fe): apply z-sticky to ChatInput (#6827) 2025-12-17 21:04:34 -08:00
Yuhong Sun
17fff6c805 fix: reasoning with 5 series (#6833) 2025-12-17 20:16:48 -08:00
Yuhong Sun
a33f6e8416 fix: LLM can hallucinate tool calls (#6832) 2025-12-17 19:45:31 -08:00
Nikolas Garza
d157649069 fix(llm-popover): hide provider group when single provider (#6820) 2025-12-17 19:30:48 -08:00
Wenxi
77bbb9f7a7 fix: decrement litellm and openai broken versions (#6831) 2025-12-17 19:09:06 -08:00
Yuhong Sun
996b5177d9 feat: parallel tool calling (#6779)
Co-authored-by: rohoswagger <rohod04@gmail.com>
2025-12-17 18:59:34 -08:00
acaprau
ab9a3ba970 feat(new vector db interface): Plug in index for Vespa (#6659)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-12-18 01:42:08 +00:00
Yuhong Sun
87c1f0ab10 feat: more orchestrator stuff (#6826) 2025-12-17 17:12:22 -08:00
acaprau
dcea1d88e5 feat(new vector db interface): Implement index for Vespa (#6658)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-12-18 00:26:07 +00:00
Nikolas Garza
cc481e20d3 feat: ee license tracking - API Endpoints (#6812) 2025-12-18 00:24:01 +00:00
Nikolas Garza
4d141a8f68 feat: ee license tracking - DB and Cache Operations (#6811) 2025-12-17 23:53:28 +00:00
Wenxi
cb32c81d1b refactor(web search): use refreshed modal, improve ux, add playwright tests (#6791) 2025-12-17 15:24:47 -08:00
Nikolas Garza
64f327fdef feat: ee license tracking - Crypto Verification Utils (#6810) 2025-12-17 22:41:12 +00:00
Yuhong Sun
902d6112c3 feat: Deep Research orchestration start (#6825) 2025-12-17 14:53:25 -08:00
Jamison Lahman
f71e3b9151 chore(devtools): address hatch.version.raw-options review comment (#6823) 2025-12-17 14:52:06 -08:00
Nikolas Garza
dd7e1520c5 feat: ee license tracking - Data Plane Models + Database Schema (#6809) 2025-12-17 21:26:33 +00:00
Jamison Lahman
97553de299 chore(devtools): go onboarding docs + replace hatch-vcs w/ code script (#6819) 2025-12-17 13:27:43 -08:00
Justin Tahara
c80ab8b200 fix(jira): Handle Errors better (#6816) 2025-12-17 21:12:14 +00:00
Jamison Lahman
85c4ddce39 chore(frontend): optionally inject auth cookie into requests (#6794)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-12-17 20:43:36 +00:00
961 changed files with 71717 additions and 27556 deletions

8
.git-blame-ignore-revs Normal file
View File

@@ -0,0 +1,8 @@
# Exclude these commits from git blame (e.g. mass reformatting).
# These are ignored by GitHub automatically.
# To enable this locally, run:
#
# git config blame.ignoreRevsFile .git-blame-ignore-revs
3134e5f840c12c8f32613ce520101a047c89dcc2 # refactor(whitespace): rm temporary react fragments (#7161)
ed3f72bc75f3e3a9ae9e4d8cd38278f9c97e78b4 # refactor(whitespace): rm react fragment #7190

7
.github/CODEOWNERS vendored
View File

@@ -1,3 +1,10 @@
* @onyx-dot-app/onyx-core-team
# Helm charts Owners
/helm/ @justin-tahara
# Web standards updates
/web/STANDARDS.md @raunakab @Weves
# Agent context files
/CLAUDE.md.template @Weves
/AGENTS.md.template @Weves

View File

@@ -7,12 +7,6 @@ inputs:
runs:
using: "composite"
steps:
- name: Setup uv
uses: astral-sh/setup-uv@caf0cab7a618c569241d31dcd442f54681755d39 # ratchet:astral-sh/setup-uv@v3
# TODO: Enable caching once there is a uv.lock file checked in.
# with:
# enable-cache: true
- name: Compute requirements hash
id: req-hash
shell: bash
@@ -28,6 +22,8 @@ runs:
done <<< "$REQUIREMENTS"
echo "hash=$(echo "$hash" | sha256sum | cut -d' ' -f1)" >> "$GITHUB_OUTPUT"
# NOTE: This comes before Setup uv since clean-ups run in reverse chronological order
# such that Setup uv's prune-cache is able to prune the cache before we upload.
- name: Cache uv cache directory
uses: runs-on/cache@50350ad4242587b6c8c2baa2e740b1bc11285ff4 # ratchet:runs-on/cache@v4
with:
@@ -36,6 +32,14 @@ runs:
restore-keys: |
${{ runner.os }}-uv-
- name: Setup uv
uses: astral-sh/setup-uv@ed21f2f24f8dd64503750218de024bcf64c7250a # ratchet:astral-sh/setup-uv@v7
with:
version: "0.9.9"
# TODO: Enable caching once there is a uv.lock file checked in.
# with:
# enable-cache: true
- name: Setup Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # ratchet:actions/setup-python@v5
with:

View File

@@ -1,10 +1,10 @@
## Description
[Provide a brief description of the changes in this PR]
<!--- Provide a brief description of the changes in this PR --->
## How Has This Been Tested?
[Describe the tests you ran to verify your changes]
<!--- Describe the tests you ran to verify your changes --->
## Additional Options

View File

@@ -6,8 +6,9 @@ on:
- "*"
workflow_dispatch:
permissions:
contents: read
# Set restrictive default permissions for all jobs. Jobs that need more permissions
# should explicitly declare them.
permissions: {}
env:
IS_DRY_RUN: ${{ github.event_name == 'workflow_dispatch' }}
@@ -20,6 +21,7 @@ jobs:
runs-on: ubuntu-slim
timeout-minutes: 90
outputs:
build-desktop: ${{ steps.check.outputs.build-desktop }}
build-web: ${{ steps.check.outputs.build-web }}
build-web-cloud: ${{ steps.check.outputs.build-web-cloud }}
build-backend: ${{ steps.check.outputs.build-backend }}
@@ -30,6 +32,7 @@ jobs:
is-stable-standalone: ${{ steps.check.outputs.is-stable-standalone }}
is-beta-standalone: ${{ steps.check.outputs.is-beta-standalone }}
sanitized-tag: ${{ steps.check.outputs.sanitized-tag }}
short-sha: ${{ steps.check.outputs.short-sha }}
steps:
- name: Check which components to build and version info
id: check
@@ -38,6 +41,7 @@ jobs:
# Sanitize tag name by replacing slashes with hyphens (for Docker tag compatibility)
SANITIZED_TAG=$(echo "$TAG" | tr '/' '-')
IS_CLOUD=false
BUILD_DESKTOP=false
BUILD_WEB=false
BUILD_WEB_CLOUD=false
BUILD_BACKEND=true
@@ -47,13 +51,6 @@ jobs:
IS_STABLE_STANDALONE=false
IS_BETA_STANDALONE=false
if [[ "$TAG" == *cloud* ]]; then
IS_CLOUD=true
BUILD_WEB_CLOUD=true
else
BUILD_WEB=true
fi
# Version checks (for web - any stable version)
if [[ "$TAG" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
IS_STABLE=true
@@ -62,6 +59,17 @@ jobs:
IS_BETA=true
fi
if [[ "$TAG" == *cloud* ]]; then
IS_CLOUD=true
BUILD_WEB_CLOUD=true
else
BUILD_WEB=true
# Skip desktop builds on beta tags and nightly runs
if [[ "$IS_BETA" != "true" ]] && [[ "$TAG" != nightly* ]]; then
BUILD_DESKTOP=true
fi
fi
# Version checks (for backend/model-server - stable version excluding cloud tags)
if [[ "$TAG" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && [[ "$TAG" != *cloud* ]]; then
IS_STABLE_STANDALONE=true
@@ -70,7 +78,9 @@ jobs:
IS_BETA_STANDALONE=true
fi
SHORT_SHA="${GITHUB_SHA::7}"
{
echo "build-desktop=$BUILD_DESKTOP"
echo "build-web=$BUILD_WEB"
echo "build-web-cloud=$BUILD_WEB_CLOUD"
echo "build-backend=$BUILD_BACKEND"
@@ -81,6 +91,7 @@ jobs:
echo "is-stable-standalone=$IS_STABLE_STANDALONE"
echo "is-beta-standalone=$IS_BETA_STANDALONE"
echo "sanitized-tag=$SANITIZED_TAG"
echo "short-sha=$SHORT_SHA"
} >> "$GITHUB_OUTPUT"
check-version-tag:
@@ -95,8 +106,9 @@ jobs:
fetch-depth: 0
- name: Setup uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # ratchet:astral-sh/setup-uv@v7.1.4
uses: astral-sh/setup-uv@ed21f2f24f8dd64503750218de024bcf64c7250a # ratchet:astral-sh/setup-uv@v7
with:
version: "0.9.9"
# NOTE: This isn't caching much and zizmor suggests this could be poisoned, so disable.
enable-cache: false
@@ -108,6 +120,7 @@ jobs:
needs:
- check-version-tag
if: always() && needs.check-version-tag.result == 'failure' && github.event_name != 'workflow_dispatch'
environment: release
runs-on: ubuntu-slim
timeout-minutes: 10
steps:
@@ -124,9 +137,141 @@ jobs:
title: "🚨 Version Tag Check Failed"
ref-name: ${{ github.ref_name }}
build-desktop:
needs: determine-builds
if: needs.determine-builds.outputs.build-desktop == 'true'
environment: release
permissions:
contents: write
actions: read
strategy:
fail-fast: false
matrix:
include:
- platform: "macos-latest" # Build a universal image for macOS.
args: "--target universal-apple-darwin"
- platform: "ubuntu-24.04"
args: "--bundles deb,rpm"
- platform: "ubuntu-24.04-arm" # Only available in public repos.
args: "--bundles deb,rpm"
- platform: "windows-latest"
args: ""
runs-on: ${{ matrix.platform }}
timeout-minutes: 90
steps:
- uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6.0.1
with:
# NOTE: persist-credentials is needed for tauri-action to create GitHub releases.
persist-credentials: true # zizmor: ignore[artipacked]
- name: install dependencies (ubuntu only)
if: startsWith(matrix.platform, 'ubuntu-')
run: |
sudo apt-get update
sudo apt-get install -y \
build-essential \
libglib2.0-dev \
libgirepository1.0-dev \
libgtk-3-dev \
libjavascriptcoregtk-4.1-dev \
libwebkit2gtk-4.1-dev \
libayatana-appindicator3-dev \
gobject-introspection \
pkg-config \
curl \
xdg-utils
- name: setup node
uses: actions/setup-node@395ad3262231945c25e8478fd5baf05154b1d79f # ratchet:actions/setup-node@v6.1.0
with:
node-version: 24
package-manager-cache: false
- name: install Rust stable
uses: dtolnay/rust-toolchain@6d9817901c499d6b02debbb57edb38d33daa680b # zizmor: ignore[impostor-commit]
with:
# Those targets are only used on macos runners so it's in an `if` to slightly speed up windows and linux builds.
targets: ${{ matrix.platform == 'macos-latest' && 'aarch64-apple-darwin,x86_64-apple-darwin' || '' }}
- name: install frontend dependencies
working-directory: ./desktop
run: npm install
- name: Inject version (Unix)
if: runner.os != 'Windows'
working-directory: ./desktop
env:
SHORT_SHA: ${{ needs.determine-builds.outputs.short-sha }}
EVENT_NAME: ${{ github.event_name }}
run: |
if [ "${EVENT_NAME}" == "workflow_dispatch" ]; then
VERSION="0.0.0-dev+${SHORT_SHA}"
else
VERSION="${GITHUB_REF_NAME#v}"
fi
echo "Injecting version: $VERSION"
# Update Cargo.toml
sed "s/^version = .*/version = \"$VERSION\"/" src-tauri/Cargo.toml > src-tauri/Cargo.toml.tmp
mv src-tauri/Cargo.toml.tmp src-tauri/Cargo.toml
# Update tauri.conf.json
jq --arg v "$VERSION" '.version = $v' src-tauri/tauri.conf.json > src-tauri/tauri.conf.json.tmp
mv src-tauri/tauri.conf.json.tmp src-tauri/tauri.conf.json
# Update package.json
jq --arg v "$VERSION" '.version = $v' package.json > package.json.tmp
mv package.json.tmp package.json
echo "Versions set to: $VERSION"
- name: Inject version (Windows)
if: runner.os == 'Windows'
working-directory: ./desktop
shell: pwsh
run: |
# Windows MSI requires numeric-only build metadata, so we skip the SHA suffix
if ("${{ github.event_name }}" -eq "workflow_dispatch") {
$VERSION = "0.0.0"
} else {
# Strip 'v' prefix and any pre-release suffix (e.g., -beta.13) for MSI compatibility
$VERSION = "$env:GITHUB_REF_NAME" -replace '^v', '' -replace '-.*$', ''
}
Write-Host "Injecting version: $VERSION"
# Update Cargo.toml
$cargo = Get-Content src-tauri/Cargo.toml -Raw
$cargo = $cargo -replace '(?m)^version = .*', "version = `"$VERSION`""
Set-Content src-tauri/Cargo.toml $cargo -NoNewline
# Update tauri.conf.json
$json = Get-Content src-tauri/tauri.conf.json | ConvertFrom-Json
$json.version = $VERSION
$json | ConvertTo-Json -Depth 100 | Set-Content src-tauri/tauri.conf.json
# Update package.json
$pkg = Get-Content package.json | ConvertFrom-Json
$pkg.version = $VERSION
$pkg | ConvertTo-Json -Depth 100 | Set-Content package.json
Write-Host "Versions set to: $VERSION"
- uses: tauri-apps/tauri-action@19b93bb55601e3e373a93cfb6eb4242e45f5af20 # ratchet:tauri-apps/tauri-action@action-v0.6.0
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tagName: ${{ github.event_name != 'workflow_dispatch' && 'v__VERSION__' || format('v0.0.0-dev+{0}', needs.determine-builds.outputs.short-sha) }}
releaseName: ${{ github.event_name != 'workflow_dispatch' && 'v__VERSION__' || format('v0.0.0-dev+{0}', needs.determine-builds.outputs.short-sha) }}
releaseBody: "See the assets to download this version and install."
releaseDraft: true
prerelease: false
args: ${{ matrix.args }}
build-web-amd64:
needs: determine-builds
if: needs.determine-builds.outputs.build-web == 'true'
environment: release
runs-on:
- runs-on
- runner=4cpu-linux-x64
@@ -147,7 +292,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -185,6 +330,7 @@ jobs:
build-web-arm64:
needs: determine-builds
if: needs.determine-builds.outputs.build-web == 'true'
environment: release
runs-on:
- runs-on
- runner=4cpu-linux-arm64
@@ -205,7 +351,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -245,6 +391,7 @@ jobs:
- determine-builds
- build-web-amd64
- build-web-arm64
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -267,7 +414,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -298,6 +445,7 @@ jobs:
- runner=4cpu-linux-x64
- run-id=${{ github.run_id }}-web-cloud-amd64
- extras=ecr-cache
environment: release
timeout-minutes: 90
outputs:
digest: ${{ steps.build.outputs.digest }}
@@ -313,7 +461,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -359,6 +507,7 @@ jobs:
build-web-cloud-arm64:
needs: determine-builds
if: needs.determine-builds.outputs.build-web-cloud == 'true'
environment: release
runs-on:
- runs-on
- runner=4cpu-linux-arm64
@@ -379,7 +528,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -427,6 +576,7 @@ jobs:
- determine-builds
- build-web-cloud-amd64
- build-web-cloud-arm64
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -449,7 +599,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -472,6 +622,7 @@ jobs:
build-backend-amd64:
needs: determine-builds
if: needs.determine-builds.outputs.build-backend == 'true'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -492,7 +643,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -529,6 +680,7 @@ jobs:
build-backend-arm64:
needs: determine-builds
if: needs.determine-builds.outputs.build-backend == 'true'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -549,7 +701,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -588,6 +740,7 @@ jobs:
- determine-builds
- build-backend-amd64
- build-backend-arm64
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -610,7 +763,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -636,6 +789,7 @@ jobs:
build-model-server-amd64:
needs: determine-builds
if: needs.determine-builds.outputs.build-model-server == 'true'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -657,7 +811,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -700,6 +854,7 @@ jobs:
build-model-server-arm64:
needs: determine-builds
if: needs.determine-builds.outputs.build-model-server == 'true'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -721,7 +876,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -766,6 +921,7 @@ jobs:
- determine-builds
- build-model-server-amd64
- build-model-server-arm64
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-x64
@@ -788,7 +944,7 @@ jobs:
- name: Docker meta
id: meta
uses: docker/metadata-action@318604b99e75e41977312d83839a89be02ca4893 # ratchet:docker/metadata-action@v5
uses: docker/metadata-action@c299e40c65443455700f0fdfc63efafe5b349051 # ratchet:docker/metadata-action@v5
with:
images: ${{ github.event_name == 'workflow_dispatch' && env.RUNS_ON_ECR_CACHE || env.REGISTRY_IMAGE }}
flavor: |
@@ -816,6 +972,7 @@ jobs:
- determine-builds
- merge-web
if: needs.merge-web.result == 'success'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -856,6 +1013,7 @@ jobs:
- determine-builds
- merge-web-cloud
if: needs.merge-web-cloud.result == 'success'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -896,6 +1054,7 @@ jobs:
- determine-builds
- merge-backend
if: needs.merge-backend.result == 'success'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -943,6 +1102,7 @@ jobs:
- determine-builds
- merge-model-server
if: needs.merge-model-server.result == 'success'
environment: release
runs-on:
- runs-on
- runner=2cpu-linux-arm64
@@ -980,6 +1140,7 @@ jobs:
notify-slack-on-failure:
needs:
- build-desktop
- build-web-amd64
- build-web-arm64
- merge-web
@@ -992,7 +1153,8 @@ jobs:
- build-model-server-amd64
- build-model-server-arm64
- merge-model-server
if: always() && (needs.build-web-amd64.result == 'failure' || needs.build-web-arm64.result == 'failure' || needs.merge-web.result == 'failure' || needs.build-web-cloud-amd64.result == 'failure' || needs.build-web-cloud-arm64.result == 'failure' || needs.merge-web-cloud.result == 'failure' || needs.build-backend-amd64.result == 'failure' || needs.build-backend-arm64.result == 'failure' || needs.merge-backend.result == 'failure' || needs.build-model-server-amd64.result == 'failure' || needs.build-model-server-arm64.result == 'failure' || needs.merge-model-server.result == 'failure') && github.event_name != 'workflow_dispatch'
if: always() && (needs.build-desktop.result == 'failure' || needs.build-web-amd64.result == 'failure' || needs.build-web-arm64.result == 'failure' || needs.merge-web.result == 'failure' || needs.build-web-cloud-amd64.result == 'failure' || needs.build-web-cloud-arm64.result == 'failure' || needs.merge-web-cloud.result == 'failure' || needs.build-backend-amd64.result == 'failure' || needs.build-backend-arm64.result == 'failure' || needs.merge-backend.result == 'failure' || needs.build-model-server-amd64.result == 'failure' || needs.build-model-server-arm64.result == 'failure' || needs.merge-model-server.result == 'failure') && github.event_name != 'workflow_dispatch'
environment: release
# NOTE: Github-hosted runners have about 20s faster queue times and are preferred here.
runs-on: ubuntu-slim
timeout-minutes: 90
@@ -1007,6 +1169,9 @@ jobs:
shell: bash
run: |
FAILED_JOBS=""
if [ "${NEEDS_BUILD_DESKTOP_RESULT}" == "failure" ]; then
FAILED_JOBS="${FAILED_JOBS}• build-desktop\\n"
fi
if [ "${NEEDS_BUILD_WEB_AMD64_RESULT}" == "failure" ]; then
FAILED_JOBS="${FAILED_JOBS}• build-web-amd64\\n"
fi
@@ -1047,6 +1212,7 @@ jobs:
FAILED_JOBS=$(printf '%s' "$FAILED_JOBS" | sed 's/\\n$//')
echo "jobs=$FAILED_JOBS" >> "$GITHUB_OUTPUT"
env:
NEEDS_BUILD_DESKTOP_RESULT: ${{ needs.build-desktop.result }}
NEEDS_BUILD_WEB_AMD64_RESULT: ${{ needs.build-web-amd64.result }}
NEEDS_BUILD_WEB_ARM64_RESULT: ${{ needs.build-web-arm64.result }}
NEEDS_MERGE_WEB_RESULT: ${{ needs.merge-web.result }}

31
.github/workflows/merge-group.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Merge Group-Specific
on:
merge_group:
permissions:
contents: read
jobs:
# This job immediately succeeds to satisfy branch protection rules on merge_group events.
# There is a similarly named "required" job in pr-integration-tests.yml which runs the actual
# integration tests. That job runs on both pull_request and merge_group events, and this job
# exists solely to provide a fast-passing check with the same name for branch protection.
# The actual tests remain enforced on presubmit (pull_request events).
required:
runs-on: ubuntu-latest
timeout-minutes: 45
steps:
- name: Success
run: echo "Success"
# This job immediately succeeds to satisfy branch protection rules on merge_group events.
# There is a similarly named "playwright-required" job in pr-playwright-tests.yml which runs
# the actual playwright tests. That job runs on both pull_request and merge_group events, and
# this job exists solely to provide a fast-passing check with the same name for branch protection.
# The actual tests remain enforced on presubmit (pull_request events).
playwright-required:
runs-on: ubuntu-latest
timeout-minutes: 45
steps:
- name: Success
run: echo "Success"

62
.github/workflows/pr-database-tests.yml vendored Normal file
View File

@@ -0,0 +1,62 @@
name: Database Tests
concurrency:
group: Database-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on:
merge_group:
pull_request:
branches:
- main
- "release/**"
push:
tags:
- "v*.*.*"
permissions:
contents: read
jobs:
database-tests:
runs-on:
- runs-on
- runner=2cpu-linux-arm64
- "run-id=${{ github.run_id }}-database-tests"
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
- name: Setup Python and Install Dependencies
uses: ./.github/actions/setup-python-and-install-dependencies
with:
requirements: |
backend/requirements/default.txt
backend/requirements/dev.txt
- name: Generate OpenAPI schema and Python client
shell: bash
run: |
ods openapi all
# needed for pulling external images otherwise, we hit the "Unauthenticated users" limit
# https://docs.docker.com/docker-hub/usage/
- name: Login to Docker Hub
uses: docker/login-action@5e57cd118135c172c3672efd75eb46360885c0ef # ratchet:docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Start Docker containers
working-directory: ./deployment/docker_compose
run: |
docker compose -f docker-compose.yml -f docker-compose.dev.yml up -d \
relational_db
- name: Run Database Tests
working-directory: ./backend
run: pytest -m alembic tests/integration/tests/migrations/

View File

@@ -33,6 +33,11 @@ env:
PERM_SYNC_SHAREPOINT_CERTIFICATE_PASSWORD: ${{ secrets.PERM_SYNC_SHAREPOINT_CERTIFICATE_PASSWORD }}
PERM_SYNC_SHAREPOINT_DIRECTORY_ID: ${{ secrets.PERM_SYNC_SHAREPOINT_DIRECTORY_ID }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN: ${{ secrets.ONYX_GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN }}
GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN_CLASSIC: ${{ secrets.ONYX_GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN_CLASSIC }}
GITHUB_ADMIN_EMAIL: ${{ secrets.ONYX_GITHUB_ADMIN_EMAIL }}
GITHUB_TEST_USER_1_EMAIL: ${{ secrets.ONYX_GITHUB_TEST_USER_1_EMAIL }}
GITHUB_TEST_USER_2_EMAIL: ${{ secrets.ONYX_GITHUB_TEST_USER_2_EMAIL }}
jobs:
discover-test-dirs:
@@ -51,7 +56,7 @@ jobs:
id: set-matrix
run: |
# Find all leaf-level directories in both test directories
tests_dirs=$(find backend/tests/integration/tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" -exec basename {} \; | sort)
tests_dirs=$(find backend/tests/integration/tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" ! -name "mcp" -exec basename {} \; | sort)
connector_dirs=$(find backend/tests/integration/connector_job_tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" -exec basename {} \; | sort)
# Create JSON array with directory info
@@ -67,9 +72,14 @@ jobs:
all_dirs="[${all_dirs%,}]"
echo "test-dirs=$all_dirs" >> $GITHUB_OUTPUT
build-backend-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-backend-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-backend-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -122,9 +132,14 @@ jobs:
type=registry,ref=${{ env.RUNS_ON_ECR_CACHE }}:backend-cache,mode=max
no-cache: ${{ vars.DOCKER_NO_CACHE == 'true' }}
build-model-server-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-model-server-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-model-server-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -176,9 +191,14 @@ jobs:
type=registry,ref=${{ env.RUNS_ON_ECR_CACHE }}:model-server-cache-${{ steps.format-branch.outputs.cache-suffix }},mode=max
type=registry,ref=${{ env.RUNS_ON_ECR_CACHE }}:model-server-cache,mode=max
build-integration-image:
runs-on: [runs-on, runner=2cpu-linux-arm64, "run-id=${{ github.run_id }}-build-integration-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=2cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-integration-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -220,7 +240,7 @@ jobs:
CACHE_SUFFIX: ${{ steps.format-branch.outputs.cache-suffix }}
HEAD_SHA: ${{ github.event.pull_request.head.sha || github.sha }}
run: |
cd backend && docker buildx bake --push \
docker buildx bake --push \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache-${HEAD_SHA} \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache-${CACHE_SUFFIX} \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache \
@@ -290,6 +310,7 @@ jobs:
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID}
INTEGRATION_TESTS_MODE=true
CHECK_TTL_MANAGEMENT_TASK_FREQUENCY_IN_HOURS=0.001
AUTO_LLM_UPDATE_INTERVAL_SECONDS=1
MCP_SERVER_ENABLED=true
EOF
@@ -304,7 +325,6 @@ jobs:
api_server \
inference_model_server \
indexing_model_server \
mcp_server \
background \
-d
id: start_docker
@@ -347,12 +367,6 @@ jobs:
}
wait_for_service "http://localhost:8080/health" "API server"
test_dir="${{ matrix.test-dir.path }}"
if [ "$test_dir" = "tests/mcp" ]; then
wait_for_service "http://localhost:8090/health" "MCP server"
else
echo "Skipping MCP server wait for non-MCP suite: $test_dir"
fi
echo "Finished waiting for services."
- name: Start Mock Services
@@ -382,8 +396,6 @@ jobs:
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e MCP_SERVER_HOST=mcp_server \
-e MCP_SERVER_PORT=8090 \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e EXA_API_KEY=${EXA_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
@@ -399,6 +411,11 @@ jobs:
-e PERM_SYNC_SHAREPOINT_PRIVATE_KEY="${PERM_SYNC_SHAREPOINT_PRIVATE_KEY}" \
-e PERM_SYNC_SHAREPOINT_CERTIFICATE_PASSWORD=${PERM_SYNC_SHAREPOINT_CERTIFICATE_PASSWORD} \
-e PERM_SYNC_SHAREPOINT_DIRECTORY_ID=${PERM_SYNC_SHAREPOINT_DIRECTORY_ID} \
-e GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN=${GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN} \
-e GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN_CLASSIC=${GITHUB_PERMISSION_SYNC_TEST_ACCESS_TOKEN_CLASSIC} \
-e GITHUB_ADMIN_EMAIL=${GITHUB_ADMIN_EMAIL} \
-e GITHUB_TEST_USER_1_EMAIL=${GITHUB_TEST_USER_1_EMAIL} \
-e GITHUB_TEST_USER_2_EMAIL=${GITHUB_TEST_USER_2_EMAIL} \
-e TEST_WEB_HOSTNAME=test-runner \
-e MOCK_CONNECTOR_SERVER_HOST=mock_connector_server \
-e MOCK_CONNECTOR_SERVER_PORT=8001 \
@@ -427,15 +444,16 @@ jobs:
path: ${{ github.workspace }}/docker-compose.log
# ------------------------------------------------------------
multitenant-tests:
needs:
[build-backend-image, build-model-server-image, build-integration-image]
runs-on:
[
build-backend-image,
build-model-server-image,
build-integration-image,
runs-on,
runner=8cpu-linux-arm64,
"run-id=${{ github.run_id }}-multitenant-tests",
"extras=ecr-cache",
]
runs-on: [runs-on, runner=8cpu-linux-arm64, "run-id=${{ github.run_id }}-multitenant-tests", "extras=ecr-cache"]
timeout-minutes: 45
steps:
@@ -465,7 +483,6 @@ jobs:
ONYX_BACKEND_IMAGE=${ECR_CACHE}:integration-test-backend-test-${RUN_ID} \
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID} \
DEV_MODE=true \
MCP_SERVER_ENABLED=true \
docker compose -f docker-compose.multitenant-dev.yml up \
relational_db \
index \
@@ -474,7 +491,6 @@ jobs:
api_server \
inference_model_server \
indexing_model_server \
mcp_server \
background \
-d
id: start_docker_multi_tenant
@@ -523,8 +539,6 @@ jobs:
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e MCP_SERVER_HOST=mcp_server \
-e MCP_SERVER_PORT=8090 \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e EXA_API_KEY=${EXA_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \

View File

@@ -4,7 +4,14 @@ concurrency:
cancel-in-progress: true
on:
merge_group:
pull_request:
branches:
- main
- "release/**"
push:
tags:
- "v*.*.*"
permissions:
contents: read

View File

@@ -48,7 +48,7 @@ jobs:
id: set-matrix
run: |
# Find all leaf-level directories in both test directories
tests_dirs=$(find backend/tests/integration/tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" -exec basename {} \; | sort)
tests_dirs=$(find backend/tests/integration/tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" ! -name "mcp" -exec basename {} \; | sort)
connector_dirs=$(find backend/tests/integration/connector_job_tests -mindepth 1 -maxdepth 1 -type d ! -name "__pycache__" -exec basename {} \; | sort)
# Create JSON array with directory info
@@ -65,7 +65,13 @@ jobs:
echo "test-dirs=$all_dirs" >> $GITHUB_OUTPUT
build-backend-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-backend-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-backend-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -119,7 +125,13 @@ jobs:
no-cache: ${{ vars.DOCKER_NO_CACHE == 'true' }}
build-model-server-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-model-server-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-model-server-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -172,7 +184,13 @@ jobs:
type=registry,ref=${{ env.RUNS_ON_ECR_CACHE }}:model-server-cache,mode=max
build-integration-image:
runs-on: [runs-on, runner=2cpu-linux-arm64, "run-id=${{ github.run_id }}-build-integration-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=2cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-integration-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -214,7 +232,7 @@ jobs:
CACHE_SUFFIX: ${{ steps.format-branch.outputs.cache-suffix }}
HEAD_SHA: ${{ github.event.pull_request.head.sha || github.sha }}
run: |
cd backend && docker buildx bake --push \
docker buildx bake --push \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache-${HEAD_SHA} \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache-${CACHE_SUFFIX} \
--set backend.cache-from=type=registry,ref=${RUNS_ON_ECR_CACHE}:backend-cache \
@@ -283,6 +301,7 @@ jobs:
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID}
INTEGRATION_TESTS_MODE=true
MCP_SERVER_ENABLED=true
AUTO_LLM_UPDATE_INTERVAL_SECONDS=1
EOF
- name: Start Docker containers
@@ -296,7 +315,6 @@ jobs:
api_server \
inference_model_server \
indexing_model_server \
mcp_server \
background \
-d
id: start_docker
@@ -339,12 +357,6 @@ jobs:
}
wait_for_service "http://localhost:8080/health" "API server"
test_dir="${{ matrix.test-dir.path }}"
if [ "$test_dir" = "tests/mcp" ]; then
wait_for_service "http://localhost:8090/health" "MCP server"
else
echo "Skipping MCP server wait for non-MCP suite: $test_dir"
fi
echo "Finished waiting for services."
- name: Start Mock Services
@@ -375,8 +387,6 @@ jobs:
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e MCP_SERVER_HOST=mcp_server \
-e MCP_SERVER_PORT=8090 \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e EXA_API_KEY=${EXA_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
@@ -420,7 +430,6 @@ jobs:
path: ${{ github.workspace }}/docker-compose.log
# ------------------------------------------------------------
required:
# NOTE: Github-hosted runners have about 20s faster queue times and are preferred here.
runs-on: ubuntu-slim

View File

@@ -4,7 +4,14 @@ concurrency:
cancel-in-progress: true
on:
merge_group:
pull_request:
branches:
- main
- "release/**"
push:
tags:
- "v*.*.*"
permissions:
contents: read
@@ -47,7 +54,13 @@ env:
jobs:
build-web-image:
runs-on: [runs-on, runner=4cpu-linux-arm64, "run-id=${{ github.run_id }}-build-web-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=4cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-web-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -102,7 +115,13 @@ jobs:
no-cache: ${{ vars.DOCKER_NO_CACHE == 'true' }}
build-backend-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-backend-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-backend-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -157,7 +176,13 @@ jobs:
no-cache: ${{ vars.DOCKER_NO_CACHE == 'true' }}
build-model-server-image:
runs-on: [runs-on, runner=1cpu-linux-arm64, "run-id=${{ github.run_id }}-build-model-server-image", "extras=ecr-cache"]
runs-on:
[
runs-on,
runner=1cpu-linux-arm64,
"run-id=${{ github.run_id }}-build-model-server-image",
"extras=ecr-cache",
]
timeout-minutes: 45
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
@@ -231,14 +256,13 @@ jobs:
- name: Checkout code
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
fetch-depth: 0
persist-credentials: false
- name: Setup node
uses: actions/setup-node@395ad3262231945c25e8478fd5baf05154b1d79f # ratchet:actions/setup-node@v4
with:
node-version: 22
cache: 'npm'
cache: "npm"
cache-dependency-path: ./web/package-lock.json
- name: Install node dependencies
@@ -447,7 +471,6 @@ jobs:
if: ${{ contains(needs.*.result, 'failure') || contains(needs.*.result, 'cancelled') || contains(needs.*.result, 'skipped') }}
run: exit 1
# NOTE: Chromatic UI diff testing is currently disabled.
# We are using Playwright for local and CI testing without visual regression checks.
# Chromatic may be reintroduced in the future for UI diff testing if needed.

View File

@@ -16,21 +16,22 @@ jobs:
strategy:
matrix:
os-arch:
- {goos: "linux", goarch: "amd64"}
- {goos: "linux", goarch: "arm64"}
- {goos: "windows", goarch: "amd64"}
- {goos: "windows", goarch: "arm64"}
- {goos: "darwin", goarch: "amd64"}
- {goos: "darwin", goarch: "arm64"}
- {goos: "", goarch: ""}
- { goos: "linux", goarch: "amd64" }
- { goos: "linux", goarch: "arm64" }
- { goos: "windows", goarch: "amd64" }
- { goos: "windows", goarch: "arm64" }
- { goos: "darwin", goarch: "amd64" }
- { goos: "darwin", goarch: "arm64" }
- { goos: "", goarch: "" }
steps:
- uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
fetch-depth: 0
- uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # ratchet:astral-sh/setup-uv@v7
- uses: astral-sh/setup-uv@ed21f2f24f8dd64503750218de024bcf64c7250a # ratchet:astral-sh/setup-uv@v7
with:
enable-cache: false
version: "0.9.9"
- run: |
GOOS="${{ matrix.os-arch.goos }}" \
GOARCH="${{ matrix.os-arch.goarch }}" \

View File

@@ -22,9 +22,10 @@ jobs:
persist-credentials: false
- name: Install the latest version of uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # ratchet:astral-sh/setup-uv@v7.1.4
uses: astral-sh/setup-uv@ed21f2f24f8dd64503750218de024bcf64c7250a # ratchet:astral-sh/setup-uv@v7
with:
enable-cache: false
version: "0.9.9"
- name: Run zizmor
run: uv run --no-sync --with zizmor zizmor --format=sarif . > results.sarif

View File

@@ -8,30 +8,66 @@ repos:
# From: https://github.com/astral-sh/uv-pre-commit/pull/53/commits/d30b4298e4fb63ce8609e29acdbcf4c9018a483c
rev: d30b4298e4fb63ce8609e29acdbcf4c9018a483c
hooks:
- id: uv-run
name: Check lazy imports
args: ["--with=onyx-devtools", "ods", "check-lazy-imports"]
files: ^backend/(?!\.venv/).*\.py$
- id: uv-sync
args: ["--locked", "--all-extras"]
- id: uv-lock
files: ^pyproject\.toml$
- id: uv-export
name: uv-export default.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "backend", "-o", "backend/requirements/default.txt"]
args:
[
"--no-emit-project",
"--no-default-groups",
"--no-hashes",
"--extra",
"backend",
"-o",
"backend/requirements/default.txt",
]
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export dev.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "dev", "-o", "backend/requirements/dev.txt"]
args:
[
"--no-emit-project",
"--no-default-groups",
"--no-hashes",
"--extra",
"dev",
"-o",
"backend/requirements/dev.txt",
]
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export ee.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "ee", "-o", "backend/requirements/ee.txt"]
args:
[
"--no-emit-project",
"--no-default-groups",
"--no-hashes",
"--extra",
"ee",
"-o",
"backend/requirements/ee.txt",
]
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export model_server.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "model_server", "-o", "backend/requirements/model_server.txt"]
args:
[
"--no-emit-project",
"--no-default-groups",
"--no-hashes",
"--extra",
"model_server",
"-o",
"backend/requirements/model_server.txt",
]
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-run
name: Check lazy imports
args: ["--active", "--with=onyx-devtools", "ods", "check-lazy-imports"]
files: ^backend/(?!\.venv/).*\.py$
# NOTE: This takes ~6s on a single, large module which is prohibitively slow.
# - id: uv-run
# name: mypy
@@ -39,69 +75,68 @@ repos:
# pass_filenames: true
# files: ^backend/.*\.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: 3e8a8703264a2f4a69428a0aa4dcb512790b2c8c # frozen: v6.0.0
hooks:
- id: check-yaml
files: ^.github/
- repo: https://github.com/rhysd/actionlint
rev: a443f344ff32813837fa49f7aa6cbc478d770e62 # frozen: v1.7.9
rev: a443f344ff32813837fa49f7aa6cbc478d770e62 # frozen: v1.7.9
hooks:
- id: actionlint
- repo: https://github.com/psf/black
rev: 8a737e727ac5ab2f1d4cf5876720ed276dc8dc4b # frozen: 25.1.0
hooks:
- id: black
language_version: python3.11
- id: black
language_version: python3.11
# this is a fork which keeps compatibility with black
- repo: https://github.com/wimglenn/reorder-python-imports-black
rev: f55cd27f90f0cf0ee775002c2383ce1c7820013d # frozen: v3.14.0
rev: f55cd27f90f0cf0ee775002c2383ce1c7820013d # frozen: v3.14.0
hooks:
- id: reorder-python-imports
args: ['--py311-plus', '--application-directories=backend/']
# need to ignore alembic files, since reorder-python-imports gets confused
# and thinks that alembic is a local package since there is a folder
# in the backend directory called `alembic`
exclude: ^backend/alembic/
- id: reorder-python-imports
args: ["--py311-plus", "--application-directories=backend/"]
# need to ignore alembic files, since reorder-python-imports gets confused
# and thinks that alembic is a local package since there is a folder
# in the backend directory called `alembic`
exclude: ^backend/alembic/
# These settings will remove unused imports with side effects
# Note: The repo currently does not and should not have imports with side effects
- repo: https://github.com/PyCQA/autoflake
rev: 0544741e2b4a22b472d9d93e37d4ea9153820bb1 # frozen: v2.3.1
rev: 0544741e2b4a22b472d9d93e37d4ea9153820bb1 # frozen: v2.3.1
hooks:
- id: autoflake
args: [ '--remove-all-unused-imports', '--remove-unused-variables', '--in-place' , '--recursive']
args:
[
"--remove-all-unused-imports",
"--remove-unused-variables",
"--in-place",
"--recursive",
]
- repo: https://github.com/golangci/golangci-lint
rev: 9f61b0f53f80672872fced07b6874397c3ed197b # frozen: v2.7.2
rev: 9f61b0f53f80672872fced07b6874397c3ed197b # frozen: v2.7.2
hooks:
- id: golangci-lint
entry: bash -c "find tools/ -name go.mod -print0 | xargs -0 -I{} bash -c 'cd \"$(dirname {})\" && golangci-lint run ./...'"
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: 971923581912ef60a6b70dbf0c3e9a39563c9d47 # frozen: v0.11.4
rev: 971923581912ef60a6b70dbf0c3e9a39563c9d47 # frozen: v0.11.4
hooks:
- id: ruff
- repo: https://github.com/pre-commit/mirrors-prettier
rev: ffb6a759a979008c0e6dff86e39f4745a2d9eac4 # frozen: v3.1.0
rev: ffb6a759a979008c0e6dff86e39f4745a2d9eac4 # frozen: v3.1.0
hooks:
- id: prettier
types_or: [html, css, javascript, ts, tsx]
language_version: system
- id: prettier
types_or: [html, css, javascript, ts, tsx]
language_version: system
- repo: https://github.com/sirwart/ripsecrets
rev: 7d94620933e79b8acaa0cd9e60e9864b07673d86 # frozen: v0.1.11
rev: 7d94620933e79b8acaa0cd9e60e9864b07673d86 # frozen: v0.1.11
hooks:
- id: ripsecrets
args:
- --additional-pattern
- ^sk-[A-Za-z0-9_\-]{20,}$
- --additional-pattern
- ^sk-[A-Za-z0-9_\-]{20,}$
- repo: local
hooks:
@@ -112,9 +147,13 @@ repos:
pass_filenames: false
files: \.tf$
# Uses tsgo (TypeScript's native Go compiler) for ~10x faster type checking.
# This is a preview package - if it breaks:
# 1. Try updating: cd web && npm update @typescript/native-preview
# 2. Or fallback to tsc: replace 'tsgo' with 'tsc' below
- id: typescript-check
name: TypeScript type check
entry: bash -c 'cd web && npm run types:check'
entry: bash -c 'cd web && npx tsgo --noEmit --project tsconfig.types.json'
language: system
pass_filenames: false
files: ^web/.*\.(ts|tsx)$

View File

@@ -1,36 +1,45 @@
# Copy this file to .env in the .vscode folder
# Fill in the <REPLACE THIS> values as needed, it is recommended to set the GEN_AI_API_KEY value to avoid having to set up an LLM in the UI
# Also check out onyx/backend/scripts/restart_containers.sh for a script to restart the containers which Onyx relies on outside of VSCode/Cursor processes
# Copy this file to .env in the .vscode folder.
# Fill in the <REPLACE THIS> values as needed; it is recommended to set the
# GEN_AI_API_KEY value to avoid having to set up an LLM in the UI.
# Also check out onyx/backend/scripts/restart_containers.sh for a script to
# restart the containers which Onyx relies on outside of VSCode/Cursor
# processes.
# For local dev, often user Authentication is not needed
# For local dev, often user Authentication is not needed.
AUTH_TYPE=disabled
# Always keep these on for Dev
# Logs model prompts, reasoning, and answer to stdout
# Always keep these on for Dev.
# Logs model prompts, reasoning, and answer to stdout.
LOG_ONYX_MODEL_INTERACTIONS=True
# More verbose logging
LOG_LEVEL=debug
# This passes top N results to LLM an additional time for reranking prior to answer generation
# This step is quite heavy on token usage so we disable it for dev generally
# This passes top N results to LLM an additional time for reranking prior to
# answer generation.
# This step is quite heavy on token usage so we disable it for dev generally.
DISABLE_LLM_DOC_RELEVANCE=False
# Useful if you want to toggle auth on/off (google_oauth/OIDC specifically)
# Useful if you want to toggle auth on/off (google_oauth/OIDC specifically).
OAUTH_CLIENT_ID=<REPLACE THIS>
OAUTH_CLIENT_SECRET=<REPLACE THIS>
OPENID_CONFIG_URL=<REPLACE THIS>
SAML_CONF_DIR=/<ABSOLUTE PATH TO ONYX>/onyx/backend/ee/onyx/configs/saml_config
# Generally not useful for dev, we don't generally want to set up an SMTP server for dev
# Generally not useful for dev, we don't generally want to set up an SMTP server
# for dev.
REQUIRE_EMAIL_VERIFICATION=False
# Set these so if you wipe the DB, you don't end up having to go through the UI every time
# Set these so if you wipe the DB, you don't end up having to go through the UI
# every time.
GEN_AI_API_KEY=<REPLACE THIS>
OPENAI_API_KEY=<REPLACE THIS>
# If answer quality isn't important for dev, use gpt-4o-mini since it's cheaper
# If answer quality isn't important for dev, use gpt-4o-mini since it's cheaper.
GEN_AI_MODEL_VERSION=gpt-4o
FAST_GEN_AI_MODEL_VERSION=gpt-4o
@@ -40,26 +49,36 @@ PYTHONPATH=../backend
PYTHONUNBUFFERED=1
# Enable the full set of Danswer Enterprise Edition features
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you are using this for local testing/development)
# Enable the full set of Danswer Enterprise Edition features.
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you
# are using this for local testing/development).
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=False
# S3 File Store Configuration (MinIO for local development)
S3_ENDPOINT_URL=http://localhost:9004
S3_FILE_STORE_BUCKET_NAME=onyx-file-store-bucket
S3_AWS_ACCESS_KEY_ID=minioadmin
S3_AWS_SECRET_ACCESS_KEY=minioadmin
# Show extra/uncommon connectors
# Show extra/uncommon connectors.
SHOW_EXTRA_CONNECTORS=True
# Local langsmith tracing
LANGSMITH_TRACING="true"
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY=<REPLACE_THIS>
LANGSMITH_PROJECT=<REPLACE_THIS>
# Local Confluence OAuth testing
# OAUTH_CONFLUENCE_CLOUD_CLIENT_ID=<REPLACE_THIS>
# OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET=<REPLACE_THIS>
# NEXT_PUBLIC_TEST_ENV=True
# NEXT_PUBLIC_TEST_ENV=True
# OpenSearch
# Arbitrary password is fine for local development.
OPENSEARCH_INITIAL_ADMIN_PASSWORD=<REPLACE THIS>

View File

@@ -512,6 +512,21 @@
"group": "3"
}
},
{
"name": "Clear and Restart OpenSearch Container",
// Generic debugger type, required arg but has no bearing on bash.
"type": "node",
"request": "launch",
"runtimeExecutable": "bash",
"runtimeArgs": [
"${workspaceFolder}/backend/scripts/restart_opensearch_container.sh"
],
"cwd": "${workspaceFolder}",
"console": "integratedTerminal",
"presentation": {
"group": "3"
}
},
{
"name": "Eval CLI",
"type": "debugpy",

View File

@@ -1,10 +1,10 @@
# AGENTS.md
This file provides guidance to Codex when working with code in this repository.
This file provides guidance to AI agents when working with code in this repository.
## KEY NOTES
- If you run into any missing python dependency errors, try running your command with `source backend/.venv/bin/activate` \
- If you run into any missing python dependency errors, try running your command with `source .venv/bin/activate` \
to assume the python venv.
- To make tests work, check the `.env` file at the root of the project to find an OpenAI key.
- If using `playwright` to explore the frontend, you can usually log in with username `a@test.com` and password
@@ -181,6 +181,286 @@ web/
└── src/lib/ # Utilities & business logic
```
## Frontend Standards
### 1. Import Standards
**Always use absolute imports with the `@` prefix.**
**Reason:** Moving files around becomes easier since you don't also have to update those import statements. This makes modifications to the codebase much nicer.
```typescript
// ✅ Good
import { Button } from "@/components/ui/button";
import { useAuth } from "@/hooks/useAuth";
import { Text } from "@/refresh-components/texts/Text";
// ❌ Bad
import { Button } from "../../../components/ui/button";
import { useAuth } from "./hooks/useAuth";
```
### 2. React Component Functions
**Prefer regular functions over arrow functions for React components.**
**Reason:** Functions just become easier to read.
```typescript
// ✅ Good
function UserProfile({ userId }: UserProfileProps) {
return <div>User Profile</div>
}
// ❌ Bad
const UserProfile = ({ userId }: UserProfileProps) => {
return <div>User Profile</div>
}
```
### 3. Props Interface Extraction
**Extract prop types into their own interface definitions.**
**Reason:** Functions just become easier to read.
```typescript
// ✅ Good
interface UserCardProps {
user: User
showActions?: boolean
onEdit?: (userId: string) => void
}
function UserCard({ user, showActions = false, onEdit }: UserCardProps) {
return <div>User Card</div>
}
// ❌ Bad
function UserCard({
user,
showActions = false,
onEdit
}: {
user: User
showActions?: boolean
onEdit?: (userId: string) => void
}) {
return <div>User Card</div>
}
```
### 4. Spacing Guidelines
**Prefer padding over margins for spacing.**
**Reason:** We want to consolidate usage to paddings instead of margins.
```typescript
// ✅ Good
<div className="p-4 space-y-2">
<div className="p-2">Content</div>
</div>
// ❌ Bad
<div className="m-4 space-y-2">
<div className="m-2">Content</div>
</div>
```
### 5. Tailwind Dark Mode
**Strictly forbid using the `dark:` modifier in Tailwind classes, except for logo icon handling.**
**Reason:** The `colors.css` file already, VERY CAREFULLY, defines what the exact opposite colour of each light-mode colour is. Overriding this behaviour is VERY bad and will lead to horrible UI breakages.
**Exception:** The `createLogoIcon` helper in `web/src/components/icons/icons.tsx` uses `dark:` modifiers (`dark:invert`, `dark:hidden`, `dark:block`) to handle third-party logo icons that cannot automatically adapt through `colors.css`. This is the ONLY acceptable use of dark mode modifiers.
```typescript
// ✅ Good - Standard components use `web/tailwind-themes/tailwind.config.js` / `web/src/app/css/colors.css`
<div className="bg-background-neutral-03 text-text-02">
Content
</div>
// ✅ Good - Logo icons with dark mode handling via createLogoIcon
export const GithubIcon = createLogoIcon(githubLightIcon, {
monochromatic: true, // Will apply dark:invert internally
});
export const GitbookIcon = createLogoIcon(gitbookLightIcon, {
darkSrc: gitbookDarkIcon, // Will use dark:hidden/dark:block internally
});
// ❌ Bad - Manual dark mode overrides
<div className="bg-white dark:bg-black text-black dark:text-white">
Content
</div>
```
### 6. Class Name Utilities
**Use the `cn` utility instead of raw string formatting for classNames.**
**Reason:** `cn`s are easier to read. They also allow for more complex types (i.e., string-arrays) to get formatted properly (it flattens each element in that string array down). As a result, it can allow things such as conditionals (i.e., `myCondition && "some-tailwind-class"`, which evaluates to `false` when `myCondition` is `false`) to get filtered out.
```typescript
import { cn } from '@/lib/utils'
// ✅ Good
<div className={cn(
'base-class',
isActive && 'active-class',
className
)}>
Content
</div>
// ❌ Bad
<div className={`base-class ${isActive ? 'active-class' : ''} ${className}`}>
Content
</div>
```
### 7. Custom Hooks Organization
**Follow a "hook-per-file" layout. Each hook should live in its own file within `web/src/hooks`.**
**Reason:** This is just a layout preference. Keeps code clean.
```typescript
// web/src/hooks/useUserData.ts
export function useUserData(userId: string) {
// hook implementation
}
// web/src/hooks/useLocalStorage.ts
export function useLocalStorage<T>(key: string, initialValue: T) {
// hook implementation
}
```
### 8. Icon Usage
**ONLY use icons from the `web/src/icons` directory. Do NOT use icons from `react-icons`, `lucide`, or other external libraries.**
**Reason:** We have a very carefully curated selection of icons that match our Onyx guidelines. We do NOT want to muddy those up with different aesthetic stylings.
```typescript
// ✅ Good
import SvgX from "@/icons/x";
import SvgMoreHorizontal from "@/icons/more-horizontal";
// ❌ Bad
import { User } from "lucide-react";
import { FiSearch } from "react-icons/fi";
```
**Missing Icons**: If an icon is needed but doesn't exist in the `web/src/icons` directory, import it from Figma using the Figma MCP tool and add it to the icons directory.
If you need help with this step, reach out to `raunak@onyx.app`.
### 9. Text Rendering
**Prefer using the `refresh-components/texts/Text` component for all text rendering. Avoid "naked" text nodes.**
**Reason:** The `Text` component is fully compliant with the stylings provided in Figma. It provides easy utilities to specify the text-colour and font-size in the form of flags. Super duper easy.
```typescript
// ✅ Good
import { Text } from '@/refresh-components/texts/Text'
function UserCard({ name }: { name: string }) {
return (
<Text
{/* The `text03` flag makes the text it renders to be coloured the 3rd-scale grey */}
text03
{/* The `mainAction` flag makes the text it renders to be "main-action" font + line-height + weightage, as described in the Figma */}
mainAction
>
{name}
</Text>
)
}
// ❌ Bad
function UserCard({ name }: { name: string }) {
return (
<div>
<h2>{name}</h2>
<p>User details</p>
</div>
)
}
```
### 10. Component Usage
**Heavily avoid raw HTML input components. Always use components from the `web/src/refresh-components` or `web/lib/opal/src` directory.**
**Reason:** We've put in a lot of effort to unify the components that are rendered in the Onyx app. Using raw components breaks the entire UI of the application, and leaves it in a muddier state than before.
```typescript
// ✅ Good
import Button from '@/refresh-components/buttons/Button'
import InputTypeIn from '@/refresh-components/inputs/InputTypeIn'
import SvgPlusCircle from '@/icons/plus-circle'
function ContactForm() {
return (
<form>
<InputTypeIn placeholder="Search..." />
<Button type="submit" leftIcon={SvgPlusCircle}>Submit</Button>
</form>
)
}
// ❌ Bad
function ContactForm() {
return (
<form>
<input placeholder="Name" />
<textarea placeholder="Message" />
<button type="submit">Submit</button>
</form>
)
}
```
### 11. Colors
**Always use custom overrides for colors and borders rather than built in Tailwind CSS colors. These overrides live in `web/tailwind-themes/tailwind.config.js`.**
**Reason:** Our custom color system uses CSS variables that automatically handle dark mode and maintain design consistency across the app. Standard Tailwind colors bypass this system.
**Available color categories:**
- **Text:** `text-01` through `text-05`, `text-inverted-XX`
- **Backgrounds:** `background-neutral-XX`, `background-tint-XX` (and inverted variants)
- **Borders:** `border-01` through `border-05`, `border-inverted-XX`
- **Actions:** `action-link-XX`, `action-danger-XX`
- **Status:** `status-info-XX`, `status-success-XX`, `status-warning-XX`, `status-error-XX`
- **Theme:** `theme-primary-XX`, `theme-red-XX`, `theme-blue-XX`, etc.
```typescript
// ✅ Good - Use custom Onyx color classes
<div className="bg-background-neutral-01 border border-border-02" />
<div className="bg-background-tint-02 border border-border-01" />
<div className="bg-status-success-01" />
<div className="bg-action-link-01" />
<div className="bg-theme-primary-05" />
// ❌ Bad - Do NOT use standard Tailwind colors
<div className="bg-gray-100 border border-gray-300 text-gray-600" />
<div className="bg-white border border-slate-200" />
<div className="bg-green-100 text-green-700" />
<div className="bg-blue-100 text-blue-600" />
<div className="bg-indigo-500" />
```
### 12. Data Fetching
**Prefer using `useSWR` for data fetching. Data should generally be fetched on the client side. Components that need data should display a loader / placeholder while waiting for that data. Prefer loading data within the component that needs it rather than at the top level and passing it down.**
**Reason:** Client side fetching allows us to load the skeleton of the page without waiting for data to load, leading to a snappier UX. Loading data where needed reduces dependencies between a component and its parent component(s).
## Database & Migrations
### Running Migrations
@@ -295,14 +575,6 @@ will be tailing their logs to this file.
- Token management and rate limiting
- Custom prompts and agent actions
## UI/UX Patterns
- Tailwind CSS with design system in `web/src/components/ui/`
- Radix UI and Headless UI for accessible components
- SWR for data fetching and caching
- Form validation with react-hook-form
- Error handling with popup notifications
## Creating a Plan
When creating a plan in the `plans` directory, make sure to include at least these elements:

View File

@@ -184,6 +184,286 @@ web/
└── src/lib/ # Utilities & business logic
```
## Frontend Standards
### 1. Import Standards
**Always use absolute imports with the `@` prefix.**
**Reason:** Moving files around becomes easier since you don't also have to update those import statements. This makes modifications to the codebase much nicer.
```typescript
// ✅ Good
import { Button } from "@/components/ui/button";
import { useAuth } from "@/hooks/useAuth";
import { Text } from "@/refresh-components/texts/Text";
// ❌ Bad
import { Button } from "../../../components/ui/button";
import { useAuth } from "./hooks/useAuth";
```
### 2. React Component Functions
**Prefer regular functions over arrow functions for React components.**
**Reason:** Functions just become easier to read.
```typescript
// ✅ Good
function UserProfile({ userId }: UserProfileProps) {
return <div>User Profile</div>
}
// ❌ Bad
const UserProfile = ({ userId }: UserProfileProps) => {
return <div>User Profile</div>
}
```
### 3. Props Interface Extraction
**Extract prop types into their own interface definitions.**
**Reason:** Functions just become easier to read.
```typescript
// ✅ Good
interface UserCardProps {
user: User
showActions?: boolean
onEdit?: (userId: string) => void
}
function UserCard({ user, showActions = false, onEdit }: UserCardProps) {
return <div>User Card</div>
}
// ❌ Bad
function UserCard({
user,
showActions = false,
onEdit
}: {
user: User
showActions?: boolean
onEdit?: (userId: string) => void
}) {
return <div>User Card</div>
}
```
### 4. Spacing Guidelines
**Prefer padding over margins for spacing.**
**Reason:** We want to consolidate usage to paddings instead of margins.
```typescript
// ✅ Good
<div className="p-4 space-y-2">
<div className="p-2">Content</div>
</div>
// ❌ Bad
<div className="m-4 space-y-2">
<div className="m-2">Content</div>
</div>
```
### 5. Tailwind Dark Mode
**Strictly forbid using the `dark:` modifier in Tailwind classes, except for logo icon handling.**
**Reason:** The `colors.css` file already, VERY CAREFULLY, defines what the exact opposite colour of each light-mode colour is. Overriding this behaviour is VERY bad and will lead to horrible UI breakages.
**Exception:** The `createLogoIcon` helper in `web/src/components/icons/icons.tsx` uses `dark:` modifiers (`dark:invert`, `dark:hidden`, `dark:block`) to handle third-party logo icons that cannot automatically adapt through `colors.css`. This is the ONLY acceptable use of dark mode modifiers.
```typescript
// ✅ Good - Standard components use `tailwind-themes/tailwind.config.js` / `src/app/css/colors.css`
<div className="bg-background-neutral-03 text-text-02">
Content
</div>
// ✅ Good - Logo icons with dark mode handling via createLogoIcon
export const GithubIcon = createLogoIcon(githubLightIcon, {
monochromatic: true, // Will apply dark:invert internally
});
export const GitbookIcon = createLogoIcon(gitbookLightIcon, {
darkSrc: gitbookDarkIcon, // Will use dark:hidden/dark:block internally
});
// ❌ Bad - Manual dark mode overrides
<div className="bg-white dark:bg-black text-black dark:text-white">
Content
</div>
```
### 6. Class Name Utilities
**Use the `cn` utility instead of raw string formatting for classNames.**
**Reason:** `cn`s are easier to read. They also allow for more complex types (i.e., string-arrays) to get formatted properly (it flattens each element in that string array down). As a result, it can allow things such as conditionals (i.e., `myCondition && "some-tailwind-class"`, which evaluates to `false` when `myCondition` is `false`) to get filtered out.
```typescript
import { cn } from '@/lib/utils'
// ✅ Good
<div className={cn(
'base-class',
isActive && 'active-class',
className
)}>
Content
</div>
// ❌ Bad
<div className={`base-class ${isActive ? 'active-class' : ''} ${className}`}>
Content
</div>
```
### 7. Custom Hooks Organization
**Follow a "hook-per-file" layout. Each hook should live in its own file within `web/src/hooks`.**
**Reason:** This is just a layout preference. Keeps code clean.
```typescript
// web/src/hooks/useUserData.ts
export function useUserData(userId: string) {
// hook implementation
}
// web/src/hooks/useLocalStorage.ts
export function useLocalStorage<T>(key: string, initialValue: T) {
// hook implementation
}
```
### 8. Icon Usage
**ONLY use icons from the `web/src/icons` directory. Do NOT use icons from `react-icons`, `lucide`, or other external libraries.**
**Reason:** We have a very carefully curated selection of icons that match our Onyx guidelines. We do NOT want to muddy those up with different aesthetic stylings.
```typescript
// ✅ Good
import SvgX from "@/icons/x";
import SvgMoreHorizontal from "@/icons/more-horizontal";
// ❌ Bad
import { User } from "lucide-react";
import { FiSearch } from "react-icons/fi";
```
**Missing Icons**: If an icon is needed but doesn't exist in the `web/src/icons` directory, import it from Figma using the Figma MCP tool and add it to the icons directory.
If you need help with this step, reach out to `raunak@onyx.app`.
### 9. Text Rendering
**Prefer using the `refresh-components/texts/Text` component for all text rendering. Avoid "naked" text nodes.**
**Reason:** The `Text` component is fully compliant with the stylings provided in Figma. It provides easy utilities to specify the text-colour and font-size in the form of flags. Super duper easy.
```typescript
// ✅ Good
import { Text } from '@/refresh-components/texts/Text'
function UserCard({ name }: { name: string }) {
return (
<Text
{/* The `text03` flag makes the text it renders to be coloured the 3rd-scale grey */}
text03
{/* The `mainAction` flag makes the text it renders to be "main-action" font + line-height + weightage, as described in the Figma */}
mainAction
>
{name}
</Text>
)
}
// ❌ Bad
function UserCard({ name }: { name: string }) {
return (
<div>
<h2>{name}</h2>
<p>User details</p>
</div>
)
}
```
### 10. Component Usage
**Heavily avoid raw HTML input components. Always use components from the `web/src/refresh-components` or `web/lib/opal/src` directory.**
**Reason:** We've put in a lot of effort to unify the components that are rendered in the Onyx app. Using raw components breaks the entire UI of the application, and leaves it in a muddier state than before.
```typescript
// ✅ Good
import Button from '@/refresh-components/buttons/Button'
import InputTypeIn from '@/refresh-components/inputs/InputTypeIn'
import SvgPlusCircle from '@/icons/plus-circle'
function ContactForm() {
return (
<form>
<InputTypeIn placeholder="Search..." />
<Button type="submit" leftIcon={SvgPlusCircle}>Submit</Button>
</form>
)
}
// ❌ Bad
function ContactForm() {
return (
<form>
<input placeholder="Name" />
<textarea placeholder="Message" />
<button type="submit">Submit</button>
</form>
)
}
```
### 11. Colors
**Always use custom overrides for colors and borders rather than built in Tailwind CSS colors. These overrides live in `web/tailwind-themes/tailwind.config.js`.**
**Reason:** Our custom color system uses CSS variables that automatically handle dark mode and maintain design consistency across the app. Standard Tailwind colors bypass this system.
**Available color categories:**
- **Text:** `text-01` through `text-05`, `text-inverted-XX`
- **Backgrounds:** `background-neutral-XX`, `background-tint-XX` (and inverted variants)
- **Borders:** `border-01` through `border-05`, `border-inverted-XX`
- **Actions:** `action-link-XX`, `action-danger-XX`
- **Status:** `status-info-XX`, `status-success-XX`, `status-warning-XX`, `status-error-XX`
- **Theme:** `theme-primary-XX`, `theme-red-XX`, `theme-blue-XX`, etc.
```typescript
// ✅ Good - Use custom Onyx color classes
<div className="bg-background-neutral-01 border border-border-02" />
<div className="bg-background-tint-02 border border-border-01" />
<div className="bg-status-success-01" />
<div className="bg-action-link-01" />
<div className="bg-theme-primary-05" />
// ❌ Bad - Do NOT use standard Tailwind colors
<div className="bg-gray-100 border border-gray-300 text-gray-600" />
<div className="bg-white border border-slate-200" />
<div className="bg-green-100 text-green-700" />
<div className="bg-blue-100 text-blue-600" />
<div className="bg-indigo-500" />
```
### 12. Data Fetching
**Prefer using `useSWR` for data fetching. Data should generally be fetched on the client side. Components that need data should display a loader / placeholder while waiting for that data. Prefer loading data within the component that needs it rather than at the top level and passing it down.**
**Reason:** Client side fetching allows us to load the skeleton of the page without waiting for data to load, leading to a snappier UX. Loading data where needed reduces dependencies between a component and its parent component(s).
## Database & Migrations
### Running Migrations
@@ -300,14 +580,6 @@ will be tailing their logs to this file.
- Token management and rate limiting
- Custom prompts and agent actions
## UI/UX Patterns
- Tailwind CSS with design system in `web/src/components/ui/`
- Radix UI and Headless UI for accessible components
- SWR for data fetching and caching
- Form validation with react-hook-form
- Error handling with popup notifications
## Creating a Plan
When creating a plan in the `plans` directory, make sure to include at least these elements:

View File

@@ -161,7 +161,7 @@ You will need Docker installed to run these containers.
First navigate to `onyx/deployment/docker_compose`, then start up Postgres/Vespa/Redis/MinIO with:
```bash
docker compose up -d index relational_db cache minio
docker compose -f docker-compose.yml -f docker-compose.dev.yml up -d index relational_db cache minio
```
(index refers to Vespa, relational_db refers to Postgres, and cache refers to Redis)

View File

@@ -15,3 +15,4 @@ build/
dist/
.coverage
htmlcov/
model_server/legacy/

View File

@@ -13,23 +13,10 @@ RUN uv pip install --system --no-cache-dir --upgrade \
-r /tmp/requirements.txt && \
rm -rf ~/.cache/uv /tmp/*.txt
# Stage for downloading tokenizers
FROM base AS tokenizers
RUN python -c "from transformers import AutoTokenizer; \
AutoTokenizer.from_pretrained('distilbert-base-uncased'); \
AutoTokenizer.from_pretrained('mixedbread-ai/mxbai-rerank-xsmall-v1');"
# Stage for downloading Onyx models
FROM base AS onyx-models
RUN python -c "from huggingface_hub import snapshot_download; \
snapshot_download(repo_id='onyx-dot-app/hybrid-intent-token-classifier'); \
snapshot_download(repo_id='onyx-dot-app/information-content-model');"
# Stage for downloading embedding and reranking models
# Stage for downloading embedding models
FROM base AS embedding-models
RUN python -c "from huggingface_hub import snapshot_download; \
snapshot_download('nomic-ai/nomic-embed-text-v1'); \
snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1');"
snapshot_download('nomic-ai/nomic-embed-text-v1');"
# Initialize SentenceTransformer to cache the custom architecture
RUN python -c "from sentence_transformers import SentenceTransformer; \
@@ -54,8 +41,6 @@ RUN groupadd -g 1001 onyx && \
# In case the user has volumes mounted to /app/.cache/huggingface that they've downloaded while
# running Onyx, move the current contents of the cache folder to a temporary location to ensure
# it's preserved in order to combine with the user's cache contents
COPY --chown=onyx:onyx --from=tokenizers /app/.cache/huggingface /app/.cache/temp_huggingface
COPY --chown=onyx:onyx --from=onyx-models /app/.cache/huggingface /app/.cache/temp_huggingface
COPY --chown=onyx:onyx --from=embedding-models /app/.cache/huggingface /app/.cache/temp_huggingface
WORKDIR /app

View File

@@ -39,7 +39,9 @@ config = context.config
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# disable_existing_loggers=False prevents breaking pytest's caplog fixture
# See: https://pytest-alembic.readthedocs.io/en/latest/setup.html#caplog-issues
fileConfig(config.config_file_name, disable_existing_loggers=False)
target_metadata = [Base.metadata, ResultModelBase.metadata]
@@ -460,8 +462,49 @@ def run_migrations_offline() -> None:
def run_migrations_online() -> None:
logger.info("run_migrations_online starting.")
asyncio.run(run_async_migrations())
"""Run migrations in 'online' mode.
Supports pytest-alembic by checking for a pre-configured connection
in context.config.attributes["connection"]. If present, uses that
connection/engine directly instead of creating a new async engine.
"""
# Check if pytest-alembic is providing a connection/engine
connectable = context.config.attributes.get("connection", None)
if connectable is not None:
# pytest-alembic is providing an engine - use it directly
logger.info("run_migrations_online starting (pytest-alembic mode).")
# For pytest-alembic, we use the default schema (public)
schema_name = context.config.attributes.get(
"schema_name", POSTGRES_DEFAULT_SCHEMA
)
# pytest-alembic passes an Engine, we need to get a connection from it
with connectable.connect() as connection:
# Set search path for the schema
connection.execute(text(f'SET search_path TO "{schema_name}"'))
context.configure(
connection=connection,
target_metadata=target_metadata, # type: ignore
include_object=include_object,
version_table_schema=schema_name,
include_schemas=True,
compare_type=True,
compare_server_default=True,
script_location=config.get_main_option("script_location"),
)
with context.begin_transaction():
context.run_migrations()
# Commit the transaction to ensure changes are visible to next migration
connection.commit()
else:
# Normal operation - use async migrations
logger.info("run_migrations_online starting.")
asyncio.run(run_async_migrations())
if context.is_offline_mode():

View File

@@ -12,8 +12,8 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "23957775e5f5"
down_revision = "bc9771dccadf"
branch_labels = None # type: ignore
depends_on = None # type: ignore
branch_labels = None
depends_on = None
def upgrade() -> None:

View File

@@ -0,0 +1,27 @@
"""add last refreshed at mcp server
Revision ID: 2a391f840e85
Revises: 4cebcbc9b2ae
Create Date: 2025-12-06 15:19:59.766066
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembi.
revision = "2a391f840e85"
down_revision = "4cebcbc9b2ae"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"mcp_server",
sa.Column("last_refreshed_at", sa.DateTime(timezone=True), nullable=True),
)
def downgrade() -> None:
op.drop_column("mcp_server", "last_refreshed_at")

View File

@@ -0,0 +1,46 @@
"""usage_limits
Revision ID: 2b90f3af54b8
Revises: 9a0296d7421e
Create Date: 2026-01-03 16:55:30.449692
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "2b90f3af54b8"
down_revision = "9a0296d7421e"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"tenant_usage",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column(
"window_start", sa.DateTime(timezone=True), nullable=False, index=True
),
sa.Column("llm_cost_cents", sa.Float(), nullable=False, server_default="0.0"),
sa.Column("chunks_indexed", sa.Integer(), nullable=False, server_default="0"),
sa.Column("api_calls", sa.Integer(), nullable=False, server_default="0"),
sa.Column(
"non_streaming_api_calls", sa.Integer(), nullable=False, server_default="0"
),
sa.Column(
"updated_at",
sa.DateTime(timezone=True),
server_default=sa.func.now(),
nullable=True,
),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("window_start", name="uq_tenant_usage_window"),
)
def downgrade() -> None:
op.drop_index("ix_tenant_usage_window_start", table_name="tenant_usage")
op.drop_table("tenant_usage")

View File

@@ -11,7 +11,7 @@ from pydantic import BaseModel, ConfigDict
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from onyx.llm.llm_provider_options import (
from onyx.llm.well_known_providers.llm_provider_options import (
fetch_model_names_for_provider_as_set,
fetch_visible_model_names_for_provider_as_set,
)

View File

@@ -0,0 +1,27 @@
"""add tab_index to tool_call
Revision ID: 4cebcbc9b2ae
Revises: a1b2c3d4e5f6
Create Date: 2025-12-16
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4cebcbc9b2ae"
down_revision = "a1b2c3d4e5f6"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"tool_call",
sa.Column("tab_index", sa.Integer(), nullable=False, server_default="0"),
)
def downgrade() -> None:
op.drop_column("tool_call", "tab_index")

View File

@@ -62,6 +62,11 @@ def upgrade() -> None:
)
"""
)
# Drop the temporary table to avoid conflicts if migration runs again
# (e.g., during upgrade -> downgrade -> upgrade cycles in tests)
op.execute("DROP TABLE IF EXISTS temp_connector_credential")
# If no exception was raised, alter the column
op.alter_column("credential", "source", nullable=True) # TODO modify
# # ### end Alembic commands ###

View File

@@ -0,0 +1,75 @@
"""nullify_default_task_prompt
Revision ID: 699221885109
Revises: 7e490836d179
Create Date: 2025-12-30 10:00:00.000000
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "699221885109"
down_revision = "7e490836d179"
branch_labels = None
depends_on = None
DEFAULT_PERSONA_ID = 0
def upgrade() -> None:
# Make task_prompt column nullable
# Note: The model had nullable=True but the DB column was NOT NULL until this point
op.alter_column(
"persona",
"task_prompt",
nullable=True,
)
# Set task_prompt to NULL for the default persona
conn = op.get_bind()
conn.execute(
sa.text(
"""
UPDATE persona
SET task_prompt = NULL
WHERE id = :persona_id
"""
),
{"persona_id": DEFAULT_PERSONA_ID},
)
def downgrade() -> None:
# Restore task_prompt to empty string for the default persona
conn = op.get_bind()
conn.execute(
sa.text(
"""
UPDATE persona
SET task_prompt = ''
WHERE id = :persona_id AND task_prompt IS NULL
"""
),
{"persona_id": DEFAULT_PERSONA_ID},
)
# Set any remaining NULL task_prompts to empty string before making non-nullable
conn.execute(
sa.text(
"""
UPDATE persona
SET task_prompt = ''
WHERE task_prompt IS NULL
"""
)
)
# Revert task_prompt column to not nullable
op.alter_column(
"persona",
"task_prompt",
nullable=False,
)

View File

@@ -0,0 +1,54 @@
"""add image generation config table
Revision ID: 7206234e012a
Revises: 699221885109
Create Date: 2025-12-21 00:00:00.000000
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "7206234e012a"
down_revision = "699221885109"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"image_generation_config",
sa.Column("image_provider_id", sa.String(), primary_key=True),
sa.Column("model_configuration_id", sa.Integer(), nullable=False),
sa.Column("is_default", sa.Boolean(), nullable=False),
sa.ForeignKeyConstraint(
["model_configuration_id"],
["model_configuration.id"],
ondelete="CASCADE",
),
)
op.create_index(
"ix_image_generation_config_is_default",
"image_generation_config",
["is_default"],
unique=False,
)
op.create_index(
"ix_image_generation_config_model_configuration_id",
"image_generation_config",
["model_configuration_id"],
unique=False,
)
def downgrade() -> None:
op.drop_index(
"ix_image_generation_config_model_configuration_id",
table_name="image_generation_config",
)
op.drop_index(
"ix_image_generation_config_is_default", table_name="image_generation_config"
)
op.drop_table("image_generation_config")

View File

@@ -10,7 +10,7 @@ from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from onyx.llm.llm_provider_options import (
from onyx.llm.well_known_providers.llm_provider_options import (
fetch_model_names_for_provider_as_set,
fetch_visible_model_names_for_provider_as_set,
)

View File

@@ -0,0 +1,80 @@
"""nullify_default_system_prompt
Revision ID: 7e490836d179
Revises: c1d2e3f4a5b6
Create Date: 2025-12-29 16:54:36.635574
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "7e490836d179"
down_revision = "c1d2e3f4a5b6"
branch_labels = None
depends_on = None
# This is the default system prompt from the previous migration (87c52ec39f84)
# ruff: noqa: E501, W605 start
PREVIOUS_DEFAULT_SYSTEM_PROMPT = """
You are a highly capable, thoughtful, and precise assistant. Your goal is to deeply understand the user's intent, ask clarifying questions when needed, think step-by-step through complex problems, provide clear and accurate answers, and proactively anticipate helpful follow-up information. Always prioritize being truthful, nuanced, insightful, and efficient.
The current date is [[CURRENT_DATETIME]].[[CITATION_GUIDANCE]]
# Response Style
You use different text styles, bolding, emojis (sparingly), block quotes, and other formatting to make your responses more readable and engaging.
You use proper Markdown and LaTeX to format your responses for math, scientific, and chemical formulas, symbols, etc.: '$$\\n[expression]\\n$$' for standalone cases and '\\( [expression] \\)' when inline.
For code you prefer to use Markdown and specify the language.
You can use horizontal rules (---) to separate sections of your responses.
You can use Markdown tables to format your responses for data, lists, and other structured information.
""".lstrip()
# ruff: noqa: E501, W605 end
def upgrade() -> None:
# Make system_prompt column nullable (model already has nullable=True but DB doesn't)
op.alter_column(
"persona",
"system_prompt",
nullable=True,
)
# Set system_prompt to NULL where it matches the previous default
conn = op.get_bind()
conn.execute(
sa.text(
"""
UPDATE persona
SET system_prompt = NULL
WHERE system_prompt = :previous_default
"""
),
{"previous_default": PREVIOUS_DEFAULT_SYSTEM_PROMPT},
)
def downgrade() -> None:
# Restore the default system prompt for personas that have NULL
# Note: This may restore the prompt to personas that originally had NULL
# before this migration, but there's no way to distinguish them
conn = op.get_bind()
conn.execute(
sa.text(
"""
UPDATE persona
SET system_prompt = :previous_default
WHERE system_prompt IS NULL
"""
),
{"previous_default": PREVIOUS_DEFAULT_SYSTEM_PROMPT},
)
# Revert system_prompt column to not nullable
op.alter_column(
"persona",
"system_prompt",
nullable=False,
)

View File

@@ -42,13 +42,13 @@ def upgrade() -> None:
sa.Column(
"created_at",
sa.DateTime(timezone=True),
server_default=sa.text("now()"), # type: ignore
server_default=sa.text("now()"),
nullable=False,
),
sa.Column(
"updated_at",
sa.DateTime(timezone=True),
server_default=sa.text("now()"), # type: ignore
server_default=sa.text("now()"),
nullable=False,
),
)
@@ -63,13 +63,13 @@ def upgrade() -> None:
sa.Column(
"created_at",
sa.DateTime(timezone=True),
server_default=sa.text("now()"), # type: ignore
server_default=sa.text("now()"),
nullable=False,
),
sa.Column(
"updated_at",
sa.DateTime(timezone=True),
server_default=sa.text("now()"), # type: ignore
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(

View File

@@ -0,0 +1,33 @@
"""add_is_auto_mode_to_llm_provider
Revision ID: 9a0296d7421e
Revises: 7206234e012a
Create Date: 2025-12-17 18:14:29.620981
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9a0296d7421e"
down_revision = "7206234e012a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"llm_provider",
sa.Column(
"is_auto_mode",
sa.Boolean(),
nullable=False,
server_default="false",
),
)
def downgrade() -> None:
op.drop_column("llm_provider", "is_auto_mode")

View File

@@ -234,6 +234,8 @@ def downgrade() -> None:
if "instructions" in columns:
op.drop_column("user_project", "instructions")
op.execute("ALTER TABLE user_project RENAME TO user_folder")
# Update NULL descriptions to empty string before setting NOT NULL constraint
op.execute("UPDATE user_folder SET description = '' WHERE description IS NULL")
op.alter_column("user_folder", "description", nullable=False)
logger.info("Renamed user_project back to user_folder")

View File

@@ -0,0 +1,49 @@
"""add license table
Revision ID: a1b2c3d4e5f6
Revises: a01bf2971c5d
Create Date: 2025-12-04 10:00:00.000000
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "a1b2c3d4e5f6"
down_revision = "a01bf2971c5d"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"license",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("license_data", sa.Text(), nullable=False),
sa.Column(
"created_at",
sa.DateTime(timezone=True),
server_default=sa.func.now(),
nullable=False,
),
sa.Column(
"updated_at",
sa.DateTime(timezone=True),
server_default=sa.func.now(),
nullable=False,
),
)
# Singleton pattern - only ever one row in this table
op.create_index(
"idx_license_singleton",
"license",
[sa.text("(true)")],
unique=True,
)
def downgrade() -> None:
op.drop_index("idx_license_singleton", table_name="license")
op.drop_table("license")

View File

@@ -0,0 +1,27 @@
"""Remove fast_default_model_name from llm_provider
Revision ID: a2b3c4d5e6f7
Revises: 2a391f840e85
Create Date: 2024-12-17
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "a2b3c4d5e6f7"
down_revision = "2a391f840e85"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.drop_column("llm_provider", "fast_default_model_name")
def downgrade() -> None:
op.add_column(
"llm_provider",
sa.Column("fast_default_model_name", sa.String(), nullable=True),
)

View File

@@ -280,6 +280,14 @@ def downgrade() -> None:
op.add_column(
"chat_message", sa.Column("alternate_assistant_id", sa.Integer(), nullable=True)
)
# Recreate the FK constraint that was implicitly dropped when the column was dropped
op.create_foreign_key(
"fk_chat_message_persona",
"chat_message",
"persona",
["alternate_assistant_id"],
["id"],
)
op.add_column(
"chat_message", sa.Column("rephrased_query", sa.Text(), nullable=True)
)

View File

@@ -0,0 +1,46 @@
"""Drop milestone table
Revision ID: b8c9d0e1f2a3
Revises: a2b3c4d5e6f7
Create Date: 2025-12-18
"""
from alembic import op
import sqlalchemy as sa
import fastapi_users_db_sqlalchemy
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "b8c9d0e1f2a3"
down_revision = "a2b3c4d5e6f7"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.drop_table("milestone")
def downgrade() -> None:
op.create_table(
"milestone",
sa.Column("id", sa.UUID(), nullable=False),
sa.Column("tenant_id", sa.String(), nullable=True),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.Column("event_type", sa.String(), nullable=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("event_tracker", postgresql.JSONB(), nullable=True),
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("event_type", name="uq_milestone_event_type"),
)

View File

@@ -0,0 +1,52 @@
"""add_deep_research_tool
Revision ID: c1d2e3f4a5b6
Revises: b8c9d0e1f2a3
Create Date: 2025-12-18 16:00:00.000000
"""
from alembic import op
from onyx.deep_research.dr_mock_tools import RESEARCH_AGENT_DB_NAME
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "c1d2e3f4a5b6"
down_revision = "b8c9d0e1f2a3"
branch_labels = None
depends_on = None
DEEP_RESEARCH_TOOL = {
"name": RESEARCH_AGENT_DB_NAME,
"display_name": "Research Agent",
"description": "The Research Agent is a sub-agent that conducts research on a specific topic.",
"in_code_tool_id": "ResearchAgent",
}
def upgrade() -> None:
conn = op.get_bind()
conn.execute(
sa.text(
"""
INSERT INTO tool (name, display_name, description, in_code_tool_id, enabled)
VALUES (:name, :display_name, :description, :in_code_tool_id, false)
"""
),
DEEP_RESEARCH_TOOL,
)
def downgrade() -> None:
conn = op.get_bind()
conn.execute(
sa.text(
"""
DELETE FROM tool
WHERE in_code_tool_id = :in_code_tool_id
"""
),
{"in_code_tool_id": DEEP_RESEARCH_TOOL["in_code_tool_id"]},
)

View File

@@ -257,8 +257,8 @@ def _migrate_files_to_external_storage() -> None:
print(f"File {file_id} not found in PostgreSQL storage.")
continue
lobj_id = cast(int, file_record.lobj_oid) # type: ignore
file_metadata = cast(Any, file_record.file_metadata) # type: ignore
lobj_id = cast(int, file_record.lobj_oid)
file_metadata = cast(Any, file_record.file_metadata)
# Read file content from PostgreSQL
try:
@@ -280,7 +280,7 @@ def _migrate_files_to_external_storage() -> None:
else:
# Convert other types to dict if possible, otherwise None
try:
file_metadata = dict(file_record.file_metadata) # type: ignore
file_metadata = dict(file_record.file_metadata)
except (TypeError, ValueError):
file_metadata = None

View File

@@ -11,8 +11,8 @@ import sqlalchemy as sa
revision = "e209dc5a8156"
down_revision = "48d14957fe80"
branch_labels = None # type: ignore
depends_on = None # type: ignore
branch_labels = None
depends_on = None
def upgrade() -> None:

View File

@@ -8,7 +8,7 @@ Create Date: 2025-11-28 11:15:37.667340
from alembic import op
import sqlalchemy as sa
from onyx.db.enums import ( # type: ignore[import-untyped]
from onyx.db.enums import (
MCPTransport,
MCPAuthenticationType,
MCPAuthenticationPerformer,

View File

@@ -20,7 +20,9 @@ config = context.config
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# disable_existing_loggers=False prevents breaking pytest's caplog fixture
# See: https://pytest-alembic.readthedocs.io/en/latest/setup.html#caplog-issues
fileConfig(config.config_file_name, disable_existing_loggers=False)
# add your model's MetaData object here
# for 'autogenerate' support
@@ -82,9 +84,9 @@ def run_migrations_offline() -> None:
def do_run_migrations(connection: Connection) -> None:
context.configure(
connection=connection,
target_metadata=target_metadata, # type: ignore
target_metadata=target_metadata, # type: ignore[arg-type]
include_object=include_object,
) # type: ignore
)
with context.begin_transaction():
context.run_migrations()
@@ -108,9 +110,24 @@ async def run_async_migrations() -> None:
def run_migrations_online() -> None:
"""Run migrations in 'online' mode."""
"""Run migrations in 'online' mode.
asyncio.run(run_async_migrations())
Supports pytest-alembic by checking for a pre-configured connection
in context.config.attributes["connection"]. If present, uses that
connection/engine directly instead of creating a new async engine.
"""
# Check if pytest-alembic is providing a connection/engine
connectable = context.config.attributes.get("connection", None)
if connectable is not None:
# pytest-alembic is providing an engine - use it directly
with connectable.connect() as connection:
do_run_migrations(connection)
# Commit to ensure changes are visible to next migration
connection.commit()
else:
# Normal operation - use async migrations
asyncio.run(run_async_migrations())
if context.is_offline_mode():

View File

@@ -111,10 +111,6 @@ CHECK_TTL_MANAGEMENT_TASK_FREQUENCY_IN_HOURS = float(
STRIPE_SECRET_KEY = os.environ.get("STRIPE_SECRET_KEY")
STRIPE_PRICE_ID = os.environ.get("STRIPE_PRICE")
OPENAI_DEFAULT_API_KEY = os.environ.get("OPENAI_DEFAULT_API_KEY")
ANTHROPIC_DEFAULT_API_KEY = os.environ.get("ANTHROPIC_DEFAULT_API_KEY")
COHERE_DEFAULT_API_KEY = os.environ.get("COHERE_DEFAULT_API_KEY")
# JWT Public Key URL
JWT_PUBLIC_KEY_URL: str | None = os.getenv("JWT_PUBLIC_KEY_URL", None)

View File

@@ -118,6 +118,6 @@ def fetch_document_sets(
.all()
)
document_set_with_cc_pairs.append((document_set, cc_pairs)) # type: ignore
document_set_with_cc_pairs.append((document_set, cc_pairs))
return document_set_with_cc_pairs

View File

@@ -0,0 +1,278 @@
"""Database and cache operations for the license table."""
from datetime import datetime
from sqlalchemy import func
from sqlalchemy import select
from sqlalchemy.orm import Session
from ee.onyx.server.license.models import LicenseMetadata
from ee.onyx.server.license.models import LicensePayload
from ee.onyx.server.license.models import LicenseSource
from onyx.db.models import License
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
LICENSE_METADATA_KEY = "license:metadata"
LICENSE_CACHE_TTL_SECONDS = 86400 # 24 hours
# -----------------------------------------------------------------------------
# Database CRUD Operations
# -----------------------------------------------------------------------------
def get_license(db_session: Session) -> License | None:
"""
Get the current license (singleton pattern - only one row).
Args:
db_session: Database session
Returns:
License object if exists, None otherwise
"""
return db_session.execute(select(License)).scalars().first()
def upsert_license(db_session: Session, license_data: str) -> License:
"""
Insert or update the license (singleton pattern).
Args:
db_session: Database session
license_data: Base64-encoded signed license blob
Returns:
The created or updated License object
"""
existing = get_license(db_session)
if existing:
existing.license_data = license_data
db_session.commit()
db_session.refresh(existing)
logger.info("License updated")
return existing
new_license = License(license_data=license_data)
db_session.add(new_license)
db_session.commit()
db_session.refresh(new_license)
logger.info("License created")
return new_license
def delete_license(db_session: Session) -> bool:
"""
Delete the current license.
Args:
db_session: Database session
Returns:
True if deleted, False if no license existed
"""
existing = get_license(db_session)
if existing:
db_session.delete(existing)
db_session.commit()
logger.info("License deleted")
return True
return False
# -----------------------------------------------------------------------------
# Seat Counting
# -----------------------------------------------------------------------------
def get_used_seats(tenant_id: str | None = None) -> int:
"""
Get current seat usage.
For multi-tenant: counts users in UserTenantMapping for this tenant.
For self-hosted: counts all active users (includes both Onyx UI users
and Slack users who have been converted to Onyx users).
"""
if MULTI_TENANT:
from ee.onyx.server.tenants.user_mapping import get_tenant_count
return get_tenant_count(tenant_id or get_current_tenant_id())
else:
# Self-hosted: count all active users (Onyx + converted Slack users)
from onyx.db.engine.sql_engine import get_session_with_current_tenant
with get_session_with_current_tenant() as db_session:
result = db_session.execute(
select(func.count()).select_from(User).where(User.is_active) # type: ignore
)
return result.scalar() or 0
# -----------------------------------------------------------------------------
# Redis Cache Operations
# -----------------------------------------------------------------------------
def get_cached_license_metadata(tenant_id: str | None = None) -> LicenseMetadata | None:
"""
Get license metadata from Redis cache.
Args:
tenant_id: Tenant ID (for multi-tenant deployments)
Returns:
LicenseMetadata if cached, None otherwise
"""
tenant = tenant_id or get_current_tenant_id()
redis_client = get_redis_replica_client(tenant_id=tenant)
cached = redis_client.get(LICENSE_METADATA_KEY)
if cached:
try:
cached_str: str
if isinstance(cached, bytes):
cached_str = cached.decode("utf-8")
else:
cached_str = str(cached)
return LicenseMetadata.model_validate_json(cached_str)
except Exception as e:
logger.warning(f"Failed to parse cached license metadata: {e}")
return None
return None
def invalidate_license_cache(tenant_id: str | None = None) -> None:
"""
Invalidate the license metadata cache (not the license itself).
This deletes the cached LicenseMetadata from Redis. The actual license
in the database is not affected. Redis delete is idempotent - if the
key doesn't exist, this is a no-op.
Args:
tenant_id: Tenant ID (for multi-tenant deployments)
"""
tenant = tenant_id or get_current_tenant_id()
redis_client = get_redis_client(tenant_id=tenant)
redis_client.delete(LICENSE_METADATA_KEY)
logger.info("License cache invalidated")
def update_license_cache(
payload: LicensePayload,
source: LicenseSource | None = None,
grace_period_end: datetime | None = None,
tenant_id: str | None = None,
) -> LicenseMetadata:
"""
Update the Redis cache with license metadata.
We cache all license statuses (ACTIVE, GRACE_PERIOD, GATED_ACCESS) because:
1. Frontend needs status to show appropriate UI/banners
2. Caching avoids repeated DB + crypto verification on every request
3. Status enforcement happens at the feature level, not here
Args:
payload: Verified license payload
source: How the license was obtained
grace_period_end: Optional grace period end time
tenant_id: Tenant ID (for multi-tenant deployments)
Returns:
The cached LicenseMetadata
"""
from ee.onyx.utils.license import get_license_status
tenant = tenant_id or get_current_tenant_id()
redis_client = get_redis_client(tenant_id=tenant)
used_seats = get_used_seats(tenant)
status = get_license_status(payload, grace_period_end)
metadata = LicenseMetadata(
tenant_id=payload.tenant_id,
organization_name=payload.organization_name,
seats=payload.seats,
used_seats=used_seats,
plan_type=payload.plan_type,
issued_at=payload.issued_at,
expires_at=payload.expires_at,
grace_period_end=grace_period_end,
status=status,
source=source,
stripe_subscription_id=payload.stripe_subscription_id,
)
redis_client.setex(
LICENSE_METADATA_KEY,
LICENSE_CACHE_TTL_SECONDS,
metadata.model_dump_json(),
)
logger.info(f"License cache updated: {metadata.seats} seats, status={status.value}")
return metadata
def refresh_license_cache(
db_session: Session,
tenant_id: str | None = None,
) -> LicenseMetadata | None:
"""
Refresh the license cache from the database.
Args:
db_session: Database session
tenant_id: Tenant ID (for multi-tenant deployments)
Returns:
LicenseMetadata if license exists, None otherwise
"""
from ee.onyx.utils.license import verify_license_signature
license_record = get_license(db_session)
if not license_record:
invalidate_license_cache(tenant_id)
return None
try:
payload = verify_license_signature(license_record.license_data)
return update_license_cache(
payload,
source=LicenseSource.AUTO_FETCH,
tenant_id=tenant_id,
)
except ValueError as e:
logger.error(f"Failed to verify license during cache refresh: {e}")
invalidate_license_cache(tenant_id)
return None
def get_license_metadata(
db_session: Session,
tenant_id: str | None = None,
) -> LicenseMetadata | None:
"""
Get license metadata, using cache if available.
Args:
db_session: Database session
tenant_id: Tenant ID (for multi-tenant deployments)
Returns:
LicenseMetadata if license exists, None otherwise
"""
# Try cache first
cached = get_cached_license_metadata(tenant_id)
if cached:
return cached
# Refresh from database
return refresh_license_cache(db_session, tenant_id)

View File

@@ -14,6 +14,7 @@ from ee.onyx.server.enterprise_settings.api import (
basic_router as enterprise_settings_router,
)
from ee.onyx.server.evals.api import router as evals_router
from ee.onyx.server.license.api import router as license_router
from ee.onyx.server.manage.standard_answer import router as standard_answer_router
from ee.onyx.server.middleware.tenant_tracking import (
add_api_server_tenant_id_middleware,
@@ -139,6 +140,8 @@ def get_application() -> FastAPI:
)
include_router_with_global_prefix_prepended(application, enterprise_settings_router)
include_router_with_global_prefix_prepended(application, usage_export_router)
# License management
include_router_with_global_prefix_prepended(application, license_router)
if MULTI_TENANT:
# Tenant management

View File

@@ -1,3 +1,4 @@
from enum import Enum
from typing import Any
from typing import List
@@ -23,6 +24,12 @@ class NavigationItem(BaseModel):
return instance
class LogoDisplayStyle(str, Enum):
LOGO_AND_NAME = "logo_and_name"
LOGO_ONLY = "logo_only"
NAME_ONLY = "name_only"
class EnterpriseSettings(BaseModel):
"""General settings that only apply to the Enterprise Edition of Onyx
@@ -31,6 +38,7 @@ class EnterpriseSettings(BaseModel):
application_name: str | None = None
use_custom_logo: bool = False
use_custom_logotype: bool = False
logo_display_style: LogoDisplayStyle | None = None
# custom navigation
custom_nav_items: List[NavigationItem] = Field(default_factory=list)
@@ -42,6 +50,9 @@ class EnterpriseSettings(BaseModel):
custom_popup_header: str | None = None
custom_popup_content: str | None = None
enable_consent_screen: bool | None = None
consent_screen_prompt: str | None = None
show_first_visit_notice: bool | None = None
custom_greeting_message: str | None = None
def check_validity(self) -> None:
return

View File

@@ -0,0 +1,246 @@
"""License API endpoints."""
import requests
from fastapi import APIRouter
from fastapi import Depends
from fastapi import File
from fastapi import HTTPException
from fastapi import UploadFile
from sqlalchemy.orm import Session
from ee.onyx.auth.users import current_admin_user
from ee.onyx.db.license import delete_license as db_delete_license
from ee.onyx.db.license import get_license_metadata
from ee.onyx.db.license import invalidate_license_cache
from ee.onyx.db.license import refresh_license_cache
from ee.onyx.db.license import update_license_cache
from ee.onyx.db.license import upsert_license
from ee.onyx.server.license.models import LicenseResponse
from ee.onyx.server.license.models import LicenseSource
from ee.onyx.server.license.models import LicenseStatusResponse
from ee.onyx.server.license.models import LicenseUploadResponse
from ee.onyx.server.license.models import SeatUsageResponse
from ee.onyx.server.tenants.access import generate_data_plane_token
from ee.onyx.utils.license import verify_license_signature
from onyx.auth.users import User
from onyx.configs.app_configs import CONTROL_PLANE_API_BASE_URL
from onyx.db.engine.sql_engine import get_session
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
router = APIRouter(prefix="/license")
@router.get("")
async def get_license_status(
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> LicenseStatusResponse:
"""Get current license status and seat usage."""
metadata = get_license_metadata(db_session)
if not metadata:
return LicenseStatusResponse(has_license=False)
return LicenseStatusResponse(
has_license=True,
seats=metadata.seats,
used_seats=metadata.used_seats,
plan_type=metadata.plan_type,
issued_at=metadata.issued_at,
expires_at=metadata.expires_at,
grace_period_end=metadata.grace_period_end,
status=metadata.status,
source=metadata.source,
)
@router.get("/seats")
async def get_seat_usage(
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> SeatUsageResponse:
"""Get detailed seat usage information."""
metadata = get_license_metadata(db_session)
if not metadata:
return SeatUsageResponse(
total_seats=0,
used_seats=0,
available_seats=0,
)
return SeatUsageResponse(
total_seats=metadata.seats,
used_seats=metadata.used_seats,
available_seats=max(0, metadata.seats - metadata.used_seats),
)
@router.post("/fetch")
async def fetch_license(
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> LicenseResponse:
"""
Fetch license from control plane.
Used after Stripe checkout completion to retrieve the new license.
"""
tenant_id = get_current_tenant_id()
try:
token = generate_data_plane_token()
except ValueError as e:
logger.error(f"Failed to generate data plane token: {e}")
raise HTTPException(
status_code=500, detail="Authentication configuration error"
)
try:
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
}
url = f"{CONTROL_PLANE_API_BASE_URL}/license/{tenant_id}"
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
data = response.json()
if not isinstance(data, dict) or "license" not in data:
raise HTTPException(
status_code=502, detail="Invalid response from control plane"
)
license_data = data["license"]
if not license_data:
raise HTTPException(status_code=404, detail="No license found")
# Verify signature before persisting
payload = verify_license_signature(license_data)
# Verify the fetched license is for this tenant
if payload.tenant_id != tenant_id:
logger.error(
f"License tenant mismatch: expected {tenant_id}, got {payload.tenant_id}"
)
raise HTTPException(
status_code=400,
detail="License tenant ID mismatch - control plane returned wrong license",
)
# Persist to DB and update cache atomically
upsert_license(db_session, license_data)
try:
update_license_cache(payload, source=LicenseSource.AUTO_FETCH)
except Exception as cache_error:
# Log but don't fail - DB is source of truth, cache will refresh on next read
logger.warning(f"Failed to update license cache: {cache_error}")
return LicenseResponse(success=True, license=payload)
except requests.HTTPError as e:
status_code = e.response.status_code if e.response is not None else 502
logger.error(f"Control plane returned error: {status_code}")
raise HTTPException(
status_code=status_code,
detail="Failed to fetch license from control plane",
)
except ValueError as e:
logger.error(f"License verification failed: {type(e).__name__}")
raise HTTPException(status_code=400, detail=str(e))
except requests.RequestException:
logger.exception("Failed to fetch license from control plane")
raise HTTPException(
status_code=502, detail="Failed to connect to control plane"
)
@router.post("/upload")
async def upload_license(
license_file: UploadFile = File(...),
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> LicenseUploadResponse:
"""
Upload a license file manually.
Used for air-gapped deployments where control plane is not accessible.
"""
try:
content = await license_file.read()
license_data = content.decode("utf-8").strip()
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="Invalid license file format")
try:
payload = verify_license_signature(license_data)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
tenant_id = get_current_tenant_id()
if payload.tenant_id != tenant_id:
raise HTTPException(
status_code=400,
detail=f"License tenant ID mismatch. Expected {tenant_id}, got {payload.tenant_id}",
)
# Persist to DB and update cache
upsert_license(db_session, license_data)
try:
update_license_cache(payload, source=LicenseSource.MANUAL_UPLOAD)
except Exception as cache_error:
# Log but don't fail - DB is source of truth, cache will refresh on next read
logger.warning(f"Failed to update license cache: {cache_error}")
return LicenseUploadResponse(
success=True,
message=f"License uploaded successfully. {payload.seats} seats, expires {payload.expires_at.date()}",
)
@router.post("/refresh")
async def refresh_license_cache_endpoint(
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> LicenseStatusResponse:
"""
Force refresh the license cache from the database.
Useful after manual database changes or to verify license validity.
"""
metadata = refresh_license_cache(db_session)
if not metadata:
return LicenseStatusResponse(has_license=False)
return LicenseStatusResponse(
has_license=True,
seats=metadata.seats,
used_seats=metadata.used_seats,
plan_type=metadata.plan_type,
issued_at=metadata.issued_at,
expires_at=metadata.expires_at,
grace_period_end=metadata.grace_period_end,
status=metadata.status,
source=metadata.source,
)
@router.delete("")
async def delete_license(
_: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> dict[str, bool]:
"""
Delete the current license.
Admin only - removes license and invalidates cache.
"""
# Invalidate cache first - if DB delete fails, stale cache is worse than no cache
try:
invalidate_license_cache()
except Exception as cache_error:
logger.warning(f"Failed to invalidate license cache: {cache_error}")
deleted = db_delete_license(db_session)
return {"deleted": deleted}

View File

@@ -0,0 +1,92 @@
from datetime import datetime
from enum import Enum
from pydantic import BaseModel
from onyx.server.settings.models import ApplicationStatus
class PlanType(str, Enum):
MONTHLY = "monthly"
ANNUAL = "annual"
class LicenseSource(str, Enum):
AUTO_FETCH = "auto_fetch"
MANUAL_UPLOAD = "manual_upload"
class LicensePayload(BaseModel):
"""The payload portion of a signed license."""
version: str
tenant_id: str
organization_name: str | None = None
issued_at: datetime
expires_at: datetime
seats: int
plan_type: PlanType
billing_cycle: str | None = None
grace_period_days: int = 30
stripe_subscription_id: str | None = None
stripe_customer_id: str | None = None
class LicenseData(BaseModel):
"""Full signed license structure."""
payload: LicensePayload
signature: str
class LicenseMetadata(BaseModel):
"""Cached license metadata stored in Redis."""
tenant_id: str
organization_name: str | None = None
seats: int
used_seats: int
plan_type: PlanType
issued_at: datetime
expires_at: datetime
grace_period_end: datetime | None = None
status: ApplicationStatus
source: LicenseSource | None = None
stripe_subscription_id: str | None = None
class LicenseStatusResponse(BaseModel):
"""Response for license status API."""
has_license: bool
seats: int = 0
used_seats: int = 0
plan_type: PlanType | None = None
issued_at: datetime | None = None
expires_at: datetime | None = None
grace_period_end: datetime | None = None
status: ApplicationStatus | None = None
source: LicenseSource | None = None
class LicenseResponse(BaseModel):
"""Response after license fetch/upload."""
success: bool
message: str | None = None
license: LicensePayload | None = None
class LicenseUploadResponse(BaseModel):
"""Response after license upload."""
success: bool
message: str | None = None
class SeatUsageResponse(BaseModel):
"""Response for seat usage API."""
total_seats: int
used_seats: int
available_seats: int

View File

@@ -20,7 +20,7 @@ from onyx.db.chat import create_new_chat_message
from onyx.db.chat import get_or_create_root_message
from onyx.db.engine.sql_engine import get_session
from onyx.db.models import User
from onyx.llm.factory import get_llms_for_persona
from onyx.llm.factory import get_llm_for_persona
from onyx.natural_language_processing.utils import get_tokenizer
from onyx.server.query_and_chat.models import CreateChatMessageRequest
from onyx.utils.logger import setup_logger
@@ -100,14 +100,12 @@ def handle_simplified_chat_message(
chunks_below=0,
full_doc=chat_message_req.full_doc,
structured_response_format=chat_message_req.structured_response_format,
use_agentic_search=chat_message_req.use_agentic_search,
)
packets = stream_chat_message_objects(
new_msg_req=full_chat_msg_info,
user=user,
db_session=db_session,
enforce_chat_session_id_for_search_docs=False,
)
return gather_stream(packets)
@@ -158,7 +156,7 @@ def handle_send_message_simple_with_history(
persona_id=req.persona_id,
)
llm, _ = get_llms_for_persona(persona=chat_session.persona, user=user)
llm = get_llm_for_persona(persona=chat_session.persona, user=user)
llm_tokenizer = get_tokenizer(
model_name=llm.config.model_name,
@@ -205,14 +203,12 @@ def handle_send_message_simple_with_history(
chunks_below=0,
full_doc=req.full_doc,
structured_response_format=req.structured_response_format,
use_agentic_search=req.use_agentic_search,
)
packets = stream_chat_message_objects(
new_msg_req=full_chat_msg_info,
user=user,
db_session=db_session,
enforce_chat_session_id_for_search_docs=False,
)
return gather_stream(packets)

View File

@@ -54,9 +54,6 @@ class BasicCreateChatMessageRequest(ChunkContext):
# https://platform.openai.com/docs/guides/structured-outputs/introduction
structured_response_format: dict | None = None
# If True, uses agentic search instead of basic search
use_agentic_search: bool = False
@model_validator(mode="after")
def validate_chat_session_or_persona(self) -> "BasicCreateChatMessageRequest":
if self.chat_session_id is None and self.persona_id is None:
@@ -76,8 +73,6 @@ class BasicCreateChatMessageWithHistoryRequest(ChunkContext):
# only works if using an OpenAI model. See the following for more details:
# https://platform.openai.com/docs/guides/structured-outputs/introduction
structured_response_format: dict | None = None
# If True, uses agentic search instead of basic search
use_agentic_search: bool = False
class SimpleDoc(BaseModel):

View File

@@ -1,5 +1,4 @@
import asyncio
import logging
import uuid
import aiohttp # Async HTTP client
@@ -10,10 +9,7 @@ from fastapi import Request
from sqlalchemy import select
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import ANTHROPIC_DEFAULT_API_KEY
from ee.onyx.configs.app_configs import COHERE_DEFAULT_API_KEY
from ee.onyx.configs.app_configs import HUBSPOT_TRACKING_URL
from ee.onyx.configs.app_configs import OPENAI_DEFAULT_API_KEY
from ee.onyx.server.tenants.access import generate_data_plane_token
from ee.onyx.server.tenants.models import TenantByDomainResponse
from ee.onyx.server.tenants.models import TenantCreationPayload
@@ -25,8 +21,14 @@ from ee.onyx.server.tenants.user_mapping import add_users_to_tenant
from ee.onyx.server.tenants.user_mapping import get_tenant_id_for_email
from ee.onyx.server.tenants.user_mapping import user_owns_a_tenant
from onyx.auth.users import exceptions
from onyx.configs.app_configs import ANTHROPIC_DEFAULT_API_KEY
from onyx.configs.app_configs import COHERE_DEFAULT_API_KEY
from onyx.configs.app_configs import CONTROL_PLANE_API_BASE_URL
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import OPENAI_DEFAULT_API_KEY
from onyx.configs.app_configs import OPENROUTER_DEFAULT_API_KEY
from onyx.configs.app_configs import VERTEXAI_DEFAULT_CREDENTIALS
from onyx.configs.app_configs import VERTEXAI_DEFAULT_LOCATION
from onyx.configs.constants import MilestoneRecordType
from onyx.db.engine.sql_engine import get_session_with_shared_schema
from onyx.db.engine.sql_engine import get_session_with_tenant
@@ -37,15 +39,25 @@ from onyx.db.models import AvailableTenant
from onyx.db.models import IndexModelStatus
from onyx.db.models import SearchSettings
from onyx.db.models import UserTenantMapping
from onyx.llm.llm_provider_options import ANTHROPIC_PROVIDER_NAME
from onyx.llm.llm_provider_options import get_anthropic_model_names
from onyx.llm.llm_provider_options import get_openai_model_names
from onyx.llm.llm_provider_options import OPENAI_PROVIDER_NAME
from onyx.llm.well_known_providers.auto_update_models import LLMRecommendations
from onyx.llm.well_known_providers.constants import ANTHROPIC_PROVIDER_NAME
from onyx.llm.well_known_providers.constants import OPENAI_PROVIDER_NAME
from onyx.llm.well_known_providers.constants import OPENROUTER_PROVIDER_NAME
from onyx.llm.well_known_providers.constants import VERTEX_CREDENTIALS_FILE_KWARG
from onyx.llm.well_known_providers.constants import VERTEX_LOCATION_KWARG
from onyx.llm.well_known_providers.constants import VERTEXAI_PROVIDER_NAME
from onyx.llm.well_known_providers.llm_provider_options import (
get_recommendations,
)
from onyx.llm.well_known_providers.llm_provider_options import (
model_configurations_for_provider,
)
from onyx.server.manage.embedding.models import CloudEmbeddingProviderCreationRequest
from onyx.server.manage.llm.models import LLMProviderUpsertRequest
from onyx.server.manage.llm.models import ModelConfigurationUpsertRequest
from onyx.setup import setup_onyx
from onyx.utils.telemetry import create_milestone_and_report
from onyx.utils.logger import setup_logger
from onyx.utils.telemetry import mt_cloud_telemetry
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
from shared_configs.configs import TENANT_ID_PREFIX
@@ -53,7 +65,7 @@ from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
from shared_configs.enums import EmbeddingProvider
logger = logging.getLogger(__name__)
logger = setup_logger()
async def get_or_provision_tenant(
@@ -262,61 +274,165 @@ async def rollback_tenant_provisioning(tenant_id: str) -> None:
logger.info(f"Tenant rollback completed successfully for tenant {tenant_id}")
def configure_default_api_keys(db_session: Session) -> None:
if ANTHROPIC_DEFAULT_API_KEY:
anthropic_provider = LLMProviderUpsertRequest(
name="Anthropic",
provider=ANTHROPIC_PROVIDER_NAME,
api_key=ANTHROPIC_DEFAULT_API_KEY,
default_model_name="claude-3-7-sonnet-20250219",
fast_default_model_name="claude-3-5-sonnet-20241022",
model_configurations=[
ModelConfigurationUpsertRequest(
name=name,
is_visible=False,
max_input_tokens=None,
)
for name in get_anthropic_model_names()
],
api_key_changed=True,
)
try:
full_provider = upsert_llm_provider(anthropic_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure Anthropic provider: {e}")
else:
logger.error(
"ANTHROPIC_DEFAULT_API_KEY not set, skipping Anthropic provider configuration"
def _build_model_configuration_upsert_requests(
provider_name: str,
recommendations: LLMRecommendations,
) -> list[ModelConfigurationUpsertRequest]:
model_configurations = model_configurations_for_provider(
provider_name, recommendations
)
return [
ModelConfigurationUpsertRequest(
name=model_configuration.name,
is_visible=model_configuration.is_visible,
max_input_tokens=model_configuration.max_input_tokens,
supports_image_input=model_configuration.supports_image_input,
)
for model_configuration in model_configurations
]
def configure_default_api_keys(db_session: Session) -> None:
"""Configure default LLM providers using recommended-models.json for model selection."""
# Load recommendations from JSON config
recommendations = get_recommendations()
has_set_default_provider = False
def _upsert(request: LLMProviderUpsertRequest) -> None:
nonlocal has_set_default_provider
try:
provider = upsert_llm_provider(request, db_session)
if not has_set_default_provider:
update_default_provider(provider.id, db_session)
has_set_default_provider = True
except Exception as e:
logger.error(f"Failed to configure {request.provider} provider: {e}")
# Configure OpenAI provider
if OPENAI_DEFAULT_API_KEY:
default_model = recommendations.get_default_model(OPENAI_PROVIDER_NAME)
if default_model is None:
logger.error(
f"No default model found for {OPENAI_PROVIDER_NAME} in recommendations"
)
default_model_name = default_model.name if default_model else "gpt-5.2"
openai_provider = LLMProviderUpsertRequest(
name="OpenAI",
provider=OPENAI_PROVIDER_NAME,
api_key=OPENAI_DEFAULT_API_KEY,
default_model_name="gpt-4o",
fast_default_model_name="gpt-4o-mini",
model_configurations=[
ModelConfigurationUpsertRequest(
name=model_name,
is_visible=False,
max_input_tokens=None,
)
for model_name in get_openai_model_names()
],
default_model_name=default_model_name,
model_configurations=_build_model_configuration_upsert_requests(
OPENAI_PROVIDER_NAME, recommendations
),
api_key_changed=True,
is_auto_mode=True,
)
try:
full_provider = upsert_llm_provider(openai_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure OpenAI provider: {e}")
_upsert(openai_provider)
else:
logger.error(
logger.info(
"OPENAI_DEFAULT_API_KEY not set, skipping OpenAI provider configuration"
)
# Configure Anthropic provider
if ANTHROPIC_DEFAULT_API_KEY:
default_model = recommendations.get_default_model(ANTHROPIC_PROVIDER_NAME)
if default_model is None:
logger.error(
f"No default model found for {ANTHROPIC_PROVIDER_NAME} in recommendations"
)
default_model_name = (
default_model.name if default_model else "claude-sonnet-4-5"
)
anthropic_provider = LLMProviderUpsertRequest(
name="Anthropic",
provider=ANTHROPIC_PROVIDER_NAME,
api_key=ANTHROPIC_DEFAULT_API_KEY,
default_model_name=default_model_name,
model_configurations=_build_model_configuration_upsert_requests(
ANTHROPIC_PROVIDER_NAME, recommendations
),
api_key_changed=True,
is_auto_mode=True,
)
_upsert(anthropic_provider)
else:
logger.info(
"ANTHROPIC_DEFAULT_API_KEY not set, skipping Anthropic provider configuration"
)
# Configure Vertex AI provider
if VERTEXAI_DEFAULT_CREDENTIALS:
default_model = recommendations.get_default_model(VERTEXAI_PROVIDER_NAME)
if default_model is None:
logger.error(
f"No default model found for {VERTEXAI_PROVIDER_NAME} in recommendations"
)
default_model_name = default_model.name if default_model else "gemini-2.5-pro"
# Vertex AI uses custom_config for credentials and location
custom_config = {
VERTEX_CREDENTIALS_FILE_KWARG: VERTEXAI_DEFAULT_CREDENTIALS,
VERTEX_LOCATION_KWARG: VERTEXAI_DEFAULT_LOCATION,
}
vertexai_provider = LLMProviderUpsertRequest(
name="Google Vertex AI",
provider=VERTEXAI_PROVIDER_NAME,
custom_config=custom_config,
default_model_name=default_model_name,
model_configurations=_build_model_configuration_upsert_requests(
VERTEXAI_PROVIDER_NAME, recommendations
),
api_key_changed=True,
is_auto_mode=True,
)
_upsert(vertexai_provider)
else:
logger.info(
"VERTEXAI_DEFAULT_CREDENTIALS not set, skipping Vertex AI provider configuration"
)
# Configure OpenRouter provider
if OPENROUTER_DEFAULT_API_KEY:
default_model = recommendations.get_default_model(OPENROUTER_PROVIDER_NAME)
if default_model is None:
logger.error(
f"No default model found for {OPENROUTER_PROVIDER_NAME} in recommendations"
)
default_model_name = default_model.name if default_model else "z-ai/glm-4.7"
# For OpenRouter, we use the visible models from recommendations as model_configurations
# since OpenRouter models are dynamic (fetched from their API)
visible_models = recommendations.get_visible_models(OPENROUTER_PROVIDER_NAME)
model_configurations = [
ModelConfigurationUpsertRequest(
name=model.name,
is_visible=True,
max_input_tokens=None,
display_name=model.display_name,
)
for model in visible_models
]
openrouter_provider = LLMProviderUpsertRequest(
name="OpenRouter",
provider=OPENROUTER_PROVIDER_NAME,
api_key=OPENROUTER_DEFAULT_API_KEY,
default_model_name=default_model_name,
model_configurations=model_configurations,
api_key_changed=True,
is_auto_mode=True,
)
_upsert(openrouter_provider)
else:
logger.info(
"OPENROUTER_DEFAULT_API_KEY not set, skipping OpenRouter provider configuration"
)
# Configure Cohere embedding provider
if COHERE_DEFAULT_API_KEY:
cloud_embedding_provider = CloudEmbeddingProviderCreationRequest(
provider_type=EmbeddingProvider.COHERE,
@@ -562,17 +678,11 @@ async def assign_tenant_to_user(
try:
add_users_to_tenant([email], tenant_id)
# Create milestone record in the same transaction context as the tenant assignment
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
create_milestone_and_report(
user=None,
distinct_id=tenant_id,
event_type=MilestoneRecordType.TENANT_CREATED,
properties={
"email": email,
},
db_session=db_session,
)
mt_cloud_telemetry(
tenant_id=tenant_id,
distinct_id=email,
event=MilestoneRecordType.TENANT_CREATED,
)
except Exception:
logger.exception(f"Failed to assign tenant {tenant_id} to user {email}")
raise Exception("Failed to assign tenant to user")

View File

@@ -249,6 +249,17 @@ def accept_user_invite(email: str, tenant_id: str) -> None:
)
raise
# Remove from invited users list since they've accepted
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
try:
invited_users = get_invited_users()
if email in invited_users:
invited_users.remove(email)
write_invited_users(invited_users)
logger.info(f"Removed {email} from invited users list after acceptance")
finally:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
def deny_user_invite(email: str, tenant_id: str) -> None:
"""

View File

@@ -0,0 +1,47 @@
"""EE Usage limits - trial detection via billing information."""
from datetime import datetime
from datetime import timezone
from ee.onyx.server.tenants.billing import fetch_billing_information
from ee.onyx.server.tenants.models import BillingInformation
from ee.onyx.server.tenants.models import SubscriptionStatusResponse
from onyx.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
logger = setup_logger()
def is_tenant_on_trial(tenant_id: str) -> bool:
"""
Determine if a tenant is currently on a trial subscription.
In multi-tenant mode, we fetch billing information from the control plane
to determine if the tenant has an active trial.
"""
if not MULTI_TENANT:
return False
try:
billing_info = fetch_billing_information(tenant_id)
# If not subscribed at all, check if we have trial information
if isinstance(billing_info, SubscriptionStatusResponse):
# No subscription means they're likely on trial (new tenant)
return True
if isinstance(billing_info, BillingInformation):
# Check if trial is active
if billing_info.trial_end is not None:
now = datetime.now(timezone.utc)
# Trial active if trial_end is in the future
# and subscription status indicates trialing
if billing_info.trial_end > now and billing_info.status == "trialing":
return True
return False
except Exception as e:
logger.warning(f"Failed to fetch billing info for trial check: {e}")
# Default to trial limits on error (more restrictive = safer)
return True

View File

@@ -0,0 +1,126 @@
"""RSA-4096 license signature verification utilities."""
import base64
import json
import os
from datetime import datetime
from datetime import timezone
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.asymmetric.rsa import RSAPublicKey
from ee.onyx.server.license.models import LicenseData
from ee.onyx.server.license.models import LicensePayload
from onyx.server.settings.models import ApplicationStatus
from onyx.utils.logger import setup_logger
logger = setup_logger()
# RSA-4096 Public Key for license verification
# Load from environment variable - key is generated on the control plane
# In production, inject via Kubernetes secrets or secrets manager
LICENSE_PUBLIC_KEY_PEM = os.environ.get("LICENSE_PUBLIC_KEY_PEM", "")
def _get_public_key() -> RSAPublicKey:
"""Load the public key from environment variable."""
if not LICENSE_PUBLIC_KEY_PEM:
raise ValueError(
"LICENSE_PUBLIC_KEY_PEM environment variable not set. "
"License verification requires the control plane public key."
)
key = serialization.load_pem_public_key(LICENSE_PUBLIC_KEY_PEM.encode())
if not isinstance(key, RSAPublicKey):
raise ValueError("Expected RSA public key")
return key
def verify_license_signature(license_data: str) -> LicensePayload:
"""
Verify RSA-4096 signature and return payload if valid.
Args:
license_data: Base64-encoded JSON containing payload and signature
Returns:
LicensePayload if signature is valid
Raises:
ValueError: If license data is invalid or signature verification fails
"""
try:
# Decode the license data
decoded = json.loads(base64.b64decode(license_data))
license_obj = LicenseData(**decoded)
payload_json = json.dumps(
license_obj.payload.model_dump(mode="json"), sort_keys=True
)
signature_bytes = base64.b64decode(license_obj.signature)
# Verify signature using PSS padding (modern standard)
public_key = _get_public_key()
public_key.verify(
signature_bytes,
payload_json.encode(),
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH,
),
hashes.SHA256(),
)
return license_obj.payload
except InvalidSignature:
logger.error("License signature verification failed")
raise ValueError("Invalid license signature")
except json.JSONDecodeError:
logger.error("Failed to decode license JSON")
raise ValueError("Invalid license format: not valid JSON")
except (ValueError, KeyError, TypeError) as e:
logger.error(f"License data validation error: {type(e).__name__}")
raise ValueError(f"Invalid license format: {type(e).__name__}")
except Exception:
logger.exception("Unexpected error during license verification")
raise ValueError("License verification failed: unexpected error")
def get_license_status(
payload: LicensePayload,
grace_period_end: datetime | None = None,
) -> ApplicationStatus:
"""
Determine current license status based on expiry.
Args:
payload: The verified license payload
grace_period_end: Optional grace period end datetime
Returns:
ApplicationStatus indicating current license state
"""
now = datetime.now(timezone.utc)
# Check if grace period has expired
if grace_period_end and now > grace_period_end:
return ApplicationStatus.GATED_ACCESS
# Check if license has expired
if now > payload.expires_at:
if grace_period_end and now <= grace_period_end:
return ApplicationStatus.GRACE_PERIOD
return ApplicationStatus.GATED_ACCESS
# License is valid
return ApplicationStatus.ACTIVE
def is_license_valid(payload: LicensePayload) -> bool:
"""Check if a license is currently valid (not expired)."""
now = datetime.now(timezone.utc)
return now <= payload.expires_at

View File

@@ -1,5 +1,4 @@
MODEL_WARM_UP_STRING = "hi " * 512
INFORMATION_CONTENT_MODEL_WARM_UP_STRING = "hi " * 16
class GPUStatus:

View File

@@ -1,562 +0,0 @@
from typing import cast
from typing import Optional
from typing import TYPE_CHECKING
import numpy as np
import torch
import torch.nn.functional as F
from fastapi import APIRouter
from huggingface_hub import snapshot_download # type: ignore
from model_server.constants import INFORMATION_CONTENT_MODEL_WARM_UP_STRING
from model_server.constants import MODEL_WARM_UP_STRING
from model_server.onyx_torch_model import ConnectorClassifier
from model_server.onyx_torch_model import HybridClassifier
from model_server.utils import simple_log_function_time
from onyx.utils.logger import setup_logger
from shared_configs.configs import CONNECTOR_CLASSIFIER_MODEL_REPO
from shared_configs.configs import CONNECTOR_CLASSIFIER_MODEL_TAG
from shared_configs.configs import (
INDEXING_INFORMATION_CONTENT_CLASSIFICATION_CUTOFF_LENGTH,
)
from shared_configs.configs import INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MAX
from shared_configs.configs import INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN
from shared_configs.configs import (
INDEXING_INFORMATION_CONTENT_CLASSIFICATION_TEMPERATURE,
)
from shared_configs.configs import INDEXING_ONLY
from shared_configs.configs import INFORMATION_CONTENT_MODEL_TAG
from shared_configs.configs import INFORMATION_CONTENT_MODEL_VERSION
from shared_configs.configs import INTENT_MODEL_TAG
from shared_configs.configs import INTENT_MODEL_VERSION
from shared_configs.model_server_models import ConnectorClassificationRequest
from shared_configs.model_server_models import ConnectorClassificationResponse
from shared_configs.model_server_models import ContentClassificationPrediction
from shared_configs.model_server_models import IntentRequest
from shared_configs.model_server_models import IntentResponse
if TYPE_CHECKING:
from setfit import SetFitModel # type: ignore
from transformers import PreTrainedTokenizer, BatchEncoding # type: ignore
logger = setup_logger()
router = APIRouter(prefix="/custom")
_CONNECTOR_CLASSIFIER_TOKENIZER: Optional["PreTrainedTokenizer"] = None
_CONNECTOR_CLASSIFIER_MODEL: ConnectorClassifier | None = None
_INTENT_TOKENIZER: Optional["PreTrainedTokenizer"] = None
_INTENT_MODEL: HybridClassifier | None = None
_INFORMATION_CONTENT_MODEL: Optional["SetFitModel"] = None
_INFORMATION_CONTENT_MODEL_PROMPT_PREFIX: str = "" # spec to model version!
def get_connector_classifier_tokenizer() -> "PreTrainedTokenizer":
global _CONNECTOR_CLASSIFIER_TOKENIZER
from transformers import AutoTokenizer, PreTrainedTokenizer
if _CONNECTOR_CLASSIFIER_TOKENIZER is None:
# The tokenizer details are not uploaded to the HF hub since it's just the
# unmodified distilbert tokenizer.
_CONNECTOR_CLASSIFIER_TOKENIZER = cast(
PreTrainedTokenizer,
AutoTokenizer.from_pretrained("distilbert-base-uncased"),
)
return _CONNECTOR_CLASSIFIER_TOKENIZER
def get_local_connector_classifier(
model_name_or_path: str = CONNECTOR_CLASSIFIER_MODEL_REPO,
tag: str = CONNECTOR_CLASSIFIER_MODEL_TAG,
) -> ConnectorClassifier:
global _CONNECTOR_CLASSIFIER_MODEL
if _CONNECTOR_CLASSIFIER_MODEL is None:
try:
# Calculate where the cache should be, then load from local if available
local_path = snapshot_download(
repo_id=model_name_or_path, revision=tag, local_files_only=True
)
_CONNECTOR_CLASSIFIER_MODEL = ConnectorClassifier.from_pretrained(
local_path
)
except Exception as e:
logger.warning(f"Failed to load model directly: {e}")
try:
# Attempt to download the model snapshot
logger.info(f"Downloading model snapshot for {model_name_or_path}")
local_path = snapshot_download(repo_id=model_name_or_path, revision=tag)
_CONNECTOR_CLASSIFIER_MODEL = ConnectorClassifier.from_pretrained(
local_path
)
except Exception as e:
logger.error(
f"Failed to load model even after attempted snapshot download: {e}"
)
raise
return _CONNECTOR_CLASSIFIER_MODEL
def get_intent_model_tokenizer() -> "PreTrainedTokenizer":
from transformers import AutoTokenizer, PreTrainedTokenizer
global _INTENT_TOKENIZER
if _INTENT_TOKENIZER is None:
# The tokenizer details are not uploaded to the HF hub since it's just the
# unmodified distilbert tokenizer.
_INTENT_TOKENIZER = cast(
PreTrainedTokenizer,
AutoTokenizer.from_pretrained("distilbert-base-uncased"),
)
return _INTENT_TOKENIZER
def get_local_intent_model(
model_name_or_path: str = INTENT_MODEL_VERSION,
tag: str | None = INTENT_MODEL_TAG,
) -> HybridClassifier:
global _INTENT_MODEL
if _INTENT_MODEL is None:
try:
# Calculate where the cache should be, then load from local if available
logger.notice(f"Loading model from local cache: {model_name_or_path}")
local_path = snapshot_download(
repo_id=model_name_or_path, revision=tag, local_files_only=True
)
_INTENT_MODEL = HybridClassifier.from_pretrained(local_path)
logger.notice(f"Loaded model from local cache: {local_path}")
except Exception as e:
logger.warning(f"Failed to load model directly: {e}")
try:
# Attempt to download the model snapshot
logger.notice(f"Downloading model snapshot for {model_name_or_path}")
local_path = snapshot_download(
repo_id=model_name_or_path, revision=tag, local_files_only=False
)
_INTENT_MODEL = HybridClassifier.from_pretrained(local_path)
except Exception as e:
logger.error(
f"Failed to load model even after attempted snapshot download: {e}"
)
raise
return _INTENT_MODEL
def get_local_information_content_model(
model_name_or_path: str = INFORMATION_CONTENT_MODEL_VERSION,
tag: str | None = INFORMATION_CONTENT_MODEL_TAG,
) -> "SetFitModel":
from setfit import SetFitModel
global _INFORMATION_CONTENT_MODEL
if _INFORMATION_CONTENT_MODEL is None:
try:
# Calculate where the cache should be, then load from local if available
logger.notice(
f"Loading content information model from local cache: {model_name_or_path}"
)
local_path = snapshot_download(
repo_id=model_name_or_path, revision=tag, local_files_only=True
)
_INFORMATION_CONTENT_MODEL = SetFitModel.from_pretrained(local_path)
logger.notice(
f"Loaded content information model from local cache: {local_path}"
)
except Exception as e:
logger.warning(f"Failed to load content information model directly: {e}")
try:
# Attempt to download the model snapshot
logger.notice(
f"Downloading content information model snapshot for {model_name_or_path}"
)
local_path = snapshot_download(
repo_id=model_name_or_path, revision=tag, local_files_only=False
)
_INFORMATION_CONTENT_MODEL = SetFitModel.from_pretrained(local_path)
except Exception as e:
logger.error(
f"Failed to load content information model even after attempted snapshot download: {e}"
)
raise
return _INFORMATION_CONTENT_MODEL
def tokenize_connector_classification_query(
connectors: list[str],
query: str,
tokenizer: "PreTrainedTokenizer",
connector_token_end_id: int,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Tokenize the connectors & user query into one prompt for the forward pass of ConnectorClassifier models
The attention mask is just all 1s. The prompt is CLS + each connector name suffixed with the connector end
token and then the user query.
"""
input_ids = torch.tensor([tokenizer.cls_token_id], dtype=torch.long)
for connector in connectors:
connector_token_ids = tokenizer(
connector,
add_special_tokens=False,
return_tensors="pt",
)
input_ids = torch.cat(
(
input_ids,
connector_token_ids["input_ids"].squeeze(dim=0),
torch.tensor([connector_token_end_id], dtype=torch.long),
),
dim=-1,
)
query_token_ids = tokenizer(
query,
add_special_tokens=False,
return_tensors="pt",
)
input_ids = torch.cat(
(
input_ids,
query_token_ids["input_ids"].squeeze(dim=0),
torch.tensor([tokenizer.sep_token_id], dtype=torch.long),
),
dim=-1,
)
attention_mask = torch.ones(input_ids.numel(), dtype=torch.long)
return input_ids.unsqueeze(0), attention_mask.unsqueeze(0)
def warm_up_connector_classifier_model() -> None:
logger.info(
f"Warming up connector_classifier model {CONNECTOR_CLASSIFIER_MODEL_TAG}"
)
connector_classifier_tokenizer = get_connector_classifier_tokenizer()
connector_classifier = get_local_connector_classifier()
input_ids, attention_mask = tokenize_connector_classification_query(
["GitHub"],
"onyx classifier query google doc",
connector_classifier_tokenizer,
connector_classifier.connector_end_token_id,
)
input_ids = input_ids.to(connector_classifier.device)
attention_mask = attention_mask.to(connector_classifier.device)
connector_classifier(input_ids, attention_mask)
def warm_up_intent_model() -> None:
logger.notice(f"Warming up Intent Model: {INTENT_MODEL_VERSION}")
intent_tokenizer = get_intent_model_tokenizer()
tokens = intent_tokenizer(
MODEL_WARM_UP_STRING, return_tensors="pt", truncation=True, padding=True
)
intent_model = get_local_intent_model()
device = intent_model.device
intent_model(
query_ids=tokens["input_ids"].to(device),
query_mask=tokens["attention_mask"].to(device),
)
def warm_up_information_content_model() -> None:
logger.notice("Warming up Content Model") # TODO: add version if needed
information_content_model = get_local_information_content_model()
information_content_model(INFORMATION_CONTENT_MODEL_WARM_UP_STRING)
@simple_log_function_time()
def run_inference(tokens: "BatchEncoding") -> tuple[list[float], list[float]]:
intent_model = get_local_intent_model()
device = intent_model.device
outputs = intent_model(
query_ids=tokens["input_ids"].to(device),
query_mask=tokens["attention_mask"].to(device),
)
token_logits = outputs["token_logits"]
intent_logits = outputs["intent_logits"]
# Move tensors to CPU before applying softmax and converting to numpy
intent_probabilities = F.softmax(intent_logits.cpu(), dim=-1).numpy()[0]
token_probabilities = F.softmax(token_logits.cpu(), dim=-1).numpy()[0]
# Extract the probabilities for the positive class (index 1) for each token
token_positive_probs = token_probabilities[:, 1].tolist()
return intent_probabilities.tolist(), token_positive_probs
@simple_log_function_time()
def run_content_classification_inference(
text_inputs: list[str],
) -> list[ContentClassificationPrediction]:
"""
Assign a score to the segments in question. The model stored in get_local_information_content_model()
creates the 'model score' based on its training, and the scores are then converted to a 0.0-1.0 scale.
In the code outside of the model/inference model servers that score will be converted into the actual
boost factor.
"""
def _prob_to_score(prob: float) -> float:
"""
Conversion of base score to 0.0 - 1.0 score. Note that the min/max values depend on the model!
"""
_MIN_BASE_SCORE = 0.25
_MAX_BASE_SCORE = 0.75
if prob < _MIN_BASE_SCORE:
raw_score = 0.0
elif prob < _MAX_BASE_SCORE:
raw_score = (prob - _MIN_BASE_SCORE) / (_MAX_BASE_SCORE - _MIN_BASE_SCORE)
else:
raw_score = 1.0
return (
INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN
+ (
INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MAX
- INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN
)
* raw_score
)
_BATCH_SIZE = 32
content_model = get_local_information_content_model()
# Process inputs in batches
all_output_classes: list[int] = []
all_base_output_probabilities: list[float] = []
for i in range(0, len(text_inputs), _BATCH_SIZE):
batch = text_inputs[i : i + _BATCH_SIZE]
batch_with_prefix = []
batch_indices = []
# Pre-allocate results for this batch
batch_output_classes: list[np.ndarray] = [np.array(1)] * len(batch)
batch_probabilities: list[np.ndarray] = [np.array(1.0)] * len(batch)
# Pre-process batch to handle long input exceptions
for j, text in enumerate(batch):
if len(text) == 0:
# if no input, treat as non-informative from the model's perspective
batch_output_classes[j] = np.array(0)
batch_probabilities[j] = np.array(0.0)
logger.warning("Input for Content Information Model is empty")
elif (
len(text.split())
<= INDEXING_INFORMATION_CONTENT_CLASSIFICATION_CUTOFF_LENGTH
):
# if input is short, use the model
batch_with_prefix.append(
_INFORMATION_CONTENT_MODEL_PROMPT_PREFIX + text
)
batch_indices.append(j)
else:
# if longer than cutoff, treat as informative (stay with default), but issue warning
logger.warning("Input for Content Information Model too long")
if batch_with_prefix: # Only run model if we have valid inputs
# Get predictions for the batch
model_output_classes = content_model(batch_with_prefix)
model_output_probabilities = content_model.predict_proba(batch_with_prefix)
# Place results in the correct positions
for idx, batch_idx in enumerate(batch_indices):
batch_output_classes[batch_idx] = model_output_classes[idx].numpy()
batch_probabilities[batch_idx] = model_output_probabilities[idx][
1
].numpy() # x[1] is prob of the positive class
all_output_classes.extend([int(x) for x in batch_output_classes])
all_base_output_probabilities.extend([float(x) for x in batch_probabilities])
logits = [
np.log(p / (1 - p)) if p != 0.0 and p != 1.0 else (100 if p == 1.0 else -100)
for p in all_base_output_probabilities
]
scaled_logits = [
logit / INDEXING_INFORMATION_CONTENT_CLASSIFICATION_TEMPERATURE
for logit in logits
]
output_probabilities_with_temp = [
np.exp(scaled_logit) / (1 + np.exp(scaled_logit))
for scaled_logit in scaled_logits
]
prediction_scores = [
_prob_to_score(p_temp) for p_temp in output_probabilities_with_temp
]
content_classification_predictions = [
ContentClassificationPrediction(
predicted_label=predicted_label, content_boost_factor=output_score
)
for predicted_label, output_score in zip(all_output_classes, prediction_scores)
]
return content_classification_predictions
def map_keywords(
input_ids: torch.Tensor, tokenizer: "PreTrainedTokenizer", is_keyword: list[bool]
) -> list[str]:
tokens = tokenizer.convert_ids_to_tokens(input_ids) # type: ignore
if not len(tokens) == len(is_keyword):
raise ValueError("Length of tokens and keyword predictions must match")
if input_ids[0] == tokenizer.cls_token_id:
tokens = tokens[1:]
is_keyword = is_keyword[1:]
if input_ids[-1] == tokenizer.sep_token_id:
tokens = tokens[:-1]
is_keyword = is_keyword[:-1]
unk_token = tokenizer.unk_token
if unk_token in tokens:
raise ValueError("Unknown token detected in the input")
keywords = []
current_keyword = ""
for ind, token in enumerate(tokens):
if is_keyword[ind]:
if token.startswith("##"):
current_keyword += token[2:]
else:
if current_keyword:
keywords.append(current_keyword)
current_keyword = token
else:
# If mispredicted a later token of a keyword, add it to the current keyword
# to complete it
if current_keyword:
if len(current_keyword) > 2 and current_keyword.startswith("##"):
current_keyword = current_keyword[2:]
else:
keywords.append(current_keyword)
current_keyword = ""
if current_keyword:
keywords.append(current_keyword)
return keywords
def clean_keywords(keywords: list[str]) -> list[str]:
cleaned_words = []
for word in keywords:
word = word[:-2] if word.endswith("'s") else word
word = word.replace("/", " ")
word = word.replace("'", "").replace('"', "")
cleaned_words.extend([w for w in word.strip().split() if w and not w.isspace()])
return cleaned_words
def run_connector_classification(req: ConnectorClassificationRequest) -> list[str]:
tokenizer = get_connector_classifier_tokenizer()
model = get_local_connector_classifier()
connector_names = req.available_connectors
input_ids, attention_mask = tokenize_connector_classification_query(
connector_names,
req.query,
tokenizer,
model.connector_end_token_id,
)
input_ids = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device)
global_confidence, classifier_confidence = model(input_ids, attention_mask)
if global_confidence.item() < 0.5:
return []
passed_connectors = []
for i, connector_name in enumerate(connector_names):
if classifier_confidence.view(-1)[i].item() > 0.5:
passed_connectors.append(connector_name)
return passed_connectors
def run_analysis(intent_req: IntentRequest) -> tuple[bool, list[str]]:
tokenizer = get_intent_model_tokenizer()
model_input = tokenizer(
intent_req.query, return_tensors="pt", truncation=False, padding=False
)
if len(model_input.input_ids[0]) > 512:
# If the user text is too long, assume it is semantic and keep all words
return True, intent_req.query.split()
intent_probs, token_probs = run_inference(model_input)
is_keyword_sequence = intent_probs[0] >= intent_req.keyword_percent_threshold
keyword_preds = [
token_prob >= intent_req.keyword_percent_threshold for token_prob in token_probs
]
try:
keywords = map_keywords(model_input.input_ids[0], tokenizer, keyword_preds)
except Exception as e:
logger.warning(
f"Failed to extract keywords for query: {intent_req.query} due to {e}"
)
# Fallback to keeping all words
keywords = intent_req.query.split()
cleaned_keywords = clean_keywords(keywords)
return is_keyword_sequence, cleaned_keywords
@router.post("/connector-classification")
async def process_connector_classification_request(
classification_request: ConnectorClassificationRequest,
) -> ConnectorClassificationResponse:
if INDEXING_ONLY:
raise RuntimeError(
"Indexing model server should not call connector classification endpoint"
)
if len(classification_request.available_connectors) == 0:
return ConnectorClassificationResponse(connectors=[])
connectors = run_connector_classification(classification_request)
return ConnectorClassificationResponse(connectors=connectors)
@router.post("/query-analysis")
async def process_analysis_request(
intent_request: IntentRequest,
) -> IntentResponse:
if INDEXING_ONLY:
raise RuntimeError("Indexing model server should not call intent endpoint")
is_keyword, keywords = run_analysis(intent_request)
return IntentResponse(is_keyword=is_keyword, keywords=keywords)
@router.post("/content-classification")
async def process_content_classification_request(
content_classification_requests: list[str],
) -> list[ContentClassificationPrediction]:
return run_content_classification_inference(content_classification_requests)

View File

@@ -1,7 +1,6 @@
import asyncio
import time
from typing import Any
from typing import Optional
from typing import TYPE_CHECKING
from fastapi import APIRouter
@@ -10,16 +9,13 @@ from fastapi import Request
from model_server.utils import simple_log_function_time
from onyx.utils.logger import setup_logger
from shared_configs.configs import INDEXING_ONLY
from shared_configs.enums import EmbedTextType
from shared_configs.model_server_models import Embedding
from shared_configs.model_server_models import EmbedRequest
from shared_configs.model_server_models import EmbedResponse
from shared_configs.model_server_models import RerankRequest
from shared_configs.model_server_models import RerankResponse
if TYPE_CHECKING:
from sentence_transformers import CrossEncoder, SentenceTransformer
from sentence_transformers import SentenceTransformer
logger = setup_logger()
@@ -27,11 +23,6 @@ router = APIRouter(prefix="/encoder")
_GLOBAL_MODELS_DICT: dict[str, "SentenceTransformer"] = {}
_RERANK_MODEL: Optional["CrossEncoder"] = None
# If we are not only indexing, dont want retry very long
_RETRY_DELAY = 10 if INDEXING_ONLY else 0.1
_RETRY_TRIES = 10 if INDEXING_ONLY else 2
def get_embedding_model(
@@ -42,7 +33,7 @@ def get_embedding_model(
Loads or returns a cached SentenceTransformer, sets max_seq_length, pins device,
pre-warms rotary caches once, and wraps encode() with a lock to avoid cache races.
"""
from sentence_transformers import SentenceTransformer # type: ignore
from sentence_transformers import SentenceTransformer
def _prewarm_rope(st_model: "SentenceTransformer", target_len: int) -> None:
"""
@@ -87,19 +78,6 @@ def get_embedding_model(
return _GLOBAL_MODELS_DICT[model_name]
def get_local_reranking_model(
model_name: str,
) -> "CrossEncoder":
global _RERANK_MODEL
from sentence_transformers import CrossEncoder # type: ignore
if _RERANK_MODEL is None:
logger.notice(f"Loading {model_name}")
model = CrossEncoder(model_name)
_RERANK_MODEL = model
return _RERANK_MODEL
ENCODING_RETRIES = 3
ENCODING_RETRY_DELAY = 0.1
@@ -189,16 +167,6 @@ async def embed_text(
return embeddings
@simple_log_function_time()
async def local_rerank(query: str, docs: list[str], model_name: str) -> list[float]:
cross_encoder = get_local_reranking_model(model_name)
# Run CPU-bound reranking in a thread pool
return await asyncio.get_event_loop().run_in_executor(
None,
lambda: cross_encoder.predict([(query, doc) for doc in docs]).tolist(), # type: ignore
)
@router.post("/bi-encoder-embed")
async def route_bi_encoder_embed(
request: Request,
@@ -254,39 +222,3 @@ async def process_embed_request(
raise HTTPException(
status_code=500, detail=f"Error during embedding process: {e}"
)
@router.post("/cross-encoder-scores")
async def process_rerank_request(rerank_request: RerankRequest) -> RerankResponse:
"""Cross encoders can be purely black box from the app perspective"""
# Only local models should use this endpoint - API providers should make direct API calls
if rerank_request.provider_type is not None:
raise ValueError(
f"Model server reranking endpoint should only be used for local models. "
f"API provider '{rerank_request.provider_type}' should make direct API calls instead."
)
if INDEXING_ONLY:
raise RuntimeError("Indexing model server should not call intent endpoint")
if not rerank_request.documents or not rerank_request.query:
raise HTTPException(
status_code=400, detail="Missing documents or query for reranking"
)
if not all(rerank_request.documents):
raise ValueError("Empty documents cannot be reranked.")
try:
# At this point, provider_type is None, so handle local reranking
sim_scores = await local_rerank(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
)
return RerankResponse(scores=sim_scores)
except Exception as e:
logger.exception(f"Error during reranking process:\n{str(e)}")
raise HTTPException(
status_code=500, detail="Failed to run Cross-Encoder reranking"
)

View File

@@ -0,0 +1,5 @@
This directory contains code that was useful and may become useful again in the future.
We stopped using rerankers because the state of the art rerankers are not significantly better than the biencoders and much worse than LLMs which are also capable of acting on a small set of documents for filtering, reranking, etc.
We stopped using the internal query classifier as that's now offloaded to the LLM which does query expansion so we know ahead of time if it's a keyword or semantic query.

View File

View File

@@ -0,0 +1,573 @@
# from typing import cast
# from typing import Optional
# from typing import TYPE_CHECKING
# import numpy as np
# import torch
# import torch.nn.functional as F
# from fastapi import APIRouter
# from huggingface_hub import snapshot_download
# from pydantic import BaseModel
# from model_server.constants import MODEL_WARM_UP_STRING
# from model_server.legacy.onyx_torch_model import ConnectorClassifier
# from model_server.legacy.onyx_torch_model import HybridClassifier
# from model_server.utils import simple_log_function_time
# from onyx.utils.logger import setup_logger
# from shared_configs.configs import CONNECTOR_CLASSIFIER_MODEL_REPO
# from shared_configs.configs import CONNECTOR_CLASSIFIER_MODEL_TAG
# from shared_configs.configs import INDEXING_ONLY
# from shared_configs.configs import INTENT_MODEL_TAG
# from shared_configs.configs import INTENT_MODEL_VERSION
# from shared_configs.model_server_models import IntentRequest
# from shared_configs.model_server_models import IntentResponse
# if TYPE_CHECKING:
# from setfit import SetFitModel # type: ignore[import-untyped]
# from transformers import PreTrainedTokenizer, BatchEncoding
# INFORMATION_CONTENT_MODEL_WARM_UP_STRING = "hi" * 50
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MAX = 1.0
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN = 0.7
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_TEMPERATURE = 4.0
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_CUTOFF_LENGTH = 10
# INFORMATION_CONTENT_MODEL_VERSION = "onyx-dot-app/information-content-model"
# INFORMATION_CONTENT_MODEL_TAG: str | None = None
# class ConnectorClassificationRequest(BaseModel):
# available_connectors: list[str]
# query: str
# class ConnectorClassificationResponse(BaseModel):
# connectors: list[str]
# class ContentClassificationPrediction(BaseModel):
# predicted_label: int
# content_boost_factor: float
# logger = setup_logger()
# router = APIRouter(prefix="/custom")
# _CONNECTOR_CLASSIFIER_TOKENIZER: Optional["PreTrainedTokenizer"] = None
# _CONNECTOR_CLASSIFIER_MODEL: ConnectorClassifier | None = None
# _INTENT_TOKENIZER: Optional["PreTrainedTokenizer"] = None
# _INTENT_MODEL: HybridClassifier | None = None
# _INFORMATION_CONTENT_MODEL: Optional["SetFitModel"] = None
# _INFORMATION_CONTENT_MODEL_PROMPT_PREFIX: str = "" # spec to model version!
# def get_connector_classifier_tokenizer() -> "PreTrainedTokenizer":
# global _CONNECTOR_CLASSIFIER_TOKENIZER
# from transformers import AutoTokenizer, PreTrainedTokenizer
# if _CONNECTOR_CLASSIFIER_TOKENIZER is None:
# # The tokenizer details are not uploaded to the HF hub since it's just the
# # unmodified distilbert tokenizer.
# _CONNECTOR_CLASSIFIER_TOKENIZER = cast(
# PreTrainedTokenizer,
# AutoTokenizer.from_pretrained("distilbert-base-uncased"),
# )
# return _CONNECTOR_CLASSIFIER_TOKENIZER
# def get_local_connector_classifier(
# model_name_or_path: str = CONNECTOR_CLASSIFIER_MODEL_REPO,
# tag: str = CONNECTOR_CLASSIFIER_MODEL_TAG,
# ) -> ConnectorClassifier:
# global _CONNECTOR_CLASSIFIER_MODEL
# if _CONNECTOR_CLASSIFIER_MODEL is None:
# try:
# # Calculate where the cache should be, then load from local if available
# local_path = snapshot_download(
# repo_id=model_name_or_path, revision=tag, local_files_only=True
# )
# _CONNECTOR_CLASSIFIER_MODEL = ConnectorClassifier.from_pretrained(
# local_path
# )
# except Exception as e:
# logger.warning(f"Failed to load model directly: {e}")
# try:
# # Attempt to download the model snapshot
# logger.info(f"Downloading model snapshot for {model_name_or_path}")
# local_path = snapshot_download(repo_id=model_name_or_path, revision=tag)
# _CONNECTOR_CLASSIFIER_MODEL = ConnectorClassifier.from_pretrained(
# local_path
# )
# except Exception as e:
# logger.error(
# f"Failed to load model even after attempted snapshot download: {e}"
# )
# raise
# return _CONNECTOR_CLASSIFIER_MODEL
# def get_intent_model_tokenizer() -> "PreTrainedTokenizer":
# from transformers import AutoTokenizer, PreTrainedTokenizer
# global _INTENT_TOKENIZER
# if _INTENT_TOKENIZER is None:
# # The tokenizer details are not uploaded to the HF hub since it's just the
# # unmodified distilbert tokenizer.
# _INTENT_TOKENIZER = cast(
# PreTrainedTokenizer,
# AutoTokenizer.from_pretrained("distilbert-base-uncased"),
# )
# return _INTENT_TOKENIZER
# def get_local_intent_model(
# model_name_or_path: str = INTENT_MODEL_VERSION,
# tag: str | None = INTENT_MODEL_TAG,
# ) -> HybridClassifier:
# global _INTENT_MODEL
# if _INTENT_MODEL is None:
# try:
# # Calculate where the cache should be, then load from local if available
# logger.notice(f"Loading model from local cache: {model_name_or_path}")
# local_path = snapshot_download(
# repo_id=model_name_or_path, revision=tag, local_files_only=True
# )
# _INTENT_MODEL = HybridClassifier.from_pretrained(local_path)
# logger.notice(f"Loaded model from local cache: {local_path}")
# except Exception as e:
# logger.warning(f"Failed to load model directly: {e}")
# try:
# # Attempt to download the model snapshot
# logger.notice(f"Downloading model snapshot for {model_name_or_path}")
# local_path = snapshot_download(
# repo_id=model_name_or_path, revision=tag, local_files_only=False
# )
# _INTENT_MODEL = HybridClassifier.from_pretrained(local_path)
# except Exception as e:
# logger.error(
# f"Failed to load model even after attempted snapshot download: {e}"
# )
# raise
# return _INTENT_MODEL
# def get_local_information_content_model(
# model_name_or_path: str = INFORMATION_CONTENT_MODEL_VERSION,
# tag: str | None = INFORMATION_CONTENT_MODEL_TAG,
# ) -> "SetFitModel":
# from setfit import SetFitModel
# global _INFORMATION_CONTENT_MODEL
# if _INFORMATION_CONTENT_MODEL is None:
# try:
# # Calculate where the cache should be, then load from local if available
# logger.notice(
# f"Loading content information model from local cache: {model_name_or_path}"
# )
# local_path = snapshot_download(
# repo_id=model_name_or_path, revision=tag, local_files_only=True
# )
# _INFORMATION_CONTENT_MODEL = SetFitModel.from_pretrained(local_path)
# logger.notice(
# f"Loaded content information model from local cache: {local_path}"
# )
# except Exception as e:
# logger.warning(f"Failed to load content information model directly: {e}")
# try:
# # Attempt to download the model snapshot
# logger.notice(
# f"Downloading content information model snapshot for {model_name_or_path}"
# )
# local_path = snapshot_download(
# repo_id=model_name_or_path, revision=tag, local_files_only=False
# )
# _INFORMATION_CONTENT_MODEL = SetFitModel.from_pretrained(local_path)
# except Exception as e:
# logger.error(
# f"Failed to load content information model even after attempted snapshot download: {e}"
# )
# raise
# return _INFORMATION_CONTENT_MODEL
# def tokenize_connector_classification_query(
# connectors: list[str],
# query: str,
# tokenizer: "PreTrainedTokenizer",
# connector_token_end_id: int,
# ) -> tuple[torch.Tensor, torch.Tensor]:
# """
# Tokenize the connectors & user query into one prompt for the forward pass of ConnectorClassifier models
# The attention mask is just all 1s. The prompt is CLS + each connector name suffixed with the connector end
# token and then the user query.
# """
# input_ids = torch.tensor([tokenizer.cls_token_id], dtype=torch.long)
# for connector in connectors:
# connector_token_ids = tokenizer(
# connector,
# add_special_tokens=False,
# return_tensors="pt",
# )
# input_ids = torch.cat(
# (
# input_ids,
# connector_token_ids["input_ids"].squeeze(dim=0),
# torch.tensor([connector_token_end_id], dtype=torch.long),
# ),
# dim=-1,
# )
# query_token_ids = tokenizer(
# query,
# add_special_tokens=False,
# return_tensors="pt",
# )
# input_ids = torch.cat(
# (
# input_ids,
# query_token_ids["input_ids"].squeeze(dim=0),
# torch.tensor([tokenizer.sep_token_id], dtype=torch.long),
# ),
# dim=-1,
# )
# attention_mask = torch.ones(input_ids.numel(), dtype=torch.long)
# return input_ids.unsqueeze(0), attention_mask.unsqueeze(0)
# def warm_up_connector_classifier_model() -> None:
# logger.info(
# f"Warming up connector_classifier model {CONNECTOR_CLASSIFIER_MODEL_TAG}"
# )
# connector_classifier_tokenizer = get_connector_classifier_tokenizer()
# connector_classifier = get_local_connector_classifier()
# input_ids, attention_mask = tokenize_connector_classification_query(
# ["GitHub"],
# "onyx classifier query google doc",
# connector_classifier_tokenizer,
# connector_classifier.connector_end_token_id,
# )
# input_ids = input_ids.to(connector_classifier.device)
# attention_mask = attention_mask.to(connector_classifier.device)
# connector_classifier(input_ids, attention_mask)
# def warm_up_intent_model() -> None:
# logger.notice(f"Warming up Intent Model: {INTENT_MODEL_VERSION}")
# intent_tokenizer = get_intent_model_tokenizer()
# tokens = intent_tokenizer(
# MODEL_WARM_UP_STRING, return_tensors="pt", truncation=True, padding=True
# )
# intent_model = get_local_intent_model()
# device = intent_model.device
# intent_model(
# query_ids=tokens["input_ids"].to(device),
# query_mask=tokens["attention_mask"].to(device),
# )
# def warm_up_information_content_model() -> None:
# logger.notice("Warming up Content Model") # TODO: add version if needed
# information_content_model = get_local_information_content_model()
# information_content_model(INFORMATION_CONTENT_MODEL_WARM_UP_STRING)
# @simple_log_function_time()
# def run_inference(tokens: "BatchEncoding") -> tuple[list[float], list[float]]:
# intent_model = get_local_intent_model()
# device = intent_model.device
# outputs = intent_model(
# query_ids=tokens["input_ids"].to(device),
# query_mask=tokens["attention_mask"].to(device),
# )
# token_logits = outputs["token_logits"]
# intent_logits = outputs["intent_logits"]
# # Move tensors to CPU before applying softmax and converting to numpy
# intent_probabilities = F.softmax(intent_logits.cpu(), dim=-1).numpy()[0]
# token_probabilities = F.softmax(token_logits.cpu(), dim=-1).numpy()[0]
# # Extract the probabilities for the positive class (index 1) for each token
# token_positive_probs = token_probabilities[:, 1].tolist()
# return intent_probabilities.tolist(), token_positive_probs
# @simple_log_function_time()
# def run_content_classification_inference(
# text_inputs: list[str],
# ) -> list[ContentClassificationPrediction]:
# """
# Assign a score to the segments in question. The model stored in get_local_information_content_model()
# creates the 'model score' based on its training, and the scores are then converted to a 0.0-1.0 scale.
# In the code outside of the model/inference model servers that score will be converted into the actual
# boost factor.
# """
# def _prob_to_score(prob: float) -> float:
# """
# Conversion of base score to 0.0 - 1.0 score. Note that the min/max values depend on the model!
# """
# _MIN_BASE_SCORE = 0.25
# _MAX_BASE_SCORE = 0.75
# if prob < _MIN_BASE_SCORE:
# raw_score = 0.0
# elif prob < _MAX_BASE_SCORE:
# raw_score = (prob - _MIN_BASE_SCORE) / (_MAX_BASE_SCORE - _MIN_BASE_SCORE)
# else:
# raw_score = 1.0
# return (
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN
# + (
# INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MAX
# - INDEXING_INFORMATION_CONTENT_CLASSIFICATION_MIN
# )
# * raw_score
# )
# _BATCH_SIZE = 32
# content_model = get_local_information_content_model()
# # Process inputs in batches
# all_output_classes: list[int] = []
# all_base_output_probabilities: list[float] = []
# for i in range(0, len(text_inputs), _BATCH_SIZE):
# batch = text_inputs[i : i + _BATCH_SIZE]
# batch_with_prefix = []
# batch_indices = []
# # Pre-allocate results for this batch
# batch_output_classes: list[np.ndarray] = [np.array(1)] * len(batch)
# batch_probabilities: list[np.ndarray] = [np.array(1.0)] * len(batch)
# # Pre-process batch to handle long input exceptions
# for j, text in enumerate(batch):
# if len(text) == 0:
# # if no input, treat as non-informative from the model's perspective
# batch_output_classes[j] = np.array(0)
# batch_probabilities[j] = np.array(0.0)
# logger.warning("Input for Content Information Model is empty")
# elif (
# len(text.split())
# <= INDEXING_INFORMATION_CONTENT_CLASSIFICATION_CUTOFF_LENGTH
# ):
# # if input is short, use the model
# batch_with_prefix.append(
# _INFORMATION_CONTENT_MODEL_PROMPT_PREFIX + text
# )
# batch_indices.append(j)
# else:
# # if longer than cutoff, treat as informative (stay with default), but issue warning
# logger.warning("Input for Content Information Model too long")
# if batch_with_prefix: # Only run model if we have valid inputs
# # Get predictions for the batch
# model_output_classes = content_model(batch_with_prefix)
# model_output_probabilities = content_model.predict_proba(batch_with_prefix)
# # Place results in the correct positions
# for idx, batch_idx in enumerate(batch_indices):
# batch_output_classes[batch_idx] = model_output_classes[idx].numpy()
# batch_probabilities[batch_idx] = model_output_probabilities[idx][
# 1
# ].numpy() # x[1] is prob of the positive class
# all_output_classes.extend([int(x) for x in batch_output_classes])
# all_base_output_probabilities.extend([float(x) for x in batch_probabilities])
# logits = [
# np.log(p / (1 - p)) if p != 0.0 and p != 1.0 else (100 if p == 1.0 else -100)
# for p in all_base_output_probabilities
# ]
# scaled_logits = [
# logit / INDEXING_INFORMATION_CONTENT_CLASSIFICATION_TEMPERATURE
# for logit in logits
# ]
# output_probabilities_with_temp = [
# np.exp(scaled_logit) / (1 + np.exp(scaled_logit))
# for scaled_logit in scaled_logits
# ]
# prediction_scores = [
# _prob_to_score(p_temp) for p_temp in output_probabilities_with_temp
# ]
# content_classification_predictions = [
# ContentClassificationPrediction(
# predicted_label=predicted_label, content_boost_factor=output_score
# )
# for predicted_label, output_score in zip(all_output_classes, prediction_scores)
# ]
# return content_classification_predictions
# def map_keywords(
# input_ids: torch.Tensor, tokenizer: "PreTrainedTokenizer", is_keyword: list[bool]
# ) -> list[str]:
# tokens = tokenizer.convert_ids_to_tokens(input_ids) # type: ignore
# if not len(tokens) == len(is_keyword):
# raise ValueError("Length of tokens and keyword predictions must match")
# if input_ids[0] == tokenizer.cls_token_id:
# tokens = tokens[1:]
# is_keyword = is_keyword[1:]
# if input_ids[-1] == tokenizer.sep_token_id:
# tokens = tokens[:-1]
# is_keyword = is_keyword[:-1]
# unk_token = tokenizer.unk_token
# if unk_token in tokens:
# raise ValueError("Unknown token detected in the input")
# keywords = []
# current_keyword = ""
# for ind, token in enumerate(tokens):
# if is_keyword[ind]:
# if token.startswith("##"):
# current_keyword += token[2:]
# else:
# if current_keyword:
# keywords.append(current_keyword)
# current_keyword = token
# else:
# # If mispredicted a later token of a keyword, add it to the current keyword
# # to complete it
# if current_keyword:
# if len(current_keyword) > 2 and current_keyword.startswith("##"):
# current_keyword = current_keyword[2:]
# else:
# keywords.append(current_keyword)
# current_keyword = ""
# if current_keyword:
# keywords.append(current_keyword)
# return keywords
# def clean_keywords(keywords: list[str]) -> list[str]:
# cleaned_words = []
# for word in keywords:
# word = word[:-2] if word.endswith("'s") else word
# word = word.replace("/", " ")
# word = word.replace("'", "").replace('"', "")
# cleaned_words.extend([w for w in word.strip().split() if w and not w.isspace()])
# return cleaned_words
# def run_connector_classification(req: ConnectorClassificationRequest) -> list[str]:
# tokenizer = get_connector_classifier_tokenizer()
# model = get_local_connector_classifier()
# connector_names = req.available_connectors
# input_ids, attention_mask = tokenize_connector_classification_query(
# connector_names,
# req.query,
# tokenizer,
# model.connector_end_token_id,
# )
# input_ids = input_ids.to(model.device)
# attention_mask = attention_mask.to(model.device)
# global_confidence, classifier_confidence = model(input_ids, attention_mask)
# if global_confidence.item() < 0.5:
# return []
# passed_connectors = []
# for i, connector_name in enumerate(connector_names):
# if classifier_confidence.view(-1)[i].item() > 0.5:
# passed_connectors.append(connector_name)
# return passed_connectors
# def run_analysis(intent_req: IntentRequest) -> tuple[bool, list[str]]:
# tokenizer = get_intent_model_tokenizer()
# model_input = tokenizer(
# intent_req.query, return_tensors="pt", truncation=False, padding=False
# )
# if len(model_input.input_ids[0]) > 512:
# # If the user text is too long, assume it is semantic and keep all words
# return True, intent_req.query.split()
# intent_probs, token_probs = run_inference(model_input)
# is_keyword_sequence = intent_probs[0] >= intent_req.keyword_percent_threshold
# keyword_preds = [
# token_prob >= intent_req.keyword_percent_threshold for token_prob in token_probs
# ]
# try:
# keywords = map_keywords(model_input.input_ids[0], tokenizer, keyword_preds)
# except Exception as e:
# logger.warning(
# f"Failed to extract keywords for query: {intent_req.query} due to {e}"
# )
# # Fallback to keeping all words
# keywords = intent_req.query.split()
# cleaned_keywords = clean_keywords(keywords)
# return is_keyword_sequence, cleaned_keywords
# @router.post("/connector-classification")
# async def process_connector_classification_request(
# classification_request: ConnectorClassificationRequest,
# ) -> ConnectorClassificationResponse:
# if INDEXING_ONLY:
# raise RuntimeError(
# "Indexing model server should not call connector classification endpoint"
# )
# if len(classification_request.available_connectors) == 0:
# return ConnectorClassificationResponse(connectors=[])
# connectors = run_connector_classification(classification_request)
# return ConnectorClassificationResponse(connectors=connectors)
# @router.post("/query-analysis")
# async def process_analysis_request(
# intent_request: IntentRequest,
# ) -> IntentResponse:
# if INDEXING_ONLY:
# raise RuntimeError("Indexing model server should not call intent endpoint")
# is_keyword, keywords = run_analysis(intent_request)
# return IntentResponse(is_keyword=is_keyword, keywords=keywords)
# @router.post("/content-classification")
# async def process_content_classification_request(
# content_classification_requests: list[str],
# ) -> list[ContentClassificationPrediction]:
# return run_content_classification_inference(content_classification_requests)

View File

@@ -0,0 +1,154 @@
# import json
# import os
# from typing import cast
# from typing import TYPE_CHECKING
# import torch
# import torch.nn as nn
# if TYPE_CHECKING:
# from transformers import DistilBertConfig
# class HybridClassifier(nn.Module):
# def __init__(self) -> None:
# from transformers import DistilBertConfig, DistilBertModel
# super().__init__()
# config = DistilBertConfig()
# self.distilbert = DistilBertModel(config)
# config = self.distilbert.config # type: ignore
# # Keyword tokenwise binary classification layer
# self.keyword_classifier = nn.Linear(config.dim, 2)
# # Intent Classifier layers
# self.pre_classifier = nn.Linear(config.dim, config.dim)
# self.intent_classifier = nn.Linear(config.dim, 2)
# self.device = torch.device("cpu")
# def forward(
# self,
# query_ids: torch.Tensor,
# query_mask: torch.Tensor,
# ) -> dict[str, torch.Tensor]:
# outputs = self.distilbert(input_ids=query_ids, attention_mask=query_mask)
# sequence_output = outputs.last_hidden_state
# # Intent classification on the CLS token
# cls_token_state = sequence_output[:, 0, :]
# pre_classifier_out = self.pre_classifier(cls_token_state)
# intent_logits = self.intent_classifier(pre_classifier_out)
# # Keyword classification on all tokens
# token_logits = self.keyword_classifier(sequence_output)
# return {"intent_logits": intent_logits, "token_logits": token_logits}
# @classmethod
# def from_pretrained(cls, load_directory: str) -> "HybridClassifier":
# model_path = os.path.join(load_directory, "pytorch_model.bin")
# config_path = os.path.join(load_directory, "config.json")
# with open(config_path, "r") as f:
# config = json.load(f)
# model = cls(**config)
# if torch.backends.mps.is_available():
# # Apple silicon GPU
# device = torch.device("mps")
# elif torch.cuda.is_available():
# device = torch.device("cuda")
# else:
# device = torch.device("cpu")
# model.load_state_dict(torch.load(model_path, map_location=device))
# model = model.to(device)
# model.device = device
# model.eval()
# # Eval doesn't set requires_grad to False, do it manually to save memory and have faster inference
# for param in model.parameters():
# param.requires_grad = False
# return model
# class ConnectorClassifier(nn.Module):
# def __init__(self, config: "DistilBertConfig") -> None:
# from transformers import DistilBertTokenizer, DistilBertModel
# super().__init__()
# self.config = config
# self.distilbert = DistilBertModel(config)
# config = self.distilbert.config # type: ignore
# self.connector_global_classifier = nn.Linear(config.dim, 1)
# self.connector_match_classifier = nn.Linear(config.dim, 1)
# self.tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
# # Token indicating end of connector name, and on which classifier is used
# self.connector_end_token_id = self.tokenizer.get_vocab()[
# self.config.connector_end_token
# ]
# self.device = torch.device("cpu")
# def forward(
# self,
# input_ids: torch.Tensor,
# attention_mask: torch.Tensor,
# ) -> tuple[torch.Tensor, torch.Tensor]:
# hidden_states = self.distilbert(
# input_ids=input_ids, attention_mask=attention_mask
# ).last_hidden_state
# cls_hidden_states = hidden_states[
# :, 0, :
# ] # Take leap of faith that first token is always [CLS]
# global_logits = self.connector_global_classifier(cls_hidden_states).view(-1)
# global_confidence = torch.sigmoid(global_logits).view(-1)
# connector_end_position_ids = input_ids == self.connector_end_token_id
# connector_end_hidden_states = hidden_states[connector_end_position_ids]
# classifier_output = self.connector_match_classifier(connector_end_hidden_states)
# classifier_confidence = torch.nn.functional.sigmoid(classifier_output).view(-1)
# return global_confidence, classifier_confidence
# @classmethod
# def from_pretrained(cls, repo_dir: str) -> "ConnectorClassifier":
# from transformers import DistilBertConfig
# config = cast(
# DistilBertConfig,
# DistilBertConfig.from_pretrained(os.path.join(repo_dir, "config.json")),
# )
# device = (
# torch.device("cuda")
# if torch.cuda.is_available()
# else (
# torch.device("mps")
# if torch.backends.mps.is_available()
# else torch.device("cpu")
# )
# )
# state_dict = torch.load(
# os.path.join(repo_dir, "pytorch_model.pt"),
# map_location=device,
# weights_only=True,
# )
# model = cls(config)
# model.load_state_dict(state_dict)
# model.to(device)
# model.device = device
# model.eval()
# for param in model.parameters():
# param.requires_grad = False
# return model

View File

@@ -0,0 +1,80 @@
# import asyncio
# from typing import Optional
# from typing import TYPE_CHECKING
# from fastapi import APIRouter
# from fastapi import HTTPException
# from model_server.utils import simple_log_function_time
# from onyx.utils.logger import setup_logger
# from shared_configs.configs import INDEXING_ONLY
# from shared_configs.model_server_models import RerankRequest
# from shared_configs.model_server_models import RerankResponse
# if TYPE_CHECKING:
# from sentence_transformers import CrossEncoder
# logger = setup_logger()
# router = APIRouter(prefix="/encoder")
# _RERANK_MODEL: Optional["CrossEncoder"] = None
# def get_local_reranking_model(
# model_name: str,
# ) -> "CrossEncoder":
# global _RERANK_MODEL
# from sentence_transformers import CrossEncoder
# if _RERANK_MODEL is None:
# logger.notice(f"Loading {model_name}")
# model = CrossEncoder(model_name)
# _RERANK_MODEL = model
# return _RERANK_MODEL
# @simple_log_function_time()
# async def local_rerank(query: str, docs: list[str], model_name: str) -> list[float]:
# cross_encoder = get_local_reranking_model(model_name)
# # Run CPU-bound reranking in a thread pool
# return await asyncio.get_event_loop().run_in_executor(
# None,
# lambda: cross_encoder.predict([(query, doc) for doc in docs]).tolist(),
# )
# @router.post("/cross-encoder-scores")
# async def process_rerank_request(rerank_request: RerankRequest) -> RerankResponse:
# """Cross encoders can be purely black box from the app perspective"""
# # Only local models should use this endpoint - API providers should make direct API calls
# if rerank_request.provider_type is not None:
# raise ValueError(
# f"Model server reranking endpoint should only be used for local models. "
# f"API provider '{rerank_request.provider_type}' should make direct API calls instead."
# )
# if INDEXING_ONLY:
# raise RuntimeError("Indexing model server should not call reranking endpoint")
# if not rerank_request.documents or not rerank_request.query:
# raise HTTPException(
# status_code=400, detail="Missing documents or query for reranking"
# )
# if not all(rerank_request.documents):
# raise ValueError("Empty documents cannot be reranked.")
# try:
# # At this point, provider_type is None, so handle local reranking
# sim_scores = await local_rerank(
# query=rerank_request.query,
# docs=rerank_request.documents,
# model_name=rerank_request.model_name,
# )
# return RerankResponse(scores=sim_scores)
# except Exception as e:
# logger.exception(f"Error during reranking process:\n{str(e)}")
# raise HTTPException(
# status_code=500, detail="Failed to run Cross-Encoder reranking"
# )

View File

@@ -12,11 +12,8 @@ from fastapi import FastAPI
from prometheus_fastapi_instrumentator import Instrumentator
from sentry_sdk.integrations.fastapi import FastApiIntegration
from sentry_sdk.integrations.starlette import StarletteIntegration
from transformers import logging as transformer_logging # type:ignore
from transformers import logging as transformer_logging
from model_server.custom_models import router as custom_models_router
from model_server.custom_models import warm_up_information_content_model
from model_server.custom_models import warm_up_intent_model
from model_server.encoders import router as encoders_router
from model_server.management_endpoints import router as management_router
from model_server.utils import get_gpu_type
@@ -30,7 +27,6 @@ from shared_configs.configs import MIN_THREADS_ML_MODELS
from shared_configs.configs import MODEL_SERVER_ALLOWED_HOST
from shared_configs.configs import MODEL_SERVER_PORT
from shared_configs.configs import SENTRY_DSN
from shared_configs.configs import SKIP_WARM_UP
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
@@ -92,18 +88,6 @@ async def lifespan(app: FastAPI) -> AsyncGenerator:
torch.set_num_threads(max(MIN_THREADS_ML_MODELS, torch.get_num_threads()))
logger.notice(f"Torch Threads: {torch.get_num_threads()}")
if not SKIP_WARM_UP:
if not INDEXING_ONLY:
logger.notice("Warming up intent model for inference model server")
warm_up_intent_model()
else:
logger.notice(
"Warming up content information model for indexing model server"
)
warm_up_information_content_model()
else:
logger.notice("Skipping model warmup due to SKIP_WARM_UP=true")
yield
@@ -123,7 +107,6 @@ def get_model_app() -> FastAPI:
application.include_router(management_router)
application.include_router(encoders_router)
application.include_router(custom_models_router)
request_id_prefix = "INF"
if INDEXING_ONLY:

View File

@@ -1,154 +0,0 @@
import json
import os
from typing import cast
from typing import TYPE_CHECKING
import torch
import torch.nn as nn
if TYPE_CHECKING:
from transformers import DistilBertConfig # type: ignore
class HybridClassifier(nn.Module):
def __init__(self) -> None:
from transformers import DistilBertConfig, DistilBertModel
super().__init__()
config = DistilBertConfig()
self.distilbert = DistilBertModel(config)
config = self.distilbert.config # type: ignore
# Keyword tokenwise binary classification layer
self.keyword_classifier = nn.Linear(config.dim, 2)
# Intent Classifier layers
self.pre_classifier = nn.Linear(config.dim, config.dim)
self.intent_classifier = nn.Linear(config.dim, 2)
self.device = torch.device("cpu")
def forward(
self,
query_ids: torch.Tensor,
query_mask: torch.Tensor,
) -> dict[str, torch.Tensor]:
outputs = self.distilbert(input_ids=query_ids, attention_mask=query_mask) # type: ignore
sequence_output = outputs.last_hidden_state
# Intent classification on the CLS token
cls_token_state = sequence_output[:, 0, :]
pre_classifier_out = self.pre_classifier(cls_token_state)
intent_logits = self.intent_classifier(pre_classifier_out)
# Keyword classification on all tokens
token_logits = self.keyword_classifier(sequence_output)
return {"intent_logits": intent_logits, "token_logits": token_logits}
@classmethod
def from_pretrained(cls, load_directory: str) -> "HybridClassifier":
model_path = os.path.join(load_directory, "pytorch_model.bin")
config_path = os.path.join(load_directory, "config.json")
with open(config_path, "r") as f:
config = json.load(f)
model = cls(**config)
if torch.backends.mps.is_available():
# Apple silicon GPU
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model.load_state_dict(torch.load(model_path, map_location=device))
model = model.to(device)
model.device = device
model.eval()
# Eval doesn't set requires_grad to False, do it manually to save memory and have faster inference
for param in model.parameters():
param.requires_grad = False
return model
class ConnectorClassifier(nn.Module):
def __init__(self, config: "DistilBertConfig") -> None:
from transformers import DistilBertTokenizer, DistilBertModel
super().__init__()
self.config = config
self.distilbert = DistilBertModel(config)
config = self.distilbert.config # type: ignore
self.connector_global_classifier = nn.Linear(config.dim, 1)
self.connector_match_classifier = nn.Linear(config.dim, 1)
self.tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
# Token indicating end of connector name, and on which classifier is used
self.connector_end_token_id = self.tokenizer.get_vocab()[
self.config.connector_end_token
]
self.device = torch.device("cpu")
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
hidden_states = self.distilbert( # type: ignore
input_ids=input_ids, attention_mask=attention_mask
).last_hidden_state
cls_hidden_states = hidden_states[
:, 0, :
] # Take leap of faith that first token is always [CLS]
global_logits = self.connector_global_classifier(cls_hidden_states).view(-1)
global_confidence = torch.sigmoid(global_logits).view(-1)
connector_end_position_ids = input_ids == self.connector_end_token_id
connector_end_hidden_states = hidden_states[connector_end_position_ids]
classifier_output = self.connector_match_classifier(connector_end_hidden_states)
classifier_confidence = torch.nn.functional.sigmoid(classifier_output).view(-1)
return global_confidence, classifier_confidence
@classmethod
def from_pretrained(cls, repo_dir: str) -> "ConnectorClassifier":
from transformers import DistilBertConfig
config = cast(
DistilBertConfig,
DistilBertConfig.from_pretrained(os.path.join(repo_dir, "config.json")),
)
device = (
torch.device("cuda")
if torch.cuda.is_available()
else (
torch.device("mps")
if torch.backends.mps.is_available()
else torch.device("cpu")
)
)
state_dict = torch.load(
os.path.join(repo_dir, "pytorch_model.pt"),
map_location=device,
weights_only=True,
)
model = cls(config)
model.load_state_dict(state_dict)
model.to(device)
model.device = device
model.eval()
for param in model.parameters():
param.requires_grad = False
return model

View File

@@ -43,7 +43,7 @@ def get_access_for_document(
versioned_get_access_for_document_fn = fetch_versioned_implementation(
"onyx.access.access", "_get_access_for_document"
)
return versioned_get_access_for_document_fn(document_id, db_session) # type: ignore
return versioned_get_access_for_document_fn(document_id, db_session)
def get_null_document_access() -> DocumentAccess:
@@ -93,9 +93,7 @@ def get_access_for_documents(
versioned_get_access_for_documents_fn = fetch_versioned_implementation(
"onyx.access.access", "_get_access_for_documents"
)
return versioned_get_access_for_documents_fn(
document_ids, db_session
) # type: ignore
return versioned_get_access_for_documents_fn(document_ids, db_session)
def _get_acl_for_user(user: User | None, db_session: Session) -> set[str]:
@@ -113,7 +111,7 @@ def get_acl_for_user(user: User | None, db_session: Session | None = None) -> se
versioned_acl_for_user_fn = fetch_versioned_implementation(
"onyx.access.access", "_get_acl_for_user"
)
return versioned_acl_for_user_fn(user, db_session) # type: ignore
return versioned_acl_for_user_fn(user, db_session)
def source_should_fetch_permissions_during_indexing(source: DocumentSource) -> bool:

View File

@@ -0,0 +1,107 @@
"""Captcha verification for user registration."""
import httpx
from pydantic import BaseModel
from pydantic import Field
from onyx.configs.app_configs import CAPTCHA_ENABLED
from onyx.configs.app_configs import RECAPTCHA_SCORE_THRESHOLD
from onyx.configs.app_configs import RECAPTCHA_SECRET_KEY
from onyx.utils.logger import setup_logger
logger = setup_logger()
RECAPTCHA_VERIFY_URL = "https://www.google.com/recaptcha/api/siteverify"
class CaptchaVerificationError(Exception):
"""Raised when captcha verification fails."""
class RecaptchaResponse(BaseModel):
"""Response from Google reCAPTCHA verification API."""
success: bool
score: float | None = None # Only present for reCAPTCHA v3
action: str | None = None
challenge_ts: str | None = None
hostname: str | None = None
error_codes: list[str] | None = Field(default=None, alias="error-codes")
def is_captcha_enabled() -> bool:
"""Check if captcha verification is enabled."""
return CAPTCHA_ENABLED and bool(RECAPTCHA_SECRET_KEY)
async def verify_captcha_token(
token: str,
expected_action: str = "signup",
) -> None:
"""
Verify a reCAPTCHA token with Google's API.
Args:
token: The reCAPTCHA response token from the client
expected_action: Expected action name for v3 verification
Raises:
CaptchaVerificationError: If verification fails
"""
if not is_captcha_enabled():
return
if not token:
raise CaptchaVerificationError("Captcha token is required")
try:
async with httpx.AsyncClient() as client:
response = await client.post(
RECAPTCHA_VERIFY_URL,
data={
"secret": RECAPTCHA_SECRET_KEY,
"response": token,
},
timeout=10.0,
)
response.raise_for_status()
data = response.json()
result = RecaptchaResponse(**data)
if not result.success:
error_codes = result.error_codes or ["unknown-error"]
logger.warning(f"Captcha verification failed: {error_codes}")
raise CaptchaVerificationError(
f"Captcha verification failed: {', '.join(error_codes)}"
)
# For reCAPTCHA v3, also check the score
if result.score is not None:
if result.score < RECAPTCHA_SCORE_THRESHOLD:
logger.warning(
f"Captcha score too low: {result.score} < {RECAPTCHA_SCORE_THRESHOLD}"
)
raise CaptchaVerificationError(
"Captcha verification failed: suspicious activity detected"
)
# Optionally verify the action matches
if result.action and result.action != expected_action:
logger.warning(
f"Captcha action mismatch: {result.action} != {expected_action}"
)
raise CaptchaVerificationError(
"Captcha verification failed: action mismatch"
)
logger.debug(
f"Captcha verification passed: score={result.score}, "
f"action={result.action}"
)
except httpx.HTTPError as e:
logger.error(f"Captcha API request failed: {e}")
# In case of API errors, we might want to allow registration
# to prevent blocking legitimate users. This is a policy decision.
raise CaptchaVerificationError("Captcha verification service unavailable")

View File

@@ -40,6 +40,8 @@ class UserRead(schemas.BaseUser[uuid.UUID]):
class UserCreate(schemas.BaseUserCreate):
role: UserRole = UserRole.BASIC
tenant_id: str | None = None
# Captcha token for cloud signup protection (optional, only used when captcha is enabled)
captcha_token: str | None = None
class UserUpdateWithRole(schemas.BaseUserUpdate):

View File

@@ -117,7 +117,7 @@ from onyx.redis.redis_pool import get_async_redis_connection
from onyx.redis.redis_pool import get_redis_client
from onyx.server.utils import BasicAuthenticationError
from onyx.utils.logger import setup_logger
from onyx.utils.telemetry import create_milestone_and_report
from onyx.utils.telemetry import mt_cloud_telemetry
from onyx.utils.telemetry import optional_telemetry
from onyx.utils.telemetry import RecordType
from onyx.utils.timing import log_function_time
@@ -292,6 +292,31 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
safe: bool = False,
request: Optional[Request] = None,
) -> User:
# Verify captcha if enabled (for cloud signup protection)
from onyx.auth.captcha import CaptchaVerificationError
from onyx.auth.captcha import is_captcha_enabled
from onyx.auth.captcha import verify_captcha_token
if is_captcha_enabled() and request is not None:
# Get captcha token from request body or headers
captcha_token = None
if hasattr(user_create, "captcha_token"):
captcha_token = getattr(user_create, "captcha_token", None)
# Also check headers as a fallback
if not captcha_token:
captcha_token = request.headers.get("X-Captcha-Token")
try:
await verify_captcha_token(
captcha_token or "", expected_action="signup"
)
except CaptchaVerificationError as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={"reason": str(e)},
)
# We verify the password here to make sure it's valid before we proceed
await self.validate_password(
user_create.password, cast(schemas.UC, user_create)
@@ -338,9 +363,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
user_created = False
try:
user = await super().create(
user_create, safe=safe, request=request
) # type: ignore
user = await super().create(user_create, safe=safe, request=request)
user_created = True
except IntegrityError as error:
# Race condition: another request created the same user after the
@@ -604,10 +627,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
# this is needed if an organization goes from `TRACK_EXTERNAL_IDP_EXPIRY=true` to `false`
# otherwise, the oidc expiry will always be old, and the user will never be able to login
if (
user.oidc_expiry is not None # type: ignore
and not TRACK_EXTERNAL_IDP_EXPIRY
):
if user.oidc_expiry is not None and not TRACK_EXTERNAL_IDP_EXPIRY:
await self.user_db.update(user, {"oidc_expiry": None})
user.oidc_expiry = None # type: ignore
remove_user_from_invited_users(user.email)
@@ -653,19 +673,11 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
user_count = await get_user_count()
logger.debug(f"Current tenant user count: {user_count}")
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
event_type = (
MilestoneRecordType.USER_SIGNED_UP
if user_count == 1
else MilestoneRecordType.MULTIPLE_USERS
)
create_milestone_and_report(
user=user,
distinct_id=user.email,
event_type=event_type,
properties=None,
db_session=db_session,
)
mt_cloud_telemetry(
tenant_id=tenant_id,
distinct_id=user.email,
event=MilestoneRecordType.USER_SIGNED_UP,
)
finally:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
@@ -1186,7 +1198,7 @@ async def _sync_jwt_oidc_expiry(
return
await user_manager.user_db.update(user, {"oidc_expiry": oidc_expiry})
user.oidc_expiry = oidc_expiry # type: ignore
user.oidc_expiry = oidc_expiry
return
if user.oidc_expiry is not None:

View File

@@ -2,8 +2,9 @@ import copy
from datetime import timedelta
from typing import Any
from onyx.configs.app_configs import AUTO_LLM_CONFIG_URL
from onyx.configs.app_configs import AUTO_LLM_UPDATE_INTERVAL_SECONDS
from onyx.configs.app_configs import ENTERPRISE_EDITION_ENABLED
from onyx.configs.app_configs import LLM_MODEL_UPDATE_API_URL
from onyx.configs.constants import ONYX_CLOUD_CELERY_TASK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
@@ -171,16 +172,16 @@ if ENTERPRISE_EDITION_ENABLED:
]
)
# Only add the LLM model update task if the API URL is configured
if LLM_MODEL_UPDATE_API_URL:
# Add the Auto LLM update task if the config URL is set (has a default)
if AUTO_LLM_CONFIG_URL:
beat_task_templates.append(
{
"name": "check-for-llm-model-update",
"task": OnyxCeleryTask.CHECK_FOR_LLM_MODEL_UPDATE,
"schedule": timedelta(hours=1), # Check every hour
"name": "check-for-auto-llm-update",
"task": OnyxCeleryTask.CHECK_FOR_AUTO_LLM_UPDATE,
"schedule": timedelta(seconds=AUTO_LLM_UPDATE_INTERVAL_SECONDS),
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
"expires": AUTO_LLM_UPDATE_INTERVAL_SECONDS,
},
}
)

View File

@@ -0,0 +1,135 @@
from uuid import uuid4
from celery import Celery
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.background.celery.apps.app_base import task_logger
from onyx.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.index_attempt import mark_attempt_failed
from onyx.db.indexing_coordination import IndexingCoordination
from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import SearchSettings
def try_creating_docfetching_task(
celery_app: Celery,
cc_pair: ConnectorCredentialPair,
search_settings: SearchSettings,
reindex: bool,
db_session: Session,
r: Redis,
tenant_id: str,
) -> int | None:
"""Checks for any conditions that should block the indexing task from being
created, then creates the task.
Does not check for scheduling related conditions as this function
is used to trigger indexing immediately.
Now uses database-based coordination instead of Redis fencing.
"""
LOCK_TIMEOUT = 30
# we need to serialize any attempt to trigger indexing since it can be triggered
# either via celery beat or manually (API call)
lock: RedisLock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_indexing_task",
timeout=LOCK_TIMEOUT,
)
acquired = lock.acquire(blocking_timeout=LOCK_TIMEOUT / 2)
if not acquired:
return None
index_attempt_id = None
try:
# Basic status checks
db_session.refresh(cc_pair)
if cc_pair.status == ConnectorCredentialPairStatus.DELETING:
return None
# Generate custom task ID for tracking
custom_task_id = f"docfetching_{cc_pair.id}_{search_settings.id}_{uuid4()}"
# Try to create a new index attempt using database coordination
# This replaces the Redis fencing mechanism
index_attempt_id = IndexingCoordination.try_create_index_attempt(
db_session=db_session,
cc_pair_id=cc_pair.id,
search_settings_id=search_settings.id,
celery_task_id=custom_task_id,
from_beginning=reindex,
)
if index_attempt_id is None:
# Another indexing attempt is already running
return None
# Determine which queue to use based on whether this is a user file
# TODO: at the moment the indexing pipeline is
# shared between user files and connectors
queue = (
OnyxCeleryQueues.USER_FILES_INDEXING
if cc_pair.is_user_file
else OnyxCeleryQueues.CONNECTOR_DOC_FETCHING
)
# Use higher priority for first-time indexing to ensure new connectors
# get processed before re-indexing of existing connectors
has_successful_attempt = cc_pair.last_successful_index_time is not None
priority = (
OnyxCeleryPriority.MEDIUM
if has_successful_attempt
else OnyxCeleryPriority.HIGH
)
# Send the task to Celery
result = celery_app.send_task(
OnyxCeleryTask.CONNECTOR_DOC_FETCHING_TASK,
kwargs=dict(
index_attempt_id=index_attempt_id,
cc_pair_id=cc_pair.id,
search_settings_id=search_settings.id,
tenant_id=tenant_id,
),
queue=queue,
task_id=custom_task_id,
priority=priority,
)
if not result:
raise RuntimeError("send_task for connector_doc_fetching_task failed.")
task_logger.info(
f"Created docfetching task: "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id} "
f"attempt_id={index_attempt_id} "
f"celery_task_id={custom_task_id}"
)
return index_attempt_id
except Exception:
task_logger.exception(
f"try_creating_indexing_task - Unexpected exception: "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id}"
)
# Clean up on failure
if index_attempt_id is not None:
mark_attempt_failed(index_attempt_id, db_session)
return None
finally:
if lock.owned():
lock.release()
return index_attempt_id

View File

@@ -25,14 +25,14 @@ from onyx.background.celery.celery_redis import celery_get_unacked_task_ids
from onyx.background.celery.celery_utils import httpx_init_vespa_pool
from onyx.background.celery.memory_monitoring import emit_process_memory
from onyx.background.celery.tasks.beat_schedule import CLOUD_BEAT_MULTIPLIER_DEFAULT
from onyx.background.celery.tasks.docfetching.task_creation_utils import (
try_creating_docfetching_task,
)
from onyx.background.celery.tasks.docprocessing.heartbeat import start_heartbeat
from onyx.background.celery.tasks.docprocessing.heartbeat import stop_heartbeat
from onyx.background.celery.tasks.docprocessing.utils import IndexingCallback
from onyx.background.celery.tasks.docprocessing.utils import is_in_repeated_error_state
from onyx.background.celery.tasks.docprocessing.utils import should_index
from onyx.background.celery.tasks.docprocessing.utils import (
try_creating_docfetching_task,
)
from onyx.background.celery.tasks.models import DocProcessingContext
from onyx.background.indexing.checkpointing_utils import cleanup_checkpoint
from onyx.background.indexing.checkpointing_utils import (
@@ -45,6 +45,7 @@ from onyx.configs.app_configs import VESPA_CLOUD_CERT_PATH
from onyx.configs.app_configs import VESPA_CLOUD_KEY_PATH
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_INDEXING_LOCK_TIMEOUT
from onyx.configs.constants import MilestoneRecordType
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
@@ -85,6 +86,7 @@ from onyx.db.models import SearchSettings
from onyx.db.search_settings import get_current_search_settings
from onyx.db.search_settings import get_secondary_search_settings
from onyx.db.swap_index import check_and_perform_index_swap
from onyx.db.usage import UsageLimitExceededError
from onyx.document_index.factory import get_default_document_index
from onyx.file_store.document_batch_storage import DocumentBatchStorage
from onyx.file_store.document_batch_storage import get_document_batch_storage
@@ -95,9 +97,6 @@ from onyx.indexing.adapters.document_indexing_adapter import (
from onyx.indexing.embedder import DefaultIndexingEmbedder
from onyx.indexing.indexing_pipeline import run_indexing_pipeline
from onyx.natural_language_processing.search_nlp_models import EmbeddingModel
from onyx.natural_language_processing.search_nlp_models import (
InformationContentClassificationModel,
)
from onyx.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_pool import get_redis_client
@@ -108,11 +107,13 @@ from onyx.redis.redis_utils import is_fence
from onyx.server.runtime.onyx_runtime import OnyxRuntime
from onyx.utils.logger import setup_logger
from onyx.utils.middleware import make_randomized_onyx_request_id
from onyx.utils.telemetry import mt_cloud_telemetry
from onyx.utils.telemetry import optional_telemetry
from onyx.utils.telemetry import RecordType
from shared_configs.configs import INDEXING_MODEL_SERVER_HOST
from shared_configs.configs import INDEXING_MODEL_SERVER_PORT
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import USAGE_LIMITS_ENABLED
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
from shared_configs.contextvars import INDEX_ATTEMPT_INFO_CONTEXTVAR
@@ -547,6 +548,12 @@ def check_indexing_completion(
)
db_session.commit()
mt_cloud_telemetry(
tenant_id=tenant_id,
distinct_id=tenant_id,
event=MilestoneRecordType.CONNECTOR_SUCCEEDED,
)
# Clear repeated error state on success
if cc_pair.in_repeated_error_state:
cc_pair.in_repeated_error_state = False
@@ -1274,6 +1281,31 @@ def docprocessing_task(
INDEX_ATTEMPT_INFO_CONTEXTVAR.reset(token)
def _check_chunk_usage_limit(tenant_id: str) -> None:
"""Check if chunk indexing usage limit has been exceeded.
Raises UsageLimitExceededError if the limit is exceeded.
"""
if not USAGE_LIMITS_ENABLED:
return
from onyx.db.usage import check_usage_limit
from onyx.db.usage import UsageType
from onyx.server.usage_limits import get_limit_for_usage_type
from onyx.server.usage_limits import is_tenant_on_trial
is_trial = is_tenant_on_trial(tenant_id)
limit = get_limit_for_usage_type(UsageType.CHUNKS_INDEXED, is_trial)
with get_session_with_current_tenant() as db_session:
check_usage_limit(
db_session=db_session,
usage_type=UsageType.CHUNKS_INDEXED,
limit=limit,
pending_amount=0, # Just check current usage
)
def _docprocessing_task(
index_attempt_id: int,
cc_pair_id: int,
@@ -1285,6 +1317,25 @@ def _docprocessing_task(
if tenant_id:
CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
# Check if chunk indexing usage limit has been exceeded before processing
if USAGE_LIMITS_ENABLED:
try:
_check_chunk_usage_limit(tenant_id)
except UsageLimitExceededError as e:
# Log the error and fail the indexing attempt
task_logger.error(
f"Chunk indexing usage limit exceeded for tenant {tenant_id}: {e}"
)
with get_session_with_current_tenant() as db_session:
from onyx.db.index_attempt import mark_attempt_failed
mark_attempt_failed(
index_attempt_id=index_attempt_id,
db_session=db_session,
failure_reason=str(e),
)
raise
task_logger.info(
f"Processing document batch: "
f"attempt={index_attempt_id} "
@@ -1383,10 +1434,6 @@ def _docprocessing_task(
callback=callback,
)
information_content_classification_model = (
InformationContentClassificationModel()
)
document_index = get_default_document_index(
index_attempt.search_settings,
None,
@@ -1404,8 +1451,13 @@ def _docprocessing_task(
)
# Process documents through indexing pipeline
connector_source = (
index_attempt.connector_credential_pair.connector.source.value
)
task_logger.info(
f"Processing {len(documents)} documents through indexing pipeline"
f"Processing {len(documents)} documents through indexing pipeline: "
f"cc_pair_id={cc_pair_id}, source={connector_source}, "
f"batch_num={batch_num}"
)
adapter = DocumentIndexingBatchAdapter(
@@ -1419,7 +1471,6 @@ def _docprocessing_task(
# real work happens here!
index_pipeline_result = run_indexing_pipeline(
embedder=embedding_model,
information_content_classification_model=information_content_classification_model,
document_index=document_index,
ignore_time_skip=True, # Documents are already filtered during extraction
db_session=db_session,
@@ -1429,6 +1480,23 @@ def _docprocessing_task(
adapter=adapter,
)
# Track chunk indexing usage for cloud usage limits
if USAGE_LIMITS_ENABLED and index_pipeline_result.total_chunks > 0:
try:
from onyx.db.usage import increment_usage
from onyx.db.usage import UsageType
with get_session_with_current_tenant() as usage_db_session:
increment_usage(
db_session=usage_db_session,
usage_type=UsageType.CHUNKS_INDEXED,
amount=index_pipeline_result.total_chunks,
)
usage_db_session.commit()
except Exception as e:
# Log but don't fail indexing if usage tracking fails
task_logger.warning(f"Failed to track chunk indexing usage: {e}")
# Update batch completion and document counts atomically using database coordination
with get_session_with_current_tenant() as db_session, cross_batch_db_lock:
@@ -1495,6 +1563,8 @@ def _docprocessing_task(
# FIX: Explicitly clear document batch from memory and force garbage collection
# This helps prevent memory accumulation across multiple batches
# NOTE: Thread-local event loops in embedding threads are cleaned up automatically
# via the _cleanup_thread_local decorator in search_nlp_models.py
del documents
gc.collect()

View File

@@ -1,22 +1,15 @@
import time
from datetime import datetime
from datetime import timezone
from uuid import uuid4
from celery import Celery
from redis import Redis
from redis.exceptions import LockError
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.background.celery.apps.app_base import task_logger
from onyx.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from onyx.configs.constants import DocumentSource
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.engine.time_utils import get_db_current_time
from onyx.db.enums import ConnectorCredentialPairStatus
@@ -24,8 +17,6 @@ from onyx.db.enums import IndexingStatus
from onyx.db.enums import IndexModelStatus
from onyx.db.index_attempt import get_last_attempt_for_cc_pair
from onyx.db.index_attempt import get_recent_attempts_for_cc_pair
from onyx.db.index_attempt import mark_attempt_failed
from onyx.db.indexing_coordination import IndexingCoordination
from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import SearchSettings
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
@@ -298,112 +289,3 @@ def should_index(
return False
return True
def try_creating_docfetching_task(
celery_app: Celery,
cc_pair: ConnectorCredentialPair,
search_settings: SearchSettings,
reindex: bool,
db_session: Session,
r: Redis,
tenant_id: str,
) -> int | None:
"""Checks for any conditions that should block the indexing task from being
created, then creates the task.
Does not check for scheduling related conditions as this function
is used to trigger indexing immediately.
Now uses database-based coordination instead of Redis fencing.
"""
LOCK_TIMEOUT = 30
# we need to serialize any attempt to trigger indexing since it can be triggered
# either via celery beat or manually (API call)
lock: RedisLock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_indexing_task",
timeout=LOCK_TIMEOUT,
)
acquired = lock.acquire(blocking_timeout=LOCK_TIMEOUT / 2)
if not acquired:
return None
index_attempt_id = None
try:
# Basic status checks
db_session.refresh(cc_pair)
if cc_pair.status == ConnectorCredentialPairStatus.DELETING:
return None
# Generate custom task ID for tracking
custom_task_id = f"docfetching_{cc_pair.id}_{search_settings.id}_{uuid4()}"
# Try to create a new index attempt using database coordination
# This replaces the Redis fencing mechanism
index_attempt_id = IndexingCoordination.try_create_index_attempt(
db_session=db_session,
cc_pair_id=cc_pair.id,
search_settings_id=search_settings.id,
celery_task_id=custom_task_id,
from_beginning=reindex,
)
if index_attempt_id is None:
# Another indexing attempt is already running
return None
# Determine which queue to use based on whether this is a user file
# TODO: at the moment the indexing pipeline is
# shared between user files and connectors
queue = (
OnyxCeleryQueues.USER_FILES_INDEXING
if cc_pair.is_user_file
else OnyxCeleryQueues.CONNECTOR_DOC_FETCHING
)
# Send the task to Celery
result = celery_app.send_task(
OnyxCeleryTask.CONNECTOR_DOC_FETCHING_TASK,
kwargs=dict(
index_attempt_id=index_attempt_id,
cc_pair_id=cc_pair.id,
search_settings_id=search_settings.id,
tenant_id=tenant_id,
),
queue=queue,
task_id=custom_task_id,
priority=OnyxCeleryPriority.MEDIUM,
)
if not result:
raise RuntimeError("send_task for connector_doc_fetching_task failed.")
task_logger.info(
f"Created docfetching task: "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id} "
f"attempt_id={index_attempt_id} "
f"celery_task_id={custom_task_id}"
)
return index_attempt_id
except Exception:
task_logger.exception(
f"try_creating_indexing_task - Unexpected exception: "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id}"
)
# Clean up on failure
if index_attempt_id is not None:
mark_attempt_failed(index_attempt_id, db_session)
return None
finally:
if lock.owned():
lock.release()
return index_attempt_id

View File

@@ -1,141 +1,57 @@
from typing import Any
import requests
from celery import shared_task
from celery import Task
from onyx.background.celery.apps.app_base import task_logger
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.configs.app_configs import LLM_MODEL_UPDATE_API_URL
from onyx.configs.app_configs import AUTO_LLM_CONFIG_URL
from onyx.configs.constants import OnyxCeleryTask
from onyx.db.engine.sql_engine import get_session_with_current_tenant
from onyx.db.models import LLMProvider
from onyx.db.models import ModelConfiguration
def _process_model_list_response(model_list_json: Any) -> list[str]:
# Handle case where response is wrapped in a "data" field
if isinstance(model_list_json, dict):
if "data" in model_list_json:
model_list_json = model_list_json["data"]
elif "models" in model_list_json:
model_list_json = model_list_json["models"]
else:
raise ValueError(
"Invalid response from API - expected dict with 'data' or "
f"'models' field, got {type(model_list_json)}"
)
if not isinstance(model_list_json, list):
raise ValueError(
f"Invalid response from API - expected list, got {type(model_list_json)}"
)
# Handle both string list and object list cases
model_names: list[str] = []
for item in model_list_json:
if isinstance(item, str):
model_names.append(item)
elif isinstance(item, dict):
if "model_name" in item:
model_names.append(item["model_name"])
elif "id" in item:
model_names.append(item["id"])
else:
raise ValueError(
f"Invalid item in model list - expected dict with model_name or id, got {type(item)}"
)
else:
raise ValueError(
f"Invalid item in model list - expected string or dict, got {type(item)}"
)
return model_names
@shared_task(
name=OnyxCeleryTask.CHECK_FOR_LLM_MODEL_UPDATE,
name=OnyxCeleryTask.CHECK_FOR_AUTO_LLM_UPDATE,
ignore_result=True,
soft_time_limit=JOB_TIMEOUT,
soft_time_limit=300, # 5 minute timeout
trail=False,
bind=True,
)
def check_for_llm_model_update(self: Task, *, tenant_id: str) -> bool | None:
if not LLM_MODEL_UPDATE_API_URL:
raise ValueError("LLM model update API URL not configured")
def check_for_auto_llm_updates(self: Task, *, tenant_id: str) -> bool | None:
"""Periodic task to fetch LLM model updates from GitHub
and sync them to providers in Auto mode.
# First fetch the models from the API
try:
response = requests.get(LLM_MODEL_UPDATE_API_URL)
response.raise_for_status()
available_models = _process_model_list_response(response.json())
task_logger.info(f"Found available models: {available_models}")
except Exception:
task_logger.exception("Failed to fetch models from API.")
This task checks the GitHub-hosted config file and updates all
providers that have is_auto_mode=True.
"""
if not AUTO_LLM_CONFIG_URL:
task_logger.debug("AUTO_LLM_CONFIG_URL not configured, skipping")
return None
# Then update the database with the fetched models
with get_session_with_current_tenant() as db_session:
# Get the default LLM provider
default_provider = (
db_session.query(LLMProvider)
.filter(LLMProvider.is_default_provider.is_(True))
.first()
try:
# Import here to avoid circular imports
from onyx.llm.well_known_providers.auto_update_service import (
fetch_llm_recommendations_from_github,
)
from onyx.llm.well_known_providers.auto_update_service import (
sync_llm_models_from_github,
)
if not default_provider:
task_logger.warning("No default LLM provider found")
# Fetch config from GitHub
config = fetch_llm_recommendations_from_github()
if not config:
task_logger.warning("Failed to fetch GitHub config")
return None
# log change if any
old_models = set(
model_configuration.name
for model_configuration in default_provider.model_configurations
)
new_models = set(available_models)
added_models = new_models - old_models
removed_models = old_models - new_models
# Sync to database
with get_session_with_current_tenant() as db_session:
results = sync_llm_models_from_github(db_session, config)
if added_models:
task_logger.info(f"Adding models: {sorted(added_models)}")
if removed_models:
task_logger.info(f"Removing models: {sorted(removed_models)}")
if results:
task_logger.info(f"Auto mode sync results: {results}")
else:
task_logger.debug("No model updates applied")
# Update the provider's model list
# Remove models that are no longer available
db_session.query(ModelConfiguration).filter(
ModelConfiguration.llm_provider_id == default_provider.id,
ModelConfiguration.name.notin_(available_models),
).delete(synchronize_session=False)
# Add new models
for available_model_name in available_models:
db_session.merge(
ModelConfiguration(
llm_provider_id=default_provider.id,
name=available_model_name,
is_visible=False,
max_input_tokens=None,
)
)
# if the default model is no longer available, set it to the first model in the list
if default_provider.default_model_name not in available_models:
task_logger.info(
f"Default model {default_provider.default_model_name} not "
f"available, setting to first model in list: {available_models[0]}"
)
default_provider.default_model_name = available_models[0]
if default_provider.fast_default_model_name not in available_models:
task_logger.info(
f"Fast default model {default_provider.fast_default_model_name} "
f"not available, setting to first model in list: {available_models[0]}"
)
default_provider.fast_default_model_name = available_models[0]
db_session.commit()
if added_models or removed_models:
task_logger.info("Updated model list for default provider.")
except Exception:
task_logger.exception("Error in auto LLM update task")
raise
return True

View File

@@ -55,8 +55,8 @@ class RetryDocumentIndex:
chunk_count: int | None,
fields: VespaDocumentFields | None,
user_fields: VespaDocumentUserFields | None,
) -> int:
return self.index.update_single(
) -> None:
self.index.update_single(
doc_id,
tenant_id=tenant_id,
chunk_count=chunk_count,

View File

@@ -95,7 +95,6 @@ def document_by_cc_pair_cleanup_task(
try:
with get_session_with_current_tenant() as db_session:
action = "skip"
chunks_affected = 0
active_search_settings = get_active_search_settings(db_session)
doc_index = get_default_document_index(
@@ -114,7 +113,7 @@ def document_by_cc_pair_cleanup_task(
chunk_count = fetch_chunk_count_for_document(document_id, db_session)
chunks_affected = retry_index.delete_single(
_ = retry_index.delete_single(
document_id,
tenant_id=tenant_id,
chunk_count=chunk_count,
@@ -157,7 +156,7 @@ def document_by_cc_pair_cleanup_task(
)
# update Vespa. OK if doc doesn't exist. Raises exception otherwise.
chunks_affected = retry_index.update_single(
retry_index.update_single(
document_id,
tenant_id=tenant_id,
chunk_count=doc.chunk_count,
@@ -187,7 +186,6 @@ def document_by_cc_pair_cleanup_task(
f"doc={document_id} "
f"action={action} "
f"refcount={count} "
f"chunks={chunks_affected} "
f"elapsed={elapsed:.2f}"
)
except SoftTimeLimitExceeded:

View File

@@ -51,9 +51,6 @@ from onyx.httpx.httpx_pool import HttpxPool
from onyx.indexing.adapters.user_file_indexing_adapter import UserFileIndexingAdapter
from onyx.indexing.embedder import DefaultIndexingEmbedder
from onyx.indexing.indexing_pipeline import run_indexing_pipeline
from onyx.natural_language_processing.search_nlp_models import (
InformationContentClassificationModel,
)
from onyx.redis.redis_pool import get_redis_client
@@ -257,10 +254,6 @@ def process_single_user_file(self: Task, *, user_file_id: str, tenant_id: str) -
search_settings=current_search_settings,
)
information_content_classification_model = (
InformationContentClassificationModel()
)
document_index = get_default_document_index(
current_search_settings,
None,
@@ -275,7 +268,6 @@ def process_single_user_file(self: Task, *, user_file_id: str, tenant_id: str) -
# real work happens here!
index_pipeline_result = run_indexing_pipeline(
embedder=embedding_model,
information_content_classification_model=information_content_classification_model,
document_index=document_index,
ignore_time_skip=True,
db_session=db_session,
@@ -597,7 +589,7 @@ def process_single_user_file_project_sync(
return None
project_ids = [project.id for project in user_file.projects]
chunks_affected = retry_index.update_single(
retry_index.update_single(
doc_id=str(user_file.id),
tenant_id=tenant_id,
chunk_count=user_file.chunk_count,
@@ -606,7 +598,7 @@ def process_single_user_file_project_sync(
)
task_logger.info(
f"process_single_user_file_project_sync - Chunks affected id={user_file_id} chunks={chunks_affected}"
f"process_single_user_file_project_sync - User file id={user_file_id}"
)
user_file.needs_project_sync = False
@@ -874,7 +866,10 @@ def user_file_docid_migration_task(self: Task, *, tenant_id: str) -> bool:
)
# Now update Vespa chunks with the found chunk count using retry_index
updated_chunks = retry_index.update_single(
# WARNING: In the future this will error; we no longer want
# to support changing document ID.
# TODO(andrei): Delete soon.
retry_index.update_single(
doc_id=str(normalized_doc_id),
tenant_id=tenant_id,
chunk_count=chunk_count,
@@ -883,7 +878,7 @@ def user_file_docid_migration_task(self: Task, *, tenant_id: str) -> bool:
user_projects=user_project_ids
),
)
user_file.chunk_count = updated_chunks
user_file.chunk_count = chunk_count
# Update the SearchDocs
actual_doc_id = str(user_file.document_id)

View File

@@ -501,7 +501,7 @@ def vespa_metadata_sync_task(self: Task, document_id: str, *, tenant_id: str) ->
)
# update Vespa. OK if doc doesn't exist. Raises exception otherwise.
chunks_affected = retry_index.update_single(
retry_index.update_single(
document_id,
tenant_id=tenant_id,
chunk_count=doc.chunk_count,
@@ -515,10 +515,7 @@ def vespa_metadata_sync_task(self: Task, document_id: str, *, tenant_id: str) ->
elapsed = time.monotonic() - start
task_logger.info(
f"doc={document_id} "
f"action=sync "
f"chunks={chunks_affected} "
f"elapsed={elapsed:.2f}"
f"doc={document_id} " f"action=sync " f"elapsed={elapsed:.2f}"
)
completion_status = OnyxCeleryTaskCompletionStatus.SUCCEEDED
except SoftTimeLimitExceeded:

View File

@@ -1,7 +1,6 @@
import sys
import time
import traceback
from collections import defaultdict
from datetime import datetime
from datetime import timedelta
from datetime import timezone
@@ -21,7 +20,6 @@ from onyx.configs.app_configs import INTEGRATION_TESTS_MODE
from onyx.configs.app_configs import LEAVE_CONNECTOR_ACTIVE_ON_INITIALIZATION_FAILURE
from onyx.configs.app_configs import MAX_FILE_SIZE_BYTES
from onyx.configs.app_configs import POLL_CONNECTOR_OFFSET
from onyx.configs.constants import MilestoneRecordType
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
@@ -32,11 +30,8 @@ from onyx.connectors.factory import instantiate_connector
from onyx.connectors.interfaces import CheckpointedConnector
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import ConnectorStopSignal
from onyx.connectors.models import DocExtractionContext
from onyx.connectors.models import Document
from onyx.connectors.models import IndexAttemptMetadata
from onyx.connectors.models import TextSection
from onyx.db.connector import mark_cc_pair_as_permissions_synced
from onyx.db.connector import mark_ccpair_with_indexing_trigger
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.connector_credential_pair import get_last_successful_attempt_poll_range_end
@@ -49,34 +44,16 @@ from onyx.db.enums import IndexingStatus
from onyx.db.enums import IndexModelStatus
from onyx.db.index_attempt import create_index_attempt_error
from onyx.db.index_attempt import get_index_attempt
from onyx.db.index_attempt import get_index_attempt_errors_for_cc_pair
from onyx.db.index_attempt import get_recent_completed_attempts_for_cc_pair
from onyx.db.index_attempt import mark_attempt_canceled
from onyx.db.index_attempt import mark_attempt_failed
from onyx.db.index_attempt import mark_attempt_partially_succeeded
from onyx.db.index_attempt import mark_attempt_succeeded
from onyx.db.index_attempt import transition_attempt_to_in_progress
from onyx.db.index_attempt import update_docs_indexed
from onyx.db.indexing_coordination import IndexingCoordination
from onyx.db.models import IndexAttempt
from onyx.db.models import IndexAttemptError
from onyx.document_index.factory import get_default_document_index
from onyx.file_store.document_batch_storage import DocumentBatchStorage
from onyx.file_store.document_batch_storage import get_document_batch_storage
from onyx.httpx.httpx_pool import HttpxPool
from onyx.indexing.adapters.document_indexing_adapter import (
DocumentIndexingBatchAdapter,
)
from onyx.indexing.embedder import DefaultIndexingEmbedder
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.natural_language_processing.search_nlp_models import (
InformationContentClassificationModel,
)
from onyx.utils.logger import setup_logger
from onyx.utils.middleware import make_randomized_onyx_request_id
from onyx.utils.telemetry import create_milestone_and_report
from onyx.utils.telemetry import optional_telemetry
from onyx.utils.telemetry import RecordType
from onyx.utils.variable_functionality import global_version
from shared_configs.configs import MULTI_TENANT
from shared_configs.contextvars import INDEX_ATTEMPT_INFO_CONTEXTVAR
@@ -272,583 +249,6 @@ def _check_failure_threshold(
)
# NOTE: this is the old run_indexing function that the new decoupled approach
# is based on. Leaving this for comparison purposes, but if you see this comment
# has been here for >2 month, please delete this function.
def _run_indexing(
db_session: Session,
index_attempt_id: int,
tenant_id: str,
callback: IndexingHeartbeatInterface | None = None,
) -> None:
"""
1. Get documents which are either new or updated from specified application
2. Embed and index these documents into the chosen datastore (vespa)
3. Updates Postgres to record the indexed documents + the outcome of this run
"""
from onyx.indexing.indexing_pipeline import run_indexing_pipeline
start_time = time.monotonic() # jsut used for logging
with get_session_with_current_tenant() as db_session_temp:
index_attempt_start = get_index_attempt(
db_session_temp,
index_attempt_id,
eager_load_cc_pair=True,
eager_load_search_settings=True,
)
if not index_attempt_start:
raise ValueError(
f"Index attempt {index_attempt_id} does not exist in DB. This should not be possible."
)
if index_attempt_start.search_settings is None:
raise ValueError(
"Search settings must be set for indexing. This should not be possible."
)
db_connector = index_attempt_start.connector_credential_pair.connector
db_credential = index_attempt_start.connector_credential_pair.credential
is_primary = (
index_attempt_start.search_settings.status == IndexModelStatus.PRESENT
)
from_beginning = index_attempt_start.from_beginning
has_successful_attempt = (
index_attempt_start.connector_credential_pair.last_successful_index_time
is not None
)
ctx = DocExtractionContext(
index_name=index_attempt_start.search_settings.index_name,
cc_pair_id=index_attempt_start.connector_credential_pair.id,
connector_id=db_connector.id,
credential_id=db_credential.id,
source=db_connector.source,
earliest_index_time=(
db_connector.indexing_start.timestamp()
if db_connector.indexing_start
else 0
),
from_beginning=from_beginning,
# Only update cc-pair status for primary index jobs
# Secondary index syncs at the end when swapping
is_primary=is_primary,
should_fetch_permissions_during_indexing=(
index_attempt_start.connector_credential_pair.access_type
== AccessType.SYNC
and source_should_fetch_permissions_during_indexing(db_connector.source)
and is_primary
# if we've already successfully indexed, let the doc_sync job
# take care of doc-level permissions
and (from_beginning or not has_successful_attempt)
),
search_settings_status=index_attempt_start.search_settings.status,
doc_extraction_complete_batch_num=None,
)
last_successful_index_poll_range_end = (
ctx.earliest_index_time
if ctx.from_beginning
else get_last_successful_attempt_poll_range_end(
cc_pair_id=ctx.cc_pair_id,
earliest_index=ctx.earliest_index_time,
search_settings=index_attempt_start.search_settings,
db_session=db_session_temp,
)
)
if last_successful_index_poll_range_end > POLL_CONNECTOR_OFFSET:
window_start = datetime.fromtimestamp(
last_successful_index_poll_range_end, tz=timezone.utc
) - timedelta(minutes=POLL_CONNECTOR_OFFSET)
else:
# don't go into "negative" time if we've never indexed before
window_start = datetime.fromtimestamp(0, tz=timezone.utc)
most_recent_attempt = next(
iter(
get_recent_completed_attempts_for_cc_pair(
cc_pair_id=ctx.cc_pair_id,
search_settings_id=index_attempt_start.search_settings_id,
db_session=db_session_temp,
limit=1,
)
),
None,
)
# if the last attempt failed, try and use the same window. This is necessary
# to ensure correctness with checkpointing. If we don't do this, things like
# new slack channels could be missed (since existing slack channels are
# cached as part of the checkpoint).
if (
most_recent_attempt
and most_recent_attempt.poll_range_end
and (
most_recent_attempt.status == IndexingStatus.FAILED
or most_recent_attempt.status == IndexingStatus.CANCELED
)
):
window_end = most_recent_attempt.poll_range_end
else:
window_end = datetime.now(tz=timezone.utc)
# add start/end now that they have been set
index_attempt_start.poll_range_start = window_start
index_attempt_start.poll_range_end = window_end
db_session_temp.add(index_attempt_start)
db_session_temp.commit()
embedding_model = DefaultIndexingEmbedder.from_db_search_settings(
search_settings=index_attempt_start.search_settings,
callback=callback,
)
information_content_classification_model = InformationContentClassificationModel()
document_index = get_default_document_index(
index_attempt_start.search_settings,
None,
httpx_client=HttpxPool.get("vespa"),
)
# Initialize memory tracer. NOTE: won't actually do anything if
# `INDEXING_TRACER_INTERVAL` is 0.
memory_tracer = MemoryTracer(interval=INDEXING_TRACER_INTERVAL)
memory_tracer.start()
index_attempt_md = IndexAttemptMetadata(
attempt_id=index_attempt_id,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
)
total_failures = 0
batch_num = 0
net_doc_change = 0
document_count = 0
chunk_count = 0
index_attempt: IndexAttempt | None = None
try:
with get_session_with_current_tenant() as db_session_temp:
index_attempt = get_index_attempt(
db_session_temp, index_attempt_id, eager_load_cc_pair=True
)
if not index_attempt:
raise RuntimeError(f"Index attempt {index_attempt_id} not found in DB.")
connector_runner = _get_connector_runner(
db_session=db_session_temp,
attempt=index_attempt,
batch_size=INDEX_BATCH_SIZE,
start_time=window_start,
end_time=window_end,
include_permissions=ctx.should_fetch_permissions_during_indexing,
)
# don't use a checkpoint if we're explicitly indexing from
# the beginning in order to avoid weird interactions between
# checkpointing / failure handling
# OR
# if the last attempt was successful
if index_attempt.from_beginning or (
most_recent_attempt and most_recent_attempt.status.is_successful()
):
checkpoint = connector_runner.connector.build_dummy_checkpoint()
else:
checkpoint, _ = get_latest_valid_checkpoint(
db_session=db_session_temp,
cc_pair_id=ctx.cc_pair_id,
search_settings_id=index_attempt.search_settings_id,
window_start=window_start,
window_end=window_end,
connector=connector_runner.connector,
)
# save the initial checkpoint to have a proper record of the
# "last used checkpoint"
save_checkpoint(
db_session=db_session_temp,
index_attempt_id=index_attempt_id,
checkpoint=checkpoint,
)
unresolved_errors = get_index_attempt_errors_for_cc_pair(
cc_pair_id=ctx.cc_pair_id,
unresolved_only=True,
db_session=db_session_temp,
)
doc_id_to_unresolved_errors: dict[str, list[IndexAttemptError]] = (
defaultdict(list)
)
for error in unresolved_errors:
if error.document_id:
doc_id_to_unresolved_errors[error.document_id].append(error)
entity_based_unresolved_errors = [
error for error in unresolved_errors if error.entity_id
]
while checkpoint.has_more:
logger.info(
f"Running '{ctx.source.value}' connector with checkpoint: {checkpoint}"
)
for document_batch, failure, next_checkpoint in connector_runner.run(
checkpoint
):
# Check if connector is disabled mid run and stop if so unless it's the secondary
# index being built. We want to populate it even for paused connectors
# Often paused connectors are sources that aren't updated frequently but the
# contents still need to be initially pulled.
if callback:
if callback.should_stop():
raise ConnectorStopSignal("Connector stop signal detected")
# NOTE: this progress callback runs on every loop. We've seen cases
# where we loop many times with no new documents and eventually time
# out, so only doing the callback after indexing isn't sufficient.
callback.progress("_run_indexing", 0)
# TODO: should we move this into the above callback instead?
with get_session_with_current_tenant() as db_session_temp:
# will exception if the connector/index attempt is marked as paused/failed
_check_connector_and_attempt_status(
db_session_temp,
ctx.cc_pair_id,
ctx.search_settings_status,
index_attempt_id,
)
# save record of any failures at the connector level
if failure is not None:
total_failures += 1
with get_session_with_current_tenant() as db_session_temp:
create_index_attempt_error(
index_attempt_id,
ctx.cc_pair_id,
failure,
db_session_temp,
)
_check_failure_threshold(
total_failures, document_count, batch_num, failure
)
# save the new checkpoint (if one is provided)
if next_checkpoint:
checkpoint = next_checkpoint
# below is all document processing logic, so if no batch we can just continue
if document_batch is None:
continue
batch_description = []
# Generate an ID that can be used to correlate activity between here
# and the embedding model server
doc_batch_cleaned = strip_null_characters(document_batch)
for doc in doc_batch_cleaned:
batch_description.append(doc.to_short_descriptor())
doc_size = 0
for section in doc.sections:
if (
isinstance(section, TextSection)
and section.text is not None
):
doc_size += len(section.text)
if doc_size > INDEXING_SIZE_WARNING_THRESHOLD:
logger.warning(
f"Document size: doc='{doc.to_short_descriptor()}' "
f"size={doc_size} "
f"threshold={INDEXING_SIZE_WARNING_THRESHOLD}"
)
logger.debug(f"Indexing batch of documents: {batch_description}")
index_attempt_md.request_id = make_randomized_onyx_request_id("CIX")
index_attempt_md.structured_id = (
f"{tenant_id}:{ctx.cc_pair_id}:{index_attempt_id}:{batch_num}"
)
index_attempt_md.batch_num = batch_num + 1 # use 1-index for this
# real work happens here!
adapter = DocumentIndexingBatchAdapter(
db_session=db_session,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
tenant_id=tenant_id,
index_attempt_metadata=index_attempt_md,
)
index_pipeline_result = run_indexing_pipeline(
embedder=embedding_model,
information_content_classification_model=information_content_classification_model,
document_index=document_index,
ignore_time_skip=(
ctx.from_beginning
or (ctx.search_settings_status == IndexModelStatus.FUTURE)
),
db_session=db_session,
tenant_id=tenant_id,
document_batch=doc_batch_cleaned,
request_id=index_attempt_md.request_id,
adapter=adapter,
)
batch_num += 1
net_doc_change += index_pipeline_result.new_docs
chunk_count += index_pipeline_result.total_chunks
document_count += index_pipeline_result.total_docs
# resolve errors for documents that were successfully indexed
failed_document_ids = [
failure.failed_document.document_id
for failure in index_pipeline_result.failures
if failure.failed_document
]
successful_document_ids = [
document.id
for document in document_batch
if document.id not in failed_document_ids
]
for document_id in successful_document_ids:
with get_session_with_current_tenant() as db_session_temp:
if document_id in doc_id_to_unresolved_errors:
logger.info(
f"Resolving IndexAttemptError for document '{document_id}'"
)
for error in doc_id_to_unresolved_errors[document_id]:
error.is_resolved = True
db_session_temp.add(error)
db_session_temp.commit()
# add brand new failures
if index_pipeline_result.failures:
total_failures += len(index_pipeline_result.failures)
with get_session_with_current_tenant() as db_session_temp:
for failure in index_pipeline_result.failures:
create_index_attempt_error(
index_attempt_id,
ctx.cc_pair_id,
failure,
db_session_temp,
)
_check_failure_threshold(
total_failures,
document_count,
batch_num,
index_pipeline_result.failures[-1],
)
# This new value is updated every batch, so UI can refresh per batch update
with get_session_with_current_tenant() as db_session_temp:
# NOTE: Postgres uses the start of the transactions when computing `NOW()`
# so we need either to commit() or to use a new session
update_docs_indexed(
db_session=db_session_temp,
index_attempt_id=index_attempt_id,
total_docs_indexed=document_count,
new_docs_indexed=net_doc_change,
docs_removed_from_index=0,
)
if callback:
callback.progress("_run_indexing", len(doc_batch_cleaned))
# Add telemetry for indexing progress
optional_telemetry(
record_type=RecordType.INDEXING_PROGRESS,
data={
"index_attempt_id": index_attempt_id,
"cc_pair_id": ctx.cc_pair_id,
"current_docs_indexed": document_count,
"current_chunks_indexed": chunk_count,
"source": ctx.source.value,
},
tenant_id=tenant_id,
)
memory_tracer.increment_and_maybe_trace()
# `make sure the checkpoints aren't getting too large`at some regular interval
CHECKPOINT_SIZE_CHECK_INTERVAL = 100
if batch_num % CHECKPOINT_SIZE_CHECK_INTERVAL == 0:
check_checkpoint_size(checkpoint)
# save latest checkpoint
with get_session_with_current_tenant() as db_session_temp:
save_checkpoint(
db_session=db_session_temp,
index_attempt_id=index_attempt_id,
checkpoint=checkpoint,
)
optional_telemetry(
record_type=RecordType.INDEXING_COMPLETE,
data={
"index_attempt_id": index_attempt_id,
"cc_pair_id": ctx.cc_pair_id,
"total_docs_indexed": document_count,
"total_chunks": chunk_count,
"time_elapsed_seconds": time.monotonic() - start_time,
"source": ctx.source.value,
},
tenant_id=tenant_id,
)
except Exception as e:
logger.exception(
"Connector run exceptioned after elapsed time: "
f"{time.monotonic() - start_time} seconds"
)
if isinstance(e, ConnectorValidationError):
# On validation errors during indexing, we want to cancel the indexing attempt
# and mark the CCPair as invalid. This prevents the connector from being
# used in the future until the credentials are updated.
with get_session_with_current_tenant() as db_session_temp:
logger.exception(
f"Marking attempt {index_attempt_id} as canceled due to validation error."
)
mark_attempt_canceled(
index_attempt_id,
db_session_temp,
reason=f"{CONNECTOR_VALIDATION_ERROR_MESSAGE_PREFIX}{str(e)}",
)
if ctx.is_primary:
if not index_attempt:
# should always be set by now
raise RuntimeError("Should never happen.")
VALIDATION_ERROR_THRESHOLD = 5
recent_index_attempts = get_recent_completed_attempts_for_cc_pair(
cc_pair_id=ctx.cc_pair_id,
search_settings_id=index_attempt.search_settings_id,
limit=VALIDATION_ERROR_THRESHOLD,
db_session=db_session_temp,
)
num_validation_errors = len(
[
index_attempt
for index_attempt in recent_index_attempts
if index_attempt.error_msg
and index_attempt.error_msg.startswith(
CONNECTOR_VALIDATION_ERROR_MESSAGE_PREFIX
)
]
)
if num_validation_errors >= VALIDATION_ERROR_THRESHOLD:
logger.warning(
f"Connector {ctx.connector_id} has {num_validation_errors} consecutive validation"
f" errors. Marking the CC Pair as invalid."
)
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
status=ConnectorCredentialPairStatus.INVALID,
)
memory_tracer.stop()
raise e
elif isinstance(e, ConnectorStopSignal):
with get_session_with_current_tenant() as db_session_temp:
logger.exception(
f"Marking attempt {index_attempt_id} as canceled due to stop signal."
)
mark_attempt_canceled(
index_attempt_id,
db_session_temp,
reason=str(e),
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
memory_tracer.stop()
raise e
else:
with get_session_with_current_tenant() as db_session_temp:
mark_attempt_failed(
index_attempt_id,
db_session_temp,
failure_reason=str(e),
full_exception_trace=traceback.format_exc(),
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
memory_tracer.stop()
raise e
memory_tracer.stop()
# we know index attempt is successful (at least partially) at this point,
# all other cases have been short-circuited
elapsed_time = time.monotonic() - start_time
with get_session_with_current_tenant() as db_session_temp:
# resolve entity-based errors
for error in entity_based_unresolved_errors:
logger.info(f"Resolving IndexAttemptError for entity '{error.entity_id}'")
error.is_resolved = True
db_session_temp.add(error)
db_session_temp.commit()
if total_failures == 0:
mark_attempt_succeeded(index_attempt_id, db_session_temp)
create_milestone_and_report(
user=None,
distinct_id=tenant_id or "N/A",
event_type=MilestoneRecordType.CONNECTOR_SUCCEEDED,
properties=None,
db_session=db_session_temp,
)
logger.info(
f"Connector succeeded: "
f"docs={document_count} chunks={chunk_count} elapsed={elapsed_time:.2f}s"
)
else:
mark_attempt_partially_succeeded(index_attempt_id, db_session_temp)
logger.info(
f"Connector completed with some errors: "
f"failures={total_failures} "
f"batches={batch_num} "
f"docs={document_count} "
f"chunks={chunk_count} "
f"elapsed={elapsed_time:.2f}s"
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
run_dt=window_end,
)
if ctx.should_fetch_permissions_during_indexing:
mark_cc_pair_as_permissions_synced(
db_session=db_session_temp,
cc_pair_id=ctx.cc_pair_id,
start_time=window_end,
)
def run_docfetching_entrypoint(
app: Celery,
index_attempt_id: int,
@@ -968,11 +368,19 @@ def connector_document_extraction(
db_connector = index_attempt.connector_credential_pair.connector
db_credential = index_attempt.connector_credential_pair.credential
is_primary = index_attempt.search_settings.status == IndexModelStatus.PRESENT
from_beginning = index_attempt.from_beginning
has_successful_attempt = (
index_attempt.connector_credential_pair.last_successful_index_time
is not None
)
# Use higher priority for first-time indexing to ensure new connectors
# get processed before re-indexing of existing connectors
docprocessing_priority = (
OnyxCeleryPriority.MEDIUM
if has_successful_attempt
else OnyxCeleryPriority.HIGH
)
earliest_index_time = (
db_connector.indexing_start.timestamp()
@@ -1095,6 +503,7 @@ def connector_document_extraction(
tenant_id,
app,
most_recent_attempt,
docprocessing_priority,
)
last_batch_num = reissued_batch_count + completed_batches
index_attempt.completed_batches = completed_batches
@@ -1207,7 +616,7 @@ def connector_document_extraction(
OnyxCeleryTask.DOCPROCESSING_TASK,
kwargs=processing_batch_data,
queue=OnyxCeleryQueues.DOCPROCESSING,
priority=OnyxCeleryPriority.MEDIUM,
priority=docprocessing_priority,
)
batch_num += 1
@@ -1358,6 +767,7 @@ def reissue_old_batches(
tenant_id: str,
app: Celery,
most_recent_attempt: IndexAttempt | None,
priority: OnyxCeleryPriority,
) -> tuple[int, int]:
# When loading from a checkpoint, we need to start new docprocessing tasks
# tied to the new index attempt for any batches left over in the file store
@@ -1385,7 +795,7 @@ def reissue_old_batches(
"batch_num": path_info.batch_num, # use same batch num as previously
},
queue=OnyxCeleryQueues.DOCPROCESSING,
priority=OnyxCeleryPriority.MEDIUM,
priority=priority,
)
recent_batches = most_recent_attempt.completed_batches if most_recent_attempt else 0
# resume from the batch num of the last attempt. This should be one more

View File

@@ -63,7 +63,7 @@ To ensure the LLM follows certain specific instructions, instructions are added
tool is used, a citation reminder is always added. Otherwise, by default there is no reminder. If the user configures reminders, those are added to the
final message. If a search related tool just ran and the user has reminders, both appear in a single message.
If a search related tool is called at any point during the turn, the reminder will remain at the end until the turn is over and the agent as responded.
If a search related tool is called at any point during the turn, the reminder will remain at the end until the turn is over and the agent has responded.
## Tool Calls
@@ -145,9 +145,83 @@ attention despite having global access.
In a similar concept, LLM instructions in the system prompt are structured specifically so that there are coherent sections for the LLM to attend to. This is
fairly surprising actually but if there is a line of instructions effectively saying "If you try to use some tools and find that you need more information or
need to call additional tools, you are encouraged to do this", having this in the Tool section of the System prompt makes all the LLMs follow it well but if it's
even just a paragraph away like near the beginning of the prompt, it is often often ignored. The difference is as drastic as a 30% follow rate to a 90% follow
even just a paragraph away like near the beginning of the prompt, it is often ignored. The difference is as drastic as a 30% follow rate to a 90% follow
rate even just moving the same statement a few sentences.
## Other related pointers
- How messages, files, images are stored can be found in backend/onyx/db/models.py, there is also a README.md under that directory that may be helpful.
---
# Overview of LLM flow architecture
**Concepts:**
Turn: User sends a message and AI does some set of things and responds
Step/Cycle: 1 single LLM inference given some context and some tools
## 1. Top Level (process_message function):
This function can be thought of as the set-up and validation layer. It ensures that the database is in a valid state, reads the
messages in the session and sets up all the necessary items to run the chat loop and state containers. The major things it does
are:
- Validates the request
- Builds the chat history for the session
- Fetches any additional context such as files and images
- Prepares all of the tools for the LLM
- Creates the state container objects for use in the loop
### Wrapper (run_chat_loop_with_state_containers function):
This wrapper is used to run the LLM flow in a background thread and monitor the emitter for stop signals. This means the top
level is as isolated from the LLM flow as possible and can continue to yield packets as soon as they are available from the lower
levels. This also means that if the lower levels fail, the top level will still guarantee a reasonable response to the user.
All of the saving and database operations are abstracted away from the lower levels.
### Emitter
The emitter is designed to be an object queue so that lower levels do not need to yield objects all the way back to the top.
This way the functions can be better designed (not everything as a generator) and more easily tested. The wrapper around the
LLM flow (run_chat_loop_with_state_containers) is used to monitor the emitter and handle packets as soon as they are available
from the lower levels. Both the emitter and the state container are mutating state objects and only used to accumulate state.
There should be no logic dependent on the states of these objects, especially in the lower levels. The emitter should only take
packets and should not be used for other things.
### State Container
The state container is used to accumulate state during the LLM flow. Similar to the emitter, it should not be used for logic,
only for accumulating state. It is used to gather all of the necessary information for saving the chat turn into the database.
So it will accumulate answer tokens, reasoning tokens, tool calls, citation info, etc. This is used at the end of the flow once
the lower level is completed whether on its own or stopped by the user. At that point, all of the state is read and stored into
the database. The state container can be added to by any of the underlying layers, this is fine.
### Stopping Generation
A stop signal is checked every 300ms by the wrapper around the LLM flow. The signal itself
is stored in Redis and is set by the user calling the stop endpoint. The wrapper ensures that no matter what the lower level is
doing at the time, the thread can be killed by the top level. It does not require a cooperative cancellation from the lower level
and in fact the lower level does not know about the stop signal at all.
## 2. LLM Loop (run_llm_loop function)
This function handles the logic of the Turn. It's essentially a while loop where context is added and modified (according what
is outlined in the first half of this doc). Its main functionality is:
- Translate and truncate the context for the LLM inference
- Add context modifiers like reminders, updates to the system prompts, etc.
- Run tool calls and gather results
- Build some of the objects stored in the state container.
## 3. LLM Step (run_llm_step function)
This function is a single inference of the LLM. It's a wrapper around the LLM stream function which handles packet translations
so that the Emitter can emit individual tokens as soon as they arrive. It also keeps track of the different sections since they
do not all come at once (reasoning, answers, tool calls are all built up token by token). This layer also tracks the different
tool calls and returns that to the LLM Loop to execute.
## Things to know
- Packets are labeled with a "turn_index" field as part of the Placement of the packet. This is not the same as the backend
concept of a turn. The turn_index for the frontend is which block does this packet belong to. So while a reasoning + tool call
comes from the same LLM inference (same backend LLM step), they are 2 turns to the frontend because that's how it's rendered.
- There are 3 representations of "message". The first is the database model ChatMessage, this one should be translated away and
not used deep into the flow. The second is ChatMessageSimple which is the data model which should be used throughout the code
as much as possible. If modifications/additions are needed, it should be to this object. This is the rich representation of a
message for the code. Finally there is the LanguageModelInput representation of a message. This one is for the LLM interface
layer and is as stripped down as possible so that the LLM interface can be clean and easy to maintain/extend.

View File

@@ -1,64 +0,0 @@
"""
Module for handling chat-related milestone tracking and telemetry.
"""
from sqlalchemy.orm import Session
from onyx.configs.constants import MilestoneRecordType
from onyx.configs.constants import NO_AUTH_USER_ID
from onyx.db.milestone import check_multi_assistant_milestone
from onyx.db.milestone import create_milestone_if_not_exists
from onyx.db.milestone import update_user_assistant_milestone
from onyx.db.models import User
from onyx.utils.telemetry import mt_cloud_telemetry
def process_multi_assistant_milestone(
user: User | None,
assistant_id: int,
tenant_id: str,
db_session: Session,
) -> None:
"""
Process the multi-assistant milestone for a user.
This function:
1. Creates or retrieves the multi-assistant milestone
2. Updates the milestone with the current assistant usage
3. Checks if the milestone was just achieved
4. Sends telemetry if the milestone was just hit
Args:
user: The user for whom to process the milestone (can be None for anonymous users)
assistant_id: The ID of the assistant being used
tenant_id: The current tenant ID
db_session: Database session for queries
"""
# Create or retrieve the multi-assistant milestone
multi_assistant_milestone, _is_new = create_milestone_if_not_exists(
user=user,
event_type=MilestoneRecordType.MULTIPLE_ASSISTANTS,
db_session=db_session,
)
# Update the milestone with the current assistant usage
update_user_assistant_milestone(
milestone=multi_assistant_milestone,
user_id=str(user.id) if user else NO_AUTH_USER_ID,
assistant_id=assistant_id,
db_session=db_session,
)
# Check if the milestone was just achieved
_, just_hit_multi_assistant_milestone = check_multi_assistant_milestone(
milestone=multi_assistant_milestone,
db_session=db_session,
)
# Send telemetry if the milestone was just hit
if just_hit_multi_assistant_milestone:
mt_cloud_telemetry(
distinct_id=tenant_id,
event=MilestoneRecordType.MULTIPLE_ASSISTANTS,
properties=None,
)

View File

@@ -1,10 +1,13 @@
import threading
import time
from collections.abc import Callable
from collections.abc import Generator
from queue import Empty
from typing import Any
from onyx.chat.citation_processor import CitationMapping
from onyx.chat.emitter import Emitter
from onyx.context.search.models import SearchDoc
from onyx.server.query_and_chat.placement import Placement
from onyx.server.query_and_chat.streaming_models import OverallStop
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.server.query_and_chat.streaming_models import PacketException
@@ -18,39 +21,108 @@ class ChatStateContainer:
This container holds the partial state that can be saved to the database
if the generation is stopped by the user or completes normally.
Thread-safe: All write operations are protected by a lock to ensure safe
concurrent access from multiple threads. For thread-safe reads, use the
getter methods. Direct attribute access is not thread-safe.
"""
def __init__(self) -> None:
self._lock = threading.Lock()
# These are collected at the end after the entire tool call is completed
self.tool_calls: list[ToolCallInfo] = []
# This is accumulated during the streaming
self.reasoning_tokens: str | None = None
# This is accumulated during the streaming of the answer
self.answer_tokens: str | None = None
# Store citation mapping for building citation_docs_info during partial saves
self.citation_to_doc: dict[int, SearchDoc] = {}
self.citation_to_doc: CitationMapping = {}
# True if this turn is a clarification question (deep research flow)
self.is_clarification: bool = False
# LLM usage tracking for cost calculation
self.llm_prompt_tokens: int = 0
self.llm_completion_tokens: int = 0
self.llm_model_name: str | None = None
self.llm_api_key: str | None = None
def add_tool_call(self, tool_call: ToolCallInfo) -> None:
"""Add a tool call to the accumulated state."""
self.tool_calls.append(tool_call)
with self._lock:
self.tool_calls.append(tool_call)
def set_reasoning_tokens(self, reasoning: str | None) -> None:
"""Set the reasoning tokens from the final answer generation."""
self.reasoning_tokens = reasoning
with self._lock:
self.reasoning_tokens = reasoning
def set_answer_tokens(self, answer: str | None) -> None:
"""Set the answer tokens from the final answer generation."""
self.answer_tokens = answer
with self._lock:
self.answer_tokens = answer
def set_citation_mapping(self, citation_to_doc: dict[int, Any]) -> None:
def set_citation_mapping(self, citation_to_doc: CitationMapping) -> None:
"""Set the citation mapping from citation processor."""
self.citation_to_doc = citation_to_doc
with self._lock:
self.citation_to_doc = citation_to_doc
def set_is_clarification(self, is_clarification: bool) -> None:
"""Set whether this turn is a clarification question."""
self.is_clarification = is_clarification
with self._lock:
self.is_clarification = is_clarification
def get_answer_tokens(self) -> str | None:
"""Thread-safe getter for answer_tokens."""
with self._lock:
return self.answer_tokens
def get_reasoning_tokens(self) -> str | None:
"""Thread-safe getter for reasoning_tokens."""
with self._lock:
return self.reasoning_tokens
def get_tool_calls(self) -> list[ToolCallInfo]:
"""Thread-safe getter for tool_calls (returns a copy)."""
with self._lock:
return self.tool_calls.copy()
def get_citation_to_doc(self) -> CitationMapping:
"""Thread-safe getter for citation_to_doc (returns a copy)."""
with self._lock:
return self.citation_to_doc.copy()
def get_is_clarification(self) -> bool:
"""Thread-safe getter for is_clarification."""
with self._lock:
return self.is_clarification
def add_llm_usage(
self,
prompt_tokens: int,
completion_tokens: int,
model_name: str | None = None,
api_key: str | None = None,
) -> None:
"""Add LLM token usage to accumulated totals."""
with self._lock:
self.llm_prompt_tokens += prompt_tokens
self.llm_completion_tokens += completion_tokens
if model_name and not self.llm_model_name:
self.llm_model_name = model_name
if api_key and not self.llm_api_key:
self.llm_api_key = api_key
def get_llm_usage(self) -> tuple[int, int, str | None, str | None]:
"""Thread-safe getter for LLM usage (prompt_tokens, completion_tokens, model_name, api_key)."""
with self._lock:
return (
self.llm_prompt_tokens,
self.llm_completion_tokens,
self.llm_model_name,
self.llm_api_key,
)
def run_chat_llm_with_state_containers(
def run_chat_loop_with_state_containers(
func: Callable[..., None],
is_connected: Callable[[], bool],
emitter: Emitter,
@@ -74,7 +146,7 @@ def run_chat_llm_with_state_containers(
**kwargs: Additional keyword arguments for func
Usage:
packets = run_chat_llm_with_state_containers(
packets = run_chat_loop_with_state_containers(
my_func,
emitter=emitter,
state_container=state_container,
@@ -95,7 +167,7 @@ def run_chat_llm_with_state_containers(
# If execution fails, emit an exception packet
emitter.emit(
Packet(
turn_index=0,
placement=Placement(turn_index=0),
obj=PacketException(type="error", exception=e),
)
)
@@ -104,6 +176,9 @@ def run_chat_llm_with_state_containers(
thread = run_in_background(run_with_exception_capture)
pkt: Packet | None = None
last_turn_index = 0 # Track the highest turn_index seen for stop packet
last_cancel_check = time.monotonic()
cancel_check_interval = 0.3 # Check for cancellation every 300ms
try:
while True:
# Poll queue with 300ms timeout for natural stop signal checking
@@ -112,18 +187,40 @@ def run_chat_llm_with_state_containers(
pkt = emitter.bus.get(timeout=0.3)
except Empty:
if not is_connected():
# Stop signal detected, kill the thread
# Stop signal detected
yield Packet(
placement=Placement(turn_index=last_turn_index + 1),
obj=OverallStop(type="stop", stop_reason="user_cancelled"),
)
break
last_cancel_check = time.monotonic()
continue
if pkt is not None:
if pkt.obj == OverallStop(type="stop"):
# Track the highest turn_index for the stop packet
if pkt.placement and pkt.placement.turn_index > last_turn_index:
last_turn_index = pkt.placement.turn_index
if isinstance(pkt.obj, OverallStop):
yield pkt
break
elif isinstance(pkt.obj, PacketException):
raise pkt.obj.exception
else:
yield pkt
# Check for cancellation periodically even when packets are flowing
# This ensures stop signal is checked during active streaming
current_time = time.monotonic()
if current_time - last_cancel_check >= cancel_check_interval:
if not is_connected():
# Stop signal detected during streaming
yield Packet(
placement=Placement(turn_index=last_turn_index + 1),
obj=OverallStop(type="stop", stop_reason="user_cancelled"),
)
break
last_cancel_check = current_time
finally:
# Wait for thread to complete on normal exit to propagate exceptions and ensure cleanup.
# Skip waiting if user disconnected to exit quickly.

View File

@@ -26,6 +26,7 @@ from onyx.context.search.models import RerankingDetails
from onyx.context.search.models import RetrievalDetails
from onyx.db.chat import create_chat_session
from onyx.db.chat import get_chat_messages_by_session
from onyx.db.chat import get_or_create_root_message
from onyx.db.kg_config import get_kg_config_settings
from onyx.db.kg_config import is_kg_config_settings_enabled_valid
from onyx.db.llm import fetch_existing_doc_sets
@@ -37,7 +38,9 @@ from onyx.db.models import SearchDoc as DbSearchDoc
from onyx.db.models import Tool
from onyx.db.models import User
from onyx.db.models import UserFile
from onyx.db.projects import check_project_ownership
from onyx.db.search_settings import get_current_search_settings
from onyx.file_processing.extract_file_text import extract_file_text
from onyx.file_store.file_store import get_default_file_store
from onyx.file_store.models import ChatFileType
from onyx.file_store.models import FileDescriptor
@@ -49,8 +52,11 @@ from onyx.llm.override_models import LLMOverride
from onyx.natural_language_processing.utils import BaseTokenizer
from onyx.prompts.chat_prompts import ADDITIONAL_CONTEXT_PROMPT
from onyx.prompts.chat_prompts import TOOL_CALL_RESPONSE_CROSS_MESSAGE
from onyx.prompts.tool_prompts import TOOL_CALL_FAILURE_PROMPT
from onyx.server.query_and_chat.models import ChatSessionCreationRequest
from onyx.server.query_and_chat.models import CreateChatMessageRequest
from onyx.server.query_and_chat.streaming_models import CitationInfo
from onyx.tools.models import ToolCallKickoff
from onyx.tools.tool_implementations.custom.custom_tool import (
build_custom_tools_from_openapi_schema_and_headers,
)
@@ -58,9 +64,45 @@ from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_functions_tuples_in_parallel
from onyx.utils.timing import log_function_time
logger = setup_logger()
def create_chat_session_from_request(
chat_session_request: ChatSessionCreationRequest,
user_id: UUID | None,
db_session: Session,
) -> ChatSession:
"""Create a chat session from a ChatSessionCreationRequest.
Includes project ownership validation when project_id is provided.
Args:
chat_session_request: The request containing persona_id, description, and project_id
user_id: The ID of the user creating the session (can be None for anonymous)
db_session: The database session
Returns:
The newly created ChatSession
Raises:
ValueError: If user lacks access to the specified project
Exception: If the persona is invalid
"""
project_id = chat_session_request.project_id
if project_id:
if not check_project_ownership(project_id, user_id, db_session):
raise ValueError("User does not have access to project")
return create_chat_session(
db_session=db_session,
description=chat_session_request.description or "",
user_id=user_id,
persona_id=chat_session_request.persona_id,
project_id=chat_session_request.project_id,
)
def prepare_chat_message_request(
message_text: str,
user: User | None,
@@ -71,10 +113,10 @@ def prepare_chat_message_request(
retrieval_details: RetrievalDetails | None,
rerank_settings: RerankingDetails | None,
db_session: Session,
use_agentic_search: bool = False,
skip_gen_ai_answer_generation: bool = False,
llm_override: LLMOverride | None = None,
allowed_tool_ids: list[int] | None = None,
forced_tool_ids: list[int] | None = None,
) -> CreateChatMessageRequest:
# Typically used for one shot flows like SlackBot or non-chat API endpoint use cases
new_chat_session = create_chat_session(
@@ -98,10 +140,10 @@ def prepare_chat_message_request(
search_doc_ids=None,
retrieval_options=retrieval_details,
rerank_settings=rerank_settings,
use_agentic_search=use_agentic_search,
skip_gen_ai_answer_generation=skip_gen_ai_answer_generation,
llm_override=llm_override,
allowed_tool_ids=allowed_tool_ids,
forced_tool_ids=forced_tool_ids,
)
@@ -163,13 +205,15 @@ def create_chat_history_chain(
)
if not all_chat_messages:
raise RuntimeError("No messages in Chat Session")
root_message = all_chat_messages[0]
if root_message.parent_message is not None:
raise RuntimeError(
"Invalid root message, unable to fetch valid chat message sequence"
root_message = get_or_create_root_message(
chat_session_id=chat_session_id, db_session=db_session
)
else:
root_message = all_chat_messages[0]
if root_message.parent_message is not None:
raise RuntimeError(
"Invalid root message, unable to fetch valid chat message sequence"
)
current_message: ChatMessage | None = root_message
previous_message: ChatMessage | None = None
@@ -200,9 +244,6 @@ def create_chat_history_chain(
previous_message = current_message
if not mainline_messages:
raise RuntimeError("Could not trace chat message history")
return mainline_messages
@@ -483,10 +524,14 @@ def load_chat_file(
if file_type.is_text_file():
try:
content_text = content.decode("utf-8")
except UnicodeDecodeError:
content_text = extract_file_text(
file=file_io,
file_name=file_descriptor.get("name") or "",
break_on_unprocessable=False,
)
except Exception as e:
logger.warning(
f"Failed to decode text content for file {file_descriptor['id']}"
f"Failed to retrieve content for file {file_descriptor['id']}: {str(e)}"
)
# Get token count from UserFile if available
@@ -581,9 +626,16 @@ def convert_chat_history(
# Add text files as separate messages before the user message
for text_file in text_files:
file_text = text_file.content_text or ""
filename = text_file.filename
message = (
f"File: {filename}\n{file_text}\nEnd of File"
if filename
else file_text
)
simple_messages.append(
ChatMessageSimple(
message=text_file.content_text or "",
message=message,
token_count=text_file.token_count,
message_type=MessageType.USER,
image_files=None,
@@ -729,3 +781,38 @@ def is_last_assistant_message_clarification(chat_history: list[ChatMessage]) ->
if message.message_type == MessageType.ASSISTANT:
return message.is_clarification
return False
def create_tool_call_failure_messages(
tool_call: ToolCallKickoff, token_counter: Callable[[str], int]
) -> list[ChatMessageSimple]:
"""Create ChatMessageSimple objects for a failed tool call.
Creates two messages:
1. The tool call message itself
2. A failure response message indicating the tool call failed
Args:
tool_call: The ToolCallKickoff object representing the failed tool call
token_counter: Function to count tokens in a message string
Returns:
List containing two ChatMessageSimple objects: tool call message and failure response
"""
tool_call_msg = ChatMessageSimple(
message=tool_call.to_msg_str(),
token_count=token_counter(tool_call.to_msg_str()),
message_type=MessageType.TOOL_CALL,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
failure_response_msg = ChatMessageSimple(
message=TOOL_CALL_FAILURE_PROMPT,
token_count=token_counter(TOOL_CALL_FAILURE_PROMPT),
message_type=MessageType.TOOL_CALL_RESPONSE,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
return [tool_call_msg, failure_response_msg]

View File

@@ -4,13 +4,15 @@ Dynamic Citation Processor for LLM Responses
This module provides a citation processor that can:
- Accept citation number to SearchDoc mappings dynamically
- Process token streams from LLMs to extract citations
- Remove citation markers from output text
- Emit CitationInfo objects for detected citations
- Optionally replace citation markers with formatted markdown links
- Emit CitationInfo objects for detected citations (when replacing)
- Track all seen citations regardless of replacement mode
- Maintain a list of cited documents in order of first citation
"""
import re
from collections.abc import Generator
from typing import TypeAlias
from onyx.configs.chat_configs import STOP_STREAM_PAT
from onyx.context.search.models import SearchDoc
@@ -21,8 +23,11 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
CitationMapping: TypeAlias = dict[int, SearchDoc]
# ============================================================================
# Utility functions (copied for self-containment)
# Utility functions
# ============================================================================
@@ -43,19 +48,29 @@ class DynamicCitationProcessor:
This processor is designed for multi-turn conversations where the citation
number to document mapping is provided externally. It processes streaming
tokens from an LLM, detects citations (e.g., [1], [2,3], [[4]]), and:
tokens from an LLM, detects citations (e.g., [1], [2,3], [[4]]), and based
on the `replace_citation_tokens` setting:
1. Removes citation markers from the output text
2. Emits CitationInfo objects for tracking
3. Maintains the order in which documents were first cited
When replace_citation_tokens=True (default):
1. Replaces citation markers with formatted markdown links (e.g., [[1]](url))
2. Emits CitationInfo objects for tracking
3. Maintains the order in which documents were first cited
When replace_citation_tokens=False:
1. Preserves original citation markers in the output text
2. Does NOT emit CitationInfo objects
3. Still tracks all seen citations via get_seen_citations()
Features:
- Accepts citation number → SearchDoc mapping via update_citation_mapping()
- Processes tokens from LLM and removes citation markers
- Holds back tokens that might be partial citations
- Maintains list of cited SearchDocs in order of first citation
- Accepts citation number → SearchDoc mapping via update_citation_mapping()
- Configurable citation replacement behavior at initialization
- Always tracks seen citations regardless of replacement mode
- Holds back tokens that might be partial citations
- Maintains list of cited SearchDocs in order of first citation
- Handles unicode bracket variants (【】, )
- Skips citation processing inside code blocks
Example:
Example (with citation replacement - default):
processor = DynamicCitationProcessor()
# Set up citation mapping
@@ -65,37 +80,55 @@ class DynamicCitationProcessor:
for token in llm_stream:
for result in processor.process_token(token):
if isinstance(result, str):
print(result) # Display text (citations removed)
print(result) # Display text with [[1]](url) format
elif isinstance(result, CitationInfo):
handle_citation(result) # Track citation
# Update mapping with more documents
processor.update_citation_mapping({3: search_doc3, 4: search_doc4})
# Continue processing...
# Get cited documents at the end
cited_docs = processor.get_cited_documents()
Example (without citation replacement):
processor = DynamicCitationProcessor(replace_citation_tokens=False)
processor.update_citation_mapping({1: search_doc1, 2: search_doc2})
# Process tokens from LLM
for token in llm_stream:
for result in processor.process_token(token):
# Only strings are yielded, no CitationInfo objects
print(result) # Display text with original [1] format preserved
# Get all seen citations after processing
seen_citations = processor.get_seen_citations() # {1: search_doc1, ...}
"""
def __init__(
self,
replace_citation_tokens: bool = True,
stop_stream: str | None = STOP_STREAM_PAT,
):
"""
Initialize the citation processor.
Args:
stop_stream: Optional stop token to halt processing early
replace_citation_tokens: If True (default), citations like [1] are replaced
with formatted markdown links like [[1]](url) and CitationInfo objects
are emitted. If False, original citation text is preserved in output
and no CitationInfo objects are emitted. Regardless of this setting,
all seen citations are tracked and available via get_seen_citations().
stop_stream: Optional stop token pattern to halt processing early.
When this pattern is detected in the token stream, processing stops.
Defaults to STOP_STREAM_PAT from chat configs.
"""
# Citation mapping from citation number to SearchDoc
self.citation_to_doc: dict[int, SearchDoc] = {}
self.citation_to_doc: CitationMapping = {}
self.seen_citations: CitationMapping = {} # citation num -> SearchDoc
# Token processing state
self.llm_out = "" # entire output so far
self.curr_segment = "" # tokens held for citation processing
self.hold = "" # tokens held for stop token processing
self.stop_stream = stop_stream
self.replace_citation_tokens = replace_citation_tokens
# Citation tracking
self.cited_documents_in_order: list[SearchDoc] = (
@@ -119,7 +152,11 @@ class DynamicCitationProcessor:
r"([\[【[]{2}\d+[\]】]]{2})|([\[【[]\d+(?:, ?\d+)*[\]】]])"
)
def update_citation_mapping(self, citation_mapping: dict[int, SearchDoc]) -> None:
def update_citation_mapping(
self,
citation_mapping: CitationMapping,
update_duplicate_keys: bool = False,
) -> None:
"""
Update the citation number to SearchDoc mapping.
@@ -128,15 +165,25 @@ class DynamicCitationProcessor:
Args:
citation_mapping: Dictionary mapping citation numbers (1, 2, 3, ...) to SearchDoc objects
update_duplicate_keys: If True, update existing mappings with new values when keys overlap.
If False (default), filter out duplicate keys and only add non-duplicates.
The default behavior is useful when OpenURL may have the same citation number as a
Web Search result - in those cases, we keep the web search citation and snippet etc.
"""
# Filter out duplicate keys and only add non-duplicates
# Reason for this is that OpenURL may have the same citation number as a Web Search result
# For those, we should just keep the web search citation and snippet etc.
duplicate_keys = set(citation_mapping.keys()) & set(self.citation_to_doc.keys())
non_duplicate_mapping = {
k: v for k, v in citation_mapping.items() if k not in duplicate_keys
}
self.citation_to_doc.update(non_duplicate_mapping)
if update_duplicate_keys:
# Update all mappings, including duplicates
self.citation_to_doc.update(citation_mapping)
else:
# Filter out duplicate keys and only add non-duplicates
# Reason for this is that OpenURL may have the same citation number as a Web Search result
# For those, we should just keep the web search citation and snippet etc.
duplicate_keys = set(citation_mapping.keys()) & set(
self.citation_to_doc.keys()
)
non_duplicate_mapping = {
k: v for k, v in citation_mapping.items() if k not in duplicate_keys
}
self.citation_to_doc.update(non_duplicate_mapping)
def process_token(
self, token: str | None
@@ -147,17 +194,24 @@ class DynamicCitationProcessor:
This method:
1. Accumulates tokens until a complete citation or non-citation is found
2. Holds back potential partial citations (e.g., "[", "[1")
3. Yields text chunks when they're safe to display (with citations REMOVED)
4. Yields CitationInfo when citations are detected
5. Handles code blocks (avoids processing citations inside code)
6. Handles stop tokens
3. Yields text chunks when they're safe to display
4. Handles code blocks (avoids processing citations inside code)
5. Handles stop tokens
6. Always tracks seen citations in self.seen_citations
Behavior depends on the `replace_citation_tokens` setting from __init__:
- If True: Citations are replaced with [[n]](url) format and CitationInfo
objects are yielded before each formatted citation
- If False: Original citation text (e.g., [1]) is preserved in output
and no CitationInfo objects are yielded
Args:
token: The next token from the LLM stream, or None to signal end of stream
token: The next token from the LLM stream, or None to signal end of stream.
Pass None to flush any remaining buffered text at end of stream.
Yields:
- str: Text chunks to display (citations removed)
- CitationInfo: Citation metadata when a citation is detected
str: Text chunks to display. Citation format depends on replace_citation_tokens.
CitationInfo: Citation metadata (only when replace_citation_tokens=True)
"""
# None -> end of stream, flush remaining segment
if token is None:
@@ -250,17 +304,24 @@ class DynamicCitationProcessor:
yield intermatch_str
# Process the citation (returns formatted citation text and CitationInfo objects)
# Always tracks seen citations regardless of strip_citations flag
citation_text, citation_info_list = self._process_citation(
match, has_leading_space
match, has_leading_space, self.replace_citation_tokens
)
# Yield CitationInfo objects BEFORE the citation text
# This allows the frontend to receive citation metadata before the token
# that contains [[n]](link), enabling immediate rendering
for citation in citation_info_list:
yield citation
# Then yield the formatted citation text
if citation_text:
yield citation_text
if self.replace_citation_tokens:
# Yield CitationInfo objects BEFORE the citation text
# This allows the frontend to receive citation metadata before the token
# that contains [[n]](link), enabling immediate rendering
for citation in citation_info_list:
yield citation
# Then yield the formatted citation text
if citation_text:
yield citation_text
else:
# When not stripping, yield the original citation text unchanged
yield match.group()
self.non_citation_count = 0
# Leftover text could be part of next citation
@@ -277,27 +338,42 @@ class DynamicCitationProcessor:
yield result
def _process_citation(
self, match: re.Match, has_leading_space: bool
self, match: re.Match, has_leading_space: bool, replace_tokens: bool = True
) -> tuple[str, list[CitationInfo]]:
"""
Process a single citation match and return formatted citation text and citation info objects.
The match string can look like '[1]', '[1, 13, 6]', '[[4]]', '【1】', etc.
This is an internal method called by process_token(). The match string can be
in various formats: '[1]', '[1, 13, 6]', '[[4]]', '【1】', '1', etc.
This method:
This method always:
1. Extracts citation numbers from the match
2. Looks up the corresponding SearchDoc from the mapping
3. Skips duplicate citations if they were recently cited
4. Creates formatted citation text like [n](link) for each citation
3. Tracks seen citations in self.seen_citations (regardless of replace_tokens)
When replace_tokens=True (controlled by self.replace_citation_tokens):
4. Creates formatted citation text as [[n]](url)
5. Creates CitationInfo objects for new citations
6. Handles deduplication of recently cited documents
When replace_tokens=False:
4. Returns empty string and empty list (caller yields original match text)
Args:
match: Regex match object containing the citation
has_leading_space: Whether the text before the citation has a leading space
match: Regex match object containing the citation pattern
has_leading_space: Whether the text immediately before this citation
ends with whitespace. Used to determine if a leading space should
be added to the formatted output.
replace_tokens: If True, return formatted text and CitationInfo objects.
If False, only track seen citations and return empty results.
This is passed from self.replace_citation_tokens by the caller.
Returns:
Tuple of (formatted_citation_text, list[CitationInfo])
- formatted_citation_text: Markdown-formatted citation text like [1](link) [2](link)
- citation_info_list: List of CitationInfo objects
Tuple of (formatted_citation_text, citation_info_list):
- formatted_citation_text: Markdown-formatted citation text like
"[[1]](https://example.com)" or empty string if replace_tokens=False
- citation_info_list: List of CitationInfo objects for newly cited
documents, or empty list if replace_tokens=False
"""
citation_str: str = match.group() # e.g., '[1]', '[1, 2, 3]', '[[1]]', '【1】'
formatted = (
@@ -335,7 +411,14 @@ class DynamicCitationProcessor:
doc_id = search_doc.document_id
link = search_doc.link or ""
# Always format the citation text as [[n]](link)
# Always track seen citations regardless of replace_tokens setting
self.seen_citations[num] = search_doc
# When not replacing citation tokens, skip the rest of the processing
if not replace_tokens:
continue
# Format the citation text as [[n]](link)
formatted_citation_parts.append(f"[[{num}]]({link})")
# Skip creating CitationInfo for citations of the same work if cited recently (deduplication)
@@ -367,8 +450,14 @@ class DynamicCitationProcessor:
"""
Get the list of cited SearchDoc objects in the order they were first cited.
Note: This list is only populated when `replace_citation_tokens=True`.
When `replace_citation_tokens=False`, this will return an empty list.
Use get_seen_citations() instead if you need to track citations without
replacing them.
Returns:
List of SearchDoc objects
List of SearchDoc objects in the order they were first cited.
Empty list if replace_citation_tokens=False.
"""
return self.cited_documents_in_order
@@ -376,34 +465,89 @@ class DynamicCitationProcessor:
"""
Get the list of cited document IDs in the order they were first cited.
Note: This list is only populated when `replace_citation_tokens=True`.
When `replace_citation_tokens=False`, this will return an empty list.
Use get_seen_citations() instead if you need to track citations without
replacing them.
Returns:
List of document IDs (strings)
List of document IDs (strings) in the order they were first cited.
Empty list if replace_citation_tokens=False.
"""
return [doc.document_id for doc in self.cited_documents_in_order]
def get_seen_citations(self) -> CitationMapping:
"""
Get all seen citations as a mapping from citation number to SearchDoc.
This returns all citations that have been encountered during processing,
regardless of the `replace_citation_tokens` setting. Citations are tracked
whenever they are parsed, making this useful for cases where you need to
know which citations appeared in the text without replacing them.
This is particularly useful when `replace_citation_tokens=False`, as
get_cited_documents() will be empty in that case, but get_seen_citations()
will still contain all the citations that were found.
Returns:
Dictionary mapping citation numbers (int) to SearchDoc objects.
The dictionary is keyed by the citation number as it appeared in
the text (e.g., {1: SearchDoc(...), 3: SearchDoc(...)}).
"""
return self.seen_citations
@property
def num_cited_documents(self) -> int:
"""Get the number of documents that have been cited."""
"""
Get the number of unique documents that have been cited.
Note: This count is only updated when `replace_citation_tokens=True`.
When `replace_citation_tokens=False`, this will always return 0.
Use len(get_seen_citations()) instead if you need to count citations
without replacing them.
Returns:
Number of unique documents cited. 0 if replace_citation_tokens=False.
"""
return len(self.cited_document_ids)
def reset_recent_citations(self) -> None:
"""
Reset the recent citations tracker.
This can be called to allow previously cited documents to be cited again
without being filtered out by the deduplication logic.
The processor tracks "recently cited" documents to avoid emitting duplicate
CitationInfo objects for the same document when it's cited multiple times
in close succession. This method clears that tracker.
This is primarily useful when `replace_citation_tokens=True` to allow
previously cited documents to emit CitationInfo objects again. Has no
effect when `replace_citation_tokens=False`.
The recent citation tracker is also automatically cleared when more than
5 non-citation characters are processed between citations.
"""
self.recent_cited_documents.clear()
def get_next_citation_number(self) -> int:
"""
Get the next available citation number.
Get the next available citation number for adding new documents to the mapping.
This method returns the next citation number that should be used for new documents.
If no citations exist yet, it returns 1. Otherwise, it returns max + 1.
This method returns the next citation number that should be used when adding
new documents via update_citation_mapping(). Useful when dynamically adding
citations during processing (e.g., from tool results like web search).
If no citations exist yet in the mapping, returns 1.
Otherwise, returns max(existing_citation_numbers) + 1.
Returns:
The next available citation number (1-indexed)
The next available citation number (1-indexed integer).
Example:
# After adding citations 1, 2, 3
processor.get_next_citation_number() # Returns 4
# With non-sequential citations 1, 5, 10
processor.get_next_citation_number() # Returns 11
"""
if not self.citation_to_doc:
return 1

View File

@@ -0,0 +1,177 @@
import re
from onyx.chat.citation_processor import CitationMapping
from onyx.chat.citation_processor import DynamicCitationProcessor
from onyx.context.search.models import SearchDocsResponse
from onyx.tools.built_in_tools import CITEABLE_TOOLS_NAMES
from onyx.tools.models import ToolResponse
def update_citation_processor_from_tool_response(
tool_response: ToolResponse,
citation_processor: DynamicCitationProcessor,
) -> None:
"""Update citation processor if this was a citeable tool with a SearchDocsResponse.
Checks if the tool call is citeable and if the response contains a SearchDocsResponse,
then creates a mapping from citation numbers to SearchDoc objects and updates the
citation processor.
Args:
tool_response: The response from the tool execution (must have tool_call set)
citation_processor: The DynamicCitationProcessor to update
"""
# Early return if tool_call is not set
if tool_response.tool_call is None:
return
# Update citation processor if this was a search tool
if tool_response.tool_call.tool_name in CITEABLE_TOOLS_NAMES:
# Check if the rich_response is a SearchDocsResponse
if isinstance(tool_response.rich_response, SearchDocsResponse):
search_response = tool_response.rich_response
# Create mapping from citation number to SearchDoc
citation_to_doc: CitationMapping = {}
for (
citation_num,
doc_id,
) in search_response.citation_mapping.items():
# Find the SearchDoc with this doc_id
matching_doc = next(
(
doc
for doc in search_response.search_docs
if doc.document_id == doc_id
),
None,
)
if matching_doc:
citation_to_doc[citation_num] = matching_doc
# Update the citation processor
citation_processor.update_citation_mapping(citation_to_doc)
def collapse_citations(
answer_text: str,
existing_citation_mapping: CitationMapping,
new_citation_mapping: CitationMapping,
) -> tuple[str, CitationMapping]:
"""Collapse the citations in the text to use the smallest possible numbers.
This function takes citations in the text (like [25], [30], etc.) and replaces them
with the smallest possible numbers. It starts numbering from the next available
integer after the existing citation mapping. If a citation refers to a document
that already exists in the existing citation mapping (matched by document_id),
it uses the existing citation number instead of assigning a new one.
Args:
answer_text: The text containing citations to collapse (e.g., "See [25] and [30]")
existing_citation_mapping: Citations already processed/displayed. These mappings
are preserved unchanged in the output.
new_citation_mapping: Citations from the current text that need to be collapsed.
The keys are the citation numbers as they appear in answer_text.
Returns:
A tuple of (updated_text, combined_mapping) where:
- updated_text: The text with citations replaced with collapsed numbers
- combined_mapping: All values from existing_citation_mapping plus the new
mappings with their (possibly renumbered) keys
"""
# Build a reverse lookup: document_id -> existing citation number
doc_id_to_existing_citation: dict[str, int] = {
doc.document_id: citation_num
for citation_num, doc in existing_citation_mapping.items()
}
# Determine the next available citation number
if existing_citation_mapping:
next_citation_num = max(existing_citation_mapping.keys()) + 1
else:
next_citation_num = 1
# Build the mapping from old citation numbers (in new_citation_mapping) to new numbers
old_to_new: dict[int, int] = {}
additional_mappings: CitationMapping = {}
for old_num, search_doc in new_citation_mapping.items():
doc_id = search_doc.document_id
# Check if this document already exists in existing citations
if doc_id in doc_id_to_existing_citation:
# Use the existing citation number
old_to_new[old_num] = doc_id_to_existing_citation[doc_id]
else:
# Check if we've already assigned a new number to this document
# (handles case where same doc appears with different old numbers)
existing_new_num = None
for mapped_old, mapped_new in old_to_new.items():
if (
mapped_old in new_citation_mapping
and new_citation_mapping[mapped_old].document_id == doc_id
):
existing_new_num = mapped_new
break
if existing_new_num is not None:
old_to_new[old_num] = existing_new_num
else:
# Assign the next available number
old_to_new[old_num] = next_citation_num
additional_mappings[next_citation_num] = search_doc
next_citation_num += 1
# Pattern to match citations like [25], [1, 2, 3], [[25]], etc.
# Also matches unicode bracket variants: 【】,
citation_pattern = re.compile(
r"([\[【[]{2}\d+[\]】]]{2})|([\[【[]\d+(?:, ?\d+)*[\]】]])"
)
def replace_citation(match: re.Match) -> str:
"""Replace citation numbers in a match with their new collapsed values."""
citation_str = match.group()
# Determine bracket style
if (
citation_str.startswith("[[")
or citation_str.startswith("【【")
or citation_str.startswith("")
):
open_bracket = citation_str[:2]
close_bracket = citation_str[-2:]
content = citation_str[2:-2]
else:
open_bracket = citation_str[0]
close_bracket = citation_str[-1]
content = citation_str[1:-1]
# Parse and replace citation numbers
new_nums = []
for num_str in content.split(","):
num_str = num_str.strip()
if not num_str:
continue
try:
num = int(num_str)
# Only replace if we have a mapping for this number
if num in old_to_new:
new_nums.append(str(old_to_new[num]))
else:
# Keep original if not in our mapping
new_nums.append(num_str)
except ValueError:
new_nums.append(num_str)
# Reconstruct the citation with original bracket style
new_content = ", ".join(new_nums)
return f"{open_bracket}{new_content}{close_bracket}"
# Replace all citations in the text
updated_text = citation_pattern.sub(replace_citation, answer_text)
# Build the combined mapping
combined_mapping: CitationMapping = dict(existing_citation_mapping)
combined_mapping.update(additional_mappings)
return updated_text, combined_mapping

View File

@@ -1,15 +1,14 @@
import json
from collections.abc import Callable
from typing import cast
from sqlalchemy.orm import Session
from onyx.chat.chat_state import ChatStateContainer
from onyx.chat.chat_utils import create_tool_call_failure_messages
from onyx.chat.citation_processor import CitationMapping
from onyx.chat.citation_processor import DynamicCitationProcessor
from onyx.chat.citation_utils import update_citation_processor_from_tool_response
from onyx.chat.emitter import Emitter
from onyx.chat.llm_step import run_llm_step
from onyx.chat.llm_step import TOOL_CALL_MSG_ARGUMENTS
from onyx.chat.llm_step import TOOL_CALL_MSG_FUNC_NAME
from onyx.chat.models import ChatMessageSimple
from onyx.chat.models import ExtractedProjectFiles
from onyx.chat.models import LlmStepResult
@@ -30,18 +29,18 @@ from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.utils import model_needs_formatting_reenabled
from onyx.prompts.chat_prompts import IMAGE_GEN_REMINDER
from onyx.prompts.chat_prompts import OPEN_URL_REMINDER
from onyx.server.query_and_chat.placement import Placement
from onyx.server.query_and_chat.streaming_models import OverallStop
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.server.query_and_chat.streaming_models import TopLevelBranching
from onyx.tools.built_in_tools import CITEABLE_TOOLS_NAMES
from onyx.tools.built_in_tools import STOPPING_TOOLS_NAMES
from onyx.tools.interface import Tool
from onyx.tools.models import ToolCallInfo
from onyx.tools.models import ToolResponse
from onyx.tools.tool import Tool
from onyx.tools.tool_implementations.images.image_generation_tool import (
ImageGenerationTool,
)
from onyx.tools.tool_implementations.images.models import (
FinalImageGenerationResponse,
)
from onyx.tools.tool_implementations.open_url.open_url_tool import OpenURLTool
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.tool_implementations.web_search.web_search_tool import WebSearchTool
from onyx.tools.tool_runner import run_tool_calls
@@ -64,7 +63,7 @@ MAX_LLM_CYCLES = 6
def _build_project_file_citation_mapping(
project_file_metadata: list[ProjectFileMetadata],
starting_citation_num: int = 1,
) -> dict[int, SearchDoc]:
) -> CitationMapping:
"""Build citation mapping for project files.
Converts project file metadata into SearchDoc objects that can be cited.
@@ -77,7 +76,7 @@ def _build_project_file_citation_mapping(
Returns:
Dictionary mapping citation numbers to SearchDoc objects
"""
citation_mapping: dict[int, SearchDoc] = {}
citation_mapping: CitationMapping = {}
for idx, file_meta in enumerate(project_file_metadata, start=starting_citation_num):
# Create a SearchDoc for each project file
@@ -100,7 +99,7 @@ def _build_project_file_citation_mapping(
def construct_message_history(
system_prompt: ChatMessageSimple,
system_prompt: ChatMessageSimple | None,
custom_agent_prompt: ChatMessageSimple | None,
simple_chat_history: list[ChatMessageSimple],
reminder_message: ChatMessageSimple | None,
@@ -115,7 +114,7 @@ def construct_message_history(
)
history_token_budget = available_tokens
history_token_budget -= system_prompt.token_count
history_token_budget -= system_prompt.token_count if system_prompt else 0
history_token_budget -= (
custom_agent_prompt.token_count if custom_agent_prompt else 0
)
@@ -128,7 +127,7 @@ def construct_message_history(
# If no history, build minimal context
if not simple_chat_history:
result = [system_prompt]
result = [system_prompt] if system_prompt else []
if custom_agent_prompt:
result.append(custom_agent_prompt)
if project_files and project_files.project_file_texts:
@@ -219,7 +218,7 @@ def construct_message_history(
# Build the final message list according to README ordering:
# [system], [history_before_last_user], [custom_agent], [project_files],
# [last_user_message], [messages_after_last_user], [reminder]
result = [system_prompt]
result = [system_prompt] if system_prompt else []
# 1. Add truncated history before last user message
result.extend(truncated_history_before)
@@ -293,8 +292,16 @@ def run_llm_loop(
db_session: Session,
forced_tool_id: int | None = None,
user_identity: LLMUserIdentity | None = None,
chat_session_id: str | None = None,
) -> None:
with trace("run_llm_loop", metadata={"tenant_id": get_current_tenant_id()}):
with trace(
"run_llm_loop",
group_id=chat_session_id,
metadata={
"tenant_id": get_current_tenant_id(),
"chat_session_id": chat_session_id,
},
):
# Fix some LiteLLM issues,
from onyx.llm.litellm_singleton.config import (
initialize_litellm,
@@ -302,18 +309,11 @@ def run_llm_loop(
initialize_litellm()
stopping_tools_names: list[str] = [ImageGenerationTool.NAME]
citeable_tools_names: list[str] = [
SearchTool.NAME,
WebSearchTool.NAME,
OpenURLTool.NAME,
]
# Initialize citation processor for handling citations dynamically
citation_processor = DynamicCitationProcessor()
# Add project file citation mappings if project files are present
project_citation_mapping: dict[int, SearchDoc] = {}
project_citation_mapping: CitationMapping = {}
if project_files.project_file_metadata:
project_citation_mapping = _build_project_file_citation_mapping(
project_files.project_file_metadata
@@ -325,7 +325,6 @@ def run_llm_loop(
# Pass the total budget to construct_message_history, which will handle token allocation
available_tokens = llm.config.max_input_tokens
tool_choice: ToolChoiceOptions = ToolChoiceOptions.AUTO
collected_tool_calls: list[ToolCallInfo] = []
# Initialize gathered_documents with project files if present
gathered_documents: list[SearchDoc] | None = (
list(project_citation_mapping.values())
@@ -343,12 +342,12 @@ def run_llm_loop(
has_called_search_tool: bool = False
citation_mapping: dict[int, str] = {} # Maps citation_num -> document_id/URL
current_tool_call_index = (
0 # TODO: just use the cycle count after parallel tool calls are supported
)
default_base_system_prompt: str = get_default_base_system_prompt(db_session)
system_prompt = None
custom_agent_prompt_msg = None
reasoning_cycles = 0
for llm_cycle_count in range(MAX_LLM_CYCLES):
if forced_tool_id:
# Needs to be just the single one because the "required" currently doesn't have a specified tool, just a binary
final_tools = [tool for tool in tools if tool.id == forced_tool_id]
@@ -375,35 +374,47 @@ def run_llm_loop(
)
custom_agent_prompt_msg = None
else:
# System message and custom agent message are both included.
open_ai_formatting_enabled = model_needs_formatting_reenabled(
llm.config.model_name
)
system_prompt_str = build_system_prompt(
base_system_prompt=get_default_base_system_prompt(db_session),
datetime_aware=persona.datetime_aware if persona else True,
memories=memories,
tools=tools,
should_cite_documents=should_cite_documents
or always_cite_documents,
open_ai_formatting_enabled=open_ai_formatting_enabled,
)
system_prompt = ChatMessageSimple(
message=system_prompt_str,
token_count=token_counter(system_prompt_str),
message_type=MessageType.SYSTEM,
)
custom_agent_prompt_msg = (
ChatMessageSimple(
message=custom_agent_prompt,
token_count=token_counter(custom_agent_prompt),
message_type=MessageType.USER,
# If it's an empty string, we assume the user does not want to include it as an empty System message
if default_base_system_prompt:
open_ai_formatting_enabled = model_needs_formatting_reenabled(
llm.config.model_name
)
if custom_agent_prompt
else None
)
system_prompt_str = build_system_prompt(
base_system_prompt=default_base_system_prompt,
datetime_aware=persona.datetime_aware if persona else True,
memories=memories,
tools=tools,
should_cite_documents=should_cite_documents
or always_cite_documents,
open_ai_formatting_enabled=open_ai_formatting_enabled,
)
system_prompt = ChatMessageSimple(
message=system_prompt_str,
token_count=token_counter(system_prompt_str),
message_type=MessageType.SYSTEM,
)
custom_agent_prompt_msg = (
ChatMessageSimple(
message=custom_agent_prompt,
token_count=token_counter(custom_agent_prompt),
message_type=MessageType.USER,
)
if custom_agent_prompt
else None
)
else:
# If there is a custom agent prompt, it replaces the system prompt when the default system prompt is empty
system_prompt = (
ChatMessageSimple(
message=custom_agent_prompt,
token_count=token_counter(custom_agent_prompt),
message_type=MessageType.SYSTEM,
)
if custom_agent_prompt
else None
)
custom_agent_prompt_msg = None
reminder_message_text: str | None
if ran_image_gen:
@@ -445,12 +456,13 @@ def run_llm_loop(
# This calls the LLM, yields packets (reasoning, answers, etc.) and returns the result
# It also pre-processes the tool calls in preparation for running them
step_generator = run_llm_step(
llm_step_result, has_reasoned = run_llm_step(
emitter=emitter,
history=truncated_message_history,
tool_definitions=[tool.tool_definition() for tool in final_tools],
tool_choice=tool_choice,
llm=llm,
turn_index=current_tool_call_index,
placement=Placement(turn_index=llm_cycle_count + reasoning_cycles),
citation_processor=citation_processor,
state_container=state_container,
# The rich docs representation is passed in so that when yielding the answer, it can also
@@ -459,18 +471,8 @@ def run_llm_loop(
final_documents=gathered_documents,
user_identity=user_identity,
)
# Consume the generator, emitting packets and capturing the final result
while True:
try:
packet = next(step_generator)
emitter.emit(packet)
except StopIteration as e:
llm_step_result, current_tool_call_index = e.value
break
# Type narrowing: generator always returns a result, so this can't be None
llm_step_result = cast(LlmStepResult, llm_step_result)
if has_reasoned:
reasoning_cycles += 1
# Save citation mapping after each LLM step for incremental state updates
state_container.set_citation_mapping(citation_processor.citation_to_doc)
@@ -480,21 +482,50 @@ def run_llm_loop(
tool_responses: list[ToolResponse] = []
tool_calls = llm_step_result.tool_calls or []
just_ran_web_search = False
for tool_call in tool_calls:
# TODO replace the [tool_call] with the list of tool calls once parallel tool calls are supported
tool_responses, citation_mapping = run_tool_calls(
tool_calls=[tool_call],
tools=final_tools,
turn_index=current_tool_call_index,
message_history=truncated_message_history,
memories=memories,
user_info=None, # TODO, this is part of memories right now, might want to separate it out
citation_mapping=citation_mapping,
citation_processor=citation_processor,
skip_search_query_expansion=has_called_search_tool,
if len(tool_calls) > 1:
emitter.emit(
Packet(
placement=Placement(
turn_index=tool_calls[0].placement.turn_index
),
obj=TopLevelBranching(num_parallel_branches=len(tool_calls)),
)
)
# Quick note for why citation_mapping and citation_processors are both needed:
# 1. Tools return lightweight string mappings, not SearchDoc objects
# 2. The SearchDoc resolution is deliberately deferred to llm_loop.py
# 3. The citation_processor operates on SearchDoc objects and can't provide a complete reverse URL lookup for
# in-flight citations
# It can be cleaned up but not super trivial or worthwhile right now
just_ran_web_search = False
tool_responses, citation_mapping = run_tool_calls(
tool_calls=tool_calls,
tools=final_tools,
message_history=truncated_message_history,
memories=memories,
user_info=None, # TODO, this is part of memories right now, might want to separate it out
citation_mapping=citation_mapping,
next_citation_num=citation_processor.get_next_citation_number(),
skip_search_query_expansion=has_called_search_tool,
)
# Failure case, give something reasonable to the LLM to try again
if tool_calls and not tool_responses:
failure_messages = create_tool_call_failure_messages(
tool_calls[0], token_counter
)
simple_chat_history.extend(failure_messages)
continue
for tool_response in tool_responses:
# Extract tool_call from the response (set by run_tool_calls)
if tool_response.tool_call is None:
raise ValueError("Tool response missing tool_call reference")
tool_call = tool_response.tool_call
tab_index = tool_call.placement.tab_index
# Track if search tool was called (for skipping query expansion on subsequent calls)
if tool_call.tool_name == SearchTool.NAME:
has_called_search_tool = True
@@ -502,110 +533,81 @@ def run_llm_loop(
# Build a mapping of tool names to tool objects for getting tool_id
tools_by_name = {tool.name: tool for tool in final_tools}
# Add the results to the chat history, note that even if the tools were run in parallel, this isn't supported
# as all the LLM APIs require linear history, so these will just be included sequentially
for tool_call, tool_response in zip([tool_call], tool_responses):
# Get the tool object to retrieve tool_id
tool = tools_by_name.get(tool_call.tool_name)
if not tool:
raise ValueError(
f"Tool '{tool_call.tool_name}' not found in tools list"
)
# Extract search_docs if this is a search tool response
search_docs = None
if isinstance(tool_response.rich_response, SearchDocsResponse):
search_docs = tool_response.rich_response.search_docs
if gathered_documents:
gathered_documents.extend(search_docs)
else:
gathered_documents = search_docs
# This is used for the Open URL reminder in the next cycle
# only do this if the web search tool yielded results
if search_docs and tool_call.tool_name == WebSearchTool.NAME:
just_ran_web_search = True
# Extract generated_images if this is an image generation tool response
generated_images = None
if isinstance(
tool_response.rich_response, FinalImageGenerationResponse
):
generated_images = tool_response.rich_response.generated_images
tool_call_info = ToolCallInfo(
parent_tool_call_id=None, # Top-level tool calls are attached to the chat message
turn_index=current_tool_call_index,
tool_name=tool_call.tool_name,
tool_call_id=tool_call.tool_call_id,
tool_id=tool.id,
reasoning_tokens=llm_step_result.reasoning, # All tool calls from this loop share the same reasoning
tool_call_arguments=tool_call.tool_args,
tool_call_response=tool_response.llm_facing_response,
search_docs=search_docs,
generated_images=generated_images,
# Add the results to the chat history. Even though tools may run in parallel,
# LLM APIs require linear history, so results are added sequentially.
# Get the tool object to retrieve tool_id
tool = tools_by_name.get(tool_call.tool_name)
if not tool:
raise ValueError(
f"Tool '{tool_call.tool_name}' not found in tools list"
)
collected_tool_calls.append(tool_call_info)
# Add to state container for partial save support
state_container.add_tool_call(tool_call_info)
# Store tool call with function name and arguments in separate layers
tool_call_data = {
TOOL_CALL_MSG_FUNC_NAME: tool_call.tool_name,
TOOL_CALL_MSG_ARGUMENTS: tool_call.tool_args,
}
tool_call_message = json.dumps(tool_call_data)
tool_call_token_count = token_counter(tool_call_message)
# Extract search_docs if this is a search tool response
search_docs = None
if isinstance(tool_response.rich_response, SearchDocsResponse):
search_docs = tool_response.rich_response.search_docs
if gathered_documents:
gathered_documents.extend(search_docs)
else:
gathered_documents = search_docs
tool_call_msg = ChatMessageSimple(
message=tool_call_message,
token_count=tool_call_token_count,
message_type=MessageType.TOOL_CALL,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
simple_chat_history.append(tool_call_msg)
# This is used for the Open URL reminder in the next cycle
# only do this if the web search tool yielded results
if search_docs and tool_call.tool_name == WebSearchTool.NAME:
just_ran_web_search = True
tool_response_message = tool_response.llm_facing_response
tool_response_token_count = token_counter(tool_response_message)
# Extract generated_images if this is an image generation tool response
generated_images = None
if isinstance(
tool_response.rich_response, FinalImageGenerationResponse
):
generated_images = tool_response.rich_response.generated_images
tool_response_msg = ChatMessageSimple(
message=tool_response_message,
token_count=tool_response_token_count,
message_type=MessageType.TOOL_CALL_RESPONSE,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
simple_chat_history.append(tool_response_msg)
tool_call_info = ToolCallInfo(
parent_tool_call_id=None, # Top-level tool calls are attached to the chat message
turn_index=llm_cycle_count + reasoning_cycles,
tab_index=tab_index,
tool_name=tool_call.tool_name,
tool_call_id=tool_call.tool_call_id,
tool_id=tool.id,
reasoning_tokens=llm_step_result.reasoning, # All tool calls from this loop share the same reasoning
tool_call_arguments=tool_call.tool_args,
tool_call_response=tool_response.llm_facing_response,
search_docs=search_docs,
generated_images=generated_images,
)
# Add to state container for partial save support
state_container.add_tool_call(tool_call_info)
# Update citation processor if this was a search tool
if tool_call.tool_name in citeable_tools_names:
# Check if the rich_response is a SearchDocsResponse
if isinstance(tool_response.rich_response, SearchDocsResponse):
search_response = tool_response.rich_response
# Store tool call with function name and arguments in separate layers
tool_call_message = tool_call.to_msg_str()
tool_call_token_count = token_counter(tool_call_message)
# Create mapping from citation number to SearchDoc
citation_to_doc: dict[int, SearchDoc] = {}
for (
citation_num,
doc_id,
) in search_response.citation_mapping.items():
# Find the SearchDoc with this doc_id
matching_doc = next(
(
doc
for doc in search_response.search_docs
if doc.document_id == doc_id
),
None,
)
if matching_doc:
citation_to_doc[citation_num] = matching_doc
tool_call_msg = ChatMessageSimple(
message=tool_call_message,
token_count=tool_call_token_count,
message_type=MessageType.TOOL_CALL,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
simple_chat_history.append(tool_call_msg)
# Update the citation processor
citation_processor.update_citation_mapping(citation_to_doc)
tool_response_message = tool_response.llm_facing_response
tool_response_token_count = token_counter(tool_response_message)
current_tool_call_index += 1
tool_response_msg = ChatMessageSimple(
message=tool_response_message,
token_count=tool_response_token_count,
message_type=MessageType.TOOL_CALL_RESPONSE,
tool_call_id=tool_call.tool_call_id,
image_files=None,
)
simple_chat_history.append(tool_response_msg)
# Update citation processor if this was a search tool
update_citation_processor_from_tool_response(
tool_response, citation_processor
)
# If no tool calls, then it must have answered, wrap up
if not llm_step_result.tool_calls or len(llm_step_result.tool_calls) == 0:
@@ -613,13 +615,13 @@ def run_llm_loop(
# Certain tools do not allow further actions, force the LLM wrap up on the next cycle
if any(
tool.tool_name in stopping_tools_names
tool.tool_name in STOPPING_TOOLS_NAMES
for tool in llm_step_result.tool_calls
):
ran_image_gen = True
if llm_step_result.tool_calls and any(
tool.tool_name in citeable_tools_names
tool.tool_name in CITEABLE_TOOLS_NAMES
for tool in llm_step_result.tool_calls
):
# As long as 1 tool with citeable documents is called at any point, we ask the LLM to try to cite
@@ -629,5 +631,8 @@ def run_llm_loop(
raise RuntimeError("LLM did not return an answer.")
emitter.emit(
Packet(turn_index=current_tool_call_index, obj=OverallStop(type="stop"))
Packet(
placement=Placement(turn_index=llm_cycle_count + reasoning_cycles),
obj=OverallStop(type="stop"),
)
)

View File

@@ -1,4 +1,5 @@
import json
from collections.abc import Callable
from collections.abc import Generator
from collections.abc import Mapping
from collections.abc import Sequence
@@ -7,6 +8,7 @@ from typing import cast
from onyx.chat.chat_state import ChatStateContainer
from onyx.chat.citation_processor import DynamicCitationProcessor
from onyx.chat.emitter import Emitter
from onyx.chat.models import ChatMessageSimple
from onyx.chat.models import LlmStepResult
from onyx.configs.app_configs import LOG_ONYX_MODEL_INTERACTIONS
@@ -17,16 +19,19 @@ from onyx.llm.interfaces import LanguageModelInput
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.model_response import Delta
from onyx.llm.models import AssistantMessage
from onyx.llm.models import ChatCompletionMessage
from onyx.llm.models import FunctionCall
from onyx.llm.models import ImageContentPart
from onyx.llm.models import ImageUrlDetail
from onyx.llm.models import ReasoningEffort
from onyx.llm.models import SystemMessage
from onyx.llm.models import TextContentPart
from onyx.llm.models import ToolCall
from onyx.llm.models import ToolMessage
from onyx.llm.models import UserMessage
from onyx.server.query_and_chat.placement import Placement
from onyx.server.query_and_chat.streaming_models import AgentResponseDelta
from onyx.server.query_and_chat.streaming_models import AgentResponseStart
from onyx.server.query_and_chat.streaming_models import CitationInfo
@@ -34,6 +39,8 @@ from onyx.server.query_and_chat.streaming_models import Packet
from onyx.server.query_and_chat.streaming_models import ReasoningDelta
from onyx.server.query_and_chat.streaming_models import ReasoningDone
from onyx.server.query_and_chat.streaming_models import ReasoningStart
from onyx.tools.models import TOOL_CALL_MSG_ARGUMENTS
from onyx.tools.models import TOOL_CALL_MSG_FUNC_NAME
from onyx.tools.models import ToolCallKickoff
from onyx.tracing.framework.create import generation_span
from onyx.utils.b64 import get_image_type_from_bytes
@@ -43,8 +50,77 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
TOOL_CALL_MSG_FUNC_NAME = "function_name"
TOOL_CALL_MSG_ARGUMENTS = "arguments"
def _try_parse_json_string(value: Any) -> Any:
"""Attempt to parse a JSON string value into its Python equivalent.
If value is a string that looks like a JSON array or object, parse it.
Otherwise return the value unchanged.
This handles the case where the LLM returns arguments like:
- queries: '["query1", "query2"]' instead of ["query1", "query2"]
"""
if not isinstance(value, str):
return value
stripped = value.strip()
# Only attempt to parse if it looks like a JSON array or object
if not (
(stripped.startswith("[") and stripped.endswith("]"))
or (stripped.startswith("{") and stripped.endswith("}"))
):
return value
try:
return json.loads(stripped)
except json.JSONDecodeError:
return value
def _parse_tool_args_to_dict(raw_args: Any) -> dict[str, Any]:
"""Parse tool arguments into a dict.
Normal case:
- raw_args == '{"queries":[...]}' -> dict via json.loads
Defensive case (JSON string literal of an object):
- raw_args == '"{\\"queries\\":[...]}"' -> json.loads -> str -> json.loads -> dict
Also handles the case where argument values are JSON strings that need parsing:
- {"queries": '["q1", "q2"]'} -> {"queries": ["q1", "q2"]}
Anything else returns {}.
"""
if raw_args is None:
return {}
if isinstance(raw_args, dict):
# Parse any string values that look like JSON arrays/objects
return {k: _try_parse_json_string(v) for k, v in raw_args.items()}
if not isinstance(raw_args, str):
return {}
try:
parsed1: Any = json.loads(raw_args)
except json.JSONDecodeError:
return {}
if isinstance(parsed1, dict):
# Parse any string values that look like JSON arrays/objects
return {k: _try_parse_json_string(v) for k, v in parsed1.items()}
if isinstance(parsed1, str):
try:
parsed2: Any = json.loads(parsed1)
except json.JSONDecodeError:
return {}
if isinstance(parsed2, dict):
# Parse any string values that look like JSON arrays/objects
return {k: _try_parse_json_string(v) for k, v in parsed2.items()}
return {}
return {}
def _format_message_history_for_logging(
@@ -153,21 +229,27 @@ def _update_tool_call_with_delta(
def _extract_tool_call_kickoffs(
id_to_tool_call_map: dict[int, dict[str, Any]],
turn_index: int,
tab_index: int | None = None,
sub_turn_index: int | None = None,
) -> list[ToolCallKickoff]:
"""Extract ToolCallKickoff objects from the tool call map.
Returns a list of ToolCallKickoff objects for valid tool calls (those with both id and name).
Each tool call is assigned the given turn_index and a tab_index based on its order.
Args:
id_to_tool_call_map: Map of tool call index to tool call data
turn_index: The turn index for this set of tool calls
tab_index: If provided, use this tab_index for all tool calls (otherwise auto-increment)
sub_turn_index: The sub-turn index for nested tool calls
"""
tool_calls: list[ToolCallKickoff] = []
tab_index_calculated = 0
for tool_call_data in id_to_tool_call_map.values():
if tool_call_data.get("id") and tool_call_data.get("name"):
try:
# Parse arguments JSON string to dict
tool_args = (
json.loads(tool_call_data["arguments"])
if tool_call_data["arguments"]
else {}
)
tool_args = _parse_tool_args_to_dict(tool_call_data.get("arguments"))
except json.JSONDecodeError:
# If parsing fails, try empty dict, most tools would fail though
logger.error(
@@ -180,8 +262,16 @@ def _extract_tool_call_kickoffs(
tool_call_id=tool_call_data["id"],
tool_name=tool_call_data["name"],
tool_args=tool_args,
placement=Placement(
turn_index=turn_index,
tab_index=(
tab_index_calculated if tab_index is None else tab_index
),
sub_turn_index=sub_turn_index,
),
)
)
tab_index_calculated += 1
return tool_calls
@@ -272,13 +362,19 @@ def translate_history_to_llm_format(
function_name = tool_call_data.get(
TOOL_CALL_MSG_FUNC_NAME, "unknown"
)
tool_args = tool_call_data.get(TOOL_CALL_MSG_ARGUMENTS, {})
raw_args = tool_call_data.get(TOOL_CALL_MSG_ARGUMENTS, {})
else:
function_name = "unknown"
tool_args = (
raw_args = (
tool_call_data if isinstance(tool_call_data, dict) else {}
)
# IMPORTANT: `FunctionCall.arguments` must be a JSON object string.
# If `raw_args` is accidentally a JSON string literal of an object
# (e.g. '"{\\"queries\\":[...]}"'), calling `json.dumps(raw_args)`
# would produce a quoted JSON literal and break Anthropic tool parsing.
tool_args = _parse_tool_args_to_dict(raw_args)
# NOTE: if the model is trained on a different tool call format, this may slightly interfere
# with the future tool calls, if it doesn't look like this. Almost certainly not a big deal.
tool_call = ToolCall(
@@ -324,20 +420,87 @@ def translate_history_to_llm_format(
return messages
def run_llm_step(
def _increment_turns(
turn_index: int, sub_turn_index: int | None
) -> tuple[int, int | None]:
if sub_turn_index is None:
return turn_index + 1, None
else:
return turn_index, sub_turn_index + 1
def run_llm_step_pkt_generator(
history: list[ChatMessageSimple],
tool_definitions: list[dict],
tool_choice: ToolChoiceOptions,
llm: LLM,
turn_index: int,
citation_processor: DynamicCitationProcessor,
state_container: ChatStateContainer,
placement: Placement,
state_container: ChatStateContainer | None,
citation_processor: DynamicCitationProcessor | None,
reasoning_effort: ReasoningEffort | None = None,
final_documents: list[SearchDoc] | None = None,
user_identity: LLMUserIdentity | None = None,
) -> Generator[Packet, None, tuple[LlmStepResult, int]]:
# The second return value is for the turn index because reasoning counts on the frontend as a turn
# TODO this is maybe ok but does not align well with the backend logic too well
custom_token_processor: (
Callable[[Delta | None, Any], tuple[Delta | None, Any]] | None
) = None,
max_tokens: int | None = None,
# TODO: Temporary handling of nested tool calls with agents, figure out a better way to handle this
use_existing_tab_index: bool = False,
is_deep_research: bool = False,
) -> Generator[Packet, None, tuple[LlmStepResult, bool]]:
"""Run an LLM step and stream the response as packets.
NOTE: DO NOT TOUCH THIS FUNCTION BEFORE ASKING YUHONG, this is very finicky and
delicate logic that is core to the app's main functionality.
This generator function streams LLM responses, processing reasoning content,
answer content, tool calls, and citations. It yields Packet objects for
real-time streaming to clients and accumulates the final result.
Args:
history: List of chat messages in the conversation history.
tool_definitions: List of tool definitions available to the LLM.
tool_choice: Tool choice configuration (e.g., "auto", "required", "none").
llm: Language model interface to use for generation.
turn_index: Current turn index in the conversation.
state_container: Container for storing chat state (reasoning, answers).
citation_processor: Optional processor for extracting and formatting citations
from the response. If provided, processes tokens to identify citations.
reasoning_effort: Optional reasoning effort configuration for models that
support reasoning (e.g., o1 models).
final_documents: Optional list of search documents to include in the response
start packet.
user_identity: Optional user identity information for the LLM.
custom_token_processor: Optional callable that processes each token delta
before yielding. Receives (delta, processor_state) and returns
(modified_delta, new_processor_state). Can return None for delta to skip.
sub_turn_index: Optional sub-turn index for nested tool/agent calls.
Yields:
Packet: Streaming packets containing:
- ReasoningStart/ReasoningDelta/ReasoningDone for reasoning content
- AgentResponseStart/AgentResponseDelta for answer content
- CitationInfo for extracted citations
- ToolCallKickoff for tool calls (extracted at the end)
Returns:
tuple[LlmStepResult, bool]: A tuple containing:
- LlmStepResult: The final result with accumulated reasoning, answer,
and tool calls (if any).
- bool: Whether reasoning occurred during this step. This should be used to
increment the turn index or sub_turn index for the rest of the LLM loop.
Note:
The function handles incremental state updates, saving reasoning and answer
tokens to the state container as they are generated. Tool calls are extracted
and yielded only after the stream completes.
"""
turn_index = placement.turn_index
tab_index = placement.tab_index
sub_turn_index = placement.sub_turn_index
llm_msg_history = translate_history_to_llm_format(history)
has_reasoned = 0
# Uncomment the line below to log the entire message history to the console
if LOG_ONYX_MODEL_INTERACTIONS:
@@ -351,6 +514,8 @@ def run_llm_step(
accumulated_reasoning = ""
accumulated_answer = ""
processor_state: Any = None
with generation_span(
model=llm.config.model_name,
model_config={
@@ -366,7 +531,8 @@ def run_llm_step(
tools=tool_definitions,
tool_choice=tool_choice,
structured_response_format=None, # TODO
# reasoning_effort=ReasoningEffort.OFF, # Can set this for dev/testing.
max_tokens=max_tokens,
reasoning_effort=reasoning_effort,
user_identity=user_identity,
):
if packet.usage:
@@ -377,71 +543,183 @@ def run_llm_step(
"cache_read_input_tokens": usage.cache_read_input_tokens,
"cache_creation_input_tokens": usage.cache_creation_input_tokens,
}
# Track usage in state container for cost calculation
if state_container:
state_container.add_llm_usage(
prompt_tokens=usage.prompt_tokens,
completion_tokens=usage.completion_tokens,
model_name=llm.config.model_name,
api_key=llm.config.api_key,
)
delta = packet.choice.delta
if custom_token_processor:
# The custom token processor can modify the deltas for specific custom logic
# It can also return a state so that it can handle aggregated delta logic etc.
# Loosely typed so the function can be flexible
modified_delta, processor_state = custom_token_processor(
delta, processor_state
)
if modified_delta is None:
continue
delta = modified_delta
# Should only happen once, frontend does not expect multiple
# ReasoningStart or ReasoningDone packets.
if delta.reasoning_content:
accumulated_reasoning += delta.reasoning_content
# Save reasoning incrementally to state container
state_container.set_reasoning_tokens(accumulated_reasoning)
if state_container:
state_container.set_reasoning_tokens(accumulated_reasoning)
if not reasoning_start:
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningStart(),
)
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningDelta(reasoning=delta.reasoning_content),
)
reasoning_start = True
if delta.content:
if reasoning_start:
yield Packet(
turn_index=turn_index,
obj=ReasoningDone(),
)
turn_index += 1
reasoning_start = False
if not answer_start:
yield Packet(
turn_index=turn_index,
obj=AgentResponseStart(
final_documents=final_documents,
),
)
answer_start = True
for result in citation_processor.process_token(delta.content):
if isinstance(result, str):
accumulated_answer += result
# Save answer incrementally to state container
state_container.set_answer_tokens(accumulated_answer)
# When tool_choice is REQUIRED, content before tool calls is reasoning/thinking
# about which tool to call, not an actual answer to the user.
# Treat this content as reasoning instead of answer.
if is_deep_research and tool_choice == ToolChoiceOptions.REQUIRED:
# Treat content as reasoning when we know tool calls are coming
accumulated_reasoning += delta.content
if state_container:
state_container.set_reasoning_tokens(accumulated_reasoning)
if not reasoning_start:
yield Packet(
turn_index=turn_index,
obj=AgentResponseDelta(content=result),
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningStart(),
)
elif isinstance(result, CitationInfo):
yield Packet(
yield Packet(
placement=Placement(
turn_index=turn_index,
obj=result,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningDelta(reasoning=delta.content),
)
reasoning_start = True
else:
# Normal flow for AUTO or NONE tool choice
if reasoning_start:
yield Packet(
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningDone(),
)
has_reasoned = 1
turn_index, sub_turn_index = _increment_turns(
turn_index, sub_turn_index
)
reasoning_start = False
if not answer_start:
yield Packet(
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=AgentResponseStart(
final_documents=final_documents,
),
)
answer_start = True
if citation_processor:
for result in citation_processor.process_token(delta.content):
if isinstance(result, str):
accumulated_answer += result
# Save answer incrementally to state container
if state_container:
state_container.set_answer_tokens(
accumulated_answer
)
yield Packet(
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=AgentResponseDelta(content=result),
)
elif isinstance(result, CitationInfo):
yield Packet(
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=result,
)
else:
# When citation_processor is None, use delta.content directly without modification
accumulated_answer += delta.content
# Save answer incrementally to state container
if state_container:
state_container.set_answer_tokens(accumulated_answer)
yield Packet(
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=AgentResponseDelta(content=delta.content),
)
if delta.tool_calls:
if reasoning_start:
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningDone(),
)
turn_index += 1
has_reasoned = 1
turn_index, sub_turn_index = _increment_turns(
turn_index, sub_turn_index
)
reasoning_start = False
for tool_call_delta in delta.tool_calls:
_update_tool_call_with_delta(id_to_tool_call_map, tool_call_delta)
tool_calls = _extract_tool_call_kickoffs(id_to_tool_call_map)
# Flush custom token processor to get any final tool calls
if custom_token_processor:
flush_delta, processor_state = custom_token_processor(None, processor_state)
if flush_delta and flush_delta.tool_calls:
for tool_call_delta in flush_delta.tool_calls:
_update_tool_call_with_delta(id_to_tool_call_map, tool_call_delta)
tool_calls = _extract_tool_call_kickoffs(
id_to_tool_call_map=id_to_tool_call_map,
turn_index=turn_index,
tab_index=tab_index if use_existing_tab_index else None,
sub_turn_index=sub_turn_index,
)
if tool_calls:
tool_calls_list: list[ToolCall] = [
ToolCall(
@@ -468,28 +746,48 @@ def run_llm_step(
tool_calls=None,
)
span_generation.span_data.output = [assistant_msg_no_tools.model_dump()]
# Close reasoning block if still open (stream ended with reasoning content)
# This may happen if the custom token processor is used to modify other packets into reasoning
# Then there won't necessarily be anything else to come after the reasoning tokens
if reasoning_start:
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=ReasoningDone(),
)
turn_index += 1
has_reasoned = 1
turn_index, sub_turn_index = _increment_turns(turn_index, sub_turn_index)
reasoning_start = False
# Flush any remaining content from citation processor
# Reasoning is always first so this should use the post-incremented value of turn_index
# Note that this doesn't need to handle any sub-turns as those docs will not have citations
# as clickable items and will be stripped out instead.
if citation_processor:
for result in citation_processor.process_token(None):
if isinstance(result, str):
accumulated_answer += result
# Save answer incrementally to state container
state_container.set_answer_tokens(accumulated_answer)
if state_container:
state_container.set_answer_tokens(accumulated_answer)
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=AgentResponseDelta(content=result),
)
elif isinstance(result, CitationInfo):
yield Packet(
turn_index=turn_index,
placement=Placement(
turn_index=turn_index,
tab_index=tab_index,
sub_turn_index=sub_turn_index,
),
obj=result,
)
@@ -514,5 +812,55 @@ def run_llm_step(
answer=accumulated_answer if accumulated_answer else None,
tool_calls=tool_calls if tool_calls else None,
),
turn_index,
bool(has_reasoned),
)
def run_llm_step(
emitter: Emitter,
history: list[ChatMessageSimple],
tool_definitions: list[dict],
tool_choice: ToolChoiceOptions,
llm: LLM,
placement: Placement,
state_container: ChatStateContainer | None,
citation_processor: DynamicCitationProcessor | None,
reasoning_effort: ReasoningEffort | None = None,
final_documents: list[SearchDoc] | None = None,
user_identity: LLMUserIdentity | None = None,
custom_token_processor: (
Callable[[Delta | None, Any], tuple[Delta | None, Any]] | None
) = None,
max_tokens: int | None = None,
use_existing_tab_index: bool = False,
is_deep_research: bool = False,
) -> tuple[LlmStepResult, bool]:
"""Wrapper around run_llm_step_pkt_generator that consumes packets and emits them.
Returns:
tuple[LlmStepResult, bool]: The LLM step result and whether reasoning occurred.
"""
step_generator = run_llm_step_pkt_generator(
history=history,
tool_definitions=tool_definitions,
tool_choice=tool_choice,
llm=llm,
placement=placement,
state_container=state_container,
citation_processor=citation_processor,
reasoning_effort=reasoning_effort,
final_documents=final_documents,
user_identity=user_identity,
custom_token_processor=custom_token_processor,
max_tokens=max_tokens,
use_existing_tab_index=use_existing_tab_index,
is_deep_research=is_deep_research,
)
while True:
try:
packet = next(step_generator)
emitter.emit(packet)
except StopIteration as e:
llm_step_result, has_reasoned = e.value
return llm_step_result, bool(has_reasoned)

View File

@@ -3,6 +3,7 @@ from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from uuid import UUID
from pydantic import BaseModel
from pydantic import Field
@@ -16,7 +17,9 @@ from onyx.context.search.models import SearchDoc
from onyx.file_store.models import FileDescriptor
from onyx.file_store.models import InMemoryChatFile
from onyx.server.query_and_chat.streaming_models import CitationInfo
from onyx.server.query_and_chat.streaming_models import GeneratedImage
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.tools.models import SearchToolUsage
from onyx.tools.models import ToolCallKickoff
from onyx.tools.tool_implementations.custom.base_tool_types import ToolResultType
@@ -132,6 +135,13 @@ class ToolConfig(BaseModel):
id: int
class ProjectSearchConfig(BaseModel):
"""Configuration for search tool availability in project context."""
search_usage: SearchToolUsage
disable_forced_tool: bool
class PromptOverrideConfig(BaseModel):
name: str
description: str = ""
@@ -171,6 +181,10 @@ AnswerQuestionPossibleReturn = (
)
class CreateChatSessionID(BaseModel):
chat_session_id: UUID
AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
@@ -181,12 +195,14 @@ class LLMMetricsContainer(BaseModel):
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
AnswerStreamPart = (
Packet
| StreamStopInfo
| MessageResponseIDInfo
| StreamingError
| UserKnowledgeFilePacket
| CreateChatSessionID
)
AnswerStream = Iterator[AnswerStreamPart]
@@ -204,6 +220,37 @@ class ChatBasicResponse(BaseModel):
citation_info: list[CitationInfo]
class ToolCallResponse(BaseModel):
"""Tool call with full details for non-streaming response."""
tool_name: str
tool_arguments: dict[str, Any]
tool_result: str
search_docs: list[SearchDoc] | None = None
generated_images: list[GeneratedImage] | None = None
# Reasoning that led to the tool call
pre_reasoning: str | None = None
class ChatFullResponse(BaseModel):
"""Complete non-streaming response with all available data."""
# Core response fields
answer: str
answer_citationless: str
pre_answer_reasoning: str | None = None
tool_calls: list[ToolCallResponse] = []
# Documents & citations
top_documents: list[SearchDoc]
citation_info: list[CitationInfo]
# Metadata
message_id: int
chat_session_id: UUID | None = None
error_msg: str | None = None
class ChatLoadedFile(InMemoryChatFile):
content_text: str | None
token_count: int
@@ -234,6 +281,8 @@ class ExtractedProjectFiles(BaseModel):
total_token_count: int
# Metadata for project files to enable citations
project_file_metadata: list[ProjectFileMetadata]
# None if not a project
project_uncapped_token_count: int | None
class LlmStepResult(BaseModel):

View File

@@ -1,17 +1,19 @@
import os
"""
IMPORTANT: familiarize yourself with the design concepts prior to contributing to this file.
An overview can be found in the README.md file in this directory.
"""
import re
import traceback
from collections.abc import Callable
from collections.abc import Iterator
from uuid import UUID
from sqlalchemy.orm import Session
from onyx.chat.chat_milestones import process_multi_assistant_milestone
from onyx.chat.chat_state import ChatStateContainer
from onyx.chat.chat_state import run_chat_llm_with_state_containers
from onyx.chat.chat_state import run_chat_loop_with_state_containers
from onyx.chat.chat_utils import convert_chat_history
from onyx.chat.chat_utils import create_chat_history_chain
from onyx.chat.chat_utils import create_chat_session_from_request
from onyx.chat.chat_utils import get_custom_agent_prompt
from onyx.chat.chat_utils import is_last_assistant_message_clarification
from onyx.chat.chat_utils import load_all_chat_files
@@ -19,61 +21,63 @@ from onyx.chat.emitter import get_default_emitter
from onyx.chat.llm_loop import run_llm_loop
from onyx.chat.models import AnswerStream
from onyx.chat.models import ChatBasicResponse
from onyx.chat.models import ChatFullResponse
from onyx.chat.models import ChatLoadedFile
from onyx.chat.models import CreateChatSessionID
from onyx.chat.models import ExtractedProjectFiles
from onyx.chat.models import MessageResponseIDInfo
from onyx.chat.models import ProjectFileMetadata
from onyx.chat.models import ProjectSearchConfig
from onyx.chat.models import StreamingError
from onyx.chat.models import ToolCallResponse
from onyx.chat.prompt_utils import calculate_reserved_tokens
from onyx.chat.save_chat import save_chat_turn
from onyx.chat.stop_signal_checker import is_connected as check_stop_signal
from onyx.chat.stop_signal_checker import reset_cancel_status
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
from onyx.configs.constants import MessageType
from onyx.configs.constants import MilestoneRecordType
from onyx.context.search.enums import OptionalSearchSetting
from onyx.context.search.models import CitationDocInfo
from onyx.context.search.models import SearchDoc
from onyx.db.chat import create_new_chat_message
from onyx.db.chat import get_chat_message
from onyx.db.chat import get_chat_session_by_id
from onyx.db.chat import get_or_create_root_message
from onyx.db.chat import reserve_message_id
from onyx.db.engine.sql_engine import get_session_with_current_tenant
from onyx.db.memory import get_memories
from onyx.db.models import ChatMessage
from onyx.db.models import User
from onyx.db.projects import get_project_token_count
from onyx.db.projects import get_user_files_from_project
from onyx.db.tools import get_tools
from onyx.deep_research.dr_loop import run_deep_research_llm_loop
from onyx.file_store.models import ChatFileType
from onyx.file_store.models import FileDescriptor
from onyx.file_store.utils import load_in_memory_chat_files
from onyx.file_store.utils import verify_user_files
from onyx.llm.factory import get_llm_for_persona
from onyx.llm.factory import get_llm_token_counter
from onyx.llm.factory import get_llms_for_persona
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.utils import litellm_exception_to_error_msg
from onyx.onyxbot.slack.models import SlackContext
from onyx.redis.redis_pool import get_redis_client
from onyx.server.query_and_chat.models import AUTO_PLACE_AFTER_LATEST_MESSAGE
from onyx.server.query_and_chat.models import CreateChatMessageRequest
from onyx.server.query_and_chat.models import SendMessageRequest
from onyx.server.query_and_chat.streaming_models import AgentResponseDelta
from onyx.server.query_and_chat.streaming_models import AgentResponseStart
from onyx.server.query_and_chat.streaming_models import CitationInfo
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.server.utils import get_json_line
from onyx.server.usage_limits import check_llm_cost_limit_for_provider
from onyx.tools.constants import SEARCH_TOOL_ID
from onyx.tools.tool import Tool
from onyx.tools.interface import Tool
from onyx.tools.models import SearchToolUsage
from onyx.tools.tool_constructor import construct_tools
from onyx.tools.tool_constructor import CustomToolConfig
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_constructor import SearchToolUsage
from onyx.utils.logger import setup_logger
from onyx.utils.long_term_log import LongTermLogger
from onyx.utils.telemetry import mt_cloud_telemetry
from onyx.utils.timing import log_function_time
from onyx.utils.timing import log_generator_function_time
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
@@ -126,6 +130,7 @@ def _extract_project_file_texts_and_images(
project_as_filter=False,
total_token_count=0,
project_file_metadata=[],
project_uncapped_token_count=None,
)
max_actual_tokens = (
@@ -211,175 +216,130 @@ def _extract_project_file_texts_and_images(
project_as_filter=project_as_filter,
total_token_count=total_token_count,
project_file_metadata=project_file_metadata,
project_uncapped_token_count=project_tokens,
)
def _get_project_search_availability(
project_id: int | None,
persona_id: int | None,
has_project_file_texts: bool,
forced_tool_ids: list[int] | None,
loaded_project_files: bool,
project_has_files: bool,
forced_tool_id: int | None,
search_tool_id: int | None,
) -> SearchToolUsage:
) -> ProjectSearchConfig:
"""Determine search tool availability based on project context.
Args:
project_id: The project ID if the user is in a project
persona_id: The persona ID to check if it's the default persona
has_project_file_texts: Whether project files are loaded in context
forced_tool_ids: List of forced tool IDs (may be mutated to remove search tool)
search_tool_id: The search tool ID to check against
Search is disabled when ALL of the following are true:
- User is in a project
- Using the default persona (not a custom agent)
- Project files are already loaded in context
Returns:
SearchToolUsage setting indicating how search should be used
When search is disabled and the user tried to force the search tool,
that forcing is also disabled.
Returns AUTO (follow persona config) in all other cases.
"""
# There are cases where the internal search tool should be disabled
# If the user is in a project, it should not use other sources / generic search
# If they are in a project but using a custom agent, it should use the agent setup
# (which means it can use search)
# However if in a project and there are more files than can fit in the context,
# it should use the search tool with the project filter on
# If no files are uploaded, search should remain enabled
search_usage_forcing_setting = SearchToolUsage.AUTO
if project_id:
if bool(persona_id is DEFAULT_PERSONA_ID and has_project_file_texts):
search_usage_forcing_setting = SearchToolUsage.DISABLED
# Remove search tool from forced_tool_ids if it's present
if forced_tool_ids and search_tool_id and search_tool_id in forced_tool_ids:
forced_tool_ids[:] = [
tool_id for tool_id in forced_tool_ids if tool_id != search_tool_id
]
elif forced_tool_ids and search_tool_id and search_tool_id in forced_tool_ids:
search_usage_forcing_setting = SearchToolUsage.ENABLED
return search_usage_forcing_setting
def _initialize_chat_session(
message_text: str,
files: list[FileDescriptor],
token_counter: Callable[[str], int],
parent_id: int | None,
user_id: UUID | None,
chat_session_id: UUID,
db_session: Session,
use_existing_user_message: bool = False,
) -> ChatMessage:
root_message = get_or_create_root_message(
chat_session_id=chat_session_id, db_session=db_session
)
if parent_id is None:
parent_message = root_message
else:
parent_message = get_chat_message(
chat_message_id=parent_id,
user_id=user_id,
db_session=db_session,
# Not in a project, this should have no impact on search tool availability
if not project_id:
return ProjectSearchConfig(
search_usage=SearchToolUsage.AUTO, disable_forced_tool=False
)
# For seeding, the parent message points to the message that is supposed to be the last
# user message.
if use_existing_user_message:
if parent_message.parent_message is None:
raise RuntimeError("No parent message found for seeding")
if parent_message.message_type != MessageType.USER:
raise RuntimeError(
"Parent message is not a user message, needed for seeded flow."
)
message_text = parent_message.message
token_count = parent_message.token_count
parent_message = parent_message.parent_message
else:
token_count = token_counter(message_text)
# Custom persona in project - let persona config decide
# Even if there are no files in the project, it's still guided by the persona config.
if persona_id != DEFAULT_PERSONA_ID:
return ProjectSearchConfig(
search_usage=SearchToolUsage.AUTO, disable_forced_tool=False
)
# Flushed for ID but not committed yet
user_message = create_new_chat_message(
chat_session_id=chat_session_id,
parent_message=parent_message,
message=message_text,
token_count=token_count,
message_type=MessageType.USER,
files=files,
db_session=db_session,
commit=False,
# If in a project with the default persona and the files have been already loaded into the context or
# there are no files in the project, disable search as there is nothing to search for.
if loaded_project_files or not project_has_files:
user_forced_search = (
forced_tool_id is not None
and search_tool_id is not None
and forced_tool_id == search_tool_id
)
return ProjectSearchConfig(
search_usage=SearchToolUsage.DISABLED,
disable_forced_tool=user_forced_search,
)
# Default persona in a project with files, but also the files have not been loaded into the context already.
return ProjectSearchConfig(
search_usage=SearchToolUsage.ENABLED, disable_forced_tool=False
)
return user_message
def stream_chat_message_objects(
new_msg_req: CreateChatMessageRequest,
def handle_stream_message_objects(
new_msg_req: SendMessageRequest,
user: User | None,
db_session: Session,
# Needed to translate persona num_chunks to tokens to the LLM
default_num_chunks: float = MAX_CHUNKS_FED_TO_CHAT,
# For flow with search, don't include as many chunks as possible since we need to leave space
# for the chat history, for smaller models, we likely won't get MAX_CHUNKS_FED_TO_CHAT chunks
max_document_percentage: float = CHAT_TARGET_CHUNK_PERCENTAGE,
# if specified, uses the last user message and does not create a new user message based
# on the `new_msg_req.message`. Currently, requires a state where the last message is a
litellm_additional_headers: dict[str, str] | None = None,
custom_tool_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
enforce_chat_session_id_for_search_docs: bool = True,
bypass_acl: bool = False,
# Additional context that should be included in the chat history, for example:
# Slack threads where the conversation cannot be represented by a chain of User/Assistant
# messages.
# messages. Both of the below are used for Slack
# NOTE: is not stored in the database, only passed in to the LLM as context
additional_context: str | None = None,
# Slack context for federated Slack search
slack_context: SlackContext | None = None,
# Optional external state container for non-streaming access to accumulated state
external_state_container: ChatStateContainer | None = None,
) -> AnswerStream:
tenant_id = get_current_tenant_id()
use_existing_user_message = new_msg_req.use_existing_user_message
llm: LLM | None = None
user_id = user.id if user is not None else None
llm_user_identifier = (
user.email
if user is not None and getattr(user, "email", None)
else (str(user_id) if user_id else "anonymous_user")
)
try:
user_id = user.id if user is not None else None
llm_user_identifier = (
user.email
if user is not None and getattr(user, "email", None)
else (str(user_id) if user_id else "anonymous_user")
)
if not new_msg_req.chat_session_id:
if not new_msg_req.chat_session_info:
raise RuntimeError(
"Must specify a chat session id or chat session info"
)
chat_session = create_chat_session_from_request(
chat_session_request=new_msg_req.chat_session_info,
user_id=user_id,
db_session=db_session,
)
yield CreateChatSessionID(chat_session_id=chat_session.id)
else:
chat_session = get_chat_session_by_id(
chat_session_id=new_msg_req.chat_session_id,
user_id=user_id,
db_session=db_session,
)
chat_session = get_chat_session_by_id(
chat_session_id=new_msg_req.chat_session_id,
user_id=user_id,
db_session=db_session,
)
persona = chat_session.persona
message_text = new_msg_req.message
chat_session_id = new_msg_req.chat_session_id
user_identity = LLMUserIdentity(
user_id=llm_user_identifier, session_id=str(chat_session_id)
user_id=llm_user_identifier, session_id=str(chat_session.id)
)
parent_id = new_msg_req.parent_message_id
reference_doc_ids = new_msg_req.search_doc_ids
retrieval_options = new_msg_req.retrieval_options
new_msg_req.alternate_assistant_id
user_selected_filters = retrieval_options.filters if retrieval_options else None
# permanent "log" store, used primarily for debugging
long_term_logger = LongTermLogger(
metadata={"user_id": str(user_id), "chat_session_id": str(chat_session_id)}
metadata={"user_id": str(user_id), "chat_session_id": str(chat_session.id)}
)
# Milestone tracking, most devs using the API don't need to understand this
process_multi_assistant_milestone(
user=user,
assistant_id=persona.id,
mt_cloud_telemetry(
tenant_id=tenant_id,
db_session=db_session,
distinct_id=user.email if user else tenant_id,
event=MilestoneRecordType.MULTIPLE_ASSISTANTS,
)
if reference_doc_ids is None and retrieval_options is None:
raise RuntimeError(
"Must specify a set of documents for chat or specify search options"
)
llm, fast_llm = get_llms_for_persona(
llm = get_llm_for_persona(
persona=persona,
user=user,
llm_override=new_msg_req.llm_override or chat_session.llm_override,
@@ -388,6 +348,14 @@ def stream_chat_message_objects(
)
token_counter = get_llm_token_counter(llm)
# Check LLM cost limits before using the LLM (only for Onyx-managed keys)
check_llm_cost_limit_for_provider(
db_session=db_session,
tenant_id=tenant_id,
llm_provider_api_key=llm.config.api_key,
)
# Verify that the user specified files actually belong to the user
verify_user_files(
user_files=new_msg_req.file_descriptors,
@@ -396,35 +364,58 @@ def stream_chat_message_objects(
project_id=chat_session.project_id,
)
# Makes sure that the chat session has the right message nodes
# and that the latest user message is created (not yet committed)
user_message = _initialize_chat_session(
message_text=message_text,
files=new_msg_req.file_descriptors,
token_counter=token_counter,
parent_id=parent_id,
user_id=user_id,
chat_session_id=chat_session_id,
db_session=db_session,
use_existing_user_message=use_existing_user_message,
)
# re-create linear history of messages
chat_history = create_chat_history_chain(
chat_session_id=chat_session_id, db_session=db_session
chat_session_id=chat_session.id, db_session=db_session
)
last_chat_message = chat_history[-1]
# Determine the parent message based on the request:
# - -1: auto-place after latest message in chain
# - None: regeneration from root (first message)
# - positive int: place after that specific parent message
root_message = get_or_create_root_message(
chat_session_id=chat_session.id, db_session=db_session
)
if last_chat_message.id != user_message.id:
db_session.rollback()
raise RuntimeError(
"The new message was not on the mainline. "
"Chat message history tree is not correctly built."
if new_msg_req.parent_message_id == AUTO_PLACE_AFTER_LATEST_MESSAGE:
# Auto-place after the latest message in the chain
parent_message = chat_history[-1] if chat_history else root_message
elif new_msg_req.parent_message_id is None:
# None = regeneration from root
parent_message = root_message
# Truncate history since we're starting from root
chat_history = []
else:
# Specific parent message ID provided, find parent in chat_history
parent_message = None
for i in range(len(chat_history) - 1, -1, -1):
if chat_history[i].id == new_msg_req.parent_message_id:
parent_message = chat_history[i]
# Truncate history to only include messages up to and including parent
chat_history = chat_history[: i + 1]
break
if parent_message is None:
raise ValueError(
"The new message sent is not on the latest mainline of messages"
)
# At this point we can save the user message as it's validated and final
db_session.commit()
# If the parent message is a user message, it's a regeneration and we use the existing user message.
if parent_message.message_type == MessageType.USER:
user_message = parent_message
else:
user_message = create_new_chat_message(
chat_session_id=chat_session.id,
parent_message=parent_message,
message=message_text,
token_count=token_counter(message_text),
message_type=MessageType.USER,
files=new_msg_req.file_descriptors,
db_session=db_session,
commit=True,
)
chat_history.append(user_message)
memories = get_memories(user, db_session)
@@ -434,7 +425,7 @@ def stream_chat_message_objects(
db_session=db_session,
persona_system_prompt=custom_agent_prompt or "",
token_counter=token_counter,
files=last_chat_message.files,
files=new_msg_req.file_descriptors,
memories=memories,
)
@@ -456,15 +447,20 @@ def stream_chat_message_objects(
None,
)
# This may also mutate the new_msg_req.forced_tool_ids
# This logic is specifically for projects
search_usage_forcing_setting = _get_project_search_availability(
# Determine if search should be disabled for this project context
forced_tool_id = new_msg_req.forced_tool_id
project_search_config = _get_project_search_availability(
project_id=chat_session.project_id,
persona_id=persona.id,
has_project_file_texts=bool(extracted_project_files.project_file_texts),
forced_tool_ids=new_msg_req.forced_tool_ids,
loaded_project_files=bool(extracted_project_files.project_file_texts),
project_has_files=bool(
extracted_project_files.project_uncapped_token_count
),
forced_tool_id=new_msg_req.forced_tool_id,
search_tool_id=search_tool_id,
)
if project_search_config.disable_forced_tool:
forced_tool_id = None
emitter = get_default_emitter()
@@ -475,9 +471,8 @@ def stream_chat_message_objects(
emitter=emitter,
user=user,
llm=llm,
fast_llm=fast_llm,
search_tool_config=SearchToolConfig(
user_selected_filters=user_selected_filters,
user_selected_filters=new_msg_req.internal_search_filters,
project_id=(
chat_session.project_id
if extracted_project_files.project_as_filter
@@ -487,17 +482,20 @@ def stream_chat_message_objects(
slack_context=slack_context,
),
custom_tool_config=CustomToolConfig(
chat_session_id=chat_session_id,
chat_session_id=chat_session.id,
message_id=user_message.id if user_message else None,
additional_headers=custom_tool_additional_headers,
),
allowed_tool_ids=new_msg_req.allowed_tool_ids,
search_usage_forcing_setting=search_usage_forcing_setting,
search_usage_forcing_setting=project_search_config.search_usage,
)
tools: list[Tool] = []
for tool_list in tool_dict.values():
tools.extend(tool_list)
if forced_tool_id and forced_tool_id not in [tool.id for tool in tools]:
raise ValueError(f"Forced tool {forced_tool_id} not found in tools")
# TODO Once summarization is done, we don't need to load all the files from the beginning anymore.
# load all files needed for this chat chain in memory
files = load_all_chat_files(chat_history, db_session)
@@ -507,7 +505,7 @@ def stream_chat_message_objects(
# Reserve a message id for the assistant response for frontend to track packets
assistant_response = reserve_message_id(
db_session=db_session,
chat_session_id=chat_session_id,
chat_session_id=chat_session.id,
parent_message=user_message.id,
message_type=MessageType.ASSISTANT,
)
@@ -531,22 +529,23 @@ def stream_chat_message_objects(
redis_client = get_redis_client()
reset_cancel_status(
chat_session_id,
chat_session.id,
redis_client,
)
def check_is_connected() -> bool:
return check_stop_signal(chat_session_id, redis_client)
return check_stop_signal(chat_session.id, redis_client)
# Create state container for accumulating partial results
state_container = ChatStateContainer()
# Use external state container if provided, otherwise create internal one
# External container allows non-streaming callers to access accumulated state
state_container = external_state_container or ChatStateContainer()
# Run the LLM loop with explicit wrapper for stop signal handling
# The wrapper runs run_llm_loop in a background thread and polls every 300ms
# for stop signals. run_llm_loop itself doesn't know about stopping.
# Note: DB session is not thread safe but nothing else uses it and the
# reference is passed directly so it's ok.
if os.environ.get("ENABLE_DEEP_RESEARCH_LOOP"): # Dev only feature flag for now
if new_msg_req.deep_research:
if chat_session.project_id:
raise RuntimeError("Deep research is not supported for projects")
@@ -554,7 +553,7 @@ def stream_chat_message_objects(
# (user has already responded to a clarification question)
skip_clarification = is_last_assistant_message_clarification(chat_history)
yield from run_chat_llm_with_state_containers(
yield from run_chat_loop_with_state_containers(
run_deep_research_llm_loop,
is_connected=check_is_connected,
emitter=emitter,
@@ -567,9 +566,10 @@ def stream_chat_message_objects(
db_session=db_session,
skip_clarification=skip_clarification,
user_identity=user_identity,
chat_session_id=str(chat_session.id),
)
else:
yield from run_chat_llm_with_state_containers(
yield from run_chat_loop_with_state_containers(
run_llm_loop,
is_connected=check_is_connected, # Not passed through to run_llm_loop
emitter=emitter,
@@ -583,18 +583,15 @@ def stream_chat_message_objects(
llm=llm,
token_counter=token_counter,
db_session=db_session,
forced_tool_id=(
new_msg_req.forced_tool_ids[0]
if new_msg_req.forced_tool_ids
else None
),
forced_tool_id=forced_tool_id,
user_identity=user_identity,
chat_session_id=str(chat_session.id),
)
# Determine if stopped by user
completed_normally = check_is_connected()
if not completed_normally:
logger.debug(f"Chat session {chat_session_id} stopped by user")
logger.debug(f"Chat session {chat_session.id} stopped by user")
# Build final answer based on completion status
if completed_normally:
@@ -696,23 +693,63 @@ def stream_chat_message_objects(
return
@log_generator_function_time()
def stream_chat_message(
def stream_chat_message_objects(
new_msg_req: CreateChatMessageRequest,
user: User | None,
db_session: Session,
# if specified, uses the last user message and does not create a new user message based
# on the `new_msg_req.message`. Currently, requires a state where the last message is a
litellm_additional_headers: dict[str, str] | None = None,
custom_tool_additional_headers: dict[str, str] | None = None,
) -> Iterator[str]:
with get_session_with_current_tenant() as db_session:
objects = stream_chat_message_objects(
new_msg_req=new_msg_req,
user=user,
db_session=db_session,
litellm_additional_headers=litellm_additional_headers,
custom_tool_additional_headers=custom_tool_additional_headers,
bypass_acl: bool = False,
# Additional context that should be included in the chat history, for example:
# Slack threads where the conversation cannot be represented by a chain of User/Assistant
# messages. Both of the below are used for Slack
# NOTE: is not stored in the database, only passed in to the LLM as context
additional_context: str | None = None,
# Slack context for federated Slack search
slack_context: SlackContext | None = None,
) -> AnswerStream:
forced_tool_id = (
new_msg_req.forced_tool_ids[0] if new_msg_req.forced_tool_ids else None
)
if (
new_msg_req.retrieval_options
and new_msg_req.retrieval_options.run_search == OptionalSearchSetting.ALWAYS
):
all_tools = get_tools(db_session)
search_tool_id = next(
(tool.id for tool in all_tools if tool.in_code_tool_id == SEARCH_TOOL_ID),
None,
)
for obj in objects:
yield get_json_line(obj.model_dump())
forced_tool_id = search_tool_id
translated_new_msg_req = SendMessageRequest(
message=new_msg_req.message,
llm_override=new_msg_req.llm_override,
allowed_tool_ids=new_msg_req.allowed_tool_ids,
forced_tool_id=forced_tool_id,
file_descriptors=new_msg_req.file_descriptors,
internal_search_filters=(
new_msg_req.retrieval_options.filters
if new_msg_req.retrieval_options
else None
),
deep_research=new_msg_req.deep_research,
parent_message_id=new_msg_req.parent_message_id,
chat_session_id=new_msg_req.chat_session_id,
)
return handle_stream_message_objects(
new_msg_req=translated_new_msg_req,
user=user,
db_session=db_session,
litellm_additional_headers=litellm_additional_headers,
custom_tool_additional_headers=custom_tool_additional_headers,
bypass_acl=bypass_acl,
additional_context=additional_context,
slack_context=slack_context,
)
def remove_answer_citations(answer: str) -> str:
@@ -767,3 +804,83 @@ def gather_stream(
error_msg=error_msg,
top_documents=top_documents,
)
@log_function_time()
def gather_stream_full(
packets: AnswerStream,
state_container: ChatStateContainer,
) -> ChatFullResponse:
"""
Aggregate streaming packets and state container into a complete ChatFullResponse.
This function consumes all packets from the stream and combines them with
the accumulated state from the ChatStateContainer to build a complete response
including answer, reasoning, citations, and tool calls.
Args:
packets: The stream of packets from handle_stream_message_objects
state_container: The state container that accumulates tool calls, reasoning, etc.
Returns:
ChatFullResponse with all available data
"""
answer: str | None = None
citations: list[CitationInfo] = []
error_msg: str | None = None
message_id: int | None = None
top_documents: list[SearchDoc] = []
chat_session_id: UUID | None = None
for packet in packets:
if isinstance(packet, Packet):
if isinstance(packet.obj, AgentResponseStart):
if packet.obj.final_documents:
top_documents = packet.obj.final_documents
elif isinstance(packet.obj, AgentResponseDelta):
if answer is None:
answer = ""
if packet.obj.content:
answer += packet.obj.content
elif isinstance(packet.obj, CitationInfo):
citations.append(packet.obj)
elif isinstance(packet, StreamingError):
error_msg = packet.error
elif isinstance(packet, MessageResponseIDInfo):
message_id = packet.reserved_assistant_message_id
elif isinstance(packet, CreateChatSessionID):
chat_session_id = packet.chat_session_id
if message_id is None:
raise ValueError("Message ID is required")
# Use state_container for complete answer (handles edge cases gracefully)
final_answer = state_container.get_answer_tokens() or answer or ""
# Get reasoning from state container (None when model doesn't produce reasoning)
reasoning = state_container.get_reasoning_tokens()
# Convert ToolCallInfo list to ToolCallResponse list
tool_call_responses = [
ToolCallResponse(
tool_name=tc.tool_name,
tool_arguments=tc.tool_call_arguments,
tool_result=tc.tool_call_response,
search_docs=tc.search_docs,
generated_images=tc.generated_images,
pre_reasoning=tc.reasoning_tokens,
)
for tc in state_container.get_tool_calls()
]
return ChatFullResponse(
answer=final_answer,
answer_citationless=remove_answer_citations(final_answer),
pre_answer_reasoning=reasoning,
tool_calls=tool_call_responses,
top_documents=top_documents,
citation_info=citations,
message_id=message_id,
chat_session_id=chat_session_id,
error_msg=error_msg,
)

View File

@@ -22,7 +22,7 @@ from onyx.prompts.tool_prompts import PYTHON_TOOL_GUIDANCE
from onyx.prompts.tool_prompts import TOOL_DESCRIPTION_SEARCH_GUIDANCE
from onyx.prompts.tool_prompts import TOOL_SECTION_HEADER
from onyx.prompts.tool_prompts import WEB_SEARCH_GUIDANCE
from onyx.tools.tool import Tool
from onyx.tools.interface import Tool
from onyx.tools.tool_implementations.images.image_generation_tool import (
ImageGenerationTool,
)
@@ -37,7 +37,7 @@ def get_default_base_system_prompt(db_session: Session) -> str:
default_persona = get_default_behavior_persona(db_session)
return (
default_persona.system_prompt
if default_persona and default_persona.system_prompt
if default_persona and default_persona.system_prompt is not None
else DEFAULT_SYSTEM_PROMPT
)
@@ -156,7 +156,7 @@ def build_system_prompt(
system_prompt += company_context
if memories:
system_prompt += "\n".join(
memory.strip() for memory in memories if memory.strip()
"- " + memory.strip() for memory in memories if memory.strip()
)
# Append citation guidance after company context if placeholder was not present

View File

@@ -102,6 +102,7 @@ def _create_and_link_tool_calls(
if tool_call_info.generated_images
else None
),
tab_index=tool_call_info.tab_index,
add_only=True,
)
@@ -116,22 +117,30 @@ def _create_and_link_tool_calls(
tool_call_map[tool_call_obj.tool_call_id] = tool_call_obj.id
# Update parent_tool_call_id for all tool calls
# Filter out orphaned children (whose parents don't exist) - this can happen
# when generation is stopped mid-execution and parent tool calls were cancelled
valid_tool_calls: list[ToolCall] = []
for tool_call_obj in tool_call_objects:
tool_call_info = tool_call_info_map[tool_call_obj.tool_call_id]
if tool_call_info.parent_tool_call_id is not None:
parent_id = tool_call_map.get(tool_call_info.parent_tool_call_id)
if parent_id is not None:
tool_call_obj.parent_tool_call_id = parent_id
valid_tool_calls.append(tool_call_obj)
else:
# This would cause chat sessions to fail if this function is miscalled with
# tool calls that have bad parent pointers but this falls under "fail loudly"
raise ValueError(
f"Parent tool call with tool_call_id '{tool_call_info.parent_tool_call_id}' "
f"not found for tool call '{tool_call_obj.tool_call_id}'"
# Parent doesn't exist (likely cancelled) - skip this orphaned child
logger.warning(
f"Skipping tool call '{tool_call_obj.tool_call_id}' with missing parent "
f"'{tool_call_info.parent_tool_call_id}' (likely cancelled during execution)"
)
# Remove from DB session to prevent saving
db_session.delete(tool_call_obj)
else:
# Top-level tool call (no parent)
valid_tool_calls.append(tool_call_obj)
# Link SearchDocs to ToolCalls
for tool_call_obj in tool_call_objects:
# Link SearchDocs only to valid ToolCalls
for tool_call_obj in valid_tool_calls:
search_doc_ids = tool_call_to_search_doc_ids.get(tool_call_obj.tool_call_id, [])
if search_doc_ids:
add_search_docs_to_tool_call(
@@ -219,8 +228,8 @@ def save_chat_turn(
search_doc_key_to_id[search_doc_key] = db_search_doc.id
search_doc_ids_for_tool.append(db_search_doc.id)
tool_call_to_search_doc_ids[tool_call_info.tool_call_id] = (
search_doc_ids_for_tool
tool_call_to_search_doc_ids[tool_call_info.tool_call_id] = list(
set(search_doc_ids_for_tool)
)
# 3. Collect all unique SearchDoc IDs from all tool calls to link to ChatMessage

View File

@@ -2,12 +2,23 @@ from uuid import UUID
from redis.client import Redis
from shared_configs.contextvars import get_current_tenant_id
# Redis key prefixes for chat session stop signals
PREFIX = "chatsessionstop"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 24 * 60 * 60 # 24 hours - defensive TTL to prevent memory leaks
FENCE_TTL = 10 * 60 # 10 minutes - defensive TTL to prevent memory leaks
def _get_fence_key(chat_session_id: UUID) -> str:
"""
Generate the Redis key for a chat session stop signal fence.
Args:
chat_session_id: The UUID of the chat session
Returns:
The fence key string (tenant_id is automatically added by the Redis client)
"""
return f"{FENCE_PREFIX}_{chat_session_id}"
def set_fence(chat_session_id: UUID, redis_client: Redis, value: bool) -> None:
@@ -16,11 +27,10 @@ def set_fence(chat_session_id: UUID, redis_client: Redis, value: bool) -> None:
Args:
chat_session_id: The UUID of the chat session
redis_client: Redis client to use
redis_client: Redis client to use (tenant-aware client that auto-prefixes keys)
value: True to set the fence (stop signal), False to clear it
"""
tenant_id = get_current_tenant_id()
fence_key = f"{FENCE_PREFIX}_{tenant_id}_{chat_session_id}"
fence_key = _get_fence_key(chat_session_id)
if not value:
redis_client.delete(fence_key)
return
@@ -34,13 +44,12 @@ def is_connected(chat_session_id: UUID, redis_client: Redis) -> bool:
Args:
chat_session_id: The UUID of the chat session to check
redis_client: Redis client to use for checking the stop signal
redis_client: Redis client to use for checking the stop signal (tenant-aware client that auto-prefixes keys)
Returns:
True if the session should continue, False if it should stop
"""
tenant_id = get_current_tenant_id()
fence_key = f"{FENCE_PREFIX}_{tenant_id}_{chat_session_id}"
fence_key = _get_fence_key(chat_session_id)
return not bool(redis_client.exists(fence_key))
@@ -50,8 +59,7 @@ def reset_cancel_status(chat_session_id: UUID, redis_client: Redis) -> None:
Args:
chat_session_id: The UUID of the chat session
redis_client: Redis client to use
redis_client: Redis client to use (tenant-aware client that auto-prefixes keys)
"""
tenant_id = get_current_tenant_id()
fence_key = f"{FENCE_PREFIX}_{tenant_id}_{chat_session_id}"
fence_key = _get_fence_key(chat_session_id)
redis_client.delete(fence_key)

View File

@@ -7,10 +7,8 @@ from typing import cast
from onyx.auth.schemas import AuthBackend
from onyx.configs.constants import AuthType
from onyx.configs.constants import DocumentIndexType
from onyx.configs.constants import QueryHistoryType
from onyx.file_processing.enums import HtmlBasedConnectorTransformLinksStrategy
from onyx.prompts.image_analysis import DEFAULT_IMAGE_ANALYSIS_SYSTEM_PROMPT
from onyx.prompts.image_analysis import DEFAULT_IMAGE_SUMMARIZATION_SYSTEM_PROMPT
from onyx.prompts.image_analysis import DEFAULT_IMAGE_SUMMARIZATION_USER_PROMPT
@@ -188,10 +186,12 @@ TRACK_EXTERNAL_IDP_EXPIRY = (
# DB Configs
#####
DOCUMENT_INDEX_NAME = "danswer_index"
# Vespa is now the default document index store for both keyword and vector
DOCUMENT_INDEX_TYPE = os.environ.get(
"DOCUMENT_INDEX_TYPE", DocumentIndexType.COMBINED.value
)
OPENSEARCH_HOST = os.environ.get("OPENSEARCH_HOST") or "localhost"
OPENSEARCH_REST_API_PORT = int(os.environ.get("OPENSEARCH_REST_API_PORT") or 9200)
OPENSEARCH_ADMIN_USERNAME = os.environ.get("OPENSEARCH_ADMIN_USERNAME", "admin")
OPENSEARCH_ADMIN_PASSWORD = os.environ.get("OPENSEARCH_ADMIN_PASSWORD", "")
VESPA_HOST = os.environ.get("VESPA_HOST") or "localhost"
# NOTE: this is used if and only if the vespa config server is accessible via a
# different host than the main vespa application
@@ -203,10 +203,6 @@ VESPA_NUM_ATTEMPTS_ON_STARTUP = int(os.environ.get("NUM_RETRIES_ON_STARTUP") or
VESPA_CLOUD_URL = os.environ.get("VESPA_CLOUD_URL", "")
# The default below is for dockerized deployment
VESPA_DEPLOYMENT_ZIP = (
os.environ.get("VESPA_DEPLOYMENT_ZIP") or "/app/onyx/vespa-app.zip"
)
VESPA_CLOUD_CERT_PATH = os.environ.get("VESPA_CLOUD_CERT_PATH")
VESPA_CLOUD_KEY_PATH = os.environ.get("VESPA_CLOUD_KEY_PATH")
@@ -315,63 +311,64 @@ CELERY_RESULT_EXPIRES = int(os.environ.get("CELERY_RESULT_EXPIRES", 86400)) # s
# https://docs.celeryq.dev/en/stable/userguide/configuration.html#broker-pool-limit
# Setting to None may help when there is a proxy in the way closing idle connections
CELERY_BROKER_POOL_LIMIT_DEFAULT = 10
_CELERY_BROKER_POOL_LIMIT_DEFAULT = 10
try:
CELERY_BROKER_POOL_LIMIT = int(
os.environ.get("CELERY_BROKER_POOL_LIMIT", CELERY_BROKER_POOL_LIMIT_DEFAULT)
os.environ.get("CELERY_BROKER_POOL_LIMIT", _CELERY_BROKER_POOL_LIMIT_DEFAULT)
)
except ValueError:
CELERY_BROKER_POOL_LIMIT = CELERY_BROKER_POOL_LIMIT_DEFAULT
CELERY_BROKER_POOL_LIMIT = _CELERY_BROKER_POOL_LIMIT_DEFAULT
CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT = 24
_CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT = 24
try:
CELERY_WORKER_LIGHT_CONCURRENCY = int(
os.environ.get(
"CELERY_WORKER_LIGHT_CONCURRENCY", CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT
"CELERY_WORKER_LIGHT_CONCURRENCY",
_CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT,
)
)
except ValueError:
CELERY_WORKER_LIGHT_CONCURRENCY = CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT
CELERY_WORKER_LIGHT_CONCURRENCY = _CELERY_WORKER_LIGHT_CONCURRENCY_DEFAULT
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT = 8
_CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT = 8
try:
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER = int(
os.environ.get(
"CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER",
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT,
_CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT,
)
)
except ValueError:
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER = (
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT
_CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT
)
CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT = 6
_CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT = 6
try:
env_value = os.environ.get("CELERY_WORKER_DOCPROCESSING_CONCURRENCY")
if not env_value:
env_value = os.environ.get("NUM_INDEXING_WORKERS")
if not env_value:
env_value = str(CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT)
env_value = str(_CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT)
CELERY_WORKER_DOCPROCESSING_CONCURRENCY = int(env_value)
except ValueError:
CELERY_WORKER_DOCPROCESSING_CONCURRENCY = (
CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT
_CELERY_WORKER_DOCPROCESSING_CONCURRENCY_DEFAULT
)
CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT = 1
_CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT = 1
try:
env_value = os.environ.get("CELERY_WORKER_DOCFETCHING_CONCURRENCY")
if not env_value:
env_value = os.environ.get("NUM_DOCFETCHING_WORKERS")
if not env_value:
env_value = str(CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT)
env_value = str(_CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT)
CELERY_WORKER_DOCFETCHING_CONCURRENCY = int(env_value)
except ValueError:
CELERY_WORKER_DOCFETCHING_CONCURRENCY = (
CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT
_CELERY_WORKER_DOCFETCHING_CONCURRENCY_DEFAULT
)
CELERY_WORKER_PRIMARY_CONCURRENCY = int(
@@ -469,11 +466,6 @@ CONFLUENCE_CONNECTOR_LABELS_TO_SKIP = [
if ignored_tag
]
# Avoid to get archived pages
CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES = (
os.environ.get("CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES", "").lower() == "true"
)
# Attachments exceeding this size will not be retrieved (in bytes)
CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD = int(
os.environ.get("CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD", 10 * 1024 * 1024)
@@ -541,6 +533,11 @@ GOOGLE_DRIVE_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("GOOGLE_DRIVE_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
# Default size threshold for Drupal Wiki attachments (10MB)
DRUPAL_WIKI_ATTACHMENT_SIZE_THRESHOLD = int(
os.environ.get("DRUPAL_WIKI_ATTACHMENT_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
# Default size threshold for SharePoint files (20MB)
SHAREPOINT_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("SHAREPOINT_CONNECTOR_SIZE_THRESHOLD", 20 * 1024 * 1024)
@@ -583,14 +580,16 @@ LINEAR_CLIENT_SECRET = os.getenv("LINEAR_CLIENT_SECRET")
SLACK_NUM_THREADS = int(os.getenv("SLACK_NUM_THREADS") or 8)
MAX_SLACK_QUERY_EXPANSIONS = int(os.environ.get("MAX_SLACK_QUERY_EXPANSIONS", "5"))
DASK_JOB_CLIENT_ENABLED = (
os.environ.get("DASK_JOB_CLIENT_ENABLED", "").lower() == "true"
# Slack federated search thread context settings
# Batch size for fetching thread context (controls concurrent API calls per batch)
SLACK_THREAD_CONTEXT_BATCH_SIZE = int(
os.environ.get("SLACK_THREAD_CONTEXT_BATCH_SIZE", "5")
)
EXPERIMENTAL_CHECKPOINTING_ENABLED = (
os.environ.get("EXPERIMENTAL_CHECKPOINTING_ENABLED", "").lower() == "true"
# Maximum messages to fetch thread context for (top N by relevance get full context)
MAX_SLACK_THREAD_CONTEXT_MESSAGES = int(
os.environ.get("MAX_SLACK_THREAD_CONTEXT_MESSAGES", "5")
)
# TestRail specific configs
TESTRAIL_BASE_URL = os.environ.get("TESTRAIL_BASE_URL", "")
TESTRAIL_USERNAME = os.environ.get("TESTRAIL_USERNAME", "")
@@ -601,7 +600,6 @@ LEAVE_CONNECTOR_ACTIVE_ON_INITIALIZATION_FAILURE = (
== "true"
)
PRUNING_DISABLED = -1
DEFAULT_PRUNING_FREQ = 60 * 60 * 24 # Once a day
ALLOW_SIMULTANEOUS_PRUNING = (
@@ -653,10 +651,6 @@ LARGE_CHUNK_RATIO = 4
# Include the document level metadata in each chunk. If the metadata is too long, then it is thrown out
# We don't want the metadata to overwhelm the actual contents of the chunk
SKIP_METADATA_IN_CHUNK = os.environ.get("SKIP_METADATA_IN_CHUNK", "").lower() == "true"
# Timeout to wait for job's last update before killing it, in hours
CLEANUP_INDEXING_JOBS_TIMEOUT = int(
os.environ.get("CLEANUP_INDEXING_JOBS_TIMEOUT") or 3
)
# The indexer will warn in the logs whenver a document exceeds this threshold (in bytes)
INDEXING_SIZE_WARNING_THRESHOLD = int(
@@ -673,10 +667,6 @@ INDEXING_EMBEDDING_MODEL_NUM_THREADS = int(
os.environ.get("INDEXING_EMBEDDING_MODEL_NUM_THREADS") or 8
)
# During an indexing attempt, specifies the number of batches which are allowed to
# exception without aborting the attempt.
INDEXING_EXCEPTION_LIMIT = int(os.environ.get("INDEXING_EXCEPTION_LIMIT") or 0)
# Maximum number of user file connector credential pairs to index in a single batch
# Setting this number too high may overload the indexing process
USER_FILE_INDEXING_LIMIT = int(os.environ.get("USER_FILE_INDEXING_LIMIT") or 100)
@@ -698,6 +688,15 @@ AVERAGE_SUMMARY_EMBEDDINGS = (
MAX_TOKENS_FOR_FULL_INCLUSION = 4096
# The intent was to have this be configurable per query, but I don't think any
# codepath was actually configuring this, so for the migrated Vespa interface
# we'll just use the default value, but also have it be configurable by env var.
RECENCY_BIAS_MULTIPLIER = float(os.environ.get("RECENCY_BIAS_MULTIPLIER") or 1.0)
# Should match the rerank-count value set in
# backend/onyx/document_index/vespa/app_config/schemas/danswer_chunk.sd.jinja.
RERANK_COUNT = int(os.environ.get("RERANK_COUNT") or 1000)
#####
# Tool Configs
@@ -718,22 +717,10 @@ CODE_INTERPRETER_MAX_OUTPUT_LENGTH = int(
# Miscellaneous
#####
JOB_TIMEOUT = 60 * 60 * 6 # 6 hours default
# used to allow the background indexing jobs to use a different embedding
# model server than the API server
CURRENT_PROCESS_IS_AN_INDEXING_JOB = (
os.environ.get("CURRENT_PROCESS_IS_AN_INDEXING_JOB", "").lower() == "true"
)
# Sets LiteLLM to verbose logging
LOG_ALL_MODEL_INTERACTIONS = (
os.environ.get("LOG_ALL_MODEL_INTERACTIONS", "").lower() == "true"
)
# Logs Onyx only model interactions like prompts, responses, messages etc.
LOG_ONYX_MODEL_INTERACTIONS = (
os.environ.get("LOG_ONYX_MODEL_INTERACTIONS", "").lower() == "true"
)
LOG_INDIVIDUAL_MODEL_TOKENS = (
os.environ.get("LOG_INDIVIDUAL_MODEL_TOKENS", "").lower() == "true"
)
# If set to `true` will enable additional logs about Vespa query performance
# (time spent on finding the right docs + time spent fetching summaries from disk)
LOG_VESPA_TIMING_INFORMATION = (
@@ -764,10 +751,6 @@ BRAINTRUST_MAX_CONCURRENCY = int(os.environ.get("BRAINTRUST_MAX_CONCURRENCY") or
LANGFUSE_SECRET_KEY = os.environ.get("LANGFUSE_SECRET_KEY") or ""
LANGFUSE_PUBLIC_KEY = os.environ.get("LANGFUSE_PUBLIC_KEY") or ""
TOKEN_BUDGET_GLOBALLY_ENABLED = (
os.environ.get("TOKEN_BUDGET_GLOBALLY_ENABLED", "").lower() == "true"
)
# Defined custom query/answer conditions to validate the query and the LLM answer.
# Format: list of strings
CUSTOM_ANSWER_VALIDITY_CONDITIONS = json.loads(
@@ -795,16 +778,16 @@ try:
except json.JSONDecodeError:
pass
# LLM Model Update API endpoint
LLM_MODEL_UPDATE_API_URL = os.environ.get("LLM_MODEL_UPDATE_API_URL")
# Auto LLM Configuration - fetches model configs from GitHub for providers in Auto mode
AUTO_LLM_CONFIG_URL = os.environ.get(
"AUTO_LLM_CONFIG_URL",
"https://raw.githubusercontent.com/onyx-dot-app/onyx/main/backend/onyx/llm/well_known_providers/recommended-models.json",
)
# Federated Search Configs
MAX_FEDERATED_SECTIONS = int(
os.environ.get("MAX_FEDERATED_SECTIONS", "5")
) # max no. of federated sections to always keep
MAX_FEDERATED_CHUNKS = int(
os.environ.get("MAX_FEDERATED_CHUNKS", "5")
) # max no. of chunks to retrieve per federated connector
# How often to check for auto LLM model updates (in seconds)
AUTO_LLM_UPDATE_INTERVAL_SECONDS = int(
os.environ.get("AUTO_LLM_UPDATE_INTERVAL_SECONDS", 1800) # 30 minutes
)
#####
# Enterprise Edition Configs
@@ -860,8 +843,6 @@ OAUTH_CONFLUENCE_CLOUD_CLIENT_ID = os.environ.get(
OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET = os.environ.get(
"OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET", ""
)
OAUTH_JIRA_CLOUD_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_ID", "")
OAUTH_JIRA_CLOUD_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_SECRET", "")
OAUTH_GOOGLE_DRIVE_CLIENT_ID = os.environ.get("OAUTH_GOOGLE_DRIVE_CLIENT_ID", "")
OAUTH_GOOGLE_DRIVE_CLIENT_SECRET = os.environ.get(
"OAUTH_GOOGLE_DRIVE_CLIENT_SECRET", ""
@@ -903,9 +884,20 @@ DEV_MODE = os.environ.get("DEV_MODE", "").lower() == "true"
INTEGRATION_TESTS_MODE = os.environ.get("INTEGRATION_TESTS_MODE", "").lower() == "true"
MOCK_CONNECTOR_FILE_PATH = os.environ.get("MOCK_CONNECTOR_FILE_PATH")
#####
# Captcha Configuration (for cloud signup protection)
#####
# Enable captcha verification for new user registration
CAPTCHA_ENABLED = os.environ.get("CAPTCHA_ENABLED", "").lower() == "true"
TEST_ENV = os.environ.get("TEST_ENV", "").lower() == "true"
# Google reCAPTCHA secret key (server-side validation)
RECAPTCHA_SECRET_KEY = os.environ.get("RECAPTCHA_SECRET_KEY", "")
# Minimum score threshold for reCAPTCHA v3 (0.0-1.0, higher = more likely human)
# 0.5 is the recommended default
RECAPTCHA_SCORE_THRESHOLD = float(os.environ.get("RECAPTCHA_SCORE_THRESHOLD", "0.5"))
MOCK_CONNECTOR_FILE_PATH = os.environ.get("MOCK_CONNECTOR_FILE_PATH")
# Set to true to mock LLM responses for testing purposes
MOCK_LLM_RESPONSE = (
@@ -931,15 +923,6 @@ IMAGE_SUMMARIZATION_USER_PROMPT = os.environ.get(
DEFAULT_IMAGE_SUMMARIZATION_USER_PROMPT,
)
IMAGE_ANALYSIS_SYSTEM_PROMPT = os.environ.get(
"IMAGE_ANALYSIS_SYSTEM_PROMPT",
DEFAULT_IMAGE_ANALYSIS_SYSTEM_PROMPT,
)
DISABLE_AUTO_AUTH_REFRESH = (
os.environ.get("DISABLE_AUTO_AUTH_REFRESH", "").lower() == "true"
)
# Knowledge Graph Read Only User Configuration
DB_READONLY_USER: str = os.environ.get("DB_READONLY_USER", "db_readonly_user")
DB_READONLY_PASSWORD: str = urllib.parse.quote_plus(
@@ -967,3 +950,15 @@ S3_GENERATE_LOCAL_CHECKSUM = (
# Forcing Vespa Language
# English: en, German:de, etc. See: https://docs.vespa.ai/en/linguistics.html
VESPA_LANGUAGE_OVERRIDE = os.environ.get("VESPA_LANGUAGE_OVERRIDE")
#####
# Default LLM API Keys (for cloud deployments)
# These are Onyx-managed API keys provided to tenants by default
#####
OPENAI_DEFAULT_API_KEY = os.environ.get("OPENAI_DEFAULT_API_KEY")
ANTHROPIC_DEFAULT_API_KEY = os.environ.get("ANTHROPIC_DEFAULT_API_KEY")
COHERE_DEFAULT_API_KEY = os.environ.get("COHERE_DEFAULT_API_KEY")
VERTEXAI_DEFAULT_CREDENTIALS = os.environ.get("VERTEXAI_DEFAULT_CREDENTIALS")
VERTEXAI_DEFAULT_LOCATION = os.environ.get("VERTEXAI_DEFAULT_LOCATION", "global")
OPENROUTER_DEFAULT_API_KEY = os.environ.get("OPENROUTER_DEFAULT_API_KEY")

View File

@@ -11,9 +11,6 @@ NUM_POSTPROCESSED_RESULTS = 20
# May be less depending on model
MAX_CHUNKS_FED_TO_CHAT = int(os.environ.get("MAX_CHUNKS_FED_TO_CHAT") or 25)
# For Chat, need to keep enough space for history and other prompt pieces
# ~3k input, half for docs, half for chat history + prompts
CHAT_TARGET_CHUNK_PERCENTAGE = 512 * 3 / 3072
# Maximum percentage of the context window to fill with selected sections
SELECTED_SECTIONS_MAX_WINDOW_PERCENTAGE = 0.8

View File

@@ -209,6 +209,7 @@ class DocumentSource(str, Enum):
EGNYTE = "egnyte"
AIRTABLE = "airtable"
HIGHSPOT = "highspot"
DRUPAL_WIKI = "drupal_wiki"
IMAP = "imap"
BITBUCKET = "bitbucket"
@@ -332,7 +333,6 @@ class FileType(str, Enum):
class MilestoneRecordType(str, Enum):
TENANT_CREATED = "tenant_created"
USER_SIGNED_UP = "user_signed_up"
MULTIPLE_USERS = "multiple_users"
VISITED_ADMIN_PAGE = "visited_admin_page"
CREATED_CONNECTOR = "created_connector"
CONNECTOR_SUCCEEDED = "connector_succeeded"
@@ -492,7 +492,7 @@ class OnyxCeleryTask:
CHECK_FOR_PRUNING = "check_for_pruning"
CHECK_FOR_DOC_PERMISSIONS_SYNC = "check_for_doc_permissions_sync"
CHECK_FOR_EXTERNAL_GROUP_SYNC = "check_for_external_group_sync"
CHECK_FOR_LLM_MODEL_UPDATE = "check_for_llm_model_update"
CHECK_FOR_AUTO_LLM_UPDATE = "check_for_auto_llm_update"
# User file processing
CHECK_FOR_USER_FILE_PROCESSING = "check_for_user_file_processing"
@@ -562,9 +562,9 @@ REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPINTVL] = 15
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPCNT] = 3
if platform.system() == "Darwin":
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPALIVE] = 60 # type: ignore
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPALIVE] = 60 # type: ignore[attr-defined,unused-ignore]
else:
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPIDLE] = 60 # type: ignore
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPIDLE] = 60 # type: ignore[attr-defined,unused-ignore]
class OnyxCallTypes(str, Enum):
@@ -629,6 +629,7 @@ project management, and collaboration tools into a single, customizable platform
DocumentSource.EGNYTE: "egnyte - files",
DocumentSource.AIRTABLE: "airtable - database",
DocumentSource.HIGHSPOT: "highspot - CRM data",
DocumentSource.DRUPAL_WIKI: "drupal wiki - knowledge base content (pages, spaces, attachments)",
DocumentSource.IMAP: "imap - email data",
DocumentSource.TESTRAIL: "testrail - test case management tool for QA processes",
}

View File

@@ -64,12 +64,12 @@ _BASE_EMBEDDING_MODELS = [
_BaseEmbeddingModel(
name="google/gemini-embedding-001",
dim=3072,
index_name="danswer_chunk_google_gemini_embedding_001",
index_name="danswer_chunk_gemini_embedding_001",
),
_BaseEmbeddingModel(
name="google/text-embedding-005",
dim=768,
index_name="danswer_chunk_google_text_embedding_005",
index_name="danswer_chunk_text_embedding_005",
),
_BaseEmbeddingModel(
name="voyage/voyage-large-2-instruct",

View File

@@ -51,10 +51,9 @@ CROSS_ENCODER_RANGE_MIN = 0
# Generative AI Model Configs
#####
# NOTE: the 3 below should only be used for dev.
# NOTE: the 2 below should only be used for dev.
GEN_AI_API_KEY = os.environ.get("GEN_AI_API_KEY")
GEN_AI_MODEL_VERSION = os.environ.get("GEN_AI_MODEL_VERSION")
FAST_GEN_AI_MODEL_VERSION = os.environ.get("FAST_GEN_AI_MODEL_VERSION")
# Override the auto-detection of LLM max context length
GEN_AI_MAX_TOKENS = int(os.environ.get("GEN_AI_MAX_TOKENS") or 0) or None
@@ -79,6 +78,10 @@ GEN_AI_MODEL_FALLBACK_MAX_TOKENS = int(
GEN_AI_SINGLE_USER_MESSAGE_EXPECTED_MAX_TOKENS = 512
GEN_AI_TEMPERATURE = float(os.environ.get("GEN_AI_TEMPERATURE") or 0)
# Reasoning models use effort to control the amount of reasoning
# before tool calling or answer generation.
DEFAULT_REASONING_EFFORT = os.environ.get("DEFAULT_REASONING_EFFORT") or "low"
# should be used if you are using a custom LLM inference provider that doesn't support
# streaming format AND you are still using the langchain/litellm LLM class
DISABLE_LITELLM_STREAMING = (
@@ -125,10 +128,3 @@ if _LITELLM_EXTRA_BODY_RAW:
LITELLM_EXTRA_BODY = json.loads(_LITELLM_EXTRA_BODY_RAW)
except Exception:
pass
# Whether and how to lower scores for short chunks w/o relevant context
# Evaluated via custom ML model
USE_INFORMATION_CONTENT_CLASSIFICATION = (
os.environ.get("USE_INFORMATION_CONTENT_CLASSIFICATION", "false").lower() == "true"
)

View File

@@ -38,7 +38,7 @@ class AsanaAPI:
def __init__(
self, api_token: str, workspace_gid: str, team_gid: str | None
) -> None:
self._user = None # type: ignore
self._user = None
self.workspace_gid = workspace_gid
self.team_gid = team_gid

Some files were not shown because too many files have changed in this diff Show More