Compare commits

...

393 Commits

Author SHA1 Message Date
pablodanswer
09e6bd3c9c k 2024-12-18 20:01:44 -08:00
pablodanswer
c1803cdd56 log 2024-12-18 19:20:55 -08:00
pablodanswer
a5b9c76012 validation 2024-12-18 19:13:09 -08:00
rkuo-danswer
e9b10e8b41 temporarily disabling validate indexing fences (#3502)
* temporarily disabling validate indexing fences

* add back a few startup checks in the cloud

* use common vespa client to perform health check

* log vespa url and try using http1 on light worker index methods

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-19 01:32:09 +00:00
pablonyx
a0fa4adb60 Ensure password validation errors propagate (#3509)
* ensure password validation errors propagate

* copy update

* support o1

* improve typing

* Revert "support o1"

This reverts commit 9b7aa6008c.
2024-12-19 00:05:57 +00:00
pablonyx
ca9ba925bd Support o1 (#3510)
* support o1

* nit
2024-12-19 00:05:00 +00:00
rkuo-danswer
833cc5c97c Merge pull request #3497 from emerzon/new_icons
New model icons for LLM Picker
2024-12-18 16:38:31 -08:00
Chris Weaver
23ecf654ed Add support for custom LLM error messages (#3501)
* Add support for custom LLM error messages

* Fix mypy
2024-12-17 22:58:17 -08:00
pablonyx
ddc6a6d2b3 Wrap nits (#3496) 2024-12-17 18:03:38 -08:00
pablonyx
571c8ece32 Slack Workspace Alembic Updates
Old alembic migration + restore workspace
2024-12-17 16:28:59 -08:00
pablodanswer
884bdb4b01 old alembic migration + restore workspace 2024-12-17 16:28:05 -08:00
pablonyx
b3ecf0d59f Migrate user milestone logic (#3493) 2024-12-17 15:59:56 -08:00
Emerson Gomes
f56fda27c9 Add also Microsoft models 2024-12-17 16:37:52 -06:00
Emerson Gomes
b1e4d4ea8d Adds icons for Amazon, Meta and Mistral models (when proxied via LiteLLM) 2024-12-17 16:20:46 -06:00
pablonyx
8db6d49fe5 IAM Auth for RDS (#3479)
* k

* functional iam auth

* k

* k

* improve typing

* add deployment options

* cleanup

* quick clean up

* minor cleanup

* additional clarity for db session operations

* nit

* k

* k

* update configs

* docker compose spacing
2024-12-17 22:02:37 +00:00
pablonyx
28598694b1 Add delete all chats option (#2515)
* Add delete all chats option

* post rebase fixes

* final validation

* minor cleanup

* move up
2024-12-17 02:55:35 +00:00
Emerson Gomes
b5d0df90b9 Remove hardcoded root path for HF models 2024-12-16 19:03:15 -08:00
pablonyx
48be6338ec Update Hubpost tracking form submission (#3261)
* Update Hubpost tracking form submission

* minor cleanup

* validated

* validate

* nit

* k
2024-12-17 02:31:09 +00:00
pablonyx
ed9014f03d Use logotypes where feasible (#3478)
* Use logotypes where feasible

* quick nit

* minor cleanup
2024-12-17 02:13:45 +00:00
rkuo-danswer
2dd51230ed clear indexing fences with no celery tasks queued (#3482)
* allow beat tasks to expire. it isn't important that they all run

* validate fences are in a good state and cancel/fail them if not

* add function timings for important beat tasks

* optimize lookups, add lots of comments

* review changes

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-17 00:55:58 +00:00
pablonyx
8b249cbe63 Proper display priority seeding (#3468)
* proper seeding

* k

* clean up
2024-12-17 00:19:45 +00:00
pablonyx
6b50f86cd2 Improved theming (#3204) 2024-12-16 22:24:32 +00:00
pablonyx
bd2805b6df Update llm override defaults (#3230)
* update llm override defaults

* post rebase fix
2024-12-16 22:18:21 +00:00
pablonyx
2847ab003e Prompting (#3372)
* auto generate start prompts

* post rebase clean up

* update for clarity
2024-12-16 21:34:43 +00:00
pablodanswer
1df6a506ec Revert "update pre-commit black version (#3250)"
This reverts commit d954914a0a.
2024-12-16 13:57:56 -08:00
pablonyx
f1541d1fbe Update default assistant to search for new users (#3317)
* update default assistant to search for new users

* update!
2024-12-16 21:15:33 +00:00
rkuo-danswer
dd0c4b64df errors in the summary row should be counting last_finished_status as reflected in the per connector rows (#3484)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-16 20:53:19 +00:00
pablonyx
788b3015bc fix single quote block in llm answer (#3139) 2024-12-16 20:37:47 +00:00
pablonyx
cbbf10f450 remove tenant id logs (#3063) 2024-12-16 20:24:09 +00:00
pablonyx
d954914a0a update pre-commit black version (#3250) 2024-12-16 20:04:42 +00:00
pablodanswer
bee74ac360 mark slack perm sync as flaky 2024-12-16 11:50:03 -08:00
pablonyx
29ef64272a Update chat provider values
Update chat provider values
2024-12-16 11:46:53 -08:00
pablodanswer
01bf6ee4b7 quick clean up 2024-12-16 11:43:34 -08:00
pablodanswer
0502417cbe update chat provider values 2024-12-16 11:39:25 -08:00
pablodanswer
d0483dd269 temporary vespa bump for tests 2024-12-15 21:41:21 -08:00
pablodanswer
eefa872d60 fix no space left on device for chromatic model server 2024-12-15 18:40:25 -08:00
pablonyx
3f3d4da611 do not include slackbot sessions when fetching chat sessions
do not include slackbot sessions when fetching `chat sessions`
2024-12-15 16:35:19 -08:00
pablodanswer
469068052e don't include slackbot sessions 2024-12-15 16:34:39 -08:00
pablonyx
9032b05606 Increase password requirements
Increase password requirements
2024-12-15 16:29:11 -08:00
pablodanswer
334bc6be8c Increase password requirements 2024-12-15 16:28:45 -08:00
Yuhong Sun
814f97c2c7 MT Cloud Monitoring (#3465) 2024-12-15 16:05:03 -08:00
pablodanswer
4f5a2b47c4 ensure integration tests build 2024-12-15 10:43:55 -08:00
pablodanswer
f545508268 Updated model server run-on config 2024-12-15 10:35:57 -08:00
pablonyx
590986ec65 Merge pull request #3476 from onyx-dot-app/fix_model_server_building
Update model server
2024-12-14 20:52:13 -08:00
pablodanswer
531bab5409 update model server 2024-12-14 20:51:03 -08:00
pablodanswer
29c44007c4 update model server 2024-12-14 20:49:05 -08:00
pablonyx
d388643a04 Cloud settings -> billing (#3469) 2024-12-14 18:10:50 -08:00
pablonyx
8a422683e3 Update folder logic (#3472) 2024-12-14 17:59:30 -08:00
pablonyx
ddc0230d68 align user dropdown in top right (#3473) 2024-12-14 17:25:11 -08:00
Yuhong Sun
6711e91dbf Seed Spacing (#3474) 2024-12-14 17:23:00 -08:00
pablodanswer
cff2346db5 Scale up model server 2024-12-14 17:19:28 -08:00
Yuhong Sun
8d3fad1f12 Change Default Assistant Description (#3470) 2024-12-14 17:00:08 -08:00
pablonyx
0c3dab8e8d Make doc count query more efficient (#3461) 2024-12-14 16:26:36 -08:00
Yuhong Sun
47735e2044 Rebrand Seeding Docs (#3467) 2024-12-14 16:08:13 -08:00
pablonyx
1eeab8c773 Update gmail test configuration
Update gmail test configuration
2024-12-14 14:53:45 -08:00
pablodanswer
e9b41bddc9 gmail configuration update 2024-12-14 14:53:02 -08:00
Yuhong Sun
73a86b9019 Reenable Seeding (#3464) 2024-12-14 12:26:08 -08:00
rkuo-danswer
12c426c87b Merge pull request #3458 from onyx-dot-app/bugfix/connector_tests
test changing back emails
2024-12-13 20:30:55 -08:00
Richard Kuo
06aeab6d59 fix scope typo 2024-12-13 20:21:10 -08:00
Richard Kuo
9b7e67004c Revert "test changing back emails"
This reverts commit 626ce74aa3.
2024-12-13 20:20:54 -08:00
Richard Kuo
626ce74aa3 test changing back emails 2024-12-13 18:18:01 -08:00
pablonyx
cec63465eb Improved invited users
Improved invited users
2024-12-13 17:22:32 -08:00
pablodanswer
5f4b31d322 k 2024-12-13 17:21:54 -08:00
pablonyx
ab5e515a5a Organize frontend tests
Organize frontend tests
2024-12-13 14:58:43 -08:00
pablodanswer
699a02902a nit 2024-12-13 12:50:02 -08:00
pablodanswer
c85157f734 k 2024-12-13 12:48:50 -08:00
pablodanswer
824844bf84 post rebase fix 2024-12-13 12:08:03 -08:00
pablodanswer
a6ab8a8da4 organize fe tests 2024-12-13 12:06:26 -08:00
pablodanswer
40719eb542 github workflow reference updates 2024-12-13 11:50:46 -08:00
pablonyx
e8c72f9e82 Minor Docker Reference Updates
Minor Docker Reference Updates
2024-12-13 11:50:21 -08:00
pablodanswer
0ba77963c4 update nit references 2024-12-13 11:49:27 -08:00
pablonyx
86f2892349 Merge pull request #3439 from onyx-dot-app/goodbye_danswer
Introducing Onyx!
2024-12-13 11:43:00 -08:00
pablodanswer
64f0ad8b26 fix drive tests (nit) 2024-12-13 11:36:39 -08:00
pablodanswer
616e997dad more fixes for connector tests 2024-12-13 11:25:24 -08:00
pablodanswer
614bd378bb fix connector tests 2024-12-13 10:54:00 -08:00
pablodanswer
7064c3d06f update legal references 2024-12-13 10:39:01 -08:00
pablodanswer
3bb9e4bff6 post rebase fix 2024-12-13 10:06:07 -08:00
pablodanswer
3fec7a6a30 post rebase fixes 2024-12-13 10:05:06 -08:00
pablonyx
a01a9b9a99 nit (#3441) 2024-12-13 18:04:46 +00:00
pablodanswer
21ec5ed795 welcome to onyx 2024-12-13 09:56:10 -08:00
hagen-danswer
54dcbfa288 made description optional for document sets (#3407)
* made description optional for document sets

* update document set optional

* update alembic migration head

---------

Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-12-13 01:41:11 +00:00
pablonyx
c69b7fc941 Prevent SSRF risk (#3453)
* update con

* k
2024-12-12 23:41:35 +00:00
pablonyx
6722e88a7b Security (#3452)
* security policies

* k

* update config
2024-12-12 15:01:40 -08:00
pablonyx
5b5e1eb7c7 ensure reload (#3447) 2024-12-12 20:23:17 +00:00
Weves
87d97d13d5 Fixes issue on cloud with redirect URI during token fetching 2024-12-12 12:28:08 -08:00
rkuo-danswer
4ae3b48938 use redis completion signal to double check exit code (#3435)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-12 18:47:45 +00:00
rkuo-danswer
dee1a0ecd7 Feature/google drive oauth (#3365)
* first cut at slack oauth flow

* fix usage of hooks

* fix button spacing

* add additional error logging

* no dev redirect

* early cut at google drive oauth

* second pass

* switch to production uri's

* try handling oauth_interactive differently

* pass through client id and secret if uploaded

* fix call

* fix test

* temporarily disable check for testing

* Revert "temporarily disable check for testing"

This reverts commit 4b5a022a5f.

* support visibility in test

* missed file

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-12 18:01:59 +00:00
pablonyx
ca172f3306 Merge pull request #3442 from onyx-dot-app/vespa_seeding_fix
Update initial seeding for latency requirements
2024-12-12 09:59:50 -08:00
pablodanswer
e5d0587efa pre-commit 2024-12-12 09:12:08 -08:00
pablonyx
a9516202fe update conditional (#3446) 2024-12-12 17:07:30 +00:00
Richard Kuo
d23fca96c4 reverse commit (fix later) 2024-12-11 22:19:10 -08:00
pablodanswer
a45724c899 run black 2024-12-11 19:18:06 -08:00
pablodanswer
34e250407a k 2024-12-11 19:14:10 -08:00
pablodanswer
046c0fbe3e update indexing 2024-12-11 19:08:05 -08:00
pablonyx
76595facef Merge pull request #3432 from onyx-dot-app/vercel_preview
Enable Vercel Preview
2024-12-11 18:55:14 -08:00
pablodanswer
af2d548766 k 2024-12-11 18:52:47 -08:00
Weves
7c29b1e028 add more egnyte failure logging 2024-12-11 18:19:55 -08:00
pablonyx
a52c821e78 Merge pull request #3436 from onyx-dot-app/cloud_improvements
cloud improvements
2024-12-11 17:06:06 -08:00
pablonyx
0770a587f1 remove slack workspace (#3394)
* remove slack workspace

* update client tokens

* fix up

* clean up docs

* fix up tests
2024-12-12 01:01:43 +00:00
hagen-danswer
748b79b0ef Added text for empty table and cascade delete for slack bot deletion (#3390)
* fixed fk issue for slack bot deletion

* Added text for empty table and cascade delete for slack bot deletion
2024-12-12 01:00:32 +00:00
pablonyx
9cacb373ef let users specify resourcing caps (#3403)
* let users specify resourcing caps

* functioanl resource limits

* improve defaults

* k

* update

* update comment + refer to proper resource

* self nit

* update var names
2024-12-12 00:59:41 +00:00
pablodanswer
21967d4b6f cloud improvements 2024-12-11 16:48:00 -08:00
pablodanswer
f5d638161b k 2024-12-11 15:35:44 -08:00
pablodanswer
0b5013b47d k 2024-12-11 15:34:26 -08:00
pablodanswer
1b846fbf06 update config 2024-12-11 15:17:11 -08:00
hagen-danswer
cae8a131a2 Made frontend conditional check for source (#3434) 2024-12-11 22:46:32 +00:00
pablonyx
72b4e8e9fe Clean citation cards (#3396)
* seed

* initial steps

* clean up

* fully clickable
2024-12-11 21:37:11 +00:00
pablonyx
c04e2f14d9 remove double x (#3387) 2024-12-11 21:36:58 +00:00
pablonyx
b40a12d5d7 clean up cursor pointers (#3385)
* update

* nit
2024-12-11 21:36:43 +00:00
pablonyx
5e7d454ebe Merge pull request #3433 from onyx-dot-app/silence_integration
Silence Slack Permission Sync test flakiness
2024-12-11 13:49:52 -08:00
pablodanswer
238509c536 silence 2024-12-11 13:48:37 -08:00
pablodanswer
d7f8cf8f18 testing 2024-12-11 13:36:10 -08:00
pablodanswer
5d810d373e k 2024-12-11 13:32:09 -08:00
joachim-danswer
9455576078 Mismatch issue of Documents shown and Citation number in text fix (#3421)
* Mismatch issue of Documents shown and Citation number in text fix

When document order presented to LLM differs from order shown to user, wrong doc numbers are cited.

Fix:
 - SearchTool.get_search_result  returns now final and initial ranking
 - initial ranking is passed through a few objects and used for replacement in citation processing

Notes:
 - the citation_num in the CitationInfo() object has not been changed.

* PR fixes

 - linting
 - removed erroneous tab
 - added a substitution test case
 - adjusted original citation extraction use case

* Included a key test and

* Fixed extra spaces

* Updated test documentation

Updated:
 - test_citation_substitution (changed description)
 - test_citation_processing (removed data only relevant for the substitution)
2024-12-11 19:58:24 +00:00
rkuo-danswer
71421bb782 better handling around index attempts that don't exist and remove unn… (#3417)
* better handling around index attempts that don't exist and remove unnecessary index attempt deletions

* don't delete index attempts, just update them

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 19:32:04 +00:00
pablonyx
b88cb388b7 Faster api hashing (#3423)
* migrate hashing to run faster v1

* k
2024-12-11 19:30:05 +00:00
Wendi
639986001f Fix bug (title overflow) (#3431) 2024-12-11 12:09:44 -08:00
pablonyx
e7a7e78969 clean up csv prompt + frontend (#3393)
* clean up csv prompt + frontend

* nit

* nit

* detect uploading

* upload
2024-12-11 19:10:34 +00:00
rkuo-danswer
e255ff7d23 editable refresh and prune for connectors (#3406)
* editable refresh and prune for connectors

* add extra validations on pruning/refresh frequency

* fix validation

* fix icon usage

* fix TextFormField error formatting

* nit

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-12-11 19:04:09 +00:00
pablonyx
1be2502112 finalize (#3398)
Co-authored-by: hagen-danswer <hagen@danswer.ai>
2024-12-11 18:52:20 +00:00
pablonyx
f2bedb8fdd Borders (#3388)
* remove double x

* incorporate base default padding for modals
2024-12-11 18:47:26 +00:00
pablonyx
637404f482 Connector page lists (pending feedback) (#3415)
* v1 (pending feedback)

* nits

* nit
2024-12-11 18:45:27 +00:00
pablonyx
daae146920 recognize updates (#3397) 2024-12-11 18:19:00 +00:00
pablonyx
d95959fb41 base role setting fix (#3381)
* base role setting fix

* update user tables

* finalize

* minor cleanup

* fix chromatic
2024-12-11 18:09:47 +00:00
rkuo-danswer
c667d28e7a update helm charts for onyx-dot-app rebrand (#3412)
* update helm charts for onyx-dot-app rebrand

* fix helm chart testing config

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 18:08:39 +00:00
pablonyx
9e0b482f47 k (#3399) 2024-12-11 18:05:39 +00:00
pablonyx
fa84eb657f cleaner citations (#3389) 2024-12-11 17:36:15 +00:00
pablonyx
264df3441b Various clean ups (#3413)
* tbd

* minor

* prettify

* update sidebar values
2024-12-11 17:19:14 +00:00
pablonyx
b9bad8b7a0 fix wikipedia icon (#3395) 2024-12-11 09:03:29 -08:00
pablonyx
600ebb6432 remove doc sets (#3400) 2024-12-11 16:31:14 +00:00
pablonyx
09fe8ea868 improved display - no odd cutoffs (#3401) 2024-12-11 16:09:19 +00:00
evan-danswer
ad6be03b4d centered score in feedbac panel (#3426) 2024-12-11 08:19:53 -08:00
rkuo-danswer
65d2511216 change text and formatting to guide users away from thinking "Back to… (#3382)
* change text and formatting to guide users away from thinking "Back to Danswer" is a back button

* regular text color and different icon

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 03:31:27 +00:00
Weves
113bf19c65 Remove dev-only check 2024-12-10 19:04:21 -08:00
Yuhong Sun
6026536110 Model Server Async (#3386)
* need-verify

* fix some lib calls

* k

* tests

* k

* k

* k

* Address the comments

* fix comment
2024-12-11 01:33:44 +00:00
Weves
056b671cd4 Small tweaks to get Egynte to work on our cloud 2024-12-10 17:43:46 -08:00
pablonyx
8d83ae2ee8 fix linear (#3402) 2024-12-11 00:45:06 +00:00
Yuhong Sun
ca988f5c5f Max File Size (#3422)
* k

* k

* k
2024-12-11 00:06:47 +00:00
Chris Weaver
4e4214b82c Egnyte connector (#3420) 2024-12-10 16:07:33 -08:00
Yuhong Sun
fe83f676df k (#3404) 2024-12-10 23:27:48 +00:00
hagen-danswer
6d6e12119b made external group emails lowercase (#3410) 2024-12-10 22:08:00 +00:00
pablonyx
1f2b7cb9c8 strip text for slackbot (#3416)
* stripe text for slackbot

* k
2024-12-10 21:42:35 +00:00
pablonyx
878a189011 delete input prompts (#3380)
* delete input prompts

* nit

* remove vestigial test

* nit
2024-12-10 21:36:40 +00:00
hagen-danswer
48c10271c2 fixed ephemeral slackbot messages (#3409) 2024-12-10 18:00:34 +00:00
evan-danswer
c6a79d847e fix typo (#3408)
expliticly -> explicitly
2024-12-10 16:44:42 +00:00
hagen-danswer
1bc3f8b96f Revert "Fixed ephemeral slackbot messages"
This reverts commit 7f6a6944d6.
2024-12-10 08:18:31 -08:00
hagen-danswer
7f6a6944d6 Fixed ephemeral slackbot messages 2024-12-10 07:57:28 -08:00
Weves
06f4146597 Bump litellm to support Nova models from AWS 2024-12-09 21:19:11 -08:00
hagen-danswer
7ea73d5a5a Temp slackbot url error Fix (#3392) 2024-12-09 18:34:38 -08:00
Weves
30dfe6dcb4 Add better vertex support + LLM form cleanup 2024-12-09 13:44:44 -08:00
Yuhong Sun
dc5d5dfe05 README Update (#3383) 2024-12-09 13:17:53 -08:00
pablonyx
0746e0be5b unify toggling (#3378) 2024-12-09 19:48:06 +00:00
Chris Weaver
970320bd49 Persona / prompt hardening (#3375)
* Persona / prompt hardening

* fix it
2024-12-09 03:39:59 +00:00
Chris Weaver
4a7bd5578e Fix Confluence perm sync for cloud users (#3374) 2024-12-09 01:41:30 +00:00
Chris Weaver
874b098a4b Add more logging + retries to teams connector (#3369) 2024-12-08 00:56:34 +00:00
pablodanswer
ce18b63eea hide oauth sources (#3368) 2024-12-07 23:57:37 +00:00
Yuhong Sun
7a919c3589 Dev Version Niceness 2024-12-07 15:10:13 -08:00
rkuo-danswer
631bac4432 Bugfix/log exit code (#3362)
* log the exit code of the spawned task

* exitcode can be negative

* mypy fixes
2024-12-06 22:32:59 +00:00
hagen-danswer
53428f6e9c More logging/fixes (#3364)
* More logging for external group syncing

* Fixed edge case where some spaces were not being fetched

* made refresh frequency for confluence syncs configurable

* clarity
2024-12-06 21:56:29 +00:00
pablodanswer
53b3dcbace fix slackbot channel config nullable (#3363)
* fix slackbot

* nit
2024-12-06 21:24:36 +00:00
rkuo-danswer
7a3c06c2d2 first cut at slack oauth flow (#3323)
* first cut at slack oauth flow

* fix usage of hooks

* fix button spacing

* add additional error logging

* no dev redirect

* cleanup

* comment work in progress

* move some stuff to ee, add some playwright tests for the oauth callback edge cases

* fix ee, fix test name

* fix tests

* code review fixes
2024-12-06 19:55:21 +00:00
pablodanswer
7a0d823c89 Improved file handling (#3353)
* update props

* update documents

* nit

* update chat processing

* k

* k

* nit

* minor nit

* minor nits

* k

* nits
2024-12-06 19:16:54 +00:00
Yuhong Sun
db69e445d6 k (#3358) 2024-12-06 18:08:44 +00:00
Weves
18e63889b7 Change default log level back to info 2024-12-06 10:07:14 -08:00
Weves
738e60c8ed Increase vespa attempts on startup 2024-12-06 09:46:33 -08:00
hagen-danswer
8aec873e66 Merge pull request #3359 from danswer-ai/conf-logging-filter
Added filter to slim connector and logging for space permissions
2024-12-06 09:03:07 -08:00
hagen-danswer
7c57dde8ab fixed test 2024-12-06 08:33:12 -08:00
hagen-danswer
f30adab853 Merge remote-tracking branch 'origin/main' into conf-logging-filter 2024-12-06 08:30:07 -08:00
hagen-danswer
601687a522 Add test for Confluence permissions 2024-12-06 08:28:42 -08:00
hagen-danswer
350cf407c9 explicitly set page and attachment restrictions and space keys 2024-12-06 08:12:07 -08:00
hagen-danswer
32ec4efc7a tygod for tests 2024-12-06 08:03:34 -08:00
hagen-danswer
7c6981e052 Added filter to slim connector and logging for space permissions 2024-12-06 07:55:54 -08:00
Yuhong Sun
c50cd20156 Fix SlackBot Page Bugs (#3354) 2024-12-05 13:17:04 -08:00
hagen-danswer
14772dee71 Add persona stats (#3282)
* Added a chart to display persona message stats

* polish

* k

* hope this works

* cleanup
2024-12-05 17:15:56 +00:00
pablodanswer
c81e704c95 various niceties (#3348) 2024-12-05 17:12:52 +00:00
Chris Weaver
3266ef6321 Improve chat page performance (#3347)
* Simplify /manage/indexing-status

* Rename endpoint
2024-12-04 20:28:30 -08:00
pablodanswer
c89b98b4f2 update email invites (#3349) 2024-12-05 03:29:07 +00:00
rkuo-danswer
e70e0ab859 Merge pull request #3346 from danswer-ai/bugfix/chromatic-tests-2
Bugfix/chromatic tests 2
2024-12-04 19:44:05 -08:00
Richard Kuo (Danswer)
69b6e9321e Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/chromatic-tests-2
# Conflicts:
#	web/tests/e2e/home.spec.ts
2024-12-04 19:10:25 -08:00
Chris Weaver
7e53af18b6 Add b64 image support for image generation (#3342)
* Add b64 image support

* Fix

* enhance

* Fix mypy

* Fix imports
2024-12-05 02:24:54 +00:00
Richard Kuo (Danswer)
b9eb1ca2ba wait for whole placeholder string 2024-12-04 18:23:06 -08:00
rkuo-danswer
91d44c83d2 fixing chromatic tests (#3344)
* wait for the page to load

* fix up tests

* make sure "Initializing Danswer" is gone
2024-12-05 02:19:43 +00:00
Richard Kuo (Danswer)
4dbc6bb4d1 make sure "Initializing Danswer" is gone 2024-12-04 17:49:59 -08:00
Richard Kuo (Danswer)
4b6a4c6bbf fix up tests 2024-12-04 17:19:16 -08:00
pablodanswer
fd1999454a ensure we can order by doc id (#3343) 2024-12-05 01:10:37 +00:00
Richard Kuo (Danswer)
0a35422d1d wait for the page to load 2024-12-04 16:47:42 -08:00
pablodanswer
69b99056b2 Redirect to chat (#3341)
* k

* nit
2024-12-05 00:08:52 +00:00
Yuhong Sun
2a55696545 Move Answer (#3339) 2024-12-04 16:30:47 -08:00
hagen-danswer
ef9942b751 Related permission docs to cc_pair to prevent orphan docs (#3336)
* Related permission docs to cc_pair to prevent orphan docs

* added script

* group sync deduping

* logging
2024-12-04 21:00:54 +00:00
pablodanswer
993acec5e9 Update memoization + silence unnecessary errors (#3337)
* update memoization + silence unnecessary errors

* proper org
2024-12-04 20:08:15 +00:00
Weves
b01a1b509a Add basic loadtest script 2024-12-04 10:53:48 -08:00
pablodanswer
4f994124ef remove now unnecessary user loading indicatort log (#3333) 2024-12-04 00:09:22 +00:00
rkuo-danswer
14863bd457 try single threaded playwright testing (#3322) 2024-12-03 23:21:46 +00:00
Yuhong Sun
aa1c4c635a Combining Search and Chat Backend (#3273)
* k

* k

* fix slack issues

* rebase

* k
2024-12-03 22:37:14 +00:00
rkuo-danswer
13f6e8a6b4 disable thread local locking in callbacks (#3319) 2024-12-03 22:32:56 +00:00
pablodanswer
66f47d294c Shared filter utility for clarity (#3270)
* shared filter util

* clearer comment
2024-12-03 19:30:42 +00:00
pablodanswer
0a685bda7d add comments for clarity (#3249) 2024-12-03 19:27:28 +00:00
pablodanswer
23dc8b5dad Search flow improvements (#3314)
* untoggle if no docs

* update

* nits

* nit

* typing

* nit
2024-12-03 18:56:27 +00:00
pablodanswer
cd5f2293ad Temperature (#3310)
* fix temperatures for default llm

* ensure anthropic models don't overflow

* minor cleanup

* k

* k

* k

* fix typing
2024-12-03 17:22:22 +00:00
rkuo-danswer
6c2269e565 refactor celery task names to constants (#3296) 2024-12-03 16:02:17 +00:00
Weves
46315cddf1 Adjust default confulence timezone 2024-12-02 22:25:29 -08:00
rkuo-danswer
5f28a1b0e4 Bugfix/confluence time zone (#3265)
* RedisLock typing

* checkpoint

* put in debug logging

* improve comments

* mypy fixes
2024-12-02 22:23:23 -08:00
rkuo-danswer
9e9b7ed61d Bugfix/connector aborted logging (#3309)
* improve error logging on task failure.

* add db exception hardening to the indexing watchdog

* log on db exception
2024-12-03 02:34:40 +00:00
pablodanswer
3fb2bfefec Update Chromatic Tests (#3300)
* remove / update search tests

* minor update
2024-12-02 23:08:54 +00:00
pablodanswer
7c618c9d17 Unified UI (#3308)
* fix typing

* add filters display
2024-12-02 15:12:13 -08:00
pablodanswer
03e2789392 Text embedding (PDF, TXT) (#3113)
* add text embedding

* post rebase cleanup

* fully functional post rebase

* rm logs

* rm '

* quick clean up

* k
2024-12-02 22:43:53 +00:00
Chris Weaver
2783fa08a3 Update openai version in model server (#3306) 2024-12-02 21:39:10 +00:00
pablodanswer
edeaee93a2 hard refresh on auth (#3305)
* hard refresh on auth

* k

* k

* comment for clarity
2024-12-02 20:12:12 +00:00
hagen-danswer
5385bae100 Add slim connector description (#3303)
* added docs example and test

* updated docs

* needed to make the tests run

* updated docs
2024-12-02 19:52:13 +00:00
pablodanswer
813445ab59 Minor JWT Feature (#3290)
* first pass

* k

* k

* finalize

* minor cleanup

* k

* address

* minor typing updates
2024-12-02 19:14:31 +00:00
pablodanswer
af814823c8 display name + model truncation (#3304) 2024-12-02 18:54:08 +00:00
pablodanswer
607f61eaeb Reusable function for search settings spread operation (#3301)
* combine for clarity once and for all

* remove logs

* k
2024-12-02 17:23:01 +00:00
pablodanswer
de66f7adb2 Updated chat flow (#3244)
* proper no assistant typing + no assistant modal

* updated chat flow

* k

* updates

* update

* k

* clean up

* fix mystery reorg

* cleanup

* update scroll

* default

* update logs

* push fade

* scroll nit

* finalize tags

* updates

* k

* various updates

* viewport height update

* source types update

* clean up unused components

* minor cleanup

* cleanup complete

* finalize changes

* badge up

* update filters

* small nit

* k

* k

* address comments

* quick unification of icons

* minor date range clarity

* minor nit

* k

* update sidebar line

* update for all screen sizes

* k

* k

* k

* k

* rm shs

* fix memoization

* fix memoization

* slack chat

* k

* k

* build org
2024-12-02 01:58:28 +00:00
Yuhong Sun
3432d932d1 Citation code comments 2024-12-01 14:10:11 -08:00
Yuhong Sun
9bd0cb9eb5 Fix Citation Minor Bugs (#3294) 2024-12-01 13:55:24 -08:00
Chris Weaver
f12eb4a5cf Fix assistant prompt zero-ing (#3293) 2024-11-30 04:45:40 +00:00
Chris Weaver
16863de0aa Improve model token limit detection (#3292)
* Properly find context window for ollama llama

* Better ollama support + upgrade litellm

* Ugprade OpenAI as well

* Fix mypy
2024-11-30 04:42:56 +00:00
Weves
63d1eefee5 Add read_only=True for xlsx parsing 2024-11-28 16:02:02 -08:00
pablodanswer
e338677896 order seeding 2024-11-28 15:41:10 -08:00
hagen-danswer
7be80c4af9 increased the pagination limit for confluence spaces (#3288) 2024-11-28 19:04:38 +00:00
rkuo-danswer
7f1e4a02bf Feature/kill indexing (#3213)
* checkpoint

* add celery termination of the task

* rename to RedisConnectorPermissionSyncPayload, add RedisLock to more places, add get_active_search_settings

* rename payload

* pretty sure these weren't named correctly

* testing in progress

* cleanup

* remove space

* merge fix

* three dots animation on Pausing

* improve messaging when connector is stopped or killed and animate buttons

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-28 05:32:45 +00:00
rkuo-danswer
5be7d27285 use indexing flag in db for manually triggering indexing (#3264)
* use indexing flag in db for manually trigger indexing

* add comment.

* only try to release the lock if we actually succeeded with the lock

* ensure we don't trigger manual indexing on anything but the primary search settings

* comment usage of primary search settings

* run check for indexing immediately after indexing triggers are set

* reorder fix
2024-11-28 01:34:34 +00:00
Weves
fd84b7a768 Remove duplicate API key router 2024-11-27 16:30:59 -08:00
Subash-Mohan
36941ae663 fix: Cannot configure API keys #3191 2024-11-27 16:25:00 -08:00
Matthew Holland
212353ed4a Fixed default feedback options 2024-11-27 16:23:52 -08:00
Richard Kuo (Danswer)
eb8708f770 the word "error" might be throwing off sentry 2024-11-27 14:31:21 -08:00
Chris Weaver
ac448956e9 Add handling for rate limiting (#3280) 2024-11-27 14:22:15 -08:00
pablodanswer
634a0b9398 no stack by default (#3278) 2024-11-27 20:58:21 +00:00
hagen-danswer
09d3e47c03 Perm sync behavior change (#3262)
* Change external permissions behavior

* fixed behavior

* added error handling

* LLM the goat

* comment

* simplify

* fixed

* done

* limits increased

* added a ton of logging

* uhhhh
2024-11-27 20:04:15 +00:00
pablodanswer
9c0cc94f15 refresh router -> refresh assistants (#3271) 2024-11-27 19:11:58 +00:00
hagen-danswer
07dfde2209 add continue in danswer button to slack bot responses (#3239)
* all done except routing

* fixed initial changes

* added backend endpoint for duplicating a chat session from Slack

* got chat duplication routing done

* got login routing working

* improved answer handling

* finished all checks

* finished all!

* made sure it works with google oauth

* dont remove that lol

* fixed weird thing

* bad comments
2024-11-27 18:25:38 +00:00
pablodanswer
28e2b78b2e Fix search dropdown (#3269)
* validate dropdown

* validate

* update organization

* move to utils
2024-11-27 16:10:07 +00:00
Emerson Gomes
0553062ac6 Adds icons for Google Gemini models and custom model icons for L… (#3218)
* Add description for Google Gemini models and custom model icons for LiteLLM (OpenAI) proxied models

* Adds Vertex AI aliases for Claude

---------

Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
2024-11-26 10:13:21 -08:00
hagen-danswer
284e375ba3 Merge pull request #3257 from danswer-ai/minor-perm-sync
Improved logging for confluence doc sync and robust user creation
2024-11-26 09:59:38 -08:00
hagen-danswer
1f2f7d0ac2 Improved logging for confluence doc sync and robust user creation 2024-11-26 08:51:15 -08:00
pablodanswer
2ecc28b57d remove unused stripe promise (#3248) 2024-11-26 01:50:39 +00:00
rkuo-danswer
77cf9b3539 improve messaging and UI around cleanup of leftover index attempts (#3247)
* improve messaging and UI around cleanup of leftover index attempts

* add tag on init
2024-11-25 22:27:14 +00:00
Weves
076ce2ebd0 Saml fix 2024-11-25 09:12:43 -08:00
pablodanswer
b625ee32a7 File handling cleanup (#3240)
* fix google sites connector

* minior cleanup

* rm comments
2024-11-25 04:06:47 +00:00
Richard Kuo (Danswer)
c32b93fcc3 increase indexing worker concurrency to 3 2024-11-24 18:11:58 -08:00
pablodanswer
1c8476072e Assistant cleanup (#3236)
* minor cleanup

* ensure users don't modify built-in attributes of assistants

* update sidebar

* k

* update update flow + assistant creation
2024-11-25 00:13:34 +00:00
Chris Weaver
7573416ca1 Fix API keys for MIT users (#3237) 2024-11-24 16:55:19 -08:00
Yuhong Sun
86d8666481 Add Test Case 2024-11-24 15:42:14 -08:00
Yuhong Sun
8abcde91d4 Fix Test (#3242) 2024-11-24 14:31:28 -08:00
Yuhong Sun
3466451d51 Fix Prompt for Non Function Calling LLMs (#3241) 2024-11-24 14:16:57 -08:00
Yuhong Sun
413891f143 Token Level Log (#3238) 2024-11-23 18:41:50 -08:00
Yuhong Sun
7a0a4d4b79 Remove Deprecated Endpoints (#3235) 2024-11-23 14:44:23 -08:00
Yuhong Sun
a3439605a5 Remove Dead Code (#3234) 2024-11-23 14:31:59 -08:00
pablodanswer
694e79f5e1 minor enforcement of CSV length for internal processing (#3109) 2024-11-23 21:05:30 +00:00
pablodanswer
5dfafc8612 minor calendar cleanup (#3219) 2024-11-23 21:01:05 +00:00
Yuhong Sun
62a4aa10db Refactor Search (#3233) 2024-11-23 13:42:54 -08:00
Yuhong Sun
a357cdc4c9 Remove Dead Code (#3232) 2024-11-23 13:21:27 -08:00
Yuhong Sun
84615abfdd Seeding (#3231) 2024-11-23 13:12:42 -08:00
pablodanswer
8ae6b1960b Bugfix/usage report (#3075)
* fix pagination

* update side

* fixed query history

* minor update

* minor update

* typing
2024-11-23 20:11:39 +00:00
James Jordan
d9b87bbbc2 Fixed 400 error when author of ticket is no longer an active user in a Zendesk account. (#3168) 2024-11-23 12:15:38 -08:00
Sanju Lokuhitige
a0065b01af Update CONTRIBUTING.md (#3112)
fix Formatting and Linting hyperlink
2024-11-23 12:13:23 -08:00
pablodanswer
c5306148a3 Ensure daterange not consistently re rendered (#3229)
* ensure daterange not consistently re rendered

* minor clean up
2024-11-23 19:35:00 +00:00
hagen-danswer
1e17934de4 Merge pull request #3214 from danswer-ai/fix-slack-ui
cleaned up new slack bot creation
2024-11-23 10:53:47 -08:00
pablodanswer
93add96ccc Various Nits (#3228) 2024-11-23 10:53:24 -08:00
rkuo-danswer
3a466a4b08 add minimal retries to confluence probe (#3222)
* add minimal retries to confluence probe

* name variable correctly
2024-11-23 17:11:15 +00:00
hagen-danswer
85cbd9caed Increased slim doc batch size for confluence connector (#3221) 2024-11-23 00:42:15 +00:00
pablodanswer
9dc23bf3e7 revert to previous doc select logic (#3217)
* revert to previous doc select logic

* k
2024-11-22 23:26:53 +00:00
hagen-danswer
e32809f7ca moved it outside 2024-11-22 14:59:58 -08:00
hagen-danswer
3e58f9f8ab fixed ugly stuff 2024-11-22 14:39:55 -08:00
pablodanswer
2381c8d498 Refresh all assistants on assistant refresh (#3216)
* k

* k
2024-11-22 22:38:23 +00:00
hagen-danswer
c6dadb24dc cleaned up new slack bot creation 2024-11-22 11:53:51 -08:00
hagen-danswer
5dc07d4178 Each section is now cleaned before being chunked (#3210)
* Each section is now cleaned before being chunked

* k

---------

Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2024-11-22 19:06:19 +00:00
Chris Weaver
129c8f8faf Add start/end date ability for query history as CSV endpoint (#3211) 2024-11-22 18:29:13 +00:00
pablodanswer
67bfcabbc5 llm provider causing re render in effect (#3205)
* llm provider causing re render in effect

* clean

* unused

* k
2024-11-22 16:53:24 +00:00
rkuo-danswer
9819aa977a implement double check pattern for error conditions (#3201)
* Move unfenced check to check_for_indexing. implement a double check pattern for all indexing error checks

* improved commenting

* exclusions
2024-11-22 04:21:02 +00:00
hagen-danswer
8d5b8a4028 Merge pull request #3202 from danswer-ai/toggled_chat_default
Update default sidebar toggle
2024-11-21 19:53:05 -08:00
pablodanswer
682319d2e9 Bugfix/curator interface (#3198)
* mystery solved

* update config

* update

* update

* update user role

* remove values
2024-11-22 02:33:09 +00:00
hagen-danswer
fe1400aa36 replace deprecated confluence group api endpoint (#3197)
* replace deprecated confluence group api endpoint

* reworked it

* properly escaped the user query

* less passing around is_cloud

* done
2024-11-22 01:51:29 +00:00
pablodanswer
e3573b2bc1 add comment 2024-11-21 17:11:11 -08:00
pablodanswer
35b5c44cc7 update default sidebar toggle 2024-11-21 17:09:56 -08:00
rkuo-danswer
5eddc89b5a merge indexing and heartbeat callbacks (and associated lock reacquisi… (#3178)
* merge indexing and heartbeat callbacks (and associated lock reacquisition). no db updates

* review fixes
2024-11-21 23:48:58 +00:00
hagen-danswer
9a492ceb6d admins cant be set as curator on backend (#3194)
* set-curator

* updated error
2024-11-21 23:33:29 +00:00
rkuo-danswer
3c54ae9de9 Bugfix/redis wait (#3169)
* rename to payload

* log redis info replication on primary worker startup

* fix mypy

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-21 23:11:00 +00:00
pablodanswer
13f08f3ebb Horizontal scrollbar (#3195)
* clean horizontal scrollbar

* account for additional edge case
2024-11-21 22:08:21 +00:00
pablodanswer
bd9f15854f provider fix (#3187)
* clean horizontal scrollbar

* provider fix

* ensure proper migration

* k

* update migration

* Revert "clean horizontal scrollbar"

This reverts commit fa592a1b7a.
2024-11-21 22:08:16 +00:00
pablodanswer
366aa2a8ea quick fix (#3200) 2024-11-21 14:07:55 -08:00
pablodanswer
deee237c7e Sheet update (#3189)
* quick pass

* k

* update sheet

* add multiple sheet stuff

* k

* finalized

* update configuration
2024-11-21 18:07:00 +00:00
hagen-danswer
100b4a0d16 Added Slim connector for Jira (#3181)
* Added Slim connector for Jira

* fixed testing

* more cleanup of Jira connector

* cleanup
2024-11-21 17:00:20 +00:00
rkuo-danswer
70207b4b39 improve web testing (#3162)
* shared admin level test dependency

* change to on - push (recommended by chromatic)

* change playwright reporter to list, name test jobs

* use test tags ... much cleaner

* test vs prod

* try copying templates

* run with localhost?

* revert to dev

* new tests and a bit of refactoring

* add additional checks so that page snapshots reflect loaded state

* more admin tests

* User Management tests

* remaining admin pages

* test search and chat

* await fix and exclude UI that changes with dates.
2024-11-21 04:01:15 +00:00
pablodanswer
50826b6bef Formatting Niceties (#3183)
* search bar formatting

* update styling
2024-11-21 03:11:26 +00:00
pablodanswer
3f648cbc31 Folder clarity (#3180)
* folder clarity

* k
2024-11-21 03:11:17 +00:00
pablodanswer
c875a4774f valid props (#3186) 2024-11-21 01:13:54 +00:00
hagen-danswer
049091eb01 decreased confluence retry times and added more logging (#3184)
* decreased confluence retry times and added more logging

* added check on connector startup

* no retries!

* fr no retries
2024-11-21 00:00:14 +00:00
pablodanswer
3dac24542b silence small error (#3182) 2024-11-20 22:46:38 +00:00
pablodanswer
194dcb593d update slack redirect + token missing check (#3179)
* update slack redirect + token missing check

* reset time
2024-11-20 21:42:54 +00:00
pablodanswer
bf291d0c0a Fix missing json (#3177)
* initial steps

* k

* remove logs

* k

* k
2024-11-20 21:24:43 +00:00
rkuo-danswer
8309f4a802 test overlapping connectors (but using a source that is way too big a… (#3152)
* test overlapping connectors (but using a source that is way too big and slow, fix that next)

* pass thru secrets

* rename

* rename again

* now we are fixing it

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-20 21:12:01 +00:00
pablodanswer
0ff2565125 ensure margin properly applied (#3176)
* ensure margin properly applied

* formatting
2024-11-20 20:04:45 +00:00
hagen-danswer
e89dcd7f84 added logging and bugfixing to conf (#3167)
* standardized escaping of CQL strings

* think i found it

* fix

* should be fixed

* added handling for special linking behavior in confluence

* Update onyx_confluence.py

* Update onyx_confluence.py

---------

Co-authored-by: rkuo-danswer <rkuo@danswer.ai>
2024-11-20 18:40:21 +00:00
pablodanswer
645e7e828e Add Google Tag Manager for Web Cloud Build (#3173)
* add gtm for cloud build

* update github workflow
2024-11-20 17:38:33 +00:00
pablodanswer
2a54f14195 ensure everythigng has a default max height in selectorformfield (#3174) 2024-11-20 17:26:22 +00:00
hagen-danswer
9209fc804b multiple slackbot support (#3077)
* multiple slackbot support

* app_id + tenant_id key

* removed kv store stuff

* fixed up mypy and migration

* got frontend working for multiple slack bots

* some frontend stuff

* alembic fix

* might be valid

* refactor dun

* alembic stuff

* temp frontend stuff

* alembic stuff

* maybe fixed alembic

* maybe dis fix

* im getting mad

* api names changed

* tested

* almost done

* done

* routing nonsense

* done!

* done!!

* fr done

* doneski

* fix alembic migration

* getting mad again

* PLEASE IM BEGGING YOU
2024-11-20 01:49:43 +00:00
rkuo-danswer
b712877701 Merge pull request #3165 from danswer-ai/bugfix/pruning_logs
improve logging around pruning
2024-11-19 13:19:31 -08:00
Richard Kuo (Danswer)
e6df32dcc3 improve logging around pruning 2024-11-19 12:41:21 -08:00
Chris Weaver
eb81258a23 Update README.md
Fix slack link
2024-11-19 08:02:35 -08:00
hagen-danswer
487ef4acc0 Merge pull request #3160 from danswer-ai/add-to-admin-chat-sessions-api
Extend query history API
2024-11-19 07:28:12 -08:00
pablodanswer
9b7cc83eae add new date search filter (#3065)
* add new complicated filters

* clarity updates

* update date range filter
2024-11-19 03:42:42 +00:00
Weves
ce3124f9e4 Extend query history API 2024-11-18 17:50:21 -08:00
rkuo-danswer
e69303e309 add helpful hint on 507 (#3157)
* add helpful hint on 507

* add helpful hint to the direct exception in _index_vespa_chunk
2024-11-19 01:08:32 +00:00
rkuo-danswer
6e698ac84a Hardening deletion when cc pair relationships are left over (#3154)
* more logs

* this fence should be set to None

* type hinting

* reset deletion attempt if conditions are inconsistent

* always clean up in db if we reach reconciliation

* add reset method

* more logging

* harden up error checking
2024-11-19 01:07:59 +00:00
pablodanswer
d69180aeb8 add additional theming options (#3155)
* add additional theming options

* nit

* Update Filters.tsx
2024-11-18 22:56:48 +00:00
rkuo-danswer
aa37051be9 Bugfix/indexing redux (#3151)
* raise indexing lock timeout

* refactor unknown index attempts and redis lock
2024-11-18 22:47:31 +00:00
pablodanswer
a7d95661b3 Add assistant categories (#3064)
* add assistant categories v1

* functionality finalized

* finalize

* update assistant category display

* nit

* add tests

* post rebase update

* minor update to tests

* update typing

* finalize

* typing

* nit

* alembic

* alembic (once again)
2024-11-18 20:33:48 +00:00
Chris Weaver
33ee899408 Long term logs (#3150) 2024-11-18 10:48:03 -08:00
hagen-danswer
954b5b2a56 Made external permissioned users and slack users show diff (#3147)
* Made external permissioned users and slack users show diff

* finished

* Fix typing

* k

* Fix

* k

---------

Co-authored-by: Weves <chrisweaver101@gmail.com>
2024-11-17 01:13:47 +00:00
pablodanswer
521425a4f2 nits + pricing 2024-11-16 16:28:37 -08:00
hagen-danswer
618bc02d54 Fixed int test (#3148) 2024-11-16 18:13:06 +00:00
rkuo-danswer
b7de74fdf8 Feature/playwright tests (#3129)
* initial PoC

* preliminary working config

* first cut at chromatic tests

* first cut at chromatic tests

* fix yaml

* fix yaml again

* use workingDir

* adapt playwright example

* remove env

* fix working directory

* fix more paths

* fix dir

* add playwright setup

* accidentally deleted a step

* update test

* think we don't need home.png right now

* remove unused home.png

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-16 04:26:17 +00:00
hagen-danswer
6e83fe3a39 reworked drive+confluence frontend and implied backend changes (#3143)
* reworked drive+confluence frontend and implied backend changes

* fixed oauth admin tests

* fixed service account tests

* frontend cleanup

* copy change

* details!

* added key

* so good

* whoops!

* fixed mnore treljsertjoslijt

* has issue with boolean form

* should be done
2024-11-16 03:38:30 +00:00
Weves
259fc049b7 Add error message on JSON decode error in CustomTool 2024-11-15 20:00:12 -08:00
rkuo-danswer
7015e6f2ab Bugfix/overlapping connectors (#3138)
* fix tenant logging

* upsert only new/updated docs, but always upsert document to cc pair relationship

* better logging and rough cut at testing
2024-11-16 00:47:52 +00:00
pablodanswer
24be13c015 Improved tokenizer fallback (#3132)
* silence warning

* improved fallback logic

* k

* minor cosmetic update

* minor logic update

* nit
2024-11-14 20:13:29 -08:00
pablodanswer
ddff7ecc3f minor configuration updates (#3134) 2024-11-14 18:09:30 -08:00
Yuhong Sun
97932dc44b Fix Quotes Prompting (#3137) 2024-11-14 17:28:03 -08:00
rkuo-danswer
637b6d9e75 Merge pull request #3135 from danswer-ai/bugfix/helm_ct_python_setup
unnecessary python setup
2024-11-14 14:57:12 -08:00
Richard Kuo (Danswer)
54dc1ac917 unnecessary python setup 2024-11-14 11:14:12 -08:00
rkuo-danswer
21d5cc43f8 Merge pull request #3131 from danswer-ai/bugfix/session_text
use text()
2024-11-13 20:24:14 -08:00
pablodanswer
7c841051ed Cohere (#3111)
* add cohere default

* finalize

* minor improvement

* update

* update

* update configs

* ensure we properly expose name(space) for slackbot

* update config

* config
2024-11-14 01:58:54 +00:00
pablodanswer
6e91964924 minor clarity (#3116) 2024-11-14 01:42:21 +00:00
pablodanswer
facf1d55a0 Cloud improvements (#3099)
* add improved cloud configuration

* fix typing

* finalize slackbot improvements

* minor update

* finalized keda

* moderate slackbot switch

* update some configs

* revert

* include reset engine!
2024-11-13 23:52:52 +00:00
rkuo-danswer
d68f8d6fbc scale indexing sql pool based on concurrency (#3130) 2024-11-13 23:26:13 +00:00
Richard Kuo (Danswer)
65a205d488 use text() 2024-11-13 15:03:21 -08:00
hagen-danswer
485f3f72fa Updated google copy and added non admin oauth support (#3120)
* Updated google copy and added non admin oauth support

* backend update

* accounted for oauth

* further removed class variables

* updated sets
2024-11-13 20:07:10 +00:00
rkuo-danswer
dcbea883ae add creator id to cc pair (#3121)
* add creator id to cc pair

* fix alembic head

* show email instead of UUID

* safer check on email

* make foreign key relationships optional

* always allow creator to edit (per hagen)

* use primary join

* no index_doc_batch spam

* try this again

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-13 19:35:08 +00:00
hagen-danswer
a50a3944b3 Make curators able to create permission synced connectors (#3126)
* Make curators able to create permission synced connectors

* removed editing permission synced connectors for curators

* updated tests to use access type instead of is_public

* update copy
2024-11-13 18:58:23 +00:00
hagen-danswer
60471b6a73 Added support for page within a page in Confluence (#3125) 2024-11-13 16:39:00 +00:00
rkuo-danswer
d703e694ce limited role api keys (#3115)
* in progress PoC

* working limited user, needs routes to be marked next

* make selected endpoint available to limited user role

* xfail on test_slack_prune

* add comment to sync function

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-13 16:15:43 +00:00
hagen-danswer
6066042fef Merge pull request #3124 from danswer-ai/fix-doc-sync
quick fix for google doc sync
2024-11-13 07:30:52 -08:00
hagen-danswer
eb0e20b9e4 quick fix for google doc sync 2024-11-13 07:24:29 -08:00
pablodanswer
490a68773b update organization (#3118)
* update organization

* minor clean up

* add minor clarity

* k

* slight rejigger

* alembic fix

* update paradigm

* delete code!

* delete code

* minor update
2024-11-13 06:45:32 +00:00
rkuo-danswer
227aff1e47 clean up logging in light worker (#3072) 2024-11-13 03:42:02 +00:00
Weves
6e29d1944c Fix widget example 2024-11-12 18:48:44 -08:00
pablodanswer
22189f02c6 Add referral source to cloud on data plane (#3096)
* cloud auth referral source

* minor clarity

* k

* minor modification to be best practice

* typing

* Update ReferralSourceSelector.tsx

* Update ReferralSourceSelector.tsx

---------

Co-authored-by: hagen-danswer <hagen@danswer.ai>
2024-11-13 00:42:25 +00:00
hagen-danswer
fdc4811fce doc sync celery refactor (#3084)
* doc_sync is refactored

* maybe this works

* tested to work!

* mypy fixes

* enabled integration tests

* fixed the test

* added external group sync

* testing should work now

* mypy

* confluence doc id fix

* got group sync working

* addressed feedback

* renamed some vars and fixed mypy

* conf fix?

* added wiki handling to confluence connector

* test fixes

* revert google drive connector

* fixed groups

* hotfix
2024-11-12 23:57:14 +00:00
Chris Weaver
021d0cf314 Support LITELLM_EXTRA_BODY env variable (#3119)
* Support LITELLM_EXTRA_BODY env variable

* Remove unused param

* Add comment
2024-11-12 23:17:44 +00:00
pablodanswer
942e47db29 improved mobile scroll (#3110) 2024-11-12 01:57:49 +00:00
pablodanswer
f4a020b599 moderate component fixes (#3095)
* moderate component fixes

* nit

* nit

* update colors

* k
2024-11-12 00:47:35 +00:00
pablodanswer
5166649eae Cleaner EE fallback for no op (#3106)
* treat async values differently

* cleaner approach

* spacing

* typing
2024-11-11 17:42:14 +00:00
Chris Weaver
ba805f766f New assistants api (#3097) 2024-11-11 07:55:23 -08:00
rkuo-danswer
9d57f34c34 re-enable helm (#3053)
* re-enable helm

* allow manual triggering

* change vespa host

* change vespa chart location

* update Chart.lock

* update ct.yaml with new vespa chart repo

* bump vespa to 0.2.5

* update Chart.lock

* update to vespa 0.2.6

* bump vespa to 0.2.7

* bump to 0.2.8

* bump version

* try appending the ordinal

* try new configmap

* bump vespa

* bump vespa

* add debug to see if we can figure out what ct install thinks is failing

* add debug flag to helm

* try disabling nginx because of KinD

* use helm-extra-set-args

* try command line

* try pointing test connection to the correct service name

* bump vespa to 0.2.12

* update chart.lock

* bump vespa to 0.2.13

* bump vespa to 0.2.14

* bump vespa

* bump vespa

* re-enable chart testing only on changes

* name the check more specifically than "lint-test"

* add some debugging

* try setting remote

* might have to specify chart dirs directly

* add comments

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-10 01:28:39 +00:00
pablodanswer
cc2f584321 Silence auth logs (#3098)
* silence auth logs

* remove unnecessary line

* k
2024-11-09 21:41:11 +00:00
pablodanswer
a1b95df3b8 Robustify cloud deployment + include initial KEDA configuration (#3094)
* robustify cloud deployment + include initial KEDA configuration

* ensure .github changes are passed

* raise exits
2024-11-09 21:26:51 +00:00
pablodanswer
9272d6ebfe Remove ee (#3093)
* move api key to non-ee

* finalize previous migration

* move token rate limit to non-ee

* general cleanup

* update

* update

* finalize

* finalize

* ensure callable

* k
2024-11-09 20:51:36 +00:00
Yuhong Sun
4fb65dcf73 Reenable OpenAI Tokenizer (#3062)
* k

* clean up test embeddings

* nit

* minor update to ensure consistency

* minor organizational update

* minor updates

---------

Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-11-08 22:54:15 +00:00
rkuo-danswer
2bbc5d5d07 fix saving docker logs (#3090) 2024-11-08 19:54:48 +00:00
rkuo-danswer
950b1c38f2 Merge pull request #3080 from danswer-ai/robust_assistant_description
Account for malformatted starter messages
2024-11-08 11:28:19 -08:00
Yuhong Sun
99fbfba32f File Connector Metadata (#3089) 2024-11-08 10:49:59 -08:00
pablodanswer
0a59efe64a account for malformatted starter messages 2024-11-08 10:21:04 -08:00
pablodanswer
cf5d394d39 adjust default postgres schema for slack listener (#3088) 2024-11-08 18:00:44 +00:00
pablodanswer
f6d8f5ca89 Migrate tenant upgrades to data plane (#3051)
* add provisioning on data plane

* functional but scrappy

* minor cleanup

* minor clean up

* k

* simplify

* update provisioning

* improve import logic

* ensure proper conditional

* minor pydantic update

* minor config update

* nit
2024-11-08 17:13:29 +00:00
hagen-danswer
1fb4cdfcc3 Merge pull request #3073 from skylares/fireflies-dev
Fireflies connector
2024-11-08 06:50:22 -08:00
hagen-danswer
ac51469bcb Merge branch 'main' into fireflies-dev 2024-11-07 18:56:37 -08:00
Skylar Kesselring
c25f164e28 Remove linux 2024-11-07 21:51:58 -05:00
Skylar Kesselring
813720905b Fix failure cases 2024-11-07 21:37:41 -05:00
rkuo-danswer
0c45488ac6 wait for db before allowing worker to proceed (reduces error spam on … (#3079)
* wait for db before allowing worker to proceed (reduces error spam on container startup)

* fix session usage

* rework readiness probe logic to be less confusing and word ongoing probes better

* add vespa probe too

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-08 01:25:09 +00:00
Skylar Kesselring
95d9b33c1a Clean up connector 2024-11-07 19:51:40 -05:00
Yuhong Sun
55919f596c PG Dev Max Connections (#3082) 2024-11-07 11:51:23 -08:00
pablodanswer
1d0fb6d012 Evaluate None to default (#3069)
* add sentinel value

* update typing

* clearer

* update comments

* ensure proper attribution
2024-11-07 18:41:42 +00:00
pablodanswer
2b1dbde829 minor improvements (#3081) 2024-11-07 18:35:49 +00:00
hagen-danswer
2758ffd9d5 Google Drive Improvements (#3057)
* Google Drive Improvements

* mypy

* should work!

* variable cleanup

* final fixes
2024-11-07 02:07:35 +00:00
pablodanswer
07a1b49b4f update persona defaults (#3042)
* evaluate None to default

* fix usage report pagination

* update persona defaults

* update user preferences

* k

* validate

* update typing

* nit

* formating nits

* fallback to all assistants

* update ux + spacing

* udpate refresh logic

* minor update to refresh

* nit

* touchup

* update starter message

* update default live assistant logic

---------

Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2024-11-07 00:03:14 +00:00
pablodanswer
43d8daa5bc update redirect 2024-11-06 14:55:32 -08:00
hagen-danswer
faeb9f09f0 Merge pull request #3008 from danswer-ai/horizontal_slack
Add Functional Horizontal scaling for Slack
2024-11-06 14:31:13 -08:00
pablodanswer
25f5c12750 remove print 2024-11-06 13:49:16 -08:00
pablodanswer
2d81710ccc minor udpate 2024-11-06 13:49:16 -08:00
pablodanswer
187a7d2da2 validated approach 2024-11-06 13:49:16 -08:00
pablodanswer
4b152aa3a7 update slack 2024-11-06 13:49:16 -08:00
pablodanswer
06f937cf93 no typing 2024-11-06 13:49:16 -08:00
pablodanswer
5a24ed2947 updated cleanup 2024-11-06 13:49:16 -08:00
pablodanswer
2372e6a5a5 update slack 2024-11-06 13:49:15 -08:00
pablodanswer
3eef4e3992 functioning 2024-11-06 13:47:47 -08:00
pablodanswer
467ce4e3f3 fix usage report pagination 2024-11-06 13:21:00 -08:00
Skylar Kesselring
ee4b334a0a Fix errors and cleanup 2024-11-06 14:01:51 -05:00
pablodanswer
4087292001 evaluate None to default 2024-11-06 09:36:43 -08:00
rkuo-danswer
da6ed5b2b3 Merge pull request #3066 from danswer-ai/bugfix/log-vespa-url
need to see vespa url for container debugging
2024-11-06 00:35:10 -08:00
Richard Kuo
864ac2ac5c need to see vespa url for container debugging 2024-11-06 00:26:55 -08:00
rkuo-danswer
12cb77c80e Merge pull request #3059 from danswer-ai/bugfix/sentry_indexing
add sentry to spawned indexing task
2024-11-05 16:51:23 -08:00
Richard Kuo (Danswer)
583cd14bf4 comment why we need sentry here 2024-11-05 16:46:50 -08:00
Richard Kuo (Danswer)
001fcb3359 fix stale indexing tasks being allowed to run after a restart 2024-11-05 16:39:54 -08:00
Skylar Kesselring
7ff18e0a93 Create connector 2024-11-05 19:28:57 -05:00
Richard Kuo (Danswer)
9ac256e925 Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/sentry_indexing 2024-11-05 15:48:23 -08:00
hagen-danswer
08600db41d Merge pull request #3056 from danswer-ai/form_stretch
Improve form
2024-11-05 14:19:11 -08:00
rkuo-danswer
6bf06ac7f7 limit session scope of index attempt (use id's where appropriate as w… (#3049)
* limit session scope of index attempt (use id's where appropriate as well)

* fix session scope

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-11-05 20:51:43 +00:00
Richard Kuo (Danswer)
5b06b53a3e add sentry to spawned indexing task 2024-11-05 12:30:21 -08:00
pablodanswer
afce57b29f clarity 2024-11-05 10:44:12 -08:00
pablodanswer
257dbecd1d k 2024-11-05 10:24:48 -08:00
pablodanswer
bd6baf39c3 update 2024-11-05 10:23:52 -08:00
pablodanswer
ddae2346ec form 2024-11-05 08:33:03 -08:00
1158 changed files with 51294 additions and 30742 deletions

View File

@@ -3,61 +3,61 @@ name: Build and Push Backend Image on Tag
on:
push:
tags:
- '*'
- "*"
env:
REGISTRY_IMAGE: danswer/danswer-backend
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-backend-cloud' || 'onyxdotapp/onyx-backend' }}
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build-and-push:
# TODO: investigate a matrix build like the web container
# TODO: investigate a matrix build like the web container
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: [runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Install build-essential
run: |
sudo apt-get update
sudo apt-get install -y build-essential
- name: Backend Image Docker Build and Push
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
- name: Install build-essential
run: |
sudo apt-get update
sudo apt-get install -y build-essential
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
# To run locally: trivy image --severity HIGH,CRITICAL danswer/danswer-backend
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
trivyignores: ./backend/.trivyignore
- name: Backend Image Docker Build and Push
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
build-args: |
ONYX_VERSION=${{ github.ref_name }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
with:
# To run locally: trivy image --severity HIGH,CRITICAL onyxdotapp/onyx-backend
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: "CRITICAL,HIGH"
trivyignores: ./backend/.trivyignore

View File

@@ -4,12 +4,12 @@ name: Build and Push Cloud Web Image on Tag
on:
push:
tags:
- '*'
- "*"
env:
REGISTRY_IMAGE: danswer/danswer-cloud-web-server
REGISTRY_IMAGE: onyxdotapp/onyx-web-server-cloud
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build:
runs-on:
@@ -28,11 +28,11 @@ jobs:
- name: Prepare
run: |
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
@@ -41,16 +41,16 @@ jobs:
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
type=raw,value=${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v5
@@ -60,22 +60,23 @@ jobs:
platforms: ${{ matrix.platform }}
push: true
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
ONYX_VERSION=${{ github.ref_name }}
NEXT_PUBLIC_CLOUD_ENABLED=true
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
# needed due to weird interactions with the builds for different platforms
NEXT_PUBLIC_GTM_ENABLED=true
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}
outputs: type=image,name=${{ env.REGISTRY_IMAGE }},push-by-digest=true,name-canonical=true,push=true
- name: Export digest
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
with:
@@ -95,42 +96,42 @@ jobs:
path: /tmp/digests
pattern: digests-*
merge-multiple: true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Create manifest list and push
working-directory: /tmp/digests
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
with:
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
severity: "CRITICAL,HIGH"

View File

@@ -3,53 +3,121 @@ name: Build and Push Model Server Image on Tag
on:
push:
tags:
- '*'
- "*"
env:
REGISTRY_IMAGE: danswer/danswer-model-server
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-model-server-cloud' || 'onyxdotapp/onyx-model-server' }}
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
DOCKER_BUILDKIT: 1
BUILDKIT_PROGRESS: plain
jobs:
build-and-push:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
build-amd64:
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: System Info
run: |
df -h
free -h
docker system prune -af --volumes
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver-opts: |
image=moby/buildkit:latest
network=host
- name: Model Server Image Docker Build and Push
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: docker.io/danswer/danswer-model-server:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
- name: Build and Push AMD64
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64
push: true
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
outputs: type=registry
provenance: false
build-arm64:
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: System Info
run: |
df -h
free -h
docker system prune -af --volumes
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver-opts: |
image=moby/buildkit:latest
network=host
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Build and Push ARM64
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/arm64
push: true
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
outputs: type=registry
provenance: false
merge-and-scan:
needs: [build-amd64, build-arm64]
runs-on: ubuntu-latest
steps:
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Create and Push Multi-arch Manifest
run: |
docker buildx create --use
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }} \
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
if [[ "${{ env.LATEST_TAG }}" == "true" ]]; then
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:latest \
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
fi
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
with:
image-ref: docker.io/onyxdotapp/onyx-model-server:${{ github.ref_name }}
severity: "CRITICAL,HIGH"
timeout: "10m"

View File

@@ -3,12 +3,12 @@ name: Build and Push Web Image on Tag
on:
push:
tags:
- '*'
- "*"
env:
REGISTRY_IMAGE: danswer/danswer-web-server
REGISTRY_IMAGE: onyxdotapp/onyx-web-server
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build:
runs-on:
@@ -27,11 +27,11 @@ jobs:
- name: Prepare
run: |
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
@@ -40,16 +40,16 @@ jobs:
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
type=raw,value=${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v5
@@ -59,18 +59,18 @@ jobs:
platforms: ${{ matrix.platform }}
push: true
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
# needed due to weird interactions with the builds for different platforms
ONYX_VERSION=${{ github.ref_name }}
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}
outputs: type=image,name=${{ env.REGISTRY_IMAGE }},push-by-digest=true,name-canonical=true,push=true
- name: Export digest
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
with:
@@ -90,42 +90,42 @@ jobs:
path: /tmp/digests
pattern: digests-*
merge-multiple: true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Create manifest list and push
working-directory: /tmp/digests
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
with:
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
severity: "CRITICAL,HIGH"

View File

@@ -7,31 +7,31 @@ on:
workflow_dispatch:
inputs:
version:
description: 'The version (ie v0.0.1) to tag as latest'
description: "The version (ie v0.0.1) to tag as latest"
required: true
jobs:
tag:
# See https://runs-on.com/runners/linux/
# use a lower powered instance since this just does i/o to docker hub
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Login to Docker Hub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Enable Docker CLI experimental features
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
- name: Enable Docker CLI experimental features
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
- name: Pull, Tag and Push Web Server Image
run: |
docker buildx imagetools create -t danswer/danswer-web-server:latest danswer/danswer-web-server:${{ github.event.inputs.version }}
- name: Pull, Tag and Push Web Server Image
run: |
docker buildx imagetools create -t onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:${{ github.event.inputs.version }}
- name: Pull, Tag and Push API Server Image
run: |
docker buildx imagetools create -t danswer/danswer-backend:latest danswer/danswer-backend:${{ github.event.inputs.version }}
- name: Pull, Tag and Push API Server Image
run: |
docker buildx imagetools create -t onyxdotapp/onyx-backend:latest onyxdotapp/onyx-backend:${{ github.event.inputs.version }}

View File

@@ -8,43 +8,42 @@ on:
workflow_dispatch:
inputs:
hotfix_commit:
description: 'Hotfix commit hash'
description: "Hotfix commit hash"
required: true
hotfix_suffix:
description: 'Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})'
description: "Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})"
required: true
release_branch_pattern:
description: 'Release branch pattern (regex)'
description: "Release branch pattern (regex)"
required: true
default: 'release/.*'
default: "release/.*"
auto_merge:
description: 'Automatically merge the hotfix PRs'
description: "Automatically merge the hotfix PRs"
required: true
type: choice
default: 'true'
default: "true"
options:
- true
- false
jobs:
hotfix_release_branches:
permissions: write-all
# See https://runs-on.com/runners/linux/
# use a lower powered instance since this just does i/o to docker hub
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
steps:
# needs RKUO_DEPLOY_KEY for write access to merge PR's
- name: Checkout Repository
uses: actions/checkout@v4
with:
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
fetch-depth: 0
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@danswer.ai"
git config user.email "rkuo[bot]@onyx.app"
- name: Fetch All Branches
run: |
@@ -62,10 +61,10 @@ jobs:
echo "No release branches found matching pattern '${{ github.event.inputs.release_branch_pattern }}'."
exit 1
fi
echo "Found release branches:"
echo "$BRANCHES"
# Join the branches into a single line separated by commas
BRANCHES_JOINED=$(echo "$BRANCHES" | tr '\n' ',' | sed 's/,$//')
@@ -169,4 +168,4 @@ jobs:
echo "Failed to merge pull request #$PR_NUMBER."
fi
fi
done
done

View File

@@ -4,7 +4,7 @@ name: Backport on Merge
on:
pull_request:
types: [closed] # Later we check for merge so only PRs that go in can get backported
types: [closed] # Later we check for merge so only PRs that go in can get backported
permissions:
contents: write
@@ -26,9 +26,9 @@ jobs:
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@danswer.ai"
git config user.email "rkuo[bot]@onyx.app"
git fetch --prune
- name: Check for Backport Checkbox
id: checkbox-check
run: |
@@ -51,14 +51,14 @@ jobs:
# Fetch latest tags for beta and stable
LATEST_BETA_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*-beta.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+-beta\.[0-9]+$" | grep -v -- "-cloud" | sort -Vr | head -n 1)
LATEST_STABLE_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+$" | sort -Vr | head -n 1)
# Handle case where no beta tags exist
if [[ -z "$LATEST_BETA_TAG" ]]; then
NEW_BETA_TAG="v1.0.0-beta.1"
else
NEW_BETA_TAG=$(echo $LATEST_BETA_TAG | awk -F '[.-]' '{print $1 "." $2 "." $3 "-beta." ($NF+1)}')
fi
# Increment latest stable tag
NEW_STABLE_TAG=$(echo $LATEST_STABLE_TAG | awk -F '.' '{print $1 "." $2 "." ($3+1)}')
echo "latest_beta_tag=$LATEST_BETA_TAG" >> $GITHUB_OUTPUT
@@ -80,10 +80,10 @@ jobs:
run: |
set -e
echo "Backporting to beta ${{ steps.list-branches.outputs.beta }} and stable ${{ steps.list-branches.outputs.stable }}"
# Echo the merge commit SHA
echo "Merge commit SHA: ${{ github.event.pull_request.merge_commit_sha }}"
# Fetch all history for all branches and tags
git fetch --prune
@@ -98,7 +98,7 @@ jobs:
echo "Cherry-pick to beta failed due to conflicts."
exit 1
}
# Create new beta branch/tag
git tag ${{ steps.list-branches.outputs.new_beta_tag }}
# Push the changes and tag to the beta branch using PAT
@@ -110,13 +110,13 @@ jobs:
echo "Last 5 commits on stable branch:"
git log -n 5 --pretty=format:"%H"
echo "" # Newline for formatting
# Cherry-pick the merge commit from the merged PR
git cherry-pick -m 1 ${{ github.event.pull_request.merge_commit_sha }} || {
echo "Cherry-pick to stable failed due to conflicts."
exit 1
}
# Create new stable branch/tag
git tag ${{ steps.list-branches.outputs.new_stable_tag }}
# Push the changes and tag to the stable branch using PAT

238
.github/workflows/pr-chromatic-tests.yml vendored Normal file
View File

@@ -0,0 +1,238 @@
name: Run Chromatic Tests
concurrency:
group: Run-Chromatic-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on: push
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
jobs:
playwright-tests:
name: Playwright Tests
# See https://runs-on.com/runners/linux/
runs-on:
[
runs-on,
runner=32cpu-linux-x64,
disk=large,
"run-id=${{ github.run_id }}",
]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
cache: "pip"
cache-dependency-path: |
backend/requirements/default.txt
backend/requirements/dev.txt
backend/requirements/model_server.txt
- run: |
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 22
- name: Install node dependencies
working-directory: ./web
run: npm ci
- name: Install playwright browsers
working-directory: ./web
run: npx playwright install --with-deps
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# tag every docker image with "test" so that we can spin up the correct set
# of images during testing
# we use the runs-on cache for docker builds
# in conjunction with runs-on runners, it has better speed and unlimited caching
# https://runs-on.com/caching/s3-cache-for-github-actions/
# https://runs-on.com/caching/docker/
# https://github.com/moby/buildkit#s3-cache-experimental
# images are built and run locally for testing purposes. Not pushed.
- name: Build Web Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./web
file: ./web/Dockerfile
platforms: linux/amd64
tags: onyxdotapp/onyx-web-server:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/web-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/web-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
- name: Build Backend Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64
tags: onyxdotapp/onyx-backend:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
- name: Build Model Server Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64
tags: onyxdotapp/onyx-model-server:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
GEN_AI_API_KEY=${{ secrets.OPENAI_API_KEY }} \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f danswer-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
while true; do
current_time=$(date +%s)
elapsed_time=$((current_time - start_time))
if [ $elapsed_time -ge $timeout ]; then
echo "Timeout reached. Service did not become ready in 5 minutes."
exit 1
fi
# Use curl with error handling to ignore specific exit code 56
response=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8080/health || echo "curl_error")
if [ "$response" = "200" ]; then
echo "Service is ready!"
break
elif [ "$response" = "curl_error" ]; then
echo "Curl encountered an error, possibly exit code 56. Continuing to retry..."
else
echo "Service not ready yet (HTTP status $response). Retrying in 5 seconds..."
fi
sleep 5
done
echo "Finished waiting for service."
- name: Run pytest playwright test init
working-directory: ./backend
env:
PYTEST_IGNORE_SKIP: true
run: pytest -s tests/integration/tests/playwright/test_playwright.py
- name: Run Playwright tests
working-directory: ./web
run: npx playwright test
- uses: actions/upload-artifact@v4
if: always()
with:
# Chromatic automatically defaults to the test-results directory.
# Replace with the path to your custom directory and adjust the CHROMATIC_ARCHIVE_LOCATION environment variable accordingly.
name: test-results
path: ./web/test-results
retention-days: 30
# save before stopping the containers so the logs can be captured
- name: Save Docker logs
if: success() || failure()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack logs > docker-compose.log
mv docker-compose.log ${{ github.workspace }}/docker-compose.log
- name: Upload logs
if: success() || failure()
uses: actions/upload-artifact@v4
with:
name: docker-logs
path: ${{ github.workspace }}/docker-compose.log
- name: Stop Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
chromatic-tests:
name: Chromatic Tests
needs: playwright-tests
runs-on:
[
runs-on,
runner=32cpu-linux-x64,
disk=large,
"run-id=${{ github.run_id }}",
]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 22
- name: Install node dependencies
working-directory: ./web
run: npm ci
- name: Download Playwright test results
uses: actions/download-artifact@v4
with:
name: test-results
path: ./web/test-results
- name: Run Chromatic
uses: chromaui/action@latest
with:
playwright: true
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
workingDir: ./web
env:
CHROMATIC_ARCHIVE_LOCATION: ./test-results

View File

@@ -0,0 +1,72 @@
name: Helm - Lint and Test Charts
on:
merge_group:
pull_request:
branches: [ main ]
workflow_dispatch: # Allows manual triggering
jobs:
helm-chart-check:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,hdd=256,"run-id=${{ github.run_id }}"]
# fetch-depth 0 is required for helm/chart-testing-action
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@v4.2.0
with:
version: v3.14.4
- name: Set up chart-testing
uses: helm/chart-testing-action@v2.6.1
# even though we specify chart-dirs in ct.yaml, it isn't used by ct for the list-changed command...
- name: Run chart-testing (list-changed)
id: list-changed
run: |
echo "default_branch: ${{ github.event.repository.default_branch }}"
changed=$(ct list-changed --remote origin --target-branch ${{ github.event.repository.default_branch }} --chart-dirs deployment/helm/charts)
echo "list-changed output: $changed"
if [[ -n "$changed" ]]; then
echo "changed=true" >> "$GITHUB_OUTPUT"
fi
# rkuo: I don't think we need python?
# - name: Set up Python
# uses: actions/setup-python@v5
# with:
# python-version: '3.11'
# cache: 'pip'
# cache-dependency-path: |
# backend/requirements/default.txt
# backend/requirements/dev.txt
# backend/requirements/model_server.txt
# - run: |
# python -m pip install --upgrade pip
# pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
# pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
# pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
# lint all charts if any changes were detected
- name: Run chart-testing (lint)
if: steps.list-changed.outputs.changed == 'true'
run: ct lint --config ct.yaml --all
# the following would lint only changed charts, but linting isn't expensive
# run: ct lint --config ct.yaml --target-branch ${{ github.event.repository.default_branch }}
- name: Create kind cluster
if: steps.list-changed.outputs.changed == 'true'
uses: helm/kind-action@v1.10.0
- name: Run chart-testing (install)
if: steps.list-changed.outputs.changed == 'true'
run: ct install --all --helm-extra-set-args="--set=nginx.enabled=false" --debug --config ct.yaml
# the following would install only changed charts, but we only have one chart so
# don't worry about that for now
# run: ct install --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -1,68 +0,0 @@
# This workflow is intentionally disabled while we're still working on it
# It's close to ready, but a race condition needs to be fixed with
# API server and Vespa startup, and it needs to have a way to build/test against
# local containers
name: Helm - Lint and Test Charts
on:
merge_group:
pull_request:
branches: [ main ]
jobs:
lint-test:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,hdd=256,"run-id=${{ github.run_id }}"]
# fetch-depth 0 is required for helm/chart-testing-action
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@v4.2.0
with:
version: v3.14.4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.11'
cache: 'pip'
cache-dependency-path: |
backend/requirements/default.txt
backend/requirements/dev.txt
backend/requirements/model_server.txt
- run: |
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
- name: Set up chart-testing
uses: helm/chart-testing-action@v2.6.1
- name: Run chart-testing (list-changed)
id: list-changed
run: |
changed=$(ct list-changed --target-branch ${{ github.event.repository.default_branch }})
if [[ -n "$changed" ]]; then
echo "changed=true" >> "$GITHUB_OUTPUT"
fi
- name: Run chart-testing (lint)
# if: steps.list-changed.outputs.changed == 'true'
run: ct lint --all --config ct.yaml --target-branch ${{ github.event.repository.default_branch }}
- name: Create kind cluster
# if: steps.list-changed.outputs.changed == 'true'
uses: helm/kind-action@v1.10.0
- name: Run chart-testing (install)
# if: steps.list-changed.outputs.changed == 'true'
run: ct install --all --config ct.yaml
# run: ct install --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -8,16 +8,19 @@ on:
pull_request:
branches:
- main
- 'release/**'
- "release/**"
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
CONFLUENCE_TEST_SPACE_URL: ${{ secrets.CONFLUENCE_TEST_SPACE_URL }}
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
jobs:
integration-tests:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
runs-on: [runs-on, runner=32cpu-linux-x64, "run-id=${{ github.run_id }}"]
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -33,21 +36,21 @@ jobs:
# tag every docker image with "test" so that we can spin up the correct set
# of images during testing
# We don't need to build the Web Docker image since it's not yet used
# in the integration tests. We have a separate action to verify that it builds
# in the integration tests. We have a separate action to verify that it builds
# successfully.
- name: Pull Web Docker image
run: |
docker pull danswer/danswer-web-server:latest
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:test
docker pull onyxdotapp/onyx-web-server:latest
docker tag onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:test
# we use the runs-on cache for docker builds
# in conjunction with runs-on runners, it has better speed and unlimited caching
# https://runs-on.com/caching/s3-cache-for-github-actions/
# https://runs-on.com/caching/docker/
# https://github.com/moby/buildkit#s3-cache-experimental
# images are built and run locally for testing purposes. Not pushed.
- name: Build Backend Docker image
uses: ./.github/actions/custom-build-and-push
@@ -55,7 +58,7 @@ jobs:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64
tags: danswer/danswer-backend:test
tags: onyxdotapp/onyx-backend:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
@@ -67,19 +70,19 @@ jobs:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64
tags: danswer/danswer-model-server:test
tags: onyxdotapp/onyx-model-server:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
- name: Build integration test Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/tests/integration/Dockerfile
platforms: linux/amd64
tags: danswer/danswer-integration:test
tags: onyxdotapp/onyx-integration:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/integration/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
@@ -116,7 +119,7 @@ jobs:
-e TEST_WEB_HOSTNAME=test-runner \
-e AUTH_TYPE=cloud \
-e MULTI_TENANT=true \
danswer/danswer-integration:test \
onyxdotapp/onyx-integration:test \
/app/tests/integration/multitenant_tests
continue-on-error: true
id: run_multitenant_tests
@@ -128,15 +131,14 @@ jobs:
exit 1
else
echo "All integration tests passed successfully."
fi
fi
- name: Stop multi-tenant Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
- name: Start Docker containers
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
@@ -150,12 +152,12 @@ jobs:
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f danswer-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
while true; do
current_time=$(date +%s)
elapsed_time=$((current_time - start_time))
@@ -195,9 +197,13 @@ jobs:
-e API_SERVER_HOST=api_server \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
-e CONFLUENCE_TEST_SPACE_URL=${CONFLUENCE_TEST_SPACE_URL} \
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
-e TEST_WEB_HOSTNAME=test-runner \
danswer/danswer-integration:test \
/app/tests/integration/tests
onyxdotapp/onyx-integration:test \
/app/tests/integration/tests \
/app/tests/integration/connector_job_tests
continue-on-error: true
id: run_tests
@@ -210,18 +216,19 @@ jobs:
echo "All integration tests passed successfully."
fi
- name: Stop Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
# save before stopping the containers so the logs can be captured
- name: Save Docker logs
if: success() || failure()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack logs > docker-compose.log
mv docker-compose.log ${{ github.workspace }}/docker-compose.log
- name: Stop Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
- name: Upload logs
if: success() || failure()
uses: actions/upload-artifact@v4

View File

@@ -20,9 +20,12 @@ env:
JIRA_API_TOKEN: ${{ secrets.JIRA_API_TOKEN }}
# Google
GOOGLE_DRIVE_SERVICE_ACCOUNT_JSON_STR: ${{ secrets.GOOGLE_DRIVE_SERVICE_ACCOUNT_JSON_STR }}
GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR_TEST_USER_1: ${{ secrets.GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR_TEST_USER_1 }}
GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR: ${{ secrets.GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR }}
GOOGLE_GMAIL_SERVICE_ACCOUNT_JSON_STR: ${{ secrets.GOOGLE_GMAIL_SERVICE_ACCOUNT_JSON_STR }}
GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR: ${{ secrets.GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR }}
# Slab
SLAB_BOT_TOKEN: ${{ secrets.SLAB_BOT_TOKEN }}
jobs:
connectors-check:

View File

@@ -2,53 +2,52 @@ name: Nightly Tag Push
on:
schedule:
- cron: '0 10 * * *' # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
- cron: "0 10 * * *" # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
permissions:
contents: write # Allows pushing tags to the repository
contents: write # Allows pushing tags to the repository
jobs:
create-and-push-tag:
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
steps:
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
# implement here which needs an actual user's deploy key
- name: Checkout code
uses: actions/checkout@v4
with:
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
# implement here which needs an actual user's deploy key
- name: Checkout code
uses: actions/checkout@v4
with:
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@danswer.ai"
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@onyx.app"
- name: Check for existing nightly tag
id: check_tag
run: |
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
echo "A tag starting with 'nightly-latest' already exists on HEAD."
echo "tag_exists=true" >> $GITHUB_OUTPUT
else
echo "No tag starting with 'nightly-latest' exists on HEAD."
echo "tag_exists=false" >> $GITHUB_OUTPUT
fi
# don't tag again if HEAD already has a nightly-latest tag on it
- name: Create Nightly Tag
if: steps.check_tag.outputs.tag_exists == 'false'
env:
DATE: ${{ github.run_id }}
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
echo "Creating tag: $TAG_NAME"
git tag $TAG_NAME
- name: Check for existing nightly tag
id: check_tag
run: |
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
echo "A tag starting with 'nightly-latest' already exists on HEAD."
echo "tag_exists=true" >> $GITHUB_OUTPUT
else
echo "No tag starting with 'nightly-latest' exists on HEAD."
echo "tag_exists=false" >> $GITHUB_OUTPUT
fi
- name: Push Tag
if: steps.check_tag.outputs.tag_exists == 'false'
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
git push origin $TAG_NAME
# don't tag again if HEAD already has a nightly-latest tag on it
- name: Create Nightly Tag
if: steps.check_tag.outputs.tag_exists == 'false'
env:
DATE: ${{ github.run_id }}
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
echo "Creating tag: $TAG_NAME"
git tag $TAG_NAME
- name: Push Tag
if: steps.check_tag.outputs.tag_exists == 'false'
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
git push origin $TAG_NAME

1
.gitignore vendored
View File

@@ -7,3 +7,4 @@
.vscode/
*.sw?
/backend/tests/regression/answer_quality/search_test_config.yaml
/web/test-results/

View File

@@ -17,7 +17,7 @@
}
},
{
"name": "Run All Danswer Services",
"name": "Run All Onyx Services",
"configurations": [
"Web Server",
"Model Server",
@@ -122,7 +122,7 @@
"PYTHONUNBUFFERED": "1"
},
"args": [
"danswer.main:app",
"onyx.main:app",
"--reload",
"--port",
"8080"
@@ -139,7 +139,7 @@
"consoleName": "Slack Bot",
"type": "debugpy",
"request": "launch",
"program": "danswer/danswerbot/slack/listener.py",
"program": "onyx/onyxbot/slack/listener.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
@@ -166,7 +166,7 @@
},
"args": [
"-A",
"danswer.background.celery.versioned_apps.primary",
"onyx.background.celery.versioned_apps.primary",
"worker",
"--pool=threads",
"--concurrency=4",
@@ -195,7 +195,7 @@
},
"args": [
"-A",
"danswer.background.celery.versioned_apps.light",
"onyx.background.celery.versioned_apps.light",
"worker",
"--pool=threads",
"--concurrency=64",
@@ -203,7 +203,7 @@
"--loglevel=INFO",
"--hostname=light@%n",
"-Q",
"vespa_metadata_sync,connector_deletion",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert",
],
"presentation": {
"group": "2",
@@ -224,7 +224,7 @@
},
"args": [
"-A",
"danswer.background.celery.versioned_apps.heavy",
"onyx.background.celery.versioned_apps.heavy",
"worker",
"--pool=threads",
"--concurrency=4",
@@ -232,7 +232,7 @@
"--loglevel=INFO",
"--hostname=heavy@%n",
"-Q",
"connector_pruning",
"connector_pruning,connector_doc_permissions_sync,connector_external_group_sync",
],
"presentation": {
"group": "2",
@@ -254,7 +254,7 @@
},
"args": [
"-A",
"danswer.background.celery.versioned_apps.indexing",
"onyx.background.celery.versioned_apps.indexing",
"worker",
"--pool=threads",
"--concurrency=1",
@@ -283,7 +283,7 @@
},
"args": [
"-A",
"danswer.background.celery.versioned_apps.beat",
"onyx.background.celery.versioned_apps.beat",
"beat",
"--loglevel=INFO",
],
@@ -308,7 +308,7 @@
"args": [
"-v"
// Specify a sepcific module/test to run or provide nothing to run all tests
//"tests/unit/danswer/llm/answering/test_prune_and_merge.py"
//"tests/unit/onyx/llm/answering/test_prune_and_merge.py"
],
"presentation": {
"group": "2",

View File

@@ -1,105 +1,113 @@
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md"} -->
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md"} -->
# Contributing to Danswer
Hey there! We are so excited that you're interested in Danswer.
# Contributing to Onyx
Hey there! We are so excited that you're interested in Onyx.
As an open source project in a rapidly changing space, we welcome all contributions.
## 💃 Guidelines
### Contribution Opportunities
The [GitHub Issues](https://github.com/danswer-ai/danswer/issues) page is a great place to start for contribution ideas.
The [GitHub Issues](https://github.com/onyx-dot-app/onyx/issues) page is a great place to start for contribution ideas.
Issues that have been explicitly approved by the maintainers (aligned with the direction of the project)
will be marked with the `approved by maintainers` label.
Issues marked `good first issue` are an especially great place to start.
**Connectors** to other tools are another great place to contribute. For details on how, refer to this
[README.md](https://github.com/danswer-ai/danswer/blob/main/backend/danswer/connectors/README.md).
[README.md](https://github.com/onyx-dot-app/onyx/blob/main/backend/onyx/connectors/README.md).
If you have a new/different contribution in mind, we'd love to hear about it!
Your input is vital to making sure that Danswer moves in the right direction.
Your input is vital to making sure that Onyx moves in the right direction.
Before starting on implementation, please raise a GitHub issue.
And always feel free to message us (Chris Weaver / Yuhong Sun) on
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ) /
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
And always feel free to message us (Chris Weaver / Yuhong Sun) on
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ) /
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
### Contributing Code
To contribute to this project, please follow the
["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
When opening a pull request, mention related issues and feel free to tag relevant maintainers.
Before creating a pull request please make sure that the new changes conform to the formatting and linting requirements.
See the [Formatting and Linting](#-formatting-and-linting) section for how to run these checks locally.
See the [Formatting and Linting](#formatting-and-linting) section for how to run these checks locally.
### Getting Help 🙋
Our goal is to make contributing as easy as possible. If you run into any issues please don't hesitate to reach out.
That way we can help future contributors and users can avoid the same issue.
We also have support channels and generally interesting discussions on our
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2afut44lv-Rw3kSWu6_OmdAXRpCv80DQ)
and
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ)
and
[Discord](https://discord.gg/TDJ59cGV2X).
We would love to see you there!
## Get Started 🚀
Danswer being a fully functional app, relies on some external software, specifically:
Onyx being a fully functional app, relies on some external software, specifically:
- [Postgres](https://www.postgresql.org/) (Relational DB)
- [Vespa](https://vespa.ai/) (Vector DB/Search Engine)
- [Redis](https://redis.io/) (Cache)
- [Nginx](https://nginx.org/) (Not needed for development flows generally)
> **Note:**
> This guide provides instructions to build and run Danswer locally from source with Docker containers providing the above external software. We believe this combination is easier for
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Danswer stack within Docker below.
> This guide provides instructions to build and run Onyx locally from source with Docker containers providing the above external software. We believe this combination is easier for
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Onyx stack within Docker below.
### Local Set Up
Be sure to use Python version 3.11. For instructions on installing Python 3.11 on macOS, refer to the [CONTRIBUTING_MACOS.md](./CONTRIBUTING_MACOS.md) readme.
If using a lower version, modifications will have to be made to the code.
If using a higher version, sometimes some libraries will not be available (i.e. we had problems with Tensorflow in the past with higher versions of python).
#### Backend: Python requirements
Currently, we use pip and recommend creating a virtual environment.
For convenience here's a command for it:
```bash
python -m venv .venv
source .venv/bin/activate
```
> **Note:**
> This virtual environment MUST NOT be set up WITHIN the danswer directory if you plan on using mypy within certain IDEs.
> For simplicity, we recommend setting up the virtual environment outside of the danswer directory.
> This virtual environment MUST NOT be set up WITHIN the onyx directory if you plan on using mypy within certain IDEs.
> For simplicity, we recommend setting up the virtual environment outside of the onyx directory.
_For Windows, activate the virtual environment using Command Prompt:_
```bash
.venv\Scripts\activate
```
If using PowerShell, the command slightly differs:
```powershell
.venv\Scripts\Activate.ps1
```
Install the required python dependencies:
```bash
pip install -r danswer/backend/requirements/default.txt
pip install -r danswer/backend/requirements/dev.txt
pip install -r danswer/backend/requirements/ee.txt
pip install -r danswer/backend/requirements/model_server.txt
pip install -r onyx/backend/requirements/default.txt
pip install -r onyx/backend/requirements/dev.txt
pip install -r onyx/backend/requirements/ee.txt
pip install -r onyx/backend/requirements/model_server.txt
```
Install Playwright for Python (headless browser required by the Web Connector)
In the activated Python virtualenv, install Playwright for Python by running:
```bash
playwright install
```
@@ -109,42 +117,50 @@ You may have to deactivate and reactivate your virtualenv for `playwright` to ap
#### Frontend: Node dependencies
Install [Node.js and npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) for the frontend.
Once the above is done, navigate to `danswer/web` run:
Once the above is done, navigate to `onyx/web` run:
```bash
npm i
```
#### Docker containers for external software
You will need Docker installed to run these containers.
First navigate to `danswer/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
First navigate to `onyx/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d index relational_db cache
docker compose -f docker-compose.dev.yml -p onyx-stack up -d index relational_db cache
```
(index refers to Vespa, relational_db refers to Postgres, and cache refers to Redis)
#### Running Onyx locally
To start the frontend, navigate to `onyx/web` and run:
#### Running Danswer locally
To start the frontend, navigate to `danswer/web` and run:
```bash
npm run dev
```
Next, start the model server which runs the local NLP models.
Navigate to `danswer/backend` and run:
Navigate to `onyx/backend` and run:
```bash
uvicorn model_server.main:app --reload --port 9000
```
_For Windows (for compatibility with both PowerShell and Command Prompt):_
```bash
powershell -Command "uvicorn model_server.main:app --reload --port 9000"
```
The first time running Danswer, you will need to run the DB migrations for Postgres.
The first time running Onyx, you will need to run the DB migrations for Postgres.
After the first time, this is no longer required unless the DB models change.
Navigate to `danswer/backend` and with the venv active, run:
Navigate to `onyx/backend` and with the venv active, run:
```bash
alembic upgrade head
```
@@ -152,21 +168,24 @@ alembic upgrade head
Next, start the task queue which orchestrates the background jobs.
Jobs that take more time are run async from the API server.
Still in `danswer/backend`, run:
Still in `onyx/backend`, run:
```bash
python ./scripts/dev_run_background_jobs.py
```
To run the backend API server, navigate back to `danswer/backend` and run:
To run the backend API server, navigate back to `onyx/backend` and run:
```bash
AUTH_TYPE=disabled uvicorn danswer.main:app --reload --port 8080
AUTH_TYPE=disabled uvicorn onyx.main:app --reload --port 8080
```
_For Windows (for compatibility with both PowerShell and Command Prompt):_
```bash
powershell -Command "
$env:AUTH_TYPE='disabled'
uvicorn danswer.main:app --reload --port 8080
uvicorn onyx.main:app --reload --port 8080
"
```
@@ -182,57 +201,61 @@ You should now have 4 servers running:
- Model server
- Background jobs
Now, visit `http://localhost:3000` in your browser. You should see the Danswer onboarding wizard where you can connect your external LLM provider to Danswer.
Now, visit `http://localhost:3000` in your browser. You should see the Onyx onboarding wizard where you can connect your external LLM provider to Onyx.
You've successfully set up a local Danswer instance! 🏁
You've successfully set up a local Onyx instance! 🏁
#### Running the Danswer application in a container
#### Running the Onyx application in a container
You can run the full Danswer application stack from pre-built images including all external software dependencies.
You can run the full Onyx application stack from pre-built images including all external software dependencies.
Navigate to `danswer/deployment/docker_compose` and run:
Navigate to `onyx/deployment/docker_compose` and run:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
```
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Danswer.
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Onyx.
If you want to make changes to Danswer and run those changes in Docker, you can also build a local version of the Danswer container images that incorporates your changes like so:
If you want to make changes to Onyx and run those changes in Docker, you can also build a local version of the Onyx container images that incorporates your changes like so:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d --build
docker compose -f docker-compose.dev.yml -p onyx-stack up -d --build
```
### Formatting and Linting
#### Backend
For the backend, you'll need to setup pre-commit hooks (black / reorder-python-imports).
First, install pre-commit (if you don't have it already) following the instructions
[here](https://pre-commit.com/#installation).
With the virtual environment active, install the pre-commit library with:
```bash
pip install pre-commit
```
Then, from the `danswer/backend` directory, run:
Then, from the `onyx/backend` directory, run:
```bash
pre-commit install
```
Additionally, we use `mypy` for static type checking.
Danswer is fully type-annotated, and we want to keep it that way!
To run the mypy checks manually, run `python -m mypy .` from the `danswer/backend` directory.
Onyx is fully type-annotated, and we want to keep it that way!
To run the mypy checks manually, run `python -m mypy .` from the `onyx/backend` directory.
#### Web
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `danswer/web` directory.
To run the formatter, use `npx prettier --write .` from the `danswer/web` directory.
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `onyx/web` directory.
To run the formatter, use `npx prettier --write .` from the `onyx/web` directory.
Please double check that prettier passes before creating a pull request.
### Release Process
Danswer loosely follows the SemVer versioning standard.
Onyx loosely follows the SemVer versioning standard.
Major changes are released with a "minor" version bump. Currently we use patch release versions to indicate small feature changes.
A set of Docker containers will be pushed automatically to DockerHub with every tag.
You can see the containers [here](https://hub.docker.com/search?q=danswer%2F).
You can see the containers [here](https://hub.docker.com/search?q=onyx%2F).

View File

@@ -1,15 +1,19 @@
## Some additional notes for Mac Users
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md).
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md).
### Setting up Python
Ensure [Homebrew](https://brew.sh/) is already set up.
Then install python 3.11.
```bash
brew install python@3.11
```
Add python 3.11 to your path: add the following line to ~/.zshrc
```
export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
```
@@ -17,15 +21,16 @@ export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
> **Note:**
> You will need to open a new terminal for the path change above to take effect.
### Setting up Docker
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
ensure it is running before continuing with the docker commands.
### Formatting and Linting
MacOS will likely require you to remove some quarantine attributes on some of the hooks for them to execute properly.
After installing pre-commit, run the following command:
```bash
sudo xattr -r -d com.apple.quarantine ~/.cache/pre-commit
```
```

View File

@@ -2,9 +2,9 @@ Copyright (c) 2023-present DanswerAI, Inc.
Portions of this software are licensed as follows:
* All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
* All third party components incorporated into the Danswer Software are licensed under the original license provided by the owner of the applicable component.
* Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
- All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
- All third party components incorporated into the Onyx Software are licensed under the original license provided by the owner of the applicable component.
- Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

161
README.md
View File

@@ -1,142 +1,143 @@
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/README.md"} -->
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/README.md"} -->
<a name="readme-top"></a>
<h2 align="center">
<a href="https://www.danswer.ai/"> <img width="50%" src="https://github.com/danswer-owners/danswer/blob/1fabd9372d66cd54238847197c33f091a724803b/DanswerWithName.png?raw=true)" /></a>
<a href="https://www.onyx.app/"> <img width="50%" src="https://github.com/onyx-dot-app/onyx/blob/logo/LogoOnyx.png?raw=true)" /></a>
</h2>
<p align="center">
<p align="center">Open Source Gen-AI Chat + Unified Search.</p>
<p align="center">Open Source Gen-AI + Enterprise Search.</p>
<p align="center">
<a href="https://docs.danswer.dev/" target="_blank">
<a href="https://docs.onyx.app/" target="_blank">
<img src="https://img.shields.io/badge/docs-view-blue" alt="Documentation">
</a>
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ" target="_blank">
<a href="https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ" target="_blank">
<img src="https://img.shields.io/badge/slack-join-blue.svg?logo=slack" alt="Slack">
</a>
<a href="https://discord.gg/TDJ59cGV2X" target="_blank">
<img src="https://img.shields.io/badge/discord-join-blue.svg?logo=discord&logoColor=white" alt="Discord">
</a>
<a href="https://github.com/danswer-ai/danswer/blob/main/README.md" target="_blank">
<a href="https://github.com/onyx-dot-app/onyx/blob/main/README.md" target="_blank">
<img src="https://img.shields.io/static/v1?label=license&message=MIT&color=blue" alt="License">
</a>
</p>
<strong>[Danswer](https://www.danswer.ai/)</strong> is the AI Assistant connected to your company's docs, apps, and people.
Danswer provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
configuring Personas (AI Assistants) and their Prompts.
<strong>[Onyx](https://www.onyx.app/)</strong> (Formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
configuring AI Assistants.
Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
supported?" or "Where's the pull request for feature Y?"
<h3>Usage</h3>
Danswer Web App:
Onyx Web App:
https://github.com/danswer-ai/danswer/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
https://github.com/onyx-dot-app/onyx/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
Or, plug Danswer into your existing Slack workflows (more integrations to come 😁):
https://github.com/onyx-dot-app/onyx/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
https://github.com/danswer-ai/danswer/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
For more details on the Admin UI to manage connectors and users, check out our
For more details on the Admin UI to manage connectors and users, check out our
<strong><a href="https://www.youtube.com/watch?v=geNzY1nbCnU">Full Video Demo</a></strong>!
## Deployment
Danswer can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.danswer.dev/quickstart) to learn more.
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/danswer-ai/danswer/tree/main/deployment/kubernetes).
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
## 💃 Main Features
## 💃 Main Features
* Chat UI with the ability to select documents to chat with.
* Create custom AI Assistants with different prompts and backing knowledge sets.
* Connect Danswer with LLM of your choice (self-host for a fully airgapped solution).
* Document Search + AI Answers for natural language queries.
* Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
* Slack integration to get answers and search results directly in Slack.
- Chat UI with the ability to select documents to chat with.
- Create custom AI Assistants with different prompts and backing knowledge sets.
- Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
- Document Search + AI Answers for natural language queries.
- Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
- Slack integration to get answers and search results directly in Slack.
## 🚧 Roadmap
* Chat/Prompt sharing with specific teammates and user groups.
* Multimodal model support, chat with images, video etc.
* Choosing between LLMs and parameters during chat session.
* Tool calling and agent configurations options.
* Organizational understanding and ability to locate and suggest experts from your team.
- Chat/Prompt sharing with specific teammates and user groups.
- Multimodal model support, chat with images, video etc.
- Choosing between LLMs and parameters during chat session.
- Tool calling and agent configurations options.
- Organizational understanding and ability to locate and suggest experts from your team.
## Other Notable Benefits of Danswer
* User Authentication with document level access management.
* Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
* Admin Dashboard to configure connectors, document-sets, access, etc.
* Custom deep learning models + learn from user feedback.
* Easy deployment and ability to host Danswer anywhere of your choosing.
## Other Notable Benefits of Onyx
- User Authentication with document level access management.
- Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
- Admin Dashboard to configure connectors, document-sets, access, etc.
- Custom deep learning models + learn from user feedback.
- Easy deployment and ability to host Onyx anywhere of your choosing.
## 🔌 Connectors
Efficiently pulls the latest changes from:
* Slack
* GitHub
* Google Drive
* Confluence
* Jira
* Zendesk
* Gmail
* Notion
* Gong
* Slab
* Linear
* Productboard
* Guru
* Bookstack
* Document360
* Sharepoint
* Hubspot
* Local Files
* Websites
* And more ...
- Slack
- GitHub
- Google Drive
- Confluence
- Jira
- Zendesk
- Gmail
- Notion
- Gong
- Slab
- Linear
- Productboard
- Guru
- Bookstack
- Document360
- Sharepoint
- Hubspot
- Local Files
- Websites
- And more ...
## 📚 Editions
There are two editions of Danswer:
There are two editions of Onyx:
* Danswer Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Danswer you will get if you follow the Deployment guide above.
* Danswer Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
* Single Sign-On (SSO), with support for both SAML and OIDC
* Role-based access control
* Document permission inheritance from connected sources
* Usage analytics and query history accessible to admins
* Whitelabeling
* API key authentication
* Encryption of secrets
* Any many more! Checkout [our website](https://www.danswer.ai/) for the latest.
- Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
- Single Sign-On (SSO), with support for both SAML and OIDC
- Role-based access control
- Document permission inheritance from connected sources
- Usage analytics and query history accessible to admins
- Whitelabeling
- API key authentication
- Encryption of secrets
- Any many more! Checkout [our website](https://www.onyx.app/) for the latest.
To try the Danswer Enterprise Edition:
To try the Onyx Enterprise Edition:
1. Checkout our [Cloud product](https://app.danswer.ai/signup).
2. For self-hosting, contact us at [founders@danswer.ai](mailto:founders@danswer.ai) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
## 💡 Contributing
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
## ⭐Star History
[![Star History Chart](https://api.star-history.com/svg?repos=danswer-ai/danswer&type=Date)](https://star-history.com/#danswer-ai/danswer&Date)
[![Star History Chart](https://api.star-history.com/svg?repos=onyx-dot-app/onyx&type=Date)](https://star-history.com/#onyx-dot-app/onyx&Date)
## ✨Contributors
<a href="https://github.com/aryn-ai/sycamore/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=danswer-ai/danswer"/>
<a href="https://github.com/onyx-dot-app/onyx/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=onyx-dot-app/onyx"/>
</a>
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">

View File

@@ -1,19 +1,19 @@
FROM python:3.11.7-slim-bookworm
LABEL com.danswer.maintainer="founders@danswer.ai"
LABEL com.danswer.description="This image is the web/frontend container of Danswer which \
contains code for both the Community and Enterprise editions of Danswer. If you do not \
LABEL com.danswer.maintainer="founders@onyx.app"
LABEL com.danswer.description="This image is the web/frontend container of Onyx which \
contains code for both the Community and Enterprise editions of Onyx. If you do not \
have a contract or agreement with DanswerAI, you are not permitted to use the Enterprise \
Edition features outside of personal development or testing purposes. Please reach out to \
founders@danswer.ai for more information. Please visit https://github.com/danswer-ai/danswer"
founders@onyx.app for more information. Please visit https://github.com/onyx-dot-app/onyx"
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.8-dev
ENV DANSWER_VERSION=${DANSWER_VERSION} \
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
ARG ONYX_VERSION=0.8-dev
ENV ONYX_VERSION=${ONYX_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
# Install system dependencies
# cmake needed for psycopg (postgres)
# libpq-dev needed for psycopg (postgres)
@@ -56,7 +56,7 @@ RUN pip install --no-cache-dir --upgrade \
# Cleanup for CVEs and size reduction
# https://github.com/tornadoweb/tornado/issues/3107
# xserver-common and xvfb included by playwright installation but not needed after
# perl-base is part of the base Python Debian image but not needed for Danswer functionality
# perl-base is part of the base Python Debian image but not needed for Onyx functionality
# perl-base could only be removed with --allow-remove-essential
RUN apt-get update && \
apt-get remove -y --allow-remove-essential \
@@ -73,6 +73,7 @@ RUN apt-get update && \
rm -rf /var/lib/apt/lists/* && \
rm -f /usr/local/lib/python3.11/site-packages/tornado/test/test.key
# Pre-downloading models for setups with limited egress
RUN python -c "from tokenizers import Tokenizer; \
Tokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1')"
@@ -91,7 +92,7 @@ COPY ./ee /app/ee
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
# Set up application files
COPY ./danswer /app/danswer
COPY ./onyx /app/onyx
COPY ./shared_configs /app/shared_configs
COPY ./alembic /app/alembic
COPY ./alembic_tenants /app/alembic_tenants

View File

@@ -1,18 +1,18 @@
FROM python:3.11.7-slim-bookworm
LABEL com.danswer.maintainer="founders@danswer.ai"
LABEL com.danswer.description="This image is for the Danswer model server which runs all of the \
AI models for Danswer. This container and all the code is MIT Licensed and free for all to use. \
You can find it at https://hub.docker.com/r/danswer/danswer-model-server. For more details, \
visit https://github.com/danswer-ai/danswer."
LABEL com.danswer.maintainer="founders@onyx.app"
LABEL com.danswer.description="This image is for the Onyx model server which runs all of the \
AI models for Onyx. This container and all the code is MIT Licensed and free for all to use. \
You can find it at https://hub.docker.com/r/onyx/onyx-model-server. For more details, \
visit https://github.com/onyx-dot-app/onyx."
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.8-dev
ENV DANSWER_VERSION=${DANSWER_VERSION} \
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
ARG ONYX_VERSION=0.8-dev
ENV ONYX_VERSION=${ONYX_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
COPY ./requirements/model_server.txt /tmp/requirements.txt
RUN pip install --no-cache-dir --upgrade \
@@ -20,11 +20,11 @@ RUN pip install --no-cache-dir --upgrade \
--timeout 30 \
-r /tmp/requirements.txt
RUN apt-get remove -y --allow-remove-essential perl-base && \
RUN apt-get remove -y --allow-remove-essential perl-base && \
apt-get autoremove -y
# Pre-downloading models for setups with limited egress
# Download tokenizers, distilbert for the Danswer model
# Download tokenizers, distilbert for the Onyx model
# Download model weights
# Run Nomic to pull in the custom architecture and have it cached locally
RUN python -c "from transformers import AutoTokenizer; \
@@ -38,18 +38,18 @@ from sentence_transformers import SentenceTransformer; \
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True);"
# In case the user has volumes mounted to /root/.cache/huggingface that they've downloaded while
# running Danswer, don't overwrite it with the built in cache folder
# running Onyx, don't overwrite it with the built in cache folder
RUN mv /root/.cache/huggingface /root/.cache/temp_huggingface
WORKDIR /app
# Utils used by model server
COPY ./danswer/utils/logger.py /app/danswer/utils/logger.py
COPY ./onyx/utils/logger.py /app/onyx/utils/logger.py
# Place to fetch version information
COPY ./danswer/__init__.py /app/danswer/__init__.py
COPY ./onyx/__init__.py /app/onyx/__init__.py
# Shared between Danswer Backend and Model Server
# Shared between Onyx Backend and Model Server
COPY ./shared_configs /app/shared_configs
# Model Server main code

View File

@@ -1,19 +1,22 @@
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/backend/alembic/README.md"} -->
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/backend/alembic/README.md"} -->
# Alembic DB Migrations
These files are for creating/updating the tables in the Relational DB (Postgres).
Danswer migrations use a generic single-database configuration with an async dbapi.
## To generate new migrations:
run from danswer/backend:
These files are for creating/updating the tables in the Relational DB (Postgres).
Onyx migrations use a generic single-database configuration with an async dbapi.
## To generate new migrations:
run from onyx/backend:
`alembic revision --autogenerate -m <DESCRIPTION_OF_MIGRATION>`
More info can be found here: https://alembic.sqlalchemy.org/en/latest/autogenerate.html
## Running migrations
To run all un-applied migrations:
`alembic upgrade head`
To undo migrations:
`alembic downgrade -X`
`alembic downgrade -X`
where X is the number of migrations you want to undo from the current state

View File

@@ -1,56 +1,70 @@
from typing import Any, Literal
from onyx.db.engine import get_iam_auth_token
from onyx.configs.app_configs import USE_IAM_AUTH
from onyx.configs.app_configs import POSTGRES_HOST
from onyx.configs.app_configs import POSTGRES_PORT
from onyx.configs.app_configs import POSTGRES_USER
from onyx.configs.app_configs import AWS_REGION
from onyx.db.engine import build_connection_string
from onyx.db.engine import get_all_tenant_ids
from sqlalchemy import event
from sqlalchemy import pool
from sqlalchemy import text
from sqlalchemy.engine.base import Connection
from typing import Any
import os
import ssl
import asyncio
from logging.config import fileConfig
import logging
from logging.config import fileConfig
from alembic import context
from sqlalchemy import pool
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.sql import text
from shared_configs.configs import MULTI_TENANT
from danswer.db.engine import build_connection_string
from danswer.db.models import Base
from sqlalchemy.sql.schema import SchemaItem
from onyx.configs.constants import SSL_CERT_FILE
from shared_configs.configs import MULTI_TENANT, POSTGRES_DEFAULT_SCHEMA
from onyx.db.models import Base
from celery.backends.database.session import ResultModelBase # type: ignore
from danswer.db.engine import get_all_tenant_ids
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
# Alembic Config object
config = context.config
# Interpret the config file for Python logging.
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# Add your model's MetaData object here for 'autogenerate' support
target_metadata = [Base.metadata, ResultModelBase.metadata]
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
# Set up logging
logger = logging.getLogger(__name__)
ssl_context: ssl.SSLContext | None = None
if USE_IAM_AUTH:
if not os.path.exists(SSL_CERT_FILE):
raise FileNotFoundError(f"Expected {SSL_CERT_FILE} when USE_IAM_AUTH is true.")
ssl_context = ssl.create_default_context(cafile=SSL_CERT_FILE)
def include_object(
object: Any, name: str, type_: str, reflected: bool, compare_to: Any
object: SchemaItem,
name: str | None,
type_: Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:
"""
Determines whether a database object should be included in migrations.
Excludes specified tables from migrations.
"""
if type_ == "table" and name in EXCLUDE_TABLES:
return False
return True
def get_schema_options() -> tuple[str, bool, bool]:
"""
Parses command-line options passed via '-x' in Alembic commands.
Recognizes 'schema', 'create_schema', and 'upgrade_all_tenants' options.
"""
x_args_raw = context.get_x_argument()
x_args = {}
for arg in x_args_raw:
@@ -78,16 +92,12 @@ def get_schema_options() -> tuple[str, bool, bool]:
def do_run_migrations(
connection: Connection, schema_name: str, create_schema: bool
) -> None:
"""
Executes migrations in the specified schema.
"""
logger.info(f"About to migrate schema: {schema_name}")
if create_schema:
connection.execute(text(f'CREATE SCHEMA IF NOT EXISTS "{schema_name}"'))
connection.execute(text("COMMIT"))
# Set search_path to the target schema
connection.execute(text(f'SET search_path TO "{schema_name}"'))
context.configure(
@@ -105,11 +115,25 @@ def do_run_migrations(
context.run_migrations()
def provide_iam_token_for_alembic(
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
) -> None:
if USE_IAM_AUTH:
# Database connection settings
region = AWS_REGION
host = POSTGRES_HOST
port = POSTGRES_PORT
user = POSTGRES_USER
# Get IAM authentication token
token = get_iam_auth_token(host, port, user, region)
# For Alembic / SQLAlchemy in this context, set SSL and password
cparams["password"] = token
cparams["ssl"] = ssl_context
async def run_async_migrations() -> None:
"""
Determines whether to run migrations for a single schema or all schemas,
and executes migrations accordingly.
"""
schema_name, create_schema, upgrade_all_tenants = get_schema_options()
engine = create_async_engine(
@@ -117,10 +141,16 @@ async def run_async_migrations() -> None:
poolclass=pool.NullPool,
)
if upgrade_all_tenants:
# Run migrations for all tenant schemas sequentially
tenant_schemas = get_all_tenant_ids()
if USE_IAM_AUTH:
@event.listens_for(engine.sync_engine, "do_connect")
def event_provide_iam_token_for_alembic(
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
) -> None:
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
if upgrade_all_tenants:
tenant_schemas = get_all_tenant_ids()
for schema in tenant_schemas:
try:
logger.info(f"Migrating schema: {schema}")
@@ -150,15 +180,20 @@ async def run_async_migrations() -> None:
def run_migrations_offline() -> None:
"""
Run migrations in 'offline' mode.
"""
schema_name, _, upgrade_all_tenants = get_schema_options()
url = build_connection_string()
if upgrade_all_tenants:
# Run offline migrations for all tenant schemas
engine = create_async_engine(url)
if USE_IAM_AUTH:
@event.listens_for(engine.sync_engine, "do_connect")
def event_provide_iam_token_for_alembic_offline(
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
) -> None:
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
tenant_schemas = get_all_tenant_ids()
engine.sync_engine.dispose()
@@ -195,9 +230,6 @@ def run_migrations_offline() -> None:
def run_migrations_online() -> None:
"""
Runs migrations in 'online' mode using an asynchronous engine.
"""
asyncio.run(run_async_migrations())

View File

@@ -11,7 +11,7 @@ from sqlalchemy.sql import table
from sqlalchemy.dialects import postgresql
import json
from danswer.utils.encryption import encrypt_string_to_bytes
from onyx.utils.encryption import encrypt_string_to_bytes
# revision identifiers, used by Alembic.
revision = "0a98909f2757"

View File

@@ -1,4 +1,4 @@
"""Introduce Danswer APIs
"""Introduce Onyx APIs
Revision ID: 15326fcec57e
Revises: 77d07dffae64
@@ -8,7 +8,7 @@ Create Date: 2023-11-11 20:51:24.228999
from alembic import op
import sqlalchemy as sa
from danswer.configs.constants import DocumentSource
from onyx.configs.constants import DocumentSource
# revision identifiers, used by Alembic.
revision = "15326fcec57e"

View File

@@ -0,0 +1,59 @@
"""display custom llm models
Revision ID: 177de57c21c9
Revises: 4ee1287bd26a
Create Date: 2024-11-21 11:49:04.488677
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from sqlalchemy import and_
revision = "177de57c21c9"
down_revision = "4ee1287bd26a"
branch_labels = None
depends_on = None
depends_on = None
def upgrade() -> None:
conn = op.get_bind()
llm_provider = sa.table(
"llm_provider",
sa.column("id", sa.Integer),
sa.column("provider", sa.String),
sa.column("model_names", postgresql.ARRAY(sa.String)),
sa.column("display_model_names", postgresql.ARRAY(sa.String)),
)
excluded_providers = ["openai", "bedrock", "anthropic", "azure"]
providers_to_update = sa.select(
llm_provider.c.id,
llm_provider.c.model_names,
llm_provider.c.display_model_names,
).where(
and_(
~llm_provider.c.provider.in_(excluded_providers),
llm_provider.c.model_names.isnot(None),
)
)
results = conn.execute(providers_to_update).fetchall()
for provider_id, model_names, display_model_names in results:
if display_model_names is None:
display_model_names = []
combined_model_names = list(set(display_model_names + model_names))
update_stmt = (
llm_provider.update()
.where(llm_provider.c.id == provider_id)
.values(display_model_names=combined_model_names)
)
conn.execute(update_stmt)
def downgrade() -> None:
pass

View File

@@ -10,7 +10,7 @@ from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from danswer.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
from onyx.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
# revision identifiers, used by Alembic.
revision = "1f60f60c3401"

View File

@@ -0,0 +1,68 @@
"""default chosen assistants to none
Revision ID: 26b931506ecb
Revises: 2daa494a0851
Create Date: 2024-11-12 13:23:29.858995
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "26b931506ecb"
down_revision = "2daa494a0851"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"user", sa.Column("chosen_assistants_new", postgresql.JSONB(), nullable=True)
)
op.execute(
"""
UPDATE "user"
SET chosen_assistants_new =
CASE
WHEN chosen_assistants = '[-2, -1, 0]' THEN NULL
ELSE chosen_assistants
END
"""
)
op.drop_column("user", "chosen_assistants")
op.alter_column(
"user", "chosen_assistants_new", new_column_name="chosen_assistants"
)
def downgrade() -> None:
op.add_column(
"user",
sa.Column(
"chosen_assistants_old",
postgresql.JSONB(),
nullable=False,
server_default="[-2, -1, 0]",
),
)
op.execute(
"""
UPDATE "user"
SET chosen_assistants_old =
CASE
WHEN chosen_assistants IS NULL THEN '[-2, -1, 0]'::jsonb
ELSE chosen_assistants
END
"""
)
op.drop_column("user", "chosen_assistants")
op.alter_column(
"user", "chosen_assistants_old", new_column_name="chosen_assistants"
)

View File

@@ -0,0 +1,30 @@
"""add-group-sync-time
Revision ID: 2daa494a0851
Revises: c0fd6e4da83a
Create Date: 2024-11-11 10:57:22.991157
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "2daa494a0851"
down_revision = "c0fd6e4da83a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"last_time_external_group_sync",
sa.DateTime(timezone=True),
nullable=True,
),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "last_time_external_group_sync")

View File

@@ -0,0 +1,121 @@
"""properly_cascade
Revision ID: 35e518e0ddf4
Revises: 91a0a4d62b14
Create Date: 2024-09-20 21:24:04.891018
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "35e518e0ddf4"
down_revision = "91a0a4d62b14"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Update chat_message foreign key constraint
op.drop_constraint(
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
)
op.create_foreign_key(
"chat_message_chat_session_id_fkey",
"chat_message",
"chat_session",
["chat_session_id"],
["id"],
ondelete="CASCADE",
)
# Update chat_message__search_doc foreign key constraints
op.drop_constraint(
"chat_message__search_doc_chat_message_id_fkey",
"chat_message__search_doc",
type_="foreignkey",
)
op.drop_constraint(
"chat_message__search_doc_search_doc_id_fkey",
"chat_message__search_doc",
type_="foreignkey",
)
op.create_foreign_key(
"chat_message__search_doc_chat_message_id_fkey",
"chat_message__search_doc",
"chat_message",
["chat_message_id"],
["id"],
ondelete="CASCADE",
)
op.create_foreign_key(
"chat_message__search_doc_search_doc_id_fkey",
"chat_message__search_doc",
"search_doc",
["search_doc_id"],
["id"],
ondelete="CASCADE",
)
# Add CASCADE delete for tool_call foreign key
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
op.create_foreign_key(
"tool_call_message_id_fkey",
"tool_call",
"chat_message",
["message_id"],
["id"],
ondelete="CASCADE",
)
def downgrade() -> None:
# Revert chat_message foreign key constraint
op.drop_constraint(
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
)
op.create_foreign_key(
"chat_message_chat_session_id_fkey",
"chat_message",
"chat_session",
["chat_session_id"],
["id"],
)
# Revert chat_message__search_doc foreign key constraints
op.drop_constraint(
"chat_message__search_doc_chat_message_id_fkey",
"chat_message__search_doc",
type_="foreignkey",
)
op.drop_constraint(
"chat_message__search_doc_search_doc_id_fkey",
"chat_message__search_doc",
type_="foreignkey",
)
op.create_foreign_key(
"chat_message__search_doc_chat_message_id_fkey",
"chat_message__search_doc",
"chat_message",
["chat_message_id"],
["id"],
)
op.create_foreign_key(
"chat_message__search_doc_search_doc_id_fkey",
"chat_message__search_doc",
"search_doc",
["search_doc_id"],
["id"],
)
# Revert tool_call foreign key constraint
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
op.create_foreign_key(
"tool_call_message_id_fkey",
"tool_call",
"chat_message",
["message_id"],
["id"],
)

View File

@@ -17,7 +17,7 @@ depends_on: None = None
def upgrade() -> None:
# At this point, we directly changed some previous migrations,
# https://github.com/danswer-ai/danswer/pull/637
# https://github.com/onyx-dot-app/onyx/pull/637
# Due to using Postgres native Enums, it caused some complications for first time users.
# To remove those complications, all Enums are only handled application side moving forward.
# This migration exists to ensure that existing users don't run into upgrade issues.

View File

@@ -0,0 +1,45 @@
"""add persona categories
Revision ID: 47e5bef3a1d7
Revises: dfbe9e93d3c7
Create Date: 2024-11-05 18:55:02.221064
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "47e5bef3a1d7"
down_revision = "dfbe9e93d3c7"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Create the persona_category table
op.create_table(
"persona_category",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("name", sa.String(), nullable=False),
sa.Column("description", sa.String(), nullable=True),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("name"),
)
# Add category_id to persona table
op.add_column("persona", sa.Column("category_id", sa.Integer(), nullable=True))
op.create_foreign_key(
"fk_persona_category",
"persona",
"persona_category",
["category_id"],
["id"],
ondelete="SET NULL",
)
def downgrade() -> None:
op.drop_constraint("fk_persona_category", "persona", type_="foreignkey")
op.drop_column("persona", "category_id")
op.drop_table("persona_category")

View File

@@ -0,0 +1,280 @@
"""add_multiple_slack_bot_support
Revision ID: 4ee1287bd26a
Revises: 47e5bef3a1d7
Create Date: 2024-11-06 13:15:53.302644
"""
import logging
from typing import cast
from alembic import op
import sqlalchemy as sa
from sqlalchemy.orm import Session
from onyx.key_value_store.factory import get_kv_store
from onyx.db.models import SlackBot
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "4ee1287bd26a"
down_revision = "47e5bef3a1d7"
branch_labels: None = None
depends_on: None = None
# Configure logging
logger = logging.getLogger("alembic.runtime.migration")
logger.setLevel(logging.INFO)
def upgrade() -> None:
logger.info(f"{revision}: create_table: slack_bot")
# Create new slack_bot table
op.create_table(
"slack_bot",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("name", sa.String(), nullable=False),
sa.Column("enabled", sa.Boolean(), nullable=False, server_default="true"),
sa.Column("bot_token", sa.LargeBinary(), nullable=False),
sa.Column("app_token", sa.LargeBinary(), nullable=False),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("bot_token"),
sa.UniqueConstraint("app_token"),
)
# # Create new slack_channel_config table
op.create_table(
"slack_channel_config",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("slack_bot_id", sa.Integer(), nullable=True),
sa.Column("persona_id", sa.Integer(), nullable=True),
sa.Column("channel_config", postgresql.JSONB(), nullable=False),
sa.Column("response_type", sa.String(), nullable=False),
sa.Column(
"enable_auto_filters", sa.Boolean(), nullable=False, server_default="false"
),
sa.ForeignKeyConstraint(
["slack_bot_id"],
["slack_bot.id"],
),
sa.ForeignKeyConstraint(
["persona_id"],
["persona.id"],
),
sa.PrimaryKeyConstraint("id"),
)
# Handle existing Slack bot tokens first
logger.info(f"{revision}: Checking for existing Slack bot.")
bot_token = None
app_token = None
first_row_id = None
try:
tokens = cast(dict, get_kv_store().load("slack_bot_tokens_config_key"))
except Exception:
logger.warning("No existing Slack bot tokens found.")
tokens = {}
bot_token = tokens.get("bot_token")
app_token = tokens.get("app_token")
if bot_token and app_token:
logger.info(f"{revision}: Found bot and app tokens.")
session = Session(bind=op.get_bind())
new_slack_bot = SlackBot(
name="Slack Bot (Migrated)",
enabled=True,
bot_token=bot_token,
app_token=app_token,
)
session.add(new_slack_bot)
session.commit()
first_row_id = new_slack_bot.id
# Create a default bot if none exists
# This is in case there are no slack tokens but there are channels configured
op.execute(
sa.text(
"""
INSERT INTO slack_bot (name, enabled, bot_token, app_token)
SELECT 'Default Bot', true, '', ''
WHERE NOT EXISTS (SELECT 1 FROM slack_bot)
RETURNING id;
"""
)
)
# Get the bot ID to use (either from existing migration or newly created)
bot_id_query = sa.text(
"""
SELECT COALESCE(
:first_row_id,
(SELECT id FROM slack_bot ORDER BY id ASC LIMIT 1)
) as bot_id;
"""
)
result = op.get_bind().execute(bot_id_query, {"first_row_id": first_row_id})
bot_id = result.scalar()
# CTE (Common Table Expression) that transforms the old slack_bot_config table data
# This splits up the channel_names into their own rows
channel_names_cte = """
WITH channel_names AS (
SELECT
sbc.id as config_id,
sbc.persona_id,
sbc.response_type,
sbc.enable_auto_filters,
jsonb_array_elements_text(sbc.channel_config->'channel_names') as channel_name,
sbc.channel_config->>'respond_tag_only' as respond_tag_only,
sbc.channel_config->>'respond_to_bots' as respond_to_bots,
sbc.channel_config->'respond_member_group_list' as respond_member_group_list,
sbc.channel_config->'answer_filters' as answer_filters,
sbc.channel_config->'follow_up_tags' as follow_up_tags
FROM slack_bot_config sbc
)
"""
# Insert the channel names into the new slack_channel_config table
insert_statement = """
INSERT INTO slack_channel_config (
slack_bot_id,
persona_id,
channel_config,
response_type,
enable_auto_filters
)
SELECT
:bot_id,
channel_name.persona_id,
jsonb_build_object(
'channel_name', channel_name.channel_name,
'respond_tag_only',
COALESCE((channel_name.respond_tag_only)::boolean, false),
'respond_to_bots',
COALESCE((channel_name.respond_to_bots)::boolean, false),
'respond_member_group_list',
COALESCE(channel_name.respond_member_group_list, '[]'::jsonb),
'answer_filters',
COALESCE(channel_name.answer_filters, '[]'::jsonb),
'follow_up_tags',
COALESCE(channel_name.follow_up_tags, '[]'::jsonb)
),
channel_name.response_type,
channel_name.enable_auto_filters
FROM channel_names channel_name;
"""
op.execute(sa.text(channel_names_cte + insert_statement).bindparams(bot_id=bot_id))
# Clean up old tokens if they existed
try:
if bot_token and app_token:
logger.info(f"{revision}: Removing old bot and app tokens.")
get_kv_store().delete("slack_bot_tokens_config_key")
except Exception:
logger.warning("tried to delete tokens in dynamic config but failed")
# Rename the table
op.rename_table(
"slack_bot_config__standard_answer_category",
"slack_channel_config__standard_answer_category",
)
# Rename the column
op.alter_column(
"slack_channel_config__standard_answer_category",
"slack_bot_config_id",
new_column_name="slack_channel_config_id",
)
# Drop the table with CASCADE to handle dependent objects
op.execute("DROP TABLE slack_bot_config CASCADE")
logger.info(f"{revision}: Migration complete.")
def downgrade() -> None:
# Recreate the old slack_bot_config table
op.create_table(
"slack_bot_config",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("persona_id", sa.Integer(), nullable=True),
sa.Column("channel_config", postgresql.JSONB(), nullable=False),
sa.Column("response_type", sa.String(), nullable=False),
sa.Column("enable_auto_filters", sa.Boolean(), nullable=False),
sa.ForeignKeyConstraint(
["persona_id"],
["persona.id"],
),
sa.PrimaryKeyConstraint("id"),
)
# Migrate data back to the old format
# Group by persona_id to combine channel names back into arrays
op.execute(
sa.text(
"""
INSERT INTO slack_bot_config (
persona_id,
channel_config,
response_type,
enable_auto_filters
)
SELECT DISTINCT ON (persona_id)
persona_id,
jsonb_build_object(
'channel_names', (
SELECT jsonb_agg(c.channel_config->>'channel_name')
FROM slack_channel_config c
WHERE c.persona_id = scc.persona_id
),
'respond_tag_only', (channel_config->>'respond_tag_only')::boolean,
'respond_to_bots', (channel_config->>'respond_to_bots')::boolean,
'respond_member_group_list', channel_config->'respond_member_group_list',
'answer_filters', channel_config->'answer_filters',
'follow_up_tags', channel_config->'follow_up_tags'
),
response_type,
enable_auto_filters
FROM slack_channel_config scc
WHERE persona_id IS NOT NULL;
"""
)
)
# Rename the table back
op.rename_table(
"slack_channel_config__standard_answer_category",
"slack_bot_config__standard_answer_category",
)
# Rename the column back
op.alter_column(
"slack_bot_config__standard_answer_category",
"slack_channel_config_id",
new_column_name="slack_bot_config_id",
)
# Try to save the first bot's tokens back to KV store
try:
first_bot = (
op.get_bind()
.execute(
sa.text(
"SELECT bot_token, app_token FROM slack_bot ORDER BY id LIMIT 1"
)
)
.first()
)
if first_bot and first_bot.bot_token and first_bot.app_token:
tokens = {
"bot_token": first_bot.bot_token,
"app_token": first_bot.app_token,
}
get_kv_store().store("slack_bot_tokens_config_key", tokens)
except Exception:
logger.warning("Failed to save tokens back to KV store")
# Drop the new tables in reverse order
op.drop_table("slack_channel_config")
op.drop_table("slack_bot")

View File

@@ -0,0 +1,23 @@
"""danswerbot -> onyxbot
Revision ID: 54a74a0417fc
Revises: 94dc3d0236f8
Create Date: 2024-12-11 18:05:05.490737
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "54a74a0417fc"
down_revision = "94dc3d0236f8"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("chat_session", "danswerbot_flow", new_column_name="onyxbot_flow")
def downgrade() -> None:
op.alter_column("chat_session", "onyxbot_flow", new_column_name="danswerbot_flow")

View File

@@ -1,4 +1,4 @@
"""Track Danswerbot Explicitly
"""Track Onyxbot Explicitly
Revision ID: 570282d33c49
Revises: 7547d982db8f

View File

@@ -0,0 +1,45 @@
"""remove default bot
Revision ID: 6d562f86c78b
Revises: 177de57c21c9
Create Date: 2024-11-22 11:51:29.331336
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "6d562f86c78b"
down_revision = "177de57c21c9"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.execute(
sa.text(
"""
DELETE FROM slack_bot
WHERE name = 'Default Bot'
AND bot_token = ''
AND app_token = ''
AND NOT EXISTS (
SELECT 1 FROM slack_channel_config
WHERE slack_channel_config.slack_bot_id = slack_bot.id
)
"""
)
)
def downgrade() -> None:
op.execute(
sa.text(
"""
INSERT INTO slack_bot (name, enabled, bot_token, app_token)
SELECT 'Default Bot', true, '', ''
WHERE NOT EXISTS (SELECT 1 FROM slack_bot)
RETURNING id;
"""
)
)

View File

@@ -9,7 +9,7 @@ import json
from typing import cast
from alembic import op
import sqlalchemy as sa
from danswer.key_value_store.factory import get_kv_store
from onyx.key_value_store.factory import get_kv_store
# revision identifiers, used by Alembic.
revision = "703313b75876"

View File

@@ -8,9 +8,9 @@ Create Date: 2024-03-22 21:34:27.629444
from alembic import op
import sqlalchemy as sa
from danswer.db.models import IndexModelStatus
from danswer.search.enums import RecencyBiasSetting
from danswer.search.enums import SearchType
from onyx.db.models import IndexModelStatus
from onyx.context.search.enums import RecencyBiasSetting
from onyx.context.search.enums import SearchType
# revision identifiers, used by Alembic.
revision = "776b3bbe9092"

View File

@@ -18,7 +18,7 @@ depends_on: None = None
def upgrade() -> None:
# In a PR:
# https://github.com/danswer-ai/danswer/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
# https://github.com/onyx-dot-app/onyx/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
# we directly changed some previous migrations. This caused some users to have native enums
# while others wouldn't. This has caused some issues when adding new fields to these enums.
# This migration manually changes the enum types to ensure that nobody uses native enums.

View File

@@ -0,0 +1,45 @@
"""Milestone
Revision ID: 91a0a4d62b14
Revises: dab04867cd88
Create Date: 2024-12-13 19:03:30.947551
"""
from alembic import op
import sqlalchemy as sa
import fastapi_users_db_sqlalchemy
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "91a0a4d62b14"
down_revision = "dab04867cd88"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"milestone",
sa.Column("id", sa.UUID(), nullable=False),
sa.Column("tenant_id", sa.String(), nullable=True),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.Column("event_type", sa.String(), nullable=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("event_tracker", postgresql.JSONB(), nullable=True),
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("event_type", name="uq_milestone_event_type"),
)
def downgrade() -> None:
op.drop_table("milestone")

View File

@@ -7,7 +7,7 @@ Create Date: 2024-03-21 12:05:23.956734
"""
from alembic import op
import sqlalchemy as sa
from danswer.configs.constants import DocumentSource
from onyx.configs.constants import DocumentSource
# revision identifiers, used by Alembic.
revision = "91fd3b470d1a"

View File

@@ -0,0 +1,35 @@
"""add web ui option to slack config
Revision ID: 93560ba1b118
Revises: 6d562f86c78b
Create Date: 2024-11-24 06:36:17.490612
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "93560ba1b118"
down_revision = "6d562f86c78b"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add show_continue_in_web_ui with default False to all existing channel_configs
op.execute(
"""
UPDATE slack_channel_config
SET channel_config = channel_config || '{"show_continue_in_web_ui": false}'::jsonb
WHERE NOT channel_config ? 'show_continue_in_web_ui'
"""
)
def downgrade() -> None:
# Remove show_continue_in_web_ui from all channel_configs
op.execute(
"""
UPDATE slack_channel_config
SET channel_config = channel_config - 'show_continue_in_web_ui'
"""
)

View File

@@ -7,15 +7,15 @@ Create Date: 2024-10-26 13:06:06.937969
"""
from alembic import op
from sqlalchemy.orm import Session
from sqlalchemy import text
# Import your models and constants
from danswer.db.models import (
from onyx.db.models import (
Connector,
ConnectorCredentialPair,
Credential,
IndexAttempt,
)
from danswer.configs.constants import DocumentSource
# revision identifiers, used by Alembic.
@@ -30,13 +30,11 @@ def upgrade() -> None:
bind = op.get_bind()
session = Session(bind=bind)
connectors_to_delete = (
session.query(Connector)
.filter(Connector.source == DocumentSource.REQUESTTRACKER)
.all()
# Get connectors using raw SQL
result = bind.execute(
text("SELECT id FROM connector WHERE source = 'requesttracker'")
)
connector_ids = [connector.id for connector in connectors_to_delete]
connector_ids = [row[0] for row in result]
if connector_ids:
cc_pairs_to_delete = (

View File

@@ -0,0 +1,30 @@
"""make document set description optional
Revision ID: 94dc3d0236f8
Revises: bf7a81109301
Create Date: 2024-12-11 11:26:10.616722
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "94dc3d0236f8"
down_revision = "bf7a81109301"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Make document_set.description column nullable
op.alter_column(
"document_set", "description", existing_type=sa.String(), nullable=True
)
def downgrade() -> None:
# Revert document_set.description column to non-nullable
op.alter_column(
"document_set", "description", existing_type=sa.String(), nullable=False
)

View File

@@ -0,0 +1,30 @@
"""add creator to cc pair
Revision ID: 9cf5c00f72fe
Revises: 26b931506ecb
Create Date: 2024-11-12 15:16:42.682902
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9cf5c00f72fe"
down_revision = "26b931506ecb"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"creator_id",
sa.UUID(as_uuid=True),
nullable=True,
),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "creator_id")

View File

@@ -0,0 +1,36 @@
"""Combine Search and Chat
Revision ID: 9f696734098f
Revises: a8c2065484e6
Create Date: 2024-11-27 15:32:19.694972
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9f696734098f"
down_revision = "a8c2065484e6"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("chat_session", "description", nullable=True)
op.drop_column("chat_session", "one_shot")
op.drop_column("slack_channel_config", "response_type")
def downgrade() -> None:
op.execute("UPDATE chat_session SET description = '' WHERE description IS NULL")
op.alter_column("chat_session", "description", nullable=False)
op.add_column(
"chat_session",
sa.Column("one_shot", sa.Boolean(), nullable=False, server_default=sa.false()),
)
op.add_column(
"slack_channel_config",
sa.Column(
"response_type", sa.String(), nullable=False, server_default="citations"
),
)

View File

@@ -0,0 +1,27 @@
"""add auto scroll to user model
Revision ID: a8c2065484e6
Revises: abe7378b8217
Create Date: 2024-11-22 17:34:09.690295
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "a8c2065484e6"
down_revision = "abe7378b8217"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"user",
sa.Column("auto_scroll", sa.Boolean(), nullable=True, server_default=None),
)
def downgrade() -> None:
op.drop_column("user", "auto_scroll")

View File

@@ -0,0 +1,30 @@
"""add indexing trigger to cc_pair
Revision ID: abe7378b8217
Revises: 6d562f86c78b
Create Date: 2024-11-26 19:09:53.481171
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "abe7378b8217"
down_revision = "93560ba1b118"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"indexing_trigger",
sa.Enum("UPDATE", "REINDEX", name="indexingmode", native_enum=False),
nullable=True,
),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "indexing_trigger")

View File

@@ -10,7 +10,7 @@ from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from sqlalchemy.dialects.postgresql import ENUM
from danswer.configs.constants import DocumentSource
from onyx.configs.constants import DocumentSource
# revision identifiers, used by Alembic.
revision = "b156fa702355"
@@ -288,6 +288,15 @@ def upgrade() -> None:
def downgrade() -> None:
# NOTE: you will lose all chat history. This is to satisfy the non-nullable constraints
# below
op.execute("DELETE FROM chat_feedback")
op.execute("DELETE FROM chat_message__search_doc")
op.execute("DELETE FROM document_retrieval_feedback")
op.execute("DELETE FROM document_retrieval_feedback")
op.execute("DELETE FROM chat_message")
op.execute("DELETE FROM chat_session")
op.drop_constraint(
"chat_feedback__chat_message_fk", "chat_feedback", type_="foreignkey"
)

View File

@@ -0,0 +1,48 @@
"""remove description from starter messages
Revision ID: b72ed7a5db0e
Revises: 33cb72ea4d80
Create Date: 2024-11-03 15:55:28.944408
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "b72ed7a5db0e"
down_revision = "33cb72ea4d80"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.execute(
sa.text(
"""
UPDATE persona
SET starter_messages = (
SELECT jsonb_agg(elem - 'description')
FROM jsonb_array_elements(starter_messages) elem
)
WHERE starter_messages IS NOT NULL
AND jsonb_typeof(starter_messages) = 'array'
"""
)
)
def downgrade() -> None:
op.execute(
sa.text(
"""
UPDATE persona
SET starter_messages = (
SELECT jsonb_agg(elem || '{"description": ""}')
FROM jsonb_array_elements(starter_messages) elem
)
WHERE starter_messages IS NOT NULL
AND jsonb_typeof(starter_messages) = 'array'
"""
)
)

View File

@@ -0,0 +1,57 @@
"""delete_input_prompts
Revision ID: bf7a81109301
Revises: f7a894b06d02
Create Date: 2024-12-09 12:00:49.884228
"""
from alembic import op
import sqlalchemy as sa
import fastapi_users_db_sqlalchemy
# revision identifiers, used by Alembic.
revision = "bf7a81109301"
down_revision = "f7a894b06d02"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.drop_table("inputprompt__user")
op.drop_table("inputprompt")
def downgrade() -> None:
op.create_table(
"inputprompt",
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
sa.Column("prompt", sa.String(), nullable=False),
sa.Column("content", sa.String(), nullable=False),
sa.Column("active", sa.Boolean(), nullable=False),
sa.Column("is_public", sa.Boolean(), nullable=False),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"inputprompt__user",
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
sa.Column("user_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["input_prompt_id"],
["inputprompt.id"],
),
sa.ForeignKeyConstraint(
["user_id"],
["inputprompt.id"],
),
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
)

View File

@@ -0,0 +1,87 @@
"""delete workspace
Revision ID: c0aab6edb6dd
Revises: 35e518e0ddf4
Create Date: 2024-12-17 14:37:07.660631
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "c0aab6edb6dd"
down_revision = "35e518e0ddf4"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.execute(
"""
UPDATE connector
SET connector_specific_config = connector_specific_config - 'workspace'
WHERE source = 'SLACK'
"""
)
def downgrade() -> None:
import json
from sqlalchemy import text
from slack_sdk import WebClient
conn = op.get_bind()
# Fetch all Slack credentials
creds_result = conn.execute(
text("SELECT id, credential_json FROM credential WHERE source = 'SLACK'")
)
all_slack_creds = creds_result.fetchall()
if not all_slack_creds:
return
for cred_row in all_slack_creds:
credential_id, credential_json = cred_row
credential_json = (
credential_json.tobytes().decode("utf-8")
if isinstance(credential_json, memoryview)
else credential_json.decode("utf-8")
)
credential_data = json.loads(credential_json)
slack_bot_token = credential_data.get("slack_bot_token")
if not slack_bot_token:
print(
f"No slack_bot_token found for credential {credential_id}. "
"Your Slack connector will not function until you upgrade and provide a valid token."
)
continue
client = WebClient(token=slack_bot_token)
try:
auth_response = client.auth_test()
workspace = auth_response["url"].split("//")[1].split(".")[0]
# Update only the connectors linked to this credential
# (and which are Slack connectors).
op.execute(
f"""
UPDATE connector AS c
SET connector_specific_config = jsonb_set(
connector_specific_config,
'{{workspace}}',
to_jsonb('{workspace}'::text)
)
FROM connector_credential_pair AS ccp
WHERE ccp.connector_id = c.id
AND c.source = 'SLACK'
AND ccp.credential_id = {credential_id}
"""
)
except Exception:
print(
f"We were unable to get the workspace url for your Slack Connector with id {credential_id}."
)
print("This connector will no longer work until you upgrade.")
continue

View File

@@ -0,0 +1,29 @@
"""add recent assistants
Revision ID: c0fd6e4da83a
Revises: b72ed7a5db0e
Create Date: 2024-11-03 17:28:54.916618
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "c0fd6e4da83a"
down_revision = "b72ed7a5db0e"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"user",
sa.Column(
"recent_assistants", postgresql.JSONB(), server_default="[]", nullable=False
),
)
def downgrade() -> None:
op.drop_column("user", "recent_assistants")

View File

@@ -23,6 +23,56 @@ def upgrade() -> None:
def downgrade() -> None:
# Delete chat messages and feedback first since they reference chat sessions
# Get chat messages from sessions with null persona_id
chat_messages_query = """
SELECT id
FROM chat_message
WHERE chat_session_id IN (
SELECT id
FROM chat_session
WHERE persona_id IS NULL
)
"""
# Delete dependent records first
op.execute(
f"""
DELETE FROM document_retrieval_feedback
WHERE chat_message_id IN (
{chat_messages_query}
)
"""
)
op.execute(
f"""
DELETE FROM chat_message__search_doc
WHERE chat_message_id IN (
{chat_messages_query}
)
"""
)
# Delete chat messages
op.execute(
"""
DELETE FROM chat_message
WHERE chat_session_id IN (
SELECT id
FROM chat_session
WHERE persona_id IS NULL
)
"""
)
# Now we can safely delete the chat sessions
op.execute(
"""
DELETE FROM chat_session
WHERE persona_id IS NULL
"""
)
op.alter_column(
"chat_session",
"persona_id",

View File

@@ -0,0 +1,32 @@
"""Add composite index to document_by_connector_credential_pair
Revision ID: dab04867cd88
Revises: 54a74a0417fc
Create Date: 2024-12-13 22:43:20.119990
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "dab04867cd88"
down_revision = "54a74a0417fc"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Composite index on (connector_id, credential_id)
op.create_index(
"idx_document_cc_pair_connector_credential",
"document_by_connector_credential_pair",
["connector_id", "credential_id"],
unique=False,
)
def downgrade() -> None:
op.drop_index(
"idx_document_cc_pair_connector_credential",
table_name="document_by_connector_credential_pair",
)

View File

@@ -1,4 +1,4 @@
"""Danswer Custom Tool Flow
"""Onyx Custom Tool Flow
Revision ID: dba7f71618f5
Revises: d5645c915d0e

View File

@@ -9,12 +9,12 @@ from alembic import op
import sqlalchemy as sa
from sqlalchemy import table, column, String, Integer, Boolean
from danswer.db.search_settings import (
from onyx.db.search_settings import (
get_new_default_embedding_model,
get_old_default_embedding_model,
user_has_overridden_embedding_model,
)
from danswer.db.models import IndexModelStatus
from onyx.db.models import IndexModelStatus
# revision identifiers, used by Alembic.
revision = "dbaa756c2ccf"

View File

@@ -0,0 +1,42 @@
"""extended_role_for_non_web
Revision ID: dfbe9e93d3c7
Revises: 9cf5c00f72fe
Create Date: 2024-11-16 07:54:18.727906
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "dfbe9e93d3c7"
down_revision = "9cf5c00f72fe"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.execute(
"""
UPDATE "user"
SET role = 'EXT_PERM_USER'
WHERE has_web_login = false
"""
)
op.drop_column("user", "has_web_login")
def downgrade() -> None:
op.add_column(
"user",
sa.Column("has_web_login", sa.Boolean(), nullable=False, server_default="true"),
)
op.execute(
"""
UPDATE "user"
SET has_web_login = false,
role = 'BASIC'
WHERE role IN ('SLACK_USER', 'EXT_PERM_USER')
"""
)

View File

@@ -8,7 +8,7 @@ Create Date: 2024-03-14 18:06:08.523106
from alembic import op
import sqlalchemy as sa
from danswer.configs.constants import DocumentSource
from onyx.configs.constants import DocumentSource
# revision identifiers, used by Alembic.
revision = "e50154680a5c"

View File

@@ -0,0 +1,40 @@
"""non-nullbale slack bot id in channel config
Revision ID: f7a894b06d02
Revises: 9f696734098f
Create Date: 2024-12-06 12:55:42.845723
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f7a894b06d02"
down_revision = "9f696734098f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Delete all rows with null slack_bot_id
op.execute("DELETE FROM slack_channel_config WHERE slack_bot_id IS NULL")
# Make slack_bot_id non-nullable
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=False,
)
def downgrade() -> None:
# Make slack_bot_id nullable again
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=True,
)

View File

@@ -1,3 +1,3 @@
These files are for public table migrations when operating with multi tenancy.
If you are not a Danswer developer, you can ignore this directory entirely.
If you are not a Onyx developer, you can ignore this directory entirely.

View File

@@ -1,5 +1,6 @@
import asyncio
from logging.config import fileConfig
from typing import Literal
from sqlalchemy import pool
from sqlalchemy.engine import Connection
@@ -7,8 +8,8 @@ from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.schema import SchemaItem
from alembic import context
from danswer.db.engine import build_connection_string
from danswer.db.models import PublicBase
from onyx.db.engine import build_connection_string
from onyx.db.models import PublicBase
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
@@ -37,8 +38,15 @@ EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
def include_object(
object: SchemaItem,
name: str,
type_: str,
name: str | None,
type_: Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:

View File

@@ -1,3 +0,0 @@
import os
__version__ = os.environ.get("DANSWER_VERSION", "") or "Development"

View File

@@ -1,289 +0,0 @@
import logging
import multiprocessing
import time
from typing import Any
import sentry_sdk
from celery import Task
from celery.app import trace
from celery.exceptions import WorkerShutdown
from celery.states import READY_STATES
from celery.utils.log import get_task_logger
from celery.worker import strategy # type: ignore
from sentry_sdk.integrations.celery import CeleryIntegration
from danswer.background.celery.apps.task_formatters import CeleryTaskColoredFormatter
from danswer.background.celery.apps.task_formatters import CeleryTaskPlainFormatter
from danswer.background.celery.celery_utils import celery_is_worker_primary
from danswer.configs.constants import DanswerRedisLocks
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_connector_credential_pair import RedisConnectorCredentialPair
from danswer.redis.redis_connector_delete import RedisConnectorDelete
from danswer.redis.redis_connector_prune import RedisConnectorPrune
from danswer.redis.redis_document_set import RedisDocumentSet
from danswer.redis.redis_pool import get_redis_client
from danswer.redis.redis_usergroup import RedisUserGroup
from danswer.utils.logger import ColoredFormatter
from danswer.utils.logger import PlainFormatter
from danswer.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import SENTRY_DSN
logger = setup_logger()
task_logger = get_task_logger(__name__)
if SENTRY_DSN:
sentry_sdk.init(
dsn=SENTRY_DSN,
integrations=[CeleryIntegration()],
traces_sample_rate=0.1,
)
logger.info("Sentry initialized")
else:
logger.debug("Sentry DSN not provided, skipping Sentry initialization")
def on_task_prerun(
sender: Any | None = None,
task_id: str | None = None,
task: Task | None = None,
args: tuple | None = None,
kwargs: dict | None = None,
**kwds: Any,
) -> None:
pass
def on_task_postrun(
sender: Any | None = None,
task_id: str | None = None,
task: Task | None = None,
args: tuple | None = None,
kwargs: dict[str, Any] | None = None,
retval: Any | None = None,
state: str | None = None,
**kwds: Any,
) -> None:
"""We handle this signal in order to remove completed tasks
from their respective tasksets. This allows us to track the progress of document set
and user group syncs.
This function runs after any task completes (both success and failure)
Note that this signal does not fire on a task that failed to complete and is going
to be retried.
This also does not fire if a worker with acks_late=False crashes (which all of our
long running workers are)
"""
if not task:
return
task_logger.debug(f"Task {task.name} (ID: {task_id}) completed with state: {state}")
if state not in READY_STATES:
return
if not task_id:
return
# Get tenant_id directly from kwargs- each celery task has a tenant_id kwarg
if not kwargs:
logger.error(f"Task {task.name} (ID: {task_id}) is missing kwargs")
tenant_id = None
else:
tenant_id = kwargs.get("tenant_id")
task_logger.debug(
f"Task {task.name} (ID: {task_id}) completed with state: {state} "
f"{f'for tenant_id={tenant_id}' if tenant_id else ''}"
)
r = get_redis_client(tenant_id=tenant_id)
if task_id.startswith(RedisConnectorCredentialPair.PREFIX):
r.srem(RedisConnectorCredentialPair.get_taskset_key(), task_id)
return
if task_id.startswith(RedisDocumentSet.PREFIX):
document_set_id = RedisDocumentSet.get_id_from_task_id(task_id)
if document_set_id is not None:
rds = RedisDocumentSet(tenant_id, int(document_set_id))
r.srem(rds.taskset_key, task_id)
return
if task_id.startswith(RedisUserGroup.PREFIX):
usergroup_id = RedisUserGroup.get_id_from_task_id(task_id)
if usergroup_id is not None:
rug = RedisUserGroup(tenant_id, int(usergroup_id))
r.srem(rug.taskset_key, task_id)
return
if task_id.startswith(RedisConnectorDelete.PREFIX):
cc_pair_id = RedisConnector.get_id_from_task_id(task_id)
if cc_pair_id is not None:
RedisConnectorDelete.remove_from_taskset(int(cc_pair_id), task_id, r)
return
if task_id.startswith(RedisConnectorPrune.SUBTASK_PREFIX):
cc_pair_id = RedisConnector.get_id_from_task_id(task_id)
if cc_pair_id is not None:
RedisConnectorPrune.remove_from_taskset(int(cc_pair_id), task_id, r)
return
def on_celeryd_init(sender: Any = None, conf: Any = None, **kwargs: Any) -> None:
"""The first signal sent on celery worker startup"""
multiprocessing.set_start_method("spawn") # fork is unsafe, set to spawn
def wait_for_redis(sender: Any, **kwargs: Any) -> None:
r = get_redis_client(tenant_id=None)
WAIT_INTERVAL = 5
WAIT_LIMIT = 60
time_start = time.monotonic()
logger.info("Redis: Readiness check starting.")
while True:
try:
if r.ping():
break
except Exception:
pass
time_elapsed = time.monotonic() - time_start
logger.info(
f"Redis: Ping failed. elapsed={time_elapsed:.1f} timeout={WAIT_LIMIT:.1f}"
)
if time_elapsed > WAIT_LIMIT:
msg = (
f"Redis: Readiness check did not succeed within the timeout "
f"({WAIT_LIMIT} seconds). Exiting..."
)
logger.error(msg)
raise WorkerShutdown(msg)
time.sleep(WAIT_INTERVAL)
logger.info("Redis: Readiness check succeeded. Continuing...")
return
def on_secondary_worker_init(sender: Any, **kwargs: Any) -> None:
logger.info("Running as a secondary celery worker.")
# Exit early if multi-tenant since primary worker check not needed
if MULTI_TENANT:
return
# Set up variables for waiting on primary worker
WAIT_INTERVAL = 5
WAIT_LIMIT = 60
r = get_redis_client(tenant_id=None)
time_start = time.monotonic()
logger.info("Waiting for primary worker to be ready...")
while True:
if r.exists(DanswerRedisLocks.PRIMARY_WORKER):
break
time_elapsed = time.monotonic() - time_start
logger.info(
f"Primary worker is not ready yet. elapsed={time_elapsed:.1f} timeout={WAIT_LIMIT:.1f}"
)
if time_elapsed > WAIT_LIMIT:
msg = (
f"Primary worker was not ready within the timeout. "
f"({WAIT_LIMIT} seconds). Exiting..."
)
logger.error(msg)
raise WorkerShutdown(msg)
time.sleep(WAIT_INTERVAL)
logger.info("Wait for primary worker completed successfully. Continuing...")
return
def on_worker_ready(sender: Any, **kwargs: Any) -> None:
task_logger.info("worker_ready signal received.")
def on_worker_shutdown(sender: Any, **kwargs: Any) -> None:
if not celery_is_worker_primary(sender):
return
if not sender.primary_worker_lock:
return
logger.info("Releasing primary worker lock.")
lock = sender.primary_worker_lock
try:
if lock.owned():
try:
lock.release()
sender.primary_worker_lock = None
except Exception as e:
logger.error(f"Failed to release primary worker lock: {e}")
except Exception as e:
logger.error(f"Failed to check if primary worker lock is owned: {e}")
def on_setup_logging(
loglevel: Any, logfile: Any, format: Any, colorize: Any, **kwargs: Any
) -> None:
# TODO: could unhardcode format and colorize and accept these as options from
# celery's config
# reformats the root logger
root_logger = logging.getLogger()
root_handler = logging.StreamHandler() # Set up a handler for the root logger
root_formatter = ColoredFormatter(
"%(asctime)s %(filename)30s %(lineno)4s: %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
)
root_handler.setFormatter(root_formatter)
root_logger.addHandler(root_handler) # Apply the handler to the root logger
if logfile:
root_file_handler = logging.FileHandler(logfile)
root_file_formatter = PlainFormatter(
"%(asctime)s %(filename)30s %(lineno)4s: %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
)
root_file_handler.setFormatter(root_file_formatter)
root_logger.addHandler(root_file_handler)
root_logger.setLevel(loglevel)
# reformats celery's task logger
task_formatter = CeleryTaskColoredFormatter(
"%(asctime)s %(filename)30s %(lineno)4s: %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
)
task_handler = logging.StreamHandler() # Set up a handler for the task logger
task_handler.setFormatter(task_formatter)
task_logger.addHandler(task_handler) # Apply the handler to the task logger
if logfile:
task_file_handler = logging.FileHandler(logfile)
task_file_formatter = CeleryTaskPlainFormatter(
"%(asctime)s %(filename)30s %(lineno)4s: %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
)
task_file_handler.setFormatter(task_file_formatter)
task_logger.addHandler(task_file_handler)
task_logger.setLevel(loglevel)
task_logger.propagate = False
# hide celery task received spam
# e.g. "Task check_for_pruning[a1e96171-0ba8-4e00-887b-9fbf7442eab3] received"
strategy.logger.setLevel(logging.WARNING)
# hide celery task succeeded/failed spam
# e.g. "Task check_for_pruning[a1e96171-0ba8-4e00-887b-9fbf7442eab3] succeeded in 0.03137450001668185s: None"
trace.logger.setLevel(logging.WARNING)

View File

@@ -1,96 +0,0 @@
from datetime import timedelta
from typing import Any
from celery.beat import PersistentScheduler # type: ignore
from celery.utils.log import get_task_logger
from danswer.db.engine import get_all_tenant_ids
from danswer.utils.variable_functionality import fetch_versioned_implementation
logger = get_task_logger(__name__)
class DynamicTenantScheduler(PersistentScheduler):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self._reload_interval = timedelta(minutes=1)
self._last_reload = self.app.now() - self._reload_interval
def setup_schedule(self) -> None:
super().setup_schedule()
def tick(self) -> float:
retval = super().tick()
now = self.app.now()
if (
self._last_reload is None
or (now - self._last_reload) > self._reload_interval
):
logger.info("Reloading schedule to check for new tenants...")
self._update_tenant_tasks()
self._last_reload = now
return retval
def _update_tenant_tasks(self) -> None:
logger.info("Checking for tenant task updates...")
try:
tenant_ids = get_all_tenant_ids()
tasks_to_schedule = fetch_versioned_implementation(
"danswer.background.celery.tasks.beat_schedule", "get_tasks_to_schedule"
)
new_beat_schedule: dict[str, dict[str, Any]] = {}
current_schedule = getattr(self, "_store", {"entries": {}}).get(
"entries", {}
)
existing_tenants = set()
for task_name in current_schedule.keys():
if "-" in task_name:
existing_tenants.add(task_name.split("-")[-1])
for tenant_id in tenant_ids:
if tenant_id not in existing_tenants:
logger.info(f"Found new tenant: {tenant_id}")
for task in tasks_to_schedule():
task_name = f"{task['name']}-{tenant_id}"
new_task = {
"task": task["task"],
"schedule": task["schedule"],
"kwargs": {"tenant_id": tenant_id},
}
if options := task.get("options"):
new_task["options"] = options
new_beat_schedule[task_name] = new_task
if self._should_update_schedule(current_schedule, new_beat_schedule):
logger.info(
"Updating schedule",
extra={
"new_tasks": len(new_beat_schedule),
"current_tasks": len(current_schedule),
},
)
if not hasattr(self, "_store"):
self._store: dict[str, dict] = {"entries": {}}
self.update_from_dict(new_beat_schedule)
logger.info(f"New schedule: {new_beat_schedule}")
logger.info("Tenant tasks updated successfully")
else:
logger.debug("No schedule updates needed")
except (AttributeError, KeyError):
logger.exception("Failed to process task configuration")
except Exception:
logger.exception("Unexpected error updating tenant tasks")
def _should_update_schedule(
self, current_schedule: dict, new_schedule: dict
) -> bool:
"""Compare schedules to determine if an update is needed."""
current_tasks = set(current_schedule.keys())
new_tasks = set(new_schedule.keys())
return current_tasks != new_tasks

View File

@@ -1,25 +0,0 @@
# These are helper objects for tracking the keys we need to write in redis
from typing import cast
from redis import Redis
from danswer.background.celery.configs.base import CELERY_SEPARATOR
from danswer.configs.constants import DanswerCeleryPriority
def celery_get_queue_length(queue: str, r: Redis) -> int:
"""This is a redis specific way to get the length of a celery queue.
It is priority aware and knows how to count across the multiple redis lists
used to implement task prioritization.
This operation is not atomic."""
total_length = 0
for i in range(len(DanswerCeleryPriority)):
queue_name = queue
if i > 0:
queue_name += CELERY_SEPARATOR
queue_name += str(i)
length = r.llen(queue_name)
total_length += cast(int, length)
return total_length

View File

@@ -1,48 +0,0 @@
from datetime import timedelta
from typing import Any
from danswer.configs.constants import DanswerCeleryPriority
tasks_to_schedule = [
{
"name": "check-for-vespa-sync",
"task": "check_for_vespa_sync_task",
"schedule": timedelta(seconds=5),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-connector-deletion",
"task": "check_for_connector_deletion_task",
"schedule": timedelta(seconds=20),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-indexing",
"task": "check_for_indexing",
"schedule": timedelta(seconds=10),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-prune",
"task": "check_for_pruning",
"schedule": timedelta(seconds=10),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "kombu-message-cleanup",
"task": "kombu_message_cleanup_task",
"schedule": timedelta(seconds=3600),
"options": {"priority": DanswerCeleryPriority.LOWEST},
},
{
"name": "monitor-vespa-sync",
"task": "monitor_vespa_sync",
"schedule": timedelta(seconds=5),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
]
def get_tasks_to_schedule() -> list[dict[str, Any]]:
return tasks_to_schedule

View File

@@ -1,628 +0,0 @@
from datetime import datetime
from datetime import timezone
from http import HTTPStatus
from time import sleep
import redis
from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from sqlalchemy.orm import Session
from danswer.background.celery.apps.app_base import task_logger
from danswer.background.indexing.job_client import SimpleJobClient
from danswer.background.indexing.run_indexing import run_indexing_entrypoint
from danswer.background.indexing.run_indexing import RunIndexingCallbackInterface
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.constants import CELERY_INDEXING_LOCK_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerRedisLocks
from danswer.configs.constants import DocumentSource
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.engine import get_db_current_time
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.enums import IndexingStatus
from danswer.db.enums import IndexModelStatus
from danswer.db.index_attempt import create_index_attempt
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import get_last_attempt_for_cc_pair
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import IndexAttempt
from danswer.db.models import SearchSettings
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.db.swap_index import check_index_swap
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_connector_index import RedisConnectorIndexingFenceData
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import global_version
from shared_configs.configs import INDEXING_MODEL_SERVER_HOST
from shared_configs.configs import INDEXING_MODEL_SERVER_PORT
from shared_configs.configs import MULTI_TENANT
logger = setup_logger()
class RunIndexingCallback(RunIndexingCallbackInterface):
def __init__(
self,
stop_key: str,
generator_progress_key: str,
redis_lock: redis.lock.Lock,
redis_client: Redis,
):
super().__init__()
self.redis_lock: redis.lock.Lock = redis_lock
self.stop_key: str = stop_key
self.generator_progress_key: str = generator_progress_key
self.redis_client = redis_client
def should_stop(self) -> bool:
if self.redis_client.exists(self.stop_key):
return True
return False
def progress(self, amount: int) -> None:
self.redis_lock.reacquire()
self.redis_client.incrby(self.generator_progress_key, amount)
@shared_task(
name="check_for_indexing",
soft_time_limit=300,
bind=True,
)
def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
tasks_created = 0
r = get_redis_client(tenant_id=tenant_id)
lock_beat = r.lock(
DanswerRedisLocks.CHECK_INDEXING_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
try:
# these tasks should never overlap
if not lock_beat.acquire(blocking=False):
return None
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
old_search_settings = check_index_swap(db_session=db_session)
current_search_settings = get_current_search_settings(db_session)
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
if current_search_settings.provider_type is None and not MULTI_TENANT:
if old_search_settings:
embedding_model = EmbeddingModel.from_db_model(
search_settings=current_search_settings,
server_host=INDEXING_MODEL_SERVER_HOST,
server_port=INDEXING_MODEL_SERVER_PORT,
)
# only warm up if search settings were changed
warm_up_bi_encoder(
embedding_model=embedding_model,
)
cc_pair_ids: list[int] = []
with get_session_with_tenant(tenant_id) as db_session:
cc_pairs = fetch_connector_credential_pairs(db_session)
for cc_pair_entry in cc_pairs:
cc_pair_ids.append(cc_pair_entry.id)
for cc_pair_id in cc_pair_ids:
redis_connector = RedisConnector(tenant_id, cc_pair_id)
with get_session_with_tenant(tenant_id) as db_session:
# Get the primary search settings
primary_search_settings = get_current_search_settings(db_session)
search_settings = [primary_search_settings]
# Check for secondary search settings
secondary_search_settings = get_secondary_search_settings(db_session)
if secondary_search_settings is not None:
# If secondary settings exist, add them to the list
search_settings.append(secondary_search_settings)
for search_settings_instance in search_settings:
redis_connector_index = redis_connector.new_index(
search_settings_instance.id
)
if redis_connector_index.fenced:
continue
cc_pair = get_connector_credential_pair_from_id(
cc_pair_id, db_session
)
if not cc_pair:
continue
last_attempt = get_last_attempt_for_cc_pair(
cc_pair.id, search_settings_instance.id, db_session
)
if not _should_index(
cc_pair=cc_pair,
last_index=last_attempt,
search_settings_instance=search_settings_instance,
secondary_index_building=len(search_settings) > 1,
db_session=db_session,
):
continue
# using a task queue and only allowing one task per cc_pair/search_setting
# prevents us from starving out certain attempts
attempt_id = try_creating_indexing_task(
self.app,
cc_pair,
search_settings_instance,
False,
db_session,
r,
tenant_id,
)
if attempt_id:
task_logger.info(
f"Indexing queued: cc_pair={cc_pair.id} index_attempt={attempt_id}"
)
tasks_created += 1
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
except Exception:
task_logger.exception(f"Unexpected exception: tenant={tenant_id}")
finally:
if lock_beat.owned():
lock_beat.release()
return tasks_created
def _should_index(
cc_pair: ConnectorCredentialPair,
last_index: IndexAttempt | None,
search_settings_instance: SearchSettings,
secondary_index_building: bool,
db_session: Session,
) -> bool:
"""Checks various global settings and past indexing attempts to determine if
we should try to start indexing the cc pair / search setting combination.
Note that tactical checks such as preventing overlap with a currently running task
are not handled here.
Return True if we should try to index, False if not.
"""
connector = cc_pair.connector
# uncomment for debugging
# task_logger.info(f"_should_index: "
# f"cc_pair={cc_pair.id} "
# f"connector={cc_pair.connector_id} "
# f"refresh_freq={connector.refresh_freq}")
# don't kick off indexing for `NOT_APPLICABLE` sources
if connector.source == DocumentSource.NOT_APPLICABLE:
return False
# User can still manually create single indexing attempts via the UI for the
# currently in use index
if DISABLE_INDEX_UPDATE_ON_SWAP:
if (
search_settings_instance.status == IndexModelStatus.PRESENT
and secondary_index_building
):
return False
# When switching over models, always index at least once
if search_settings_instance.status == IndexModelStatus.FUTURE:
if last_index:
# No new index if the last index attempt succeeded
# Once is enough. The model will never be able to swap otherwise.
if last_index.status == IndexingStatus.SUCCESS:
return False
# No new index if the last index attempt is waiting to start
if last_index.status == IndexingStatus.NOT_STARTED:
return False
# No new index if the last index attempt is running
if last_index.status == IndexingStatus.IN_PROGRESS:
return False
else:
if (
connector.id == 0 or connector.source == DocumentSource.INGESTION_API
): # Ingestion API
return False
return True
# If the connector is paused or is the ingestion API, don't index
# NOTE: during an embedding model switch over, the following logic
# is bypassed by the above check for a future model
if (
not cc_pair.status.is_active()
or connector.id == 0
or connector.source == DocumentSource.INGESTION_API
):
return False
# if no attempt has ever occurred, we should index regardless of refresh_freq
if not last_index:
return True
if connector.refresh_freq is None:
return False
current_db_time = get_db_current_time(db_session)
time_since_index = current_db_time - last_index.time_updated
if time_since_index.total_seconds() < connector.refresh_freq:
return False
return True
def try_creating_indexing_task(
celery_app: Celery,
cc_pair: ConnectorCredentialPair,
search_settings: SearchSettings,
reindex: bool,
db_session: Session,
r: Redis,
tenant_id: str | None,
) -> int | None:
"""Checks for any conditions that should block the indexing task from being
created, then creates the task.
Does not check for scheduling related conditions as this function
is used to trigger indexing immediately.
"""
LOCK_TIMEOUT = 30
# we need to serialize any attempt to trigger indexing since it can be triggered
# either via celery beat or manually (API call)
lock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_indexing_task",
timeout=LOCK_TIMEOUT,
)
acquired = lock.acquire(blocking_timeout=LOCK_TIMEOUT / 2)
if not acquired:
return None
try:
redis_connector = RedisConnector(tenant_id, cc_pair.id)
redis_connector_index = redis_connector.new_index(search_settings.id)
# skip if already indexing
if redis_connector_index.fenced:
return None
# skip indexing if the cc_pair is deleting
if redis_connector.delete.fenced:
return None
db_session.refresh(cc_pair)
if cc_pair.status == ConnectorCredentialPairStatus.DELETING:
return None
# add a long running generator task to the queue
redis_connector_index.generator_clear()
# set a basic fence to start
payload = RedisConnectorIndexingFenceData(
index_attempt_id=None,
started=None,
submitted=datetime.now(timezone.utc),
celery_task_id=None,
)
redis_connector_index.set_fence(payload)
# create the index attempt for tracking purposes
# code elsewhere checks for index attempts without an associated redis key
# and cleans them up
# therefore we must create the attempt and the task after the fence goes up
index_attempt_id = create_index_attempt(
cc_pair.id,
search_settings.id,
from_beginning=reindex,
db_session=db_session,
)
custom_task_id = redis_connector_index.generate_generator_task_id()
result = celery_app.send_task(
"connector_indexing_proxy_task",
kwargs=dict(
index_attempt_id=index_attempt_id,
cc_pair_id=cc_pair.id,
search_settings_id=search_settings.id,
tenant_id=tenant_id,
),
queue=DanswerCeleryQueues.CONNECTOR_INDEXING,
task_id=custom_task_id,
priority=DanswerCeleryPriority.MEDIUM,
)
if not result:
raise RuntimeError("send_task for connector_indexing_proxy_task failed.")
# now fill out the fence with the rest of the data
payload.index_attempt_id = index_attempt_id
payload.celery_task_id = result.id
redis_connector_index.set_fence(payload)
except Exception:
redis_connector_index.set_fence(payload)
task_logger.exception(
f"Unexpected exception: "
f"tenant={tenant_id} "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id}"
)
return None
finally:
if lock.owned():
lock.release()
return index_attempt_id
@shared_task(name="connector_indexing_proxy_task", acks_late=False, track_started=True)
def connector_indexing_proxy_task(
index_attempt_id: int,
cc_pair_id: int,
search_settings_id: int,
tenant_id: str | None,
) -> None:
"""celery tasks are forked, but forking is unstable. This proxies work to a spawned task."""
task_logger.info(
f"Indexing proxy - starting: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
client = SimpleJobClient()
job = client.submit(
connector_indexing_task,
index_attempt_id,
cc_pair_id,
search_settings_id,
tenant_id,
global_version.is_ee_version(),
pure=False,
)
if not job:
task_logger.info(
f"Indexing proxy - spawn failed: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
return
task_logger.info(
f"Indexing proxy - spawn succeeded: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
while True:
sleep(10)
# do nothing for ongoing jobs that haven't been stopped
if not job.done():
with get_session_with_tenant(tenant_id) as db_session:
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
)
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
if job.status == "error":
task_logger.error(
f"Indexing proxy - spawned task exceptioned: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"error={job.exception()}"
)
job.release()
break
task_logger.info(
f"Indexing proxy - finished: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
return
def connector_indexing_task(
index_attempt_id: int,
cc_pair_id: int,
search_settings_id: int,
tenant_id: str | None,
is_ee: bool,
) -> int | None:
"""Indexing task. For a cc pair, this task pulls all document IDs from the source
and compares those IDs to locally stored documents and deletes all locally stored IDs missing
from the most recently pulled document ID list
acks_late must be set to False. Otherwise, celery's visibility timeout will
cause any task that runs longer than the timeout to be redispatched by the broker.
There appears to be no good workaround for this, so we need to handle redispatching
manually.
Returns None if the task did not run (possibly due to a conflict).
Otherwise, returns an int >= 0 representing the number of indexed docs.
NOTE: if an exception is raised out of this task, the primary worker will detect
that the task transitioned to a "READY" state but the generator_complete_key doesn't exist.
This will cause the primary worker to abort the indexing attempt and clean up.
"""
logger.info(
f"Indexing spawned task starting: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
attempt = None
n_final_progress: int | None = None
redis_connector = RedisConnector(tenant_id, cc_pair_id)
redis_connector_index = redis_connector.new_index(search_settings_id)
r = get_redis_client(tenant_id=tenant_id)
if redis_connector.delete.fenced:
raise RuntimeError(
f"Indexing will not start because connector deletion is in progress: "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.delete.fence_key}"
)
if redis_connector.stop.fenced:
raise RuntimeError(
f"Indexing will not start because a connector stop signal was detected: "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.stop.fence_key}"
)
while True:
# wait for the fence to come up
if not redis_connector_index.fenced:
raise ValueError(
f"connector_indexing_task - fence not found: fence={redis_connector_index.fence_key}"
)
payload = redis_connector_index.payload
if not payload:
raise ValueError("connector_indexing_task: payload invalid or not found")
if payload.index_attempt_id is None or payload.celery_task_id is None:
logger.info(
f"connector_indexing_task - Waiting for fence: fence={redis_connector_index.fence_key}"
)
sleep(1)
continue
logger.info(
f"connector_indexing_task - Fence found, continuing...: fence={redis_connector_index.fence_key}"
)
break
lock = r.lock(
redis_connector_index.generator_lock_key,
timeout=CELERY_INDEXING_LOCK_TIMEOUT,
)
acquired = lock.acquire(blocking=False)
if not acquired:
logger.warning(
f"Indexing task already running, exiting...: "
f"cc_pair={cc_pair_id} search_settings={search_settings_id}"
)
return None
payload.started = datetime.now(timezone.utc)
redis_connector_index.set_fence(payload)
try:
with get_session_with_tenant(tenant_id) as db_session:
attempt = get_index_attempt(db_session, index_attempt_id)
if not attempt:
raise ValueError(
f"Index attempt not found: index_attempt={index_attempt_id}"
)
cc_pair = get_connector_credential_pair_from_id(
cc_pair_id=cc_pair_id,
db_session=db_session,
)
if not cc_pair:
raise ValueError(f"cc_pair not found: cc_pair={cc_pair_id}")
if not cc_pair.connector:
raise ValueError(
f"Connector not found: cc_pair={cc_pair_id} connector={cc_pair.connector_id}"
)
if not cc_pair.credential:
raise ValueError(
f"Credential not found: cc_pair={cc_pair_id} credential={cc_pair.credential_id}"
)
# define a callback class
callback = RunIndexingCallback(
redis_connector.stop.fence_key,
redis_connector_index.generator_progress_key,
lock,
r,
)
logger.info(
f"Indexing spawned task running entrypoint: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
run_indexing_entrypoint(
index_attempt_id,
tenant_id,
cc_pair_id,
is_ee,
callback=callback,
)
# get back the total number of indexed docs and return it
n_final_progress = redis_connector_index.get_progress()
redis_connector_index.set_generator_complete(HTTPStatus.OK.value)
except Exception as e:
logger.exception(
f"Indexing spawned task failed: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
if attempt:
with get_session_with_tenant(tenant_id) as db_session:
mark_attempt_failed(attempt, db_session, failure_reason=str(e))
redis_connector_index.reset()
raise e
finally:
if lock.owned():
lock.release()
logger.info(
f"Indexing spawned task finished: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
return n_final_progress

View File

@@ -1,6 +0,0 @@
"""Factory stub for running celery worker / celery beat."""
from danswer.background.celery.apps.beat import celery_app
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
set_is_ee_based_on_env_variable()
app = celery_app

View File

@@ -1,8 +0,0 @@
"""Factory stub for running celery worker / celery beat."""
from danswer.utils.variable_functionality import fetch_versioned_implementation
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
set_is_ee_based_on_env_variable()
app = fetch_versioned_implementation(
"danswer.background.celery.apps.primary", "celery_app"
)

View File

@@ -1,24 +0,0 @@
input_prompts:
- id: -5
prompt: "Elaborate"
content: "Elaborate on the above, give me a more in depth explanation."
active: true
is_public: true
- id: -4
prompt: "Reword"
content: "Help me rewrite the following politely and concisely for professional communication:\n"
active: true
is_public: true
- id: -3
prompt: "Email"
content: "Write a professional email for me including a subject line, signature, etc. Template the parts that need editing with [ ]. The email should cover the following points:\n"
active: true
is_public: true
- id: -2
prompt: "Debug"
content: "Provide step-by-step troubleshooting instructions for the following issue:\n"
active: true
is_public: true

View File

@@ -1,185 +0,0 @@
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from pydantic import BaseModel
from danswer.configs.constants import DocumentSource
from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
from danswer.search.models import RetrievalDocs
from danswer.search.models import SearchResponse
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
class LlmDoc(BaseModel):
"""This contains the minimal set information for the LLM portion including citations"""
document_id: str
content: str
blurb: str
semantic_identifier: str
source_type: DocumentSource
metadata: dict[str, str | list[str]]
updated_at: datetime | None
link: str | None
source_links: dict[int, str] | None
# First chunk of info for streaming QA
class QADocsResponse(RetrievalDocs):
rephrased_query: str | None = None
predicted_flow: QueryFlow | None
predicted_search: SearchType | None
applied_source_filters: list[DocumentSource] | None
applied_time_cutoff: datetime | None
recency_bias_multiplier: float
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
initial_dict = super().model_dump(mode="json", *args, **kwargs) # type: ignore
initial_dict["applied_time_cutoff"] = (
self.applied_time_cutoff.isoformat() if self.applied_time_cutoff else None
)
return initial_dict
class StreamStopReason(Enum):
CONTEXT_LENGTH = "context_length"
CANCELLED = "cancelled"
class StreamStopInfo(BaseModel):
stop_reason: StreamStopReason
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
data = super().model_dump(mode="json", *args, **kwargs) # type: ignore
data["stop_reason"] = self.stop_reason.name
return data
class LLMRelevanceFilterResponse(BaseModel):
llm_selected_doc_indices: list[int]
class FinalUsedContextDocsResponse(BaseModel):
final_context_docs: list[LlmDoc]
class RelevanceAnalysis(BaseModel):
relevant: bool
content: str | None = None
class SectionRelevancePiece(RelevanceAnalysis):
"""LLM analysis mapped to an Inference Section"""
document_id: str
chunk_id: int # ID of the center chunk for a given inference section
class DocumentRelevance(BaseModel):
"""Contains all relevance information for a given search"""
relevance_summaries: dict[str, RelevanceAnalysis]
class DanswerAnswerPiece(BaseModel):
# A small piece of a complete answer. Used for streaming back answers.
answer_piece: str | None # if None, specifies the end of an Answer
# An intermediate representation of citations, later translated into
# a mapping of the citation [n] number to SearchDoc
class CitationInfo(BaseModel):
citation_num: int
document_id: str
class AllCitations(BaseModel):
citations: list[CitationInfo]
# This is a mapping of the citation number to the document index within
# the result search doc set
class MessageSpecificCitations(BaseModel):
citation_map: dict[int, int]
class MessageResponseIDInfo(BaseModel):
user_message_id: int | None
reserved_assistant_message_id: int
class StreamingError(BaseModel):
error: str
stack_trace: str | None = None
class DanswerQuote(BaseModel):
# This is during inference so everything is a string by this point
quote: str
document_id: str
link: str | None
source_type: str
semantic_identifier: str
blurb: str
class DanswerQuotes(BaseModel):
quotes: list[DanswerQuote]
class DanswerContext(BaseModel):
content: str
document_id: str
semantic_identifier: str
blurb: str
class DanswerContexts(BaseModel):
contexts: list[DanswerContext]
class DanswerAnswer(BaseModel):
answer: str | None
class QAResponse(SearchResponse, DanswerAnswer):
quotes: list[DanswerQuote] | None
contexts: list[DanswerContexts] | None
predicted_flow: QueryFlow
predicted_search: SearchType
eval_res_valid: bool | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
class FileChatDisplay(BaseModel):
file_ids: list[str]
class CustomToolResponse(BaseModel):
response: ToolResultType
tool_name: str
AnswerQuestionPossibleReturn = (
DanswerAnswerPiece
| DanswerQuotes
| CitationInfo
| DanswerContexts
| FileChatDisplay
| CustomToolResponse
| StreamingError
| StreamStopInfo
)
AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
class LLMMetricsContainer(BaseModel):
prompt_tokens: int
response_tokens: int

View File

@@ -1,115 +0,0 @@
from typing_extensions import TypedDict # noreorder
from pydantic import BaseModel
from danswer.prompts.chat_tools import DANSWER_TOOL_DESCRIPTION
from danswer.prompts.chat_tools import DANSWER_TOOL_NAME
from danswer.prompts.chat_tools import TOOL_FOLLOWUP
from danswer.prompts.chat_tools import TOOL_LESS_FOLLOWUP
from danswer.prompts.chat_tools import TOOL_LESS_PROMPT
from danswer.prompts.chat_tools import TOOL_TEMPLATE
from danswer.prompts.chat_tools import USER_INPUT
class ToolInfo(TypedDict):
name: str
description: str
class DanswerChatModelOut(BaseModel):
model_raw: str
action: str
action_input: str
def call_tool(
model_actions: DanswerChatModelOut,
) -> str:
raise NotImplementedError("There are no additional tool integrations right now")
def form_user_prompt_text(
query: str,
tool_text: str | None,
hint_text: str | None,
user_input_prompt: str = USER_INPUT,
tool_less_prompt: str = TOOL_LESS_PROMPT,
) -> str:
user_prompt = tool_text or tool_less_prompt
user_prompt += user_input_prompt.format(user_input=query)
if hint_text:
if user_prompt[-1] != "\n":
user_prompt += "\n"
user_prompt += "\nHint: " + hint_text
return user_prompt.strip()
def form_tool_section_text(
tools: list[ToolInfo] | None, retrieval_enabled: bool, template: str = TOOL_TEMPLATE
) -> str | None:
if not tools and not retrieval_enabled:
return None
if retrieval_enabled and tools:
tools.append(
{"name": DANSWER_TOOL_NAME, "description": DANSWER_TOOL_DESCRIPTION}
)
tools_intro = []
if tools:
num_tools = len(tools)
for tool in tools:
description_formatted = tool["description"].replace("\n", " ")
tools_intro.append(f"> {tool['name']}: {description_formatted}")
prefix = "Must be one of " if num_tools > 1 else "Must be "
tools_intro_text = "\n".join(tools_intro)
tool_names_text = prefix + ", ".join([tool["name"] for tool in tools])
else:
return None
return template.format(
tool_overviews=tools_intro_text, tool_names=tool_names_text
).strip()
def form_tool_followup_text(
tool_output: str,
query: str,
hint_text: str | None,
tool_followup_prompt: str = TOOL_FOLLOWUP,
ignore_hint: bool = False,
) -> str:
# If multi-line query, it likely confuses the model more than helps
if "\n" not in query:
optional_reminder = f"\nAs a reminder, my query was: {query}\n"
else:
optional_reminder = ""
if not ignore_hint and hint_text:
hint_text_spaced = f"\nHint: {hint_text}\n"
else:
hint_text_spaced = ""
return tool_followup_prompt.format(
tool_output=tool_output,
optional_reminder=optional_reminder,
hint=hint_text_spaced,
).strip()
def form_tool_less_followup_text(
tool_output: str,
query: str,
hint_text: str | None,
tool_followup_prompt: str = TOOL_LESS_FOLLOWUP,
) -> str:
hint = f"Hint: {hint_text}" if hint_text else ""
return tool_followup_prompt.format(
context_str=tool_output, user_query=query, hint_text=hint
).strip()

View File

@@ -1,226 +0,0 @@
import math
import time
from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
from typing import cast
from typing import TypeVar
from urllib.parse import quote
from atlassian import Confluence # type:ignore
from requests import HTTPError
from danswer.utils.logger import setup_logger
logger = setup_logger()
F = TypeVar("F", bound=Callable[..., Any])
RATE_LIMIT_MESSAGE_LOWERCASE = "Rate limit exceeded".lower()
class ConfluenceRateLimitError(Exception):
pass
def _handle_http_error(e: HTTPError, attempt: int) -> int:
MIN_DELAY = 2
MAX_DELAY = 60
STARTING_DELAY = 5
BACKOFF = 2
# Check if the response or headers are None to avoid potential AttributeError
if e.response is None or e.response.headers is None:
logger.warning("HTTPError with `None` as response or as headers")
raise e
if (
e.response.status_code != 429
and RATE_LIMIT_MESSAGE_LOWERCASE not in e.response.text.lower()
):
raise e
retry_after = None
retry_after_header = e.response.headers.get("Retry-After")
if retry_after_header is not None:
try:
retry_after = int(retry_after_header)
if retry_after > MAX_DELAY:
logger.warning(
f"Clamping retry_after from {retry_after} to {MAX_DELAY} seconds..."
)
retry_after = MAX_DELAY
if retry_after < MIN_DELAY:
retry_after = MIN_DELAY
except ValueError:
pass
if retry_after is not None:
logger.warning(
f"Rate limiting with retry header. Retrying after {retry_after} seconds..."
)
delay = retry_after
else:
logger.warning(
"Rate limiting without retry header. Retrying with exponential backoff..."
)
delay = min(STARTING_DELAY * (BACKOFF**attempt), MAX_DELAY)
delay_until = math.ceil(time.monotonic() + delay)
return delay_until
# https://developer.atlassian.com/cloud/confluence/rate-limiting/
# this uses the native rate limiting option provided by the
# confluence client and otherwise applies a simpler set of error handling
def handle_confluence_rate_limit(confluence_call: F) -> F:
def wrapped_call(*args: list[Any], **kwargs: Any) -> Any:
MAX_RETRIES = 5
TIMEOUT = 3600
timeout_at = time.monotonic() + TIMEOUT
for attempt in range(MAX_RETRIES):
if time.monotonic() > timeout_at:
raise TimeoutError(
f"Confluence call attempts took longer than {TIMEOUT} seconds."
)
try:
# we're relying more on the client to rate limit itself
# and applying our own retries in a more specific set of circumstances
return confluence_call(*args, **kwargs)
except HTTPError as e:
delay_until = _handle_http_error(e, attempt)
while time.monotonic() < delay_until:
# in the future, check a signal here to exit
time.sleep(1)
except AttributeError as e:
# Some error within the Confluence library, unclear why it fails.
# Users reported it to be intermittent, so just retry
if attempt == MAX_RETRIES - 1:
raise e
logger.exception(
"Confluence Client raised an AttributeError. Retrying..."
)
time.sleep(5)
return cast(F, wrapped_call)
_DEFAULT_PAGINATION_LIMIT = 100
class OnyxConfluence(Confluence):
"""
This is a custom Confluence class that overrides the default Confluence class to add a custom CQL method.
This is necessary because the default Confluence class does not properly support cql expansions.
All methods are automatically wrapped with handle_confluence_rate_limit.
"""
def __init__(self, url: str, *args: Any, **kwargs: Any) -> None:
super(OnyxConfluence, self).__init__(url, *args, **kwargs)
self._wrap_methods()
def _wrap_methods(self) -> None:
"""
For each attribute that is callable (i.e., a method) and doesn't start with an underscore,
wrap it with handle_confluence_rate_limit.
"""
for attr_name in dir(self):
if callable(getattr(self, attr_name)) and not attr_name.startswith("_"):
setattr(
self,
attr_name,
handle_confluence_rate_limit(getattr(self, attr_name)),
)
def _paginate_url(
self, url_suffix: str, limit: int | None = None
) -> Iterator[list[dict[str, Any]]]:
"""
This will paginate through the top level query.
"""
if not limit:
limit = _DEFAULT_PAGINATION_LIMIT
connection_char = "&" if "?" in url_suffix else "?"
url_suffix += f"{connection_char}limit={limit}"
while url_suffix:
try:
next_response = self.get(url_suffix)
except Exception as e:
logger.exception("Error in danswer_cql: \n")
raise e
yield next_response.get("results", [])
url_suffix = next_response.get("_links", {}).get("next")
def paginated_groups_retrieval(
self,
limit: int | None = None,
) -> Iterator[list[dict[str, Any]]]:
return self._paginate_url("rest/api/group", limit)
def paginated_group_members_retrieval(
self,
group_name: str,
limit: int | None = None,
) -> Iterator[list[dict[str, Any]]]:
group_name = quote(group_name)
return self._paginate_url(f"rest/api/group/{group_name}/member", limit)
def paginated_cql_user_retrieval(
self,
cql: str,
expand: str | None = None,
limit: int | None = None,
) -> Iterator[list[dict[str, Any]]]:
expand_string = f"&expand={expand}" if expand else ""
return self._paginate_url(
f"rest/api/search/user?cql={cql}{expand_string}", limit
)
def paginated_cql_page_retrieval(
self,
cql: str,
expand: str | None = None,
limit: int | None = None,
) -> Iterator[list[dict[str, Any]]]:
expand_string = f"&expand={expand}" if expand else ""
return self._paginate_url(
f"rest/api/content/search?cql={cql}{expand_string}", limit
)
def cql_paginate_all_expansions(
self,
cql: str,
expand: str | None = None,
limit: int | None = None,
) -> Iterator[list[dict[str, Any]]]:
"""
This function will paginate through the top level query first, then
paginate through all of the expansions.
The limit only applies to the top level query.
All expansion paginations use default pagination limit (defined by Atlassian).
"""
def _traverse_and_update(data: dict | list) -> None:
if isinstance(data, dict):
next_url = data.get("_links", {}).get("next")
if next_url and "results" in data:
data["results"].extend(self._paginate_url(next_url))
for value in data.values():
_traverse_and_update(value)
elif isinstance(data, list):
for item in data:
_traverse_and_update(item)
for results in self.paginated_cql_page_retrieval(cql, expand, limit):
_traverse_and_update(results)
yield results

View File

@@ -1,321 +0,0 @@
import os
from datetime import datetime
from datetime import timezone
from typing import Any
from urllib.parse import urlparse
from jira import JIRA
from jira.resources import Issue
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.app_configs import JIRA_CONNECTOR_LABELS_TO_SKIP
from danswer.configs.app_configs import JIRA_CONNECTOR_MAX_TICKET_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.utils.logger import setup_logger
logger = setup_logger()
PROJECT_URL_PAT = "projects"
JIRA_API_VERSION = os.environ.get("JIRA_API_VERSION") or "2"
def extract_jira_project(url: str) -> tuple[str, str]:
parsed_url = urlparse(url)
jira_base = parsed_url.scheme + "://" + parsed_url.netloc
# Split the path by '/' and find the position of 'projects' to get the project name
split_path = parsed_url.path.split("/")
if PROJECT_URL_PAT in split_path:
project_pos = split_path.index(PROJECT_URL_PAT)
if len(split_path) > project_pos + 1:
jira_project = split_path[project_pos + 1]
else:
raise ValueError("No project name found in the URL")
else:
raise ValueError("'projects' not found in the URL")
return jira_base, jira_project
def extract_text_from_adf(adf: dict | None) -> str:
"""Extracts plain text from Atlassian Document Format:
https://developer.atlassian.com/cloud/jira/platform/apis/document/structure/
WARNING: This function is incomplete and will e.g. skip lists!
"""
texts = []
if adf is not None and "content" in adf:
for block in adf["content"]:
if "content" in block:
for item in block["content"]:
if item["type"] == "text":
texts.append(item["text"])
return " ".join(texts)
def best_effort_get_field_from_issue(jira_issue: Issue, field: str) -> Any:
if hasattr(jira_issue.fields, field):
return getattr(jira_issue.fields, field)
try:
return jira_issue.raw["fields"][field]
except Exception:
return None
def _get_comment_strs(
jira: Issue, comment_email_blacklist: tuple[str, ...] = ()
) -> list[str]:
comment_strs = []
for comment in jira.fields.comment.comments:
try:
body_text = (
comment.body
if JIRA_API_VERSION == "2"
else extract_text_from_adf(comment.raw["body"])
)
if (
hasattr(comment, "author")
and hasattr(comment.author, "emailAddress")
and comment.author.emailAddress in comment_email_blacklist
):
continue # Skip adding comment if author's email is in blacklist
comment_strs.append(body_text)
except Exception as e:
logger.error(f"Failed to process comment due to an error: {e}")
continue
return comment_strs
def fetch_jira_issues_batch(
jql: str,
start_index: int,
jira_client: JIRA,
batch_size: int = INDEX_BATCH_SIZE,
comment_email_blacklist: tuple[str, ...] = (),
labels_to_skip: set[str] | None = None,
) -> tuple[list[Document], int]:
doc_batch = []
batch = jira_client.search_issues(
jql,
startAt=start_index,
maxResults=batch_size,
)
for jira in batch:
if type(jira) != Issue:
logger.warning(f"Found Jira object not of type Issue {jira}")
continue
if labels_to_skip and any(
label in jira.fields.labels for label in labels_to_skip
):
logger.info(
f"Skipping {jira.key} because it has a label to skip. Found "
f"labels: {jira.fields.labels}. Labels to skip: {labels_to_skip}."
)
continue
description = (
jira.fields.description
if JIRA_API_VERSION == "2"
else extract_text_from_adf(jira.raw["fields"]["description"])
)
comments = _get_comment_strs(jira, comment_email_blacklist)
ticket_content = f"{description}\n" + "\n".join(
[f"Comment: {comment}" for comment in comments if comment]
)
# Check ticket size
if len(ticket_content.encode("utf-8")) > JIRA_CONNECTOR_MAX_TICKET_SIZE:
logger.info(
f"Skipping {jira.key} because it exceeds the maximum size of "
f"{JIRA_CONNECTOR_MAX_TICKET_SIZE} bytes."
)
continue
page_url = f"{jira_client.client_info()}/browse/{jira.key}"
people = set()
try:
people.add(
BasicExpertInfo(
display_name=jira.fields.creator.displayName,
email=jira.fields.creator.emailAddress,
)
)
except Exception:
# Author should exist but if not, doesn't matter
pass
try:
people.add(
BasicExpertInfo(
display_name=jira.fields.assignee.displayName, # type: ignore
email=jira.fields.assignee.emailAddress, # type: ignore
)
)
except Exception:
# Author should exist but if not, doesn't matter
pass
metadata_dict = {}
priority = best_effort_get_field_from_issue(jira, "priority")
if priority:
metadata_dict["priority"] = priority.name
status = best_effort_get_field_from_issue(jira, "status")
if status:
metadata_dict["status"] = status.name
resolution = best_effort_get_field_from_issue(jira, "resolution")
if resolution:
metadata_dict["resolution"] = resolution.name
labels = best_effort_get_field_from_issue(jira, "labels")
if labels:
metadata_dict["label"] = labels
doc_batch.append(
Document(
id=page_url,
sections=[Section(link=page_url, text=ticket_content)],
source=DocumentSource.JIRA,
semantic_identifier=jira.fields.summary,
doc_updated_at=time_str_to_utc(jira.fields.updated),
primary_owners=list(people) or None,
# TODO add secondary_owners (commenters) if needed
metadata=metadata_dict,
)
)
return doc_batch, len(batch)
class JiraConnector(LoadConnector, PollConnector):
def __init__(
self,
jira_project_url: str,
comment_email_blacklist: list[str] | None = None,
batch_size: int = INDEX_BATCH_SIZE,
# if a ticket has one of the labels specified in this list, we will just
# skip it. This is generally used to avoid indexing extra sensitive
# tickets.
labels_to_skip: list[str] = JIRA_CONNECTOR_LABELS_TO_SKIP,
) -> None:
self.batch_size = batch_size
self.jira_base, self.jira_project = extract_jira_project(jira_project_url)
self.jira_client: JIRA | None = None
self._comment_email_blacklist = comment_email_blacklist or []
self.labels_to_skip = set(labels_to_skip)
@property
def comment_email_blacklist(self) -> tuple:
return tuple(email.strip() for email in self._comment_email_blacklist)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
api_token = credentials["jira_api_token"]
# if user provide an email we assume it's cloud
if "jira_user_email" in credentials:
email = credentials["jira_user_email"]
self.jira_client = JIRA(
basic_auth=(email, api_token),
server=self.jira_base,
options={"rest_api_version": JIRA_API_VERSION},
)
else:
self.jira_client = JIRA(
token_auth=api_token,
server=self.jira_base,
options={"rest_api_version": JIRA_API_VERSION},
)
return None
def load_from_state(self) -> GenerateDocumentsOutput:
if self.jira_client is None:
raise ConnectorMissingCredentialError("Jira")
# Quote the project name to handle reserved words
quoted_project = f'"{self.jira_project}"'
start_ind = 0
while True:
doc_batch, fetched_batch_size = fetch_jira_issues_batch(
jql=f"project = {quoted_project}",
start_index=start_ind,
jira_client=self.jira_client,
batch_size=self.batch_size,
comment_email_blacklist=self.comment_email_blacklist,
labels_to_skip=self.labels_to_skip,
)
if doc_batch:
yield doc_batch
start_ind += fetched_batch_size
if fetched_batch_size < self.batch_size:
break
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
if self.jira_client is None:
raise ConnectorMissingCredentialError("Jira")
start_date_str = datetime.fromtimestamp(start, tz=timezone.utc).strftime(
"%Y-%m-%d %H:%M"
)
end_date_str = datetime.fromtimestamp(end, tz=timezone.utc).strftime(
"%Y-%m-%d %H:%M"
)
# Quote the project name to handle reserved words
quoted_project = f'"{self.jira_project}"'
jql = (
f"project = {quoted_project} AND "
f"updated >= '{start_date_str}' AND "
f"updated <= '{end_date_str}'"
)
start_ind = 0
while True:
doc_batch, fetched_batch_size = fetch_jira_issues_batch(
jql=jql,
start_index=start_ind,
jira_client=self.jira_client,
batch_size=self.batch_size,
comment_email_blacklist=self.comment_email_blacklist,
labels_to_skip=self.labels_to_skip,
)
if doc_batch:
yield doc_batch
start_ind += fetched_batch_size
if fetched_batch_size < self.batch_size:
break
if __name__ == "__main__":
import os
connector = JiraConnector(
os.environ["JIRA_PROJECT_URL"], comment_email_blacklist=[]
)
connector.load_credentials(
{
"jira_user_email": os.environ["JIRA_USER_EMAIL"],
"jira_api_token": os.environ["JIRA_API_TOKEN"],
}
)
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -1,92 +0,0 @@
"""Module with custom fields processing functions"""
from typing import Any
from typing import List
from jira import JIRA
from jira.resources import CustomFieldOption
from jira.resources import Issue
from jira.resources import User
from danswer.utils.logger import setup_logger
logger = setup_logger()
class CustomFieldExtractor:
@staticmethod
def _process_custom_field_value(value: Any) -> str:
"""
Process a custom field value to a string
"""
try:
if isinstance(value, str):
return value
elif isinstance(value, CustomFieldOption):
return value.value
elif isinstance(value, User):
return value.displayName
elif isinstance(value, List):
return " ".join(
[CustomFieldExtractor._process_custom_field_value(v) for v in value]
)
else:
return str(value)
except Exception as e:
logger.error(f"Error processing custom field value {value}: {e}")
return ""
@staticmethod
def get_issue_custom_fields(
jira: Issue, custom_fields: dict, max_value_length: int = 250
) -> dict:
"""
Process all custom fields of an issue to a dictionary of strings
:param jira: jira_issue, bug or similar
:param custom_fields: custom fields dictionary
:param max_value_length: maximum length of the value to be processed, if exceeded, it will be truncated
"""
issue_custom_fields = {
custom_fields[key]: value
for key, value in jira.fields.__dict__.items()
if value and key in custom_fields.keys()
}
processed_fields = {}
if issue_custom_fields:
for key, value in issue_custom_fields.items():
processed = CustomFieldExtractor._process_custom_field_value(value)
# We need max length parameter, because there are some plugins that often has very long description
# and there is just a technical information so we just avoid long values
if len(processed) < max_value_length:
processed_fields[key] = processed
return processed_fields
@staticmethod
def get_all_custom_fields(jira_client: JIRA) -> dict:
"""Get all custom fields from Jira"""
fields = jira_client.fields()
fields_dct = {
field["id"]: field["name"] for field in fields if field["custom"] is True
}
return fields_dct
class CommonFieldExtractor:
@staticmethod
def get_issue_common_fields(jira: Issue) -> dict:
return {
"Priority": jira.fields.priority.name if jira.fields.priority else None,
"Reporter": jira.fields.reporter.displayName
if jira.fields.reporter
else None,
"Assignee": jira.fields.assignee.displayName
if jira.fields.assignee
else None,
"Status": jira.fields.status.name if jira.fields.status else None,
"Resolution": jira.fields.resolution.name
if jira.fields.resolution
else None,
}

View File

@@ -1,333 +0,0 @@
from collections.abc import Iterator
from typing import Any
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.google_drive.doc_conversion import (
convert_drive_item_to_document,
)
from danswer.connectors.google_drive.file_retrieval import crawl_folders_for_files
from danswer.connectors.google_drive.file_retrieval import get_files_in_my_drive
from danswer.connectors.google_drive.file_retrieval import get_files_in_shared_drive
from danswer.connectors.google_drive.models import GoogleDriveFileType
from danswer.connectors.google_utils.google_auth import get_google_creds
from danswer.connectors.google_utils.google_utils import execute_paginated_retrieval
from danswer.connectors.google_utils.resources import get_admin_service
from danswer.connectors.google_utils.resources import get_drive_service
from danswer.connectors.google_utils.resources import get_google_docs_service
from danswer.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from danswer.connectors.google_utils.shared_constants import MISSING_SCOPES_ERROR_STR
from danswer.connectors.google_utils.shared_constants import ONYX_SCOPE_INSTRUCTIONS
from danswer.connectors.google_utils.shared_constants import SCOPE_DOC_URL
from danswer.connectors.google_utils.shared_constants import SLIM_BATCH_SIZE
from danswer.connectors.google_utils.shared_constants import USER_FIELDS
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.interfaces import SlimConnector
from danswer.connectors.models import SlimDocument
from danswer.utils.logger import setup_logger
logger = setup_logger()
def _extract_str_list_from_comma_str(string: str | None) -> list[str]:
if not string:
return []
return [s.strip() for s in string.split(",") if s.strip()]
def _extract_ids_from_urls(urls: list[str]) -> list[str]:
return [url.split("/")[-1] for url in urls]
class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
def __init__(
self,
include_shared_drives: bool = True,
shared_drive_urls: str | None = None,
include_my_drives: bool = True,
my_drive_emails: str | None = None,
shared_folder_urls: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
# OLD PARAMETERS
folder_paths: list[str] | None = None,
include_shared: bool | None = None,
follow_shortcuts: bool | None = None,
only_org_public: bool | None = None,
continue_on_failure: bool | None = None,
) -> None:
# Check for old input parameters
if (
folder_paths is not None
or include_shared is not None
or follow_shortcuts is not None
or only_org_public is not None
or continue_on_failure is not None
):
logger.exception(
"Google Drive connector received old input parameters. "
"Please visit the docs for help with the new setup: "
f"{SCOPE_DOC_URL}"
)
raise ValueError(
"Google Drive connector received old input parameters. "
"Please visit the docs for help with the new setup: "
f"{SCOPE_DOC_URL}"
)
if (
not include_shared_drives
and not include_my_drives
and not shared_folder_urls
):
raise ValueError(
"At least one of include_shared_drives, include_my_drives,"
" or shared_folder_urls must be true"
)
self.batch_size = batch_size
self.include_shared_drives = include_shared_drives
shared_drive_url_list = _extract_str_list_from_comma_str(shared_drive_urls)
self.shared_drive_ids = _extract_ids_from_urls(shared_drive_url_list)
self.include_my_drives = include_my_drives
self.my_drive_emails = _extract_str_list_from_comma_str(my_drive_emails)
shared_folder_url_list = _extract_str_list_from_comma_str(shared_folder_urls)
self.shared_folder_ids = _extract_ids_from_urls(shared_folder_url_list)
self._primary_admin_email: str | None = None
self._creds: OAuthCredentials | ServiceAccountCredentials | None = None
self._TRAVERSED_PARENT_IDS: set[str] = set()
@property
def primary_admin_email(self) -> str:
if self._primary_admin_email is None:
raise RuntimeError(
"Primary admin email missing, "
"should not call this property "
"before calling load_credentials"
)
return self._primary_admin_email
@property
def google_domain(self) -> str:
if self._primary_admin_email is None:
raise RuntimeError(
"Primary admin email missing, "
"should not call this property "
"before calling load_credentials"
)
return self._primary_admin_email.split("@")[-1]
@property
def creds(self) -> OAuthCredentials | ServiceAccountCredentials:
if self._creds is None:
raise RuntimeError(
"Creds missing, "
"should not call this property "
"before calling load_credentials"
)
return self._creds
def _update_traversed_parent_ids(self, folder_id: str) -> None:
self._TRAVERSED_PARENT_IDS.add(folder_id)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, str] | None:
primary_admin_email = credentials[DB_CREDENTIALS_PRIMARY_ADMIN_KEY]
self._primary_admin_email = primary_admin_email
self._creds, new_creds_dict = get_google_creds(
credentials=credentials,
source=DocumentSource.GOOGLE_DRIVE,
)
return new_creds_dict
def _get_all_user_emails(self) -> list[str]:
admin_service = get_admin_service(
creds=self.creds,
user_email=self.primary_admin_email,
)
emails = []
for user in execute_paginated_retrieval(
retrieval_function=admin_service.users().list,
list_key="users",
fields=USER_FIELDS,
domain=self.google_domain,
):
if email := user.get("primaryEmail"):
emails.append(email)
return emails
def _fetch_drive_items(
self,
is_slim: bool,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> Iterator[GoogleDriveFileType]:
primary_drive_service = get_drive_service(
creds=self.creds,
user_email=self.primary_admin_email,
)
if self.include_shared_drives:
shared_drive_urls = self.shared_drive_ids
if not shared_drive_urls:
# if no parent ids are specified, get all shared drives using the admin account
for drive in execute_paginated_retrieval(
retrieval_function=primary_drive_service.drives().list,
list_key="drives",
useDomainAdminAccess=True,
fields="drives(id)",
):
shared_drive_urls.append(drive["id"])
# For each shared drive, retrieve all files
for shared_drive_id in shared_drive_urls:
for file in get_files_in_shared_drive(
service=primary_drive_service,
drive_id=shared_drive_id,
is_slim=is_slim,
cache_folders=bool(self.shared_folder_ids),
update_traversed_ids_func=self._update_traversed_parent_ids,
start=start,
end=end,
):
yield file
if self.shared_folder_ids:
# Crawl all the shared parent ids for files
for folder_id in self.shared_folder_ids:
yield from crawl_folders_for_files(
service=primary_drive_service,
parent_id=folder_id,
personal_drive=False,
traversed_parent_ids=self._TRAVERSED_PARENT_IDS,
update_traversed_ids_func=self._update_traversed_parent_ids,
start=start,
end=end,
)
all_user_emails = []
# get all personal docs from each users' personal drive
if self.include_my_drives:
if isinstance(self.creds, ServiceAccountCredentials):
all_user_emails = self.my_drive_emails or []
# If using service account and no emails specified, fetch all users
if not all_user_emails:
all_user_emails = self._get_all_user_emails()
elif self.primary_admin_email:
# If using OAuth, only fetch the primary admin email
all_user_emails = [self.primary_admin_email]
for email in all_user_emails:
logger.info(f"Fetching personal files for user: {email}")
user_drive_service = get_drive_service(self.creds, user_email=email)
yield from get_files_in_my_drive(
service=user_drive_service,
email=email,
is_slim=is_slim,
start=start,
end=end,
)
def _extract_docs_from_google_drive(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> GenerateDocumentsOutput:
doc_batch = []
for file in self._fetch_drive_items(
is_slim=False,
start=start,
end=end,
):
user_email = (
file.get("owners", [{}])[0].get("emailAddress")
or self.primary_admin_email
)
user_drive_service = get_drive_service(self.creds, user_email=user_email)
docs_service = get_google_docs_service(self.creds, user_email=user_email)
if doc := convert_drive_item_to_document(
file=file,
drive_service=user_drive_service,
docs_service=docs_service,
):
doc_batch.append(doc)
if len(doc_batch) >= self.batch_size:
yield doc_batch
doc_batch = []
yield doc_batch
def load_from_state(self) -> GenerateDocumentsOutput:
try:
yield from self._extract_docs_from_google_drive()
except Exception as e:
if MISSING_SCOPES_ERROR_STR in str(e):
raise PermissionError(ONYX_SCOPE_INSTRUCTIONS) from e
raise e
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
try:
yield from self._extract_docs_from_google_drive(start, end)
except Exception as e:
if MISSING_SCOPES_ERROR_STR in str(e):
raise PermissionError(ONYX_SCOPE_INSTRUCTIONS) from e
raise e
def _extract_slim_docs_from_google_drive(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> GenerateSlimDocumentOutput:
slim_batch = []
for file in self._fetch_drive_items(
is_slim=True,
start=start,
end=end,
):
slim_batch.append(
SlimDocument(
id=file["webViewLink"],
perm_sync_data={
"doc_id": file.get("id"),
"permissions": file.get("permissions", []),
"permission_ids": file.get("permissionIds", []),
"name": file.get("name"),
"owner_email": file.get("owners", [{}])[0].get("emailAddress"),
},
)
)
if len(slim_batch) >= SLIM_BATCH_SIZE:
yield slim_batch
slim_batch = []
yield slim_batch
def retrieve_all_slim_documents(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> GenerateSlimDocumentOutput:
try:
yield from self._extract_slim_docs_from_google_drive(start, end)
except Exception as e:
if MISSING_SCOPES_ERROR_STR in str(e):
raise PermissionError(ONYX_SCOPE_INSTRUCTIONS) from e
raise e

View File

@@ -1,107 +0,0 @@
import json
from typing import cast
from google.auth.transport.requests import Request # type: ignore
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
from danswer.configs.constants import DocumentSource
from danswer.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY,
)
from danswer.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_TOKEN_KEY,
)
from danswer.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from danswer.connectors.google_utils.shared_constants import (
GOOGLE_SCOPES,
)
from danswer.utils.logger import setup_logger
logger = setup_logger()
def get_google_oauth_creds(
token_json_str: str, source: DocumentSource
) -> OAuthCredentials | None:
creds_json = json.loads(token_json_str)
creds = OAuthCredentials.from_authorized_user_info(
info=creds_json,
scopes=GOOGLE_SCOPES[source],
)
if creds.valid:
return creds
if creds.expired and creds.refresh_token:
try:
creds.refresh(Request())
if creds.valid:
logger.notice("Refreshed Google Drive tokens.")
return creds
except Exception:
logger.exception("Failed to refresh google drive access token due to:")
return None
return None
def get_google_creds(
credentials: dict[str, str],
source: DocumentSource,
) -> tuple[ServiceAccountCredentials | OAuthCredentials, dict[str, str] | None]:
"""Checks for two different types of credentials.
(1) A credential which holds a token acquired via a user going thorough
the Google OAuth flow.
(2) A credential which holds a service account key JSON file, which
can then be used to impersonate any user in the workspace.
"""
oauth_creds = None
service_creds = None
new_creds_dict = None
if DB_CREDENTIALS_DICT_TOKEN_KEY in credentials:
# OAUTH
access_token_json_str = cast(str, credentials[DB_CREDENTIALS_DICT_TOKEN_KEY])
oauth_creds = get_google_oauth_creds(
token_json_str=access_token_json_str, source=source
)
# tell caller to update token stored in DB if it has changed
# (e.g. the token has been refreshed)
new_creds_json_str = oauth_creds.to_json() if oauth_creds else ""
if new_creds_json_str != access_token_json_str:
new_creds_dict = {
DB_CREDENTIALS_DICT_TOKEN_KEY: new_creds_json_str,
DB_CREDENTIALS_PRIMARY_ADMIN_KEY: credentials[
DB_CREDENTIALS_PRIMARY_ADMIN_KEY
],
}
elif DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY in credentials:
# SERVICE ACCOUNT
service_account_key_json_str = credentials[
DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY
]
service_account_key = json.loads(service_account_key_json_str)
service_creds = ServiceAccountCredentials.from_service_account_info(
service_account_key, scopes=GOOGLE_SCOPES[source]
)
if not service_creds.valid or not service_creds.expired:
service_creds.refresh(Request())
if not service_creds.valid:
raise PermissionError(
f"Unable to access {source} - service account credentials are invalid."
)
creds: ServiceAccountCredentials | OAuthCredentials | None = (
oauth_creds or service_creds
)
if creds is None:
raise PermissionError(
f"Unable to access {source} - unknown credential structure."
)
return creds, new_creds_dict

View File

@@ -1,140 +0,0 @@
import json
import os
from datetime import datetime
from datetime import timezone
from pathlib import Path
from typing import Any
from typing import cast
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.connectors.slack.connector import filter_channels
from danswer.connectors.slack.utils import get_message_link
from danswer.utils.logger import setup_logger
logger = setup_logger()
def get_event_time(event: dict[str, Any]) -> datetime | None:
ts = event.get("ts")
if not ts:
return None
return datetime.fromtimestamp(float(ts), tz=timezone.utc)
class SlackLoadConnector(LoadConnector):
# WARNING: DEPRECATED, DO NOT USE
def __init__(
self,
workspace: str,
export_path_str: str,
channels: list[str] | None = None,
# if specified, will treat the specified channel strings as
# regexes, and will only index channels that fully match the regexes
channel_regex_enabled: bool = False,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.workspace = workspace
self.channels = channels
self.channel_regex_enabled = channel_regex_enabled
self.export_path_str = export_path_str
self.batch_size = batch_size
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
if credentials:
logger.warning("Unexpected credentials provided for Slack Load Connector")
return None
@staticmethod
def _process_batch_event(
slack_event: dict[str, Any],
channel: dict[str, Any],
matching_doc: Document | None,
workspace: str,
) -> Document | None:
if (
slack_event["type"] == "message"
and slack_event.get("subtype") != "channel_join"
):
if matching_doc:
return Document(
id=matching_doc.id,
sections=matching_doc.sections
+ [
Section(
link=get_message_link(
event=slack_event,
workspace=workspace,
channel_id=channel["id"],
),
text=slack_event["text"],
)
],
source=matching_doc.source,
semantic_identifier=matching_doc.semantic_identifier,
title="", # slack docs don't really have a "title"
doc_updated_at=get_event_time(slack_event),
metadata=matching_doc.metadata,
)
return Document(
id=slack_event["ts"],
sections=[
Section(
link=get_message_link(
event=slack_event,
workspace=workspace,
channel_id=channel["id"],
),
text=slack_event["text"],
)
],
source=DocumentSource.SLACK,
semantic_identifier=channel["name"],
title="", # slack docs don't really have a "title"
doc_updated_at=get_event_time(slack_event),
metadata={},
)
return None
def load_from_state(self) -> GenerateDocumentsOutput:
export_path = Path(self.export_path_str)
with open(export_path / "channels.json") as f:
all_channels = json.load(f)
filtered_channels = filter_channels(
all_channels, self.channels, self.channel_regex_enabled
)
document_batch: dict[str, Document] = {}
for channel_info in filtered_channels:
channel_dir_path = export_path / cast(str, channel_info["name"])
channel_file_paths = [
channel_dir_path / file_name
for file_name in os.listdir(channel_dir_path)
]
for path in channel_file_paths:
with open(path) as f:
events = cast(list[dict[str, Any]], json.load(f))
for slack_event in events:
doc = self._process_batch_event(
slack_event=slack_event,
channel=channel_info,
matching_doc=document_batch.get(
slack_event.get("thread_ts", "")
),
workspace=self.workspace,
)
if doc:
document_batch[doc.id] = doc
if len(document_batch) >= self.batch_size:
yield list(document_batch.values())
yield list(document_batch.values())

View File

@@ -1,50 +0,0 @@
from sqlalchemy.orm import Session
from danswer.db.models import SlackBotConfig
from danswer.db.slack_bot_config import fetch_slack_bot_configs
VALID_SLACK_FILTERS = [
"answerable_prefilter",
"well_answered_postfilter",
"questionmark_prefilter",
]
def get_slack_bot_config_for_channel(
channel_name: str | None, db_session: Session
) -> SlackBotConfig | None:
if not channel_name:
return None
slack_bot_configs = fetch_slack_bot_configs(db_session=db_session)
for config in slack_bot_configs:
if channel_name in config.channel_config["channel_names"]:
return config
return None
def validate_channel_names(
channel_names: list[str],
current_slack_bot_config_id: int | None,
db_session: Session,
) -> list[str]:
"""Make sure that these channel_names don't exist in other slack bot configs.
Returns a list of cleaned up channel names (e.g. '#' removed if present)"""
slack_bot_configs = fetch_slack_bot_configs(db_session=db_session)
cleaned_channel_names = [
channel_name.lstrip("#").lower() for channel_name in channel_names
]
for slack_bot_config in slack_bot_configs:
if slack_bot_config.id == current_slack_bot_config_id:
continue
for channel_name in cleaned_channel_names:
if channel_name in slack_bot_config.channel_config["channel_names"]:
raise ValueError(
f"Channel name '{channel_name}' already exists in "
"another slack bot config"
)
return cleaned_channel_names

View File

@@ -1,499 +0,0 @@
import functools
from collections.abc import Callable
from typing import Any
from typing import cast
from typing import Optional
from typing import TypeVar
from retry import retry
from slack_sdk import WebClient
from slack_sdk.models.blocks import DividerBlock
from slack_sdk.models.blocks import SectionBlock
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.danswerbot_configs import DANSWER_BOT_ANSWER_GENERATION_TIMEOUT
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_COT
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISPLAY_ERROR_MSGS
from danswer.configs.danswerbot_configs import DANSWER_BOT_NUM_RETRIES
from danswer.configs.danswerbot_configs import DANSWER_BOT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.danswerbot_configs import DANSWER_BOT_USE_QUOTES
from danswer.configs.danswerbot_configs import DANSWER_FOLLOWUP_EMOJI
from danswer.configs.danswerbot_configs import DANSWER_REACT_EMOJI
from danswer.configs.danswerbot_configs import ENABLE_DANSWERBOT_REFLEXION
from danswer.danswerbot.slack.blocks import build_documents_blocks
from danswer.danswerbot.slack.blocks import build_follow_up_block
from danswer.danswerbot.slack.blocks import build_qa_response_blocks
from danswer.danswerbot.slack.blocks import build_sources_blocks
from danswer.danswerbot.slack.blocks import get_restate_blocks
from danswer.danswerbot.slack.formatting import format_slack_message
from danswer.danswerbot.slack.handlers.utils import send_team_member_message
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.danswerbot.slack.utils import SlackRateLimiter
from danswer.danswerbot.slack.utils import update_emote_react
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import Persona
from danswer.db.models import SlackBotConfig
from danswer.db.models import SlackBotResponseType
from danswer.db.persona import fetch_persona_by_id
from danswer.db.search_settings import get_current_search_settings
from danswer.db.users import get_user_by_email
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.utils import check_number_of_tokens
from danswer.llm.utils import get_max_input_tokens
from danswer.one_shot_answer.answer_question import get_search_answer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.search.enums import OptionalSearchSetting
from danswer.search.models import BaseFilters
from danswer.search.models import RerankingDetails
from danswer.search.models import RetrievalDetails
from danswer.utils.logger import DanswerLoggingAdapter
srl = SlackRateLimiter()
RT = TypeVar("RT") # return type
def rate_limits(
client: WebClient, channel: str, thread_ts: Optional[str]
) -> Callable[[Callable[..., RT]], Callable[..., RT]]:
def decorator(func: Callable[..., RT]) -> Callable[..., RT]:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> RT:
if not srl.is_available():
func_randid, position = srl.init_waiter()
srl.notify(client, channel, position, thread_ts)
while not srl.is_available():
srl.waiter(func_randid)
srl.acquire_slot()
return func(*args, **kwargs)
return wrapper
return decorator
def handle_regular_answer(
message_info: SlackMessageInfo,
slack_bot_config: SlackBotConfig | None,
receiver_ids: list[str] | None,
client: WebClient,
channel: str,
logger: DanswerLoggingAdapter,
feedback_reminder_id: str | None,
tenant_id: str | None,
num_retries: int = DANSWER_BOT_NUM_RETRIES,
answer_generation_timeout: int = DANSWER_BOT_ANSWER_GENERATION_TIMEOUT,
thread_context_percent: float = DANSWER_BOT_TARGET_CHUNK_PERCENTAGE,
should_respond_with_error_msgs: bool = DANSWER_BOT_DISPLAY_ERROR_MSGS,
disable_docs_only_answer: bool = DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER,
disable_cot: bool = DANSWER_BOT_DISABLE_COT,
reflexion: bool = ENABLE_DANSWERBOT_REFLEXION,
) -> bool:
channel_conf = slack_bot_config.channel_config if slack_bot_config else None
messages = message_info.thread_messages
message_ts_to_respond_to = message_info.msg_to_respond
is_bot_msg = message_info.is_bot_msg
user = None
if message_info.is_bot_dm:
if message_info.email:
with get_session_with_tenant(tenant_id) as db_session:
user = get_user_by_email(message_info.email, db_session)
document_set_names: list[str] | None = None
persona = slack_bot_config.persona if slack_bot_config else None
prompt = None
if persona:
document_set_names = [
document_set.name for document_set in persona.document_sets
]
prompt = persona.prompts[0] if persona.prompts else None
should_respond_even_with_no_docs = persona.num_chunks == 0 if persona else False
bypass_acl = False
if (
slack_bot_config
and slack_bot_config.persona
and slack_bot_config.persona.document_sets
):
# For Slack channels, use the full document set, admin will be warned when configuring it
# with non-public document sets
bypass_acl = True
# figure out if we want to use citations or quotes
use_citations = (
not DANSWER_BOT_USE_QUOTES
if slack_bot_config is None
else slack_bot_config.response_type == SlackBotResponseType.CITATIONS
)
if not message_ts_to_respond_to and not is_bot_msg:
# if the message is not "/danswer" command, then it should have a message ts to respond to
raise RuntimeError(
"No message timestamp to respond to in `handle_message`. This should never happen."
)
@retry(
tries=num_retries,
delay=0.25,
backoff=2,
)
@rate_limits(client=client, channel=channel, thread_ts=message_ts_to_respond_to)
def _get_answer(new_message_request: DirectQARequest) -> OneShotQAResponse | None:
max_document_tokens: int | None = None
max_history_tokens: int | None = None
with get_session_with_tenant(tenant_id) as db_session:
if len(new_message_request.messages) > 1:
if new_message_request.persona_config:
raise RuntimeError("Slack bot does not support persona config")
elif new_message_request.persona_id is not None:
persona = cast(
Persona,
fetch_persona_by_id(
db_session,
new_message_request.persona_id,
user=None,
get_editable=False,
),
)
else:
raise RuntimeError(
"No persona id provided, this should never happen."
)
llm, _ = get_llms_for_persona(persona)
# In cases of threads, split the available tokens between docs and thread context
input_tokens = get_max_input_tokens(
model_name=llm.config.model_name,
model_provider=llm.config.model_provider,
)
max_history_tokens = int(input_tokens * thread_context_percent)
remaining_tokens = input_tokens - max_history_tokens
query_text = new_message_request.messages[0].message
if persona:
max_document_tokens = compute_max_document_tokens_for_persona(
persona=persona,
actual_user_input=query_text,
max_llm_token_override=remaining_tokens,
)
else:
max_document_tokens = (
remaining_tokens
- 512 # Needs to be more than any of the QA prompts
- check_number_of_tokens(query_text)
)
if DISABLE_GENERATIVE_AI:
return None
# This also handles creating the query event in postgres
answer = get_search_answer(
query_req=new_message_request,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=db_session,
answer_generation_timeout=answer_generation_timeout,
enable_reflexion=reflexion,
bypass_acl=bypass_acl,
use_citations=use_citations,
danswerbot_flow=True,
)
if not answer.error_msg:
return answer
else:
raise RuntimeError(answer.error_msg)
try:
# By leaving time_cutoff and favor_recent as None, and setting enable_auto_detect_filters
# it allows the slack flow to extract out filters from the user query
filters = BaseFilters(
source_type=None,
document_set=document_set_names,
time_cutoff=None,
)
# Default True because no other ways to apply filters in Slack (no nice UI)
# Commenting this out because this is only available to the slackbot for now
# later we plan to implement this at the persona level where this will get
# commented back in
# auto_detect_filters = (
# persona.llm_filter_extraction if persona is not None else True
# )
auto_detect_filters = (
slack_bot_config.enable_auto_filters
if slack_bot_config is not None
else False
)
retrieval_details = RetrievalDetails(
run_search=OptionalSearchSetting.ALWAYS,
real_time=False,
filters=filters,
enable_auto_detect_filters=auto_detect_filters,
)
# Always apply reranking settings if it exists, this is the non-streaming flow
with get_session_with_tenant(tenant_id) as db_session:
saved_search_settings = get_current_search_settings(db_session)
# This includes throwing out answer via reflexion
answer = _get_answer(
DirectQARequest(
messages=messages,
multilingual_query_expansion=saved_search_settings.multilingual_expansion
if saved_search_settings
else None,
prompt_id=prompt.id if prompt else None,
persona_id=persona.id if persona is not None else 0,
retrieval_options=retrieval_details,
chain_of_thought=not disable_cot,
rerank_settings=RerankingDetails.from_db_model(saved_search_settings)
if saved_search_settings
else None,
)
)
except Exception as e:
logger.exception(
f"Unable to process message - did not successfully answer "
f"in {num_retries} attempts"
)
# Optionally, respond in thread with the error message, Used primarily
# for debugging purposes
if should_respond_with_error_msgs:
respond_in_thread(
client=client,
channel=channel,
receiver_ids=None,
text=f"Encountered exception when trying to answer: \n\n```{e}```",
thread_ts=message_ts_to_respond_to,
)
# In case of failures, don't keep the reaction there permanently
update_emote_react(
emoji=DANSWER_REACT_EMOJI,
channel=message_info.channel_to_respond,
message_ts=message_info.msg_to_respond,
remove=True,
client=client,
)
return True
# Edge case handling, for tracking down the Slack usage issue
if answer is None:
assert DISABLE_GENERATIVE_AI is True
try:
respond_in_thread(
client=client,
channel=channel,
receiver_ids=receiver_ids,
text="Hello! Danswer has some results for you!",
blocks=[
SectionBlock(
text="Danswer is down for maintenance.\nWe're working hard on recharging the AI!"
)
],
thread_ts=message_ts_to_respond_to,
# don't unfurl, since otherwise we will have 5+ previews which makes the message very long
unfurl=False,
)
# For DM (ephemeral message), we need to create a thread via a normal message so the user can see
# the ephemeral message. This also will give the user a notification which ephemeral message does not.
if receiver_ids:
respond_in_thread(
client=client,
channel=channel,
text=(
"👋 Hi, we've just gathered and forwarded the relevant "
+ "information to the team. They'll get back to you shortly!"
),
thread_ts=message_ts_to_respond_to,
)
return False
except Exception:
logger.exception(
f"Unable to process message - could not respond in slack in {num_retries} attempts"
)
return True
# Got an answer at this point, can remove reaction and give results
update_emote_react(
emoji=DANSWER_REACT_EMOJI,
channel=message_info.channel_to_respond,
message_ts=message_info.msg_to_respond,
remove=True,
client=client,
)
if answer.answer_valid is False:
logger.notice(
"Answer was evaluated to be invalid, throwing it away without responding."
)
update_emote_react(
emoji=DANSWER_FOLLOWUP_EMOJI,
channel=message_info.channel_to_respond,
message_ts=message_info.msg_to_respond,
remove=False,
client=client,
)
if answer.answer:
logger.debug(answer.answer)
return True
retrieval_info = answer.docs
if not retrieval_info:
# This should not happen, even with no docs retrieved, there is still info returned
raise RuntimeError("Failed to retrieve docs, cannot answer question.")
top_docs = retrieval_info.top_documents
if not top_docs and not should_respond_even_with_no_docs:
logger.error(
f"Unable to answer question: '{answer.rephrase}' - no documents found"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
if should_respond_with_error_msgs:
respond_in_thread(
client=client,
channel=channel,
receiver_ids=None,
text="Found no documents when trying to answer. Did you index any documents?",
thread_ts=message_ts_to_respond_to,
)
return True
if not answer.answer and disable_docs_only_answer:
logger.notice(
"Unable to find answer - not responding since the "
"`DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER` env variable is set"
)
return True
only_respond_with_citations_or_quotes = (
channel_conf
and "well_answered_postfilter" in channel_conf.get("answer_filters", [])
)
has_citations_or_quotes = bool(answer.citations or answer.quotes)
if (
only_respond_with_citations_or_quotes
and not has_citations_or_quotes
and not message_info.bypass_filters
):
logger.error(
f"Unable to find citations or quotes to answer: '{answer.rephrase}' - not answering!"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
if should_respond_with_error_msgs:
respond_in_thread(
client=client,
channel=channel,
receiver_ids=None,
text="Found no citations or quotes when trying to answer.",
thread_ts=message_ts_to_respond_to,
)
return True
# If called with the DanswerBot slash command, the question is lost so we have to reshow it
restate_question_block = get_restate_blocks(messages[-1].message, is_bot_msg)
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
answer_blocks = build_qa_response_blocks(
message_id=answer.chat_message_id,
answer=formatted_answer,
quotes=answer.quotes.quotes if answer.quotes else None,
source_filters=retrieval_info.applied_source_filters,
time_cutoff=retrieval_info.applied_time_cutoff,
favor_recent=retrieval_info.recency_bias_multiplier > 1,
# currently Personas don't support quotes
# if citations are enabled, also don't use quotes
skip_quotes=persona is not None or use_citations,
process_message_for_citations=use_citations,
feedback_reminder_id=feedback_reminder_id,
)
# Get the chunks fed to the LLM only, then fill with other docs
llm_doc_inds = answer.llm_selected_doc_indices or []
llm_docs = [top_docs[i] for i in llm_doc_inds]
remaining_docs = [
doc for idx, doc in enumerate(top_docs) if idx not in llm_doc_inds
]
priority_ordered_docs = llm_docs + remaining_docs
document_blocks = []
citations_block = []
# if citations are enabled, only show cited documents
if use_citations:
citations = answer.citations or []
cited_docs = []
for citation in citations:
matching_doc = next(
(d for d in top_docs if d.document_id == citation.document_id),
None,
)
if matching_doc:
cited_docs.append((citation.citation_num, matching_doc))
cited_docs.sort()
citations_block = build_sources_blocks(cited_documents=cited_docs)
elif priority_ordered_docs:
document_blocks = build_documents_blocks(
documents=priority_ordered_docs,
message_id=answer.chat_message_id,
)
document_blocks = [DividerBlock()] + document_blocks
all_blocks = (
restate_question_block + answer_blocks + citations_block + document_blocks
)
if channel_conf and channel_conf.get("follow_up_tags") is not None:
all_blocks.append(build_follow_up_block(message_id=answer.chat_message_id))
try:
respond_in_thread(
client=client,
channel=channel,
receiver_ids=receiver_ids,
text="Hello! Danswer has some results for you!",
blocks=all_blocks,
thread_ts=message_ts_to_respond_to,
# don't unfurl, since otherwise we will have 5+ previews which makes the message very long
unfurl=False,
)
# For DM (ephemeral message), we need to create a thread via a normal message so the user can see
# the ephemeral message. This also will give the user a notification which ephemeral message does not.
# if there is no message_ts_to_respond_to, and we have made it this far, then this is a /danswer message
# so we shouldn't send_team_member_message
if receiver_ids and message_ts_to_respond_to is not None:
send_team_member_message(
client=client,
channel=channel,
thread_ts=message_ts_to_respond_to,
)
return False
except Exception:
logger.exception(
f"Unable to process message - could not respond in slack in {num_retries} attempts"
)
return True

View File

@@ -1,19 +0,0 @@
from slack_sdk import WebClient
from danswer.danswerbot.slack.utils import respond_in_thread
def send_team_member_message(
client: WebClient,
channel: str,
thread_ts: str,
) -> None:
respond_in_thread(
client=client,
channel=channel,
text=(
"👋 Hi, we've just gathered and forwarded the relevant "
+ "information to the team. They'll get back to you shortly!"
),
thread_ts=thread_ts,
)

View File

@@ -1,58 +0,0 @@
from danswer.configs.constants import DocumentSource
def source_to_github_img_link(source: DocumentSource) -> str | None:
# TODO: store these images somewhere better
if source == DocumentSource.WEB.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Web.png"
if source == DocumentSource.FILE.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
if source == DocumentSource.GOOGLE_SITES.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/GoogleSites.png"
if source == DocumentSource.SLACK.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Slack.png"
if source == DocumentSource.GMAIL.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gmail.png"
if source == DocumentSource.GOOGLE_DRIVE.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/GoogleDrive.png"
if source == DocumentSource.GITHUB.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Github.png"
if source == DocumentSource.GITLAB.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gitlab.png"
if source == DocumentSource.CONFLUENCE.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Confluence.png"
if source == DocumentSource.JIRA.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Jira.png"
if source == DocumentSource.NOTION.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Notion.png"
if source == DocumentSource.ZENDESK.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Zendesk.png"
if source == DocumentSource.GONG.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gong.png"
if source == DocumentSource.LINEAR.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Linear.png"
if source == DocumentSource.PRODUCTBOARD.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Productboard.webp"
if source == DocumentSource.SLAB.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/SlabLogo.png"
if source == DocumentSource.ZULIP.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Zulip.png"
if source == DocumentSource.GURU.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Guru.png"
if source == DocumentSource.HUBSPOT.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/HubSpot.png"
if source == DocumentSource.DOCUMENT360.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Document360.png"
if source == DocumentSource.BOOKSTACK.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Bookstack.png"
if source == DocumentSource.LOOPIO.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Loopio.png"
if source == DocumentSource.SHAREPOINT.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Sharepoint.png"
if source == DocumentSource.REQUESTTRACKER.value:
# just use file icon for now
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
if source == DocumentSource.INGESTION_API.value:
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"

View File

@@ -1,570 +0,0 @@
import time
from threading import Event
from typing import Any
from typing import cast
from slack_sdk import WebClient
from slack_sdk.socket_mode.request import SocketModeRequest
from slack_sdk.socket_mode.response import SocketModeResponse
from danswer.configs.constants import MessageType
from danswer.configs.danswerbot_configs import DANSWER_BOT_REPHRASE_MESSAGE
from danswer.configs.danswerbot_configs import DANSWER_BOT_RESPOND_EVERY_CHANNEL
from danswer.configs.danswerbot_configs import NOTIFY_SLACKBOT_NO_ANSWER
from danswer.connectors.slack.utils import expert_info_from_slack_id
from danswer.danswerbot.slack.config import get_slack_bot_config_for_channel
from danswer.danswerbot.slack.constants import DISLIKE_BLOCK_ACTION_ID
from danswer.danswerbot.slack.constants import FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_ACTION_ID
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_RESOLVED_ACTION_ID
from danswer.danswerbot.slack.constants import GENERATE_ANSWER_BUTTON_ACTION_ID
from danswer.danswerbot.slack.constants import IMMEDIATE_RESOLVED_BUTTON_ACTION_ID
from danswer.danswerbot.slack.constants import LIKE_BLOCK_ACTION_ID
from danswer.danswerbot.slack.constants import VIEW_DOC_FEEDBACK_ID
from danswer.danswerbot.slack.handlers.handle_buttons import handle_doc_feedback_button
from danswer.danswerbot.slack.handlers.handle_buttons import handle_followup_button
from danswer.danswerbot.slack.handlers.handle_buttons import (
handle_followup_resolved_button,
)
from danswer.danswerbot.slack.handlers.handle_buttons import (
handle_generate_answer_button,
)
from danswer.danswerbot.slack.handlers.handle_buttons import handle_slack_feedback
from danswer.danswerbot.slack.handlers.handle_message import handle_message
from danswer.danswerbot.slack.handlers.handle_message import (
remove_scheduled_feedback_reminder,
)
from danswer.danswerbot.slack.handlers.handle_message import schedule_feedback_reminder
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.tokens import fetch_tokens
from danswer.danswerbot.slack.utils import check_message_limit
from danswer.danswerbot.slack.utils import decompose_action_id
from danswer.danswerbot.slack.utils import get_channel_name_from_id
from danswer.danswerbot.slack.utils import get_danswer_bot_app_id
from danswer.danswerbot.slack.utils import read_slack_thread
from danswer.danswerbot.slack.utils import remove_danswer_bot_tag
from danswer.danswerbot.slack.utils import rephrase_slack_message
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.danswerbot.slack.utils import TenantSocketModeClient
from danswer.db.engine import get_all_tenant_ids
from danswer.db.engine import get_session_with_tenant
from danswer.db.search_settings import get_current_search_settings
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.one_shot_answer.models import ThreadMessage
from danswer.search.retrieval.search_runner import download_nltk_data
from danswer.server.manage.models import SlackBotTokens
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
from shared_configs.configs import MODEL_SERVER_HOST
from shared_configs.configs import MODEL_SERVER_PORT
from shared_configs.configs import SLACK_CHANNEL_ID
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
# In rare cases, some users have been experiencing a massive amount of trivial messages coming through
# to the Slack Bot with trivial messages. Adding this to avoid exploding LLM costs while we track down
# the cause.
_SLACK_GREETINGS_TO_IGNORE = {
"Welcome back!",
"It's going to be a great day.",
"Salutations!",
"Greetings!",
"Feeling great!",
"Hi there",
":wave:",
}
# this is always (currently) the user id of Slack's official slackbot
_OFFICIAL_SLACKBOT_USER_ID = "USLACKBOT"
def prefilter_requests(req: SocketModeRequest, client: TenantSocketModeClient) -> bool:
"""True to keep going, False to ignore this Slack request"""
if req.type == "events_api":
# Verify channel is valid
event = cast(dict[str, Any], req.payload.get("event", {}))
msg = cast(str | None, event.get("text"))
channel = cast(str | None, event.get("channel"))
channel_specific_logger = setup_logger(extra={SLACK_CHANNEL_ID: channel})
# This should never happen, but we can't continue without a channel since
# we can't send a response without it
if not channel:
channel_specific_logger.warning("Found message without channel - skipping")
return False
if not msg:
channel_specific_logger.warning(
"Cannot respond to empty message - skipping"
)
return False
if (
req.payload.setdefault("event", {}).get("user", "")
== _OFFICIAL_SLACKBOT_USER_ID
):
channel_specific_logger.info(
"Ignoring messages from Slack's official Slackbot"
)
return False
if (
msg in _SLACK_GREETINGS_TO_IGNORE
or remove_danswer_bot_tag(msg, client=client.web_client)
in _SLACK_GREETINGS_TO_IGNORE
):
channel_specific_logger.error(
f"Ignoring weird Slack greeting message: '{msg}'"
)
channel_specific_logger.error(
f"Weird Slack greeting message payload: '{req.payload}'"
)
return False
# Ensure that the message is a new message of expected type
event_type = event.get("type")
if event_type not in ["app_mention", "message"]:
channel_specific_logger.info(
f"Ignoring non-message event of type '{event_type}' for channel '{channel}'"
)
return False
bot_tag_id = get_danswer_bot_app_id(client.web_client)
if event_type == "message":
is_dm = event.get("channel_type") == "im"
is_tagged = bot_tag_id and bot_tag_id in msg
is_danswer_bot_msg = bot_tag_id and bot_tag_id in event.get("user", "")
# DanswerBot should never respond to itself
if is_danswer_bot_msg:
logger.info("Ignoring message from DanswerBot")
return False
# DMs with the bot don't pick up the @DanswerBot so we have to keep the
# caught events_api
if is_tagged and not is_dm:
# Let the tag flow handle this case, don't reply twice
return False
if event.get("bot_profile"):
channel_name, _ = get_channel_name_from_id(
client=client.web_client, channel_id=channel
)
with get_session_with_tenant(client.tenant_id) as db_session:
slack_bot_config = get_slack_bot_config_for_channel(
channel_name=channel_name, db_session=db_session
)
# If DanswerBot is not specifically tagged and the channel is not set to respond to bots, ignore the message
if (not bot_tag_id or bot_tag_id not in msg) and (
not slack_bot_config
or not slack_bot_config.channel_config.get("respond_to_bots")
):
channel_specific_logger.info("Ignoring message from bot")
return False
# Ignore things like channel_join, channel_leave, etc.
# NOTE: "file_share" is just a message with a file attachment, so we
# should not ignore it
message_subtype = event.get("subtype")
if message_subtype not in [None, "file_share"]:
channel_specific_logger.info(
f"Ignoring message with subtype '{message_subtype}' since is is a special message type"
)
return False
message_ts = event.get("ts")
thread_ts = event.get("thread_ts")
# Pick the root of the thread (if a thread exists)
# Can respond in thread if it's an "im" directly to Danswer or @DanswerBot is tagged
if (
thread_ts
and message_ts != thread_ts
and event_type != "app_mention"
and event.get("channel_type") != "im"
):
channel_specific_logger.debug(
"Skipping message since it is not the root of a thread"
)
return False
msg = cast(str, event.get("text", ""))
if not msg:
channel_specific_logger.error("Unable to process empty message")
return False
if req.type == "slash_commands":
# Verify that there's an associated channel
channel = req.payload.get("channel_id")
channel_specific_logger = setup_logger(extra={SLACK_CHANNEL_ID: channel})
if not channel:
channel_specific_logger.error(
"Received DanswerBot command without channel - skipping"
)
return False
sender = req.payload.get("user_id")
if not sender:
channel_specific_logger.error(
"Cannot respond to DanswerBot command without sender to respond to."
)
return False
if not check_message_limit():
return False
logger.debug(f"Handling Slack request with Payload: '{req.payload}'")
return True
def process_feedback(req: SocketModeRequest, client: TenantSocketModeClient) -> None:
if actions := req.payload.get("actions"):
action = cast(dict[str, Any], actions[0])
feedback_type = cast(str, action.get("action_id"))
feedback_msg_reminder = cast(str, action.get("value"))
feedback_id = cast(str, action.get("block_id"))
channel_id = cast(str, req.payload["container"]["channel_id"])
thread_ts = cast(str, req.payload["container"]["thread_ts"])
else:
logger.error("Unable to process feedback. Action not found")
return
user_id = cast(str, req.payload["user"]["id"])
handle_slack_feedback(
feedback_id=feedback_id,
feedback_type=feedback_type,
feedback_msg_reminder=feedback_msg_reminder,
client=client.web_client,
user_id_to_post_confirmation=user_id,
channel_id_to_post_confirmation=channel_id,
thread_ts_to_post_confirmation=thread_ts,
tenant_id=client.tenant_id,
)
query_event_id, _, _ = decompose_action_id(feedback_id)
logger.notice(f"Successfully handled QA feedback for event: {query_event_id}")
def build_request_details(
req: SocketModeRequest, client: TenantSocketModeClient
) -> SlackMessageInfo:
if req.type == "events_api":
event = cast(dict[str, Any], req.payload["event"])
msg = cast(str, event["text"])
channel = cast(str, event["channel"])
tagged = event.get("type") == "app_mention"
message_ts = event.get("ts")
thread_ts = event.get("thread_ts")
sender = event.get("user") or None
expert_info = expert_info_from_slack_id(
sender, client.web_client, user_cache={}
)
email = expert_info.email if expert_info else None
msg = remove_danswer_bot_tag(msg, client=client.web_client)
if DANSWER_BOT_REPHRASE_MESSAGE:
logger.notice(f"Rephrasing Slack message. Original message: {msg}")
try:
msg = rephrase_slack_message(msg)
logger.notice(f"Rephrased message: {msg}")
except Exception as e:
logger.error(f"Error while trying to rephrase the Slack message: {e}")
else:
logger.notice(f"Received Slack message: {msg}")
if tagged:
logger.debug("User tagged DanswerBot")
if thread_ts != message_ts and thread_ts is not None:
thread_messages = read_slack_thread(
channel=channel, thread=thread_ts, client=client.web_client
)
else:
thread_messages = [
ThreadMessage(message=msg, sender=None, role=MessageType.USER)
]
return SlackMessageInfo(
thread_messages=thread_messages,
channel_to_respond=channel,
msg_to_respond=cast(str, message_ts or thread_ts),
thread_to_respond=cast(str, thread_ts or message_ts),
sender=sender,
email=email,
bypass_filters=tagged,
is_bot_msg=False,
is_bot_dm=event.get("channel_type") == "im",
)
elif req.type == "slash_commands":
channel = req.payload["channel_id"]
msg = req.payload["text"]
sender = req.payload["user_id"]
expert_info = expert_info_from_slack_id(
sender, client.web_client, user_cache={}
)
email = expert_info.email if expert_info else None
single_msg = ThreadMessage(message=msg, sender=None, role=MessageType.USER)
return SlackMessageInfo(
thread_messages=[single_msg],
channel_to_respond=channel,
msg_to_respond=None,
thread_to_respond=None,
sender=sender,
email=email,
bypass_filters=True,
is_bot_msg=True,
is_bot_dm=False,
)
raise RuntimeError("Programming fault, this should never happen.")
def apologize_for_fail(
details: SlackMessageInfo,
client: TenantSocketModeClient,
) -> None:
respond_in_thread(
client=client.web_client,
channel=details.channel_to_respond,
thread_ts=details.msg_to_respond,
text="Sorry, we weren't able to find anything relevant :cold_sweat:",
)
def process_message(
req: SocketModeRequest,
client: TenantSocketModeClient,
respond_every_channel: bool = DANSWER_BOT_RESPOND_EVERY_CHANNEL,
notify_no_answer: bool = NOTIFY_SLACKBOT_NO_ANSWER,
) -> None:
logger.debug(
f"Received Slack request of type: '{req.type}' for tenant, {client.tenant_id}"
)
# Throw out requests that can't or shouldn't be handled
if not prefilter_requests(req, client):
return
details = build_request_details(req, client)
channel = details.channel_to_respond
channel_name, is_dm = get_channel_name_from_id(
client=client.web_client, channel_id=channel
)
# Set the current tenant ID at the beginning for all DB calls within this thread
if client.tenant_id:
logger.info(f"Setting tenant ID to {client.tenant_id}")
token = CURRENT_TENANT_ID_CONTEXTVAR.set(client.tenant_id)
try:
with get_session_with_tenant(client.tenant_id) as db_session:
slack_bot_config = get_slack_bot_config_for_channel(
channel_name=channel_name, db_session=db_session
)
# Be careful about this default, don't want to accidentally spam every channel
# Users should be able to DM slack bot in their private channels though
if (
slack_bot_config is None
and not respond_every_channel
# Can't have configs for DMs so don't toss them out
and not is_dm
# If /DanswerBot (is_bot_msg) or @DanswerBot (bypass_filters)
# always respond with the default configs
and not (details.is_bot_msg or details.bypass_filters)
):
return
follow_up = bool(
slack_bot_config
and slack_bot_config.channel_config
and slack_bot_config.channel_config.get("follow_up_tags") is not None
)
feedback_reminder_id = schedule_feedback_reminder(
details=details, client=client.web_client, include_followup=follow_up
)
failed = handle_message(
message_info=details,
slack_bot_config=slack_bot_config,
client=client.web_client,
feedback_reminder_id=feedback_reminder_id,
tenant_id=client.tenant_id,
)
if failed:
if feedback_reminder_id:
remove_scheduled_feedback_reminder(
client=client.web_client,
channel=details.sender,
msg_id=feedback_reminder_id,
)
# Skipping answering due to pre-filtering is not considered a failure
if notify_no_answer:
apologize_for_fail(details, client)
finally:
if client.tenant_id:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
def acknowledge_message(req: SocketModeRequest, client: TenantSocketModeClient) -> None:
response = SocketModeResponse(envelope_id=req.envelope_id)
client.send_socket_mode_response(response)
def action_routing(req: SocketModeRequest, client: TenantSocketModeClient) -> None:
if actions := req.payload.get("actions"):
action = cast(dict[str, Any], actions[0])
if action["action_id"] in [DISLIKE_BLOCK_ACTION_ID, LIKE_BLOCK_ACTION_ID]:
# AI Answer feedback
return process_feedback(req, client)
elif action["action_id"] == FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID:
# Activation of the "source feedback" button
return handle_doc_feedback_button(req, client)
elif action["action_id"] == FOLLOWUP_BUTTON_ACTION_ID:
return handle_followup_button(req, client)
elif action["action_id"] == IMMEDIATE_RESOLVED_BUTTON_ACTION_ID:
return handle_followup_resolved_button(req, client, immediate=True)
elif action["action_id"] == FOLLOWUP_BUTTON_RESOLVED_ACTION_ID:
return handle_followup_resolved_button(req, client, immediate=False)
elif action["action_id"] == GENERATE_ANSWER_BUTTON_ACTION_ID:
return handle_generate_answer_button(req, client)
def view_routing(req: SocketModeRequest, client: TenantSocketModeClient) -> None:
if view := req.payload.get("view"):
if view["callback_id"] == VIEW_DOC_FEEDBACK_ID:
return process_feedback(req, client)
def process_slack_event(client: TenantSocketModeClient, req: SocketModeRequest) -> None:
# Always respond right away, if Slack doesn't receive these frequently enough
# it will assume the Bot is DEAD!!! :(
acknowledge_message(req, client)
try:
if req.type == "interactive":
if req.payload.get("type") == "block_actions":
return action_routing(req, client)
elif req.payload.get("type") == "view_submission":
return view_routing(req, client)
elif req.type == "events_api" or req.type == "slash_commands":
return process_message(req, client)
except Exception as e:
logger.exception(f"Failed to process slack event. Error: {e}")
logger.error(f"Slack request payload: {req.payload}")
def _get_socket_client(
slack_bot_tokens: SlackBotTokens, tenant_id: str | None
) -> TenantSocketModeClient:
# For more info on how to set this up, checkout the docs:
# https://docs.danswer.dev/slack_bot_setup
return TenantSocketModeClient(
# This app-level token will be used only for establishing a connection
app_token=slack_bot_tokens.app_token,
web_client=WebClient(token=slack_bot_tokens.bot_token),
tenant_id=tenant_id,
)
def _initialize_socket_client(socket_client: TenantSocketModeClient) -> None:
socket_client.socket_mode_request_listeners.append(process_slack_event) # type: ignore
# Establish a WebSocket connection to the Socket Mode servers
logger.notice(f"Listening for messages from Slack {socket_client.tenant_id }...")
socket_client.connect()
# Follow the guide (https://docs.danswer.dev/slack_bot_setup) to set up
# the slack bot in your workspace, and then add the bot to any channels you want to
# try and answer questions for. Running this file will setup Danswer to listen to all
# messages in those channels and attempt to answer them. As of now, it will only respond
# to messages sent directly in the channel - it will not respond to messages sent within a
# thread.
#
# NOTE: we are using Web Sockets so that you can run this from within a firewalled VPC
# without issue.
if __name__ == "__main__":
slack_bot_tokens: dict[str | None, SlackBotTokens] = {}
socket_clients: dict[str | None, TenantSocketModeClient] = {}
set_is_ee_based_on_env_variable()
logger.notice("Verifying query preprocessing (NLTK) data is downloaded")
download_nltk_data()
while True:
try:
tenant_ids = get_all_tenant_ids() # Function to retrieve all tenant IDs
for tenant_id in tenant_ids:
with get_session_with_tenant(tenant_id) as db_session:
try:
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id or "public")
latest_slack_bot_tokens = fetch_tokens()
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
if (
tenant_id not in slack_bot_tokens
or latest_slack_bot_tokens != slack_bot_tokens[tenant_id]
):
if tenant_id in slack_bot_tokens:
logger.notice(
f"Slack Bot tokens have changed for tenant {tenant_id} - reconnecting"
)
else:
# Initial setup for this tenant
search_settings = get_current_search_settings(
db_session
)
embedding_model = EmbeddingModel.from_db_model(
search_settings=search_settings,
server_host=MODEL_SERVER_HOST,
server_port=MODEL_SERVER_PORT,
)
warm_up_bi_encoder(embedding_model=embedding_model)
slack_bot_tokens[tenant_id] = latest_slack_bot_tokens
# potentially may cause a message to be dropped, but it is complicated
# to avoid + (1) if the user is changing tokens, they are likely okay with some
# "migration downtime" and (2) if a single message is lost it is okay
# as this should be a very rare occurrence
if tenant_id in socket_clients:
socket_clients[tenant_id].close()
socket_client = _get_socket_client(
latest_slack_bot_tokens, tenant_id
)
# Initialize socket client for this tenant. Each tenant has its own
# socket client, allowing for multiple concurrent connections (one
# per tenant) with the tenant ID wrapped in the socket model client.
# Each `connect` stores websocket connection in a separate thread.
_initialize_socket_client(socket_client)
socket_clients[tenant_id] = socket_client
except KvKeyNotFoundError:
logger.debug(f"Missing Slack Bot tokens for tenant {tenant_id}")
if tenant_id in socket_clients:
socket_clients[tenant_id].disconnect()
del socket_clients[tenant_id]
del slack_bot_tokens[tenant_id]
# Wait before checking for updates
Event().wait(timeout=60)
except Exception:
logger.exception("An error occurred outside of main event loop")
time.sleep(60)

View File

@@ -1,28 +0,0 @@
import os
from typing import cast
from danswer.configs.constants import KV_SLACK_BOT_TOKENS_CONFIG_KEY
from danswer.key_value_store.factory import get_kv_store
from danswer.server.manage.models import SlackBotTokens
def fetch_tokens() -> SlackBotTokens:
# first check env variables
app_token = os.environ.get("DANSWER_BOT_SLACK_APP_TOKEN")
bot_token = os.environ.get("DANSWER_BOT_SLACK_BOT_TOKEN")
if app_token and bot_token:
return SlackBotTokens(app_token=app_token, bot_token=bot_token)
dynamic_config_store = get_kv_store()
return SlackBotTokens(
**cast(dict, dynamic_config_store.load(key=KV_SLACK_BOT_TOKENS_CONFIG_KEY))
)
def save_tokens(
tokens: SlackBotTokens,
) -> None:
dynamic_config_store = get_kv_store()
dynamic_config_store.store(
key=KV_SLACK_BOT_TOKENS_CONFIG_KEY, val=dict(tokens), encrypt=True
)

View File

@@ -1,202 +0,0 @@
from uuid import UUID
from fastapi import HTTPException
from sqlalchemy import select
from sqlalchemy.orm import Session
from danswer.db.models import InputPrompt
from danswer.db.models import User
from danswer.server.features.input_prompt.models import InputPromptSnapshot
from danswer.server.manage.models import UserInfo
from danswer.utils.logger import setup_logger
logger = setup_logger()
def insert_input_prompt_if_not_exists(
user: User | None,
input_prompt_id: int | None,
prompt: str,
content: str,
active: bool,
is_public: bool,
db_session: Session,
commit: bool = True,
) -> InputPrompt:
if input_prompt_id is not None:
input_prompt = (
db_session.query(InputPrompt).filter_by(id=input_prompt_id).first()
)
else:
query = db_session.query(InputPrompt).filter(InputPrompt.prompt == prompt)
if user:
query = query.filter(InputPrompt.user_id == user.id)
else:
query = query.filter(InputPrompt.user_id.is_(None))
input_prompt = query.first()
if input_prompt is None:
input_prompt = InputPrompt(
id=input_prompt_id,
prompt=prompt,
content=content,
active=active,
is_public=is_public or user is None,
user_id=user.id if user else None,
)
db_session.add(input_prompt)
if commit:
db_session.commit()
return input_prompt
def insert_input_prompt(
prompt: str,
content: str,
is_public: bool,
user: User | None,
db_session: Session,
) -> InputPrompt:
input_prompt = InputPrompt(
prompt=prompt,
content=content,
active=True,
is_public=is_public or user is None,
user_id=user.id if user is not None else None,
)
db_session.add(input_prompt)
db_session.commit()
return input_prompt
def update_input_prompt(
user: User | None,
input_prompt_id: int,
prompt: str,
content: str,
active: bool,
db_session: Session,
) -> InputPrompt:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if not validate_user_prompt_authorization(user, input_prompt):
raise HTTPException(status_code=401, detail="You don't own this prompt")
input_prompt.prompt = prompt
input_prompt.content = content
input_prompt.active = active
db_session.commit()
return input_prompt
def validate_user_prompt_authorization(
user: User | None, input_prompt: InputPrompt
) -> bool:
prompt = InputPromptSnapshot.from_model(input_prompt=input_prompt)
if prompt.user_id is not None:
if user is None:
return False
user_details = UserInfo.from_model(user)
if str(user_details.id) != str(prompt.user_id):
return False
return True
def remove_public_input_prompt(input_prompt_id: int, db_session: Session) -> None:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if not input_prompt.is_public:
raise HTTPException(status_code=400, detail="This prompt is not public")
db_session.delete(input_prompt)
db_session.commit()
def remove_input_prompt(
user: User | None, input_prompt_id: int, db_session: Session
) -> None:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if input_prompt.is_public:
raise HTTPException(
status_code=400, detail="Cannot delete public prompts with this method"
)
if not validate_user_prompt_authorization(user, input_prompt):
raise HTTPException(status_code=401, detail="You do not own this prompt")
db_session.delete(input_prompt)
db_session.commit()
def fetch_input_prompt_by_id(
id: int, user_id: UUID | None, db_session: Session
) -> InputPrompt:
query = select(InputPrompt).where(InputPrompt.id == id)
if user_id:
query = query.where(
(InputPrompt.user_id == user_id) | (InputPrompt.user_id is None)
)
else:
# If no user_id is provided, only fetch prompts without a user_id (aka public)
query = query.where(InputPrompt.user_id == None) # noqa
result = db_session.scalar(query)
if result is None:
raise HTTPException(422, "No input prompt found")
return result
def fetch_public_input_prompts(
db_session: Session,
) -> list[InputPrompt]:
query = select(InputPrompt).where(InputPrompt.is_public)
return list(db_session.scalars(query).all())
def fetch_input_prompts_by_user(
db_session: Session,
user_id: UUID | None,
active: bool | None = None,
include_public: bool = False,
) -> list[InputPrompt]:
query = select(InputPrompt)
if user_id is not None:
if include_public:
query = query.where(
(InputPrompt.user_id == user_id) | InputPrompt.is_public
)
else:
query = query.where(InputPrompt.user_id == user_id)
elif include_public:
query = query.where(InputPrompt.is_public)
if active is not None:
query = query.where(InputPrompt.active == active)
return list(db_session.scalars(query).all())

View File

@@ -1,99 +0,0 @@
from collections.abc import Sequence
from uuid import UUID
from fastapi_users.password import PasswordHelper
from sqlalchemy import func
from sqlalchemy import select
from sqlalchemy.orm import Session
from danswer.auth.schemas import UserRole
from danswer.db.models import User
def list_users(
db_session: Session, email_filter_string: str = "", user: User | None = None
) -> Sequence[User]:
"""List all users. No pagination as of now, as the # of users
is assumed to be relatively small (<< 1 million)"""
stmt = select(User)
if email_filter_string:
stmt = stmt.where(User.email.ilike(f"%{email_filter_string}%")) # type: ignore
return db_session.scalars(stmt).unique().all()
def get_users_by_emails(
db_session: Session, emails: list[str]
) -> tuple[list[User], list[str]]:
# Use distinct to avoid duplicates
stmt = select(User).filter(User.email.in_(emails)) # type: ignore
found_users = list(db_session.scalars(stmt).unique().all()) # Convert to list
found_users_emails = [user.email for user in found_users]
missing_user_emails = [email for email in emails if email not in found_users_emails]
return found_users, missing_user_emails
def get_user_by_email(email: str, db_session: Session) -> User | None:
user = (
db_session.query(User)
.filter(func.lower(User.email) == func.lower(email))
.first()
)
return user
def fetch_user_by_id(db_session: Session, user_id: UUID) -> User | None:
user = db_session.query(User).filter(User.id == user_id).first() # type: ignore
return user
def _generate_non_web_user(email: str) -> User:
fastapi_users_pw_helper = PasswordHelper()
password = fastapi_users_pw_helper.generate()
hashed_pass = fastapi_users_pw_helper.hash(password)
return User(
email=email,
hashed_password=hashed_pass,
has_web_login=False,
role=UserRole.BASIC,
)
def add_non_web_user_if_not_exists(db_session: Session, email: str) -> User:
user = get_user_by_email(email, db_session)
if user is not None:
return user
user = _generate_non_web_user(email=email)
db_session.add(user)
db_session.commit()
return user
def add_non_web_user_if_not_exists__no_commit(db_session: Session, email: str) -> User:
user = get_user_by_email(email, db_session)
if user is not None:
return user
user = _generate_non_web_user(email=email)
db_session.add(user)
db_session.flush() # generate id
return user
def batch_add_non_web_user_if_not_exists__no_commit(
db_session: Session, emails: list[str]
) -> list[User]:
found_users, missing_user_emails = get_users_by_emails(db_session, emails)
new_users: list[User] = []
for email in missing_user_emails:
new_users.append(_generate_non_web_user(email=email))
db_session.add_all(new_users)
db_session.flush() # generate ids
return found_users + new_users

View File

@@ -1,85 +0,0 @@
from collections.abc import Callable
from io import BytesIO
from typing import Any
from typing import cast
from uuid import uuid4
import requests
from sqlalchemy.orm import Session
from danswer.configs.constants import FileOrigin
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import ChatMessage
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import FileDescriptor
from danswer.file_store.models import InMemoryChatFile
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
def load_chat_file(
file_descriptor: FileDescriptor, db_session: Session
) -> InMemoryChatFile:
file_io = get_default_file_store(db_session).read_file(
file_descriptor["id"], mode="b"
)
return InMemoryChatFile(
file_id=file_descriptor["id"],
content=file_io.read(),
file_type=file_descriptor["type"],
filename=file_descriptor.get("name"),
)
def load_all_chat_files(
chat_messages: list[ChatMessage],
file_descriptors: list[FileDescriptor],
db_session: Session,
) -> list[InMemoryChatFile]:
file_descriptors_for_history: list[FileDescriptor] = []
for chat_message in chat_messages:
if chat_message.files:
file_descriptors_for_history.extend(chat_message.files)
files = cast(
list[InMemoryChatFile],
run_functions_tuples_in_parallel(
[
(load_chat_file, (file, db_session))
for file in file_descriptors + file_descriptors_for_history
]
),
)
return files
def save_file_from_url(url: str, tenant_id: str) -> str:
"""NOTE: using multiple sessions here, since this is often called
using multithreading. In practice, sharing a session has resulted in
weird errors."""
with get_session_with_tenant(tenant_id) as db_session:
response = requests.get(url)
response.raise_for_status()
unique_id = str(uuid4())
file_io = BytesIO(response.content)
file_store = get_default_file_store(db_session)
file_store.save_file(
file_name=unique_id,
content=file_io,
display_name="GeneratedImage",
file_origin=FileOrigin.CHAT_IMAGE_GEN,
file_type="image/png;base64",
)
return unique_id
def save_files_from_urls(urls: list[str]) -> list[str]:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
funcs: list[tuple[Callable[..., Any], tuple[Any, ...]]] = [
(save_file_from_url, (url, tenant_id)) for url in urls
]
# Must pass in tenant_id here, since this is called by multithreading
return run_functions_tuples_in_parallel(funcs)

View File

@@ -1,41 +0,0 @@
import abc
from typing import Any
from sqlalchemy import func
from sqlalchemy.orm import Session
from danswer.db.index_attempt import get_index_attempt
from danswer.utils.logger import setup_logger
logger = setup_logger()
class Heartbeat(abc.ABC):
"""Useful for any long-running work that goes through a bunch of items
and needs to occasionally give updates on progress.
e.g. chunking, embedding, updating vespa, etc."""
@abc.abstractmethod
def heartbeat(self, metadata: Any = None) -> None:
raise NotImplementedError
class IndexingHeartbeat(Heartbeat):
def __init__(self, index_attempt_id: int, db_session: Session, freq: int):
self.cnt = 0
self.index_attempt_id = index_attempt_id
self.db_session = db_session
self.freq = freq
def heartbeat(self, metadata: Any = None) -> None:
self.cnt += 1
if self.cnt % self.freq == 0:
index_attempt = get_index_attempt(
db_session=self.db_session, index_attempt_id=self.index_attempt_id
)
if index_attempt:
index_attempt.time_updated = func.now()
self.db_session.commit()
else:
logger.error("Index attempt not found, this should not happen!")

View File

@@ -1,84 +0,0 @@
from collections.abc import Callable
from collections.abc import Generator
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain_core.messages import BaseMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import StreamStopInfo
from danswer.chat.models import StreamStopReason
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.stream_processing.answer_response_handler import (
AnswerResponseHandler,
)
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| DanswerQuotes
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True
class LLMResponseHandlerManager:
def __init__(
self,
tool_handler: "ToolResponseHandler",
answer_handler: "AnswerResponseHandler",
is_cancelled: Callable[[], bool],
):
self.tool_handler = tool_handler
self.answer_handler = answer_handler
self.is_cancelled = is_cancelled
def handle_llm_response(
self,
stream: Iterator[BaseMessage],
) -> Generator[ResponsePart, None, None]:
all_messages: list[BaseMessage] = []
for message in stream:
if self.is_cancelled():
yield StreamStopInfo(stop_reason=StreamStopReason.CANCELLED)
return
# tool handler doesn't do anything until the full message is received
# NOTE: still need to run list() to get this to run
list(self.tool_handler.handle_response_part(message, all_messages))
yield from self.answer_handler.handle_response_part(message, all_messages)
all_messages.append(message)
# potentially give back all info on the selected tool call + its result
yield from self.tool_handler.handle_response_part(None, all_messages)
yield from self.answer_handler.handle_response_part(None, all_messages)
def next_llm_call(self, llm_call: LLMCall) -> LLMCall | None:
return self.tool_handler.next_llm_call(llm_call)

View File

@@ -1,163 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import AnswerQuestionStreamReturn
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.override_models import PromptOverride
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
from danswer.db.models import Prompt
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)

View File

@@ -1,97 +0,0 @@
from langchain.schema.messages import HumanMessage
from danswer.chat.models import LlmDoc
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.configs.chat_configs import QA_PROMPT_OVERRIDE
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.prompts.direct_qa_prompts import CONTEXT_BLOCK
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK
from danswer.prompts.direct_qa_prompts import JSON_PROMPT
from danswer.prompts.direct_qa_prompts import WEAK_LLM_PROMPT
from danswer.prompts.prompt_utils import add_date_time_to_prompt
from danswer.prompts.prompt_utils import build_complete_context_str
from danswer.search.models import InferenceChunk
def _build_weak_llm_quotes_prompt(
question: str,
context_docs: list[LlmDoc] | list[InferenceChunk],
history_str: str,
prompt: PromptConfig,
) -> HumanMessage:
"""Since Danswer supports a variety of LLMs, this less demanding prompt is provided
as an option to use with weaker LLMs such as small version, low float precision, quantized,
or distilled models. It only uses one context document and has very weak requirements of
output format.
"""
context_block = ""
if context_docs:
context_block = CONTEXT_BLOCK.format(context_docs_str=context_docs[0].content)
prompt_str = WEAK_LLM_PROMPT.format(
system_prompt=prompt.system_prompt,
context_block=context_block,
task_prompt=prompt.task_prompt,
user_query=question,
)
if prompt.datetime_aware:
prompt_str = add_date_time_to_prompt(prompt_str=prompt_str)
return HumanMessage(content=prompt_str)
def _build_strong_llm_quotes_prompt(
question: str,
context_docs: list[LlmDoc] | list[InferenceChunk],
history_str: str,
prompt: PromptConfig,
) -> HumanMessage:
use_language_hint = bool(get_multilingual_expansion())
context_block = ""
if context_docs:
context_docs_str = build_complete_context_str(context_docs)
context_block = CONTEXT_BLOCK.format(context_docs_str=context_docs_str)
history_block = ""
if history_str:
history_block = HISTORY_BLOCK.format(history_str=history_str)
full_prompt = JSON_PROMPT.format(
system_prompt=prompt.system_prompt,
context_block=context_block,
history_block=history_block,
task_prompt=prompt.task_prompt,
user_query=question,
language_hint_or_none=LANGUAGE_HINT.strip() if use_language_hint else "",
).strip()
if prompt.datetime_aware:
full_prompt = add_date_time_to_prompt(prompt_str=full_prompt)
return HumanMessage(content=full_prompt)
def build_quotes_user_message(
message: HumanMessage,
context_docs: list[LlmDoc] | list[InferenceChunk],
history_str: str,
prompt: PromptConfig,
) -> HumanMessage:
prompt_builder = (
_build_weak_llm_quotes_prompt
if QA_PROMPT_OVERRIDE == "weak"
else _build_strong_llm_quotes_prompt
)
query, _ = message_to_prompt_and_imgs(message)
return prompt_builder(
question=query,
context_docs=context_docs,
history_str=history_str,
prompt=prompt,
)

View File

@@ -1,20 +0,0 @@
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()

View File

@@ -1,150 +0,0 @@
import os
from abc import ABC
from abc import abstractmethod
from copy import copy
from transformers import logging as transformer_logging # type:ignore
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
from danswer.configs.model_configs import DOCUMENT_ENCODER_MODEL
from danswer.search.models import InferenceChunk
from danswer.utils.logger import setup_logger
from shared_configs.enums import EmbeddingProvider
logger = setup_logger()
transformer_logging.set_verbosity_error()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
class BaseTokenizer(ABC):
@abstractmethod
def encode(self, string: str) -> list[int]:
pass
@abstractmethod
def tokenize(self, string: str) -> list[str]:
pass
@abstractmethod
def decode(self, tokens: list[int]) -> str:
pass
class TiktokenTokenizer(BaseTokenizer):
_instances: dict[str, "TiktokenTokenizer"] = {}
def __new__(cls, encoding_name: str = "cl100k_base") -> "TiktokenTokenizer":
if encoding_name not in cls._instances:
cls._instances[encoding_name] = super(TiktokenTokenizer, cls).__new__(cls)
return cls._instances[encoding_name]
def __init__(self, encoding_name: str = "cl100k_base"):
if not hasattr(self, "encoder"):
import tiktoken
self.encoder = tiktoken.get_encoding(encoding_name)
def encode(self, string: str) -> list[int]:
# this returns no special tokens
return self.encoder.encode_ordinary(string)
def tokenize(self, string: str) -> list[str]:
return [self.encoder.decode([token]) for token in self.encode(string)]
def decode(self, tokens: list[int]) -> str:
return self.encoder.decode(tokens)
class HuggingFaceTokenizer(BaseTokenizer):
def __init__(self, model_name: str):
from tokenizers import Tokenizer # type: ignore
self.encoder = Tokenizer.from_pretrained(model_name)
def encode(self, string: str) -> list[int]:
# this returns no special tokens
return self.encoder.encode(string, add_special_tokens=False).ids
def tokenize(self, string: str) -> list[str]:
return self.encoder.encode(string, add_special_tokens=False).tokens
def decode(self, tokens: list[int]) -> str:
return self.encoder.decode(tokens)
_TOKENIZER_CACHE: dict[str, BaseTokenizer] = {}
def _check_tokenizer_cache(tokenizer_name: str) -> BaseTokenizer:
global _TOKENIZER_CACHE
if tokenizer_name not in _TOKENIZER_CACHE:
if tokenizer_name == "openai":
_TOKENIZER_CACHE[tokenizer_name] = TiktokenTokenizer("cl100k_base")
return _TOKENIZER_CACHE[tokenizer_name]
try:
logger.debug(f"Initializing HuggingFaceTokenizer for: {tokenizer_name}")
_TOKENIZER_CACHE[tokenizer_name] = HuggingFaceTokenizer(tokenizer_name)
except Exception as primary_error:
logger.error(
f"Error initializing HuggingFaceTokenizer for {tokenizer_name}: {primary_error}"
)
logger.warning(
f"Falling back to default embedding model: {DOCUMENT_ENCODER_MODEL}"
)
try:
# Cache this tokenizer name to the default so we don't have to try to load it again
# and fail again
_TOKENIZER_CACHE[tokenizer_name] = HuggingFaceTokenizer(
DOCUMENT_ENCODER_MODEL
)
except Exception as fallback_error:
logger.error(
f"Error initializing fallback HuggingFaceTokenizer: {fallback_error}"
)
raise ValueError(
f"Failed to initialize tokenizer for {tokenizer_name} and fallback model"
) from fallback_error
return _TOKENIZER_CACHE[tokenizer_name]
_DEFAULT_TOKENIZER: BaseTokenizer = HuggingFaceTokenizer(DOCUMENT_ENCODER_MODEL)
def get_tokenizer(
model_name: str | None, provider_type: EmbeddingProvider | str | None
) -> BaseTokenizer:
# Currently all of the viable models use the same sentencepiece tokenizer
# OpenAI uses a different one but currently it's not supported due to quality issues
# the inconsistent chunking makes using the sentencepiece tokenizer default better for now
# LLM tokenizers are specified by strings
global _DEFAULT_TOKENIZER
return _DEFAULT_TOKENIZER
def tokenizer_trim_content(
content: str, desired_length: int, tokenizer: BaseTokenizer
) -> str:
tokens = tokenizer.encode(content)
if len(tokens) > desired_length:
content = tokenizer.decode(tokens[:desired_length])
return content
def tokenizer_trim_chunks(
chunks: list[InferenceChunk],
tokenizer: BaseTokenizer,
max_chunk_toks: int = DOC_EMBEDDING_CONTEXT_SIZE,
) -> list[InferenceChunk]:
new_chunks = copy(chunks)
for ind, chunk in enumerate(new_chunks):
new_content = tokenizer_trim_content(chunk.content, max_chunk_toks, tokenizer)
if len(new_content) != len(chunk.content):
new_chunk = copy(chunk)
new_chunk.content = new_content
new_chunks[ind] = new_chunk
return new_chunks

View File

@@ -1,436 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import reorganize_citations
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import DocumentRelevance
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import QADocsResponse
from danswer.chat.models import RelevanceAnalysis
from danswer.chat.models import StreamingError
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import QA_TIMEOUT
from danswer.configs.constants import MessageType
from danswer.db.chat import create_chat_session
from danswer.db.chat import create_db_search_doc
from danswer.db.chat import create_new_chat_message
from danswer.db.chat import get_or_create_root_message
from danswer.db.chat import translate_db_message_to_chat_message_detail
from danswer.db.chat import translate_db_search_doc_to_server_search_doc
from danswer.db.chat import update_search_docs_table_with_relevance
from danswer.db.engine import get_session_context_manager
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.db.persona import get_prompt_by_id
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.models import QuotesConfig
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.one_shot_answer.models import QueryRephrase
from danswer.one_shot_answer.qa_utils import combine_message_thread
from danswer.search.enums import LLMEvaluationType
from danswer.search.models import RerankMetricsContainer
from danswer.search.models import RetrievalMetricsContainer
from danswer.search.utils import chunks_or_sections_to_search_docs
from danswer.search.utils import dedupe_documents
from danswer.secondary_llm_flows.answer_validation import get_answer_validity
from danswer.secondary_llm_flows.query_expansion import thread_based_query_rephrase
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.utils import get_json_line
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.search.search_tool import SEARCH_DOC_CONTENT_ID
from danswer.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from danswer.tools.tool_implementations.search.search_tool import SearchResponseSummary
from danswer.tools.tool_implementations.search.search_tool import SearchTool
from danswer.tools.tool_implementations.search.search_tool import (
SECTION_RELEVANCE_LIST_ID,
)
from danswer.tools.tool_runner import ToolCallKickoff
from danswer.utils.logger import setup_logger
from danswer.utils.timing import log_generator_function_time
from ee.danswer.server.query_and_chat.utils import create_temporary_persona
logger = setup_logger()
AnswerObjectIterator = Iterator[
QueryRephrase
| QADocsResponse
| LLMRelevanceFilterResponse
| DanswerAnswerPiece
| DanswerQuotes
| DanswerContexts
| StreamingError
| ChatMessageDetail
| CitationInfo
| ToolCallKickoff
| DocumentRelevance
]
def stream_answer_objects(
query_req: DirectQARequest,
user: User | None,
# These need to be passed in because in Web UI one shot flow,
# we can have much more document as there is no history.
# For Slack flow, we need to save more tokens for the thread context
max_document_tokens: int | None,
max_history_tokens: int | None,
db_session: Session,
# Needed to translate persona num_chunks to tokens to the LLM
default_num_chunks: float = MAX_CHUNKS_FED_TO_CHAT,
timeout: int = QA_TIMEOUT,
bypass_acl: bool = False,
use_citations: bool = False,
danswerbot_flow: bool = False,
retrieval_metrics_callback: (
Callable[[RetrievalMetricsContainer], None] | None
) = None,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> AnswerObjectIterator:
"""Streams in order:
1. [always] Retrieved documents, stops flow if nothing is found
2. [conditional] LLM selected chunk indices if LLM chunk filtering is turned on
3. [always] A set of streamed DanswerAnswerPiece and DanswerQuotes at the end
or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
user_id = user.id if user is not None else None
query_msg = query_req.messages[-1]
history = query_req.messages[:-1]
chat_session = create_chat_session(
db_session=db_session,
description="", # One shot queries don't need naming as it's never displayed
user_id=user_id,
persona_id=query_req.persona_id,
one_shot=True,
danswerbot_flow=danswerbot_flow,
)
temporary_persona: Persona | None = None
if query_req.persona_config is not None:
new_persona = create_temporary_persona(
db_session=db_session, persona_config=query_req.persona_config, user=user
)
temporary_persona = new_persona
persona = temporary_persona if temporary_persona else chat_session.persona
try:
llm, fast_llm = get_llms_for_persona(persona=persona)
except ValueError as e:
logger.error(
f"Failed to initialize LLMs for persona '{persona.name}': {str(e)}"
)
if "No LLM provider" in str(e):
raise ValueError(
"Please configure a Generative AI model to use this feature."
) from e
raise ValueError(
"Failed to initialize the AI model. Please check your configuration and try again."
) from e
llm_tokenizer = get_tokenizer(
model_name=llm.config.model_name,
provider_type=llm.config.model_provider,
)
# Create a chat session which will just store the root message, the query, and the AI response
root_message = get_or_create_root_message(
chat_session_id=chat_session.id, db_session=db_session
)
history_str = combine_message_thread(
messages=history,
max_tokens=max_history_tokens,
llm_tokenizer=llm_tokenizer,
)
rephrased_query = query_req.query_override or thread_based_query_rephrase(
user_query=query_msg.message,
history_str=history_str,
)
# Given back ahead of the documents for latency reasons
# In chat flow it's given back along with the documents
yield QueryRephrase(rephrased_query=rephrased_query)
prompt = None
if query_req.prompt_id is not None:
# NOTE: let the user access any prompt as long as the Persona is shared
# with them
prompt = get_prompt_by_id(
prompt_id=query_req.prompt_id, user=None, db_session=db_session
)
if prompt is None:
if not persona.prompts:
raise RuntimeError(
"Persona does not have any prompts - this should never happen"
)
prompt = persona.prompts[0]
# Create the first User query message
new_user_message = create_new_chat_message(
chat_session_id=chat_session.id,
parent_message=root_message,
prompt_id=query_req.prompt_id,
message=query_msg.message,
token_count=len(llm_tokenizer.encode(query_msg.message)),
message_type=MessageType.USER,
db_session=db_session,
commit=True,
)
prompt_config = PromptConfig.from_model(prompt)
document_pruning_config = DocumentPruningConfig(
max_chunks=int(
persona.num_chunks if persona.num_chunks is not None else default_num_chunks
),
max_tokens=max_document_tokens,
)
answer_config = AnswerStyleConfig(
citation_config=CitationConfig() if use_citations else None,
quotes_config=QuotesConfig() if not use_citations else None,
document_pruning_config=document_pruning_config,
)
search_tool = SearchTool(
db_session=db_session,
user=user,
evaluation_type=(
LLMEvaluationType.SKIP
if DISABLE_LLM_DOC_RELEVANCE
else query_req.evaluation_type
),
persona=persona,
retrieval_options=query_req.retrieval_options,
prompt_config=prompt_config,
llm=llm,
fast_llm=fast_llm,
pruning_config=document_pruning_config,
answer_style_config=answer_config,
bypass_acl=bypass_acl,
chunks_above=query_req.chunks_above,
chunks_below=query_req.chunks_below,
full_doc=query_req.full_doc,
)
answer = Answer(
question=query_msg.message,
answer_style_config=answer_config,
prompt_config=PromptConfig.from_model(prompt),
llm=get_main_llm_from_tuple(get_llms_for_persona(persona=persona)),
single_message_history=history_str,
tools=[search_tool] if search_tool else [],
force_use_tool=(
ForceUseTool(
tool_name=search_tool.name,
args={"query": rephrased_query},
force_use=True,
)
),
# for now, don't use tool calling for this flow, as we haven't
# tested quotes with tool calling too much yet
skip_explicit_tool_calling=True,
return_contexts=query_req.return_contexts,
skip_gen_ai_answer_generation=query_req.skip_gen_ai_answer_generation,
)
# won't be any FileChatDisplay responses since that tool is never passed in
for packet in cast(AnswerObjectIterator, answer.processed_streamed_output):
# for one-shot flow, don't currently do anything with these
if isinstance(packet, ToolResponse):
# (likely fine that it comes after the initial creation of the search docs)
if packet.id == SEARCH_RESPONSE_SUMMARY_ID:
search_response_summary = cast(SearchResponseSummary, packet.response)
top_docs = chunks_or_sections_to_search_docs(
search_response_summary.top_sections
)
# Deduping happens at the last step to avoid harming quality by dropping content early on
deduped_docs = top_docs
if query_req.retrieval_options.dedupe_docs:
deduped_docs, dropped_inds = dedupe_documents(top_docs)
reference_db_search_docs = [
create_db_search_doc(server_search_doc=doc, db_session=db_session)
for doc in deduped_docs
]
response_docs = [
translate_db_search_doc_to_server_search_doc(db_search_doc)
for db_search_doc in reference_db_search_docs
]
initial_response = QADocsResponse(
rephrased_query=rephrased_query,
top_documents=response_docs,
predicted_flow=search_response_summary.predicted_flow,
predicted_search=search_response_summary.predicted_search,
applied_source_filters=search_response_summary.final_filters.source_type,
applied_time_cutoff=search_response_summary.final_filters.time_cutoff,
recency_bias_multiplier=search_response_summary.recency_bias_multiplier,
)
yield initial_response
elif packet.id == SEARCH_DOC_CONTENT_ID:
yield packet.response
elif packet.id == SECTION_RELEVANCE_LIST_ID:
document_based_response = {}
if packet.response is not None:
for evaluation in packet.response:
document_based_response[
evaluation.document_id
] = RelevanceAnalysis(
relevant=evaluation.relevant, content=evaluation.content
)
evaluation_response = DocumentRelevance(
relevance_summaries=document_based_response
)
if reference_db_search_docs is not None:
update_search_docs_table_with_relevance(
db_session=db_session,
reference_db_search_docs=reference_db_search_docs,
relevance_summary=evaluation_response,
)
yield evaluation_response
else:
yield packet
# Saving Gen AI answer and responding with message info
gen_ai_response_message = create_new_chat_message(
chat_session_id=chat_session.id,
parent_message=new_user_message,
prompt_id=query_req.prompt_id,
message=answer.llm_answer,
token_count=len(llm_tokenizer.encode(answer.llm_answer)),
message_type=MessageType.ASSISTANT,
error=None,
reference_docs=reference_db_search_docs,
db_session=db_session,
commit=True,
)
msg_detail_response = translate_db_message_to_chat_message_detail(
gen_ai_response_message
)
yield msg_detail_response
@log_generator_function_time()
def stream_search_answer(
query_req: DirectQARequest,
user: User | None,
max_document_tokens: int | None,
max_history_tokens: int | None,
) -> Iterator[str]:
with get_session_context_manager() as session:
objects = stream_answer_objects(
query_req=query_req,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=session,
)
for obj in objects:
yield get_json_line(obj.model_dump())
def get_search_answer(
query_req: DirectQARequest,
user: User | None,
max_document_tokens: int | None,
max_history_tokens: int | None,
db_session: Session,
answer_generation_timeout: int = QA_TIMEOUT,
enable_reflexion: bool = False,
bypass_acl: bool = False,
use_citations: bool = False,
danswerbot_flow: bool = False,
retrieval_metrics_callback: (
Callable[[RetrievalMetricsContainer], None] | None
) = None,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> OneShotQAResponse:
"""Collects the streamed one shot answer responses into a single object"""
qa_response = OneShotQAResponse()
results = stream_answer_objects(
query_req=query_req,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=db_session,
bypass_acl=bypass_acl,
use_citations=use_citations,
danswerbot_flow=danswerbot_flow,
timeout=answer_generation_timeout,
retrieval_metrics_callback=retrieval_metrics_callback,
rerank_metrics_callback=rerank_metrics_callback,
)
answer = ""
for packet in results:
if isinstance(packet, QueryRephrase):
qa_response.rephrase = packet.rephrased_query
if isinstance(packet, DanswerAnswerPiece) and packet.answer_piece:
answer += packet.answer_piece
elif isinstance(packet, QADocsResponse):
qa_response.docs = packet
elif isinstance(packet, LLMRelevanceFilterResponse):
qa_response.llm_selected_doc_indices = packet.llm_selected_doc_indices
elif isinstance(packet, DanswerQuotes):
qa_response.quotes = packet
elif isinstance(packet, CitationInfo):
if qa_response.citations:
qa_response.citations.append(packet)
else:
qa_response.citations = [packet]
elif isinstance(packet, DanswerContexts):
qa_response.contexts = packet
elif isinstance(packet, StreamingError):
qa_response.error_msg = packet.error
elif isinstance(packet, ChatMessageDetail):
qa_response.chat_message_id = packet.message_id
if answer:
qa_response.answer = answer
if enable_reflexion:
# Because follow up messages are explicitly tagged, we don't need to verify the answer
if len(query_req.messages) == 1:
first_query = query_req.messages[0].message
qa_response.answer_valid = get_answer_validity(first_query, answer)
else:
qa_response.answer_valid = True
if use_citations and qa_response.answer and qa_response.citations:
# Reorganize citation nums to be in the same order as the answer
qa_response.answer, qa_response.citations = reorganize_citations(
qa_response.answer, qa_response.citations
)
return qa_response

View File

@@ -1,118 +0,0 @@
from typing import Any
from pydantic import BaseModel
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import QADocsResponse
from danswer.configs.constants import MessageType
from danswer.search.enums import LLMEvaluationType
from danswer.search.enums import RecencyBiasSetting
from danswer.search.enums import SearchType
from danswer.search.models import ChunkContext
from danswer.search.models import RerankingDetails
from danswer.search.models import RetrievalDetails
class QueryRephrase(BaseModel):
rephrased_query: str
class ThreadMessage(BaseModel):
message: str
sender: str | None = None
role: MessageType = MessageType.USER
class PromptConfig(BaseModel):
name: str
description: str = ""
system_prompt: str
task_prompt: str = ""
include_citations: bool = True
datetime_aware: bool = True
class DocumentSetConfig(BaseModel):
id: int
class ToolConfig(BaseModel):
id: int
class PersonaConfig(BaseModel):
name: str
description: str
search_type: SearchType = SearchType.SEMANTIC
num_chunks: float | None = None
llm_relevance_filter: bool = False
llm_filter_extraction: bool = False
recency_bias: RecencyBiasSetting = RecencyBiasSetting.AUTO
llm_model_provider_override: str | None = None
llm_model_version_override: str | None = None
prompts: list[PromptConfig] = Field(default_factory=list)
prompt_ids: list[int] = Field(default_factory=list)
document_set_ids: list[int] = Field(default_factory=list)
tools: list[ToolConfig] = Field(default_factory=list)
tool_ids: list[int] = Field(default_factory=list)
custom_tools_openapi: list[dict[str, Any]] = Field(default_factory=list)
class DirectQARequest(ChunkContext):
persona_config: PersonaConfig | None = None
persona_id: int | None = None
messages: list[ThreadMessage]
prompt_id: int | None = None
multilingual_query_expansion: list[str] | None = None
retrieval_options: RetrievalDetails = Field(default_factory=RetrievalDetails)
rerank_settings: RerankingDetails | None = None
evaluation_type: LLMEvaluationType = LLMEvaluationType.UNSPECIFIED
chain_of_thought: bool = False
return_contexts: bool = False
# allows the caller to specify the exact search query they want to use
# can be used if the message sent to the LLM / query should not be the same
# will also disable Thread-based Rewording if specified
query_override: str | None = None
# If True, skips generative an AI response to the search query
skip_gen_ai_answer_generation: bool = False
@model_validator(mode="after")
def check_persona_fields(self) -> "DirectQARequest":
if (self.persona_config is None) == (self.persona_id is None):
raise ValueError("Exactly one of persona_config or persona_id must be set")
return self
@model_validator(mode="after")
def check_chain_of_thought_and_prompt_id(self) -> "DirectQARequest":
if self.chain_of_thought and self.prompt_id is not None:
raise ValueError(
"If chain_of_thought is True, prompt_id must be None"
"The chain of thought prompt is only for question "
"answering and does not accept customizing."
)
return self
class OneShotQAResponse(BaseModel):
# This is built piece by piece, any of these can be None as the flow could break
answer: str | None = None
rephrase: str | None = None
quotes: DanswerQuotes | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
answer_valid: bool = True # Reflexion result, default True if Reflexion not run
chat_message_id: int | None = None
contexts: DanswerContexts | None = None

View File

@@ -1,53 +0,0 @@
from collections.abc import Generator
from danswer.configs.constants import MessageType
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.one_shot_answer.models import ThreadMessage
from danswer.utils.logger import setup_logger
logger = setup_logger()
def simulate_streaming_response(model_out: str) -> Generator[str, None, None]:
"""Mock streaming by generating the passed in model output, character by character"""
for token in model_out:
yield token
def combine_message_thread(
messages: list[ThreadMessage],
max_tokens: int | None,
llm_tokenizer: BaseTokenizer,
) -> str:
"""Used to create a single combined message context from threads"""
if not messages:
return ""
message_strs: list[str] = []
total_token_count = 0
for message in reversed(messages):
if message.role == MessageType.USER:
role_str = message.role.value.upper()
if message.sender:
role_str += " " + message.sender
else:
# Since other messages might have the user identifying information
# better to use Unknown for symmetry
role_str += " Unknown"
else:
role_str = message.role.value.upper()
msg_str = f"{role_str}:\n{message.message}"
message_token_count = len(llm_tokenizer.encode(msg_str))
if (
max_tokens is not None
and total_token_count + message_token_count > max_tokens
):
break
message_strs.insert(0, msg_str)
total_token_count += message_token_count
return "\n\n".join(message_strs)

View File

@@ -1,134 +0,0 @@
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from sqlalchemy.orm import Session
from danswer.auth.users import current_admin_user
from danswer.auth.users import current_user
from danswer.db.engine import get_session
from danswer.db.input_prompt import fetch_input_prompt_by_id
from danswer.db.input_prompt import fetch_input_prompts_by_user
from danswer.db.input_prompt import fetch_public_input_prompts
from danswer.db.input_prompt import insert_input_prompt
from danswer.db.input_prompt import remove_input_prompt
from danswer.db.input_prompt import remove_public_input_prompt
from danswer.db.input_prompt import update_input_prompt
from danswer.db.models import User
from danswer.server.features.input_prompt.models import CreateInputPromptRequest
from danswer.server.features.input_prompt.models import InputPromptSnapshot
from danswer.server.features.input_prompt.models import UpdateInputPromptRequest
from danswer.utils.logger import setup_logger
logger = setup_logger()
basic_router = APIRouter(prefix="/input_prompt")
admin_router = APIRouter(prefix="/admin/input_prompt")
@basic_router.get("")
def list_input_prompts(
user: User | None = Depends(current_user),
include_public: bool = False,
db_session: Session = Depends(get_session),
) -> list[InputPromptSnapshot]:
user_prompts = fetch_input_prompts_by_user(
user_id=user.id if user is not None else None,
db_session=db_session,
include_public=include_public,
)
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]
@basic_router.get("/{input_prompt_id}")
def get_input_prompt(
input_prompt_id: int,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
input_prompt = fetch_input_prompt_by_id(
id=input_prompt_id,
user_id=user.id if user is not None else None,
db_session=db_session,
)
return InputPromptSnapshot.from_model(input_prompt=input_prompt)
@basic_router.post("")
def create_input_prompt(
create_input_prompt_request: CreateInputPromptRequest,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
input_prompt = insert_input_prompt(
prompt=create_input_prompt_request.prompt,
content=create_input_prompt_request.content,
is_public=create_input_prompt_request.is_public,
user=user,
db_session=db_session,
)
return InputPromptSnapshot.from_model(input_prompt)
@basic_router.patch("/{input_prompt_id}")
def patch_input_prompt(
input_prompt_id: int,
update_input_prompt_request: UpdateInputPromptRequest,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
try:
updated_input_prompt = update_input_prompt(
user=user,
input_prompt_id=input_prompt_id,
prompt=update_input_prompt_request.prompt,
content=update_input_prompt_request.content,
active=update_input_prompt_request.active,
db_session=db_session,
)
except ValueError as e:
error_msg = "Error occurred while updated input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
return InputPromptSnapshot.from_model(updated_input_prompt)
@basic_router.delete("/{input_prompt_id}")
def delete_input_prompt(
input_prompt_id: int,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> None:
try:
remove_input_prompt(user, input_prompt_id, db_session)
except ValueError as e:
error_msg = "Error occurred while deleting input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
@admin_router.delete("/{input_prompt_id}")
def delete_public_input_prompt(
input_prompt_id: int,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> None:
try:
remove_public_input_prompt(input_prompt_id, db_session)
except ValueError as e:
error_msg = "Error occurred while deleting input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
@admin_router.get("")
def list_public_input_prompts(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[InputPromptSnapshot]:
user_prompts = fetch_public_input_prompts(
db_session=db_session,
)
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]

View File

@@ -1,47 +0,0 @@
from uuid import UUID
from pydantic import BaseModel
from danswer.db.models import InputPrompt
from danswer.utils.logger import setup_logger
logger = setup_logger()
class CreateInputPromptRequest(BaseModel):
prompt: str
content: str
is_public: bool
class UpdateInputPromptRequest(BaseModel):
prompt: str
content: str
active: bool
class InputPromptResponse(BaseModel):
id: int
prompt: str
content: str
active: bool
class InputPromptSnapshot(BaseModel):
id: int
prompt: str
content: str
active: bool
user_id: UUID | None
is_public: bool
@classmethod
def from_model(cls, input_prompt: InputPrompt) -> "InputPromptSnapshot":
return InputPromptSnapshot(
id=input_prompt.id,
prompt=input_prompt.prompt,
content=input_prompt.content,
active=input_prompt.active,
user_id=input_prompt.user_id,
is_public=input_prompt.is_public,
)

View File

@@ -1,216 +0,0 @@
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from sqlalchemy.orm import Session
from danswer.auth.users import current_admin_user
from danswer.danswerbot.slack.config import validate_channel_names
from danswer.danswerbot.slack.tokens import fetch_tokens
from danswer.danswerbot.slack.tokens import save_tokens
from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
from danswer.db.engine import get_session
from danswer.db.models import ChannelConfig
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.db.slack_bot_config import create_slack_bot_persona
from danswer.db.slack_bot_config import fetch_slack_bot_config
from danswer.db.slack_bot_config import fetch_slack_bot_configs
from danswer.db.slack_bot_config import insert_slack_bot_config
from danswer.db.slack_bot_config import remove_slack_bot_config
from danswer.db.slack_bot_config import update_slack_bot_config
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.server.manage.models import SlackBotConfig
from danswer.server.manage.models import SlackBotConfigCreationRequest
from danswer.server.manage.models import SlackBotTokens
router = APIRouter(prefix="/manage")
def _form_channel_config(
slack_bot_config_creation_request: SlackBotConfigCreationRequest,
current_slack_bot_config_id: int | None,
db_session: Session,
) -> ChannelConfig:
raw_channel_names = slack_bot_config_creation_request.channel_names
respond_tag_only = slack_bot_config_creation_request.respond_tag_only
respond_member_group_list = (
slack_bot_config_creation_request.respond_member_group_list
)
answer_filters = slack_bot_config_creation_request.answer_filters
follow_up_tags = slack_bot_config_creation_request.follow_up_tags
if not raw_channel_names:
raise HTTPException(
status_code=400,
detail="Must provide at least one channel name",
)
try:
cleaned_channel_names = validate_channel_names(
channel_names=raw_channel_names,
current_slack_bot_config_id=current_slack_bot_config_id,
db_session=db_session,
)
except ValueError as e:
raise HTTPException(
status_code=400,
detail=str(e),
)
if respond_tag_only and respond_member_group_list:
raise ValueError(
"Cannot set DanswerBot to only respond to tags only and "
"also respond to a predetermined set of users."
)
channel_config: ChannelConfig = {
"channel_names": cleaned_channel_names,
}
if respond_tag_only is not None:
channel_config["respond_tag_only"] = respond_tag_only
if respond_member_group_list:
channel_config["respond_member_group_list"] = respond_member_group_list
if answer_filters:
channel_config["answer_filters"] = answer_filters
if follow_up_tags is not None:
channel_config["follow_up_tags"] = follow_up_tags
channel_config[
"respond_to_bots"
] = slack_bot_config_creation_request.respond_to_bots
return channel_config
@router.post("/admin/slack-bot/config")
def create_slack_bot_config(
slack_bot_config_creation_request: SlackBotConfigCreationRequest,
db_session: Session = Depends(get_session),
_: User | None = Depends(current_admin_user),
) -> SlackBotConfig:
channel_config = _form_channel_config(
slack_bot_config_creation_request, None, db_session
)
persona_id = None
if slack_bot_config_creation_request.persona_id is not None:
persona_id = slack_bot_config_creation_request.persona_id
elif slack_bot_config_creation_request.document_sets:
persona_id = create_slack_bot_persona(
db_session=db_session,
channel_names=channel_config["channel_names"],
document_set_ids=slack_bot_config_creation_request.document_sets,
existing_persona_id=None,
).id
slack_bot_config_model = insert_slack_bot_config(
persona_id=persona_id,
channel_config=channel_config,
response_type=slack_bot_config_creation_request.response_type,
# XXX this is going away soon
standard_answer_category_ids=slack_bot_config_creation_request.standard_answer_categories,
db_session=db_session,
enable_auto_filters=slack_bot_config_creation_request.enable_auto_filters,
)
return SlackBotConfig.from_model(slack_bot_config_model)
@router.patch("/admin/slack-bot/config/{slack_bot_config_id}")
def patch_slack_bot_config(
slack_bot_config_id: int,
slack_bot_config_creation_request: SlackBotConfigCreationRequest,
db_session: Session = Depends(get_session),
_: User | None = Depends(current_admin_user),
) -> SlackBotConfig:
channel_config = _form_channel_config(
slack_bot_config_creation_request, slack_bot_config_id, db_session
)
persona_id = None
if slack_bot_config_creation_request.persona_id is not None:
persona_id = slack_bot_config_creation_request.persona_id
elif slack_bot_config_creation_request.document_sets:
existing_slack_bot_config = fetch_slack_bot_config(
db_session=db_session, slack_bot_config_id=slack_bot_config_id
)
if existing_slack_bot_config is None:
raise HTTPException(
status_code=404,
detail="Slack bot config not found",
)
existing_persona_id = existing_slack_bot_config.persona_id
if existing_persona_id is not None:
persona = get_persona_by_id(
persona_id=existing_persona_id,
user=None,
db_session=db_session,
is_for_edit=False,
)
if not persona.name.startswith(SLACK_BOT_PERSONA_PREFIX):
# Don't update actual non-slackbot specific personas
# Since this one specified document sets, we have to create a new persona
# for this DanswerBot config
existing_persona_id = None
else:
existing_persona_id = existing_slack_bot_config.persona_id
persona_id = create_slack_bot_persona(
db_session=db_session,
channel_names=channel_config["channel_names"],
document_set_ids=slack_bot_config_creation_request.document_sets,
existing_persona_id=existing_persona_id,
enable_auto_filters=slack_bot_config_creation_request.enable_auto_filters,
).id
slack_bot_config_model = update_slack_bot_config(
slack_bot_config_id=slack_bot_config_id,
persona_id=persona_id,
channel_config=channel_config,
response_type=slack_bot_config_creation_request.response_type,
standard_answer_category_ids=slack_bot_config_creation_request.standard_answer_categories,
db_session=db_session,
enable_auto_filters=slack_bot_config_creation_request.enable_auto_filters,
)
return SlackBotConfig.from_model(slack_bot_config_model)
@router.delete("/admin/slack-bot/config/{slack_bot_config_id}")
def delete_slack_bot_config(
slack_bot_config_id: int,
db_session: Session = Depends(get_session),
user: User | None = Depends(current_admin_user),
) -> None:
remove_slack_bot_config(
slack_bot_config_id=slack_bot_config_id, user=user, db_session=db_session
)
@router.get("/admin/slack-bot/config")
def list_slack_bot_configs(
db_session: Session = Depends(get_session),
_: User | None = Depends(current_admin_user),
) -> list[SlackBotConfig]:
slack_bot_config_models = fetch_slack_bot_configs(db_session=db_session)
return [
SlackBotConfig.from_model(slack_bot_config_model)
for slack_bot_config_model in slack_bot_config_models
]
@router.put("/admin/slack-bot/tokens")
def put_tokens(
tokens: SlackBotTokens,
_: User | None = Depends(current_admin_user),
) -> None:
save_tokens(tokens=tokens)
@router.get("/admin/slack-bot/tokens")
def get_tokens(_: User | None = Depends(current_admin_user)) -> SlackBotTokens:
try:
return fetch_tokens()
except KvKeyNotFoundError:
raise HTTPException(status_code=404, detail="No tokens found")

Some files were not shown because too many files have changed in this diff Show More