forked from github/onyx
Compare commits
64 Commits
main
...
release/v1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
83073f3ded | ||
|
|
439a27a775 | ||
|
|
91773a4789 | ||
|
|
185beca648 | ||
|
|
2dc564c8df | ||
|
|
b259f53972 | ||
|
|
f8beb08e2f | ||
|
|
83c88c7cf6 | ||
|
|
2372dd40e0 | ||
|
|
5cb6bafe81 | ||
|
|
a0309b31c7 | ||
|
|
0fd268dba7 | ||
|
|
f345da7487 | ||
|
|
f2dacf03f1 | ||
|
|
e0fef50cf0 | ||
|
|
6ba3eeefa5 | ||
|
|
aa158abaa9 | ||
|
|
255c2af1d6 | ||
|
|
9ece3b0310 | ||
|
|
9e3aca03a7 | ||
|
|
dbd5d4d8f1 | ||
|
|
cdb97c3ce4 | ||
|
|
f30ced31a9 | ||
|
|
6cc6c43234 | ||
|
|
224d934cf4 | ||
|
|
8ecdc61ad3 | ||
|
|
08161db7ea | ||
|
|
b139764631 | ||
|
|
2b23dbde8d | ||
|
|
2dec009d63 | ||
|
|
91eadae353 | ||
|
|
8bff616e27 | ||
|
|
2c049e170f | ||
|
|
23e6d7ef3c | ||
|
|
ed81e75edd | ||
|
|
de22fc3a58 | ||
|
|
009b7f60f1 | ||
|
|
9d997e20df | ||
|
|
e6423c4541 | ||
|
|
cb969ad06a | ||
|
|
c4076d16b6 | ||
|
|
04a607a718 | ||
|
|
c1e1aa9dfd | ||
|
|
1ed7abae6e | ||
|
|
cf4855822b | ||
|
|
e242b1319c | ||
|
|
eba4b6620e | ||
|
|
3534515e11 | ||
|
|
5602ff8666 | ||
|
|
2fc70781b4 | ||
|
|
f76b4dec4c | ||
|
|
a5a516fa8a | ||
|
|
811a198134 | ||
|
|
5867ab1d7d | ||
|
|
dd6653eb1f | ||
|
|
db457ef432 | ||
|
|
de7fe939b2 | ||
|
|
38114d9542 | ||
|
|
32f20f2e2e | ||
|
|
3dd27099f7 | ||
|
|
91c4d43a80 | ||
|
|
a63ba1bb03 | ||
|
|
7b6189e74c | ||
|
|
ba423e5773 |
4
.github/workflows/pr-integration-tests.yml
vendored
4
.github/workflows/pr-integration-tests.yml
vendored
@@ -70,7 +70,9 @@ jobs:
|
||||
-i /local/openapi.json \
|
||||
-g python \
|
||||
-o /local/onyx_openapi_client \
|
||||
--package-name onyx_openapi_client
|
||||
--package-name onyx_openapi_client \
|
||||
--skip-validate-spec \
|
||||
--openapi-normalizer "SIMPLIFY_ONEOF_ANYOF=true,SET_OAS3_NULLABLE=true"
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
@@ -67,7 +67,9 @@ jobs:
|
||||
-i /local/openapi.json \
|
||||
-g python \
|
||||
-o /local/onyx_openapi_client \
|
||||
--package-name onyx_openapi_client
|
||||
--package-name onyx_openapi_client \
|
||||
--skip-validate-spec \
|
||||
--openapi-normalizer "SIMPLIFY_ONEOF_ANYOF=true,SET_OAS3_NULLABLE=true"
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
2
.github/workflows/pr-python-checks.yml
vendored
2
.github/workflows/pr-python-checks.yml
vendored
@@ -48,6 +48,8 @@ jobs:
|
||||
-g python \
|
||||
-o /local/onyx_openapi_client \
|
||||
--package-name onyx_openapi_client \
|
||||
--skip-validate-spec \
|
||||
--openapi-normalizer "SIMPLIFY_ONEOF_ANYOF=true,SET_OAS3_NULLABLE=true"
|
||||
|
||||
- name: Run MyPy
|
||||
run: |
|
||||
|
||||
12
.gitignore
vendored
12
.gitignore
vendored
@@ -17,12 +17,24 @@ backend/tests/regression/answer_quality/test_data.json
|
||||
backend/tests/regression/search_quality/eval-*
|
||||
backend/tests/regression/search_quality/search_eval_config.yaml
|
||||
backend/tests/regression/search_quality/*.json
|
||||
*.log
|
||||
|
||||
# secret files
|
||||
.env
|
||||
jira_test_env
|
||||
settings.json
|
||||
|
||||
# others
|
||||
/deployment/data/nginx/app.conf
|
||||
*.sw?
|
||||
/backend/tests/regression/answer_quality/search_test_config.yaml
|
||||
|
||||
# Local .terraform directories
|
||||
**/.terraform/*
|
||||
|
||||
# Local .tfstate files
|
||||
*.tfstate
|
||||
*.tfstate.*
|
||||
|
||||
# Local .terraform.lock.hcl file
|
||||
.terraform.lock.hcl
|
||||
|
||||
7
.vscode/env_template.txt
vendored
7
.vscode/env_template.txt
vendored
@@ -23,6 +23,9 @@ DISABLE_LLM_DOC_RELEVANCE=False
|
||||
# Useful if you want to toggle auth on/off (google_oauth/OIDC specifically)
|
||||
OAUTH_CLIENT_ID=<REPLACE THIS>
|
||||
OAUTH_CLIENT_SECRET=<REPLACE THIS>
|
||||
OPENID_CONFIG_URL=<REPLACE THIS>
|
||||
SAML_CONF_DIR=/<ABSOLUTE PATH TO ONYX>/onyx/backend/ee/onyx/configs/saml_config
|
||||
|
||||
# Generally not useful for dev, we don't generally want to set up an SMTP server for dev
|
||||
REQUIRE_EMAIL_VERIFICATION=False
|
||||
|
||||
@@ -46,7 +49,6 @@ PYTHONUNBUFFERED=1
|
||||
|
||||
|
||||
# Internet Search
|
||||
BING_API_KEY=<REPLACE THIS>
|
||||
EXA_API_KEY=<REPLACE THIS>
|
||||
|
||||
|
||||
@@ -65,3 +67,6 @@ S3_ENDPOINT_URL=http://localhost:9004
|
||||
S3_FILE_STORE_BUCKET_NAME=onyx-file-store-bucket
|
||||
S3_AWS_ACCESS_KEY_ID=minioadmin
|
||||
S3_AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
|
||||
# Show extra/uncommon connectors
|
||||
SHOW_EXTRA_CONNECTORS=True
|
||||
11
.vscode/launch.template.jsonc
vendored
11
.vscode/launch.template.jsonc
vendored
@@ -31,14 +31,16 @@
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1"
|
||||
}
|
||||
},
|
||||
"stopAll": true
|
||||
},
|
||||
{
|
||||
"name": "Web / Model / API",
|
||||
"configurations": ["Web Server", "Model Server", "API Server"],
|
||||
"presentation": {
|
||||
"group": "1"
|
||||
}
|
||||
},
|
||||
"stopAll": true
|
||||
},
|
||||
{
|
||||
"name": "Celery (all)",
|
||||
@@ -53,7 +55,8 @@
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1"
|
||||
}
|
||||
},
|
||||
"stopAll": true
|
||||
}
|
||||
],
|
||||
"configurations": [
|
||||
@@ -189,7 +192,7 @@
|
||||
"--loglevel=INFO",
|
||||
"--hostname=light@%n",
|
||||
"-Q",
|
||||
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert"
|
||||
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert,index_attempt_cleanup"
|
||||
],
|
||||
"presentation": {
|
||||
"group": "2"
|
||||
|
||||
@@ -103,10 +103,10 @@ If using PowerShell, the command slightly differs:
|
||||
Install the required python dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r onyx/backend/requirements/default.txt
|
||||
pip install -r onyx/backend/requirements/dev.txt
|
||||
pip install -r onyx/backend/requirements/ee.txt
|
||||
pip install -r onyx/backend/requirements/model_server.txt
|
||||
pip install -r backend/requirements/default.txt
|
||||
pip install -r backend/requirements/dev.txt
|
||||
pip install -r backend/requirements/ee.txt
|
||||
pip install -r backend/requirements/model_server.txt
|
||||
```
|
||||
|
||||
Install Playwright for Python (headless browser required by the Web Connector)
|
||||
|
||||
@@ -12,7 +12,8 @@ ARG ONYX_VERSION=0.0.0-dev
|
||||
# DO_NOT_TRACK is used to disable telemetry for Unstructured
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true" \
|
||||
DO_NOT_TRACK="true"
|
||||
DO_NOT_TRACK="true" \
|
||||
PLAYWRIGHT_BROWSERS_PATH="/app/.cache/ms-playwright"
|
||||
|
||||
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
@@ -116,6 +117,14 @@ COPY ./assets /app/assets
|
||||
|
||||
ENV PYTHONPATH=/app
|
||||
|
||||
# Create non-root user for security best practices
|
||||
RUN groupadd -g 1001 onyx && \
|
||||
useradd -u 1001 -g onyx -m -s /bin/bash onyx && \
|
||||
chown -R onyx:onyx /app && \
|
||||
mkdir -p /var/log/onyx && \
|
||||
chmod 755 /var/log/onyx && \
|
||||
chown onyx:onyx /var/log/onyx
|
||||
|
||||
# Default command which does nothing
|
||||
# This container is used by api server and background which specify their own CMD
|
||||
CMD ["tail", "-f", "/dev/null"]
|
||||
|
||||
@@ -9,11 +9,20 @@ visit https://github.com/onyx-dot-app/onyx."
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.0.0-dev
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
DANSWER_RUNNING_IN_DOCKER="true" \
|
||||
HF_HOME=/app/.cache/huggingface
|
||||
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
|
||||
# Create non-root user for security best practices
|
||||
RUN mkdir -p /app && \
|
||||
groupadd -g 1001 onyx && \
|
||||
useradd -u 1001 -g onyx -m -s /bin/bash onyx && \
|
||||
chown -R onyx:onyx /app && \
|
||||
mkdir -p /var/log/onyx && \
|
||||
chmod 755 /var/log/onyx && \
|
||||
chown onyx:onyx /var/log/onyx
|
||||
|
||||
COPY ./requirements/model_server.txt /tmp/requirements.txt
|
||||
RUN pip install --no-cache-dir --upgrade \
|
||||
--retries 5 \
|
||||
@@ -38,9 +47,11 @@ snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1'); \
|
||||
from sentence_transformers import SentenceTransformer; \
|
||||
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True);"
|
||||
|
||||
# In case the user has volumes mounted to /root/.cache/huggingface that they've downloaded while
|
||||
# running Onyx, don't overwrite it with the built in cache folder
|
||||
RUN mv /root/.cache/huggingface /root/.cache/temp_huggingface
|
||||
# In case the user has volumes mounted to /app/.cache/huggingface that they've downloaded while
|
||||
# running Onyx, move the current contents of the cache folder to a temporary location to ensure
|
||||
# it's preserved in order to combine with the user's cache contents
|
||||
RUN mv /app/.cache/huggingface /app/.cache/temp_huggingface && \
|
||||
chown -R onyx:onyx /app
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
|
||||
@@ -0,0 +1,115 @@
|
||||
"""add research agent database tables and chat message research fields
|
||||
|
||||
Revision ID: 5ae8240accb3
|
||||
Revises: b558f51620b4
|
||||
Create Date: 2025-08-06 14:29:24.691388
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "5ae8240accb3"
|
||||
down_revision = "b558f51620b4"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add research_type and research_plan columns to chat_message table
|
||||
op.add_column(
|
||||
"chat_message",
|
||||
sa.Column("research_type", sa.String(), nullable=True),
|
||||
)
|
||||
op.add_column(
|
||||
"chat_message",
|
||||
sa.Column("research_plan", postgresql.JSONB(), nullable=True),
|
||||
)
|
||||
|
||||
# Create research_agent_iteration table
|
||||
op.create_table(
|
||||
"research_agent_iteration",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column(
|
||||
"primary_question_id",
|
||||
sa.Integer(),
|
||||
sa.ForeignKey("chat_message.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("iteration_nr", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"created_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.func.now(),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("purpose", sa.String(), nullable=True),
|
||||
sa.Column("reasoning", sa.String(), nullable=True),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint(
|
||||
"primary_question_id",
|
||||
"iteration_nr",
|
||||
name="_research_agent_iteration_unique_constraint",
|
||||
),
|
||||
)
|
||||
|
||||
# Create research_agent_iteration_sub_step table
|
||||
op.create_table(
|
||||
"research_agent_iteration_sub_step",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column(
|
||||
"primary_question_id",
|
||||
sa.Integer(),
|
||||
sa.ForeignKey("chat_message.id", ondelete="CASCADE"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"parent_question_id",
|
||||
sa.Integer(),
|
||||
sa.ForeignKey("research_agent_iteration_sub_step.id", ondelete="CASCADE"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("iteration_nr", sa.Integer(), nullable=False),
|
||||
sa.Column("iteration_sub_step_nr", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"created_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.func.now(),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("sub_step_instructions", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"sub_step_tool_id",
|
||||
sa.Integer(),
|
||||
sa.ForeignKey("tool.id"),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("reasoning", sa.String(), nullable=True),
|
||||
sa.Column("sub_answer", sa.String(), nullable=True),
|
||||
sa.Column("cited_doc_results", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("claims", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("generated_images", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("additional_data", postgresql.JSONB(), nullable=True),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.ForeignKeyConstraint(
|
||||
["primary_question_id", "iteration_nr"],
|
||||
[
|
||||
"research_agent_iteration.primary_question_id",
|
||||
"research_agent_iteration.iteration_nr",
|
||||
],
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop tables in reverse order
|
||||
op.drop_table("research_agent_iteration_sub_step")
|
||||
op.drop_table("research_agent_iteration")
|
||||
|
||||
# Remove columns from chat_message table
|
||||
op.drop_column("chat_message", "research_plan")
|
||||
op.drop_column("chat_message", "research_type")
|
||||
@@ -0,0 +1,249 @@
|
||||
"""add_mcp_server_and_connection_config_models
|
||||
|
||||
Revision ID: 7ed603b64d5a
|
||||
Revises: b329d00a9ea6
|
||||
Create Date: 2025-07-28 17:35:59.900680
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from onyx.db.enums import MCPAuthenticationType
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "7ed603b64d5a"
|
||||
down_revision = "b329d00a9ea6"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Create tables and columns for MCP Server support"""
|
||||
|
||||
# 1. MCP Server main table (no FK constraints yet to avoid circular refs)
|
||||
op.create_table(
|
||||
"mcp_server",
|
||||
sa.Column("id", sa.Integer(), primary_key=True),
|
||||
sa.Column("owner", sa.String(), nullable=False),
|
||||
sa.Column("name", sa.String(), nullable=False),
|
||||
sa.Column("description", sa.String(), nullable=True),
|
||||
sa.Column("server_url", sa.String(), nullable=False),
|
||||
sa.Column(
|
||||
"auth_type",
|
||||
sa.Enum(
|
||||
MCPAuthenticationType,
|
||||
name="mcp_authentication_type",
|
||||
native_enum=False,
|
||||
),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("admin_connection_config_id", sa.Integer(), nullable=True),
|
||||
sa.Column(
|
||||
"created_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"), # type: ignore
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"updated_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"), # type: ignore
|
||||
nullable=False,
|
||||
),
|
||||
)
|
||||
|
||||
# 2. MCP Connection Config table (can reference mcp_server now that it exists)
|
||||
op.create_table(
|
||||
"mcp_connection_config",
|
||||
sa.Column("id", sa.Integer(), primary_key=True),
|
||||
sa.Column("mcp_server_id", sa.Integer(), nullable=True),
|
||||
sa.Column("user_email", sa.String(), nullable=False, default=""),
|
||||
sa.Column("config", sa.LargeBinary(), nullable=False),
|
||||
sa.Column(
|
||||
"created_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"), # type: ignore
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"updated_at",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"), # type: ignore
|
||||
nullable=False,
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["mcp_server_id"], ["mcp_server.id"], ondelete="CASCADE"
|
||||
),
|
||||
)
|
||||
|
||||
# Helpful indexes
|
||||
op.create_index(
|
||||
"ix_mcp_connection_config_server_user",
|
||||
"mcp_connection_config",
|
||||
["mcp_server_id", "user_email"],
|
||||
)
|
||||
op.create_index(
|
||||
"ix_mcp_connection_config_user_email",
|
||||
"mcp_connection_config",
|
||||
["user_email"],
|
||||
)
|
||||
|
||||
# 3. Add the back-references from mcp_server to connection configs
|
||||
op.create_foreign_key(
|
||||
"mcp_server_admin_config_fk",
|
||||
"mcp_server",
|
||||
"mcp_connection_config",
|
||||
["admin_connection_config_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
# 4. Association / access-control tables
|
||||
op.create_table(
|
||||
"mcp_server__user",
|
||||
sa.Column("mcp_server_id", sa.Integer(), primary_key=True),
|
||||
sa.Column("user_id", sa.UUID(), primary_key=True),
|
||||
sa.ForeignKeyConstraint(
|
||||
["mcp_server_id"], ["mcp_server.id"], ondelete="CASCADE"
|
||||
),
|
||||
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
|
||||
)
|
||||
|
||||
op.create_table(
|
||||
"mcp_server__user_group",
|
||||
sa.Column("mcp_server_id", sa.Integer(), primary_key=True),
|
||||
sa.Column("user_group_id", sa.Integer(), primary_key=True),
|
||||
sa.ForeignKeyConstraint(
|
||||
["mcp_server_id"], ["mcp_server.id"], ondelete="CASCADE"
|
||||
),
|
||||
sa.ForeignKeyConstraint(["user_group_id"], ["user_group.id"]),
|
||||
)
|
||||
|
||||
# 5. Update existing `tool` table – allow tools to belong to an MCP server
|
||||
op.add_column(
|
||||
"tool",
|
||||
sa.Column("mcp_server_id", sa.Integer(), nullable=True),
|
||||
)
|
||||
# Add column for MCP tool input schema
|
||||
op.add_column(
|
||||
"tool",
|
||||
sa.Column("mcp_input_schema", postgresql.JSONB(), nullable=True),
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"tool_mcp_server_fk",
|
||||
"tool",
|
||||
"mcp_server",
|
||||
["mcp_server_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# 6. Update persona__tool foreign keys to cascade delete
|
||||
# This ensures that when a tool is deleted (including via MCP server deletion),
|
||||
# the corresponding persona__tool rows are also deleted
|
||||
op.drop_constraint(
|
||||
"persona__tool_tool_id_fkey", "persona__tool", type_="foreignkey"
|
||||
)
|
||||
op.drop_constraint(
|
||||
"persona__tool_persona_id_fkey", "persona__tool", type_="foreignkey"
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"persona__tool_persona_id_fkey",
|
||||
"persona__tool",
|
||||
"persona",
|
||||
["persona_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"persona__tool_tool_id_fkey",
|
||||
"persona__tool",
|
||||
"tool",
|
||||
["tool_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# 7. Update research_agent_iteration_sub_step foreign key to SET NULL on delete
|
||||
# This ensures that when a tool is deleted, the sub_step_tool_id is set to NULL
|
||||
# instead of causing a foreign key constraint violation
|
||||
op.drop_constraint(
|
||||
"research_agent_iteration_sub_step_sub_step_tool_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"research_agent_iteration_sub_step_sub_step_tool_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
"tool",
|
||||
["sub_step_tool_id"],
|
||||
["id"],
|
||||
ondelete="SET NULL",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Drop all MCP-related tables / columns"""
|
||||
|
||||
# # # 1. Drop FK & columns from tool
|
||||
# op.drop_constraint("tool_mcp_server_fk", "tool", type_="foreignkey")
|
||||
op.execute("DELETE FROM tool WHERE mcp_server_id IS NOT NULL")
|
||||
|
||||
op.drop_constraint(
|
||||
"research_agent_iteration_sub_step_sub_step_tool_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"research_agent_iteration_sub_step_sub_step_tool_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
"tool",
|
||||
["sub_step_tool_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Restore original persona__tool foreign keys (without CASCADE)
|
||||
op.drop_constraint(
|
||||
"persona__tool_persona_id_fkey", "persona__tool", type_="foreignkey"
|
||||
)
|
||||
op.drop_constraint(
|
||||
"persona__tool_tool_id_fkey", "persona__tool", type_="foreignkey"
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"persona__tool_persona_id_fkey",
|
||||
"persona__tool",
|
||||
"persona",
|
||||
["persona_id"],
|
||||
["id"],
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"persona__tool_tool_id_fkey",
|
||||
"persona__tool",
|
||||
"tool",
|
||||
["tool_id"],
|
||||
["id"],
|
||||
)
|
||||
op.drop_column("tool", "mcp_input_schema")
|
||||
op.drop_column("tool", "mcp_server_id")
|
||||
|
||||
# 2. Drop association tables
|
||||
op.drop_table("mcp_server__user_group")
|
||||
op.drop_table("mcp_server__user")
|
||||
|
||||
# 3. Drop FK from mcp_server to connection configs
|
||||
op.drop_constraint("mcp_server_admin_config_fk", "mcp_server", type_="foreignkey")
|
||||
|
||||
# 4. Drop connection config indexes & table
|
||||
op.drop_index(
|
||||
"ix_mcp_connection_config_user_email", table_name="mcp_connection_config"
|
||||
)
|
||||
op.drop_index(
|
||||
"ix_mcp_connection_config_server_user", table_name="mcp_connection_config"
|
||||
)
|
||||
op.drop_table("mcp_connection_config")
|
||||
|
||||
# 5. Finally drop mcp_server table
|
||||
op.drop_table("mcp_server")
|
||||
@@ -0,0 +1,38 @@
|
||||
"""Adding assistant-specific user preferences
|
||||
|
||||
Revision ID: b329d00a9ea6
|
||||
Revises: f9b8c7d6e5a4
|
||||
Create Date: 2025-08-26 23:14:44.592985
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import fastapi_users_db_sqlalchemy
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "b329d00a9ea6"
|
||||
down_revision = "f9b8c7d6e5a4"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"assistant__user_specific_config",
|
||||
sa.Column("assistant_id", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("disabled_tool_ids", postgresql.ARRAY(sa.Integer()), nullable=False),
|
||||
sa.ForeignKeyConstraint(["assistant_id"], ["persona.id"], ondelete="CASCADE"),
|
||||
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
|
||||
sa.PrimaryKeyConstraint("assistant_id", "user_id"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("assistant__user_specific_config")
|
||||
@@ -0,0 +1,147 @@
|
||||
"""migrate_agent_sub_questions_to_research_iterations
|
||||
|
||||
Revision ID: bd7c3bf8beba
|
||||
Revises: f8a9b2c3d4e5
|
||||
Create Date: 2025-08-18 11:33:27.098287
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "bd7c3bf8beba"
|
||||
down_revision = "f8a9b2c3d4e5"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Get connection to execute raw SQL
|
||||
connection = op.get_bind()
|
||||
|
||||
# First, insert data into research_agent_iteration table
|
||||
# This creates one iteration record per primary_question_id using the earliest time_created
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
INSERT INTO research_agent_iteration (primary_question_id, created_at, iteration_nr, purpose, reasoning)
|
||||
SELECT
|
||||
primary_question_id,
|
||||
MIN(time_created) as created_at,
|
||||
1 as iteration_nr,
|
||||
'Generating and researching subquestions' as purpose,
|
||||
'(No previous reasoning)' as reasoning
|
||||
FROM agent__sub_question
|
||||
JOIN chat_message on agent__sub_question.primary_question_id = chat_message.id
|
||||
WHERE primary_question_id IS NOT NULL
|
||||
AND chat_message.is_agentic = true
|
||||
GROUP BY primary_question_id
|
||||
ON CONFLICT DO NOTHING;
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
# Then, insert data into research_agent_iteration_sub_step table
|
||||
# This migrates each sub-question as a sub-step
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
INSERT INTO research_agent_iteration_sub_step (
|
||||
primary_question_id,
|
||||
iteration_nr,
|
||||
iteration_sub_step_nr,
|
||||
created_at,
|
||||
sub_step_instructions,
|
||||
sub_step_tool_id,
|
||||
sub_answer,
|
||||
cited_doc_results
|
||||
)
|
||||
SELECT
|
||||
primary_question_id,
|
||||
1 as iteration_nr,
|
||||
level_question_num as iteration_sub_step_nr,
|
||||
time_created as created_at,
|
||||
sub_question as sub_step_instructions,
|
||||
1 as sub_step_tool_id,
|
||||
sub_answer,
|
||||
sub_question_doc_results as cited_doc_results
|
||||
FROM agent__sub_question
|
||||
JOIN chat_message on agent__sub_question.primary_question_id = chat_message.id
|
||||
WHERE chat_message.is_agentic = true
|
||||
AND primary_question_id IS NOT NULL
|
||||
ON CONFLICT DO NOTHING;
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
# Update chat_message records: set legacy agentic type and answer purpose for existing agentic messages
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
UPDATE chat_message
|
||||
SET research_answer_purpose = 'ANSWER'
|
||||
WHERE is_agentic = true
|
||||
AND research_type IS NULL and
|
||||
message_type = 'ASSISTANT';
|
||||
"""
|
||||
)
|
||||
)
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
UPDATE chat_message
|
||||
SET research_type = 'LEGACY_AGENTIC'
|
||||
WHERE is_agentic = true
|
||||
AND research_type IS NULL;
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Get connection to execute raw SQL
|
||||
connection = op.get_bind()
|
||||
|
||||
# Note: This downgrade removes all research agent iteration data
|
||||
# There's no way to perfectly restore the original agent__sub_question data
|
||||
# if it was deleted after this migration
|
||||
|
||||
# Delete all research_agent_iteration_sub_step records that were migrated
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
DELETE FROM research_agent_iteration_sub_step
|
||||
USING chat_message
|
||||
WHERE research_agent_iteration_sub_step.primary_question_id = chat_message.id
|
||||
AND chat_message.research_type = 'LEGACY_AGENTIC';
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
# Delete all research_agent_iteration records that were migrated
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
DELETE FROM research_agent_iteration
|
||||
USING chat_message
|
||||
WHERE research_agent_iteration.primary_question_id = chat_message.id
|
||||
AND chat_message.research_type = 'LEGACY_AGENTIC';
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
# Revert chat_message updates: clear research fields for legacy agentic messages
|
||||
connection.execute(
|
||||
sa.text(
|
||||
"""
|
||||
UPDATE chat_message
|
||||
SET research_type = NULL,
|
||||
research_answer_purpose = NULL
|
||||
WHERE is_agentic = true
|
||||
AND research_type = 'LEGACY_AGENTIC'
|
||||
AND message_type = 'ASSISTANT';
|
||||
"""
|
||||
)
|
||||
)
|
||||
@@ -0,0 +1,30 @@
|
||||
"""add research_answer_purpose to chat_message
|
||||
|
||||
Revision ID: f8a9b2c3d4e5
|
||||
Revises: 5ae8240accb3
|
||||
Create Date: 2025-01-27 12:00:00.000000
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "f8a9b2c3d4e5"
|
||||
down_revision = "5ae8240accb3"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add research_answer_purpose column to chat_message table
|
||||
op.add_column(
|
||||
"chat_message",
|
||||
sa.Column("research_answer_purpose", sa.String(), nullable=True),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove research_answer_purpose column from chat_message table
|
||||
op.drop_column("chat_message", "research_answer_purpose")
|
||||
@@ -0,0 +1,69 @@
|
||||
"""remove foreign key constraints from research_agent_iteration_sub_step
|
||||
|
||||
Revision ID: f9b8c7d6e5a4
|
||||
Revises: bd7c3bf8beba
|
||||
Create Date: 2025-01-27 12:00:00.000000
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "f9b8c7d6e5a4"
|
||||
down_revision = "bd7c3bf8beba"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Drop the existing foreign key constraint for parent_question_id
|
||||
op.drop_constraint(
|
||||
"research_agent_iteration_sub_step_parent_question_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
# Drop the parent_question_id column entirely
|
||||
op.drop_column("research_agent_iteration_sub_step", "parent_question_id")
|
||||
|
||||
# Drop the foreign key constraint for primary_question_id to chat_message.id
|
||||
# (keep the column as it's needed for the composite foreign key)
|
||||
op.drop_constraint(
|
||||
"research_agent_iteration_sub_step_primary_question_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Restore the foreign key constraint for primary_question_id to chat_message.id
|
||||
op.create_foreign_key(
|
||||
"research_agent_iteration_sub_step_primary_question_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
"chat_message",
|
||||
["primary_question_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# Add back the parent_question_id column
|
||||
op.add_column(
|
||||
"research_agent_iteration_sub_step",
|
||||
sa.Column(
|
||||
"parent_question_id",
|
||||
sa.Integer(),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
|
||||
# Restore the foreign key constraint pointing to research_agent_iteration.id
|
||||
op.create_foreign_key(
|
||||
"research_agent_iteration_sub_step_parent_question_id_fkey",
|
||||
"research_agent_iteration_sub_step",
|
||||
"research_agent_iteration",
|
||||
["parent_question_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
@@ -1,17 +1,17 @@
|
||||
from ee.onyx.server.query_and_chat.models import OneShotQAResponse
|
||||
from onyx.chat.models import AllCitations
|
||||
from onyx.chat.models import AnswerStream
|
||||
from onyx.chat.models import LLMRelevanceFilterResponse
|
||||
from onyx.chat.models import OnyxAnswerPiece
|
||||
from onyx.chat.models import QADocsResponse
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.chat.process_message import ChatPacketStream
|
||||
from onyx.server.query_and_chat.models import ChatMessageDetail
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time()
|
||||
def gather_stream_for_answer_api(
|
||||
packets: ChatPacketStream,
|
||||
packets: AnswerStream,
|
||||
) -> OneShotQAResponse:
|
||||
response = OneShotQAResponse()
|
||||
|
||||
|
||||
@@ -2,18 +2,14 @@ from collections.abc import Callable
|
||||
from collections.abc import Generator
|
||||
from typing import Optional
|
||||
from typing import Protocol
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ee.onyx.db.external_perm import ExternalUserGroup # noqa
|
||||
from onyx.access.models import DocExternalAccess # noqa
|
||||
from onyx.context.search.models import InferenceChunk
|
||||
from onyx.db.models import ConnectorCredentialPair # noqa
|
||||
from onyx.db.utils import DocumentRow
|
||||
from onyx.db.utils import SortOrder
|
||||
|
||||
# Avoid circular imports
|
||||
if TYPE_CHECKING:
|
||||
from ee.onyx.db.external_perm import ExternalUserGroup # noqa
|
||||
from onyx.access.models import DocExternalAccess # noqa
|
||||
from onyx.db.models import ConnectorCredentialPair # noqa
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface # noqa
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface # noqa
|
||||
|
||||
|
||||
class FetchAllDocumentsFunction(Protocol):
|
||||
@@ -52,20 +48,20 @@ class FetchAllDocumentsIdsFunction(Protocol):
|
||||
# Defining the input/output types for the sync functions
|
||||
DocSyncFuncType = Callable[
|
||||
[
|
||||
"ConnectorCredentialPair",
|
||||
ConnectorCredentialPair,
|
||||
FetchAllDocumentsFunction,
|
||||
FetchAllDocumentsIdsFunction,
|
||||
Optional["IndexingHeartbeatInterface"],
|
||||
Optional[IndexingHeartbeatInterface],
|
||||
],
|
||||
Generator["DocExternalAccess", None, None],
|
||||
Generator[DocExternalAccess, None, None],
|
||||
]
|
||||
|
||||
GroupSyncFuncType = Callable[
|
||||
[
|
||||
str, # tenant_id
|
||||
"ConnectorCredentialPair", # cc_pair
|
||||
ConnectorCredentialPair, # cc_pair
|
||||
],
|
||||
Generator["ExternalUserGroup", None, None],
|
||||
Generator[ExternalUserGroup, None, None],
|
||||
]
|
||||
|
||||
# list of chunks to be censored and the user email. returns censored chunks
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
import re
|
||||
from collections import deque
|
||||
from typing import Any
|
||||
from urllib.parse import unquote
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from office365.graph_client import GraphClient # type: ignore[import-untyped]
|
||||
from office365.onedrive.driveitems.driveItem import DriveItem # type: ignore[import-untyped]
|
||||
from office365.runtime.client_request import ClientRequestException # type: ignore
|
||||
from office365.sharepoint.client_context import ClientContext # type: ignore[import-untyped]
|
||||
from office365.sharepoint.permissions.securable_object import RoleAssignmentCollection # type: ignore[import-untyped]
|
||||
from pydantic import BaseModel
|
||||
@@ -231,6 +234,7 @@ def _get_sharepoint_groups(
|
||||
nonlocal groups, user_emails
|
||||
|
||||
for user in users:
|
||||
logger.debug(f"User: {user.to_json()}")
|
||||
if user.principal_type == USER_PRINCIPAL_TYPE and hasattr(
|
||||
user, "user_principal_name"
|
||||
):
|
||||
@@ -285,7 +289,7 @@ def _get_azuread_groups(
|
||||
|
||||
for member in members:
|
||||
member_data = member.to_json()
|
||||
|
||||
logger.debug(f"Member: {member_data}")
|
||||
# Check for user-specific attributes
|
||||
user_principal_name = member_data.get("userPrincipalName")
|
||||
mail = member_data.get("mail")
|
||||
@@ -366,6 +370,7 @@ def _get_groups_and_members_recursively(
|
||||
client_context: ClientContext,
|
||||
graph_client: GraphClient,
|
||||
groups: set[SharepointGroup],
|
||||
is_group_sync: bool = False,
|
||||
) -> GroupsResult:
|
||||
"""
|
||||
Get all groups and their members recursively.
|
||||
@@ -373,6 +378,7 @@ def _get_groups_and_members_recursively(
|
||||
group_queue: deque[SharepointGroup] = deque(groups)
|
||||
visited_groups: set[str] = set()
|
||||
visited_group_name_to_emails: dict[str, set[str]] = {}
|
||||
found_public_group = False
|
||||
while group_queue:
|
||||
group = group_queue.popleft()
|
||||
if group.login_name in visited_groups:
|
||||
@@ -390,19 +396,35 @@ def _get_groups_and_members_recursively(
|
||||
if group_info:
|
||||
group_queue.extend(group_info)
|
||||
if group.principal_type == AZURE_AD_GROUP_PRINCIPAL_TYPE:
|
||||
# if the site is public, we have default groups assigned to it, so we return early
|
||||
if _is_public_login_name(group.login_name):
|
||||
return GroupsResult(groups_to_emails={}, found_public_group=True)
|
||||
|
||||
group_info, user_emails = _get_azuread_groups(
|
||||
graph_client, group.login_name
|
||||
)
|
||||
visited_group_name_to_emails[group.name].update(user_emails)
|
||||
if group_info:
|
||||
group_queue.extend(group_info)
|
||||
try:
|
||||
# if the site is public, we have default groups assigned to it, so we return early
|
||||
if _is_public_login_name(group.login_name):
|
||||
found_public_group = True
|
||||
if not is_group_sync:
|
||||
return GroupsResult(
|
||||
groups_to_emails={}, found_public_group=True
|
||||
)
|
||||
else:
|
||||
# we don't want to sync public groups, so we skip them
|
||||
continue
|
||||
group_info, user_emails = _get_azuread_groups(
|
||||
graph_client, group.login_name
|
||||
)
|
||||
visited_group_name_to_emails[group.name].update(user_emails)
|
||||
if group_info:
|
||||
group_queue.extend(group_info)
|
||||
except ClientRequestException as e:
|
||||
# If the group is not found, we skip it. There is a chance that group is still referenced
|
||||
# in sharepoint but it is removed from Azure AD. There is no actual documentation on this, but based on
|
||||
# our testing we have seen this happen.
|
||||
if e.response is not None and e.response.status_code == 404:
|
||||
logger.warning(f"Group {group.login_name} not found")
|
||||
continue
|
||||
raise e
|
||||
|
||||
return GroupsResult(
|
||||
groups_to_emails=visited_group_name_to_emails, found_public_group=False
|
||||
groups_to_emails=visited_group_name_to_emails,
|
||||
found_public_group=found_public_group,
|
||||
)
|
||||
|
||||
|
||||
@@ -427,6 +449,7 @@ def get_external_access_from_sharepoint(
|
||||
) -> None:
|
||||
nonlocal user_emails, groups
|
||||
for assignment in role_assignments:
|
||||
logger.debug(f"Assignment: {assignment.to_json()}")
|
||||
if assignment.role_definition_bindings:
|
||||
is_limited_access = True
|
||||
for role_definition_binding in assignment.role_definition_bindings:
|
||||
@@ -503,12 +526,19 @@ def get_external_access_from_sharepoint(
|
||||
)
|
||||
elif site_page:
|
||||
site_url = site_page.get("webUrl")
|
||||
site_pages = client_context.web.lists.get_by_title("Site Pages")
|
||||
client_context.load(site_pages)
|
||||
client_context.execute_query()
|
||||
site_pages.items.get_by_url(site_url).role_assignments.expand(
|
||||
["Member", "RoleDefinitionBindings"]
|
||||
).get_all(page_loaded=add_user_and_group_to_sets).execute_query()
|
||||
# Prefer server-relative URL to avoid OData filters that break on apostrophes
|
||||
server_relative_url = unquote(urlparse(site_url).path)
|
||||
file_obj = client_context.web.get_file_by_server_relative_url(
|
||||
server_relative_url
|
||||
)
|
||||
item = file_obj.listItemAllFields
|
||||
|
||||
sleep_and_retry(
|
||||
item.role_assignments.expand(["Member", "RoleDefinitionBindings"]).get_all(
|
||||
page_loaded=add_user_and_group_to_sets,
|
||||
),
|
||||
"get_external_access_from_sharepoint",
|
||||
)
|
||||
else:
|
||||
raise RuntimeError("No drive item or site page provided")
|
||||
|
||||
@@ -595,13 +625,9 @@ def get_sharepoint_external_groups(
|
||||
"get_sharepoint_external_groups",
|
||||
)
|
||||
groups_and_members: GroupsResult = _get_groups_and_members_recursively(
|
||||
client_context, graph_client, groups
|
||||
client_context, graph_client, groups, is_group_sync=True
|
||||
)
|
||||
|
||||
# We don't have any direct way to check if the site is public, so we check if any public group is present
|
||||
if groups_and_members.found_public_group:
|
||||
return []
|
||||
|
||||
# get all Azure AD groups because if any group is assigned to the drive item, we don't want to miss them
|
||||
# We can't assign sharepoint groups to drive items or drives, so we don't need to get all sharepoint groups
|
||||
azure_ad_groups = sleep_and_retry(
|
||||
|
||||
@@ -1,43 +1,22 @@
|
||||
import re
|
||||
from typing import cast
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi import Depends
|
||||
from fastapi import HTTPException
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from ee.onyx.server.query_and_chat.models import AgentAnswer
|
||||
from ee.onyx.server.query_and_chat.models import AgentSubQuery
|
||||
from ee.onyx.server.query_and_chat.models import AgentSubQuestion
|
||||
from ee.onyx.server.query_and_chat.models import BasicCreateChatMessageRequest
|
||||
from ee.onyx.server.query_and_chat.models import (
|
||||
BasicCreateChatMessageWithHistoryRequest,
|
||||
)
|
||||
from ee.onyx.server.query_and_chat.models import ChatBasicResponse
|
||||
from onyx.auth.users import current_user
|
||||
from onyx.chat.chat_utils import combine_message_thread
|
||||
from onyx.chat.chat_utils import create_chat_chain
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import AllCitations
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.chat.models import FinalUsedContextDocsResponse
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import LLMRelevanceFilterResponse
|
||||
from onyx.chat.models import OnyxAnswerPiece
|
||||
from onyx.chat.models import QADocsResponse
|
||||
from onyx.chat.models import RefinedAnswerImprovement
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.chat.models import SubQueryPiece
|
||||
from onyx.chat.models import SubQuestionIdentifier
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.chat.process_message import ChatPacketStream
|
||||
from onyx.chat.models import ChatBasicResponse
|
||||
from onyx.chat.process_message import gather_stream
|
||||
from onyx.chat.process_message import stream_chat_message_objects
|
||||
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
|
||||
from onyx.configs.constants import MessageType
|
||||
from onyx.context.search.models import OptionalSearchSetting
|
||||
from onyx.context.search.models import RetrievalDetails
|
||||
from onyx.context.search.models import SavedSearchDoc
|
||||
from onyx.db.chat import create_chat_session
|
||||
from onyx.db.chat import create_new_chat_message
|
||||
from onyx.db.chat import get_or_create_root_message
|
||||
@@ -46,7 +25,6 @@ from onyx.db.models import User
|
||||
from onyx.llm.factory import get_llms_for_persona
|
||||
from onyx.natural_language_processing.utils import get_tokenizer
|
||||
from onyx.secondary_llm_flows.query_expansion import thread_based_query_rephrase
|
||||
from onyx.server.query_and_chat.models import ChatMessageDetail
|
||||
from onyx.server.query_and_chat.models import CreateChatMessageRequest
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
@@ -55,180 +33,6 @@ logger = setup_logger()
|
||||
router = APIRouter(prefix="/chat")
|
||||
|
||||
|
||||
def _get_final_context_doc_indices(
|
||||
final_context_docs: list[LlmDoc] | None,
|
||||
top_docs: list[SavedSearchDoc] | None,
|
||||
) -> list[int] | None:
|
||||
"""
|
||||
this function returns a list of indices of the simple search docs
|
||||
that were actually fed to the LLM.
|
||||
"""
|
||||
if final_context_docs is None or top_docs is None:
|
||||
return None
|
||||
|
||||
final_context_doc_ids = {doc.document_id for doc in final_context_docs}
|
||||
return [
|
||||
i for i, doc in enumerate(top_docs) if doc.document_id in final_context_doc_ids
|
||||
]
|
||||
|
||||
|
||||
def _convert_packet_stream_to_response(
|
||||
packets: ChatPacketStream,
|
||||
chat_session_id: UUID,
|
||||
) -> ChatBasicResponse:
|
||||
response = ChatBasicResponse()
|
||||
final_context_docs: list[LlmDoc] = []
|
||||
|
||||
answer = ""
|
||||
|
||||
# accumulate stream data with these dicts
|
||||
agent_sub_questions: dict[tuple[int, int], AgentSubQuestion] = {}
|
||||
agent_answers: dict[tuple[int, int], AgentAnswer] = {}
|
||||
agent_sub_queries: dict[tuple[int, int, int], AgentSubQuery] = {}
|
||||
|
||||
for packet in packets:
|
||||
if isinstance(packet, OnyxAnswerPiece) and packet.answer_piece:
|
||||
answer += packet.answer_piece
|
||||
elif isinstance(packet, QADocsResponse):
|
||||
response.top_documents = packet.top_documents
|
||||
|
||||
# This is a no-op if agent_sub_questions hasn't already been filled
|
||||
if packet.level is not None and packet.level_question_num is not None:
|
||||
id = (packet.level, packet.level_question_num)
|
||||
if id in agent_sub_questions:
|
||||
agent_sub_questions[id].document_ids = [
|
||||
saved_search_doc.document_id
|
||||
for saved_search_doc in packet.top_documents
|
||||
]
|
||||
elif isinstance(packet, StreamingError):
|
||||
response.error_msg = packet.error
|
||||
elif isinstance(packet, ChatMessageDetail):
|
||||
response.message_id = packet.message_id
|
||||
elif isinstance(packet, LLMRelevanceFilterResponse):
|
||||
response.llm_selected_doc_indices = packet.llm_selected_doc_indices
|
||||
|
||||
# TODO: deprecate `llm_chunks_indices`
|
||||
response.llm_chunks_indices = packet.llm_selected_doc_indices
|
||||
elif isinstance(packet, FinalUsedContextDocsResponse):
|
||||
final_context_docs = packet.final_context_docs
|
||||
elif isinstance(packet, AllCitations):
|
||||
response.cited_documents = {
|
||||
citation.citation_num: citation.document_id
|
||||
for citation in packet.citations
|
||||
}
|
||||
# agentic packets
|
||||
elif isinstance(packet, SubQuestionPiece):
|
||||
if packet.level is not None and packet.level_question_num is not None:
|
||||
id = (packet.level, packet.level_question_num)
|
||||
if agent_sub_questions.get(id) is None:
|
||||
agent_sub_questions[id] = AgentSubQuestion(
|
||||
level=packet.level,
|
||||
level_question_num=packet.level_question_num,
|
||||
sub_question=packet.sub_question,
|
||||
document_ids=[],
|
||||
)
|
||||
else:
|
||||
agent_sub_questions[id].sub_question += packet.sub_question
|
||||
|
||||
elif isinstance(packet, AgentAnswerPiece):
|
||||
if packet.level is not None and packet.level_question_num is not None:
|
||||
id = (packet.level, packet.level_question_num)
|
||||
if agent_answers.get(id) is None:
|
||||
agent_answers[id] = AgentAnswer(
|
||||
level=packet.level,
|
||||
level_question_num=packet.level_question_num,
|
||||
answer=packet.answer_piece,
|
||||
answer_type=packet.answer_type,
|
||||
)
|
||||
else:
|
||||
agent_answers[id].answer += packet.answer_piece
|
||||
elif isinstance(packet, SubQueryPiece):
|
||||
if packet.level is not None and packet.level_question_num is not None:
|
||||
sub_query_id = (
|
||||
packet.level,
|
||||
packet.level_question_num,
|
||||
packet.query_id,
|
||||
)
|
||||
if agent_sub_queries.get(sub_query_id) is None:
|
||||
agent_sub_queries[sub_query_id] = AgentSubQuery(
|
||||
level=packet.level,
|
||||
level_question_num=packet.level_question_num,
|
||||
sub_query=packet.sub_query,
|
||||
query_id=packet.query_id,
|
||||
)
|
||||
else:
|
||||
agent_sub_queries[sub_query_id].sub_query += packet.sub_query
|
||||
elif isinstance(packet, ExtendedToolResponse):
|
||||
# we shouldn't get this ... it gets intercepted and translated to QADocsResponse
|
||||
logger.warning(
|
||||
"_convert_packet_stream_to_response: Unexpected chat packet type ExtendedToolResponse!"
|
||||
)
|
||||
elif isinstance(packet, RefinedAnswerImprovement):
|
||||
response.agent_refined_answer_improvement = (
|
||||
packet.refined_answer_improvement
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"_convert_packet_stream_to_response - Unrecognized chat packet: type={type(packet)}"
|
||||
)
|
||||
|
||||
response.final_context_doc_indices = _get_final_context_doc_indices(
|
||||
final_context_docs, response.top_documents
|
||||
)
|
||||
|
||||
# organize / sort agent metadata for output
|
||||
if len(agent_sub_questions) > 0:
|
||||
response.agent_sub_questions = cast(
|
||||
dict[int, list[AgentSubQuestion]],
|
||||
SubQuestionIdentifier.make_dict_by_level(agent_sub_questions),
|
||||
)
|
||||
|
||||
if len(agent_answers) > 0:
|
||||
# return the agent_level_answer from the first level or the last one depending
|
||||
# on agent_refined_answer_improvement
|
||||
response.agent_answers = cast(
|
||||
dict[int, list[AgentAnswer]],
|
||||
SubQuestionIdentifier.make_dict_by_level(agent_answers),
|
||||
)
|
||||
if response.agent_answers:
|
||||
selected_answer_level = (
|
||||
0
|
||||
if not response.agent_refined_answer_improvement
|
||||
else len(response.agent_answers) - 1
|
||||
)
|
||||
level_answers = response.agent_answers[selected_answer_level]
|
||||
for level_answer in level_answers:
|
||||
if level_answer.answer_type != "agent_level_answer":
|
||||
continue
|
||||
|
||||
answer = level_answer.answer
|
||||
break
|
||||
|
||||
if len(agent_sub_queries) > 0:
|
||||
# subqueries are often emitted with trailing whitespace ... clean it up here
|
||||
# perhaps fix at the source?
|
||||
for v in agent_sub_queries.values():
|
||||
v.sub_query = v.sub_query.strip()
|
||||
|
||||
response.agent_sub_queries = (
|
||||
AgentSubQuery.make_dict_by_level_and_question_index(agent_sub_queries)
|
||||
)
|
||||
|
||||
response.answer = answer
|
||||
if answer:
|
||||
response.answer_citationless = remove_answer_citations(answer)
|
||||
|
||||
response.chat_session_id = chat_session_id
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def remove_answer_citations(answer: str) -> str:
|
||||
pattern = r"\s*\[\[\d+\]\]\(http[s]?://[^\s]+\)"
|
||||
|
||||
return re.sub(pattern, "", answer)
|
||||
|
||||
|
||||
@router.post("/send-message-simple-api")
|
||||
def handle_simplified_chat_message(
|
||||
chat_message_req: BasicCreateChatMessageRequest,
|
||||
@@ -310,7 +114,7 @@ def handle_simplified_chat_message(
|
||||
enforce_chat_session_id_for_search_docs=False,
|
||||
)
|
||||
|
||||
return _convert_packet_stream_to_response(packets, chat_session_id)
|
||||
return gather_stream(packets)
|
||||
|
||||
|
||||
@router.post("/send-message-simple-with-history")
|
||||
@@ -430,4 +234,4 @@ def handle_send_message_simple_with_history(
|
||||
enforce_chat_session_id_for_search_docs=False,
|
||||
)
|
||||
|
||||
return _convert_packet_stream_to_response(packets, chat_session.id)
|
||||
return gather_stream(packets)
|
||||
|
||||
@@ -6,10 +6,8 @@ from pydantic import BaseModel
|
||||
from pydantic import Field
|
||||
from pydantic import model_validator
|
||||
|
||||
from onyx.chat.models import CitationInfo
|
||||
from onyx.chat.models import PersonaOverrideConfig
|
||||
from onyx.chat.models import QADocsResponse
|
||||
from onyx.chat.models import SubQuestionIdentifier
|
||||
from onyx.chat.models import ThreadMessage
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.context.search.enums import LLMEvaluationType
|
||||
@@ -17,8 +15,9 @@ from onyx.context.search.enums import SearchType
|
||||
from onyx.context.search.models import ChunkContext
|
||||
from onyx.context.search.models import RerankingDetails
|
||||
from onyx.context.search.models import RetrievalDetails
|
||||
from onyx.context.search.models import SavedSearchDoc
|
||||
from onyx.server.manage.models import StandardAnswer
|
||||
from onyx.server.query_and_chat.streaming_models import CitationInfo
|
||||
from onyx.server.query_and_chat.streaming_models import SubQuestionIdentifier
|
||||
|
||||
|
||||
class StandardAnswerRequest(BaseModel):
|
||||
@@ -156,33 +155,6 @@ class AgentSubQuery(SubQuestionIdentifier):
|
||||
return sorted_dict
|
||||
|
||||
|
||||
class ChatBasicResponse(BaseModel):
|
||||
# This is built piece by piece, any of these can be None as the flow could break
|
||||
answer: str | None = None
|
||||
answer_citationless: str | None = None
|
||||
|
||||
top_documents: list[SavedSearchDoc] | None = None
|
||||
|
||||
error_msg: str | None = None
|
||||
message_id: int | None = None
|
||||
llm_selected_doc_indices: list[int] | None = None
|
||||
final_context_doc_indices: list[int] | None = None
|
||||
# this is a map of the citation number to the document id
|
||||
cited_documents: dict[int, str] | None = None
|
||||
|
||||
# FOR BACKWARDS COMPATIBILITY
|
||||
llm_chunks_indices: list[int] | None = None
|
||||
|
||||
# agentic fields
|
||||
agent_sub_questions: dict[int, list[AgentSubQuestion]] | None = None
|
||||
agent_answers: dict[int, list[AgentAnswer]] | None = None
|
||||
agent_sub_queries: dict[int, dict[int, list[AgentSubQuery]]] | None = None
|
||||
agent_refined_answer_improvement: bool | None = None
|
||||
|
||||
# Chat session ID for tracking conversation continuity
|
||||
chat_session_id: UUID | None = None
|
||||
|
||||
|
||||
class OneShotQARequest(ChunkContext):
|
||||
# Supports simplier APIs that don't deal with chat histories or message edits
|
||||
# Easier APIs to work with for developers
|
||||
@@ -193,7 +165,6 @@ class OneShotQARequest(ChunkContext):
|
||||
prompt_id: int | None = None
|
||||
retrieval_options: RetrievalDetails = Field(default_factory=RetrievalDetails)
|
||||
rerank_settings: RerankingDetails | None = None
|
||||
return_contexts: bool = False
|
||||
|
||||
# allows the caller to specify the exact search query they want to use
|
||||
# can be used if the message sent to the LLM / query should not be the same
|
||||
|
||||
@@ -20,8 +20,8 @@ from ee.onyx.server.query_and_chat.models import StandardAnswerResponse
|
||||
from onyx.auth.users import current_user
|
||||
from onyx.chat.chat_utils import combine_message_thread
|
||||
from onyx.chat.chat_utils import prepare_chat_message_request
|
||||
from onyx.chat.models import AnswerStream
|
||||
from onyx.chat.models import PersonaOverrideConfig
|
||||
from onyx.chat.process_message import ChatPacketStream
|
||||
from onyx.chat.process_message import stream_chat_message_objects
|
||||
from onyx.configs.onyxbot_configs import MAX_THREAD_CONTEXT_PERCENTAGE
|
||||
from onyx.context.search.models import SavedSearchDocWithContent
|
||||
@@ -140,7 +140,7 @@ def get_answer_stream(
|
||||
query_request: OneShotQARequest,
|
||||
user: User | None = Depends(current_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> ChatPacketStream:
|
||||
) -> AnswerStream:
|
||||
query = query_request.messages[0].message
|
||||
logger.notice(f"Received query for Answer API: {query}")
|
||||
|
||||
@@ -205,7 +205,6 @@ def get_answer_stream(
|
||||
new_msg_req=request,
|
||||
user=user,
|
||||
db_session=db_session,
|
||||
include_contexts=query_request.return_contexts,
|
||||
)
|
||||
|
||||
return packets
|
||||
|
||||
@@ -1,34 +1,5 @@
|
||||
from shared_configs.enums import EmbeddingProvider
|
||||
from shared_configs.enums import EmbedTextType
|
||||
|
||||
|
||||
MODEL_WARM_UP_STRING = "hi " * 512
|
||||
INFORMATION_CONTENT_MODEL_WARM_UP_STRING = "hi " * 16
|
||||
DEFAULT_OPENAI_MODEL = "text-embedding-3-small"
|
||||
DEFAULT_COHERE_MODEL = "embed-english-light-v3.0"
|
||||
DEFAULT_VOYAGE_MODEL = "voyage-large-2-instruct"
|
||||
DEFAULT_VERTEX_MODEL = "text-embedding-005"
|
||||
|
||||
|
||||
class EmbeddingModelTextType:
|
||||
PROVIDER_TEXT_TYPE_MAP = {
|
||||
EmbeddingProvider.COHERE: {
|
||||
EmbedTextType.QUERY: "search_query",
|
||||
EmbedTextType.PASSAGE: "search_document",
|
||||
},
|
||||
EmbeddingProvider.VOYAGE: {
|
||||
EmbedTextType.QUERY: "query",
|
||||
EmbedTextType.PASSAGE: "document",
|
||||
},
|
||||
EmbeddingProvider.GOOGLE: {
|
||||
EmbedTextType.QUERY: "RETRIEVAL_QUERY",
|
||||
EmbedTextType.PASSAGE: "RETRIEVAL_DOCUMENT",
|
||||
},
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def get_type(provider: EmbeddingProvider, text_type: EmbedTextType) -> str:
|
||||
return EmbeddingModelTextType.PROVIDER_TEXT_TYPE_MAP[provider][text_type]
|
||||
|
||||
|
||||
class GPUStatus:
|
||||
|
||||
@@ -1,55 +1,30 @@
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from types import TracebackType
|
||||
from typing import cast
|
||||
from typing import Any
|
||||
from typing import Optional
|
||||
|
||||
import aioboto3 # type: ignore
|
||||
import httpx
|
||||
import openai
|
||||
import vertexai # type: ignore
|
||||
import voyageai # type: ignore
|
||||
from cohere import AsyncClient as CohereAsyncClient
|
||||
from fastapi import APIRouter
|
||||
from fastapi import HTTPException
|
||||
from fastapi import Request
|
||||
from google.oauth2 import service_account # type: ignore
|
||||
from litellm import aembedding
|
||||
from litellm.exceptions import RateLimitError
|
||||
from retry import retry
|
||||
from sentence_transformers import CrossEncoder # type: ignore
|
||||
from sentence_transformers import SentenceTransformer # type: ignore
|
||||
from vertexai.language_models import TextEmbeddingInput # type: ignore
|
||||
from vertexai.language_models import TextEmbeddingModel # type: ignore
|
||||
|
||||
from model_server.constants import DEFAULT_COHERE_MODEL
|
||||
from model_server.constants import DEFAULT_OPENAI_MODEL
|
||||
from model_server.constants import DEFAULT_VERTEX_MODEL
|
||||
from model_server.constants import DEFAULT_VOYAGE_MODEL
|
||||
from model_server.constants import EmbeddingModelTextType
|
||||
from model_server.constants import EmbeddingProvider
|
||||
from model_server.utils import pass_aws_key
|
||||
from model_server.utils import simple_log_function_time
|
||||
from onyx.utils.logger import setup_logger
|
||||
from shared_configs.configs import API_BASED_EMBEDDING_TIMEOUT
|
||||
from shared_configs.configs import INDEXING_ONLY
|
||||
from shared_configs.configs import OPENAI_EMBEDDING_TIMEOUT
|
||||
from shared_configs.configs import VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
|
||||
from shared_configs.enums import EmbedTextType
|
||||
from shared_configs.enums import RerankerProvider
|
||||
from shared_configs.model_server_models import Embedding
|
||||
from shared_configs.model_server_models import EmbedRequest
|
||||
from shared_configs.model_server_models import EmbedResponse
|
||||
from shared_configs.model_server_models import RerankRequest
|
||||
from shared_configs.model_server_models import RerankResponse
|
||||
from shared_configs.utils import batch_list
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
router = APIRouter(prefix="/encoder")
|
||||
|
||||
|
||||
_GLOBAL_MODELS_DICT: dict[str, "SentenceTransformer"] = {}
|
||||
_RERANK_MODEL: Optional["CrossEncoder"] = None
|
||||
|
||||
@@ -57,315 +32,6 @@ _RERANK_MODEL: Optional["CrossEncoder"] = None
|
||||
_RETRY_DELAY = 10 if INDEXING_ONLY else 0.1
|
||||
_RETRY_TRIES = 10 if INDEXING_ONLY else 2
|
||||
|
||||
# OpenAI only allows 2048 embeddings to be computed at once
|
||||
_OPENAI_MAX_INPUT_LEN = 2048
|
||||
# Cohere allows up to 96 embeddings in a single embedding calling
|
||||
_COHERE_MAX_INPUT_LEN = 96
|
||||
|
||||
# Authentication error string constants
|
||||
_AUTH_ERROR_401 = "401"
|
||||
_AUTH_ERROR_UNAUTHORIZED = "unauthorized"
|
||||
_AUTH_ERROR_INVALID_API_KEY = "invalid api key"
|
||||
_AUTH_ERROR_PERMISSION = "permission"
|
||||
|
||||
|
||||
def is_authentication_error(error: Exception) -> bool:
|
||||
"""Check if an exception is related to authentication issues.
|
||||
|
||||
Args:
|
||||
error: The exception to check
|
||||
|
||||
Returns:
|
||||
bool: True if the error appears to be authentication-related
|
||||
"""
|
||||
error_str = str(error).lower()
|
||||
return (
|
||||
_AUTH_ERROR_401 in error_str
|
||||
or _AUTH_ERROR_UNAUTHORIZED in error_str
|
||||
or _AUTH_ERROR_INVALID_API_KEY in error_str
|
||||
or _AUTH_ERROR_PERMISSION in error_str
|
||||
)
|
||||
|
||||
|
||||
def format_embedding_error(
|
||||
error: Exception,
|
||||
service_name: str,
|
||||
model: str | None,
|
||||
provider: EmbeddingProvider,
|
||||
sanitized_api_key: str | None = None,
|
||||
status_code: int | None = None,
|
||||
) -> str:
|
||||
"""
|
||||
Format a standardized error string for embedding errors.
|
||||
"""
|
||||
detail = f"Status {status_code}" if status_code else f"{type(error)}"
|
||||
|
||||
return (
|
||||
f"{'HTTP error' if status_code else 'Exception'} embedding text with {service_name} - {detail}: "
|
||||
f"Model: {model} "
|
||||
f"Provider: {provider} "
|
||||
f"API Key: {sanitized_api_key} "
|
||||
f"Exception: {error}"
|
||||
)
|
||||
|
||||
|
||||
# Custom exception for authentication errors
|
||||
class AuthenticationError(Exception):
|
||||
"""Raised when authentication fails with a provider."""
|
||||
|
||||
def __init__(self, provider: str, message: str = "API key is invalid or expired"):
|
||||
self.provider = provider
|
||||
self.message = message
|
||||
super().__init__(f"{provider} authentication failed: {message}")
|
||||
|
||||
|
||||
class CloudEmbedding:
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
provider: EmbeddingProvider,
|
||||
api_url: str | None = None,
|
||||
api_version: str | None = None,
|
||||
timeout: int = API_BASED_EMBEDDING_TIMEOUT,
|
||||
) -> None:
|
||||
self.provider = provider
|
||||
self.api_key = api_key
|
||||
self.api_url = api_url
|
||||
self.api_version = api_version
|
||||
self.timeout = timeout
|
||||
self.http_client = httpx.AsyncClient(timeout=timeout)
|
||||
self._closed = False
|
||||
self.sanitized_api_key = api_key[:4] + "********" + api_key[-4:]
|
||||
|
||||
async def _embed_openai(
|
||||
self, texts: list[str], model: str | None, reduced_dimension: int | None
|
||||
) -> list[Embedding]:
|
||||
if not model:
|
||||
model = DEFAULT_OPENAI_MODEL
|
||||
|
||||
# Use the OpenAI specific timeout for this one
|
||||
client = openai.AsyncOpenAI(
|
||||
api_key=self.api_key, timeout=OPENAI_EMBEDDING_TIMEOUT
|
||||
)
|
||||
|
||||
final_embeddings: list[Embedding] = []
|
||||
|
||||
for text_batch in batch_list(texts, _OPENAI_MAX_INPUT_LEN):
|
||||
response = await client.embeddings.create(
|
||||
input=text_batch,
|
||||
model=model,
|
||||
dimensions=reduced_dimension or openai.NOT_GIVEN,
|
||||
)
|
||||
final_embeddings.extend(
|
||||
[embedding.embedding for embedding in response.data]
|
||||
)
|
||||
return final_embeddings
|
||||
|
||||
async def _embed_cohere(
|
||||
self, texts: list[str], model: str | None, embedding_type: str
|
||||
) -> list[Embedding]:
|
||||
if not model:
|
||||
model = DEFAULT_COHERE_MODEL
|
||||
|
||||
client = CohereAsyncClient(api_key=self.api_key)
|
||||
|
||||
final_embeddings: list[Embedding] = []
|
||||
for text_batch in batch_list(texts, _COHERE_MAX_INPUT_LEN):
|
||||
# Does not use the same tokenizer as the Onyx API server but it's approximately the same
|
||||
# empirically it's only off by a very few tokens so it's not a big deal
|
||||
response = await client.embed(
|
||||
texts=text_batch,
|
||||
model=model,
|
||||
input_type=embedding_type,
|
||||
truncate="END",
|
||||
)
|
||||
final_embeddings.extend(cast(list[Embedding], response.embeddings))
|
||||
return final_embeddings
|
||||
|
||||
async def _embed_voyage(
|
||||
self, texts: list[str], model: str | None, embedding_type: str
|
||||
) -> list[Embedding]:
|
||||
if not model:
|
||||
model = DEFAULT_VOYAGE_MODEL
|
||||
|
||||
client = voyageai.AsyncClient(
|
||||
api_key=self.api_key, timeout=API_BASED_EMBEDDING_TIMEOUT
|
||||
)
|
||||
|
||||
response = await client.embed(
|
||||
texts=texts,
|
||||
model=model,
|
||||
input_type=embedding_type,
|
||||
truncation=True,
|
||||
)
|
||||
return response.embeddings
|
||||
|
||||
async def _embed_azure(
|
||||
self, texts: list[str], model: str | None
|
||||
) -> list[Embedding]:
|
||||
response = await aembedding(
|
||||
model=model,
|
||||
input=texts,
|
||||
timeout=API_BASED_EMBEDDING_TIMEOUT,
|
||||
api_key=self.api_key,
|
||||
api_base=self.api_url,
|
||||
api_version=self.api_version,
|
||||
)
|
||||
embeddings = [embedding["embedding"] for embedding in response.data]
|
||||
return embeddings
|
||||
|
||||
async def _embed_vertex(
|
||||
self, texts: list[str], model: str | None, embedding_type: str
|
||||
) -> list[Embedding]:
|
||||
if not model:
|
||||
model = DEFAULT_VERTEX_MODEL
|
||||
|
||||
credentials = service_account.Credentials.from_service_account_info(
|
||||
json.loads(self.api_key)
|
||||
)
|
||||
project_id = json.loads(self.api_key)["project_id"]
|
||||
vertexai.init(project=project_id, credentials=credentials)
|
||||
client = TextEmbeddingModel.from_pretrained(model)
|
||||
|
||||
inputs = [TextEmbeddingInput(text, embedding_type) for text in texts]
|
||||
|
||||
# Split into batches of 25 texts
|
||||
max_texts_per_batch = VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
|
||||
batches = [
|
||||
inputs[i : i + max_texts_per_batch]
|
||||
for i in range(0, len(inputs), max_texts_per_batch)
|
||||
]
|
||||
|
||||
# Dispatch all embedding calls asynchronously at once
|
||||
tasks = [
|
||||
client.get_embeddings_async(batch, auto_truncate=True) for batch in batches
|
||||
]
|
||||
|
||||
# Wait for all tasks to complete in parallel
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return [embedding.values for batch in results for embedding in batch]
|
||||
|
||||
async def _embed_litellm_proxy(
|
||||
self, texts: list[str], model_name: str | None
|
||||
) -> list[Embedding]:
|
||||
if not model_name:
|
||||
raise ValueError("Model name is required for LiteLLM proxy embedding.")
|
||||
|
||||
if not self.api_url:
|
||||
raise ValueError("API URL is required for LiteLLM proxy embedding.")
|
||||
|
||||
headers = (
|
||||
{} if not self.api_key else {"Authorization": f"Bearer {self.api_key}"}
|
||||
)
|
||||
|
||||
response = await self.http_client.post(
|
||||
self.api_url,
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": texts,
|
||||
},
|
||||
headers=headers,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
return [embedding["embedding"] for embedding in result["data"]]
|
||||
|
||||
@retry(tries=_RETRY_TRIES, delay=_RETRY_DELAY)
|
||||
async def embed(
|
||||
self,
|
||||
*,
|
||||
texts: list[str],
|
||||
text_type: EmbedTextType,
|
||||
model_name: str | None = None,
|
||||
deployment_name: str | None = None,
|
||||
reduced_dimension: int | None = None,
|
||||
) -> list[Embedding]:
|
||||
try:
|
||||
if self.provider == EmbeddingProvider.OPENAI:
|
||||
return await self._embed_openai(texts, model_name, reduced_dimension)
|
||||
elif self.provider == EmbeddingProvider.AZURE:
|
||||
return await self._embed_azure(texts, f"azure/{deployment_name}")
|
||||
elif self.provider == EmbeddingProvider.LITELLM:
|
||||
return await self._embed_litellm_proxy(texts, model_name)
|
||||
|
||||
embedding_type = EmbeddingModelTextType.get_type(self.provider, text_type)
|
||||
if self.provider == EmbeddingProvider.COHERE:
|
||||
return await self._embed_cohere(texts, model_name, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.VOYAGE:
|
||||
return await self._embed_voyage(texts, model_name, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.GOOGLE:
|
||||
return await self._embed_vertex(texts, model_name, embedding_type)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {self.provider}")
|
||||
except openai.AuthenticationError:
|
||||
raise AuthenticationError(provider="OpenAI")
|
||||
except httpx.HTTPStatusError as e:
|
||||
if e.response.status_code == 401:
|
||||
raise AuthenticationError(provider=str(self.provider))
|
||||
|
||||
error_string = format_embedding_error(
|
||||
e,
|
||||
str(self.provider),
|
||||
model_name or deployment_name,
|
||||
self.provider,
|
||||
sanitized_api_key=self.sanitized_api_key,
|
||||
status_code=e.response.status_code,
|
||||
)
|
||||
logger.error(error_string)
|
||||
logger.debug(f"Exception texts: {texts}")
|
||||
|
||||
raise RuntimeError(error_string)
|
||||
except Exception as e:
|
||||
if is_authentication_error(e):
|
||||
raise AuthenticationError(provider=str(self.provider))
|
||||
|
||||
error_string = format_embedding_error(
|
||||
e,
|
||||
str(self.provider),
|
||||
model_name or deployment_name,
|
||||
self.provider,
|
||||
sanitized_api_key=self.sanitized_api_key,
|
||||
)
|
||||
logger.error(error_string)
|
||||
logger.debug(f"Exception texts: {texts}")
|
||||
|
||||
raise RuntimeError(error_string)
|
||||
|
||||
@staticmethod
|
||||
def create(
|
||||
api_key: str,
|
||||
provider: EmbeddingProvider,
|
||||
api_url: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> "CloudEmbedding":
|
||||
logger.debug(f"Creating Embedding instance for provider: {provider}")
|
||||
return CloudEmbedding(api_key, provider, api_url, api_version)
|
||||
|
||||
async def aclose(self) -> None:
|
||||
"""Explicitly close the client."""
|
||||
if not self._closed:
|
||||
await self.http_client.aclose()
|
||||
self._closed = True
|
||||
|
||||
async def __aenter__(self) -> "CloudEmbedding":
|
||||
return self
|
||||
|
||||
async def __aexit__(
|
||||
self,
|
||||
exc_type: type[BaseException] | None,
|
||||
exc_val: BaseException | None,
|
||||
exc_tb: TracebackType | None,
|
||||
) -> None:
|
||||
await self.aclose()
|
||||
|
||||
def __del__(self) -> None:
|
||||
"""Finalizer to warn about unclosed clients."""
|
||||
if not self._closed:
|
||||
logger.warning(
|
||||
"CloudEmbedding was not properly closed. Use 'async with' or call aclose()"
|
||||
)
|
||||
|
||||
|
||||
def get_embedding_model(
|
||||
model_name: str,
|
||||
@@ -404,20 +70,34 @@ def get_local_reranking_model(
|
||||
return _RERANK_MODEL
|
||||
|
||||
|
||||
ENCODING_RETRIES = 3
|
||||
ENCODING_RETRY_DELAY = 0.1
|
||||
|
||||
|
||||
def _concurrent_embedding(
|
||||
texts: list[str], model: "SentenceTransformer", normalize_embeddings: bool
|
||||
) -> Any:
|
||||
"""Synchronous wrapper for concurrent_embedding to use with run_in_executor."""
|
||||
for _ in range(ENCODING_RETRIES):
|
||||
try:
|
||||
return model.encode(texts, normalize_embeddings=normalize_embeddings)
|
||||
except RuntimeError as e:
|
||||
# There is a concurrency bug in the SentenceTransformer library that causes
|
||||
# the model to fail to encode texts. It's pretty rare and we want to allow
|
||||
# concurrent embedding, hence we retry (the specific error is
|
||||
# "RuntimeError: Already borrowed" and occurs in the transformers library)
|
||||
logger.error(f"Error encoding texts, retrying: {e}")
|
||||
time.sleep(ENCODING_RETRY_DELAY)
|
||||
return model.encode(texts, normalize_embeddings=normalize_embeddings)
|
||||
|
||||
|
||||
@simple_log_function_time()
|
||||
async def embed_text(
|
||||
texts: list[str],
|
||||
text_type: EmbedTextType,
|
||||
model_name: str | None,
|
||||
deployment_name: str | None,
|
||||
max_context_length: int,
|
||||
normalize_embeddings: bool,
|
||||
api_key: str | None,
|
||||
provider_type: EmbeddingProvider | None,
|
||||
prefix: str | None,
|
||||
api_url: str | None,
|
||||
api_version: str | None,
|
||||
reduced_dimension: int | None,
|
||||
gpu_type: str = "UNKNOWN",
|
||||
) -> list[Embedding]:
|
||||
if not all(texts):
|
||||
@@ -434,52 +114,10 @@ async def embed_text(
|
||||
for text in texts:
|
||||
total_chars += len(text)
|
||||
|
||||
if provider_type is not None:
|
||||
logger.info(
|
||||
f"Embedding {len(texts)} texts with {total_chars} total characters with provider: {provider_type}"
|
||||
)
|
||||
# Only local models should call this function now
|
||||
# API providers should go directly to API server
|
||||
|
||||
if api_key is None:
|
||||
logger.error("API key not provided for cloud model")
|
||||
raise RuntimeError("API key not provided for cloud model")
|
||||
|
||||
if prefix:
|
||||
logger.warning("Prefix provided for cloud model, which is not supported")
|
||||
raise ValueError(
|
||||
"Prefix string is not valid for cloud models. "
|
||||
"Cloud models take an explicit text type instead."
|
||||
)
|
||||
|
||||
async with CloudEmbedding(
|
||||
api_key=api_key,
|
||||
provider=provider_type,
|
||||
api_url=api_url,
|
||||
api_version=api_version,
|
||||
) as cloud_model:
|
||||
embeddings = await cloud_model.embed(
|
||||
texts=texts,
|
||||
model_name=model_name,
|
||||
deployment_name=deployment_name,
|
||||
text_type=text_type,
|
||||
reduced_dimension=reduced_dimension,
|
||||
)
|
||||
|
||||
if any(embedding is None for embedding in embeddings):
|
||||
error_message = "Embeddings contain None values\n"
|
||||
error_message += "Corresponding texts:\n"
|
||||
error_message += "\n".join(texts)
|
||||
logger.error(error_message)
|
||||
raise ValueError(error_message)
|
||||
|
||||
elapsed = time.monotonic() - start
|
||||
logger.info(
|
||||
f"event=embedding_provider "
|
||||
f"texts={len(texts)} "
|
||||
f"chars={total_chars} "
|
||||
f"provider={provider_type} "
|
||||
f"elapsed={elapsed:.2f}"
|
||||
)
|
||||
elif model_name is not None:
|
||||
if model_name is not None:
|
||||
logger.info(
|
||||
f"Embedding {len(texts)} texts with {total_chars} total characters with local model: {model_name}"
|
||||
)
|
||||
@@ -492,8 +130,8 @@ async def embed_text(
|
||||
# Run CPU-bound embedding in a thread pool
|
||||
embeddings_vectors = await asyncio.get_event_loop().run_in_executor(
|
||||
None,
|
||||
lambda: local_model.encode(
|
||||
prefixed_texts, normalize_embeddings=normalize_embeddings
|
||||
lambda: _concurrent_embedding(
|
||||
prefixed_texts, local_model, normalize_embeddings
|
||||
),
|
||||
)
|
||||
embeddings = [
|
||||
@@ -515,10 +153,8 @@ async def embed_text(
|
||||
f"elapsed={elapsed:.2f}"
|
||||
)
|
||||
else:
|
||||
logger.error("Neither model name nor provider specified for embedding")
|
||||
raise ValueError(
|
||||
"Either model name or provider must be provided to run embeddings."
|
||||
)
|
||||
logger.error("Model name not specified for embedding")
|
||||
raise ValueError("Model name must be provided to run embeddings.")
|
||||
|
||||
return embeddings
|
||||
|
||||
@@ -533,77 +169,6 @@ async def local_rerank(query: str, docs: list[str], model_name: str) -> list[flo
|
||||
)
|
||||
|
||||
|
||||
async def cohere_rerank_api(
|
||||
query: str, docs: list[str], model_name: str, api_key: str
|
||||
) -> list[float]:
|
||||
cohere_client = CohereAsyncClient(api_key=api_key)
|
||||
response = await cohere_client.rerank(query=query, documents=docs, model=model_name)
|
||||
results = response.results
|
||||
sorted_results = sorted(results, key=lambda item: item.index)
|
||||
return [result.relevance_score for result in sorted_results]
|
||||
|
||||
|
||||
async def cohere_rerank_aws(
|
||||
query: str,
|
||||
docs: list[str],
|
||||
model_name: str,
|
||||
region_name: str,
|
||||
aws_access_key_id: str,
|
||||
aws_secret_access_key: str,
|
||||
) -> list[float]:
|
||||
session = aioboto3.Session(
|
||||
aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key
|
||||
)
|
||||
async with session.client(
|
||||
"bedrock-runtime", region_name=region_name
|
||||
) as bedrock_client:
|
||||
body = json.dumps(
|
||||
{
|
||||
"query": query,
|
||||
"documents": docs,
|
||||
"api_version": 2,
|
||||
}
|
||||
)
|
||||
# Invoke the Bedrock model asynchronously
|
||||
response = await bedrock_client.invoke_model(
|
||||
modelId=model_name,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
body=body,
|
||||
)
|
||||
|
||||
# Read the response asynchronously
|
||||
response_body = json.loads(await response["body"].read())
|
||||
|
||||
# Extract and sort the results
|
||||
results = response_body.get("results", [])
|
||||
sorted_results = sorted(results, key=lambda item: item["index"])
|
||||
|
||||
return [result["relevance_score"] for result in sorted_results]
|
||||
|
||||
|
||||
async def litellm_rerank(
|
||||
query: str, docs: list[str], api_url: str, model_name: str, api_key: str | None
|
||||
) -> list[float]:
|
||||
headers = {} if not api_key else {"Authorization": f"Bearer {api_key}"}
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
api_url,
|
||||
json={
|
||||
"model": model_name,
|
||||
"query": query,
|
||||
"documents": docs,
|
||||
},
|
||||
headers=headers,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
return [
|
||||
item["relevance_score"]
|
||||
for item in sorted(result["results"], key=lambda x: x["index"])
|
||||
]
|
||||
|
||||
|
||||
@router.post("/bi-encoder-embed")
|
||||
async def route_bi_encoder_embed(
|
||||
request: Request,
|
||||
@@ -615,6 +180,13 @@ async def route_bi_encoder_embed(
|
||||
async def process_embed_request(
|
||||
embed_request: EmbedRequest, gpu_type: str = "UNKNOWN"
|
||||
) -> EmbedResponse:
|
||||
# Only local models should use this endpoint - API providers should make direct API calls
|
||||
if embed_request.provider_type is not None:
|
||||
raise ValueError(
|
||||
f"Model server embedding endpoint should only be used for local models. "
|
||||
f"API provider '{embed_request.provider_type}' should make direct API calls instead."
|
||||
)
|
||||
|
||||
if not embed_request.texts:
|
||||
raise HTTPException(status_code=400, detail="No texts to be embedded")
|
||||
|
||||
@@ -632,26 +204,12 @@ async def process_embed_request(
|
||||
embeddings = await embed_text(
|
||||
texts=embed_request.texts,
|
||||
model_name=embed_request.model_name,
|
||||
deployment_name=embed_request.deployment_name,
|
||||
max_context_length=embed_request.max_context_length,
|
||||
normalize_embeddings=embed_request.normalize_embeddings,
|
||||
api_key=embed_request.api_key,
|
||||
provider_type=embed_request.provider_type,
|
||||
text_type=embed_request.text_type,
|
||||
api_url=embed_request.api_url,
|
||||
api_version=embed_request.api_version,
|
||||
reduced_dimension=embed_request.reduced_dimension,
|
||||
prefix=prefix,
|
||||
gpu_type=gpu_type,
|
||||
)
|
||||
return EmbedResponse(embeddings=embeddings)
|
||||
except AuthenticationError as e:
|
||||
# Handle authentication errors consistently
|
||||
logger.error(f"Authentication error: {e.provider}")
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail=f"Authentication failed: {e.message}",
|
||||
)
|
||||
except RateLimitError as e:
|
||||
raise HTTPException(
|
||||
status_code=429,
|
||||
@@ -669,6 +227,13 @@ async def process_embed_request(
|
||||
@router.post("/cross-encoder-scores")
|
||||
async def process_rerank_request(rerank_request: RerankRequest) -> RerankResponse:
|
||||
"""Cross encoders can be purely black box from the app perspective"""
|
||||
# Only local models should use this endpoint - API providers should make direct API calls
|
||||
if rerank_request.provider_type is not None:
|
||||
raise ValueError(
|
||||
f"Model server reranking endpoint should only be used for local models. "
|
||||
f"API provider '{rerank_request.provider_type}' should make direct API calls instead."
|
||||
)
|
||||
|
||||
if INDEXING_ONLY:
|
||||
raise RuntimeError("Indexing model server should not call intent endpoint")
|
||||
|
||||
@@ -680,55 +245,13 @@ async def process_rerank_request(rerank_request: RerankRequest) -> RerankRespons
|
||||
raise ValueError("Empty documents cannot be reranked.")
|
||||
|
||||
try:
|
||||
if rerank_request.provider_type is None:
|
||||
sim_scores = await local_rerank(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
elif rerank_request.provider_type == RerankerProvider.LITELLM:
|
||||
if rerank_request.api_url is None:
|
||||
raise ValueError("API URL is required for LiteLLM reranking.")
|
||||
|
||||
sim_scores = await litellm_rerank(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
api_url=rerank_request.api_url,
|
||||
model_name=rerank_request.model_name,
|
||||
api_key=rerank_request.api_key,
|
||||
)
|
||||
|
||||
return RerankResponse(scores=sim_scores)
|
||||
|
||||
elif rerank_request.provider_type == RerankerProvider.COHERE:
|
||||
if rerank_request.api_key is None:
|
||||
raise RuntimeError("Cohere Rerank Requires an API Key")
|
||||
sim_scores = await cohere_rerank_api(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
api_key=rerank_request.api_key,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
|
||||
elif rerank_request.provider_type == RerankerProvider.BEDROCK:
|
||||
if rerank_request.api_key is None:
|
||||
raise RuntimeError("Bedrock Rerank Requires an API Key")
|
||||
aws_access_key_id, aws_secret_access_key, aws_region = pass_aws_key(
|
||||
rerank_request.api_key
|
||||
)
|
||||
sim_scores = await cohere_rerank_aws(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
region_name=aws_region,
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {rerank_request.provider_type}")
|
||||
# At this point, provider_type is None, so handle local reranking
|
||||
sim_scores = await local_rerank(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error during reranking process:\n{str(e)}")
|
||||
|
||||
@@ -34,8 +34,8 @@ from shared_configs.configs import SENTRY_DSN
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
|
||||
|
||||
HF_CACHE_PATH = Path(os.path.expanduser("~")) / ".cache/huggingface"
|
||||
TEMP_HF_CACHE_PATH = Path(os.path.expanduser("~")) / ".cache/temp_huggingface"
|
||||
HF_CACHE_PATH = Path(".cache/huggingface")
|
||||
TEMP_HF_CACHE_PATH = Path(".cache/temp_huggingface")
|
||||
|
||||
transformer_logging.set_verbosity_error()
|
||||
|
||||
|
||||
@@ -70,32 +70,3 @@ def get_gpu_type() -> str:
|
||||
return GPUStatus.MAC_MPS
|
||||
|
||||
return GPUStatus.NONE
|
||||
|
||||
|
||||
def pass_aws_key(api_key: str) -> tuple[str, str, str]:
|
||||
"""Parse AWS API key string into components.
|
||||
|
||||
Args:
|
||||
api_key: String in format 'aws_ACCESSKEY_SECRETKEY_REGION'
|
||||
|
||||
Returns:
|
||||
Tuple of (access_key, secret_key, region)
|
||||
|
||||
Raises:
|
||||
ValueError: If key format is invalid
|
||||
"""
|
||||
if not api_key.startswith("aws"):
|
||||
raise ValueError("API key must start with 'aws' prefix")
|
||||
|
||||
parts = api_key.split("_")
|
||||
if len(parts) != 4:
|
||||
raise ValueError(
|
||||
f"API key must be in format 'aws_ACCESSKEY_SECRETKEY_REGION', got {len(parts) - 1} parts"
|
||||
"this is an onyx specific format for formatting the aws secrets for bedrock"
|
||||
)
|
||||
|
||||
try:
|
||||
_, aws_access_key_id, aws_secret_access_key, aws_region = parts
|
||||
return aws_access_key_id, aws_secret_access_key, aws_region
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to parse AWS key components: {str(e)}")
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.basic.states import BasicInput
|
||||
from onyx.agents.agent_search.basic.states import BasicOutput
|
||||
from onyx.agents.agent_search.basic.states import BasicState
|
||||
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
|
||||
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
|
||||
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
|
||||
prepare_tool_input,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
|
||||
basic_use_tool_response,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def basic_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=BasicState,
|
||||
input=BasicInput,
|
||||
output=BasicOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="prepare_tool_input",
|
||||
action=prepare_tool_input,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="choose_tool",
|
||||
action=choose_tool,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="call_tool",
|
||||
action=call_tool,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="basic_use_tool_response",
|
||||
action=basic_use_tool_response,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="prepare_tool_input")
|
||||
|
||||
graph.add_edge(start_key="prepare_tool_input", end_key="choose_tool")
|
||||
|
||||
graph.add_conditional_edges("choose_tool", should_continue, ["call_tool", END])
|
||||
|
||||
graph.add_edge(
|
||||
start_key="call_tool",
|
||||
end_key="basic_use_tool_response",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="basic_use_tool_response",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
def should_continue(state: BasicState) -> str:
|
||||
return (
|
||||
# If there are no tool calls, basic graph already streamed the answer
|
||||
END
|
||||
if state.tool_choice is None
|
||||
else "call_tool"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.context.search.models import SearchRequest
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
|
||||
graph = basic_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
input = BasicInput(unused=True)
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
config, _ = get_test_config(
|
||||
db_session=db_session,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
search_request=SearchRequest(query="How does onyx use FastAPI?"),
|
||||
)
|
||||
compiled_graph.invoke(input, config={"metadata": {"config": config}})
|
||||
@@ -1,35 +0,0 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
|
||||
|
||||
# States contain values that change over the course of graph execution,
|
||||
# Config is for values that are set at the start and never change.
|
||||
# If you are using a value from the config and realize it needs to change,
|
||||
# you should add it to the state and use/update the version in the state.
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class BasicInput(BaseModel):
|
||||
# Langgraph needs a nonempty input, but we pass in all static
|
||||
# data through a RunnableConfig.
|
||||
unused: bool = True
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class BasicOutput(TypedDict):
|
||||
tool_call_chunk: AIMessageChunk
|
||||
|
||||
|
||||
## Graph State
|
||||
class BasicState(
|
||||
BasicInput,
|
||||
ToolChoiceInput,
|
||||
ToolCallUpdate,
|
||||
ToolChoiceUpdate,
|
||||
):
|
||||
pass
|
||||
@@ -1,64 +0,0 @@
|
||||
from collections.abc import Iterator
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.stream_processing.answer_response_handler import AnswerResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import CitationResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import (
|
||||
PassThroughAnswerResponseHandler,
|
||||
)
|
||||
from onyx.chat.stream_processing.utils import map_document_id_order
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def process_llm_stream(
|
||||
messages: Iterator[BaseMessage],
|
||||
should_stream_answer: bool,
|
||||
writer: StreamWriter,
|
||||
final_search_results: list[LlmDoc] | None = None,
|
||||
displayed_search_results: list[LlmDoc] | None = None,
|
||||
) -> AIMessageChunk:
|
||||
tool_call_chunk = AIMessageChunk(content="")
|
||||
|
||||
if final_search_results and displayed_search_results:
|
||||
answer_handler: AnswerResponseHandler = CitationResponseHandler(
|
||||
context_docs=final_search_results,
|
||||
final_doc_id_to_rank_map=map_document_id_order(final_search_results),
|
||||
display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
|
||||
)
|
||||
else:
|
||||
answer_handler = PassThroughAnswerResponseHandler()
|
||||
|
||||
full_answer = ""
|
||||
# This stream will be the llm answer if no tool is chosen. When a tool is chosen,
|
||||
# the stream will contain AIMessageChunks with tool call information.
|
||||
for message in messages:
|
||||
|
||||
answer_piece = message.content
|
||||
if not isinstance(answer_piece, str):
|
||||
# this is only used for logging, so fine to
|
||||
# just add the string representation
|
||||
answer_piece = str(answer_piece)
|
||||
full_answer += answer_piece
|
||||
|
||||
if isinstance(message, AIMessageChunk) and (
|
||||
message.tool_call_chunks or message.tool_calls
|
||||
):
|
||||
tool_call_chunk += message # type: ignore
|
||||
elif should_stream_answer:
|
||||
for response_part in answer_handler.handle_response_part(message, []):
|
||||
write_custom_event(
|
||||
"basic_response",
|
||||
response_part,
|
||||
writer,
|
||||
)
|
||||
|
||||
logger.debug(f"Full answer: {full_answer}")
|
||||
return cast(AIMessageChunk, tool_call_chunk)
|
||||
@@ -10,6 +10,7 @@ class CoreState(BaseModel):
|
||||
"""
|
||||
|
||||
log_messages: Annotated[list[str], add] = []
|
||||
current_step_nr: int = 1
|
||||
|
||||
|
||||
class SubgraphCoreState(BaseModel):
|
||||
|
||||
@@ -14,8 +14,6 @@ from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.prompts.agents.dc_prompts import DC_OBJECT_NO_BASE_DATA_EXTRACTION_PROMPT
|
||||
from onyx.prompts.agents.dc_prompts import DC_OBJECT_SEPARATOR
|
||||
@@ -139,17 +137,6 @@ def search_objects(
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error in search_objects: {e}")
|
||||
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=" Researching the individual objects for each source type... ",
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return SearchSourcesObjectsUpdate(
|
||||
analysis_objects=object_list,
|
||||
analysis_sources=document_sources,
|
||||
|
||||
@@ -9,8 +9,6 @@ from onyx.agents.agent_search.dc_search_analysis.states import MainState
|
||||
from onyx.agents.agent_search.dc_search_analysis.states import (
|
||||
ObjectResearchInformationUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -23,17 +21,6 @@ def structure_research_by_object(
|
||||
LangGraph node to start the agentic search process.
|
||||
"""
|
||||
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=" consolidating the information across source types for each object...",
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
object_source_research_results = state.object_source_research_results
|
||||
|
||||
object_research_information_results: List[Dict[str, str]] = []
|
||||
|
||||
@@ -12,8 +12,6 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.prompts.agents.dc_prompts import DC_FORMATTING_NO_BASE_DATA_PROMPT
|
||||
from onyx.prompts.agents.dc_prompts import DC_FORMATTING_WITH_BASE_DATA_PROMPT
|
||||
from onyx.utils.logger import setup_logger
|
||||
@@ -33,17 +31,6 @@ def consolidate_research(
|
||||
|
||||
search_tool = graph_config.tooling.search_tool
|
||||
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=" generating the answer\n\n\n",
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if search_tool is None or graph_config.inputs.persona is None:
|
||||
raise ValueError("Search tool and persona must be provided for DivCon search")
|
||||
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def send_to_expanded_retrieval(state: SubQuestionAnsweringInput) -> Send | Hashable:
|
||||
"""
|
||||
LangGraph edge to send a sub-question to the expanded retrieval.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
|
||||
return Send(
|
||||
"initial_sub_question_expanded_retrieval",
|
||||
ExpandedRetrievalInput(
|
||||
question=state.question,
|
||||
base_search=False,
|
||||
sub_question_id=state.question_id,
|
||||
log_messages=[f"{edge_start_time} -- Sending to expanded retrieval"],
|
||||
),
|
||||
)
|
||||
@@ -1,137 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.edges import (
|
||||
send_to_expanded_retrieval,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.check_sub_answer import (
|
||||
check_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.format_sub_answer import (
|
||||
format_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.generate_sub_answer import (
|
||||
generate_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.ingest_retrieved_documents import (
|
||||
ingest_retrieved_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def answer_query_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph sub-graph builder for the initial individual sub-answer generation.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=AnswerQuestionState,
|
||||
input=SubQuestionAnsweringInput,
|
||||
output=AnswerQuestionOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# The sub-graph that executes the expanded retrieval process for a sub-question
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="initial_sub_question_expanded_retrieval",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
|
||||
# The node that ingests the retrieved documents and puts them into the proper
|
||||
# state keys.
|
||||
graph.add_node(
|
||||
node="ingest_retrieval",
|
||||
action=ingest_retrieved_documents,
|
||||
)
|
||||
|
||||
# The node that generates the sub-answer
|
||||
graph.add_node(
|
||||
node="generate_sub_answer",
|
||||
action=generate_sub_answer,
|
||||
)
|
||||
|
||||
# The node that checks the sub-answer
|
||||
graph.add_node(
|
||||
node="answer_check",
|
||||
action=check_sub_answer,
|
||||
)
|
||||
|
||||
# The node that formats the sub-answer for the following initial answer generation
|
||||
graph.add_node(
|
||||
node="format_answer",
|
||||
action=format_sub_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source=START,
|
||||
path=send_to_expanded_retrieval,
|
||||
path_map=["initial_sub_question_expanded_retrieval"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="initial_sub_question_expanded_retrieval",
|
||||
end_key="ingest_retrieval",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="ingest_retrieval",
|
||||
end_key="generate_sub_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="generate_sub_answer",
|
||||
end_key="answer_check",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_check",
|
||||
end_key="format_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = answer_query_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="what can you do with onyx or danswer?",
|
||||
)
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
graph_config, search_tool = get_test_config(
|
||||
db_session, primary_llm, fast_llm, search_request
|
||||
)
|
||||
inputs = SubQuestionAnsweringInput(
|
||||
question="what can you do with onyx?",
|
||||
question_id="0_0",
|
||||
log_messages=[],
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
config={"configurable": {"config": graph_config}},
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,136 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnswerCheckUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
binary_string_test,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_POSITIVE_VALUE_STR,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_CHECK
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
|
||||
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
|
||||
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def check_sub_answer(
|
||||
state: AnswerQuestionState, config: RunnableConfig
|
||||
) -> SubQuestionAnswerCheckUpdate:
|
||||
"""
|
||||
LangGraph node to check the quality of the sub-answer. The answer
|
||||
is represented as a boolean value.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
level, question_num = parse_question_id(state.question_id)
|
||||
if state.answer == UNKNOWN_ANSWER:
|
||||
return SubQuestionAnswerCheckUpdate(
|
||||
answer_quality=False,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="check sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result="unknown answer",
|
||||
)
|
||||
],
|
||||
)
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=SUB_ANSWER_CHECK_PROMPT.format(
|
||||
question=state.question,
|
||||
base_answer=state.answer,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
agent_error: AgentErrorLog | None = None
|
||||
response: BaseMessage | None = None
|
||||
try:
|
||||
response = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_SUBANSWER_CHECK,
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
quality_str: str = cast(str, response.content)
|
||||
answer_quality = binary_string_test(
|
||||
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
|
||||
)
|
||||
log_result = f"Answer quality: {quality_str}"
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
answer_quality = True
|
||||
log_result = agent_error.error_result
|
||||
logger.error("LLM Timeout Error - check sub answer")
|
||||
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
|
||||
answer_quality = True
|
||||
log_result = agent_error.error_result
|
||||
logger.error("LLM Rate Limit Error - check sub answer")
|
||||
|
||||
return SubQuestionAnswerCheckUpdate(
|
||||
answer_quality=answer_quality,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="check sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result=log_result,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,30 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
|
||||
|
||||
def format_sub_answer(state: AnswerQuestionState) -> AnswerQuestionOutput:
|
||||
"""
|
||||
LangGraph node to generate the sub-answer format.
|
||||
"""
|
||||
return AnswerQuestionOutput(
|
||||
answer_results=[
|
||||
SubQuestionAnswerResults(
|
||||
question=state.question,
|
||||
question_id=state.question_id,
|
||||
verified_high_quality=state.answer_quality,
|
||||
answer=state.answer,
|
||||
sub_query_retrieval_results=state.expanded_retrieval_results,
|
||||
verified_reranked_documents=state.verified_reranked_documents,
|
||||
context_documents=state.context_documents,
|
||||
cited_documents=state.cited_documents,
|
||||
sub_question_retrieval_stats=state.sub_question_retrieval_stats,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,185 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnswerGenerationUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_sub_question_answer_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.calculations import (
|
||||
dedup_sort_inference_section_list,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
LLM_ANSWER_ERROR_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_persona_agent_prompt_expressions,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
|
||||
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
|
||||
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def generate_sub_answer(
|
||||
state: AnswerQuestionState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> SubQuestionAnswerGenerationUpdate:
|
||||
"""
|
||||
LangGraph node to generate a sub-answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = state.question
|
||||
state.verified_reranked_documents
|
||||
level, question_num = parse_question_id(state.question_id)
|
||||
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
|
||||
|
||||
context_docs = dedup_sort_inference_section_list(context_docs)
|
||||
|
||||
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
|
||||
graph_config.inputs.persona
|
||||
).contextualized_prompt
|
||||
|
||||
if len(context_docs) == 0:
|
||||
answer_str = NO_RECOVERED_DOCS
|
||||
cited_documents: list = []
|
||||
log_results = "No documents retrieved"
|
||||
write_custom_event(
|
||||
"sub_answers",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=answer_str,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
answer_type="agent_sub_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
else:
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
msg = build_sub_question_answer_prompt(
|
||||
question=question,
|
||||
original_question=graph_config.inputs.prompt_builder.raw_user_query,
|
||||
docs=context_docs,
|
||||
persona_specification=persona_contextualized_prompt,
|
||||
config=fast_llm.config,
|
||||
)
|
||||
|
||||
agent_error: AgentErrorLog | None = None
|
||||
response: list[str] = []
|
||||
|
||||
try:
|
||||
response, _ = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION,
|
||||
lambda: stream_llm_answer(
|
||||
llm=fast_llm,
|
||||
prompt=msg,
|
||||
event_name="sub_answers",
|
||||
writer=writer,
|
||||
agent_answer_level=level,
|
||||
agent_answer_question_num=question_num,
|
||||
agent_answer_type="agent_sub_answer",
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBANSWER_GENERATION,
|
||||
),
|
||||
)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - generate sub answer")
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - generate sub answer")
|
||||
|
||||
if agent_error:
|
||||
answer_str = LLM_ANSWER_ERROR_MESSAGE
|
||||
cited_documents = []
|
||||
log_results = (
|
||||
agent_error.error_result
|
||||
or "Sub-answer generation failed due to LLM error"
|
||||
)
|
||||
|
||||
else:
|
||||
answer_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
answer_citation_ids = get_answer_citation_ids(answer_str)
|
||||
cited_documents = [
|
||||
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
|
||||
]
|
||||
log_results = None
|
||||
|
||||
stop_event = StreamStopInfo(
|
||||
stop_reason=StreamStopReason.FINISHED,
|
||||
stream_type=StreamType.SUB_ANSWER,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
)
|
||||
write_custom_event("stream_finished", stop_event, writer)
|
||||
|
||||
return SubQuestionAnswerGenerationUpdate(
|
||||
answer=answer_str,
|
||||
cited_documents=cited_documents,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="generate sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result=log_results or "",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,25 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionRetrievalIngestionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
|
||||
|
||||
def ingest_retrieved_documents(
|
||||
state: ExpandedRetrievalOutput,
|
||||
) -> SubQuestionRetrievalIngestionUpdate:
|
||||
"""
|
||||
LangGraph node to ingest the retrieved documents to format it for the sub-answer.
|
||||
"""
|
||||
sub_question_retrieval_stats = state.expanded_retrieval_result.retrieval_stats
|
||||
if sub_question_retrieval_stats is None:
|
||||
sub_question_retrieval_stats = [AgentChunkRetrievalStats()]
|
||||
|
||||
return SubQuestionRetrievalIngestionUpdate(
|
||||
expanded_retrieval_results=state.expanded_retrieval_result.expanded_query_results,
|
||||
verified_reranked_documents=state.expanded_retrieval_result.verified_reranked_documents,
|
||||
context_documents=state.expanded_retrieval_result.context_documents,
|
||||
sub_question_retrieval_stats=sub_question_retrieval_stats,
|
||||
)
|
||||
@@ -1,73 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.core_state import SubgraphCoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
## Update States
|
||||
class SubQuestionAnswerCheckUpdate(LoggerUpdate, BaseModel):
|
||||
answer_quality: bool = False
|
||||
log_messages: list[str] = []
|
||||
|
||||
|
||||
class SubQuestionAnswerGenerationUpdate(LoggerUpdate, BaseModel):
|
||||
answer: str = ""
|
||||
log_messages: list[str] = []
|
||||
cited_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
# answer_stat: AnswerStats
|
||||
|
||||
|
||||
class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
|
||||
expanded_retrieval_results: list[QueryRetrievalResult] = []
|
||||
verified_reranked_documents: Annotated[
|
||||
list[InferenceSection], dedup_inference_sections
|
||||
] = []
|
||||
context_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
sub_question_retrieval_stats: AgentChunkRetrievalStats = AgentChunkRetrievalStats()
|
||||
|
||||
|
||||
## Graph Input State
|
||||
|
||||
|
||||
class SubQuestionAnsweringInput(SubgraphCoreState):
|
||||
question: str
|
||||
question_id: str
|
||||
# level 0 is original question and first decomposition, level 1 is follow up, etc
|
||||
# question_num is a unique number per original question per level.
|
||||
|
||||
|
||||
## Graph State
|
||||
|
||||
|
||||
class AnswerQuestionState(
|
||||
SubQuestionAnsweringInput,
|
||||
SubQuestionAnswerGenerationUpdate,
|
||||
SubQuestionAnswerCheckUpdate,
|
||||
SubQuestionRetrievalIngestionUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
|
||||
|
||||
class AnswerQuestionOutput(LoggerUpdate, BaseModel):
|
||||
"""
|
||||
This is a list of results even though each call of this subgraph only returns one result.
|
||||
This is because if we parallelize the answer query subgraph, there will be multiple
|
||||
results in a list so the add operator is used to add them together.
|
||||
"""
|
||||
|
||||
answer_results: Annotated[list[SubQuestionAnswerResults], add] = []
|
||||
@@ -1,50 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> list[Send | Hashable]:
|
||||
"""
|
||||
LangGraph edge to parallelize the initial sub-question answering. If there are no sub-questions,
|
||||
we send empty answers to the initial answer generation, and that answer would be generated
|
||||
solely based on the documents retrieved for the original question.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_query_subgraph",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,96 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.nodes.generate_initial_answer import (
|
||||
generate_initial_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.nodes.validate_initial_answer import (
|
||||
validate_initial_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.graph_builder import (
|
||||
generate_sub_answers_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.graph_builder import (
|
||||
retrieve_orig_question_docs_graph_builder,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def generate_initial_answer_graph_builder(test_mode: bool = False) -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the initial answer generation.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=SubQuestionRetrievalState,
|
||||
input=SubQuestionRetrievalInput,
|
||||
)
|
||||
|
||||
# The sub-graph that generates the initial sub-answers
|
||||
generate_sub_answers = generate_sub_answers_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="generate_sub_answers_subgraph",
|
||||
action=generate_sub_answers,
|
||||
)
|
||||
|
||||
# The sub-graph that retrieves the original question documents. This is run
|
||||
# in parallel with the sub-answer generation process
|
||||
retrieve_orig_question_docs = retrieve_orig_question_docs_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="retrieve_orig_question_docs_subgraph_wrapper",
|
||||
action=retrieve_orig_question_docs,
|
||||
)
|
||||
|
||||
# Node that generates the initial answer using the results of the previous
|
||||
# two sub-graphs
|
||||
graph.add_node(
|
||||
node="generate_initial_answer",
|
||||
action=generate_initial_answer,
|
||||
)
|
||||
|
||||
# Node that validates the initial answer
|
||||
graph.add_node(
|
||||
node="validate_initial_answer",
|
||||
action=validate_initial_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="retrieve_orig_question_docs_subgraph_wrapper",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="generate_sub_answers_subgraph",
|
||||
)
|
||||
|
||||
# Wait for both, the original question docs and the sub-answers to be generated before proceeding
|
||||
graph.add_edge(
|
||||
start_key=[
|
||||
"retrieve_orig_question_docs_subgraph_wrapper",
|
||||
"generate_sub_answers_subgraph",
|
||||
],
|
||||
end_key="generate_initial_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="generate_initial_answer",
|
||||
end_key="validate_initial_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="validate_initial_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
@@ -1,405 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import AgentBaseMetrics
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
calculate_initial_agent_stats,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
get_prompt_enrichment_components,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.calculations import (
|
||||
get_answer_generation_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_section_list,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import _should_restrict_tokens
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_deduplicated_structured_subquestion_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import relevance_from_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_citations
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
)
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
SUB_QUESTION_ANSWER_TEMPLATE,
|
||||
)
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="LLM Timeout Error. The initial answer could not be generated.",
|
||||
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
|
||||
general_error="General LLM Error. The initial answer could not be generated.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def generate_initial_answer(
|
||||
state: SubQuestionRetrievalState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> InitialAnswerUpdate:
|
||||
"""
|
||||
LangGraph node to generate the initial answer, using the initial sub-questions/sub-answers and the
|
||||
documents retrieved for the original question.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
|
||||
|
||||
# get all documents cited in sub-questions
|
||||
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
|
||||
state.sub_question_results
|
||||
)
|
||||
|
||||
orig_question_retrieval_documents = state.orig_question_retrieved_documents
|
||||
|
||||
consolidated_context_docs = structured_subquestion_docs.cited_documents
|
||||
counter = 0
|
||||
for original_doc in orig_question_retrieval_documents:
|
||||
if original_doc in structured_subquestion_docs.cited_documents:
|
||||
continue
|
||||
|
||||
if (
|
||||
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
):
|
||||
consolidated_context_docs.append(original_doc)
|
||||
counter += 1
|
||||
|
||||
# sort docs by their scores - though the scores refer to different questions
|
||||
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
|
||||
|
||||
sub_questions: list[str] = []
|
||||
|
||||
# Create the list of documents to stream out. Start with the
|
||||
# ones that wil be in the context (or, if len == 0, use docs
|
||||
# that were retrieved for the original question)
|
||||
answer_generation_documents = get_answer_generation_documents(
|
||||
relevant_docs=relevant_docs,
|
||||
context_documents=structured_subquestion_docs.context_documents,
|
||||
original_question_docs=orig_question_retrieval_documents,
|
||||
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER,
|
||||
)
|
||||
|
||||
# Use the query info from the base document retrieval
|
||||
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
|
||||
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
|
||||
relevance_list = relevance_from_docs(
|
||||
answer_generation_documents.streaming_documents
|
||||
)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
get_retrieved_sections=lambda: answer_generation_documents.context_documents,
|
||||
get_final_context_sections=lambda: answer_generation_documents.context_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
):
|
||||
write_custom_event(
|
||||
"tool_response",
|
||||
ExtendedToolResponse(
|
||||
id=tool_response.id,
|
||||
response=tool_response.response,
|
||||
level=0,
|
||||
level_question_num=0, # 0, 0 is the base question
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if len(answer_generation_documents.context_documents) == 0:
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=UNKNOWN_ANSWER,
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
dispatch_main_answer_stop_info(0, writer)
|
||||
|
||||
answer = UNKNOWN_ANSWER
|
||||
initial_agent_stats = InitialAgentResultStats(
|
||||
sub_questions={},
|
||||
original_question={},
|
||||
agent_effectiveness={},
|
||||
)
|
||||
|
||||
else:
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
# Collect the sub-questions and sub-answers and construct an appropriate
|
||||
# prompt string.
|
||||
# Consider replacing by a function.
|
||||
answered_sub_questions: list[str] = []
|
||||
all_sub_questions: list[str] = [] # Separate list for tracking all questions
|
||||
|
||||
for idx, sub_question_answer_result in enumerate(
|
||||
sub_question_answer_results, start=1
|
||||
):
|
||||
all_sub_questions.append(sub_question_answer_result.question)
|
||||
|
||||
is_valid_answer = (
|
||||
sub_question_answer_result.verified_high_quality
|
||||
and sub_question_answer_result.answer
|
||||
and sub_question_answer_result.answer != UNKNOWN_ANSWER
|
||||
)
|
||||
|
||||
if is_valid_answer:
|
||||
answered_sub_questions.append(
|
||||
SUB_QUESTION_ANSWER_TEMPLATE.format(
|
||||
sub_question=sub_question_answer_result.question,
|
||||
sub_answer=sub_question_answer_result.answer,
|
||||
sub_question_num=idx,
|
||||
)
|
||||
)
|
||||
|
||||
sub_question_answer_str = (
|
||||
"\n\n------\n\n".join(answered_sub_questions)
|
||||
if answered_sub_questions
|
||||
else ""
|
||||
)
|
||||
|
||||
# Use the appropriate prompt based on whether there are sub-questions.
|
||||
base_prompt = (
|
||||
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
|
||||
if answered_sub_questions
|
||||
else INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS
|
||||
)
|
||||
|
||||
sub_questions = all_sub_questions # Replace the original assignment
|
||||
|
||||
model = (
|
||||
graph_config.tooling.fast_llm
|
||||
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
else graph_config.tooling.primary_llm
|
||||
)
|
||||
|
||||
doc_context = format_docs(answer_generation_documents.context_documents)
|
||||
doc_context = trim_prompt_piece(
|
||||
config=model.config,
|
||||
prompt_piece=doc_context,
|
||||
reserved_str=(
|
||||
base_prompt
|
||||
+ sub_question_answer_str
|
||||
+ prompt_enrichment_components.persona_prompts.contextualized_prompt
|
||||
+ prompt_enrichment_components.history
|
||||
+ prompt_enrichment_components.date_str
|
||||
),
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=base_prompt.format(
|
||||
question=question,
|
||||
answered_sub_questions=remove_document_citations(
|
||||
sub_question_answer_str
|
||||
),
|
||||
relevant_docs=doc_context,
|
||||
persona_specification=prompt_enrichment_components.persona_prompts.contextualized_prompt,
|
||||
history=prompt_enrichment_components.history,
|
||||
date_prompt=prompt_enrichment_components.date_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
streamed_tokens: list[str] = [""]
|
||||
dispatch_timings: list[float] = []
|
||||
|
||||
agent_error: AgentErrorLog | None = None
|
||||
|
||||
try:
|
||||
streamed_tokens, dispatch_timings = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
lambda: stream_llm_answer(
|
||||
llm=model,
|
||||
prompt=msg,
|
||||
event_name="initial_agent_answer",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
max_tokens=(
|
||||
AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
if _should_restrict_tokens(model.config)
|
||||
else None
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - generate initial answer")
|
||||
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - generate initial answer")
|
||||
|
||||
if agent_error:
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
StreamingError(
|
||||
error=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
return InitialAnswerUpdate(
|
||||
initial_answer=None,
|
||||
answer_error=AgentErrorLog(
|
||||
error_message=agent_error.error_message or "An LLM error occurred",
|
||||
error_type=agent_error.error_type,
|
||||
error_result=agent_error.error_result,
|
||||
),
|
||||
initial_agent_stats=None,
|
||||
generated_sub_questions=sub_questions,
|
||||
agent_base_end_time=None,
|
||||
agent_base_metrics=None,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate initial answer",
|
||||
node_name="generate initial answer",
|
||||
node_start_time=node_start_time,
|
||||
result=agent_error.error_result or "An LLM error occurred",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"
|
||||
)
|
||||
|
||||
dispatch_main_answer_stop_info(0, writer)
|
||||
response = merge_content(*streamed_tokens)
|
||||
answer = cast(str, response)
|
||||
|
||||
initial_agent_stats = calculate_initial_agent_stats(
|
||||
state.sub_question_results, state.orig_question_retrieval_stats
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"\n\nYYYYY--Sub-Questions:\n\n{sub_question_answer_str}\n\nStats:\n\n"
|
||||
)
|
||||
|
||||
if initial_agent_stats:
|
||||
logger.debug(initial_agent_stats.original_question)
|
||||
logger.debug(initial_agent_stats.sub_questions)
|
||||
logger.debug(initial_agent_stats.agent_effectiveness)
|
||||
|
||||
agent_base_end_time = datetime.now()
|
||||
|
||||
if agent_base_end_time and state.agent_start_time:
|
||||
duration_s = (agent_base_end_time - state.agent_start_time).total_seconds()
|
||||
else:
|
||||
duration_s = None
|
||||
|
||||
agent_base_metrics = AgentBaseMetrics(
|
||||
num_verified_documents_total=len(relevant_docs),
|
||||
num_verified_documents_core=state.orig_question_retrieval_stats.verified_count,
|
||||
verified_avg_score_core=state.orig_question_retrieval_stats.verified_avg_scores,
|
||||
num_verified_documents_base=initial_agent_stats.sub_questions.get(
|
||||
"num_verified_documents"
|
||||
),
|
||||
verified_avg_score_base=initial_agent_stats.sub_questions.get(
|
||||
"verified_avg_score"
|
||||
),
|
||||
base_doc_boost_factor=initial_agent_stats.agent_effectiveness.get(
|
||||
"utilized_chunk_ratio"
|
||||
),
|
||||
support_boost_factor=initial_agent_stats.agent_effectiveness.get(
|
||||
"support_ratio"
|
||||
),
|
||||
duration_s=duration_s,
|
||||
)
|
||||
|
||||
return InitialAnswerUpdate(
|
||||
initial_answer=answer,
|
||||
initial_agent_stats=initial_agent_stats,
|
||||
generated_sub_questions=sub_questions,
|
||||
agent_base_end_time=agent_base_end_time,
|
||||
agent_base_metrics=agent_base_metrics,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate initial answer",
|
||||
node_name="generate initial answer",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,42 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerQualityUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def validate_initial_answer(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> InitialAnswerQualityUpdate:
|
||||
"""
|
||||
Check whether the initial answer sufficiently addresses the original user question.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
logger.debug(
|
||||
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
|
||||
)
|
||||
|
||||
verdict = True # not actually required as already streamed out. Refinement will do similar
|
||||
|
||||
return InitialAnswerQualityUpdate(
|
||||
initial_answer_quality_eval=verdict,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate initial answer",
|
||||
node_name="validate initial answer",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
ExploratorySearchUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerQualityUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
OrigQuestionRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.models import (
|
||||
QuestionRetrievalResult,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
### States ###
|
||||
class SubQuestionRetrievalInput(CoreState):
|
||||
exploratory_search_results: list[InferenceSection]
|
||||
|
||||
|
||||
## Graph State
|
||||
class SubQuestionRetrievalState(
|
||||
# This includes the core state
|
||||
SubQuestionRetrievalInput,
|
||||
InitialQuestionDecompositionUpdate,
|
||||
InitialAnswerUpdate,
|
||||
SubQuestionResultsUpdate,
|
||||
OrigQuestionRetrievalUpdate,
|
||||
InitialAnswerQualityUpdate,
|
||||
ExploratorySearchUpdate,
|
||||
):
|
||||
base_raw_search_result: Annotated[list[QuestionRetrievalResult], add]
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class SubQuestionRetrievalOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
@@ -1,48 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> list[Send | Hashable]:
|
||||
"""
|
||||
LangGraph edge to parallelize the initial sub-question answering.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_sub_question_subgraphs",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,81 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.graph_builder import (
|
||||
answer_query_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.edges import (
|
||||
parallelize_initial_sub_question_answering,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.nodes.decompose_orig_question import (
|
||||
decompose_orig_question,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.nodes.format_initial_sub_answers import (
|
||||
format_initial_sub_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.states import (
|
||||
SubQuestionAnsweringState,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
test_mode = False
|
||||
|
||||
|
||||
def generate_sub_answers_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the initial sub-answer generation process.
|
||||
It generates the initial sub-questions and produces the answers.
|
||||
"""
|
||||
|
||||
graph = StateGraph(
|
||||
state_schema=SubQuestionAnsweringState,
|
||||
input=SubQuestionAnsweringInput,
|
||||
)
|
||||
|
||||
# Decompose the original question into sub-questions
|
||||
graph.add_node(
|
||||
node="decompose_orig_question",
|
||||
action=decompose_orig_question,
|
||||
)
|
||||
|
||||
# The sub-graph that executes the initial sub-question answering for
|
||||
# each of the sub-questions.
|
||||
answer_sub_question_subgraphs = answer_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_sub_question_subgraphs",
|
||||
action=answer_sub_question_subgraphs,
|
||||
)
|
||||
|
||||
# Node that collects and formats the initial sub-question answers
|
||||
graph.add_node(
|
||||
node="format_initial_sub_question_answers",
|
||||
action=format_initial_sub_answers,
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="decompose_orig_question",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="decompose_orig_question",
|
||||
path=parallelize_initial_sub_question_answering,
|
||||
path_map=["answer_sub_question_subgraphs"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key=["answer_sub_question_subgraphs"],
|
||||
end_key="format_initial_sub_question_answers",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_initial_sub_question_answers",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
@@ -1,190 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentRefinedMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import dispatch_subquestion
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
dispatch_subquestion_sep,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_history_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUESTION_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
|
||||
)
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="LLM Timeout Error. Sub-questions could not be generated.",
|
||||
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
|
||||
general_error="General LLM Error. Sub-questions could not be generated.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def decompose_orig_question(
|
||||
state: SubQuestionRetrievalState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> InitialQuestionDecompositionUpdate:
|
||||
"""
|
||||
LangGraph node to decompose the original question into sub-questions.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
perform_initial_search_decomposition = (
|
||||
graph_config.behavior.perform_initial_search_decomposition
|
||||
)
|
||||
# Get the rewritten queries in a defined format
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
history = build_history_prompt(graph_config, question)
|
||||
|
||||
# Use the initial search results to inform the decomposition
|
||||
agent_start_time = datetime.now()
|
||||
|
||||
# Initial search to inform decomposition. Just get top 3 fits
|
||||
|
||||
if perform_initial_search_decomposition:
|
||||
# Due to unfortunate state representation in LangGraph, we need here to double check that the retrieval has
|
||||
# happened prior to this point, allowing silent failure here since it is not critical for decomposition in
|
||||
# all queries.
|
||||
if not state.exploratory_search_results:
|
||||
logger.error("Initial search for decomposition failed")
|
||||
|
||||
sample_doc_str = "\n\n".join(
|
||||
[
|
||||
doc.combined_content
|
||||
for doc in state.exploratory_search_results[
|
||||
:AGENT_NUM_DOCS_FOR_DECOMPOSITION
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT.format(
|
||||
question=question, sample_doc_str=sample_doc_str, history=history
|
||||
)
|
||||
|
||||
else:
|
||||
decomposition_prompt = (
|
||||
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT.format(
|
||||
question=question, history=history
|
||||
)
|
||||
)
|
||||
|
||||
# Start decomposition
|
||||
|
||||
msg = [HumanMessage(content=decomposition_prompt)]
|
||||
|
||||
# Send the initial question as a subquestion with number 0
|
||||
write_custom_event(
|
||||
"decomp_qs",
|
||||
SubQuestionPiece(
|
||||
sub_question=question,
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
# dispatches custom events for subquestion tokens, adding in subquestion ids.
|
||||
|
||||
streamed_tokens: list[BaseMessage_Content] = []
|
||||
|
||||
try:
|
||||
streamed_tokens = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
|
||||
dispatch_separated,
|
||||
model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUESTION_GENERATION,
|
||||
),
|
||||
dispatch_subquestion(0, writer),
|
||||
sep_callback=dispatch_subquestion_sep(0, writer),
|
||||
)
|
||||
|
||||
decomposition_response = merge_content(*streamed_tokens)
|
||||
|
||||
list_of_subqs = cast(str, decomposition_response).split("\n")
|
||||
|
||||
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
|
||||
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
|
||||
|
||||
stop_event = StreamStopInfo(
|
||||
stop_reason=StreamStopReason.FINISHED,
|
||||
stream_type=StreamType.SUB_QUESTIONS,
|
||||
level=0,
|
||||
)
|
||||
write_custom_event("stream_finished", stop_event, writer)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError) as e:
|
||||
logger.error("LLM Timeout Error - decompose orig question")
|
||||
raise e # fail loudly on this critical step
|
||||
except LLMRateLimitError as e:
|
||||
logger.error("LLM Rate Limit Error - decompose orig question")
|
||||
raise e
|
||||
|
||||
return InitialQuestionDecompositionUpdate(
|
||||
initial_sub_questions=initial_sub_questions,
|
||||
agent_start_time=agent_start_time,
|
||||
agent_refined_start_time=None,
|
||||
agent_refined_end_time=None,
|
||||
agent_refined_metrics=AgentRefinedMetrics(
|
||||
refined_doc_boost_factor=None,
|
||||
refined_question_boost_factor=None,
|
||||
duration_s=None,
|
||||
),
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate sub answers",
|
||||
node_name="decompose original question",
|
||||
node_start_time=node_start_time,
|
||||
result=log_result,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,50 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def format_initial_sub_answers(
|
||||
state: AnswerQuestionOutput,
|
||||
) -> SubQuestionResultsUpdate:
|
||||
"""
|
||||
LangGraph node to format the answers to the initial sub-questions, including
|
||||
deduping verified documents and context documents.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
documents = []
|
||||
context_documents = []
|
||||
cited_documents = []
|
||||
answer_results = state.answer_results
|
||||
for answer_result in answer_results:
|
||||
documents.extend(answer_result.verified_reranked_documents)
|
||||
context_documents.extend(answer_result.context_documents)
|
||||
cited_documents.extend(answer_result.cited_documents)
|
||||
|
||||
return SubQuestionResultsUpdate(
|
||||
# Deduping is done by the documents operator for the main graph
|
||||
# so we might not need to dedup here
|
||||
verified_reranked_documents=dedup_inference_sections(documents, []),
|
||||
context_documents=dedup_inference_sections(context_documents, []),
|
||||
cited_documents=dedup_inference_sections(cited_documents, []),
|
||||
sub_question_results=answer_results,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate sub answers",
|
||||
node_name="format initial sub answers",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,34 +0,0 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
### States ###
|
||||
class SubQuestionAnsweringInput(CoreState):
|
||||
exploratory_search_results: list[InferenceSection]
|
||||
|
||||
|
||||
## Graph State
|
||||
class SubQuestionAnsweringState(
|
||||
# This includes the core state
|
||||
SubQuestionAnsweringInput,
|
||||
InitialQuestionDecompositionUpdate,
|
||||
InitialAnswerUpdate,
|
||||
SubQuestionResultsUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class SubQuestionAnsweringOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
@@ -1,81 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.nodes.format_orig_question_search_input import (
|
||||
format_orig_question_search_input,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.nodes.format_orig_question_search_output import (
|
||||
format_orig_question_search_output,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
|
||||
|
||||
def retrieve_orig_question_docs_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the retrieval of documents
|
||||
that are relevant to the original question. This is
|
||||
largely a wrapper around the expanded retrieval process to
|
||||
ensure parallelism with the sub-question answer process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=BaseRawSearchState,
|
||||
input=BaseRawSearchInput,
|
||||
output=BaseRawSearchOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# Format the original question search output
|
||||
graph.add_node(
|
||||
node="format_orig_question_search_output",
|
||||
action=format_orig_question_search_output,
|
||||
)
|
||||
|
||||
# The sub-graph that executes the expanded retrieval process
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="retrieve_orig_question_docs_subgraph",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
|
||||
# Format the original question search input
|
||||
graph.add_node(
|
||||
node="format_orig_question_search_input",
|
||||
action=format_orig_question_search_input,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="format_orig_question_search_input")
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_orig_question_search_input",
|
||||
end_key="retrieve_orig_question_docs_subgraph",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="retrieve_orig_question_docs_subgraph",
|
||||
end_key="format_orig_question_search_output",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_orig_question_search_output",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
@@ -1,28 +0,0 @@
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def format_orig_question_search_input(
|
||||
state: CoreState, config: RunnableConfig
|
||||
) -> ExpandedRetrievalInput:
|
||||
"""
|
||||
LangGraph node to format the search input for the original question.
|
||||
"""
|
||||
logger.debug("generate_raw_search_data")
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
return ExpandedRetrievalInput(
|
||||
question=graph_config.inputs.prompt_builder.raw_user_query,
|
||||
base_search=True,
|
||||
sub_question_id=None, # This graph is always and only used for the original question
|
||||
log_messages=[],
|
||||
)
|
||||
@@ -1,30 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.main.states import OrigQuestionRetrievalUpdate
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def format_orig_question_search_output(
|
||||
state: ExpandedRetrievalOutput,
|
||||
) -> OrigQuestionRetrievalUpdate:
|
||||
"""
|
||||
LangGraph node to format the search result for the original question into the
|
||||
proper format.
|
||||
"""
|
||||
sub_question_retrieval_stats = state.expanded_retrieval_result.retrieval_stats
|
||||
if sub_question_retrieval_stats is None:
|
||||
sub_question_retrieval_stats = AgentChunkRetrievalStats()
|
||||
else:
|
||||
sub_question_retrieval_stats = sub_question_retrieval_stats
|
||||
|
||||
return OrigQuestionRetrievalUpdate(
|
||||
orig_question_verified_reranked_documents=state.expanded_retrieval_result.verified_reranked_documents,
|
||||
orig_question_sub_query_retrieval_results=state.expanded_retrieval_result.expanded_query_results,
|
||||
orig_question_retrieved_documents=state.retrieved_documents,
|
||||
orig_question_retrieval_stats=sub_question_retrieval_stats,
|
||||
log_messages=[],
|
||||
)
|
||||
@@ -1,29 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
OrigQuestionRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class BaseRawSearchInput(ExpandedRetrievalInput):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class BaseRawSearchOutput(OrigQuestionRetrievalUpdate):
|
||||
"""
|
||||
This is a list of results even though each call of this subgraph only returns one result.
|
||||
This is because if we parallelize the answer query subgraph, there will be multiple
|
||||
results in a list so the add operator is used to add them together.
|
||||
"""
|
||||
|
||||
# base_expanded_retrieval_result: QuestionRetrievalResult = QuestionRetrievalResult()
|
||||
|
||||
|
||||
## Graph State
|
||||
class BaseRawSearchState(
|
||||
BaseRawSearchInput, BaseRawSearchOutput, OrigQuestionRetrievalUpdate
|
||||
):
|
||||
pass
|
||||
@@ -1,113 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
from typing import Literal
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RequireRefinemenEvalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def route_initial_tool_choice(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> Literal["call_tool", "start_agent_search", "logging_node"]:
|
||||
"""
|
||||
LangGraph edge to route to agent search.
|
||||
"""
|
||||
agent_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if state.tool_choice is None:
|
||||
return "logging_node"
|
||||
|
||||
if (
|
||||
agent_config.behavior.use_agentic_search
|
||||
and agent_config.tooling.search_tool is not None
|
||||
and state.tool_choice.tool.name == agent_config.tooling.search_tool.name
|
||||
):
|
||||
return "start_agent_search"
|
||||
else:
|
||||
return "call_tool"
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: MainState,
|
||||
) -> list[Send | Hashable]:
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_query_subgraph",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
# Define the function that determines whether to continue or not
|
||||
def continue_to_refined_answer_or_end(
|
||||
state: RequireRefinemenEvalUpdate,
|
||||
) -> Literal["create_refined_sub_questions", "logging_node"]:
|
||||
if state.require_refined_answer_eval:
|
||||
return "create_refined_sub_questions"
|
||||
else:
|
||||
return "logging_node"
|
||||
|
||||
|
||||
def parallelize_refined_sub_question_answering(
|
||||
state: MainState,
|
||||
) -> list[Send | Hashable]:
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.refined_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_refined_question_subgraphs",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question_data.sub_question,
|
||||
question_id=make_question_id(1, question_num),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Refined Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question_data in state.refined_sub_questions.items()
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_refined_sub_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,263 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.graph_builder import (
|
||||
generate_initial_answer_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
continue_to_refined_answer_or_end,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
parallelize_refined_sub_question_answering,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
route_initial_tool_choice,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.compare_answers import (
|
||||
compare_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.create_refined_sub_questions import (
|
||||
create_refined_sub_questions,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need import (
|
||||
decide_refinement_need,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
|
||||
extract_entities_terms,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.generate_validate_refined_answer import (
|
||||
generate_validate_refined_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
|
||||
ingest_refined_sub_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.persist_agent_results import (
|
||||
persist_agent_results,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.start_agent_search import (
|
||||
start_agent_search,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainInput
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.graph_builder import (
|
||||
answer_refined_query_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
|
||||
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
|
||||
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
|
||||
prepare_tool_input,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
|
||||
basic_use_tool_response,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
test_mode = False
|
||||
|
||||
|
||||
def agent_search_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the main agent search process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=MainState,
|
||||
input=MainInput,
|
||||
)
|
||||
|
||||
# Prepare the tool input
|
||||
graph.add_node(
|
||||
node="prepare_tool_input",
|
||||
action=prepare_tool_input,
|
||||
)
|
||||
|
||||
# Choose the initial tool
|
||||
graph.add_node(
|
||||
node="choose_tool",
|
||||
action=choose_tool,
|
||||
)
|
||||
|
||||
# Call the tool, if required
|
||||
graph.add_node(
|
||||
node="call_tool",
|
||||
action=call_tool,
|
||||
)
|
||||
|
||||
# Use the tool response
|
||||
graph.add_node(
|
||||
node="basic_use_tool_response",
|
||||
action=basic_use_tool_response,
|
||||
)
|
||||
|
||||
# Start the agent search process
|
||||
graph.add_node(
|
||||
node="start_agent_search",
|
||||
action=start_agent_search,
|
||||
)
|
||||
|
||||
# The sub-graph for the initial answer generation
|
||||
generate_initial_answer_subgraph = generate_initial_answer_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="generate_initial_answer_subgraph",
|
||||
action=generate_initial_answer_subgraph,
|
||||
)
|
||||
|
||||
# Create the refined sub-questions
|
||||
graph.add_node(
|
||||
node="create_refined_sub_questions",
|
||||
action=create_refined_sub_questions,
|
||||
)
|
||||
|
||||
# Subgraph for the refined sub-answer generation
|
||||
answer_refined_question = answer_refined_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_refined_question_subgraphs",
|
||||
action=answer_refined_question,
|
||||
)
|
||||
|
||||
# Ingest the refined sub-answers
|
||||
graph.add_node(
|
||||
node="ingest_refined_sub_answers",
|
||||
action=ingest_refined_sub_answers,
|
||||
)
|
||||
|
||||
# Node to generate the refined answer
|
||||
graph.add_node(
|
||||
node="generate_validate_refined_answer",
|
||||
action=generate_validate_refined_answer,
|
||||
)
|
||||
|
||||
# Early node to extract the entities and terms from the initial answer,
|
||||
# This information is used to inform the creation the refined sub-questions
|
||||
graph.add_node(
|
||||
node="extract_entity_term",
|
||||
action=extract_entities_terms,
|
||||
)
|
||||
|
||||
# Decide if the answer needs to be refined (currently always true)
|
||||
graph.add_node(
|
||||
node="decide_refinement_need",
|
||||
action=decide_refinement_need,
|
||||
)
|
||||
|
||||
# Compare the initial and refined answers, and determine whether
|
||||
# the refined answer is sufficiently better
|
||||
graph.add_node(
|
||||
node="compare_answers",
|
||||
action=compare_answers,
|
||||
)
|
||||
|
||||
# Log the results. This will log the stats as well as the answers, sub-questions, and sub-answers
|
||||
graph.add_node(
|
||||
node="logging_node",
|
||||
action=persist_agent_results,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="prepare_tool_input")
|
||||
|
||||
graph.add_edge(
|
||||
start_key="prepare_tool_input",
|
||||
end_key="choose_tool",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
"choose_tool",
|
||||
route_initial_tool_choice,
|
||||
["call_tool", "start_agent_search", "logging_node"],
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="call_tool",
|
||||
end_key="basic_use_tool_response",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="basic_use_tool_response",
|
||||
end_key="logging_node",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="start_agent_search",
|
||||
end_key="generate_initial_answer_subgraph",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="start_agent_search",
|
||||
end_key="extract_entity_term",
|
||||
)
|
||||
|
||||
# Wait for the initial answer generation and the entity/term extraction to be complete
|
||||
# before deciding if a refinement is needed.
|
||||
graph.add_edge(
|
||||
start_key=["generate_initial_answer_subgraph", "extract_entity_term"],
|
||||
end_key="decide_refinement_need",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="decide_refinement_need",
|
||||
path=continue_to_refined_answer_or_end,
|
||||
path_map=["create_refined_sub_questions", "logging_node"],
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="create_refined_sub_questions",
|
||||
path=parallelize_refined_sub_question_answering,
|
||||
path_map=["answer_refined_question_subgraphs"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_refined_question_subgraphs",
|
||||
end_key="ingest_refined_sub_answers",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="ingest_refined_sub_answers",
|
||||
end_key="generate_validate_refined_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="generate_validate_refined_answer",
|
||||
end_key="compare_answers",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="compare_answers",
|
||||
end_key="logging_node",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="logging_node",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = agent_search_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
search_request = SearchRequest(query="Who created Excel?")
|
||||
graph_config = get_test_config(
|
||||
db_session, primary_llm, fast_llm, search_request
|
||||
)
|
||||
|
||||
inputs = MainInput(log_messages=[])
|
||||
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
config={"configurable": {"config": graph_config}},
|
||||
stream_mode="custom",
|
||||
subgraphs=True,
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,168 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialRefinedAnswerComparisonUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
binary_string_test,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_POSITIVE_VALUE_STR,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import RefinedAnswerImprovement
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_COMPARE_ANSWERS
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="The LLM timed out, and the answers could not be compared.",
|
||||
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
|
||||
general_error="The LLM encountered an error, and the answers could not be compared.",
|
||||
)
|
||||
|
||||
_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE = (
|
||||
"Answer quality is not sufficient, so stay with the initial answer."
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def compare_answers(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> InitialRefinedAnswerComparisonUpdate:
|
||||
"""
|
||||
LangGraph node to compare the initial answer and the refined answer and determine if the
|
||||
refined answer is sufficiently better than the initial answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
initial_answer = state.initial_answer
|
||||
refined_answer = state.refined_answer
|
||||
|
||||
# if answer quality is not sufficient, then stay with the initial answer
|
||||
if not state.refined_answer_quality:
|
||||
write_custom_event(
|
||||
"refined_answer_improvement",
|
||||
RefinedAnswerImprovement(
|
||||
refined_answer_improvement=False,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return InitialRefinedAnswerComparisonUpdate(
|
||||
refined_answer_improvement_eval=False,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="compare answers",
|
||||
node_start_time=node_start_time,
|
||||
result=_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
|
||||
question=question, initial_answer=initial_answer, refined_answer=refined_answer
|
||||
)
|
||||
|
||||
msg = [HumanMessage(content=compare_answers_prompt)]
|
||||
|
||||
agent_error: AgentErrorLog | None = None
|
||||
# Get the rewritten queries in a defined format
|
||||
model = graph_config.tooling.fast_llm
|
||||
resp: BaseMessage | None = None
|
||||
refined_answer_improvement: bool | None = None
|
||||
# no need to stream this
|
||||
try:
|
||||
resp = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_COMPARE_ANSWERS,
|
||||
model.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - compare answers")
|
||||
# continue as True in this support step
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - compare answers")
|
||||
# continue as True in this support step
|
||||
|
||||
if agent_error or resp is None:
|
||||
refined_answer_improvement = True
|
||||
if agent_error:
|
||||
log_result = agent_error.error_result
|
||||
else:
|
||||
log_result = "An answer could not be generated."
|
||||
|
||||
else:
|
||||
refined_answer_improvement = binary_string_test(
|
||||
text=cast(str, resp.content),
|
||||
positive_value=AGENT_POSITIVE_VALUE_STR,
|
||||
)
|
||||
log_result = f"Answer comparison: {refined_answer_improvement}"
|
||||
|
||||
write_custom_event(
|
||||
"refined_answer_improvement",
|
||||
RefinedAnswerImprovement(
|
||||
refined_answer_improvement=refined_answer_improvement,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return InitialRefinedAnswerComparisonUpdate(
|
||||
refined_answer_improvement_eval=refined_answer_improvement,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="compare answers",
|
||||
node_start_time=node_start_time,
|
||||
result=log_result,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,213 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
RefinementSubQuestion,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import dispatch_subquestion
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
dispatch_subquestion_sep,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RefinedQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_history_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
format_entity_term_extraction,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUESTION_GENERATION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
)
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS,
|
||||
)
|
||||
from onyx.tools.models import ToolCallKickoff
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_ANSWERED_SUBQUESTIONS_DIVIDER = "\n\n---\n\n"
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="The LLM timed out. The sub-questions could not be generated.",
|
||||
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
|
||||
general_error="The LLM encountered an error. The sub-questions could not be generated.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def create_refined_sub_questions(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> RefinedQuestionDecompositionUpdate:
|
||||
"""
|
||||
LangGraph node to create refined sub-questions based on the initial answer, the history,
|
||||
the entity term extraction results found earlier, and the sub-questions that were answered and failed.
|
||||
"""
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
write_custom_event(
|
||||
"start_refined_answer_creation",
|
||||
ToolCallKickoff(
|
||||
tool_name="agent_search_1",
|
||||
tool_args={
|
||||
"query": graph_config.inputs.prompt_builder.raw_user_query,
|
||||
"answer": state.initial_answer,
|
||||
},
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
agent_refined_start_time = datetime.now()
|
||||
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
base_answer = state.initial_answer
|
||||
history = build_history_prompt(graph_config, question)
|
||||
# get the entity term extraction dict and properly format it
|
||||
entity_retlation_term_extractions = state.entity_relation_term_extractions
|
||||
|
||||
entity_term_extraction_str = format_entity_term_extraction(
|
||||
entity_retlation_term_extractions
|
||||
)
|
||||
|
||||
initial_question_answers = state.sub_question_results
|
||||
|
||||
addressed_subquestions_with_answers = [
|
||||
f"Subquestion: {x.question}\nSubanswer:\n{x.answer}"
|
||||
for x in initial_question_answers
|
||||
if x.verified_high_quality and x.answer
|
||||
]
|
||||
|
||||
failed_question_list = [
|
||||
x.question for x in initial_question_answers if not x.verified_high_quality
|
||||
]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS.format(
|
||||
question=question,
|
||||
history=history,
|
||||
entity_term_extraction_str=entity_term_extraction_str,
|
||||
base_answer=base_answer,
|
||||
answered_subquestions_with_answers=_ANSWERED_SUBQUESTIONS_DIVIDER.join(
|
||||
addressed_subquestions_with_answers
|
||||
),
|
||||
failed_sub_questions="\n - ".join(failed_question_list),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
agent_error: AgentErrorLog | None = None
|
||||
streamed_tokens: list[BaseMessage_Content] = []
|
||||
try:
|
||||
streamed_tokens = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
dispatch_separated,
|
||||
model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUESTION_GENERATION,
|
||||
),
|
||||
dispatch_subquestion(1, writer),
|
||||
sep_callback=dispatch_subquestion_sep(1, writer),
|
||||
)
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - create refined sub questions")
|
||||
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - create refined sub questions")
|
||||
|
||||
if agent_error:
|
||||
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
|
||||
log_result = agent_error.error_result
|
||||
write_custom_event(
|
||||
"refined_sub_question_creation_error",
|
||||
StreamingError(
|
||||
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
else:
|
||||
response = merge_content(*streamed_tokens)
|
||||
|
||||
if isinstance(response, str):
|
||||
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
|
||||
else:
|
||||
raise ValueError("LLM response is not a string")
|
||||
|
||||
refined_sub_question_dict = {}
|
||||
for sub_question_num, sub_question in enumerate(parsed_response):
|
||||
refined_sub_question = RefinementSubQuestion(
|
||||
sub_question=sub_question,
|
||||
sub_question_id=make_question_id(1, sub_question_num + 1),
|
||||
verified=False,
|
||||
answered=False,
|
||||
answer="",
|
||||
)
|
||||
|
||||
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
|
||||
|
||||
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
|
||||
|
||||
return RefinedQuestionDecompositionUpdate(
|
||||
refined_sub_questions=refined_sub_question_dict,
|
||||
agent_refined_start_time=agent_refined_start_time,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="create refined sub questions",
|
||||
node_start_time=node_start_time,
|
||||
result=log_result,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,56 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RequireRefinemenEvalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def decide_refinement_need(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> RequireRefinemenEvalUpdate:
|
||||
"""
|
||||
LangGraph node to decide if refinement is needed based on the initial answer and the question.
|
||||
At present, we always refine.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
|
||||
decision = graph_config.behavior.allow_refinement
|
||||
|
||||
if state.answer_error:
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=False,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="decide refinement need",
|
||||
node_start_time=node_start_time,
|
||||
result="Timeout Error",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
log_messages = [
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="decide refinement need",
|
||||
node_start_time=node_start_time,
|
||||
result=f"Refinement decision: {decision}",
|
||||
)
|
||||
]
|
||||
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=graph_config.behavior.allow_refinement and decision,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
@@ -1,142 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
EntityTermExtractionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import EntityExtractionResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
EntityRelationshipTermExtraction,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
)
|
||||
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
|
||||
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def extract_entities_terms(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> EntityTermExtractionUpdate:
|
||||
"""
|
||||
LangGraph node to extract entities, relationships, and terms from the initial search results.
|
||||
This data is used to inform particularly the sub-questions that are created for the refined answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if not graph_config.behavior.allow_refinement:
|
||||
return EntityTermExtractionUpdate(
|
||||
entity_relation_term_extractions=EntityRelationshipTermExtraction(
|
||||
entities=[],
|
||||
relationships=[],
|
||||
terms=[],
|
||||
),
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="extract entities terms",
|
||||
node_start_time=node_start_time,
|
||||
result="Refinement is not allowed",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
# first four lines duplicates from generate_initial_answer
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
initial_search_docs = state.exploratory_search_results[:NUM_EXPLORATORY_DOCS]
|
||||
|
||||
# start with the entity/term/extraction
|
||||
doc_context = format_docs(initial_search_docs)
|
||||
|
||||
# Calculation here is only approximate
|
||||
doc_context = trim_prompt_piece(
|
||||
config=graph_config.tooling.fast_llm.config,
|
||||
prompt_piece=doc_context,
|
||||
reserved_str=ENTITY_TERM_EXTRACTION_PROMPT
|
||||
+ question
|
||||
+ ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE,
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=ENTITY_TERM_EXTRACTION_PROMPT.format(
|
||||
question=question, context=doc_context
|
||||
)
|
||||
+ ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE,
|
||||
)
|
||||
]
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
# Grader
|
||||
try:
|
||||
llm_response = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
max_tokens=AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION,
|
||||
)
|
||||
|
||||
cleaned_response = (
|
||||
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
|
||||
)
|
||||
first_bracket = cleaned_response.find("{")
|
||||
last_bracket = cleaned_response.rfind("}")
|
||||
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
|
||||
|
||||
try:
|
||||
entity_extraction_result = EntityExtractionResult.model_validate_json(
|
||||
cleaned_response
|
||||
)
|
||||
except ValueError:
|
||||
logger.error(
|
||||
"Failed to parse LLM response as JSON in Entity-Term Extraction"
|
||||
)
|
||||
entity_extraction_result = EntityExtractionResult(
|
||||
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
|
||||
)
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
logger.error("LLM Timeout Error - extract entities terms")
|
||||
entity_extraction_result = EntityExtractionResult(
|
||||
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
|
||||
)
|
||||
|
||||
except LLMRateLimitError:
|
||||
logger.error("LLM Rate Limit Error - extract entities terms")
|
||||
entity_extraction_result = EntityExtractionResult(
|
||||
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
|
||||
)
|
||||
|
||||
return EntityTermExtractionUpdate(
|
||||
entity_relation_term_extractions=entity_extraction_result.retrieved_entities_relationships,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="extract entities terms",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,445 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentRefinedMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RefinedAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
binary_string_test_after_answer_separator,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
get_prompt_enrichment_components,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.calculations import (
|
||||
get_answer_generation_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import AGENT_ANSWER_SEPARATOR
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_POSITIVE_VALUE_STR,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_section_list,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import _should_restrict_tokens
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_deduplicated_structured_subquestion_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import relevance_from_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
remove_document_citations,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
|
||||
)
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINED_ANSWER_VALIDATION_PROMPT,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
|
||||
)
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="The LLM timed out. The refined answer could not be generated.",
|
||||
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
|
||||
general_error="The LLM encountered an error. The refined answer could not be generated.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def generate_validate_refined_answer(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> RefinedAnswerUpdate:
|
||||
"""
|
||||
LangGraph node to generate the refined answer and validate it.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
|
||||
|
||||
persona_contextualized_prompt = (
|
||||
prompt_enrichment_components.persona_prompts.contextualized_prompt
|
||||
)
|
||||
|
||||
verified_reranked_documents = state.verified_reranked_documents
|
||||
|
||||
# get all documents cited in sub-questions
|
||||
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
|
||||
state.sub_question_results
|
||||
)
|
||||
|
||||
original_question_verified_documents = (
|
||||
state.orig_question_verified_reranked_documents
|
||||
)
|
||||
original_question_retrieved_documents = state.orig_question_retrieved_documents
|
||||
|
||||
consolidated_context_docs = structured_subquestion_docs.cited_documents
|
||||
|
||||
counter = 0
|
||||
for original_doc in original_question_verified_documents:
|
||||
if original_doc not in structured_subquestion_docs.cited_documents:
|
||||
if (
|
||||
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
or len(consolidated_context_docs)
|
||||
< 1.5
|
||||
* AGENT_MAX_ANSWER_CONTEXT_DOCS # allow for larger context in refinement
|
||||
):
|
||||
consolidated_context_docs.append(original_doc)
|
||||
counter += 1
|
||||
|
||||
# sort docs by their scores - though the scores refer to different questions
|
||||
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
|
||||
|
||||
# Create the list of documents to stream out. Start with the
|
||||
# ones that wil be in the context (or, if len == 0, use docs
|
||||
# that were retrieved for the original question)
|
||||
answer_generation_documents = get_answer_generation_documents(
|
||||
relevant_docs=relevant_docs,
|
||||
context_documents=structured_subquestion_docs.context_documents,
|
||||
original_question_docs=original_question_retrieved_documents,
|
||||
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER,
|
||||
)
|
||||
|
||||
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
# stream refined answer docs, or original question docs if no relevant docs are found
|
||||
relevance_list = relevance_from_docs(
|
||||
answer_generation_documents.streaming_documents
|
||||
)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
get_retrieved_sections=lambda: answer_generation_documents.context_documents,
|
||||
get_final_context_sections=lambda: answer_generation_documents.context_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
):
|
||||
write_custom_event(
|
||||
"tool_response",
|
||||
ExtendedToolResponse(
|
||||
id=tool_response.id,
|
||||
response=tool_response.response,
|
||||
level=1,
|
||||
level_question_num=0, # 0, 0 is the base question
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if len(verified_reranked_documents) > 0:
|
||||
refined_doc_effectiveness = len(relevant_docs) / len(
|
||||
verified_reranked_documents
|
||||
)
|
||||
else:
|
||||
refined_doc_effectiveness = 10.0
|
||||
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
answered_sub_question_answer_list: list[str] = []
|
||||
sub_questions: list[str] = []
|
||||
initial_answered_sub_questions: set[str] = set()
|
||||
refined_answered_sub_questions: set[str] = set()
|
||||
|
||||
for i, result in enumerate(sub_question_answer_results, 1):
|
||||
question_level, _ = parse_question_id(result.question_id)
|
||||
sub_questions.append(result.question)
|
||||
|
||||
if (
|
||||
result.verified_high_quality
|
||||
and result.answer
|
||||
and result.answer != UNKNOWN_ANSWER
|
||||
):
|
||||
sub_question_type = "initial" if question_level == 0 else "refined"
|
||||
question_set = (
|
||||
initial_answered_sub_questions
|
||||
if question_level == 0
|
||||
else refined_answered_sub_questions
|
||||
)
|
||||
question_set.add(result.question)
|
||||
|
||||
answered_sub_question_answer_list.append(
|
||||
SUB_QUESTION_ANSWER_TEMPLATE_REFINED.format(
|
||||
sub_question=result.question,
|
||||
sub_answer=result.answer,
|
||||
sub_question_num=i,
|
||||
sub_question_type=sub_question_type,
|
||||
)
|
||||
)
|
||||
|
||||
# Calculate efficiency
|
||||
total_answered_questions = (
|
||||
initial_answered_sub_questions | refined_answered_sub_questions
|
||||
)
|
||||
revision_question_efficiency = (
|
||||
len(total_answered_questions) / len(initial_answered_sub_questions)
|
||||
if initial_answered_sub_questions
|
||||
else 10.0 if refined_answered_sub_questions else 1.0
|
||||
)
|
||||
|
||||
sub_question_answer_str = "\n\n------\n\n".join(
|
||||
set(answered_sub_question_answer_list)
|
||||
)
|
||||
initial_answer = state.initial_answer or ""
|
||||
|
||||
# Choose appropriate prompt template
|
||||
base_prompt = (
|
||||
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS
|
||||
if answered_sub_question_answer_list
|
||||
else REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS
|
||||
)
|
||||
|
||||
model = (
|
||||
graph_config.tooling.fast_llm
|
||||
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
else graph_config.tooling.primary_llm
|
||||
)
|
||||
|
||||
relevant_docs_str = format_docs(answer_generation_documents.context_documents)
|
||||
relevant_docs_str = trim_prompt_piece(
|
||||
config=model.config,
|
||||
prompt_piece=relevant_docs_str,
|
||||
reserved_str=base_prompt
|
||||
+ question
|
||||
+ sub_question_answer_str
|
||||
+ initial_answer
|
||||
+ persona_contextualized_prompt
|
||||
+ prompt_enrichment_components.history,
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=base_prompt.format(
|
||||
question=question,
|
||||
history=prompt_enrichment_components.history,
|
||||
answered_sub_questions=remove_document_citations(
|
||||
sub_question_answer_str
|
||||
),
|
||||
relevant_docs=relevant_docs_str,
|
||||
initial_answer=(
|
||||
remove_document_citations(initial_answer)
|
||||
if initial_answer
|
||||
else None
|
||||
),
|
||||
persona_specification=persona_contextualized_prompt,
|
||||
date_prompt=prompt_enrichment_components.date_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
streamed_tokens: list[str] = [""]
|
||||
dispatch_timings: list[float] = []
|
||||
agent_error: AgentErrorLog | None = None
|
||||
|
||||
try:
|
||||
streamed_tokens, dispatch_timings = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
|
||||
lambda: stream_llm_answer(
|
||||
llm=model,
|
||||
prompt=msg,
|
||||
event_name="refined_agent_answer",
|
||||
writer=writer,
|
||||
agent_answer_level=1,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
|
||||
max_tokens=(
|
||||
AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
if _should_restrict_tokens(model.config)
|
||||
else None
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - generate refined answer")
|
||||
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - generate refined answer")
|
||||
|
||||
if agent_error:
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
StreamingError(
|
||||
error=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return RefinedAnswerUpdate(
|
||||
refined_answer=None,
|
||||
refined_answer_quality=False, # TODO: replace this with the actual check value
|
||||
refined_agent_stats=None,
|
||||
agent_refined_end_time=None,
|
||||
agent_refined_metrics=AgentRefinedMetrics(
|
||||
refined_doc_boost_factor=0.0,
|
||||
refined_question_boost_factor=0.0,
|
||||
duration_s=None,
|
||||
),
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="generate refined answer",
|
||||
node_start_time=node_start_time,
|
||||
result=agent_error.error_result or "An LLM error occurred",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
|
||||
)
|
||||
dispatch_main_answer_stop_info(1, writer)
|
||||
response = merge_content(*streamed_tokens)
|
||||
answer = cast(str, response)
|
||||
|
||||
# run a validation step for the refined answer only
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REFINED_ANSWER_VALIDATION_PROMPT.format(
|
||||
question=question,
|
||||
history=prompt_enrichment_components.history,
|
||||
answered_sub_questions=sub_question_answer_str,
|
||||
relevant_docs=relevant_docs_str,
|
||||
proposed_answer=answer,
|
||||
persona_specification=persona_contextualized_prompt,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
validation_model = graph_config.tooling.fast_llm
|
||||
try:
|
||||
validation_response = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
|
||||
validation_model.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
refined_answer_quality = binary_string_test_after_answer_separator(
|
||||
text=cast(str, validation_response.content),
|
||||
positive_value=AGENT_POSITIVE_VALUE_STR,
|
||||
separator=AGENT_ANSWER_SEPARATOR,
|
||||
)
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
refined_answer_quality = True
|
||||
logger.error("LLM Timeout Error - validate refined answer")
|
||||
|
||||
except LLMRateLimitError:
|
||||
refined_answer_quality = True
|
||||
logger.error("LLM Rate Limit Error - validate refined answer")
|
||||
|
||||
refined_agent_stats = RefinedAgentStats(
|
||||
revision_doc_efficiency=refined_doc_effectiveness,
|
||||
revision_question_efficiency=revision_question_efficiency,
|
||||
)
|
||||
|
||||
agent_refined_end_time = datetime.now()
|
||||
if state.agent_refined_start_time:
|
||||
agent_refined_duration = (
|
||||
agent_refined_end_time - state.agent_refined_start_time
|
||||
).total_seconds()
|
||||
else:
|
||||
agent_refined_duration = None
|
||||
|
||||
agent_refined_metrics = AgentRefinedMetrics(
|
||||
refined_doc_boost_factor=refined_agent_stats.revision_doc_efficiency,
|
||||
refined_question_boost_factor=refined_agent_stats.revision_question_efficiency,
|
||||
duration_s=agent_refined_duration,
|
||||
)
|
||||
|
||||
return RefinedAnswerUpdate(
|
||||
refined_answer=answer,
|
||||
refined_answer_quality=refined_answer_quality,
|
||||
refined_agent_stats=refined_agent_stats,
|
||||
agent_refined_end_time=agent_refined_end_time,
|
||||
agent_refined_metrics=agent_refined_metrics,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="generate refined answer",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,42 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def ingest_refined_sub_answers(
|
||||
state: AnswerQuestionOutput,
|
||||
) -> SubQuestionResultsUpdate:
|
||||
"""
|
||||
LangGraph node to ingest and format the refined sub-answers and retrieved documents.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
documents = []
|
||||
answer_results = state.answer_results
|
||||
for answer_result in answer_results:
|
||||
documents.extend(answer_result.verified_reranked_documents)
|
||||
|
||||
return SubQuestionResultsUpdate(
|
||||
# Deduping is done by the documents operator for the main graph
|
||||
# so we might not need to dedup here
|
||||
verified_reranked_documents=dedup_inference_sections(documents, []),
|
||||
sub_question_results=answer_results,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="ingest refined answers",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,129 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentAdditionalMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import AgentTimings
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainOutput
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import CombinedAgentMetrics
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.db.chat import log_agent_metrics
|
||||
from onyx.db.chat import log_agent_sub_question_results
|
||||
|
||||
|
||||
def persist_agent_results(state: MainState, config: RunnableConfig) -> MainOutput:
|
||||
"""
|
||||
LangGraph node to persist the agent results, including agent logging data.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
agent_start_time = state.agent_start_time
|
||||
agent_base_end_time = state.agent_base_end_time
|
||||
agent_refined_start_time = state.agent_refined_start_time
|
||||
agent_refined_end_time = state.agent_refined_end_time
|
||||
agent_end_time = agent_refined_end_time or agent_base_end_time
|
||||
|
||||
agent_base_duration = None
|
||||
if agent_base_end_time and agent_start_time:
|
||||
agent_base_duration = (agent_base_end_time - agent_start_time).total_seconds()
|
||||
|
||||
agent_refined_duration = None
|
||||
if agent_refined_start_time and agent_refined_end_time:
|
||||
agent_refined_duration = (
|
||||
agent_refined_end_time - agent_refined_start_time
|
||||
).total_seconds()
|
||||
|
||||
agent_full_duration = None
|
||||
if agent_end_time and agent_start_time:
|
||||
agent_full_duration = (agent_end_time - agent_start_time).total_seconds()
|
||||
|
||||
agent_type = "refined" if agent_refined_duration else "base"
|
||||
|
||||
agent_base_metrics = state.agent_base_metrics
|
||||
agent_refined_metrics = state.agent_refined_metrics
|
||||
|
||||
combined_agent_metrics = CombinedAgentMetrics(
|
||||
timings=AgentTimings(
|
||||
base_duration_s=agent_base_duration,
|
||||
refined_duration_s=agent_refined_duration,
|
||||
full_duration_s=agent_full_duration,
|
||||
),
|
||||
base_metrics=agent_base_metrics,
|
||||
refined_metrics=agent_refined_metrics,
|
||||
additional_metrics=AgentAdditionalMetrics(),
|
||||
)
|
||||
|
||||
persona_id = None
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if graph_config.inputs.persona:
|
||||
persona_id = graph_config.inputs.persona.id
|
||||
|
||||
user_id = None
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
user = graph_config.tooling.search_tool.user
|
||||
if user:
|
||||
user_id = user.id
|
||||
|
||||
# log the agent metrics
|
||||
if graph_config.persistence:
|
||||
if agent_base_duration is not None:
|
||||
log_agent_metrics(
|
||||
db_session=graph_config.persistence.db_session,
|
||||
user_id=user_id,
|
||||
persona_id=persona_id,
|
||||
agent_type=agent_type,
|
||||
start_time=agent_start_time,
|
||||
agent_metrics=combined_agent_metrics,
|
||||
)
|
||||
|
||||
# Persist the sub-answer in the database
|
||||
db_session = graph_config.persistence.db_session
|
||||
chat_session_id = graph_config.persistence.chat_session_id
|
||||
primary_message_id = graph_config.persistence.message_id
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
log_agent_sub_question_results(
|
||||
db_session=db_session,
|
||||
chat_session_id=chat_session_id,
|
||||
primary_message_id=primary_message_id,
|
||||
sub_question_answer_results=sub_question_answer_results,
|
||||
)
|
||||
|
||||
main_output = MainOutput(
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="persist agent results",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
for log_message in state.log_messages:
|
||||
logger.debug(log_message)
|
||||
|
||||
if state.agent_base_metrics:
|
||||
logger.debug(f"Initial loop: {state.agent_base_metrics.duration_s}")
|
||||
if state.agent_refined_metrics:
|
||||
logger.debug(f"Refined loop: {state.agent_refined_metrics.duration_s}")
|
||||
if (
|
||||
state.agent_base_metrics
|
||||
and state.agent_refined_metrics
|
||||
and state.agent_base_metrics.duration_s
|
||||
and state.agent_refined_metrics.duration_s
|
||||
):
|
||||
logger.debug(
|
||||
f"Total time: {float(state.agent_base_metrics.duration_s) + float(state.agent_refined_metrics.duration_s)}"
|
||||
)
|
||||
|
||||
return main_output
|
||||
@@ -1,52 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
ExploratorySearchUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_history_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import retrieve_search_docs
|
||||
from onyx.configs.agent_configs import AGENT_EXPLORATORY_SEARCH_RESULTS
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def start_agent_search(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> ExploratorySearchUpdate:
|
||||
"""
|
||||
LangGraph node to start the agentic search process.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
|
||||
history = build_history_prompt(graph_config, question)
|
||||
|
||||
# Initial search to inform decomposition. Just get top 3 fits
|
||||
search_tool = graph_config.tooling.search_tool
|
||||
assert search_tool, "search_tool must be provided for agentic search"
|
||||
retrieved_docs: list[InferenceSection] = retrieve_search_docs(search_tool, question)
|
||||
|
||||
exploratory_search_results = retrieved_docs[:AGENT_EXPLORATORY_SEARCH_RESULTS]
|
||||
|
||||
return ExploratorySearchUpdate(
|
||||
exploratory_search_results=exploratory_search_results,
|
||||
previous_history_summary=history,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="start agent search",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,148 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.tools.models import SearchQueryInfo
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def dispatch_subquestion(
|
||||
level: int, writer: StreamWriter
|
||||
) -> Callable[[str, int], None]:
|
||||
def _helper(sub_question_part: str, sep_num: int) -> None:
|
||||
write_custom_event(
|
||||
"decomp_qs",
|
||||
SubQuestionPiece(
|
||||
sub_question=sub_question_part,
|
||||
level=level,
|
||||
level_question_num=sep_num,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return _helper
|
||||
|
||||
|
||||
def dispatch_subquestion_sep(level: int, writer: StreamWriter) -> Callable[[int], None]:
|
||||
def _helper(sep_num: int) -> None:
|
||||
write_custom_event(
|
||||
"stream_finished",
|
||||
StreamStopInfo(
|
||||
stop_reason=StreamStopReason.FINISHED,
|
||||
stream_type=StreamType.SUB_QUESTIONS,
|
||||
level=level,
|
||||
level_question_num=sep_num,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return _helper
|
||||
|
||||
|
||||
def calculate_initial_agent_stats(
|
||||
decomp_answer_results: list[SubQuestionAnswerResults],
|
||||
original_question_stats: AgentChunkRetrievalStats,
|
||||
) -> InitialAgentResultStats:
|
||||
initial_agent_result_stats: InitialAgentResultStats = InitialAgentResultStats(
|
||||
sub_questions={},
|
||||
original_question={},
|
||||
agent_effectiveness={},
|
||||
)
|
||||
|
||||
orig_verified = original_question_stats.verified_count
|
||||
orig_support_score = original_question_stats.verified_avg_scores
|
||||
|
||||
verified_document_chunk_ids = []
|
||||
support_scores = 0.0
|
||||
|
||||
for decomp_answer_result in decomp_answer_results:
|
||||
verified_document_chunk_ids += (
|
||||
decomp_answer_result.sub_question_retrieval_stats.verified_doc_chunk_ids
|
||||
)
|
||||
if (
|
||||
decomp_answer_result.sub_question_retrieval_stats.verified_avg_scores
|
||||
is not None
|
||||
):
|
||||
support_scores += (
|
||||
decomp_answer_result.sub_question_retrieval_stats.verified_avg_scores
|
||||
)
|
||||
|
||||
verified_document_chunk_ids = list(set(verified_document_chunk_ids))
|
||||
|
||||
# Calculate sub-question stats
|
||||
if (
|
||||
verified_document_chunk_ids
|
||||
and len(verified_document_chunk_ids) > 0
|
||||
and support_scores is not None
|
||||
):
|
||||
sub_question_stats: dict[str, float | int | None] = {
|
||||
"num_verified_documents": len(verified_document_chunk_ids),
|
||||
"verified_avg_score": float(support_scores / len(decomp_answer_results)),
|
||||
}
|
||||
else:
|
||||
sub_question_stats = {"num_verified_documents": 0, "verified_avg_score": None}
|
||||
|
||||
initial_agent_result_stats.sub_questions.update(sub_question_stats)
|
||||
|
||||
# Get original question stats
|
||||
initial_agent_result_stats.original_question.update(
|
||||
{
|
||||
"num_verified_documents": original_question_stats.verified_count,
|
||||
"verified_avg_score": original_question_stats.verified_avg_scores,
|
||||
}
|
||||
)
|
||||
|
||||
# Calculate chunk utilization ratio
|
||||
sub_verified = initial_agent_result_stats.sub_questions["num_verified_documents"]
|
||||
|
||||
chunk_ratio: float | None = None
|
||||
if sub_verified is not None and orig_verified is not None and orig_verified > 0:
|
||||
chunk_ratio = (float(sub_verified) / orig_verified) if sub_verified > 0 else 0.0
|
||||
elif sub_verified is not None and sub_verified > 0:
|
||||
chunk_ratio = 10.0
|
||||
|
||||
initial_agent_result_stats.agent_effectiveness["utilized_chunk_ratio"] = chunk_ratio
|
||||
|
||||
if (
|
||||
orig_support_score is None
|
||||
or orig_support_score == 0.0
|
||||
and initial_agent_result_stats.sub_questions["verified_avg_score"] is None
|
||||
):
|
||||
initial_agent_result_stats.agent_effectiveness["support_ratio"] = None
|
||||
elif orig_support_score is None or orig_support_score == 0.0:
|
||||
initial_agent_result_stats.agent_effectiveness["support_ratio"] = 10
|
||||
elif initial_agent_result_stats.sub_questions["verified_avg_score"] is None:
|
||||
initial_agent_result_stats.agent_effectiveness["support_ratio"] = 0
|
||||
else:
|
||||
initial_agent_result_stats.agent_effectiveness["support_ratio"] = (
|
||||
initial_agent_result_stats.sub_questions["verified_avg_score"]
|
||||
/ orig_support_score
|
||||
)
|
||||
|
||||
return initial_agent_result_stats
|
||||
|
||||
|
||||
def get_query_info(results: list[QueryRetrievalResult]) -> SearchQueryInfo:
|
||||
# Use the query info from the base document retrieval
|
||||
# this is used for some fields that are the same across the searches done
|
||||
query_info = None
|
||||
for result in results:
|
||||
if result.query_info is not None:
|
||||
query_info = result.query_info
|
||||
break
|
||||
|
||||
assert query_info is not None, "must have query info"
|
||||
return query_info
|
||||
@@ -1,175 +0,0 @@
|
||||
from datetime import datetime
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.main.models import AgentBaseMetrics
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentRefinedMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
RefinementSubQuestion,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
EntityRelationshipTermExtraction,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_question_answer_results,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
### States ###
|
||||
class LoggerUpdate(BaseModel):
|
||||
log_messages: Annotated[list[str], add] = []
|
||||
|
||||
|
||||
class RefinedAgentStartStats(BaseModel):
|
||||
agent_refined_start_time: datetime | None = None
|
||||
|
||||
|
||||
class RefinedAgentEndStats(BaseModel):
|
||||
agent_refined_end_time: datetime | None = None
|
||||
agent_refined_metrics: AgentRefinedMetrics = AgentRefinedMetrics()
|
||||
|
||||
|
||||
class InitialQuestionDecompositionUpdate(
|
||||
RefinedAgentStartStats, RefinedAgentEndStats, LoggerUpdate
|
||||
):
|
||||
agent_start_time: datetime | None = None
|
||||
previous_history: str | None = None
|
||||
initial_sub_questions: list[str] = []
|
||||
|
||||
|
||||
class ExploratorySearchUpdate(LoggerUpdate):
|
||||
exploratory_search_results: list[InferenceSection] = []
|
||||
previous_history_summary: str | None = None
|
||||
|
||||
|
||||
class InitialRefinedAnswerComparisonUpdate(LoggerUpdate):
|
||||
"""
|
||||
Evaluation of whether the refined answer is better than the initial answer
|
||||
"""
|
||||
|
||||
refined_answer_improvement_eval: bool = False
|
||||
|
||||
|
||||
class InitialAnswerUpdate(LoggerUpdate):
|
||||
"""
|
||||
Initial answer information
|
||||
"""
|
||||
|
||||
initial_answer: str | None = None
|
||||
answer_error: AgentErrorLog | None = None
|
||||
initial_agent_stats: InitialAgentResultStats | None = None
|
||||
generated_sub_questions: list[str] = []
|
||||
agent_base_end_time: datetime | None = None
|
||||
agent_base_metrics: AgentBaseMetrics | None = None
|
||||
|
||||
|
||||
class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
|
||||
"""
|
||||
Refined answer information
|
||||
"""
|
||||
|
||||
refined_answer: str | None = None
|
||||
answer_error: AgentErrorLog | None = None
|
||||
refined_agent_stats: RefinedAgentStats | None = None
|
||||
refined_answer_quality: bool = False
|
||||
|
||||
|
||||
class InitialAnswerQualityUpdate(LoggerUpdate):
|
||||
"""
|
||||
Initial answer quality evaluation
|
||||
"""
|
||||
|
||||
initial_answer_quality_eval: bool = False
|
||||
|
||||
|
||||
class RequireRefinemenEvalUpdate(LoggerUpdate):
|
||||
require_refined_answer_eval: bool = True
|
||||
|
||||
|
||||
class SubQuestionResultsUpdate(LoggerUpdate):
|
||||
verified_reranked_documents: Annotated[
|
||||
list[InferenceSection], dedup_inference_sections
|
||||
] = []
|
||||
context_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
cited_documents: Annotated[list[InferenceSection], dedup_inference_sections] = (
|
||||
[]
|
||||
) # cited docs from sub-answers are used for answer context
|
||||
sub_question_results: Annotated[
|
||||
list[SubQuestionAnswerResults], dedup_question_answer_results
|
||||
] = []
|
||||
|
||||
|
||||
class OrigQuestionRetrievalUpdate(LoggerUpdate):
|
||||
orig_question_retrieved_documents: Annotated[
|
||||
list[InferenceSection], dedup_inference_sections
|
||||
]
|
||||
orig_question_verified_reranked_documents: Annotated[
|
||||
list[InferenceSection], dedup_inference_sections
|
||||
]
|
||||
orig_question_sub_query_retrieval_results: list[QueryRetrievalResult] = []
|
||||
orig_question_retrieval_stats: AgentChunkRetrievalStats = AgentChunkRetrievalStats()
|
||||
|
||||
|
||||
class EntityTermExtractionUpdate(LoggerUpdate):
|
||||
entity_relation_term_extractions: EntityRelationshipTermExtraction = (
|
||||
EntityRelationshipTermExtraction()
|
||||
)
|
||||
|
||||
|
||||
class RefinedQuestionDecompositionUpdate(RefinedAgentStartStats, LoggerUpdate):
|
||||
refined_sub_questions: dict[int, RefinementSubQuestion] = {}
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class MainInput(CoreState):
|
||||
pass
|
||||
|
||||
|
||||
## Graph State
|
||||
class MainState(
|
||||
# This includes the core state
|
||||
MainInput,
|
||||
ToolChoiceInput,
|
||||
ToolCallUpdate,
|
||||
ToolChoiceUpdate,
|
||||
InitialQuestionDecompositionUpdate,
|
||||
InitialAnswerUpdate,
|
||||
SubQuestionResultsUpdate,
|
||||
OrigQuestionRetrievalUpdate,
|
||||
EntityTermExtractionUpdate,
|
||||
InitialAnswerQualityUpdate,
|
||||
RequireRefinemenEvalUpdate,
|
||||
RefinedQuestionDecompositionUpdate,
|
||||
RefinedAnswerUpdate,
|
||||
RefinedAgentStartStats,
|
||||
RefinedAgentEndStats,
|
||||
InitialRefinedAnswerComparisonUpdate,
|
||||
ExploratorySearchUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State - presently not used
|
||||
class MainOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
@@ -1,33 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def send_to_expanded_refined_retrieval(
|
||||
state: SubQuestionAnsweringInput,
|
||||
) -> Send | Hashable:
|
||||
"""
|
||||
LangGraph edge to sends a refined sub-question extended retrieval.
|
||||
"""
|
||||
logger.debug("sending to expanded retrieval for follow up question via edge")
|
||||
datetime.now()
|
||||
return Send(
|
||||
"refined_sub_question_expanded_retrieval",
|
||||
ExpandedRetrievalInput(
|
||||
question=state.question,
|
||||
sub_question_id=state.question_id,
|
||||
base_search=False,
|
||||
log_messages=[f"{datetime.now()} -- Sending to expanded retrieval"],
|
||||
),
|
||||
)
|
||||
@@ -1,132 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.check_sub_answer import (
|
||||
check_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.format_sub_answer import (
|
||||
format_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.generate_sub_answer import (
|
||||
generate_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.ingest_retrieved_documents import (
|
||||
ingest_retrieved_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.edges import (
|
||||
send_to_expanded_refined_retrieval,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def answer_refined_query_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the refined sub-answer generation process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=AnswerQuestionState,
|
||||
input=SubQuestionAnsweringInput,
|
||||
output=AnswerQuestionOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# Subgraph for the expanded retrieval process
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="refined_sub_question_expanded_retrieval",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
|
||||
# Ingest the retrieved documents
|
||||
graph.add_node(
|
||||
node="ingest_refined_retrieval",
|
||||
action=ingest_retrieved_documents,
|
||||
)
|
||||
|
||||
# Generate the refined sub-answer
|
||||
graph.add_node(
|
||||
node="generate_refined_sub_answer",
|
||||
action=generate_sub_answer,
|
||||
)
|
||||
|
||||
# Check if the refined sub-answer is correct
|
||||
graph.add_node(
|
||||
node="refined_sub_answer_check",
|
||||
action=check_sub_answer,
|
||||
)
|
||||
|
||||
# Format the refined sub-answer
|
||||
graph.add_node(
|
||||
node="format_refined_sub_answer",
|
||||
action=format_sub_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source=START,
|
||||
path=send_to_expanded_refined_retrieval,
|
||||
path_map=["refined_sub_question_expanded_retrieval"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="refined_sub_question_expanded_retrieval",
|
||||
end_key="ingest_refined_retrieval",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="ingest_refined_retrieval",
|
||||
end_key="generate_refined_sub_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="generate_refined_sub_answer",
|
||||
end_key="refined_sub_answer_check",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="refined_sub_answer_check",
|
||||
end_key="format_refined_sub_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_refined_sub_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = answer_refined_query_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="what can you do with onyx or danswer?",
|
||||
)
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
inputs = SubQuestionAnsweringInput(
|
||||
question="what can you do with onyx?",
|
||||
question_id="0_0",
|
||||
log_messages=[],
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
stream_mode="custom",
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,44 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
RetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
|
||||
|
||||
def parallel_retrieval_edge(
|
||||
state: ExpandedRetrievalState, config: RunnableConfig
|
||||
) -> list[Send | Hashable]:
|
||||
"""
|
||||
LangGraph edge to parallelize the retrieval process for each of the
|
||||
generated sub-queries and the original question.
|
||||
"""
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = (
|
||||
state.question
|
||||
if state.question
|
||||
else graph_config.inputs.prompt_builder.raw_user_query
|
||||
)
|
||||
|
||||
query_expansions = state.expanded_queries + [question]
|
||||
|
||||
return [
|
||||
Send(
|
||||
"retrieve_documents",
|
||||
RetrievalInput(
|
||||
query_to_retrieve=query,
|
||||
question=question,
|
||||
base_search=False,
|
||||
sub_question_id=state.sub_question_id,
|
||||
log_messages=[],
|
||||
),
|
||||
)
|
||||
for query in query_expansions
|
||||
]
|
||||
@@ -1,161 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.edges import (
|
||||
parallel_retrieval_edge,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.expand_queries import (
|
||||
expand_queries,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.format_queries import (
|
||||
format_queries,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.format_results import (
|
||||
format_results,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.kickoff_verification import (
|
||||
kickoff_verification,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.rerank_documents import (
|
||||
rerank_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.retrieve_documents import (
|
||||
retrieve_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.nodes.verify_documents import (
|
||||
verify_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def expanded_retrieval_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the expanded retrieval process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=ExpandedRetrievalState,
|
||||
input=ExpandedRetrievalInput,
|
||||
output=ExpandedRetrievalOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# Convert the question into multiple sub-queries
|
||||
graph.add_node(
|
||||
node="expand_queries",
|
||||
action=expand_queries,
|
||||
)
|
||||
|
||||
# Format the sub-queries into a list of strings
|
||||
graph.add_node(
|
||||
node="format_queries",
|
||||
action=format_queries,
|
||||
)
|
||||
|
||||
# Retrieve the documents for each sub-query
|
||||
graph.add_node(
|
||||
node="retrieve_documents",
|
||||
action=retrieve_documents,
|
||||
)
|
||||
|
||||
# Start verification process that the documents are relevant to the question (not the query)
|
||||
graph.add_node(
|
||||
node="kickoff_verification",
|
||||
action=kickoff_verification,
|
||||
)
|
||||
|
||||
# Verify that a given document is relevant to the question (not the query)
|
||||
graph.add_node(
|
||||
node="verify_documents",
|
||||
action=verify_documents,
|
||||
)
|
||||
|
||||
# Rerank the documents that have been verified
|
||||
graph.add_node(
|
||||
node="rerank_documents",
|
||||
action=rerank_documents,
|
||||
)
|
||||
|
||||
# Format the results into a list of strings
|
||||
graph.add_node(
|
||||
node="format_results",
|
||||
action=format_results,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="expand_queries",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="expand_queries",
|
||||
end_key="format_queries",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="format_queries",
|
||||
path=parallel_retrieval_edge,
|
||||
path_map=["retrieve_documents"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="retrieve_documents",
|
||||
end_key="kickoff_verification",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="verify_documents",
|
||||
end_key="rerank_documents",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="rerank_documents",
|
||||
end_key="format_results",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_results",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = expanded_retrieval_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="what can you do with onyx or danswer?",
|
||||
)
|
||||
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
graph_config, search_tool = get_test_config(
|
||||
db_session, primary_llm, fast_llm, search_request
|
||||
)
|
||||
inputs = ExpandedRetrievalInput(
|
||||
question="what can you do with onyx?",
|
||||
base_search=False,
|
||||
sub_question_id=None,
|
||||
log_messages=[],
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
config={"configurable": {"config": graph_config}},
|
||||
stream_mode="custom",
|
||||
subgraphs=True,
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,13 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class QuestionRetrievalResult(BaseModel):
|
||||
expanded_query_results: list[QueryRetrievalResult] = []
|
||||
retrieved_documents: list[InferenceSection] = []
|
||||
verified_reranked_documents: list[InferenceSection] = []
|
||||
context_documents: list[InferenceSection] = []
|
||||
retrieval_stats: AgentChunkRetrievalStats = AgentChunkRetrievalStats()
|
||||
@@ -1,139 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.operations import (
|
||||
dispatch_subquery,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
QueryExpansionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AgentLLMErrorType,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUERY_GENERATION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
QUERY_REWRITING_PROMPT,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
|
||||
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
|
||||
general_error="Query rewriting failed due to LLM error - the original question will be used.",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def expand_queries(
|
||||
state: ExpandedRetrievalInput,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> QueryExpansionUpdate:
|
||||
"""
|
||||
LangGraph node to expand a question into multiple search queries.
|
||||
"""
|
||||
# Sometimes we want to expand the original question, sometimes we want to expand a sub-question.
|
||||
# When we are running this node on the original question, no question is explictly passed in.
|
||||
# Instead, we use the original question from the search request.
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
node_start_time = datetime.now()
|
||||
question = state.question
|
||||
|
||||
model = graph_config.tooling.fast_llm
|
||||
sub_question_id = state.sub_question_id
|
||||
if sub_question_id is None:
|
||||
level, question_num = 0, 0
|
||||
else:
|
||||
level, question_num = parse_question_id(sub_question_id)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=QUERY_REWRITING_PROMPT.format(question=question),
|
||||
)
|
||||
]
|
||||
|
||||
agent_error: AgentErrorLog | None = None
|
||||
llm_response_list: list[BaseMessage_Content] = []
|
||||
llm_response = ""
|
||||
rewritten_queries = []
|
||||
|
||||
try:
|
||||
llm_response_list = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION,
|
||||
dispatch_separated,
|
||||
model.stream(
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUERY_GENERATION,
|
||||
),
|
||||
dispatch_subquery(level, question_num, writer),
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
|
||||
0
|
||||
].content
|
||||
rewritten_queries = llm_response.split("\n")
|
||||
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.TIMEOUT,
|
||||
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.timeout,
|
||||
)
|
||||
logger.error("LLM Timeout Error - expand queries")
|
||||
log_result = agent_error.error_result
|
||||
|
||||
except LLMRateLimitError:
|
||||
agent_error = AgentErrorLog(
|
||||
error_type=AgentLLMErrorType.RATE_LIMIT,
|
||||
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
|
||||
error_result=_llm_node_error_strings.rate_limit,
|
||||
)
|
||||
logger.error("LLM Rate Limit Error - expand queries")
|
||||
log_result = agent_error.error_result
|
||||
# use subquestion as query if query generation fails
|
||||
|
||||
return QueryExpansionUpdate(
|
||||
expanded_queries=rewritten_queries,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="shared - expanded retrieval",
|
||||
node_name="expand queries",
|
||||
node_start_time=node_start_time,
|
||||
result=log_result,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,19 +0,0 @@
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
QueryExpansionUpdate,
|
||||
)
|
||||
|
||||
|
||||
def format_queries(
|
||||
state: ExpandedRetrievalState, config: RunnableConfig
|
||||
) -> QueryExpansionUpdate:
|
||||
"""
|
||||
LangGraph node to format the expanded queries into a list of strings.
|
||||
"""
|
||||
return QueryExpansionUpdate(
|
||||
expanded_queries=state.expanded_queries,
|
||||
)
|
||||
@@ -1,91 +0,0 @@
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.models import (
|
||||
QuestionRetrievalResult,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.operations import (
|
||||
calculate_sub_question_retrieval_stats,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import relevance_from_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
|
||||
|
||||
|
||||
def format_results(
|
||||
state: ExpandedRetrievalState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> ExpandedRetrievalUpdate:
|
||||
"""
|
||||
LangGraph node that constructs the proper expanded retrieval format.
|
||||
"""
|
||||
level, question_num = parse_question_id(state.sub_question_id or "0_0")
|
||||
query_info = get_query_info(state.query_retrieval_results)
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
|
||||
# Main question docs will be sent later after aggregation and deduping with sub-question docs
|
||||
reranked_documents = state.reranked_documents
|
||||
|
||||
if not (level == 0 and question_num == 0):
|
||||
if len(reranked_documents) == 0:
|
||||
# The sub-question is used as the last query. If no verified documents are found, stream
|
||||
# the top 3 for that one. We may want to revisit this.
|
||||
reranked_documents = state.query_retrieval_results[-1].retrieved_documents[
|
||||
:3
|
||||
]
|
||||
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
|
||||
relevance_list = relevance_from_docs(reranked_documents)
|
||||
for tool_response in yield_search_responses(
|
||||
query=state.question,
|
||||
get_retrieved_sections=lambda: reranked_documents,
|
||||
get_final_context_sections=lambda: reranked_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
):
|
||||
write_custom_event(
|
||||
"tool_response",
|
||||
ExtendedToolResponse(
|
||||
id=tool_response.id,
|
||||
response=tool_response.response,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
sub_question_retrieval_stats = calculate_sub_question_retrieval_stats(
|
||||
verified_documents=state.verified_documents,
|
||||
expanded_retrieval_results=state.query_retrieval_results,
|
||||
)
|
||||
|
||||
if sub_question_retrieval_stats is None:
|
||||
sub_question_retrieval_stats = AgentChunkRetrievalStats()
|
||||
|
||||
return ExpandedRetrievalUpdate(
|
||||
expanded_retrieval_result=QuestionRetrievalResult(
|
||||
expanded_query_results=state.query_retrieval_results,
|
||||
retrieved_documents=state.retrieved_documents,
|
||||
verified_reranked_documents=reranked_documents,
|
||||
context_documents=state.reranked_documents,
|
||||
retrieval_stats=sub_question_retrieval_stats,
|
||||
),
|
||||
)
|
||||
@@ -1,45 +0,0 @@
|
||||
from typing import Literal
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import Command
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
DocVerificationInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_VERIFICATION_HITS
|
||||
|
||||
|
||||
def kickoff_verification(
|
||||
state: ExpandedRetrievalState,
|
||||
config: RunnableConfig,
|
||||
) -> Command[Literal["verify_documents"]]:
|
||||
"""
|
||||
LangGraph node (Command node!) that kicks off the verification process for the retrieved documents.
|
||||
Note that this is a Command node and does the routing as well. (At present, no state updates
|
||||
are done here, so this could be replaced with an edge. But we may choose to make state
|
||||
updates later.)
|
||||
"""
|
||||
retrieved_documents = state.retrieved_documents[:AGENT_MAX_VERIFICATION_HITS]
|
||||
verification_question = state.question
|
||||
|
||||
sub_question_id = state.sub_question_id
|
||||
return Command(
|
||||
update={},
|
||||
goto=[
|
||||
Send(
|
||||
node="verify_documents",
|
||||
arg=DocVerificationInput(
|
||||
retrieved_document_to_verify=document,
|
||||
question=verification_question,
|
||||
base_search=False,
|
||||
sub_question_id=sub_question_id,
|
||||
log_messages=[],
|
||||
),
|
||||
)
|
||||
for document in retrieved_documents
|
||||
],
|
||||
)
|
||||
@@ -1,110 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.operations import (
|
||||
logger,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
DocRerankingUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.calculations import get_fit_scores
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS
|
||||
from onyx.configs.agent_configs import AGENT_RERANKING_STATS
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.context.search.models import RerankingDetails
|
||||
from onyx.context.search.postprocessing.postprocessing import rerank_sections
|
||||
from onyx.context.search.postprocessing.postprocessing import should_rerank
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.db.search_settings import get_current_search_settings
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def rerank_documents(
|
||||
state: ExpandedRetrievalState, config: RunnableConfig
|
||||
) -> DocRerankingUpdate:
|
||||
"""
|
||||
LangGraph node to rerank the retrieved and verified documents. A part of the
|
||||
pre-existing pipeline is used here.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
verified_documents = state.verified_documents
|
||||
|
||||
# Rerank post retrieval and verification. First, create a search query
|
||||
# then create the list of reranked sections
|
||||
# If no question defined/question is None in the state, use the original
|
||||
# question from the search request as query
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = (
|
||||
state.question
|
||||
if state.question
|
||||
else graph_config.inputs.prompt_builder.raw_user_query
|
||||
)
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
|
||||
# Note that these are passed in values from the API and are overrides which are typically None
|
||||
rerank_settings = graph_config.inputs.rerank_settings
|
||||
allow_agent_reranking = graph_config.behavior.allow_agent_reranking
|
||||
|
||||
if rerank_settings is None:
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
search_settings = get_current_search_settings(db_session)
|
||||
if not search_settings.disable_rerank_for_streaming:
|
||||
rerank_settings = RerankingDetails.from_db_model(search_settings)
|
||||
|
||||
# Initial default: no reranking. Will be overwritten below if reranking is warranted
|
||||
reranked_documents = verified_documents
|
||||
|
||||
if should_rerank(rerank_settings) and len(verified_documents) > 0:
|
||||
if len(verified_documents) > 1:
|
||||
if not allow_agent_reranking:
|
||||
logger.info("Use of local rerank model without GPU, skipping reranking")
|
||||
# No reranking, stay with verified_documents as default
|
||||
|
||||
else:
|
||||
# Reranking is warranted, use the rerank_sections functon
|
||||
reranked_documents = rerank_sections(
|
||||
query_str=question,
|
||||
# if runnable, then rerank_settings is not None
|
||||
rerank_settings=cast(RerankingDetails, rerank_settings),
|
||||
sections_to_rerank=verified_documents,
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"{len(verified_documents)} verified document(s) found, skipping reranking"
|
||||
)
|
||||
# No reranking, stay with verified_documents as default
|
||||
else:
|
||||
logger.warning("No reranking settings found, using unranked documents")
|
||||
# No reranking, stay with verified_documents as default
|
||||
if AGENT_RERANKING_STATS:
|
||||
fit_scores = get_fit_scores(verified_documents, reranked_documents)
|
||||
else:
|
||||
fit_scores = RetrievalFitStats(fit_score_lift=0, rerank_effect=0, fit_scores={})
|
||||
|
||||
return DocRerankingUpdate(
|
||||
reranked_documents=[
|
||||
doc for doc in reranked_documents if isinstance(doc, InferenceSection)
|
||||
][:AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS],
|
||||
sub_question_retrieval_stats=fit_scores,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="shared - expanded retrieval",
|
||||
node_name="rerank documents",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,119 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.operations import (
|
||||
logger,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
DocRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
RetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.calculations import get_fit_scores
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_QUERY_RETRIEVAL_RESULTS
|
||||
from onyx.configs.agent_configs import AGENT_RETRIEVAL_STATS
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.tools.models import SearchQueryInfo
|
||||
from onyx.tools.models import SearchToolOverrideKwargs
|
||||
from onyx.tools.tool_implementations.search.search_tool import (
|
||||
SEARCH_RESPONSE_SUMMARY_ID,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def retrieve_documents(
|
||||
state: RetrievalInput, config: RunnableConfig
|
||||
) -> DocRetrievalUpdate:
|
||||
"""
|
||||
LangGraph node to retrieve documents from the search tool.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
query_to_retrieve = state.query_to_retrieve
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
search_tool = graph_config.tooling.search_tool
|
||||
|
||||
retrieved_docs: list[InferenceSection] = []
|
||||
if not query_to_retrieve.strip():
|
||||
logger.warning("Empty query, skipping retrieval")
|
||||
|
||||
return DocRetrievalUpdate(
|
||||
query_retrieval_results=[],
|
||||
retrieved_documents=[],
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="shared - expanded retrieval",
|
||||
node_name="retrieve documents",
|
||||
node_start_time=node_start_time,
|
||||
result="Empty query, skipping retrieval",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
query_info = None
|
||||
if search_tool is None:
|
||||
raise ValueError("search_tool must be provided for agentic search")
|
||||
|
||||
callback_container: list[list[InferenceSection]] = []
|
||||
|
||||
# new db session to avoid concurrency issues
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
for tool_response in search_tool.run(
|
||||
query=query_to_retrieve,
|
||||
override_kwargs=SearchToolOverrideKwargs(
|
||||
force_no_rerank=True,
|
||||
alternate_db_session=db_session,
|
||||
retrieved_sections_callback=callback_container.append,
|
||||
skip_query_analysis=not state.base_search,
|
||||
),
|
||||
):
|
||||
# get retrieved docs to send to the rest of the graph
|
||||
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
|
||||
response = cast(SearchResponseSummary, tool_response.response)
|
||||
retrieved_docs = response.top_sections
|
||||
query_info = SearchQueryInfo(
|
||||
predicted_search=response.predicted_search,
|
||||
final_filters=response.final_filters,
|
||||
recency_bias_multiplier=response.recency_bias_multiplier,
|
||||
)
|
||||
break
|
||||
|
||||
retrieved_docs = retrieved_docs[:AGENT_MAX_QUERY_RETRIEVAL_RESULTS]
|
||||
|
||||
if AGENT_RETRIEVAL_STATS:
|
||||
pre_rerank_docs = callback_container[0] if callback_container else []
|
||||
fit_scores = get_fit_scores(
|
||||
pre_rerank_docs,
|
||||
retrieved_docs,
|
||||
)
|
||||
else:
|
||||
fit_scores = None
|
||||
|
||||
expanded_retrieval_result = QueryRetrievalResult(
|
||||
query=query_to_retrieve,
|
||||
retrieved_documents=retrieved_docs,
|
||||
stats=fit_scores,
|
||||
query_info=query_info,
|
||||
)
|
||||
|
||||
return DocRetrievalUpdate(
|
||||
query_retrieval_results=[expanded_retrieval_result],
|
||||
retrieved_documents=retrieved_docs,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="shared - expanded retrieval",
|
||||
node_name="retrieve documents",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,127 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
DocVerificationInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
DocVerificationUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
binary_string_test,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.constants import (
|
||||
AGENT_POSITIVE_VALUE_STR,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.prompts.agent_search import (
|
||||
DOCUMENT_VERIFICATION_PROMPT,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_llm_node_error_strings = LLMNodeErrorStrings(
|
||||
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
|
||||
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
|
||||
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
|
||||
)
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def verify_documents(
|
||||
state: DocVerificationInput, config: RunnableConfig
|
||||
) -> DocVerificationUpdate:
|
||||
"""
|
||||
LangGraph node to check whether the document is relevant for the original user question
|
||||
|
||||
Args:
|
||||
state (DocVerificationInput): The current state
|
||||
config (RunnableConfig): Configuration containing AgentSearchConfig
|
||||
|
||||
Updates:
|
||||
verified_documents: list[InferenceSection]
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state.question
|
||||
retrieved_document_to_verify = state.retrieved_document_to_verify
|
||||
document_content = retrieved_document_to_verify.combined_content
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
|
||||
document_content = trim_prompt_piece(
|
||||
config=fast_llm.config,
|
||||
prompt_piece=document_content,
|
||||
reserved_str=DOCUMENT_VERIFICATION_PROMPT + question,
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=DOCUMENT_VERIFICATION_PROMPT.format(
|
||||
question=question, document_content=document_content
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
response: BaseMessage | None = None
|
||||
|
||||
verified_documents = [
|
||||
retrieved_document_to_verify
|
||||
] # default is to treat document as relevant
|
||||
|
||||
try:
|
||||
response = run_with_timeout(
|
||||
AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION,
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
assert isinstance(response.content, str)
|
||||
if not binary_string_test(
|
||||
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
|
||||
):
|
||||
verified_documents = []
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
# In this case, we decide to continue and don't raise an error, as
|
||||
# little harm in letting some docs through that are less relevant.
|
||||
logger.error("LLM Timeout Error - verify documents")
|
||||
|
||||
except LLMRateLimitError:
|
||||
# In this case, we decide to continue and don't raise an error, as
|
||||
# little harm in letting some docs through that are less relevant.
|
||||
logger.error("LLM Rate Limit Error - verify documents")
|
||||
|
||||
return DocVerificationUpdate(
|
||||
verified_documents=verified_documents,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="shared - expanded retrieval",
|
||||
node_name="verify documents",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,93 +0,0 @@
|
||||
from collections import defaultdict
|
||||
from collections.abc import Callable
|
||||
|
||||
import numpy as np
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import SubQueryPiece
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def dispatch_subquery(
|
||||
level: int, question_num: int, writer: StreamWriter
|
||||
) -> Callable[[str, int], None]:
|
||||
def helper(token: str, num: int) -> None:
|
||||
write_custom_event(
|
||||
"subqueries",
|
||||
SubQueryPiece(
|
||||
sub_query=token,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
query_id=num,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return helper
|
||||
|
||||
|
||||
def calculate_sub_question_retrieval_stats(
|
||||
verified_documents: list[InferenceSection],
|
||||
expanded_retrieval_results: list[QueryRetrievalResult],
|
||||
) -> AgentChunkRetrievalStats:
|
||||
chunk_scores: dict[str, dict[str, list[int | float]]] = defaultdict(
|
||||
lambda: defaultdict(list)
|
||||
)
|
||||
|
||||
for expanded_retrieval_result in expanded_retrieval_results:
|
||||
for doc in expanded_retrieval_result.retrieved_documents:
|
||||
doc_chunk_id = f"{doc.center_chunk.document_id}_{doc.center_chunk.chunk_id}"
|
||||
if doc.center_chunk.score is not None:
|
||||
chunk_scores[doc_chunk_id]["score"].append(doc.center_chunk.score)
|
||||
|
||||
verified_doc_chunk_ids = [
|
||||
f"{verified_document.center_chunk.document_id}_{verified_document.center_chunk.chunk_id}"
|
||||
for verified_document in verified_documents
|
||||
]
|
||||
dismissed_doc_chunk_ids = []
|
||||
|
||||
raw_chunk_stats_counts: dict[str, int] = defaultdict(int)
|
||||
raw_chunk_stats_scores: dict[str, float] = defaultdict(float)
|
||||
for doc_chunk_id, chunk_data in chunk_scores.items():
|
||||
valid_chunk_scores = [
|
||||
score for score in chunk_data["score"] if score is not None
|
||||
]
|
||||
key = "verified" if doc_chunk_id in verified_doc_chunk_ids else "rejected"
|
||||
raw_chunk_stats_counts[f"{key}_count"] += 1
|
||||
|
||||
raw_chunk_stats_scores[f"{key}_scores"] += float(np.mean(valid_chunk_scores))
|
||||
|
||||
if key == "rejected":
|
||||
dismissed_doc_chunk_ids.append(doc_chunk_id)
|
||||
|
||||
if raw_chunk_stats_counts["verified_count"] == 0:
|
||||
verified_avg_scores = 0.0
|
||||
else:
|
||||
verified_avg_scores = raw_chunk_stats_scores["verified_scores"] / float(
|
||||
raw_chunk_stats_counts["verified_count"]
|
||||
)
|
||||
|
||||
rejected_scores = raw_chunk_stats_scores.get("rejected_scores")
|
||||
if rejected_scores is not None:
|
||||
rejected_avg_scores = rejected_scores / float(
|
||||
raw_chunk_stats_counts["rejected_count"]
|
||||
)
|
||||
else:
|
||||
rejected_avg_scores = None
|
||||
|
||||
chunk_stats = AgentChunkRetrievalStats(
|
||||
verified_count=raw_chunk_stats_counts["verified_count"],
|
||||
verified_avg_scores=verified_avg_scores,
|
||||
rejected_count=raw_chunk_stats_counts["rejected_count"],
|
||||
rejected_avg_scores=rejected_avg_scores,
|
||||
verified_doc_chunk_ids=verified_doc_chunk_ids,
|
||||
dismissed_doc_chunk_ids=dismissed_doc_chunk_ids,
|
||||
)
|
||||
|
||||
return chunk_stats
|
||||
@@ -1,95 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.core_state import SubgraphCoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.models import (
|
||||
QuestionRetrievalResult,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
### States ###
|
||||
|
||||
## Graph Input State
|
||||
|
||||
|
||||
class ExpandedRetrievalInput(SubgraphCoreState):
|
||||
# exception from 'no default value'for LangGraph input states
|
||||
# Here, sub_question_id default None implies usage for the
|
||||
# original question. This is sometimes needed for nested sub-graphs
|
||||
|
||||
sub_question_id: str | None = None
|
||||
question: str
|
||||
base_search: bool
|
||||
|
||||
|
||||
## Update/Return States
|
||||
|
||||
|
||||
class QueryExpansionUpdate(LoggerUpdate, BaseModel):
|
||||
expanded_queries: list[str] = []
|
||||
log_messages: list[str] = []
|
||||
|
||||
|
||||
class DocVerificationUpdate(LoggerUpdate, BaseModel):
|
||||
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
|
||||
|
||||
class DocRetrievalUpdate(LoggerUpdate, BaseModel):
|
||||
query_retrieval_results: Annotated[list[QueryRetrievalResult], add] = []
|
||||
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections] = (
|
||||
[]
|
||||
)
|
||||
|
||||
|
||||
class DocRerankingUpdate(LoggerUpdate, BaseModel):
|
||||
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
sub_question_retrieval_stats: RetrievalFitStats | None = None
|
||||
|
||||
|
||||
class ExpandedRetrievalUpdate(LoggerUpdate, BaseModel):
|
||||
expanded_retrieval_result: QuestionRetrievalResult
|
||||
|
||||
|
||||
## Graph Output State
|
||||
|
||||
|
||||
class ExpandedRetrievalOutput(LoggerUpdate, BaseModel):
|
||||
expanded_retrieval_result: QuestionRetrievalResult = QuestionRetrievalResult()
|
||||
base_expanded_retrieval_result: QuestionRetrievalResult = QuestionRetrievalResult()
|
||||
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections] = (
|
||||
[]
|
||||
)
|
||||
|
||||
|
||||
## Graph State
|
||||
|
||||
|
||||
class ExpandedRetrievalState(
|
||||
# This includes the core state
|
||||
ExpandedRetrievalInput,
|
||||
QueryExpansionUpdate,
|
||||
DocRetrievalUpdate,
|
||||
DocVerificationUpdate,
|
||||
DocRerankingUpdate,
|
||||
ExpandedRetrievalOutput,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Conditional Input States
|
||||
|
||||
|
||||
class DocVerificationInput(ExpandedRetrievalInput):
|
||||
retrieved_document_to_verify: InferenceSection
|
||||
|
||||
|
||||
class RetrievalInput(ExpandedRetrievalInput):
|
||||
query_to_retrieve: str
|
||||
59
backend/onyx/agents/agent_search/dr/conditional_edges.py
Normal file
59
backend/onyx/agents/agent_search/dr/conditional_edges.py
Normal file
@@ -0,0 +1,59 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langgraph.graph import END
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
|
||||
|
||||
def decision_router(state: MainState) -> list[Send | Hashable] | DRPath | str:
|
||||
if not state.tools_used:
|
||||
raise IndexError("state.tools_used cannot be empty")
|
||||
|
||||
# next_tool is either a generic tool name or a DRPath string
|
||||
next_tool_name = state.tools_used[-1]
|
||||
|
||||
available_tools = state.available_tools
|
||||
if not available_tools:
|
||||
raise ValueError("No tool is available. This should not happen.")
|
||||
|
||||
if next_tool_name in available_tools:
|
||||
next_tool_path = available_tools[next_tool_name].path
|
||||
elif next_tool_name == DRPath.END.value:
|
||||
return END
|
||||
elif next_tool_name == DRPath.LOGGER.value:
|
||||
return DRPath.LOGGER
|
||||
else:
|
||||
return DRPath.ORCHESTRATOR
|
||||
|
||||
# handle invalid paths
|
||||
if next_tool_path == DRPath.CLARIFIER:
|
||||
raise ValueError("CLARIFIER is not a valid path during iteration")
|
||||
|
||||
# handle tool calls without a query
|
||||
if (
|
||||
next_tool_path
|
||||
in (
|
||||
DRPath.INTERNAL_SEARCH,
|
||||
DRPath.INTERNET_SEARCH,
|
||||
DRPath.KNOWLEDGE_GRAPH,
|
||||
DRPath.IMAGE_GENERATION,
|
||||
)
|
||||
and len(state.query_list) == 0
|
||||
):
|
||||
return DRPath.CLOSER
|
||||
|
||||
return next_tool_path
|
||||
|
||||
|
||||
def completeness_router(state: MainState) -> DRPath | str:
|
||||
if not state.tools_used:
|
||||
raise IndexError("tools_used cannot be empty")
|
||||
|
||||
# go to closer if path is CLOSER or no queries
|
||||
next_path = state.tools_used[-1]
|
||||
|
||||
if next_path == DRPath.ORCHESTRATOR.value:
|
||||
return DRPath.ORCHESTRATOR
|
||||
return DRPath.LOGGER
|
||||
30
backend/onyx/agents/agent_search/dr/constants.py
Normal file
30
backend/onyx/agents/agent_search/dr/constants.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
|
||||
MAX_CHAT_HISTORY_MESSAGES = (
|
||||
3 # note: actual count is x2 to account for user and assistant messages
|
||||
)
|
||||
|
||||
MAX_DR_PARALLEL_SEARCH = 4
|
||||
|
||||
# TODO: test more, generally not needed/adds unnecessary iterations
|
||||
MAX_NUM_CLOSER_SUGGESTIONS = (
|
||||
0 # how many times the closer can send back to the orchestrator
|
||||
)
|
||||
|
||||
CLARIFICATION_REQUEST_PREFIX = "PLEASE CLARIFY:"
|
||||
HIGH_LEVEL_PLAN_PREFIX = "The Plan:"
|
||||
|
||||
AVERAGE_TOOL_COSTS: dict[DRPath, float] = {
|
||||
DRPath.INTERNAL_SEARCH: 1.0,
|
||||
DRPath.KNOWLEDGE_GRAPH: 2.0,
|
||||
DRPath.INTERNET_SEARCH: 1.5,
|
||||
DRPath.IMAGE_GENERATION: 3.0,
|
||||
DRPath.GENERIC_TOOL: 1.5, # TODO: see todo in OrchestratorTool
|
||||
DRPath.CLOSER: 0.0,
|
||||
}
|
||||
|
||||
DR_TIME_BUDGET_BY_TYPE = {
|
||||
ResearchType.THOUGHTFUL: 3.0,
|
||||
ResearchType.DEEP: 6.0,
|
||||
}
|
||||
112
backend/onyx/agents/agent_search/dr/dr_prompt_builder.py
Normal file
112
backend/onyx/agents/agent_search/dr/dr_prompt_builder.py
Normal file
@@ -0,0 +1,112 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
from onyx.agents.agent_search.dr.models import DRPromptPurpose
|
||||
from onyx.agents.agent_search.dr.models import OrchestratorTool
|
||||
from onyx.prompts.dr_prompts import GET_CLARIFICATION_PROMPT
|
||||
from onyx.prompts.dr_prompts import KG_TYPES_DESCRIPTIONS
|
||||
from onyx.prompts.dr_prompts import ORCHESTRATOR_DEEP_INITIAL_PLAN_PROMPT
|
||||
from onyx.prompts.dr_prompts import ORCHESTRATOR_DEEP_ITERATIVE_DECISION_PROMPT
|
||||
from onyx.prompts.dr_prompts import ORCHESTRATOR_FAST_ITERATIVE_DECISION_PROMPT
|
||||
from onyx.prompts.dr_prompts import ORCHESTRATOR_FAST_ITERATIVE_REASONING_PROMPT
|
||||
from onyx.prompts.dr_prompts import ORCHESTRATOR_NEXT_STEP_PURPOSE_PROMPT
|
||||
from onyx.prompts.dr_prompts import TOOL_DIFFERENTIATION_HINTS
|
||||
from onyx.prompts.dr_prompts import TOOL_QUESTION_HINTS
|
||||
from onyx.prompts.prompt_template import PromptTemplate
|
||||
|
||||
|
||||
def get_dr_prompt_orchestration_templates(
|
||||
purpose: DRPromptPurpose,
|
||||
research_type: ResearchType,
|
||||
available_tools: dict[str, OrchestratorTool],
|
||||
entity_types_string: str | None = None,
|
||||
relationship_types_string: str | None = None,
|
||||
reasoning_result: str | None = None,
|
||||
tool_calls_string: str | None = None,
|
||||
) -> PromptTemplate:
|
||||
available_tools = available_tools or {}
|
||||
tool_names = list(available_tools.keys())
|
||||
tool_description_str = "\n\n".join(
|
||||
f"- {tool_name}: {tool.description}"
|
||||
for tool_name, tool in available_tools.items()
|
||||
)
|
||||
tool_cost_str = "\n".join(
|
||||
f"{tool_name}: {tool.cost}" for tool_name, tool in available_tools.items()
|
||||
)
|
||||
|
||||
tool_differentiations: list[str] = [
|
||||
TOOL_DIFFERENTIATION_HINTS[(tool_1, tool_2)]
|
||||
for tool_1 in available_tools
|
||||
for tool_2 in available_tools
|
||||
if (tool_1, tool_2) in TOOL_DIFFERENTIATION_HINTS
|
||||
]
|
||||
tool_differentiation_hint_string = (
|
||||
"\n".join(tool_differentiations) or "(No differentiating hints available)"
|
||||
)
|
||||
# TODO: add tool deliniation pairs for custom tools as well
|
||||
|
||||
tool_question_hint_string = (
|
||||
"\n".join(
|
||||
"- " + TOOL_QUESTION_HINTS[tool]
|
||||
for tool in available_tools
|
||||
if tool in TOOL_QUESTION_HINTS
|
||||
)
|
||||
or "(No examples available)"
|
||||
)
|
||||
|
||||
if DRPath.KNOWLEDGE_GRAPH.value in available_tools and (
|
||||
entity_types_string or relationship_types_string
|
||||
):
|
||||
|
||||
kg_types_descriptions = KG_TYPES_DESCRIPTIONS.build(
|
||||
possible_entities=entity_types_string or "",
|
||||
possible_relationships=relationship_types_string or "",
|
||||
)
|
||||
else:
|
||||
kg_types_descriptions = "(The Knowledge Graph is not used.)"
|
||||
|
||||
if purpose == DRPromptPurpose.PLAN:
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
raise ValueError("plan generation is not supported for FAST time budget")
|
||||
base_template = ORCHESTRATOR_DEEP_INITIAL_PLAN_PROMPT
|
||||
|
||||
elif purpose == DRPromptPurpose.NEXT_STEP_REASONING:
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
base_template = ORCHESTRATOR_FAST_ITERATIVE_REASONING_PROMPT
|
||||
else:
|
||||
raise ValueError(
|
||||
"reasoning is not separately required for DEEP time budget"
|
||||
)
|
||||
|
||||
elif purpose == DRPromptPurpose.NEXT_STEP_PURPOSE:
|
||||
base_template = ORCHESTRATOR_NEXT_STEP_PURPOSE_PROMPT
|
||||
|
||||
elif purpose == DRPromptPurpose.NEXT_STEP:
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
base_template = ORCHESTRATOR_FAST_ITERATIVE_DECISION_PROMPT
|
||||
else:
|
||||
base_template = ORCHESTRATOR_DEEP_ITERATIVE_DECISION_PROMPT
|
||||
|
||||
elif purpose == DRPromptPurpose.CLARIFICATION:
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
raise ValueError("clarification is not supported for FAST time budget")
|
||||
base_template = GET_CLARIFICATION_PROMPT
|
||||
|
||||
else:
|
||||
# for mypy, clearly a mypy bug
|
||||
raise ValueError(f"Invalid purpose: {purpose}")
|
||||
|
||||
return base_template.partial_build(
|
||||
num_available_tools=str(len(tool_names)),
|
||||
available_tools=", ".join(tool_names),
|
||||
tool_choice_options=" or ".join(tool_names),
|
||||
current_time=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||
kg_types_descriptions=kg_types_descriptions,
|
||||
tool_descriptions=tool_description_str,
|
||||
tool_differentiation_hints=tool_differentiation_hint_string,
|
||||
tool_question_hints=tool_question_hint_string,
|
||||
average_tool_costs=tool_cost_str,
|
||||
reasoning_result=reasoning_result or "(No reasoning result provided.)",
|
||||
tool_calls_string=tool_calls_string or "(No tool calls provided.)",
|
||||
)
|
||||
31
backend/onyx/agents/agent_search/dr/enums.py
Normal file
31
backend/onyx/agents/agent_search/dr/enums.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class ResearchType(str, Enum):
|
||||
"""Research type options for agent search operations"""
|
||||
|
||||
# BASIC = "BASIC"
|
||||
LEGACY_AGENTIC = "LEGACY_AGENTIC" # only used for legacy agentic search migrations
|
||||
THOUGHTFUL = "THOUGHTFUL"
|
||||
DEEP = "DEEP"
|
||||
|
||||
|
||||
class ResearchAnswerPurpose(str, Enum):
|
||||
"""Research answer purpose options for agent search operations"""
|
||||
|
||||
ANSWER = "ANSWER"
|
||||
CLARIFICATION_REQUEST = "CLARIFICATION_REQUEST"
|
||||
|
||||
|
||||
class DRPath(str, Enum):
|
||||
CLARIFIER = "Clarifier"
|
||||
ORCHESTRATOR = "Orchestrator"
|
||||
INTERNAL_SEARCH = "Search Tool"
|
||||
GENERIC_TOOL = "Generic Tool"
|
||||
KNOWLEDGE_GRAPH = "Knowledge Graph Search"
|
||||
INTERNET_SEARCH = "Internet Search"
|
||||
IMAGE_GENERATION = "Image Generation"
|
||||
GENERIC_INTERNAL_TOOL = "Generic Internal Tool"
|
||||
CLOSER = "Closer"
|
||||
LOGGER = "Logger"
|
||||
END = "End"
|
||||
88
backend/onyx/agents/agent_search/dr/graph_builder.py
Normal file
88
backend/onyx/agents/agent_search/dr/graph_builder.py
Normal file
@@ -0,0 +1,88 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.dr.conditional_edges import completeness_router
|
||||
from onyx.agents.agent_search.dr.conditional_edges import decision_router
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.nodes.dr_a0_clarification import clarifier
|
||||
from onyx.agents.agent_search.dr.nodes.dr_a1_orchestrator import orchestrator
|
||||
from onyx.agents.agent_search.dr.nodes.dr_a2_closer import closer
|
||||
from onyx.agents.agent_search.dr.nodes.dr_a3_logger import logging
|
||||
from onyx.agents.agent_search.dr.states import MainInput
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_basic_search_graph_builder import (
|
||||
dr_basic_search_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.custom_tool.dr_custom_tool_graph_builder import (
|
||||
dr_custom_tool_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.generic_internal_tool.dr_generic_internal_tool_graph_builder import (
|
||||
dr_generic_internal_tool_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.image_generation.dr_image_generation_graph_builder import (
|
||||
dr_image_generation_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.internet_search.dr_is_graph_builder import (
|
||||
dr_is_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.kg_search.dr_kg_search_graph_builder import (
|
||||
dr_kg_search_graph_builder,
|
||||
)
|
||||
|
||||
# from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_basic_search_2_act import search
|
||||
|
||||
|
||||
def dr_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the deep research agent.
|
||||
"""
|
||||
|
||||
graph = StateGraph(state_schema=MainState, input=MainInput)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(DRPath.CLARIFIER, clarifier)
|
||||
|
||||
graph.add_node(DRPath.ORCHESTRATOR, orchestrator)
|
||||
|
||||
basic_search_graph = dr_basic_search_graph_builder().compile()
|
||||
graph.add_node(DRPath.INTERNAL_SEARCH, basic_search_graph)
|
||||
|
||||
kg_search_graph = dr_kg_search_graph_builder().compile()
|
||||
graph.add_node(DRPath.KNOWLEDGE_GRAPH, kg_search_graph)
|
||||
|
||||
internet_search_graph = dr_is_graph_builder().compile()
|
||||
graph.add_node(DRPath.INTERNET_SEARCH, internet_search_graph)
|
||||
|
||||
image_generation_graph = dr_image_generation_graph_builder().compile()
|
||||
graph.add_node(DRPath.IMAGE_GENERATION, image_generation_graph)
|
||||
|
||||
custom_tool_graph = dr_custom_tool_graph_builder().compile()
|
||||
graph.add_node(DRPath.GENERIC_TOOL, custom_tool_graph)
|
||||
|
||||
generic_internal_tool_graph = dr_generic_internal_tool_graph_builder().compile()
|
||||
graph.add_node(DRPath.GENERIC_INTERNAL_TOOL, generic_internal_tool_graph)
|
||||
|
||||
graph.add_node(DRPath.CLOSER, closer)
|
||||
graph.add_node(DRPath.LOGGER, logging)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key=DRPath.CLARIFIER)
|
||||
|
||||
graph.add_conditional_edges(DRPath.CLARIFIER, decision_router)
|
||||
|
||||
graph.add_conditional_edges(DRPath.ORCHESTRATOR, decision_router)
|
||||
|
||||
graph.add_edge(start_key=DRPath.INTERNAL_SEARCH, end_key=DRPath.ORCHESTRATOR)
|
||||
graph.add_edge(start_key=DRPath.KNOWLEDGE_GRAPH, end_key=DRPath.ORCHESTRATOR)
|
||||
graph.add_edge(start_key=DRPath.INTERNET_SEARCH, end_key=DRPath.ORCHESTRATOR)
|
||||
graph.add_edge(start_key=DRPath.IMAGE_GENERATION, end_key=DRPath.ORCHESTRATOR)
|
||||
graph.add_edge(start_key=DRPath.GENERIC_TOOL, end_key=DRPath.ORCHESTRATOR)
|
||||
graph.add_edge(start_key=DRPath.GENERIC_INTERNAL_TOOL, end_key=DRPath.ORCHESTRATOR)
|
||||
|
||||
graph.add_conditional_edges(DRPath.CLOSER, completeness_router)
|
||||
graph.add_edge(start_key=DRPath.LOGGER, end_key=END)
|
||||
|
||||
return graph
|
||||
126
backend/onyx/agents/agent_search/dr/models.py
Normal file
126
backend/onyx/agents/agent_search/dr/models.py
Normal file
@@ -0,0 +1,126 @@
|
||||
from enum import Enum
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.sub_agents.image_generation.models import (
|
||||
GeneratedImage,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.tools.tool import Tool
|
||||
|
||||
|
||||
class OrchestratorStep(BaseModel):
|
||||
tool: str
|
||||
questions: list[str]
|
||||
|
||||
|
||||
class OrchestratorDecisonsNoPlan(BaseModel):
|
||||
reasoning: str
|
||||
next_step: OrchestratorStep
|
||||
|
||||
|
||||
class OrchestrationPlan(BaseModel):
|
||||
reasoning: str
|
||||
plan: str
|
||||
|
||||
|
||||
class ClarificationGenerationResponse(BaseModel):
|
||||
clarification_needed: bool
|
||||
clarification_question: str
|
||||
|
||||
|
||||
class DecisionResponse(BaseModel):
|
||||
reasoning: str
|
||||
decision: str
|
||||
|
||||
|
||||
class QueryEvaluationResponse(BaseModel):
|
||||
reasoning: str
|
||||
query_permitted: bool
|
||||
|
||||
|
||||
class OrchestrationClarificationInfo(BaseModel):
|
||||
clarification_question: str
|
||||
clarification_response: str | None = None
|
||||
|
||||
|
||||
class WebSearchAnswer(BaseModel):
|
||||
urls_to_open_indices: list[int]
|
||||
|
||||
|
||||
class SearchAnswer(BaseModel):
|
||||
reasoning: str
|
||||
answer: str
|
||||
claims: list[str] | None = None
|
||||
|
||||
|
||||
class TestInfoCompleteResponse(BaseModel):
|
||||
reasoning: str
|
||||
complete: bool
|
||||
gaps: list[str]
|
||||
|
||||
|
||||
# TODO: revisit with custom tools implementation in v2
|
||||
# each tool should be a class with the attributes below, plus the actual tool implementation
|
||||
# this will also allow custom tools to have their own cost
|
||||
class OrchestratorTool(BaseModel):
|
||||
tool_id: int
|
||||
name: str
|
||||
llm_path: str # the path for the LLM to refer by
|
||||
path: DRPath # the actual path in the graph
|
||||
description: str
|
||||
metadata: dict[str, str]
|
||||
cost: float
|
||||
tool_object: Tool | None = None # None for CLOSER
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class IterationInstructions(BaseModel):
|
||||
iteration_nr: int
|
||||
plan: str | None
|
||||
reasoning: str
|
||||
purpose: str
|
||||
|
||||
|
||||
class IterationAnswer(BaseModel):
|
||||
tool: str
|
||||
tool_id: int
|
||||
iteration_nr: int
|
||||
parallelization_nr: int
|
||||
question: str
|
||||
reasoning: str | None
|
||||
answer: str
|
||||
cited_documents: dict[int, InferenceSection]
|
||||
background_info: str | None = None
|
||||
claims: list[str] | None = None
|
||||
additional_data: dict[str, str] | None = None
|
||||
response_type: str | None = None
|
||||
data: dict | list | str | int | float | bool | None = None
|
||||
file_ids: list[str] | None = None
|
||||
|
||||
# for image generation step-types
|
||||
generated_images: list[GeneratedImage] | None = None
|
||||
|
||||
|
||||
class AggregatedDRContext(BaseModel):
|
||||
context: str
|
||||
cited_documents: list[InferenceSection]
|
||||
is_internet_marker_dict: dict[str, bool]
|
||||
global_iteration_responses: list[IterationAnswer]
|
||||
|
||||
|
||||
class DRPromptPurpose(str, Enum):
|
||||
PLAN = "PLAN"
|
||||
NEXT_STEP = "NEXT_STEP"
|
||||
NEXT_STEP_REASONING = "NEXT_STEP_REASONING"
|
||||
NEXT_STEP_PURPOSE = "NEXT_STEP_PURPOSE"
|
||||
CLARIFICATION = "CLARIFICATION"
|
||||
|
||||
|
||||
class BaseSearchProcessingResponse(BaseModel):
|
||||
specified_source_types: list[str]
|
||||
rewritten_query: str
|
||||
time_filter: str
|
||||
773
backend/onyx/agents/agent_search/dr/nodes/dr_a0_clarification.py
Normal file
773
backend/onyx/agents/agent_search/dr/nodes/dr_a0_clarification.py
Normal file
@@ -0,0 +1,773 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.agents.agent_search.dr.constants import AVERAGE_TOOL_COSTS
|
||||
from onyx.agents.agent_search.dr.constants import MAX_CHAT_HISTORY_MESSAGES
|
||||
from onyx.agents.agent_search.dr.dr_prompt_builder import (
|
||||
get_dr_prompt_orchestration_templates,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.enums import ResearchAnswerPurpose
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
from onyx.agents.agent_search.dr.models import ClarificationGenerationResponse
|
||||
from onyx.agents.agent_search.dr.models import DecisionResponse
|
||||
from onyx.agents.agent_search.dr.models import DRPromptPurpose
|
||||
from onyx.agents.agent_search.dr.models import OrchestrationClarificationInfo
|
||||
from onyx.agents.agent_search.dr.models import OrchestratorTool
|
||||
from onyx.agents.agent_search.dr.process_llm_stream import process_llm_stream
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
from onyx.agents.agent_search.dr.states import OrchestrationSetup
|
||||
from onyx.agents.agent_search.dr.utils import get_chat_history_string
|
||||
from onyx.agents.agent_search.dr.utils import update_db_session_with_messages
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import invoke_llm_json
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import run_with_timeout
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.agents.agent_search.utils import create_question_prompt
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSourceDescription
|
||||
from onyx.configs.constants import TMP_DRALPHA_PERSONA_NAME
|
||||
from onyx.db.connector import fetch_unique_document_sources
|
||||
from onyx.db.kg_config import get_kg_config_settings
|
||||
from onyx.db.models import Tool
|
||||
from onyx.db.tools import get_tools
|
||||
from onyx.file_store.models import ChatFileType
|
||||
from onyx.file_store.models import InMemoryChatFile
|
||||
from onyx.kg.utils.extraction_utils import get_entity_types_str
|
||||
from onyx.kg.utils.extraction_utils import get_relationship_types_str
|
||||
from onyx.llm.utils import check_number_of_tokens
|
||||
from onyx.llm.utils import get_max_input_tokens
|
||||
from onyx.natural_language_processing.utils import get_tokenizer
|
||||
from onyx.prompts.dr_prompts import ANSWER_PROMPT_WO_TOOL_CALLING
|
||||
from onyx.prompts.dr_prompts import DECISION_PROMPT_W_TOOL_CALLING
|
||||
from onyx.prompts.dr_prompts import DECISION_PROMPT_WO_TOOL_CALLING
|
||||
from onyx.prompts.dr_prompts import DEFAULT_DR_SYSTEM_PROMPT
|
||||
from onyx.prompts.dr_prompts import EVAL_SYSTEM_PROMPT_W_TOOL_CALLING
|
||||
from onyx.prompts.dr_prompts import EVAL_SYSTEM_PROMPT_WO_TOOL_CALLING
|
||||
from onyx.prompts.dr_prompts import REPEAT_PROMPT
|
||||
from onyx.prompts.dr_prompts import TOOL_DESCRIPTION
|
||||
from onyx.server.query_and_chat.streaming_models import MessageStart
|
||||
from onyx.server.query_and_chat.streaming_models import OverallStop
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.server.query_and_chat.streaming_models import StreamingType
|
||||
from onyx.tools.tool_implementations.images.image_generation_tool import (
|
||||
ImageGenerationTool,
|
||||
)
|
||||
from onyx.tools.tool_implementations.internet_search.internet_search_tool import (
|
||||
InternetSearchTool,
|
||||
)
|
||||
from onyx.tools.tool_implementations.knowledge_graph.knowledge_graph_tool import (
|
||||
KnowledgeGraphTool,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchTool
|
||||
from onyx.utils.b64 import get_image_type
|
||||
from onyx.utils.b64 import get_image_type_from_bytes
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def _format_tool_name(tool_name: str) -> str:
|
||||
"""Convert tool name to LLM-friendly format."""
|
||||
name = tool_name.replace(" ", "_")
|
||||
# take care of camel case like GetAPIKey -> GET_API_KEY for LLM readability
|
||||
name = re.sub(r"(?<=[a-z0-9])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])", "_", name)
|
||||
return name.upper()
|
||||
|
||||
|
||||
def _get_available_tools(
|
||||
db_session: Session,
|
||||
graph_config: GraphConfig,
|
||||
kg_enabled: bool,
|
||||
active_source_types: list[DocumentSource],
|
||||
) -> dict[str, OrchestratorTool]:
|
||||
|
||||
available_tools: dict[str, OrchestratorTool] = {}
|
||||
|
||||
kg_enabled = graph_config.behavior.kg_config_settings.KG_ENABLED
|
||||
persona = graph_config.inputs.persona
|
||||
|
||||
if persona:
|
||||
include_kg = persona.name == TMP_DRALPHA_PERSONA_NAME and kg_enabled
|
||||
else:
|
||||
include_kg = False
|
||||
|
||||
tool_dict: dict[int, Tool] = {tool.id: tool for tool in get_tools(db_session)}
|
||||
|
||||
for tool in graph_config.tooling.tools:
|
||||
|
||||
tool_db_info = tool_dict.get(tool.id)
|
||||
if tool_db_info:
|
||||
incode_tool_id = tool_db_info.in_code_tool_id
|
||||
else:
|
||||
raise ValueError(f"Tool {tool.name} is not found in the database")
|
||||
|
||||
if isinstance(tool, InternetSearchTool):
|
||||
llm_path = DRPath.INTERNET_SEARCH.value
|
||||
path = DRPath.INTERNET_SEARCH
|
||||
elif isinstance(tool, SearchTool):
|
||||
llm_path = DRPath.INTERNAL_SEARCH.value
|
||||
path = DRPath.INTERNAL_SEARCH
|
||||
elif isinstance(tool, KnowledgeGraphTool) and include_kg:
|
||||
if len(active_source_types) == 0:
|
||||
logger.error(
|
||||
"No active source types found, skipping Knowledge Graph tool"
|
||||
)
|
||||
continue
|
||||
llm_path = DRPath.KNOWLEDGE_GRAPH.value
|
||||
path = DRPath.KNOWLEDGE_GRAPH
|
||||
elif isinstance(tool, ImageGenerationTool):
|
||||
llm_path = DRPath.IMAGE_GENERATION.value
|
||||
path = DRPath.IMAGE_GENERATION
|
||||
elif incode_tool_id:
|
||||
# if incode tool id is found, it is a generic internal tool
|
||||
llm_path = DRPath.GENERIC_INTERNAL_TOOL.value
|
||||
path = DRPath.GENERIC_INTERNAL_TOOL
|
||||
else:
|
||||
# otherwise it is a custom tool
|
||||
llm_path = DRPath.GENERIC_TOOL.value
|
||||
path = DRPath.GENERIC_TOOL
|
||||
|
||||
if path not in {DRPath.GENERIC_INTERNAL_TOOL, DRPath.GENERIC_TOOL}:
|
||||
description = TOOL_DESCRIPTION.get(path, tool.description)
|
||||
cost = AVERAGE_TOOL_COSTS[path]
|
||||
else:
|
||||
description = tool.description
|
||||
cost = 1.0
|
||||
|
||||
tool_info = OrchestratorTool(
|
||||
tool_id=tool.id,
|
||||
name=tool.llm_name,
|
||||
llm_path=llm_path,
|
||||
path=path,
|
||||
description=description,
|
||||
metadata={},
|
||||
cost=cost,
|
||||
tool_object=tool,
|
||||
)
|
||||
|
||||
# TODO: handle custom tools with same name as other tools (e.g., CLOSER)
|
||||
available_tools[tool.llm_name] = tool_info
|
||||
|
||||
available_tool_paths = [tool.path for tool in available_tools.values()]
|
||||
|
||||
# make sure KG isn't enabled without internal search
|
||||
if (
|
||||
DRPath.KNOWLEDGE_GRAPH in available_tool_paths
|
||||
and DRPath.INTERNAL_SEARCH not in available_tool_paths
|
||||
):
|
||||
raise ValueError(
|
||||
"The Knowledge Graph is not supported without internal search tool"
|
||||
)
|
||||
|
||||
# add CLOSER tool, which is always available
|
||||
available_tools[DRPath.CLOSER.value] = OrchestratorTool(
|
||||
tool_id=-1,
|
||||
name=DRPath.CLOSER.value,
|
||||
llm_path=DRPath.CLOSER.value,
|
||||
path=DRPath.CLOSER,
|
||||
description=TOOL_DESCRIPTION[DRPath.CLOSER],
|
||||
metadata={},
|
||||
cost=0.0,
|
||||
tool_object=None,
|
||||
)
|
||||
|
||||
return available_tools
|
||||
|
||||
|
||||
def _construct_uploaded_text_context(files: list[InMemoryChatFile]) -> str:
|
||||
"""Construct the uploaded context from the files."""
|
||||
file_contents = []
|
||||
for file in files:
|
||||
if file.file_type in (
|
||||
ChatFileType.DOC,
|
||||
ChatFileType.PLAIN_TEXT,
|
||||
ChatFileType.CSV,
|
||||
):
|
||||
file_contents.append(file.content.decode("utf-8"))
|
||||
if len(file_contents) > 0:
|
||||
return "Uploaded context:\n\n\n" + "\n\n".join(file_contents)
|
||||
return ""
|
||||
|
||||
|
||||
def _construct_uploaded_image_context(
|
||||
files: list[InMemoryChatFile] | None = None,
|
||||
img_urls: list[str] | None = None,
|
||||
b64_imgs: list[str] | None = None,
|
||||
) -> list[dict[str, Any]] | None:
|
||||
"""Construct the uploaded image context from the files."""
|
||||
# Only include image files for user messages
|
||||
if files is None:
|
||||
return None
|
||||
|
||||
img_files = [file for file in files if file.file_type == ChatFileType.IMAGE]
|
||||
|
||||
img_urls = img_urls or []
|
||||
b64_imgs = b64_imgs or []
|
||||
|
||||
if not (img_files or img_urls or b64_imgs):
|
||||
return None
|
||||
|
||||
return cast(
|
||||
list[dict[str, Any]],
|
||||
[
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": (
|
||||
f"data:{get_image_type_from_bytes(file.content)};"
|
||||
f"base64,{file.to_base64()}"
|
||||
),
|
||||
},
|
||||
}
|
||||
for file in img_files
|
||||
]
|
||||
+ [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:{get_image_type(b64_img)};base64,{b64_img}",
|
||||
},
|
||||
}
|
||||
for b64_img in b64_imgs
|
||||
]
|
||||
+ [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": url,
|
||||
},
|
||||
}
|
||||
for url in img_urls
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def _get_existing_clarification_request(
|
||||
graph_config: GraphConfig,
|
||||
) -> tuple[OrchestrationClarificationInfo, str, str] | None:
|
||||
"""
|
||||
Returns the clarification info, original question, and updated chat history if
|
||||
a clarification request and response exists, otherwise returns None.
|
||||
"""
|
||||
# check for clarification request and response in message history
|
||||
previous_raw_messages = graph_config.inputs.prompt_builder.raw_message_history
|
||||
|
||||
if len(previous_raw_messages) == 0 or (
|
||||
previous_raw_messages[-1].research_answer_purpose
|
||||
!= ResearchAnswerPurpose.CLARIFICATION_REQUEST
|
||||
):
|
||||
return None
|
||||
|
||||
# get the clarification request and response
|
||||
previous_messages = graph_config.inputs.prompt_builder.message_history
|
||||
last_message = previous_raw_messages[-1].message
|
||||
|
||||
clarification = OrchestrationClarificationInfo(
|
||||
clarification_question=last_message.strip(),
|
||||
clarification_response=graph_config.inputs.prompt_builder.raw_user_query,
|
||||
)
|
||||
original_question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
chat_history_string = "(No chat history yet available)"
|
||||
|
||||
# get the original user query and chat history string before the original query
|
||||
# e.g., if history = [user query, assistant clarification request, user clarification response],
|
||||
# previous_messages = [user query, assistant clarification request], we want the user query
|
||||
for i, message in enumerate(reversed(previous_messages), 1):
|
||||
if (
|
||||
isinstance(message, HumanMessage)
|
||||
and message.content
|
||||
and isinstance(message.content, str)
|
||||
):
|
||||
original_question = message.content
|
||||
chat_history_string = (
|
||||
get_chat_history_string(
|
||||
graph_config.inputs.prompt_builder.message_history[:-i],
|
||||
MAX_CHAT_HISTORY_MESSAGES,
|
||||
)
|
||||
or "(No chat history yet available)"
|
||||
)
|
||||
break
|
||||
|
||||
return clarification, original_question, chat_history_string
|
||||
|
||||
|
||||
_ARTIFICIAL_ALL_ENCOMPASSING_TOOL = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "run_any_knowledge_retrieval_and_any_action_tool",
|
||||
"description": "Use this tool to get ANY external information \
|
||||
that is relevant to the question, or for any action to be taken, including image generation. In fact, \
|
||||
ANY tool mentioned can be accessed through this generic tool.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"request": {
|
||||
"type": "string",
|
||||
"description": "The request to be made to the tool",
|
||||
},
|
||||
},
|
||||
"required": ["request"],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def clarifier(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> OrchestrationSetup:
|
||||
"""
|
||||
Perform a quick search on the question as is and see whether a set of clarification
|
||||
questions is needed. For now this is based on the models
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
current_step_nr = 0
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
|
||||
llm_provider = graph_config.tooling.primary_llm.config.model_provider
|
||||
llm_model_name = graph_config.tooling.primary_llm.config.model_name
|
||||
|
||||
llm_tokenizer = get_tokenizer(
|
||||
model_name=llm_model_name,
|
||||
provider_type=llm_provider,
|
||||
)
|
||||
|
||||
max_input_tokens = get_max_input_tokens(
|
||||
model_name=llm_model_name,
|
||||
model_provider=llm_provider,
|
||||
)
|
||||
|
||||
use_tool_calling_llm = graph_config.tooling.using_tool_calling_llm
|
||||
db_session = graph_config.persistence.db_session
|
||||
|
||||
original_question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
research_type = graph_config.behavior.research_type
|
||||
|
||||
force_use_tool = graph_config.tooling.force_use_tool
|
||||
|
||||
message_id = graph_config.persistence.message_id
|
||||
|
||||
# Perform a commit to ensure the message_id is set and saved
|
||||
db_session.commit()
|
||||
|
||||
# get the connected tools and format for the Deep Research flow
|
||||
kg_enabled = graph_config.behavior.kg_config_settings.KG_ENABLED
|
||||
db_session = graph_config.persistence.db_session
|
||||
active_source_types = fetch_unique_document_sources(db_session)
|
||||
|
||||
available_tools = _get_available_tools(
|
||||
db_session, graph_config, kg_enabled, active_source_types
|
||||
)
|
||||
|
||||
available_tool_descriptions_str = "\n -" + "\n -".join(
|
||||
[tool.description for tool in available_tools.values()]
|
||||
)
|
||||
|
||||
kg_config = get_kg_config_settings()
|
||||
if kg_config.KG_ENABLED and kg_config.KG_EXPOSED:
|
||||
all_entity_types = get_entity_types_str(active=True)
|
||||
all_relationship_types = get_relationship_types_str(active=True)
|
||||
else:
|
||||
all_entity_types = ""
|
||||
all_relationship_types = ""
|
||||
|
||||
# if not active_source_types:
|
||||
# raise ValueError("No active source types found")
|
||||
|
||||
active_source_types_descriptions = [
|
||||
DocumentSourceDescription[source_type] for source_type in active_source_types
|
||||
]
|
||||
|
||||
if len(active_source_types_descriptions) > 0:
|
||||
active_source_type_descriptions_str = "\n -" + "\n -".join(
|
||||
active_source_types_descriptions
|
||||
)
|
||||
else:
|
||||
active_source_type_descriptions_str = ""
|
||||
|
||||
if graph_config.inputs.persona and len(graph_config.inputs.persona.prompts) > 0:
|
||||
assistant_system_prompt = (
|
||||
graph_config.inputs.persona.prompts[0].system_prompt
|
||||
or DEFAULT_DR_SYSTEM_PROMPT
|
||||
) + "\n\n"
|
||||
if graph_config.inputs.persona.prompts[0].task_prompt:
|
||||
assistant_task_prompt = (
|
||||
"\n\nHere are more specifications from the user:\n\n"
|
||||
+ graph_config.inputs.persona.prompts[0].task_prompt
|
||||
)
|
||||
else:
|
||||
assistant_task_prompt = ""
|
||||
|
||||
else:
|
||||
assistant_system_prompt = DEFAULT_DR_SYSTEM_PROMPT + "\n\n"
|
||||
assistant_task_prompt = ""
|
||||
|
||||
chat_history_string = (
|
||||
get_chat_history_string(
|
||||
graph_config.inputs.prompt_builder.message_history,
|
||||
MAX_CHAT_HISTORY_MESSAGES,
|
||||
)
|
||||
or "(No chat history yet available)"
|
||||
)
|
||||
|
||||
uploaded_text_context = (
|
||||
_construct_uploaded_text_context(graph_config.inputs.files)
|
||||
if graph_config.inputs.files
|
||||
else ""
|
||||
)
|
||||
|
||||
uploaded_context_tokens = check_number_of_tokens(
|
||||
uploaded_text_context, llm_tokenizer.encode
|
||||
)
|
||||
|
||||
if uploaded_context_tokens > 0.5 * max_input_tokens:
|
||||
raise ValueError(
|
||||
f"Uploaded context is too long. {uploaded_context_tokens} tokens, "
|
||||
f"but for this model we only allow {0.5 * max_input_tokens} tokens for uploaded context"
|
||||
)
|
||||
|
||||
uploaded_image_context = _construct_uploaded_image_context(
|
||||
graph_config.inputs.files
|
||||
)
|
||||
|
||||
if not (force_use_tool and force_use_tool.force_use):
|
||||
|
||||
if not use_tool_calling_llm or len(available_tools) == 1:
|
||||
if len(available_tools) > 1:
|
||||
decision_prompt = DECISION_PROMPT_WO_TOOL_CALLING.build(
|
||||
question=original_question,
|
||||
chat_history_string=chat_history_string,
|
||||
uploaded_context=uploaded_text_context or "",
|
||||
active_source_type_descriptions_str=active_source_type_descriptions_str,
|
||||
available_tool_descriptions_str=available_tool_descriptions_str,
|
||||
)
|
||||
|
||||
llm_decision = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
EVAL_SYSTEM_PROMPT_WO_TOOL_CALLING,
|
||||
decision_prompt,
|
||||
),
|
||||
schema=DecisionResponse,
|
||||
)
|
||||
else:
|
||||
# if there is only one tool (Closer), we don't need to decide. It's an LLM answer
|
||||
llm_decision = DecisionResponse(decision="LLM", reasoning="")
|
||||
|
||||
if llm_decision.decision == "LLM":
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
MessageStart(
|
||||
content="",
|
||||
final_documents=[],
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
answer_prompt = ANSWER_PROMPT_WO_TOOL_CALLING.build(
|
||||
question=original_question,
|
||||
chat_history_string=chat_history_string,
|
||||
uploaded_context=uploaded_text_context or "",
|
||||
active_source_type_descriptions_str=active_source_type_descriptions_str,
|
||||
available_tool_descriptions_str=available_tool_descriptions_str,
|
||||
)
|
||||
|
||||
answer_tokens, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt,
|
||||
answer_prompt + assistant_task_prompt,
|
||||
),
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
answer_piece=StreamingType.MESSAGE_DELTA.value,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
ind=current_step_nr,
|
||||
context_docs=None,
|
||||
replace_citations=True,
|
||||
max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(
|
||||
type="section_end",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
current_step_nr += 1
|
||||
|
||||
answer_str = cast(str, merge_content(*answer_tokens))
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
OverallStop(),
|
||||
writer,
|
||||
)
|
||||
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=answer_str,
|
||||
update_parent_message=True,
|
||||
research_answer_purpose=ResearchAnswerPurpose.ANSWER,
|
||||
)
|
||||
db_session.commit()
|
||||
|
||||
return OrchestrationSetup(
|
||||
original_question=original_question,
|
||||
chat_history_string="",
|
||||
tools_used=[DRPath.END.value],
|
||||
available_tools=available_tools,
|
||||
query_list=[],
|
||||
assistant_system_prompt=assistant_system_prompt,
|
||||
assistant_task_prompt=assistant_task_prompt,
|
||||
)
|
||||
|
||||
else:
|
||||
|
||||
decision_prompt = DECISION_PROMPT_W_TOOL_CALLING.build(
|
||||
question=original_question,
|
||||
chat_history_string=chat_history_string,
|
||||
uploaded_context=uploaded_text_context or "",
|
||||
active_source_type_descriptions_str=active_source_type_descriptions_str,
|
||||
)
|
||||
|
||||
stream = graph_config.tooling.primary_llm.stream(
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt + EVAL_SYSTEM_PROMPT_W_TOOL_CALLING,
|
||||
decision_prompt + assistant_task_prompt,
|
||||
uploaded_image_context=uploaded_image_context,
|
||||
),
|
||||
tools=([_ARTIFICIAL_ALL_ENCOMPASSING_TOOL]),
|
||||
tool_choice=(None),
|
||||
structured_response_format=graph_config.inputs.structured_response_format,
|
||||
)
|
||||
|
||||
full_response = process_llm_stream(
|
||||
messages=stream,
|
||||
should_stream_answer=True,
|
||||
writer=writer,
|
||||
ind=0,
|
||||
generate_final_answer=True,
|
||||
chat_message_id=str(graph_config.persistence.chat_session_id),
|
||||
)
|
||||
|
||||
if len(full_response.ai_message_chunk.tool_calls) == 0:
|
||||
|
||||
if isinstance(full_response.full_answer, str):
|
||||
full_answer = full_response.full_answer
|
||||
else:
|
||||
full_answer = None
|
||||
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=full_answer,
|
||||
update_parent_message=True,
|
||||
research_answer_purpose=ResearchAnswerPurpose.ANSWER,
|
||||
)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
return OrchestrationSetup(
|
||||
original_question=original_question,
|
||||
chat_history_string="",
|
||||
tools_used=[DRPath.END.value],
|
||||
query_list=[],
|
||||
available_tools=available_tools,
|
||||
assistant_system_prompt=assistant_system_prompt,
|
||||
assistant_task_prompt=assistant_task_prompt,
|
||||
)
|
||||
|
||||
# Continue, as external knowledge is required.
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
clarification = None
|
||||
|
||||
if research_type != ResearchType.THOUGHTFUL:
|
||||
result = _get_existing_clarification_request(graph_config)
|
||||
if result is not None:
|
||||
clarification, original_question, chat_history_string = result
|
||||
else:
|
||||
# generate clarification questions if needed
|
||||
chat_history_string = (
|
||||
get_chat_history_string(
|
||||
graph_config.inputs.prompt_builder.message_history,
|
||||
MAX_CHAT_HISTORY_MESSAGES,
|
||||
)
|
||||
or "(No chat history yet available)"
|
||||
)
|
||||
|
||||
base_clarification_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.CLARIFICATION,
|
||||
research_type,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools,
|
||||
)
|
||||
clarification_prompt = base_clarification_prompt.build(
|
||||
question=original_question,
|
||||
chat_history_string=chat_history_string,
|
||||
)
|
||||
|
||||
try:
|
||||
clarification_response = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt, clarification_prompt
|
||||
),
|
||||
schema=ClarificationGenerationResponse,
|
||||
timeout_override=25,
|
||||
# max_tokens=1500,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in clarification generation: {e}")
|
||||
raise e
|
||||
|
||||
if (
|
||||
clarification_response.clarification_needed
|
||||
and clarification_response.clarification_question
|
||||
):
|
||||
clarification = OrchestrationClarificationInfo(
|
||||
clarification_question=clarification_response.clarification_question,
|
||||
clarification_response=None,
|
||||
)
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
MessageStart(
|
||||
content="",
|
||||
final_documents=None,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
repeat_prompt = REPEAT_PROMPT.build(
|
||||
original_information=clarification_response.clarification_question
|
||||
)
|
||||
|
||||
_, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=repeat_prompt,
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.MESSAGE_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
# max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(
|
||||
type="section_end",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
1,
|
||||
OverallStop(),
|
||||
writer,
|
||||
)
|
||||
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=clarification_response.clarification_question,
|
||||
update_parent_message=True,
|
||||
research_type=research_type,
|
||||
research_answer_purpose=ResearchAnswerPurpose.CLARIFICATION_REQUEST,
|
||||
)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
else:
|
||||
chat_history_string = (
|
||||
get_chat_history_string(
|
||||
graph_config.inputs.prompt_builder.message_history,
|
||||
MAX_CHAT_HISTORY_MESSAGES,
|
||||
)
|
||||
or "(No chat history yet available)"
|
||||
)
|
||||
|
||||
if (
|
||||
clarification
|
||||
and clarification.clarification_question
|
||||
and clarification.clarification_response is None
|
||||
):
|
||||
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=clarification.clarification_question,
|
||||
update_parent_message=True,
|
||||
research_type=research_type,
|
||||
research_answer_purpose=ResearchAnswerPurpose.CLARIFICATION_REQUEST,
|
||||
)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
next_tool = DRPath.END.value
|
||||
else:
|
||||
next_tool = DRPath.ORCHESTRATOR.value
|
||||
|
||||
return OrchestrationSetup(
|
||||
original_question=original_question,
|
||||
chat_history_string=chat_history_string,
|
||||
tools_used=[next_tool],
|
||||
query_list=[],
|
||||
iteration_nr=0,
|
||||
current_step_nr=current_step_nr,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="clarifier",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
clarification=clarification,
|
||||
available_tools=available_tools,
|
||||
active_source_types=active_source_types,
|
||||
active_source_types_descriptions="\n".join(active_source_types_descriptions),
|
||||
assistant_system_prompt=assistant_system_prompt,
|
||||
assistant_task_prompt=assistant_task_prompt,
|
||||
uploaded_test_context=uploaded_text_context,
|
||||
uploaded_image_context=uploaded_image_context,
|
||||
)
|
||||
569
backend/onyx/agents/agent_search/dr/nodes/dr_a1_orchestrator.py
Normal file
569
backend/onyx/agents/agent_search/dr/nodes/dr_a1_orchestrator.py
Normal file
@@ -0,0 +1,569 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.constants import DR_TIME_BUDGET_BY_TYPE
|
||||
from onyx.agents.agent_search.dr.constants import HIGH_LEVEL_PLAN_PREFIX
|
||||
from onyx.agents.agent_search.dr.dr_prompt_builder import (
|
||||
get_dr_prompt_orchestration_templates,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
from onyx.agents.agent_search.dr.models import DRPromptPurpose
|
||||
from onyx.agents.agent_search.dr.models import OrchestrationPlan
|
||||
from onyx.agents.agent_search.dr.models import OrchestratorDecisonsNoPlan
|
||||
from onyx.agents.agent_search.dr.states import IterationInstructions
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
from onyx.agents.agent_search.dr.states import OrchestrationUpdate
|
||||
from onyx.agents.agent_search.dr.utils import aggregate_context
|
||||
from onyx.agents.agent_search.dr.utils import create_tool_call_string
|
||||
from onyx.agents.agent_search.dr.utils import get_prompt_question
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import invoke_llm_json
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import run_with_timeout
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.agents.agent_search.utils import create_question_prompt
|
||||
from onyx.kg.utils.extraction_utils import get_entity_types_str
|
||||
from onyx.kg.utils.extraction_utils import get_relationship_types_str
|
||||
from onyx.prompts.dr_prompts import DEFAULLT_DECISION_PROMPT
|
||||
from onyx.prompts.dr_prompts import REPEAT_PROMPT
|
||||
from onyx.prompts.dr_prompts import SUFFICIENT_INFORMATION_STRING
|
||||
from onyx.server.query_and_chat.streaming_models import ReasoningStart
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.server.query_and_chat.streaming_models import StreamingType
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
_DECISION_SYSTEM_PROMPT_PREFIX = "Here are general instructions by the user, which \
|
||||
may or may not influence the decision what to do next:\n\n"
|
||||
|
||||
|
||||
def _get_implied_next_tool_based_on_tool_call_history(
|
||||
tools_used: list[str],
|
||||
) -> str | None:
|
||||
"""
|
||||
Identify the next tool based on the tool call history. Initially, we only support
|
||||
special handling of the image generation tool.
|
||||
"""
|
||||
if tools_used[-1] == DRPath.IMAGE_GENERATION.value:
|
||||
return DRPath.LOGGER.value
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def orchestrator(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> OrchestrationUpdate:
|
||||
"""
|
||||
LangGraph node to decide the next step in the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = state.original_question
|
||||
if not question:
|
||||
raise ValueError("Question is required for orchestrator")
|
||||
|
||||
state.original_question
|
||||
|
||||
available_tools = state.available_tools
|
||||
|
||||
plan_of_record = state.plan_of_record
|
||||
clarification = state.clarification
|
||||
assistant_system_prompt = state.assistant_system_prompt
|
||||
|
||||
if assistant_system_prompt:
|
||||
decision_system_prompt: str = (
|
||||
DEFAULLT_DECISION_PROMPT
|
||||
+ _DECISION_SYSTEM_PROMPT_PREFIX
|
||||
+ assistant_system_prompt
|
||||
)
|
||||
else:
|
||||
decision_system_prompt = DEFAULLT_DECISION_PROMPT
|
||||
|
||||
iteration_nr = state.iteration_nr + 1
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
research_type = graph_config.behavior.research_type
|
||||
remaining_time_budget = state.remaining_time_budget
|
||||
chat_history_string = state.chat_history_string or "(No chat history yet available)"
|
||||
answer_history_string = (
|
||||
aggregate_context(state.iteration_responses, include_documents=True).context
|
||||
or "(No answer history yet available)"
|
||||
)
|
||||
|
||||
next_tool_name = None
|
||||
|
||||
# Identify early exit condition based on tool call history
|
||||
|
||||
next_tool_based_on_tool_call_history = (
|
||||
_get_implied_next_tool_based_on_tool_call_history(state.tools_used)
|
||||
)
|
||||
|
||||
if next_tool_based_on_tool_call_history == DRPath.LOGGER.value:
|
||||
return OrchestrationUpdate(
|
||||
tools_used=[DRPath.LOGGER.value],
|
||||
query_list=[],
|
||||
iteration_nr=iteration_nr,
|
||||
current_step_nr=current_step_nr,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="orchestrator",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
plan_of_record=plan_of_record,
|
||||
remaining_time_budget=remaining_time_budget,
|
||||
iteration_instructions=[
|
||||
IterationInstructions(
|
||||
iteration_nr=iteration_nr,
|
||||
plan=plan_of_record.plan if plan_of_record else None,
|
||||
reasoning="",
|
||||
purpose="",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
# no early exit forced. Continue.
|
||||
|
||||
available_tools = state.available_tools or {}
|
||||
|
||||
uploaded_context = state.uploaded_test_context or ""
|
||||
|
||||
questions = [
|
||||
f"{iteration_response.tool}: {iteration_response.question}"
|
||||
for iteration_response in state.iteration_responses
|
||||
if len(iteration_response.question) > 0
|
||||
]
|
||||
|
||||
question_history_string = (
|
||||
"\n".join(f" - {question}" for question in questions)
|
||||
if questions
|
||||
else "(No question history yet available)"
|
||||
)
|
||||
|
||||
prompt_question = get_prompt_question(question, clarification)
|
||||
|
||||
gaps_str = (
|
||||
("\n - " + "\n - ".join(state.gaps))
|
||||
if state.gaps
|
||||
else "(No explicit gaps were pointed out so far)"
|
||||
)
|
||||
|
||||
all_entity_types = get_entity_types_str(active=True)
|
||||
all_relationship_types = get_relationship_types_str(active=True)
|
||||
|
||||
# default to closer
|
||||
query_list = ["Answer the question with the information you have."]
|
||||
decision_prompt = None
|
||||
|
||||
reasoning_result = "(No reasoning result provided yet.)"
|
||||
tool_calls_string = "(No tool calls provided yet.)"
|
||||
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
if iteration_nr == 1:
|
||||
remaining_time_budget = DR_TIME_BUDGET_BY_TYPE[ResearchType.THOUGHTFUL]
|
||||
|
||||
elif iteration_nr > 1:
|
||||
# for each iteration past the first one, we need to see whether we
|
||||
# have enough information to answer the question.
|
||||
# if we do, we can stop the iteration and return the answer.
|
||||
# if we do not, we need to continue the iteration.
|
||||
|
||||
base_reasoning_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.NEXT_STEP_REASONING,
|
||||
ResearchType.THOUGHTFUL,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools,
|
||||
)
|
||||
|
||||
reasoning_prompt = base_reasoning_prompt.build(
|
||||
question=question,
|
||||
chat_history_string=chat_history_string,
|
||||
answer_history_string=answer_history_string,
|
||||
iteration_nr=str(iteration_nr),
|
||||
remaining_time_budget=str(remaining_time_budget),
|
||||
uploaded_context=uploaded_context,
|
||||
)
|
||||
|
||||
reasoning_tokens: list[str] = [""]
|
||||
|
||||
reasoning_tokens, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
decision_system_prompt, reasoning_prompt
|
||||
),
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.REASONING_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
# max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
reasoning_result = cast(str, merge_content(*reasoning_tokens))
|
||||
|
||||
if SUFFICIENT_INFORMATION_STRING in reasoning_result:
|
||||
return OrchestrationUpdate(
|
||||
tools_used=[DRPath.CLOSER.value],
|
||||
current_step_nr=current_step_nr,
|
||||
query_list=[],
|
||||
iteration_nr=iteration_nr,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="orchestrator",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
plan_of_record=plan_of_record,
|
||||
remaining_time_budget=remaining_time_budget,
|
||||
iteration_instructions=[
|
||||
IterationInstructions(
|
||||
iteration_nr=iteration_nr,
|
||||
plan=None,
|
||||
reasoning=reasoning_result,
|
||||
purpose="",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
# for Thoughtful mode, we force a tool if requested an available
|
||||
available_tools_for_decision = available_tools
|
||||
force_use_tool = graph_config.tooling.force_use_tool
|
||||
if iteration_nr == 1 and force_use_tool and force_use_tool.force_use:
|
||||
|
||||
forced_tool_name = force_use_tool.tool_name
|
||||
|
||||
available_tool_dict = {
|
||||
available_tool.tool_object.name: available_tool
|
||||
for _, available_tool in available_tools.items()
|
||||
if available_tool.tool_object
|
||||
}
|
||||
|
||||
if forced_tool_name in available_tool_dict.keys():
|
||||
forced_tool = available_tool_dict[forced_tool_name]
|
||||
|
||||
available_tools_for_decision = {forced_tool.name: forced_tool}
|
||||
|
||||
base_decision_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.NEXT_STEP,
|
||||
ResearchType.THOUGHTFUL,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools_for_decision,
|
||||
)
|
||||
decision_prompt = base_decision_prompt.build(
|
||||
question=question,
|
||||
chat_history_string=chat_history_string,
|
||||
answer_history_string=answer_history_string,
|
||||
iteration_nr=str(iteration_nr),
|
||||
remaining_time_budget=str(remaining_time_budget),
|
||||
reasoning_result=reasoning_result,
|
||||
uploaded_context=uploaded_context,
|
||||
)
|
||||
|
||||
if remaining_time_budget > 0:
|
||||
try:
|
||||
orchestrator_action = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
decision_system_prompt,
|
||||
decision_prompt,
|
||||
),
|
||||
schema=OrchestratorDecisonsNoPlan,
|
||||
timeout_override=35,
|
||||
# max_tokens=2500,
|
||||
)
|
||||
next_step = orchestrator_action.next_step
|
||||
next_tool_name = next_step.tool
|
||||
query_list = [q for q in (next_step.questions or [])]
|
||||
|
||||
tool_calls_string = create_tool_call_string(next_tool_name, query_list)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in approach extraction: {e}")
|
||||
raise e
|
||||
|
||||
if next_tool_name in available_tools.keys():
|
||||
remaining_time_budget -= available_tools[next_tool_name].cost
|
||||
else:
|
||||
logger.warning(f"Tool {next_tool_name} not found in available tools")
|
||||
remaining_time_budget -= 1.0
|
||||
|
||||
else:
|
||||
reasoning_result = "Time to wrap up."
|
||||
next_tool_name = DRPath.CLOSER.value
|
||||
|
||||
else:
|
||||
if iteration_nr == 1 and not plan_of_record:
|
||||
# by default, we start a new iteration, but if there is a feedback request,
|
||||
# we start a new iteration 0 again (set a bit later)
|
||||
|
||||
remaining_time_budget = DR_TIME_BUDGET_BY_TYPE[ResearchType.DEEP]
|
||||
|
||||
base_plan_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.PLAN,
|
||||
ResearchType.DEEP,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools,
|
||||
)
|
||||
plan_generation_prompt = base_plan_prompt.build(
|
||||
question=prompt_question,
|
||||
chat_history_string=chat_history_string,
|
||||
uploaded_context=uploaded_context,
|
||||
)
|
||||
|
||||
try:
|
||||
plan_of_record = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
decision_system_prompt,
|
||||
plan_generation_prompt,
|
||||
),
|
||||
schema=OrchestrationPlan,
|
||||
timeout_override=25,
|
||||
# max_tokens=3000,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in plan generation: {e}")
|
||||
raise
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
ReasoningStart(),
|
||||
writer,
|
||||
)
|
||||
|
||||
start_time = datetime.now()
|
||||
|
||||
repeat_plan_prompt = REPEAT_PROMPT.build(
|
||||
original_information=f"{HIGH_LEVEL_PLAN_PREFIX}\n\n {plan_of_record.plan}"
|
||||
)
|
||||
|
||||
_, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=repeat_plan_prompt,
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.REASONING_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
),
|
||||
)
|
||||
|
||||
end_time = datetime.now()
|
||||
logger.debug(f"Time taken for plan streaming: {end_time - start_time}")
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
current_step_nr += 1
|
||||
|
||||
if not plan_of_record:
|
||||
raise ValueError(
|
||||
"Plan information is required for iterative decision making"
|
||||
)
|
||||
|
||||
base_decision_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.NEXT_STEP,
|
||||
ResearchType.DEEP,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools,
|
||||
)
|
||||
decision_prompt = base_decision_prompt.build(
|
||||
answer_history_string=answer_history_string,
|
||||
question_history_string=question_history_string,
|
||||
question=prompt_question,
|
||||
iteration_nr=str(iteration_nr),
|
||||
current_plan_of_record_string=plan_of_record.plan,
|
||||
chat_history_string=chat_history_string,
|
||||
remaining_time_budget=str(remaining_time_budget),
|
||||
gaps=gaps_str,
|
||||
uploaded_context=uploaded_context,
|
||||
)
|
||||
|
||||
if remaining_time_budget > 0:
|
||||
try:
|
||||
orchestrator_action = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
decision_system_prompt,
|
||||
decision_prompt,
|
||||
),
|
||||
schema=OrchestratorDecisonsNoPlan,
|
||||
timeout_override=15,
|
||||
# max_tokens=1500,
|
||||
)
|
||||
next_step = orchestrator_action.next_step
|
||||
next_tool_name = next_step.tool
|
||||
|
||||
query_list = [q for q in (next_step.questions or [])]
|
||||
reasoning_result = orchestrator_action.reasoning
|
||||
|
||||
tool_calls_string = create_tool_call_string(next_tool_name, query_list)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in approach extraction: {e}")
|
||||
raise e
|
||||
|
||||
if next_tool_name in available_tools.keys():
|
||||
remaining_time_budget -= available_tools[next_tool_name].cost
|
||||
else:
|
||||
logger.warning(f"Tool {next_tool_name} not found in available tools")
|
||||
remaining_time_budget -= 1.0
|
||||
else:
|
||||
reasoning_result = "Time to wrap up."
|
||||
next_tool_name = DRPath.CLOSER.value
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
ReasoningStart(),
|
||||
writer,
|
||||
)
|
||||
|
||||
repeat_reasoning_prompt = REPEAT_PROMPT.build(
|
||||
original_information=reasoning_result
|
||||
)
|
||||
|
||||
_, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=repeat_reasoning_prompt,
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.REASONING_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
# max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
base_next_step_purpose_prompt = get_dr_prompt_orchestration_templates(
|
||||
DRPromptPurpose.NEXT_STEP_PURPOSE,
|
||||
ResearchType.DEEP,
|
||||
entity_types_string=all_entity_types,
|
||||
relationship_types_string=all_relationship_types,
|
||||
available_tools=available_tools,
|
||||
)
|
||||
orchestration_next_step_purpose_prompt = base_next_step_purpose_prompt.build(
|
||||
question=prompt_question,
|
||||
reasoning_result=reasoning_result,
|
||||
tool_calls=tool_calls_string,
|
||||
)
|
||||
|
||||
purpose_tokens: list[str] = [""]
|
||||
|
||||
try:
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
ReasoningStart(),
|
||||
writer,
|
||||
)
|
||||
|
||||
purpose_tokens, _, _ = run_with_timeout(
|
||||
80,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
decision_system_prompt,
|
||||
orchestration_next_step_purpose_prompt,
|
||||
),
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.REASONING_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
# max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in orchestration next step purpose: {e}")
|
||||
raise e
|
||||
|
||||
purpose = cast(str, merge_content(*purpose_tokens))
|
||||
|
||||
if not next_tool_name:
|
||||
raise ValueError("The next step has not been defined. This should not happen.")
|
||||
|
||||
return OrchestrationUpdate(
|
||||
tools_used=[next_tool_name],
|
||||
query_list=query_list or [],
|
||||
iteration_nr=iteration_nr,
|
||||
current_step_nr=current_step_nr,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="orchestrator",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
plan_of_record=plan_of_record,
|
||||
remaining_time_budget=remaining_time_budget,
|
||||
iteration_instructions=[
|
||||
IterationInstructions(
|
||||
iteration_nr=iteration_nr,
|
||||
plan=plan_of_record.plan if plan_of_record else None,
|
||||
reasoning=reasoning_result,
|
||||
purpose=purpose,
|
||||
)
|
||||
],
|
||||
)
|
||||
384
backend/onyx/agents/agent_search/dr/nodes/dr_a2_closer.py
Normal file
384
backend/onyx/agents/agent_search/dr/nodes/dr_a2_closer.py
Normal file
@@ -0,0 +1,384 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.agents.agent_search.dr.constants import MAX_CHAT_HISTORY_MESSAGES
|
||||
from onyx.agents.agent_search.dr.constants import MAX_NUM_CLOSER_SUGGESTIONS
|
||||
from onyx.agents.agent_search.dr.enums import DRPath
|
||||
from onyx.agents.agent_search.dr.enums import ResearchAnswerPurpose
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
from onyx.agents.agent_search.dr.models import AggregatedDRContext
|
||||
from onyx.agents.agent_search.dr.models import TestInfoCompleteResponse
|
||||
from onyx.agents.agent_search.dr.states import FinalUpdate
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
from onyx.agents.agent_search.dr.states import OrchestrationUpdate
|
||||
from onyx.agents.agent_search.dr.sub_agents.image_generation.models import (
|
||||
GeneratedImageFullResult,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.utils import aggregate_context
|
||||
from onyx.agents.agent_search.dr.utils import convert_inference_sections_to_search_docs
|
||||
from onyx.agents.agent_search.dr.utils import get_chat_history_string
|
||||
from onyx.agents.agent_search.dr.utils import get_prompt_question
|
||||
from onyx.agents.agent_search.dr.utils import parse_plan_to_dict
|
||||
from onyx.agents.agent_search.dr.utils import update_db_session_with_messages
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import invoke_llm_json
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import stream_llm_answer
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.agents.agent_search.utils import create_question_prompt
|
||||
from onyx.chat.chat_utils import llm_doc_from_inference_section
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.db.chat import create_search_doc_from_inference_section
|
||||
from onyx.db.models import ChatMessage__SearchDoc
|
||||
from onyx.db.models import ResearchAgentIteration
|
||||
from onyx.db.models import ResearchAgentIterationSubStep
|
||||
from onyx.db.models import SearchDoc as DbSearchDoc
|
||||
from onyx.prompts.dr_prompts import FINAL_ANSWER_PROMPT_W_SUB_ANSWERS
|
||||
from onyx.prompts.dr_prompts import FINAL_ANSWER_PROMPT_WITHOUT_SUB_ANSWERS
|
||||
from onyx.prompts.dr_prompts import TEST_INFO_COMPLETE_PROMPT
|
||||
from onyx.server.query_and_chat.streaming_models import CitationDelta
|
||||
from onyx.server.query_and_chat.streaming_models import CitationStart
|
||||
from onyx.server.query_and_chat.streaming_models import MessageStart
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.server.query_and_chat.streaming_models import StreamingType
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_with_timeout
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def extract_citation_numbers(text: str) -> list[int]:
|
||||
"""
|
||||
Extract all citation numbers from text in the format [[<number>]] or [[<number_1>, <number_2>, ...]].
|
||||
Returns a list of all unique citation numbers found.
|
||||
"""
|
||||
# Pattern to match [[number]] or [[number1, number2, ...]]
|
||||
pattern = r"\[\[(\d+(?:,\s*\d+)*)\]\]"
|
||||
matches = re.findall(pattern, text)
|
||||
|
||||
cited_numbers = []
|
||||
for match in matches:
|
||||
# Split by comma and extract all numbers
|
||||
numbers = [int(num.strip()) for num in match.split(",")]
|
||||
cited_numbers.extend(numbers)
|
||||
|
||||
return list(set(cited_numbers)) # Return unique numbers
|
||||
|
||||
|
||||
def replace_citation_with_link(match: re.Match[str], docs: list[DbSearchDoc]) -> str:
|
||||
citation_content = match.group(1) # e.g., "3" or "3, 5, 7"
|
||||
numbers = [int(num.strip()) for num in citation_content.split(",")]
|
||||
|
||||
# For multiple citations like [[3, 5, 7]], create separate linked citations
|
||||
linked_citations = []
|
||||
for num in numbers:
|
||||
if num - 1 < len(docs): # Check bounds
|
||||
link = docs[num - 1].link or ""
|
||||
linked_citations.append(f"[[{num}]]({link})")
|
||||
else:
|
||||
linked_citations.append(f"[[{num}]]") # No link if out of bounds
|
||||
|
||||
return "".join(linked_citations)
|
||||
|
||||
|
||||
def insert_chat_message_search_doc_pair(
|
||||
message_id: int, search_doc_ids: list[int], db_session: Session
|
||||
) -> None:
|
||||
"""
|
||||
Insert a pair of message_id and search_doc_id into the chat_message__search_doc table.
|
||||
|
||||
Args:
|
||||
message_id: The ID of the chat message
|
||||
search_doc_id: The ID of the search document
|
||||
db_session: The database session
|
||||
"""
|
||||
for search_doc_id in search_doc_ids:
|
||||
chat_message_search_doc = ChatMessage__SearchDoc(
|
||||
chat_message_id=message_id, search_doc_id=search_doc_id
|
||||
)
|
||||
db_session.add(chat_message_search_doc)
|
||||
|
||||
|
||||
def save_iteration(
|
||||
state: MainState,
|
||||
graph_config: GraphConfig,
|
||||
aggregated_context: AggregatedDRContext,
|
||||
final_answer: str,
|
||||
all_cited_documents: list[InferenceSection],
|
||||
is_internet_marker_dict: dict[str, bool],
|
||||
) -> None:
|
||||
db_session = graph_config.persistence.db_session
|
||||
message_id = graph_config.persistence.message_id
|
||||
research_type = graph_config.behavior.research_type
|
||||
db_session = graph_config.persistence.db_session
|
||||
|
||||
# first, insert the search_docs
|
||||
search_docs = [
|
||||
create_search_doc_from_inference_section(
|
||||
inference_section=inference_section,
|
||||
is_internet=is_internet_marker_dict.get(
|
||||
inference_section.center_chunk.document_id, False
|
||||
), # TODO: revisit
|
||||
db_session=db_session,
|
||||
commit=False,
|
||||
)
|
||||
for inference_section in all_cited_documents
|
||||
]
|
||||
|
||||
# then, map_search_docs to message
|
||||
insert_chat_message_search_doc_pair(
|
||||
message_id, [search_doc.id for search_doc in search_docs], db_session
|
||||
)
|
||||
|
||||
# lastly, insert the citations
|
||||
citation_dict: dict[int, int] = {}
|
||||
cited_doc_nrs = extract_citation_numbers(final_answer)
|
||||
for cited_doc_nr in cited_doc_nrs:
|
||||
citation_dict[cited_doc_nr] = search_docs[cited_doc_nr - 1].id
|
||||
|
||||
# TODO: generate plan as dict in the first place
|
||||
plan_of_record = state.plan_of_record.plan if state.plan_of_record else ""
|
||||
plan_of_record_dict = parse_plan_to_dict(plan_of_record)
|
||||
|
||||
# Update the chat message and its parent message in database
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=final_answer,
|
||||
citations=citation_dict,
|
||||
research_type=research_type,
|
||||
research_plan=plan_of_record_dict,
|
||||
final_documents=search_docs,
|
||||
update_parent_message=True,
|
||||
research_answer_purpose=ResearchAnswerPurpose.ANSWER,
|
||||
)
|
||||
|
||||
for iteration_preparation in state.iteration_instructions:
|
||||
research_agent_iteration_step = ResearchAgentIteration(
|
||||
primary_question_id=message_id,
|
||||
reasoning=iteration_preparation.reasoning,
|
||||
purpose=iteration_preparation.purpose,
|
||||
iteration_nr=iteration_preparation.iteration_nr,
|
||||
)
|
||||
db_session.add(research_agent_iteration_step)
|
||||
|
||||
for iteration_answer in aggregated_context.global_iteration_responses:
|
||||
|
||||
retrieved_search_docs = convert_inference_sections_to_search_docs(
|
||||
list(iteration_answer.cited_documents.values())
|
||||
)
|
||||
|
||||
# Convert SavedSearchDoc objects to JSON-serializable format
|
||||
serialized_search_docs = [doc.model_dump() for doc in retrieved_search_docs]
|
||||
|
||||
research_agent_iteration_sub_step = ResearchAgentIterationSubStep(
|
||||
primary_question_id=message_id,
|
||||
iteration_nr=iteration_answer.iteration_nr,
|
||||
iteration_sub_step_nr=iteration_answer.parallelization_nr,
|
||||
sub_step_instructions=iteration_answer.question,
|
||||
sub_step_tool_id=iteration_answer.tool_id,
|
||||
sub_answer=iteration_answer.answer,
|
||||
reasoning=iteration_answer.reasoning,
|
||||
claims=iteration_answer.claims,
|
||||
cited_doc_results=serialized_search_docs,
|
||||
generated_images=(
|
||||
GeneratedImageFullResult(images=iteration_answer.generated_images)
|
||||
if iteration_answer.generated_images
|
||||
else None
|
||||
),
|
||||
additional_data=iteration_answer.additional_data,
|
||||
)
|
||||
db_session.add(research_agent_iteration_sub_step)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def closer(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> FinalUpdate | OrchestrationUpdate:
|
||||
"""
|
||||
LangGraph node to close the DR process and finalize the answer.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
# TODO: generate final answer using all the previous steps
|
||||
# (right now, answers from each step are concatenated onto each other)
|
||||
# Also, add missing fields once usage in UI is clear.
|
||||
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
base_question = state.original_question
|
||||
if not base_question:
|
||||
raise ValueError("Question is required for closer")
|
||||
|
||||
research_type = graph_config.behavior.research_type
|
||||
|
||||
assistant_system_prompt = state.assistant_system_prompt
|
||||
assistant_task_prompt = state.assistant_task_prompt
|
||||
|
||||
uploaded_context = state.uploaded_test_context or ""
|
||||
|
||||
clarification = state.clarification
|
||||
prompt_question = get_prompt_question(base_question, clarification)
|
||||
|
||||
chat_history_string = (
|
||||
get_chat_history_string(
|
||||
graph_config.inputs.prompt_builder.message_history,
|
||||
MAX_CHAT_HISTORY_MESSAGES,
|
||||
)
|
||||
or "(No chat history yet available)"
|
||||
)
|
||||
|
||||
aggregated_context = aggregate_context(
|
||||
state.iteration_responses, include_documents=True
|
||||
)
|
||||
|
||||
iteration_responses_string = aggregated_context.context
|
||||
all_cited_documents = aggregated_context.cited_documents
|
||||
|
||||
aggregated_context.is_internet_marker_dict
|
||||
|
||||
num_closer_suggestions = state.num_closer_suggestions
|
||||
|
||||
if (
|
||||
num_closer_suggestions < MAX_NUM_CLOSER_SUGGESTIONS
|
||||
and research_type == ResearchType.DEEP
|
||||
):
|
||||
test_info_complete_prompt = TEST_INFO_COMPLETE_PROMPT.build(
|
||||
base_question=prompt_question,
|
||||
questions_answers_claims=iteration_responses_string,
|
||||
chat_history_string=chat_history_string,
|
||||
high_level_plan=(
|
||||
state.plan_of_record.plan
|
||||
if state.plan_of_record
|
||||
else "No plan available"
|
||||
),
|
||||
)
|
||||
|
||||
test_info_complete_json = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt,
|
||||
test_info_complete_prompt + (assistant_task_prompt or ""),
|
||||
),
|
||||
schema=TestInfoCompleteResponse,
|
||||
timeout_override=40,
|
||||
# max_tokens=1000,
|
||||
)
|
||||
|
||||
if test_info_complete_json.complete:
|
||||
pass
|
||||
|
||||
else:
|
||||
return OrchestrationUpdate(
|
||||
tools_used=[DRPath.ORCHESTRATOR.value],
|
||||
query_list=[],
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="closer",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
gaps=test_info_complete_json.gaps,
|
||||
num_closer_suggestions=num_closer_suggestions + 1,
|
||||
)
|
||||
|
||||
retrieved_search_docs = convert_inference_sections_to_search_docs(
|
||||
all_cited_documents
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
MessageStart(
|
||||
content="",
|
||||
final_documents=retrieved_search_docs,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if research_type == ResearchType.THOUGHTFUL:
|
||||
final_answer_base_prompt = FINAL_ANSWER_PROMPT_WITHOUT_SUB_ANSWERS
|
||||
else:
|
||||
final_answer_base_prompt = FINAL_ANSWER_PROMPT_W_SUB_ANSWERS
|
||||
|
||||
final_answer_prompt = final_answer_base_prompt.build(
|
||||
base_question=prompt_question,
|
||||
iteration_responses_string=iteration_responses_string,
|
||||
chat_history_string=chat_history_string,
|
||||
uploaded_context=uploaded_context,
|
||||
)
|
||||
|
||||
all_context_llmdocs = [
|
||||
llm_doc_from_inference_section(inference_section)
|
||||
for inference_section in all_cited_documents
|
||||
]
|
||||
|
||||
try:
|
||||
streamed_output, _, citation_infos = run_with_timeout(
|
||||
240,
|
||||
lambda: stream_llm_answer(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt,
|
||||
final_answer_prompt + (assistant_task_prompt or ""),
|
||||
),
|
||||
event_name="basic_response",
|
||||
writer=writer,
|
||||
agent_answer_level=0,
|
||||
agent_answer_question_num=0,
|
||||
agent_answer_type="agent_level_answer",
|
||||
timeout_override=60,
|
||||
answer_piece=StreamingType.MESSAGE_DELTA.value,
|
||||
ind=current_step_nr,
|
||||
context_docs=all_context_llmdocs,
|
||||
replace_citations=True,
|
||||
# max_tokens=None,
|
||||
),
|
||||
)
|
||||
|
||||
final_answer = "".join(streamed_output)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error in consolidate_research: {e}")
|
||||
|
||||
write_custom_event(current_step_nr, SectionEnd(), writer)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
write_custom_event(current_step_nr, CitationStart(), writer)
|
||||
write_custom_event(current_step_nr, CitationDelta(citations=citation_infos), writer)
|
||||
write_custom_event(current_step_nr, SectionEnd(), writer)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
# Log the research agent steps
|
||||
# save_iteration(
|
||||
# state,
|
||||
# graph_config,
|
||||
# aggregated_context,
|
||||
# final_answer,
|
||||
# all_cited_documents,
|
||||
# is_internet_marker_dict,
|
||||
# )
|
||||
|
||||
return FinalUpdate(
|
||||
final_answer=final_answer,
|
||||
all_cited_documents=all_cited_documents,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="closer",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
235
backend/onyx/agents/agent_search/dr/nodes/dr_a3_logger.py
Normal file
235
backend/onyx/agents/agent_search/dr/nodes/dr_a3_logger.py
Normal file
@@ -0,0 +1,235 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.agents.agent_search.dr.enums import ResearchAnswerPurpose
|
||||
from onyx.agents.agent_search.dr.models import AggregatedDRContext
|
||||
from onyx.agents.agent_search.dr.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.dr.states import MainState
|
||||
from onyx.agents.agent_search.dr.sub_agents.image_generation.models import (
|
||||
GeneratedImageFullResult,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.utils import aggregate_context
|
||||
from onyx.agents.agent_search.dr.utils import convert_inference_sections_to_search_docs
|
||||
from onyx.agents.agent_search.dr.utils import parse_plan_to_dict
|
||||
from onyx.agents.agent_search.dr.utils import update_db_session_with_messages
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.db.chat import create_search_doc_from_inference_section
|
||||
from onyx.db.models import ChatMessage__SearchDoc
|
||||
from onyx.db.models import ResearchAgentIteration
|
||||
from onyx.db.models import ResearchAgentIterationSubStep
|
||||
from onyx.db.models import SearchDoc as DbSearchDoc
|
||||
from onyx.server.query_and_chat.streaming_models import OverallStop
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def _extract_citation_numbers(text: str) -> list[int]:
|
||||
"""
|
||||
Extract all citation numbers from text in the format [[<number>]] or [[<number_1>, <number_2>, ...]].
|
||||
Returns a list of all unique citation numbers found.
|
||||
"""
|
||||
# Pattern to match [[number]] or [[number1, number2, ...]]
|
||||
pattern = r"\[\[(\d+(?:,\s*\d+)*)\]\]"
|
||||
matches = re.findall(pattern, text)
|
||||
|
||||
cited_numbers = []
|
||||
for match in matches:
|
||||
# Split by comma and extract all numbers
|
||||
numbers = [int(num.strip()) for num in match.split(",")]
|
||||
cited_numbers.extend(numbers)
|
||||
|
||||
return list(set(cited_numbers)) # Return unique numbers
|
||||
|
||||
|
||||
def replace_citation_with_link(match: re.Match[str], docs: list[DbSearchDoc]) -> str:
|
||||
citation_content = match.group(1) # e.g., "3" or "3, 5, 7"
|
||||
numbers = [int(num.strip()) for num in citation_content.split(",")]
|
||||
|
||||
# For multiple citations like [[3, 5, 7]], create separate linked citations
|
||||
linked_citations = []
|
||||
for num in numbers:
|
||||
if num - 1 < len(docs): # Check bounds
|
||||
link = docs[num - 1].link or ""
|
||||
linked_citations.append(f"[[{num}]]({link})")
|
||||
else:
|
||||
linked_citations.append(f"[[{num}]]") # No link if out of bounds
|
||||
|
||||
return "".join(linked_citations)
|
||||
|
||||
|
||||
def _insert_chat_message_search_doc_pair(
|
||||
message_id: int, search_doc_ids: list[int], db_session: Session
|
||||
) -> None:
|
||||
"""
|
||||
Insert a pair of message_id and search_doc_id into the chat_message__search_doc table.
|
||||
|
||||
Args:
|
||||
message_id: The ID of the chat message
|
||||
search_doc_id: The ID of the search document
|
||||
db_session: The database session
|
||||
"""
|
||||
for search_doc_id in search_doc_ids:
|
||||
chat_message_search_doc = ChatMessage__SearchDoc(
|
||||
chat_message_id=message_id, search_doc_id=search_doc_id
|
||||
)
|
||||
db_session.add(chat_message_search_doc)
|
||||
|
||||
|
||||
def save_iteration(
|
||||
state: MainState,
|
||||
graph_config: GraphConfig,
|
||||
aggregated_context: AggregatedDRContext,
|
||||
final_answer: str,
|
||||
all_cited_documents: list[InferenceSection],
|
||||
is_internet_marker_dict: dict[str, bool],
|
||||
) -> None:
|
||||
db_session = graph_config.persistence.db_session
|
||||
message_id = graph_config.persistence.message_id
|
||||
research_type = graph_config.behavior.research_type
|
||||
db_session = graph_config.persistence.db_session
|
||||
|
||||
# first, insert the search_docs
|
||||
search_docs = [
|
||||
create_search_doc_from_inference_section(
|
||||
inference_section=inference_section,
|
||||
is_internet=is_internet_marker_dict.get(
|
||||
inference_section.center_chunk.document_id, False
|
||||
), # TODO: revisit
|
||||
db_session=db_session,
|
||||
commit=False,
|
||||
)
|
||||
for inference_section in all_cited_documents
|
||||
]
|
||||
|
||||
# then, map_search_docs to message
|
||||
_insert_chat_message_search_doc_pair(
|
||||
message_id, [search_doc.id for search_doc in search_docs], db_session
|
||||
)
|
||||
|
||||
# lastly, insert the citations
|
||||
citation_dict: dict[int, int] = {}
|
||||
cited_doc_nrs = _extract_citation_numbers(final_answer)
|
||||
if search_docs:
|
||||
for cited_doc_nr in cited_doc_nrs:
|
||||
citation_dict[cited_doc_nr] = search_docs[cited_doc_nr - 1].id
|
||||
|
||||
# TODO: generate plan as dict in the first place
|
||||
plan_of_record = state.plan_of_record.plan if state.plan_of_record else ""
|
||||
plan_of_record_dict = parse_plan_to_dict(plan_of_record)
|
||||
|
||||
# Update the chat message and its parent message in database
|
||||
update_db_session_with_messages(
|
||||
db_session=db_session,
|
||||
chat_message_id=message_id,
|
||||
chat_session_id=str(graph_config.persistence.chat_session_id),
|
||||
is_agentic=graph_config.behavior.use_agentic_search,
|
||||
message=final_answer,
|
||||
citations=citation_dict,
|
||||
research_type=research_type,
|
||||
research_plan=plan_of_record_dict,
|
||||
final_documents=search_docs,
|
||||
update_parent_message=True,
|
||||
research_answer_purpose=ResearchAnswerPurpose.ANSWER,
|
||||
)
|
||||
|
||||
for iteration_preparation in state.iteration_instructions:
|
||||
research_agent_iteration_step = ResearchAgentIteration(
|
||||
primary_question_id=message_id,
|
||||
reasoning=iteration_preparation.reasoning,
|
||||
purpose=iteration_preparation.purpose,
|
||||
iteration_nr=iteration_preparation.iteration_nr,
|
||||
)
|
||||
db_session.add(research_agent_iteration_step)
|
||||
|
||||
for iteration_answer in aggregated_context.global_iteration_responses:
|
||||
|
||||
retrieved_search_docs = convert_inference_sections_to_search_docs(
|
||||
list(iteration_answer.cited_documents.values())
|
||||
)
|
||||
|
||||
# Convert SavedSearchDoc objects to JSON-serializable format
|
||||
serialized_search_docs = [doc.model_dump() for doc in retrieved_search_docs]
|
||||
|
||||
research_agent_iteration_sub_step = ResearchAgentIterationSubStep(
|
||||
primary_question_id=message_id,
|
||||
iteration_nr=iteration_answer.iteration_nr,
|
||||
iteration_sub_step_nr=iteration_answer.parallelization_nr,
|
||||
sub_step_instructions=iteration_answer.question,
|
||||
sub_step_tool_id=iteration_answer.tool_id,
|
||||
sub_answer=iteration_answer.answer,
|
||||
reasoning=iteration_answer.reasoning,
|
||||
claims=iteration_answer.claims,
|
||||
cited_doc_results=serialized_search_docs,
|
||||
generated_images=(
|
||||
GeneratedImageFullResult(images=iteration_answer.generated_images)
|
||||
if iteration_answer.generated_images
|
||||
else None
|
||||
),
|
||||
additional_data=iteration_answer.additional_data,
|
||||
)
|
||||
db_session.add(research_agent_iteration_sub_step)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def logging(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> LoggerUpdate:
|
||||
"""
|
||||
LangGraph node to close the DR process and finalize the answer.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
# TODO: generate final answer using all the previous steps
|
||||
# (right now, answers from each step are concatenated onto each other)
|
||||
# Also, add missing fields once usage in UI is clear.
|
||||
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
base_question = state.original_question
|
||||
if not base_question:
|
||||
raise ValueError("Question is required for closer")
|
||||
|
||||
aggregated_context = aggregate_context(
|
||||
state.iteration_responses, include_documents=True
|
||||
)
|
||||
|
||||
all_cited_documents = aggregated_context.cited_documents
|
||||
|
||||
is_internet_marker_dict = aggregated_context.is_internet_marker_dict
|
||||
|
||||
final_answer = state.final_answer or ""
|
||||
|
||||
write_custom_event(current_step_nr, OverallStop(), writer)
|
||||
|
||||
# Log the research agent steps
|
||||
save_iteration(
|
||||
state,
|
||||
graph_config,
|
||||
aggregated_context,
|
||||
final_answer,
|
||||
all_cited_documents,
|
||||
is_internet_marker_dict,
|
||||
)
|
||||
|
||||
return LoggerUpdate(
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="logger",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
117
backend/onyx/agents/agent_search/dr/process_llm_stream.py
Normal file
117
backend/onyx/agents/agent_search/dr/process_llm_stream.py
Normal file
@@ -0,0 +1,117 @@
|
||||
from collections.abc import Iterator
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langgraph.types import StreamWriter
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.chat_utils import saved_search_docs_from_llm_docs
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import OnyxAnswerPiece
|
||||
from onyx.chat.stream_processing.answer_response_handler import AnswerResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import CitationResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import (
|
||||
PassThroughAnswerResponseHandler,
|
||||
)
|
||||
from onyx.chat.stream_processing.utils import map_document_id_order
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.server.query_and_chat.streaming_models import MessageDelta
|
||||
from onyx.server.query_and_chat.streaming_models import MessageStart
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
class BasicSearchProcessedStreamResults(BaseModel):
|
||||
ai_message_chunk: AIMessageChunk = AIMessageChunk(content="")
|
||||
full_answer: str | None = None
|
||||
cited_references: list[InferenceSection] = []
|
||||
retrieved_documents: list[LlmDoc] = []
|
||||
|
||||
|
||||
def process_llm_stream(
|
||||
messages: Iterator[BaseMessage],
|
||||
should_stream_answer: bool,
|
||||
writer: StreamWriter,
|
||||
ind: int,
|
||||
final_search_results: list[LlmDoc] | None = None,
|
||||
displayed_search_results: list[LlmDoc] | None = None,
|
||||
generate_final_answer: bool = False,
|
||||
chat_message_id: str | None = None,
|
||||
) -> BasicSearchProcessedStreamResults:
|
||||
tool_call_chunk = AIMessageChunk(content="")
|
||||
|
||||
if final_search_results and displayed_search_results:
|
||||
answer_handler: AnswerResponseHandler = CitationResponseHandler(
|
||||
context_docs=final_search_results,
|
||||
final_doc_id_to_rank_map=map_document_id_order(final_search_results),
|
||||
display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
|
||||
)
|
||||
else:
|
||||
answer_handler = PassThroughAnswerResponseHandler()
|
||||
|
||||
full_answer = ""
|
||||
start_final_answer_streaming_set = False
|
||||
# This stream will be the llm answer if no tool is chosen. When a tool is chosen,
|
||||
# the stream will contain AIMessageChunks with tool call information.
|
||||
for message in messages:
|
||||
|
||||
answer_piece = message.content
|
||||
if not isinstance(answer_piece, str):
|
||||
# this is only used for logging, so fine to
|
||||
# just add the string representation
|
||||
answer_piece = str(answer_piece)
|
||||
full_answer += answer_piece
|
||||
|
||||
if isinstance(message, AIMessageChunk) and (
|
||||
message.tool_call_chunks or message.tool_calls
|
||||
):
|
||||
tool_call_chunk += message # type: ignore
|
||||
elif should_stream_answer:
|
||||
for response_part in answer_handler.handle_response_part(message, []):
|
||||
|
||||
# only stream out answer parts
|
||||
if (
|
||||
isinstance(response_part, (OnyxAnswerPiece, AgentAnswerPiece))
|
||||
and generate_final_answer
|
||||
and response_part.answer_piece
|
||||
):
|
||||
if chat_message_id is None:
|
||||
raise ValueError(
|
||||
"chat_message_id is required when generating final answer"
|
||||
)
|
||||
|
||||
if not start_final_answer_streaming_set:
|
||||
# Convert LlmDocs to SavedSearchDocs
|
||||
saved_search_docs = saved_search_docs_from_llm_docs(
|
||||
final_search_results
|
||||
)
|
||||
write_custom_event(
|
||||
ind,
|
||||
MessageStart(content="", final_documents=saved_search_docs),
|
||||
writer,
|
||||
)
|
||||
start_final_answer_streaming_set = True
|
||||
|
||||
write_custom_event(
|
||||
ind,
|
||||
MessageDelta(content=response_part.answer_piece),
|
||||
writer,
|
||||
)
|
||||
|
||||
if generate_final_answer and start_final_answer_streaming_set:
|
||||
# start_final_answer_streaming_set is only set if the answer is verbal and not a tool call
|
||||
write_custom_event(
|
||||
ind,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
logger.debug(f"Full answer: {full_answer}")
|
||||
return BasicSearchProcessedStreamResults(
|
||||
ai_message_chunk=cast(AIMessageChunk, tool_call_chunk), full_answer=full_answer
|
||||
)
|
||||
82
backend/onyx/agents/agent_search/dr/states.py
Normal file
82
backend/onyx/agents/agent_search/dr/states.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import Any
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.dr.models import IterationAnswer
|
||||
from onyx.agents.agent_search.dr.models import IterationInstructions
|
||||
from onyx.agents.agent_search.dr.models import OrchestrationClarificationInfo
|
||||
from onyx.agents.agent_search.dr.models import OrchestrationPlan
|
||||
from onyx.agents.agent_search.dr.models import OrchestratorTool
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.db.connector import DocumentSource
|
||||
|
||||
### States ###
|
||||
|
||||
|
||||
class LoggerUpdate(BaseModel):
|
||||
log_messages: Annotated[list[str], add] = []
|
||||
|
||||
|
||||
class OrchestrationUpdate(LoggerUpdate):
|
||||
tools_used: Annotated[list[str], add] = []
|
||||
query_list: list[str] = []
|
||||
iteration_nr: int = 0
|
||||
current_step_nr: int = 1
|
||||
plan_of_record: OrchestrationPlan | None = None # None for Thoughtful
|
||||
remaining_time_budget: float = 2.0 # set by default to about 2 searches
|
||||
num_closer_suggestions: int = 0 # how many times the closer was suggested
|
||||
gaps: list[str] = (
|
||||
[]
|
||||
) # gaps that may be identified by the closer before being able to answer the question.
|
||||
iteration_instructions: Annotated[list[IterationInstructions], add] = []
|
||||
|
||||
|
||||
class OrchestrationSetup(OrchestrationUpdate):
|
||||
original_question: str | None = None
|
||||
chat_history_string: str | None = None
|
||||
clarification: OrchestrationClarificationInfo | None = None
|
||||
available_tools: dict[str, OrchestratorTool] | None = None
|
||||
num_closer_suggestions: int = 0 # how many times the closer was suggested
|
||||
|
||||
active_source_types: list[DocumentSource] | None = None
|
||||
active_source_types_descriptions: str | None = None
|
||||
assistant_system_prompt: str | None = None
|
||||
assistant_task_prompt: str | None = None
|
||||
uploaded_test_context: str | None = None
|
||||
uploaded_image_context: list[dict[str, Any]] | None = None
|
||||
|
||||
|
||||
class AnswerUpdate(LoggerUpdate):
|
||||
iteration_responses: Annotated[list[IterationAnswer], add] = []
|
||||
|
||||
|
||||
class FinalUpdate(LoggerUpdate):
|
||||
final_answer: str | None = None
|
||||
all_cited_documents: list[InferenceSection] = []
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class MainInput(CoreState):
|
||||
pass
|
||||
|
||||
|
||||
## Graph State
|
||||
class MainState(
|
||||
# This includes the core state
|
||||
MainInput,
|
||||
OrchestrationSetup,
|
||||
AnswerUpdate,
|
||||
FinalUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class MainOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
final_answer: str | None
|
||||
all_cited_documents: list[InferenceSection]
|
||||
@@ -0,0 +1,47 @@
|
||||
from datetime import datetime
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentInput
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.server.query_and_chat.streaming_models import SearchToolStart
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def basic_search_branch(
|
||||
state: SubAgentInput, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> LoggerUpdate:
|
||||
"""
|
||||
LangGraph node to perform a standard search as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
iteration_nr = state.iteration_nr
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
logger.debug(f"Search start for Basic Search {iteration_nr} at {datetime.now()}")
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SearchToolStart(
|
||||
is_internet_search=False,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return LoggerUpdate(
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="basic_search",
|
||||
node_name="branching",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,266 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.enums import ResearchType
|
||||
from onyx.agents.agent_search.dr.models import BaseSearchProcessingResponse
|
||||
from onyx.agents.agent_search.dr.models import IterationAnswer
|
||||
from onyx.agents.agent_search.dr.models import SearchAnswer
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchInput
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchUpdate
|
||||
from onyx.agents.agent_search.dr.utils import convert_inference_sections_to_search_docs
|
||||
from onyx.agents.agent_search.dr.utils import extract_document_citations
|
||||
from onyx.agents.agent_search.kb_search.graph_utils import build_document_context
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.llm import invoke_llm_json
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.agents.agent_search.utils import create_question_prompt
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.db.connector import DocumentSource
|
||||
from onyx.db.engine.sql_engine import get_session_with_current_tenant
|
||||
from onyx.prompts.dr_prompts import BASE_SEARCH_PROCESSING_PROMPT
|
||||
from onyx.prompts.dr_prompts import INTERNAL_SEARCH_PROMPTS
|
||||
from onyx.server.query_and_chat.streaming_models import SearchToolDelta
|
||||
from onyx.tools.models import SearchToolOverrideKwargs
|
||||
from onyx.tools.tool_implementations.search.search_tool import (
|
||||
SEARCH_RESPONSE_SUMMARY_ID,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchTool
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def basic_search(
|
||||
state: BranchInput,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> BranchUpdate:
|
||||
"""
|
||||
LangGraph node to perform a standard search as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
iteration_nr = state.iteration_nr
|
||||
parallelization_nr = state.parallelization_nr
|
||||
current_step_nr = state.current_step_nr
|
||||
assistant_system_prompt = state.assistant_system_prompt
|
||||
assistant_task_prompt = state.assistant_task_prompt
|
||||
|
||||
branch_query = state.branch_question
|
||||
if not branch_query:
|
||||
raise ValueError("branch_query is not set")
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
base_question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
research_type = graph_config.behavior.research_type
|
||||
|
||||
if not state.available_tools:
|
||||
raise ValueError("available_tools is not set")
|
||||
|
||||
elif len(state.tools_used) == 0:
|
||||
raise ValueError("tools_used is empty")
|
||||
|
||||
search_tool_info = state.available_tools[state.tools_used[-1]]
|
||||
search_tool = cast(SearchTool, search_tool_info.tool_object)
|
||||
|
||||
# sanity check
|
||||
if search_tool != graph_config.tooling.search_tool:
|
||||
raise ValueError("search_tool does not match the configured search tool")
|
||||
|
||||
# rewrite query and identify source types
|
||||
active_source_types_str = ", ".join(
|
||||
[source.value for source in state.active_source_types or []]
|
||||
)
|
||||
|
||||
base_search_processing_prompt = BASE_SEARCH_PROCESSING_PROMPT.build(
|
||||
active_source_types_str=active_source_types_str,
|
||||
branch_query=branch_query,
|
||||
current_time=datetime.now().strftime("%Y-%m-%d %H:%M"),
|
||||
)
|
||||
|
||||
try:
|
||||
search_processing = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt, base_search_processing_prompt
|
||||
),
|
||||
schema=BaseSearchProcessingResponse,
|
||||
timeout_override=15,
|
||||
# max_tokens=100,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not process query: {e}")
|
||||
raise e
|
||||
|
||||
rewritten_query = search_processing.rewritten_query
|
||||
|
||||
# give back the query so we can render it in the UI
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SearchToolDelta(
|
||||
queries=[rewritten_query],
|
||||
documents=[],
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
implied_start_date = search_processing.time_filter
|
||||
|
||||
# Validate time_filter format if it exists
|
||||
implied_time_filter = None
|
||||
if implied_start_date:
|
||||
|
||||
# Check if time_filter is in YYYY-MM-DD format
|
||||
date_pattern = r"^\d{4}-\d{2}-\d{2}$"
|
||||
if re.match(date_pattern, implied_start_date):
|
||||
implied_time_filter = datetime.strptime(implied_start_date, "%Y-%m-%d")
|
||||
|
||||
specified_source_types: list[DocumentSource] | None = [
|
||||
DocumentSource(source_type)
|
||||
for source_type in search_processing.specified_source_types
|
||||
]
|
||||
|
||||
if specified_source_types is not None and len(specified_source_types) == 0:
|
||||
specified_source_types = None
|
||||
|
||||
logger.debug(
|
||||
f"Search start for Standard Search {iteration_nr}.{parallelization_nr} at {datetime.now()}"
|
||||
)
|
||||
|
||||
retrieved_docs: list[InferenceSection] = []
|
||||
callback_container: list[list[InferenceSection]] = []
|
||||
|
||||
# new db session to avoid concurrency issues
|
||||
with get_session_with_current_tenant() as search_db_session:
|
||||
for tool_response in search_tool.run(
|
||||
query=rewritten_query,
|
||||
document_sources=specified_source_types,
|
||||
time_filter=implied_time_filter,
|
||||
override_kwargs=SearchToolOverrideKwargs(
|
||||
force_no_rerank=True,
|
||||
alternate_db_session=search_db_session,
|
||||
retrieved_sections_callback=callback_container.append,
|
||||
skip_query_analysis=True,
|
||||
),
|
||||
):
|
||||
# get retrieved docs to send to the rest of the graph
|
||||
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
|
||||
response = cast(SearchResponseSummary, tool_response.response)
|
||||
retrieved_docs = response.top_sections
|
||||
|
||||
break
|
||||
|
||||
# render the retrieved docs in the UI
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SearchToolDelta(
|
||||
queries=[],
|
||||
documents=convert_inference_sections_to_search_docs(
|
||||
retrieved_docs, is_internet=False
|
||||
),
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
document_texts_list = []
|
||||
|
||||
for doc_num, retrieved_doc in enumerate(retrieved_docs[:15]):
|
||||
if not isinstance(retrieved_doc, (InferenceSection, LlmDoc)):
|
||||
raise ValueError(f"Unexpected document type: {type(retrieved_doc)}")
|
||||
chunk_text = build_document_context(retrieved_doc, doc_num + 1)
|
||||
document_texts_list.append(chunk_text)
|
||||
|
||||
document_texts = "\n\n".join(document_texts_list)
|
||||
|
||||
logger.debug(
|
||||
f"Search end/LLM start for Standard Search {iteration_nr}.{parallelization_nr} at {datetime.now()}"
|
||||
)
|
||||
|
||||
# Built prompt
|
||||
|
||||
if research_type == ResearchType.DEEP:
|
||||
search_prompt = INTERNAL_SEARCH_PROMPTS[research_type].build(
|
||||
search_query=branch_query,
|
||||
base_question=base_question,
|
||||
document_text=document_texts,
|
||||
)
|
||||
|
||||
# Run LLM
|
||||
|
||||
# search_answer_json = None
|
||||
search_answer_json = invoke_llm_json(
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
prompt=create_question_prompt(
|
||||
assistant_system_prompt, search_prompt + (assistant_task_prompt or "")
|
||||
),
|
||||
schema=SearchAnswer,
|
||||
timeout_override=40,
|
||||
# max_tokens=1500,
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"LLM/all done for Standard Search {iteration_nr}.{parallelization_nr} at {datetime.now()}"
|
||||
)
|
||||
|
||||
# get cited documents
|
||||
answer_string = search_answer_json.answer
|
||||
claims = search_answer_json.claims or []
|
||||
reasoning = search_answer_json.reasoning
|
||||
# answer_string = ""
|
||||
# claims = []
|
||||
|
||||
(
|
||||
citation_numbers,
|
||||
answer_string,
|
||||
claims,
|
||||
) = extract_document_citations(answer_string, claims)
|
||||
|
||||
if citation_numbers and max(citation_numbers) > len(retrieved_docs):
|
||||
raise ValueError("Citation numbers are out of range for retrieved docs.")
|
||||
|
||||
cited_documents = {
|
||||
citation_number: retrieved_docs[citation_number - 1]
|
||||
for citation_number in citation_numbers
|
||||
}
|
||||
|
||||
else:
|
||||
answer_string = ""
|
||||
claims = []
|
||||
cited_documents = {
|
||||
doc_num + 1: retrieved_doc
|
||||
for doc_num, retrieved_doc in enumerate(retrieved_docs[:15])
|
||||
}
|
||||
reasoning = ""
|
||||
|
||||
return BranchUpdate(
|
||||
branch_iteration_responses=[
|
||||
IterationAnswer(
|
||||
tool=search_tool_info.llm_path,
|
||||
tool_id=search_tool_info.tool_id,
|
||||
iteration_nr=iteration_nr,
|
||||
parallelization_nr=parallelization_nr,
|
||||
question=branch_query,
|
||||
answer=answer_string,
|
||||
claims=claims,
|
||||
cited_documents=cited_documents,
|
||||
reasoning=reasoning,
|
||||
additional_data=None,
|
||||
)
|
||||
],
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="basic_search",
|
||||
node_name="searching",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,77 @@
|
||||
from datetime import datetime
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentMainState
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentUpdate
|
||||
from onyx.agents.agent_search.dr.utils import chunks_or_sections_to_search_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.context.search.models import SavedSearchDoc
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def is_reducer(
|
||||
state: SubAgentMainState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> SubAgentUpdate:
|
||||
"""
|
||||
LangGraph node to perform a standard search as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
branch_updates = state.branch_iteration_responses
|
||||
current_iteration = state.iteration_nr
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
new_updates = [
|
||||
update for update in branch_updates if update.iteration_nr == current_iteration
|
||||
]
|
||||
|
||||
[update.question for update in new_updates]
|
||||
doc_lists = [list(update.cited_documents.values()) for update in new_updates]
|
||||
|
||||
doc_list = []
|
||||
|
||||
for xs in doc_lists:
|
||||
for x in xs:
|
||||
doc_list.append(x)
|
||||
|
||||
# Convert InferenceSections to SavedSearchDocs
|
||||
search_docs = chunks_or_sections_to_search_docs(doc_list)
|
||||
retrieved_saved_search_docs = [
|
||||
SavedSearchDoc.from_search_doc(search_doc, db_doc_id=0)
|
||||
for search_doc in search_docs
|
||||
]
|
||||
|
||||
for retrieved_saved_search_doc in retrieved_saved_search_docs:
|
||||
retrieved_saved_search_doc.is_internet = False
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
return SubAgentUpdate(
|
||||
iteration_responses=new_updates,
|
||||
current_step_nr=current_step_nr,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="basic_search",
|
||||
node_name="consolidation",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,50 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_basic_search_1_branch import (
|
||||
basic_search_branch,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_basic_search_2_act import (
|
||||
basic_search,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_basic_search_3_reduce import (
|
||||
is_reducer,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.basic_search.dr_image_generation_conditional_edges import (
|
||||
branching_router,
|
||||
)
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentInput
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentMainState
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def dr_basic_search_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for Internet Search Sub-Agent
|
||||
"""
|
||||
|
||||
graph = StateGraph(state_schema=SubAgentMainState, input=SubAgentInput)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node("branch", basic_search_branch)
|
||||
|
||||
graph.add_node("act", basic_search)
|
||||
|
||||
graph.add_node("reducer", is_reducer)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="branch")
|
||||
|
||||
graph.add_conditional_edges("branch", branching_router)
|
||||
|
||||
graph.add_edge(start_key="act", end_key="reducer")
|
||||
|
||||
graph.add_edge(start_key="reducer", end_key=END)
|
||||
|
||||
return graph
|
||||
@@ -0,0 +1,30 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.dr.constants import MAX_DR_PARALLEL_SEARCH
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchInput
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentInput
|
||||
|
||||
|
||||
def branching_router(state: SubAgentInput) -> list[Send | Hashable]:
|
||||
return [
|
||||
Send(
|
||||
"act",
|
||||
BranchInput(
|
||||
iteration_nr=state.iteration_nr,
|
||||
parallelization_nr=parallelization_nr,
|
||||
branch_question=query,
|
||||
current_step_nr=state.current_step_nr,
|
||||
context="",
|
||||
active_source_types=state.active_source_types,
|
||||
tools_used=state.tools_used,
|
||||
available_tools=state.available_tools,
|
||||
assistant_system_prompt=state.assistant_system_prompt,
|
||||
assistant_task_prompt=state.assistant_task_prompt,
|
||||
),
|
||||
)
|
||||
for parallelization_nr, query in enumerate(
|
||||
state.query_list[:MAX_DR_PARALLEL_SEARCH]
|
||||
)
|
||||
]
|
||||
@@ -0,0 +1,36 @@
|
||||
from datetime import datetime
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentInput
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def custom_tool_branch(
|
||||
state: SubAgentInput, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> LoggerUpdate:
|
||||
"""
|
||||
LangGraph node to perform a generic tool call as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
iteration_nr = state.iteration_nr
|
||||
|
||||
logger.debug(f"Search start for Generic Tool {iteration_nr} at {datetime.now()}")
|
||||
|
||||
return LoggerUpdate(
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="custom_tool",
|
||||
node_name="branching",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,167 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import AIMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchInput
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchUpdate
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import IterationAnswer
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.prompts.dr_prompts import CUSTOM_TOOL_PREP_PROMPT
|
||||
from onyx.prompts.dr_prompts import CUSTOM_TOOL_USE_PROMPT
|
||||
from onyx.tools.tool_implementations.custom.custom_tool import CUSTOM_TOOL_RESPONSE_ID
|
||||
from onyx.tools.tool_implementations.custom.custom_tool import CustomTool
|
||||
from onyx.tools.tool_implementations.custom.custom_tool import CustomToolCallSummary
|
||||
from onyx.tools.tool_implementations.mcp.mcp_tool import MCP_TOOL_RESPONSE_ID
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def custom_tool_act(
|
||||
state: BranchInput,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> BranchUpdate:
|
||||
"""
|
||||
LangGraph node to perform a generic tool call as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
iteration_nr = state.iteration_nr
|
||||
parallelization_nr = state.parallelization_nr
|
||||
|
||||
if not state.available_tools:
|
||||
raise ValueError("available_tools is not set")
|
||||
|
||||
custom_tool_info = state.available_tools[state.tools_used[-1]]
|
||||
custom_tool_name = custom_tool_info.name
|
||||
custom_tool = cast(CustomTool, custom_tool_info.tool_object)
|
||||
|
||||
branch_query = state.branch_question
|
||||
if not branch_query:
|
||||
raise ValueError("branch_query is not set")
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
base_question = graph_config.inputs.prompt_builder.raw_user_query
|
||||
|
||||
logger.debug(
|
||||
f"Tool call start for {custom_tool_name} {iteration_nr}.{parallelization_nr} at {datetime.now()}"
|
||||
)
|
||||
|
||||
# get tool call args
|
||||
tool_args: dict | None = None
|
||||
if graph_config.tooling.using_tool_calling_llm:
|
||||
# get tool call args from tool-calling LLM
|
||||
tool_use_prompt = CUSTOM_TOOL_PREP_PROMPT.build(
|
||||
query=branch_query,
|
||||
base_question=base_question,
|
||||
tool_description=custom_tool_info.description,
|
||||
)
|
||||
tool_calling_msg = graph_config.tooling.primary_llm.invoke(
|
||||
tool_use_prompt,
|
||||
tools=[custom_tool.tool_definition()],
|
||||
tool_choice="required",
|
||||
timeout_override=40,
|
||||
)
|
||||
|
||||
# make sure we got a tool call
|
||||
if (
|
||||
isinstance(tool_calling_msg, AIMessage)
|
||||
and len(tool_calling_msg.tool_calls) == 1
|
||||
):
|
||||
tool_args = tool_calling_msg.tool_calls[0]["args"]
|
||||
else:
|
||||
logger.warning("Tool-calling LLM did not emit a tool call")
|
||||
|
||||
if tool_args is None:
|
||||
# get tool call args from non-tool-calling LLM or for failed tool-calling LLM
|
||||
tool_args = custom_tool.get_args_for_non_tool_calling_llm(
|
||||
query=branch_query,
|
||||
history=[],
|
||||
llm=graph_config.tooling.primary_llm,
|
||||
force_run=True,
|
||||
)
|
||||
|
||||
if tool_args is None:
|
||||
raise ValueError("Failed to obtain tool arguments from LLM")
|
||||
|
||||
# run the tool
|
||||
response_summary: CustomToolCallSummary | None = None
|
||||
for tool_response in custom_tool.run(**tool_args):
|
||||
if tool_response.id in {CUSTOM_TOOL_RESPONSE_ID, MCP_TOOL_RESPONSE_ID}:
|
||||
response_summary = cast(CustomToolCallSummary, tool_response.response)
|
||||
break
|
||||
|
||||
if not response_summary:
|
||||
raise ValueError("Custom tool did not return a valid response summary")
|
||||
|
||||
# summarise tool result
|
||||
if not response_summary.response_type:
|
||||
raise ValueError("Response type is not returned.")
|
||||
|
||||
if response_summary.response_type == "json":
|
||||
tool_result_str = json.dumps(response_summary.tool_result, ensure_ascii=False)
|
||||
elif response_summary.response_type in {"image", "csv"}:
|
||||
tool_result_str = f"{response_summary.response_type} files: {response_summary.tool_result.file_ids}"
|
||||
else:
|
||||
tool_result_str = str(response_summary.tool_result)
|
||||
|
||||
tool_str = (
|
||||
f"Tool used: {custom_tool_name}\n"
|
||||
f"Description: {custom_tool_info.description}\n"
|
||||
f"Result: {tool_result_str}"
|
||||
)
|
||||
|
||||
tool_summary_prompt = CUSTOM_TOOL_USE_PROMPT.build(
|
||||
query=branch_query, base_question=base_question, tool_response=tool_str
|
||||
)
|
||||
answer_string = str(
|
||||
graph_config.tooling.primary_llm.invoke(
|
||||
tool_summary_prompt, timeout_override=40
|
||||
).content
|
||||
).strip()
|
||||
|
||||
# get file_ids:
|
||||
file_ids = None
|
||||
if response_summary.response_type in {"image", "csv"} and hasattr(
|
||||
response_summary.tool_result, "file_ids"
|
||||
):
|
||||
file_ids = response_summary.tool_result.file_ids
|
||||
|
||||
logger.debug(
|
||||
f"Tool call end for {custom_tool_name} {iteration_nr}.{parallelization_nr} at {datetime.now()}"
|
||||
)
|
||||
|
||||
return BranchUpdate(
|
||||
branch_iteration_responses=[
|
||||
IterationAnswer(
|
||||
tool=custom_tool_name,
|
||||
tool_id=custom_tool_info.tool_id,
|
||||
iteration_nr=iteration_nr,
|
||||
parallelization_nr=parallelization_nr,
|
||||
question=branch_query,
|
||||
answer=answer_string,
|
||||
claims=[],
|
||||
cited_documents={},
|
||||
reasoning="",
|
||||
additional_data=None,
|
||||
response_type=response_summary.response_type,
|
||||
data=response_summary.tool_result,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
],
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="custom_tool",
|
||||
node_name="tool_calling",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,82 @@
|
||||
from datetime import datetime
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentMainState
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import SubAgentUpdate
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.server.query_and_chat.streaming_models import CustomToolDelta
|
||||
from onyx.server.query_and_chat.streaming_models import CustomToolStart
|
||||
from onyx.server.query_and_chat.streaming_models import SectionEnd
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def custom_tool_reducer(
|
||||
state: SubAgentMainState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> SubAgentUpdate:
|
||||
"""
|
||||
LangGraph node to perform a generic tool call as part of the DR process.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
current_step_nr = state.current_step_nr
|
||||
|
||||
branch_updates = state.branch_iteration_responses
|
||||
current_iteration = state.iteration_nr
|
||||
|
||||
new_updates = [
|
||||
update for update in branch_updates if update.iteration_nr == current_iteration
|
||||
]
|
||||
|
||||
for new_update in new_updates:
|
||||
|
||||
if not new_update.response_type:
|
||||
raise ValueError("Response type is not returned.")
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
CustomToolStart(
|
||||
tool_name=new_update.tool,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
CustomToolDelta(
|
||||
tool_name=new_update.tool,
|
||||
response_type=new_update.response_type,
|
||||
data=new_update.data,
|
||||
file_ids=new_update.file_ids,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
current_step_nr,
|
||||
SectionEnd(),
|
||||
writer,
|
||||
)
|
||||
|
||||
current_step_nr += 1
|
||||
|
||||
return SubAgentUpdate(
|
||||
iteration_responses=new_updates,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="custom_tool",
|
||||
node_name="consolidation",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -0,0 +1,28 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import BranchInput
|
||||
from onyx.agents.agent_search.dr.sub_agents.states import (
|
||||
SubAgentInput,
|
||||
)
|
||||
|
||||
|
||||
def branching_router(state: SubAgentInput) -> list[Send | Hashable]:
|
||||
return [
|
||||
Send(
|
||||
"act",
|
||||
BranchInput(
|
||||
iteration_nr=state.iteration_nr,
|
||||
parallelization_nr=parallelization_nr,
|
||||
branch_question=query,
|
||||
context="",
|
||||
active_source_types=state.active_source_types,
|
||||
tools_used=state.tools_used,
|
||||
available_tools=state.available_tools,
|
||||
),
|
||||
)
|
||||
for parallelization_nr, query in enumerate(
|
||||
state.query_list[:1] # no parallel call for now
|
||||
)
|
||||
]
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user