Compare commits

..

85 Commits

Author SHA1 Message Date
pablodanswer
bf6efbe8e8 nit 2024-12-11 18:46:24 -08:00
Weves
7c29b1e028 add more egnyte failure logging 2024-12-11 18:19:55 -08:00
pablonyx
a52c821e78 Merge pull request #3436 from onyx-dot-app/cloud_improvements
cloud improvements
2024-12-11 17:06:06 -08:00
pablodanswer
21967d4b6f cloud improvements 2024-12-11 16:48:00 -08:00
hagen-danswer
cae8a131a2 Made frontend conditional check for source (#3434) 2024-12-11 22:46:32 +00:00
pablonyx
72b4e8e9fe Clean citation cards (#3396)
* seed

* initial steps

* clean up

* fully clickable
2024-12-11 21:37:11 +00:00
pablonyx
c04e2f14d9 remove double x (#3387) 2024-12-11 21:36:58 +00:00
pablonyx
b40a12d5d7 clean up cursor pointers (#3385)
* update

* nit
2024-12-11 21:36:43 +00:00
pablonyx
5e7d454ebe Merge pull request #3433 from onyx-dot-app/silence_integration
Silence Slack Permission Sync test flakiness
2024-12-11 13:49:52 -08:00
pablodanswer
238509c536 silence 2024-12-11 13:48:37 -08:00
joachim-danswer
9455576078 Mismatch issue of Documents shown and Citation number in text fix (#3421)
* Mismatch issue of Documents shown and Citation number in text fix

When document order presented to LLM differs from order shown to user, wrong doc numbers are cited.

Fix:
 - SearchTool.get_search_result  returns now final and initial ranking
 - initial ranking is passed through a few objects and used for replacement in citation processing

Notes:
 - the citation_num in the CitationInfo() object has not been changed.

* PR fixes

 - linting
 - removed erroneous tab
 - added a substitution test case
 - adjusted original citation extraction use case

* Included a key test and

* Fixed extra spaces

* Updated test documentation

Updated:
 - test_citation_substitution (changed description)
 - test_citation_processing (removed data only relevant for the substitution)
2024-12-11 19:58:24 +00:00
rkuo-danswer
71421bb782 better handling around index attempts that don't exist and remove unn… (#3417)
* better handling around index attempts that don't exist and remove unnecessary index attempt deletions

* don't delete index attempts, just update them

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 19:32:04 +00:00
pablonyx
b88cb388b7 Faster api hashing (#3423)
* migrate hashing to run faster v1

* k
2024-12-11 19:30:05 +00:00
Wendi
639986001f Fix bug (title overflow) (#3431) 2024-12-11 12:09:44 -08:00
pablonyx
e7a7e78969 clean up csv prompt + frontend (#3393)
* clean up csv prompt + frontend

* nit

* nit

* detect uploading

* upload
2024-12-11 19:10:34 +00:00
rkuo-danswer
e255ff7d23 editable refresh and prune for connectors (#3406)
* editable refresh and prune for connectors

* add extra validations on pruning/refresh frequency

* fix validation

* fix icon usage

* fix TextFormField error formatting

* nit

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-12-11 19:04:09 +00:00
pablonyx
1be2502112 finalize (#3398)
Co-authored-by: hagen-danswer <hagen@danswer.ai>
2024-12-11 18:52:20 +00:00
pablonyx
f2bedb8fdd Borders (#3388)
* remove double x

* incorporate base default padding for modals
2024-12-11 18:47:26 +00:00
pablonyx
637404f482 Connector page lists (pending feedback) (#3415)
* v1 (pending feedback)

* nits

* nit
2024-12-11 18:45:27 +00:00
pablonyx
daae146920 recognize updates (#3397) 2024-12-11 18:19:00 +00:00
pablonyx
d95959fb41 base role setting fix (#3381)
* base role setting fix

* update user tables

* finalize

* minor cleanup

* fix chromatic
2024-12-11 18:09:47 +00:00
rkuo-danswer
c667d28e7a update helm charts for onyx-dot-app rebrand (#3412)
* update helm charts for onyx-dot-app rebrand

* fix helm chart testing config

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 18:08:39 +00:00
pablonyx
9e0b482f47 k (#3399) 2024-12-11 18:05:39 +00:00
pablonyx
fa84eb657f cleaner citations (#3389) 2024-12-11 17:36:15 +00:00
pablonyx
264df3441b Various clean ups (#3413)
* tbd

* minor

* prettify

* update sidebar values
2024-12-11 17:19:14 +00:00
pablonyx
b9bad8b7a0 fix wikipedia icon (#3395) 2024-12-11 09:03:29 -08:00
pablonyx
600ebb6432 remove doc sets (#3400) 2024-12-11 16:31:14 +00:00
pablonyx
09fe8ea868 improved display - no odd cutoffs (#3401) 2024-12-11 16:09:19 +00:00
evan-danswer
ad6be03b4d centered score in feedbac panel (#3426) 2024-12-11 08:19:53 -08:00
rkuo-danswer
65d2511216 change text and formatting to guide users away from thinking "Back to… (#3382)
* change text and formatting to guide users away from thinking "Back to Danswer" is a back button

* regular text color and different icon

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2024-12-11 03:31:27 +00:00
Weves
113bf19c65 Remove dev-only check 2024-12-10 19:04:21 -08:00
Yuhong Sun
6026536110 Model Server Async (#3386)
* need-verify

* fix some lib calls

* k

* tests

* k

* k

* k

* Address the comments

* fix comment
2024-12-11 01:33:44 +00:00
Weves
056b671cd4 Small tweaks to get Egynte to work on our cloud 2024-12-10 17:43:46 -08:00
pablonyx
8d83ae2ee8 fix linear (#3402) 2024-12-11 00:45:06 +00:00
Yuhong Sun
ca988f5c5f Max File Size (#3422)
* k

* k

* k
2024-12-11 00:06:47 +00:00
Chris Weaver
4e4214b82c Egnyte connector (#3420) 2024-12-10 16:07:33 -08:00
Yuhong Sun
fe83f676df k (#3404) 2024-12-10 23:27:48 +00:00
hagen-danswer
6d6e12119b made external group emails lowercase (#3410) 2024-12-10 22:08:00 +00:00
pablonyx
1f2b7cb9c8 strip text for slackbot (#3416)
* stripe text for slackbot

* k
2024-12-10 21:42:35 +00:00
pablonyx
878a189011 delete input prompts (#3380)
* delete input prompts

* nit

* remove vestigial test

* nit
2024-12-10 21:36:40 +00:00
hagen-danswer
48c10271c2 fixed ephemeral slackbot messages (#3409) 2024-12-10 18:00:34 +00:00
evan-danswer
c6a79d847e fix typo (#3408)
expliticly -> explicitly
2024-12-10 16:44:42 +00:00
hagen-danswer
1bc3f8b96f Revert "Fixed ephemeral slackbot messages"
This reverts commit 7f6a6944d6.
2024-12-10 08:18:31 -08:00
hagen-danswer
7f6a6944d6 Fixed ephemeral slackbot messages 2024-12-10 07:57:28 -08:00
Weves
06f4146597 Bump litellm to support Nova models from AWS 2024-12-09 21:19:11 -08:00
hagen-danswer
7ea73d5a5a Temp slackbot url error Fix (#3392) 2024-12-09 18:34:38 -08:00
Weves
30dfe6dcb4 Add better vertex support + LLM form cleanup 2024-12-09 13:44:44 -08:00
Yuhong Sun
dc5d5dfe05 README Update (#3383) 2024-12-09 13:17:53 -08:00
pablonyx
0746e0be5b unify toggling (#3378) 2024-12-09 19:48:06 +00:00
Chris Weaver
970320bd49 Persona / prompt hardening (#3375)
* Persona / prompt hardening

* fix it
2024-12-09 03:39:59 +00:00
Chris Weaver
4a7bd5578e Fix Confluence perm sync for cloud users (#3374) 2024-12-09 01:41:30 +00:00
Chris Weaver
874b098a4b Add more logging + retries to teams connector (#3369) 2024-12-08 00:56:34 +00:00
pablodanswer
ce18b63eea hide oauth sources (#3368) 2024-12-07 23:57:37 +00:00
Yuhong Sun
7a919c3589 Dev Version Niceness 2024-12-07 15:10:13 -08:00
rkuo-danswer
631bac4432 Bugfix/log exit code (#3362)
* log the exit code of the spawned task

* exitcode can be negative

* mypy fixes
2024-12-06 22:32:59 +00:00
hagen-danswer
53428f6e9c More logging/fixes (#3364)
* More logging for external group syncing

* Fixed edge case where some spaces were not being fetched

* made refresh frequency for confluence syncs configurable

* clarity
2024-12-06 21:56:29 +00:00
pablodanswer
53b3dcbace fix slackbot channel config nullable (#3363)
* fix slackbot

* nit
2024-12-06 21:24:36 +00:00
rkuo-danswer
7a3c06c2d2 first cut at slack oauth flow (#3323)
* first cut at slack oauth flow

* fix usage of hooks

* fix button spacing

* add additional error logging

* no dev redirect

* cleanup

* comment work in progress

* move some stuff to ee, add some playwright tests for the oauth callback edge cases

* fix ee, fix test name

* fix tests

* code review fixes
2024-12-06 19:55:21 +00:00
pablodanswer
7a0d823c89 Improved file handling (#3353)
* update props

* update documents

* nit

* update chat processing

* k

* k

* nit

* minor nit

* minor nits

* k

* nits
2024-12-06 19:16:54 +00:00
Yuhong Sun
db69e445d6 k (#3358) 2024-12-06 18:08:44 +00:00
Weves
18e63889b7 Change default log level back to info 2024-12-06 10:07:14 -08:00
Weves
738e60c8ed Increase vespa attempts on startup 2024-12-06 09:46:33 -08:00
hagen-danswer
8aec873e66 Merge pull request #3359 from danswer-ai/conf-logging-filter
Added filter to slim connector and logging for space permissions
2024-12-06 09:03:07 -08:00
hagen-danswer
7c57dde8ab fixed test 2024-12-06 08:33:12 -08:00
hagen-danswer
f30adab853 Merge remote-tracking branch 'origin/main' into conf-logging-filter 2024-12-06 08:30:07 -08:00
hagen-danswer
601687a522 Add test for Confluence permissions 2024-12-06 08:28:42 -08:00
hagen-danswer
350cf407c9 explicitly set page and attachment restrictions and space keys 2024-12-06 08:12:07 -08:00
hagen-danswer
32ec4efc7a tygod for tests 2024-12-06 08:03:34 -08:00
hagen-danswer
7c6981e052 Added filter to slim connector and logging for space permissions 2024-12-06 07:55:54 -08:00
Yuhong Sun
c50cd20156 Fix SlackBot Page Bugs (#3354) 2024-12-05 13:17:04 -08:00
hagen-danswer
14772dee71 Add persona stats (#3282)
* Added a chart to display persona message stats

* polish

* k

* hope this works

* cleanup
2024-12-05 17:15:56 +00:00
pablodanswer
c81e704c95 various niceties (#3348) 2024-12-05 17:12:52 +00:00
Chris Weaver
3266ef6321 Improve chat page performance (#3347)
* Simplify /manage/indexing-status

* Rename endpoint
2024-12-04 20:28:30 -08:00
pablodanswer
c89b98b4f2 update email invites (#3349) 2024-12-05 03:29:07 +00:00
rkuo-danswer
e70e0ab859 Merge pull request #3346 from danswer-ai/bugfix/chromatic-tests-2
Bugfix/chromatic tests 2
2024-12-04 19:44:05 -08:00
Richard Kuo (Danswer)
69b6e9321e Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/chromatic-tests-2
# Conflicts:
#	web/tests/e2e/home.spec.ts
2024-12-04 19:10:25 -08:00
Chris Weaver
7e53af18b6 Add b64 image support for image generation (#3342)
* Add b64 image support

* Fix

* enhance

* Fix mypy

* Fix imports
2024-12-05 02:24:54 +00:00
Richard Kuo (Danswer)
b9eb1ca2ba wait for whole placeholder string 2024-12-04 18:23:06 -08:00
rkuo-danswer
91d44c83d2 fixing chromatic tests (#3344)
* wait for the page to load

* fix up tests

* make sure "Initializing Danswer" is gone
2024-12-05 02:19:43 +00:00
Richard Kuo (Danswer)
4dbc6bb4d1 make sure "Initializing Danswer" is gone 2024-12-04 17:49:59 -08:00
Richard Kuo (Danswer)
4b6a4c6bbf fix up tests 2024-12-04 17:19:16 -08:00
pablodanswer
fd1999454a ensure we can order by doc id (#3343) 2024-12-05 01:10:37 +00:00
Richard Kuo (Danswer)
0a35422d1d wait for the page to load 2024-12-04 16:47:42 -08:00
pablodanswer
69b99056b2 Redirect to chat (#3341)
* k

* nit
2024-12-05 00:08:52 +00:00
Yuhong Sun
2a55696545 Move Answer (#3339) 2024-12-04 16:30:47 -08:00
243 changed files with 5806 additions and 3810 deletions

View File

@@ -1,48 +1,48 @@
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/README.md"} -->
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/README.md"} -->
<a name="readme-top"></a>
<h2 align="center">
<a href="https://www.danswer.ai/"> <img width="50%" src="https://github.com/danswer-owners/danswer/blob/1fabd9372d66cd54238847197c33f091a724803b/DanswerWithName.png?raw=true)" /></a>
<a href="https://www.onyx.app/"> <img width="50%" src="https://github.com/onyx-dot-app/onyx/blob/logo/LogoOnyx.png?raw=true)" /></a>
</h2>
<p align="center">
<p align="center">Open Source Gen-AI Chat + Unified Search.</p>
<p align="center">Open Source Gen-AI + Enterprise Search.</p>
<p align="center">
<a href="https://docs.danswer.dev/" target="_blank">
<a href="https://docs.onyx.app/" target="_blank">
<img src="https://img.shields.io/badge/docs-view-blue" alt="Documentation">
</a>
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA" target="_blank">
<a href="https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2sslpdbyq-iIbTaNIVPBw_i_4vrujLYQ" target="_blank">
<img src="https://img.shields.io/badge/slack-join-blue.svg?logo=slack" alt="Slack">
</a>
<a href="https://discord.gg/TDJ59cGV2X" target="_blank">
<img src="https://img.shields.io/badge/discord-join-blue.svg?logo=discord&logoColor=white" alt="Discord">
</a>
<a href="https://github.com/danswer-ai/danswer/blob/main/README.md" target="_blank">
<a href="https://github.com/onyx-dot-app/onyx/blob/main/README.md" target="_blank">
<img src="https://img.shields.io/static/v1?label=license&message=MIT&color=blue" alt="License">
</a>
</p>
<strong>[Danswer](https://www.danswer.ai/)</strong> is the AI Assistant connected to your company's docs, apps, and people.
Danswer provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any
<strong>[Onyx](https://www.onyx.app/)</strong> (Formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
configuring Personas (AI Assistants) and their Prompts.
configuring AI Assistants.
Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
supported?" or "Where's the pull request for feature Y?"
<h3>Usage</h3>
Danswer Web App:
Onyx Web App:
https://github.com/danswer-ai/danswer/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
Or, plug Danswer into your existing Slack workflows (more integrations to come 😁):
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
https://github.com/danswer-ai/danswer/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
@@ -52,16 +52,16 @@ For more details on the Admin UI to manage connectors and users, check out our
## Deployment
Danswer can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.danswer.dev/quickstart) to learn more.
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/danswer-ai/danswer/tree/main/deployment/kubernetes).
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
## 💃 Main Features
* Chat UI with the ability to select documents to chat with.
* Create custom AI Assistants with different prompts and backing knowledge sets.
* Connect Danswer with LLM of your choice (self-host for a fully airgapped solution).
* Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
* Document Search + AI Answers for natural language queries.
* Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
* Slack integration to get answers and search results directly in Slack.
@@ -75,12 +75,12 @@ We also have built-in support for deployment on Kubernetes. Files for that can b
* Organizational understanding and ability to locate and suggest experts from your team.
## Other Notable Benefits of Danswer
## Other Notable Benefits of Onyx
* User Authentication with document level access management.
* Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
* Admin Dashboard to configure connectors, document-sets, access, etc.
* Custom deep learning models + learn from user feedback.
* Easy deployment and ability to host Danswer anywhere of your choosing.
* Easy deployment and ability to host Onyx anywhere of your choosing.
## 🔌 Connectors
@@ -108,10 +108,10 @@ Efficiently pulls the latest changes from:
## 📚 Editions
There are two editions of Danswer:
There are two editions of Onyx:
* Danswer Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Danswer you will get if you follow the Deployment guide above.
* Danswer Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
* Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
* Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
* Single Sign-On (SSO), with support for both SAML and OIDC
* Role-based access control
* Document permission inheritance from connected sources
@@ -119,24 +119,24 @@ There are two editions of Danswer:
* Whitelabeling
* API key authentication
* Encryption of secrets
* Any many more! Checkout [our website](https://www.danswer.ai/) for the latest.
* Any many more! Checkout [our website](https://www.onyx.app/) for the latest.
To try the Danswer Enterprise Edition:
To try the Onyx Enterprise Edition:
1. Checkout our [Cloud product](https://app.danswer.ai/signup).
2. For self-hosting, contact us at [founders@danswer.ai](mailto:founders@danswer.ai) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
## 💡 Contributing
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
## ⭐Star History
[![Star History Chart](https://api.star-history.com/svg?repos=danswer-ai/danswer&type=Date)](https://star-history.com/#danswer-ai/danswer&Date)
[![Star History Chart](https://api.star-history.com/svg?repos=onyx-dot-app/onyx&type=Date)](https://star-history.com/#onyx-dot-app/onyx&Date)
## ✨Contributors
<a href="https://github.com/danswer-ai/danswer/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=danswer-ai/danswer"/>
<a href="https://github.com/onyx-dot-app/onyx/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=onyx-dot-app/onyx"/>
</a>
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">

View File

@@ -0,0 +1,57 @@
"""delete_input_prompts
Revision ID: bf7a81109301
Revises: f7a894b06d02
Create Date: 2024-12-09 12:00:49.884228
"""
from alembic import op
import sqlalchemy as sa
import fastapi_users_db_sqlalchemy
# revision identifiers, used by Alembic.
revision = "bf7a81109301"
down_revision = "f7a894b06d02"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.drop_table("inputprompt__user")
op.drop_table("inputprompt")
def downgrade() -> None:
op.create_table(
"inputprompt",
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
sa.Column("prompt", sa.String(), nullable=False),
sa.Column("content", sa.String(), nullable=False),
sa.Column("active", sa.Boolean(), nullable=False),
sa.Column("is_public", sa.Boolean(), nullable=False),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"inputprompt__user",
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
sa.Column("user_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["input_prompt_id"],
["inputprompt.id"],
),
sa.ForeignKeyConstraint(
["user_id"],
["inputprompt.id"],
),
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
)

View File

@@ -0,0 +1,40 @@
"""non-nullbale slack bot id in channel config
Revision ID: f7a894b06d02
Revises: 9f696734098f
Create Date: 2024-12-06 12:55:42.845723
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f7a894b06d02"
down_revision = "9f696734098f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Delete all rows with null slack_bot_id
op.execute("DELETE FROM slack_channel_config WHERE slack_bot_id IS NULL")
# Make slack_bot_id non-nullable
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=False,
)
def downgrade() -> None:
# Make slack_bot_id nullable again
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=True,
)

View File

@@ -1,3 +1,4 @@
import hashlib
import secrets
import uuid
from urllib.parse import quote
@@ -18,7 +19,8 @@ _API_KEY_HEADER_NAME = "Authorization"
# organizations like the Internet Engineering Task Force (IETF).
_API_KEY_HEADER_ALTERNATIVE_NAME = "X-Danswer-Authorization"
_BEARER_PREFIX = "Bearer "
_API_KEY_PREFIX = "dn_"
_API_KEY_PREFIX = "on_"
_DEPRECATED_API_KEY_PREFIX = "dn_"
_API_KEY_LEN = 192
@@ -52,7 +54,9 @@ def extract_tenant_from_api_key_header(request: Request) -> str | None:
api_key = raw_api_key_header[len(_BEARER_PREFIX) :].strip()
if not api_key.startswith(_API_KEY_PREFIX):
if not api_key.startswith(_API_KEY_PREFIX) and not api_key.startswith(
_DEPRECATED_API_KEY_PREFIX
):
return None
parts = api_key[len(_API_KEY_PREFIX) :].split(".", 1)
@@ -63,10 +67,19 @@ def extract_tenant_from_api_key_header(request: Request) -> str | None:
return unquote(tenant_id) if tenant_id else None
def _deprecated_hash_api_key(api_key: str) -> str:
return sha256_crypt.hash(api_key, salt="", rounds=API_KEY_HASH_ROUNDS)
def hash_api_key(api_key: str) -> str:
# NOTE: no salt is needed, as the API key is randomly generated
# and overlaps are impossible
return sha256_crypt.hash(api_key, salt="", rounds=API_KEY_HASH_ROUNDS)
if api_key.startswith(_API_KEY_PREFIX):
return hashlib.sha256(api_key.encode("utf-8")).hexdigest()
elif api_key.startswith(_DEPRECATED_API_KEY_PREFIX):
return _deprecated_hash_api_key(api_key)
else:
raise ValueError(f"Invalid API key prefix: {api_key[:3]}")
def build_displayable_api_key(api_key: str) -> str:

View File

@@ -9,7 +9,6 @@ from danswer.utils.special_types import JSON_ro
def get_invited_users() -> list[str]:
try:
store = get_kv_store()
return cast(list, store.load(KV_USER_STORE_KEY))
except KvKeyNotFoundError:
return list()

View File

@@ -58,7 +58,6 @@ from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import DISABLE_VERIFICATION
from danswer.configs.app_configs import EMAIL_FROM
from danswer.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from danswer.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
@@ -132,11 +131,12 @@ def get_display_email(email: str | None, space_less: bool = False) -> str:
def user_needs_to_be_verified() -> bool:
# all other auth types besides basic should require users to be
# verified
return not DISABLE_VERIFICATION and (
AUTH_TYPE != AuthType.BASIC or REQUIRE_EMAIL_VERIFICATION
)
if AUTH_TYPE == AuthType.BASIC or AUTH_TYPE == AuthType.CLOUD:
return REQUIRE_EMAIL_VERIFICATION
# For other auth types, if the user is authenticated it's assumed that
# the user is already verified via the external IDP
return False
def verify_email_is_invited(email: str) -> None:

View File

@@ -219,7 +219,7 @@ def connector_permission_sync_generator_task(
r = get_redis_client(tenant_id=tenant_id)
lock = r.lock(
lock: RedisLock = r.lock(
DanswerRedisLocks.CONNECTOR_DOC_PERMISSIONS_SYNC_LOCK_PREFIX
+ f"_{redis_connector.id}",
timeout=CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT,

View File

@@ -598,7 +598,7 @@ def connector_indexing_proxy_task(
db_session,
"Connector termination signal detected",
)
finally:
except Exception:
# if the DB exceptions, we'll just get an unfriendly failure message
# in the UI instead of the cancellation message
logger.exception(
@@ -640,12 +640,16 @@ def connector_indexing_proxy_task(
continue
if job.status == "error":
exit_code: int | None = None
if job.process:
exit_code = job.process.exitcode
task_logger.error(
"Indexing watchdog - spawned task exceptioned: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"exit_code={exit_code} "
f"error={job.exception()}"
)

View File

@@ -680,17 +680,28 @@ def monitor_ccpair_indexing_taskset(
)
task_logger.warning(msg)
index_attempt = get_index_attempt(db_session, payload.index_attempt_id)
if index_attempt:
if (
index_attempt.status != IndexingStatus.CANCELED
and index_attempt.status != IndexingStatus.FAILED
):
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
try:
index_attempt = get_index_attempt(
db_session, payload.index_attempt_id
)
if index_attempt:
if (
index_attempt.status != IndexingStatus.CANCELED
and index_attempt.status != IndexingStatus.FAILED
):
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
except Exception:
task_logger.exception(
"monitor_ccpair_indexing_taskset - transient exception marking index attempt as failed: "
f"attempt={payload.index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
redis_connector_index.reset()
return

View File

@@ -82,7 +82,7 @@ class SimpleJob:
return "running"
elif self.process.exitcode is None:
return "cancelled"
elif self.process.exitcode > 0:
elif self.process.exitcode != 0:
return "error"
else:
return "finished"
@@ -123,7 +123,8 @@ class SimpleJobClient:
self._cleanup_completed_jobs()
if len(self.jobs) >= self.n_workers:
logger.debug(
f"No available workers to run job. Currently running '{len(self.jobs)}' jobs, with a limit of '{self.n_workers}'."
f"No available workers to run job. "
f"Currently running '{len(self.jobs)}' jobs, with a limit of '{self.n_workers}'."
)
return None

View File

@@ -6,27 +6,27 @@ from langchain.schema.messages import BaseMessage
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import ToolCall
from danswer.chat.llm_response_handler import LLMResponseHandlerManager
from danswer.chat.models import AnswerQuestionPossibleReturn
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import LLMResponseHandlerManager
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.build import default_build_system_message
from danswer.llm.answering.prompts.build import default_build_user_message
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import default_build_system_message
from danswer.chat.prompt_builder.build import default_build_user_message
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import (
CitationResponseHandler,
)
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.stream_processing.answer_response_handler import (
DummyAnswerResponseHandler,
)
from danswer.llm.answering.stream_processing.utils import map_document_id_order
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
from danswer.chat.stream_processing.utils import map_document_id_order
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolResponse
@@ -206,7 +206,9 @@ class Answer:
# + figure out what the next LLM call should be
tool_call_handler = ToolResponseHandler(current_llm_call.tools)
search_result = SearchTool.get_search_result(current_llm_call) or []
search_result, displayed_search_results_map = SearchTool.get_search_result(
current_llm_call
) or ([], {})
# Quotes are no longer supported
# answer_handler: AnswerResponseHandler
@@ -224,6 +226,7 @@ class Answer:
answer_handler = CitationResponseHandler(
context_docs=search_result,
doc_id_to_rank_map=map_document_id_order(search_result),
display_doc_order_dict=displayed_search_results_map,
)
response_handler_manager = LLMResponseHandlerManager(

View File

@@ -26,7 +26,7 @@ from danswer.db.models import Prompt
from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.persona import get_prompts_by_ids
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.tools.tool_implementations.custom.custom_tool import (

View File

@@ -1,58 +1,22 @@
from collections.abc import Callable
from collections.abc import Generator
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain_core.messages import BaseMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import ResponsePart
from danswer.chat.models import StreamStopInfo
from danswer.chat.models import StreamStopReason
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.stream_processing.answer_response_handler import (
AnswerResponseHandler,
)
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import AnswerResponseHandler
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
class LLMResponseHandlerManager:
def __init__(
self,
tool_handler: "ToolResponseHandler",
answer_handler: "AnswerResponseHandler",
tool_handler: ToolResponseHandler,
answer_handler: AnswerResponseHandler,
is_cancelled: Callable[[], bool],
):
self.tool_handler = tool_handler

View File

@@ -1,10 +1,14 @@
from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from typing import TYPE_CHECKING
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
@@ -12,8 +16,15 @@ from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.context.search.models import RetrievalDocs
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
if TYPE_CHECKING:
from danswer.db.models import Prompt
class LlmDoc(BaseModel):
"""This contains the minimal set information for the LLM portion including citations"""
@@ -210,3 +221,109 @@ AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
class LLMMetricsContainer(BaseModel):
prompt_tokens: int
response_tokens: int
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)

View File

@@ -6,19 +6,24 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.answer import Answer
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import create_temporary_persona
from danswer.chat.models import AllCitations
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.models import CitationConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import FileChatDisplay
from danswer.chat.models import FinalUsedContextDocsResponse
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import MessageSpecificCitations
from danswer.chat.models import PromptConfig
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.chat.models import StreamStopInfo
@@ -57,16 +62,11 @@ from danswer.document_index.factory import get_default_document_index
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.file_store.utils import load_all_chat_files
from danswer.file_store.utils import save_files_from_urls
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.file_store.utils import save_files
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.server.query_and_chat.models import ChatMessageDetail
@@ -119,6 +119,7 @@ from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
from danswer.utils.timing import log_function_time
from danswer.utils.timing import log_generator_function_time
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
@@ -302,6 +303,7 @@ def stream_chat_message_objects(
3. [always] A set of streamed LLM tokens or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
use_existing_user_message = new_msg_req.use_existing_user_message
existing_assistant_message_id = new_msg_req.existing_assistant_message_id
@@ -678,7 +680,8 @@ def stream_chat_message_objects(
reference_db_search_docs = None
qa_docs_response = None
ai_message_files = None # any files to associate with the AI message e.g. dall-e generated images
# any files to associate with the AI message e.g. dall-e generated images
ai_message_files = []
dropped_indices = None
tool_result = None
@@ -733,8 +736,14 @@ def stream_chat_message_objects(
list[ImageGenerationResponse], packet.response
)
file_ids = save_files_from_urls(
[img.url for img in img_generation_response]
file_ids = save_files(
urls=[img.url for img in img_generation_response if img.url],
base64_files=[
img.image_data
for img in img_generation_response
if img.image_data
],
tenant_id=tenant_id,
)
ai_message_files = [
FileDescriptor(id=str(file_id), type=ChatFileType.IMAGE)
@@ -760,15 +769,19 @@ def stream_chat_message_objects(
or custom_tool_response.response_type == "csv"
):
file_ids = custom_tool_response.tool_result.file_ids
ai_message_files = [
FileDescriptor(
id=str(file_id),
type=ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV,
)
for file_id in file_ids
]
ai_message_files.extend(
[
FileDescriptor(
id=str(file_id),
type=(
ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV
),
)
for file_id in file_ids
]
)
yield FileChatDisplay(
file_ids=[str(file_id) for file_id in file_ids]
)
@@ -818,7 +831,8 @@ def stream_chat_message_objects(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
yield AllCitations(citations=answer.citations)
if not answer.is_cancelled():
yield AllCitations(citations=answer.citations)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id: dict[str, int] = {}

View File

@@ -4,20 +4,26 @@ from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import SystemMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prompt_builder.utils import translate_history_to_basemessages
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import check_message_tokens
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.llm.utils import translate_history_to_basemessages
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.prompts.chat_prompts import CHAT_USER_CONTEXT_FREE_PROMPT
from danswer.prompts.prompt_utils import add_date_time_to_prompt
from danswer.prompts.prompt_utils import drop_messages_history_overflow
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
def default_build_system_message(
@@ -139,3 +145,15 @@ class AnswerPromptBuilder:
return drop_messages_history_overflow(
final_messages_with_tokens, self.max_tokens
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True

View File

@@ -2,12 +2,12 @@ from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.model_configs import GEN_AI_SINGLE_USER_MESSAGE_EXPECTED_MAX_TOKENS
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Persona
from danswer.db.persona import get_default_prompt__read_only
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.interfaces import LLMConfig

View File

@@ -1,10 +1,10 @@
from langchain.schema.messages import HumanMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.context.search.models import InferenceChunk
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.prompts.direct_qa_prompts import CONTEXT_BLOCK
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK

View File

@@ -0,0 +1,62 @@
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from danswer.configs.constants import MessageType
from danswer.db.models import ChatMessage
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
def translate_danswer_msg_to_langchain(
msg: ChatMessage | PreviousMessage,
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts

View File

@@ -5,16 +5,16 @@ from typing import TypeVar
from pydantic import BaseModel
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import (
LlmDoc,
)
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_document_tokens
from danswer.configs.constants import IGNORE_FOR_QA
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
from danswer.context.search.models import InferenceChunk
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_document_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.natural_language_processing.utils import tokenizer_trim_content

View File

@@ -3,13 +3,11 @@ from collections.abc import Generator
from langchain_core.messages import BaseMessage
from danswer.chat.llm_response_handler import ResponsePart
from danswer.chat.models import CitationInfo
from danswer.chat.models import LlmDoc
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.llm.answering.stream_processing.citation_processing import (
CitationProcessor,
)
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.chat.stream_processing.citation_processing import CitationProcessor
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -37,13 +35,18 @@ class DummyAnswerResponseHandler(AnswerResponseHandler):
class CitationResponseHandler(AnswerResponseHandler):
def __init__(
self, context_docs: list[LlmDoc], doc_id_to_rank_map: DocumentIdOrderMapping
self,
context_docs: list[LlmDoc],
doc_id_to_rank_map: DocumentIdOrderMapping,
display_doc_order_dict: dict[str, int],
):
self.context_docs = context_docs
self.doc_id_to_rank_map = doc_id_to_rank_map
self.display_doc_order_dict = display_doc_order_dict
self.citation_processor = CitationProcessor(
context_docs=self.context_docs,
doc_id_to_rank_map=self.doc_id_to_rank_map,
display_doc_order_dict=self.display_doc_order_dict,
)
self.processed_text = ""
self.citations: list[CitationInfo] = []

View File

@@ -4,8 +4,8 @@ from collections.abc import Generator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import LlmDoc
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.configs.chat_configs import STOP_STREAM_PAT
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.prompts.constants import TRIPLE_BACKTICK
from danswer.utils.logger import setup_logger
@@ -22,12 +22,16 @@ class CitationProcessor:
self,
context_docs: list[LlmDoc],
doc_id_to_rank_map: DocumentIdOrderMapping,
display_doc_order_dict: dict[str, int],
stop_stream: str | None = STOP_STREAM_PAT,
):
self.context_docs = context_docs
self.doc_id_to_rank_map = doc_id_to_rank_map
self.stop_stream = stop_stream
self.order_mapping = doc_id_to_rank_map.order_mapping
self.display_doc_order_dict = (
display_doc_order_dict # original order of docs to displayed to user
)
self.llm_out = ""
self.max_citation_num = len(context_docs)
self.citation_order: list[int] = []
@@ -98,6 +102,18 @@ class CitationProcessor:
self.citation_order.index(real_citation_num) + 1
)
# get the value that was displayed to user, should always
# be in the display_doc_order_dict. But check anyways
if context_llm_doc.document_id in self.display_doc_order_dict:
displayed_citation_num = self.display_doc_order_dict[
context_llm_doc.document_id
]
else:
displayed_citation_num = real_citation_num
logger.warning(
f"Doc {context_llm_doc.document_id} not in display_doc_order_dict. Used LLM citation number instead."
)
# Skip consecutive citations of the same work
if target_citation_num in self.current_citations:
start, end = citation.span()
@@ -118,6 +134,7 @@ class CitationProcessor:
doc_id = int(match.group(1))
context_llm_doc = self.context_docs[doc_id - 1]
yield CitationInfo(
# stay with the original for now (order of LLM cites)
citation_num=target_citation_num,
document_id=context_llm_doc.document_id,
)
@@ -139,6 +156,7 @@ class CitationProcessor:
if target_citation_num not in self.cited_inds:
self.cited_inds.add(target_citation_num)
yield CitationInfo(
# stay with the original for now (order of LLM cites)
citation_num=target_citation_num,
document_id=context_llm_doc.document_id,
)
@@ -148,7 +166,8 @@ class CitationProcessor:
prev_length = len(self.curr_segment)
self.curr_segment = (
self.curr_segment[: start + length_to_add]
+ f"[[{target_citation_num}]]({link})"
+ f"[[{displayed_citation_num}]]({link})" # use the value that was displayed to user
# + f"[[{target_citation_num}]]({link})"
+ self.curr_segment[end + length_to_add :]
)
length_to_add += len(self.curr_segment) - prev_length
@@ -156,7 +175,8 @@ class CitationProcessor:
prev_length = len(self.curr_segment)
self.curr_segment = (
self.curr_segment[: start + length_to_add]
+ f"[[{target_citation_num}]]()"
+ f"[[{displayed_citation_num}]]()" # use the value that was displayed to user
# + f"[[{target_citation_num}]]()"
+ self.curr_segment[end + length_to_add :]
)
length_to_add += len(self.curr_segment) - prev_length

View File

@@ -4,8 +4,8 @@ from langchain_core.messages import AIMessageChunk
from langchain_core.messages import BaseMessage
from langchain_core.messages import ToolCall
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.chat.models import ResponsePart
from danswer.chat.prompt_builder.build import LLMCall
from danswer.llm.interfaces import LLM
from danswer.tools.force import ForceUseTool
from danswer.tools.message import build_tool_message

View File

@@ -43,9 +43,6 @@ WEB_DOMAIN = os.environ.get("WEB_DOMAIN") or "http://localhost:3000"
AUTH_TYPE = AuthType((os.environ.get("AUTH_TYPE") or AuthType.DISABLED.value).lower())
DISABLE_AUTH = AUTH_TYPE == AuthType.DISABLED
# Necessary for cloud integration tests
DISABLE_VERIFICATION = os.environ.get("DISABLE_VERIFICATION", "").lower() == "true"
# Encryption key secret is used to encrypt connector credentials, api keys, and other sensitive
# information. This provides an extra layer of security on top of Postgres access controls
# and is available in Danswer EE
@@ -84,7 +81,14 @@ OAUTH_CLIENT_SECRET = (
or ""
)
# for future OAuth connector support
# OAUTH_CONFLUENCE_CLIENT_ID = os.environ.get("OAUTH_CONFLUENCE_CLIENT_ID", "")
# OAUTH_CONFLUENCE_CLIENT_SECRET = os.environ.get("OAUTH_CONFLUENCE_CLIENT_SECRET", "")
# OAUTH_JIRA_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLIENT_ID", "")
# OAUTH_JIRA_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLIENT_SECRET", "")
USER_AUTH_SECRET = os.environ.get("USER_AUTH_SECRET", "")
# for basic auth
REQUIRE_EMAIL_VERIFICATION = (
os.environ.get("REQUIRE_EMAIL_VERIFICATION", "").lower() == "true"
@@ -118,6 +122,8 @@ VESPA_HOST = os.environ.get("VESPA_HOST") or "localhost"
VESPA_CONFIG_SERVER_HOST = os.environ.get("VESPA_CONFIG_SERVER_HOST") or VESPA_HOST
VESPA_PORT = os.environ.get("VESPA_PORT") or "8081"
VESPA_TENANT_PORT = os.environ.get("VESPA_TENANT_PORT") or "19071"
# the number of times to try and connect to vespa on startup before giving up
VESPA_NUM_ATTEMPTS_ON_STARTUP = int(os.environ.get("NUM_RETRIES_ON_STARTUP") or 10)
VESPA_CLOUD_URL = os.environ.get("VESPA_CLOUD_URL", "")
@@ -342,6 +348,12 @@ GITLAB_CONNECTOR_INCLUDE_CODE_FILES = (
os.environ.get("GITLAB_CONNECTOR_INCLUDE_CODE_FILES", "").lower() == "true"
)
# Egnyte specific configs
EGNYTE_LOCALHOST_OVERRIDE = os.getenv("EGNYTE_LOCALHOST_OVERRIDE")
EGNYTE_BASE_DOMAIN = os.getenv("EGNYTE_DOMAIN")
EGNYTE_CLIENT_ID = os.getenv("EGNYTE_CLIENT_ID")
EGNYTE_CLIENT_SECRET = os.getenv("EGNYTE_CLIENT_SECRET")
DASK_JOB_CLIENT_ENABLED = (
os.environ.get("DASK_JOB_CLIENT_ENABLED", "").lower() == "true"
)
@@ -405,21 +417,28 @@ LARGE_CHUNK_RATIO = 4
# We don't want the metadata to overwhelm the actual contents of the chunk
SKIP_METADATA_IN_CHUNK = os.environ.get("SKIP_METADATA_IN_CHUNK", "").lower() == "true"
# Timeout to wait for job's last update before killing it, in hours
CLEANUP_INDEXING_JOBS_TIMEOUT = int(os.environ.get("CLEANUP_INDEXING_JOBS_TIMEOUT", 3))
CLEANUP_INDEXING_JOBS_TIMEOUT = int(
os.environ.get("CLEANUP_INDEXING_JOBS_TIMEOUT") or 3
)
# The indexer will warn in the logs whenver a document exceeds this threshold (in bytes)
INDEXING_SIZE_WARNING_THRESHOLD = int(
os.environ.get("INDEXING_SIZE_WARNING_THRESHOLD", 100 * 1024 * 1024)
os.environ.get("INDEXING_SIZE_WARNING_THRESHOLD") or 100 * 1024 * 1024
)
# during indexing, will log verbose memory diff stats every x batches and at the end.
# 0 disables this behavior and is the default.
INDEXING_TRACER_INTERVAL = int(os.environ.get("INDEXING_TRACER_INTERVAL", 0))
INDEXING_TRACER_INTERVAL = int(os.environ.get("INDEXING_TRACER_INTERVAL") or 0)
# During an indexing attempt, specifies the number of batches which are allowed to
# exception without aborting the attempt.
INDEXING_EXCEPTION_LIMIT = int(os.environ.get("INDEXING_EXCEPTION_LIMIT", 0))
INDEXING_EXCEPTION_LIMIT = int(os.environ.get("INDEXING_EXCEPTION_LIMIT") or 0)
# Maximum file size in a document to be indexed
MAX_DOCUMENT_CHARS = int(os.environ.get("MAX_DOCUMENT_CHARS") or 5_000_000)
MAX_FILE_SIZE_BYTES = int(
os.environ.get("MAX_FILE_SIZE_BYTES") or 2 * 1024 * 1024 * 1024
) # 2GB in bytes
#####
# Miscellaneous

View File

@@ -3,7 +3,6 @@ import os
PROMPTS_YAML = "./danswer/seeding/prompts.yaml"
PERSONAS_YAML = "./danswer/seeding/personas.yaml"
INPUT_PROMPT_YAML = "./danswer/seeding/input_prompts.yaml"
NUM_RETURNED_HITS = 50
# Used for LLM filtering and reranking

View File

@@ -132,6 +132,7 @@ class DocumentSource(str, Enum):
NOT_APPLICABLE = "not_applicable"
FRESHDESK = "freshdesk"
FIREFLIES = "fireflies"
EGNYTE = "egnyte"
DocumentSourceRequiringTenantContext: list[DocumentSource] = [DocumentSource.FILE]

View File

@@ -2,6 +2,8 @@ import json
import os
IMAGE_GENERATION_OUTPUT_FORMAT = os.environ.get("IMAGE_GENERATION_OUTPUT_FORMAT", "url")
# if specified, will pass through request headers to the call to API calls made by custom tools
CUSTOM_TOOL_PASS_THROUGH_HEADERS: list[str] | None = None
_CUSTOM_TOOL_PASS_THROUGH_HEADERS_RAW = os.environ.get(

View File

@@ -15,6 +15,7 @@ from danswer.connectors.confluence.utils import attachment_to_content
from danswer.connectors.confluence.utils import build_confluence_document_id
from danswer.connectors.confluence.utils import datetime_from_string
from danswer.connectors.confluence.utils import extract_text_from_confluence_html
from danswer.connectors.confluence.utils import validate_attachment_filetype
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
from danswer.connectors.interfaces import LoadConnector
@@ -276,9 +277,11 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
):
# If the page has restrictions, add them to the perm_sync_data
# These will be used by doc_sync.py to sync permissions
perm_sync_data = {
"restrictions": page.get("restrictions", {}),
"space_key": page.get("space", {}).get("key"),
page_restrictions = page.get("restrictions")
page_space_key = page.get("space", {}).get("key")
page_perm_sync_data = {
"restrictions": page_restrictions or {},
"space_key": page_space_key,
}
doc_metadata_list.append(
@@ -288,7 +291,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
page["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=page_perm_sync_data,
)
)
attachment_cql = f"type=attachment and container='{page['id']}'"
@@ -298,6 +301,21 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
expand=restrictions_expand,
limit=_SLIM_DOC_BATCH_SIZE,
):
if not validate_attachment_filetype(attachment):
continue
attachment_restrictions = attachment.get("restrictions")
if not attachment_restrictions:
attachment_restrictions = page_restrictions
attachment_space_key = attachment.get("space", {}).get("key")
if not attachment_space_key:
attachment_space_key = page_space_key
attachment_perm_sync_data = {
"restrictions": attachment_restrictions or {},
"space_key": attachment_space_key,
}
doc_metadata_list.append(
SlimDocument(
id=build_confluence_document_id(
@@ -305,7 +323,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
attachment["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=attachment_perm_sync_data,
)
)
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:

View File

@@ -368,4 +368,5 @@ def build_confluence_client(
backoff_and_retry=True,
max_backoff_retries=10,
max_backoff_seconds=60,
cloud=is_cloud,
)

View File

@@ -177,19 +177,23 @@ def extract_text_from_confluence_html(
return format_document_soup(soup)
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if attachment["metadata"]["mediaType"] in [
def validate_attachment_filetype(attachment: dict[str, Any]) -> bool:
return attachment["metadata"]["mediaType"] not in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
]
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if not validate_attachment_filetype(attachment):
return None
download_link = confluence_client.url + attachment["_links"]["download"]
@@ -245,7 +249,7 @@ def build_confluence_document_id(
return f"{base_url}{content_url}"
def extract_referenced_attachment_names(page_text: str) -> list[str]:
def _extract_referenced_attachment_names(page_text: str) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachments in use

View File

@@ -0,0 +1,384 @@
import io
import os
from collections.abc import Generator
from datetime import datetime
from datetime import timezone
from logging import Logger
from typing import Any
from typing import cast
from typing import IO
import requests
from retry import retry
from danswer.configs.app_configs import EGNYTE_BASE_DOMAIN
from danswer.configs.app_configs import EGNYTE_CLIENT_ID
from danswer.configs.app_configs import EGNYTE_CLIENT_SECRET
from danswer.configs.app_configs import EGNYTE_LOCALHOST_OVERRIDE
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import OAuthConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.file_processing.extract_file_text import detect_encoding
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_processing.extract_file_text import get_file_ext
from danswer.file_processing.extract_file_text import is_text_file_extension
from danswer.file_processing.extract_file_text import is_valid_file_ext
from danswer.file_processing.extract_file_text import read_text_file
from danswer.utils.logger import setup_logger
logger = setup_logger()
_EGNYTE_API_BASE = "https://{domain}.egnyte.com/pubapi/v1"
_EGNYTE_APP_BASE = "https://{domain}.egnyte.com"
_TIMEOUT = 60
def _request_with_retries(
method: str,
url: str,
data: dict[str, Any] | None = None,
headers: dict[str, Any] | None = None,
params: dict[str, Any] | None = None,
timeout: int = _TIMEOUT,
stream: bool = False,
tries: int = 8,
delay: float = 1,
backoff: float = 2,
) -> requests.Response:
@retry(tries=tries, delay=delay, backoff=backoff, logger=cast(Logger, logger))
def _make_request() -> requests.Response:
response = requests.request(
method,
url,
data=data,
headers=headers,
params=params,
timeout=timeout,
stream=stream,
)
try:
response.raise_for_status()
except requests.exceptions.HTTPError as e:
if e.response.status_code != 403:
logger.exception(
f"Failed to call Egnyte API.\n"
f"URL: {url}\n"
f"Headers: {headers}\n"
f"Data: {data}\n"
f"Params: {params}"
)
raise e
return response
return _make_request()
def _parse_last_modified(last_modified: str) -> datetime:
return datetime.strptime(last_modified, "%a, %d %b %Y %H:%M:%S %Z").replace(
tzinfo=timezone.utc
)
def _process_egnyte_file(
file_metadata: dict[str, Any],
file_content: IO,
base_url: str,
folder_path: str | None = None,
) -> Document | None:
"""Process an Egnyte file into a Document object
Args:
file_data: The file data from Egnyte API
file_content: The raw content of the file in bytes
base_url: The base URL for the Egnyte instance
folder_path: Optional folder path to filter results
"""
# Skip if file path doesn't match folder path filter
if folder_path and not file_metadata["path"].startswith(folder_path):
raise ValueError(
f"File path {file_metadata['path']} does not match folder path {folder_path}"
)
file_name = file_metadata["name"]
extension = get_file_ext(file_name)
if not is_valid_file_ext(extension):
logger.warning(f"Skipping file '{file_name}' with extension '{extension}'")
return None
# Extract text content based on file type
if is_text_file_extension(file_name):
encoding = detect_encoding(file_content)
file_content_raw, file_metadata = read_text_file(
file_content, encoding=encoding, ignore_danswer_metadata=False
)
else:
file_content_raw = extract_file_text(
file=file_content,
file_name=file_name,
break_on_unprocessable=True,
)
# Build the web URL for the file
web_url = f"{base_url}/navigate/file/{file_metadata['group_id']}"
# Create document metadata
metadata: dict[str, str | list[str]] = {
"file_path": file_metadata["path"],
"last_modified": file_metadata.get("last_modified", ""),
}
# Add lock info if present
if lock_info := file_metadata.get("lock_info"):
metadata[
"lock_owner"
] = f"{lock_info.get('first_name', '')} {lock_info.get('last_name', '')}"
# Create the document owners
primary_owner = None
if uploaded_by := file_metadata.get("uploaded_by"):
primary_owner = BasicExpertInfo(
email=uploaded_by, # Using username as email since that's what we have
)
# Create the document
return Document(
id=f"egnyte-{file_metadata['entry_id']}",
sections=[Section(text=file_content_raw.strip(), link=web_url)],
source=DocumentSource.EGNYTE,
semantic_identifier=file_name,
metadata=metadata,
doc_updated_at=(
_parse_last_modified(file_metadata["last_modified"])
if "last_modified" in file_metadata
else None
),
primary_owners=[primary_owner] if primary_owner else None,
)
class EgnyteConnector(LoadConnector, PollConnector, OAuthConnector):
def __init__(
self,
folder_path: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.domain = "" # will always be set in `load_credentials`
self.folder_path = folder_path or "" # Root folder if not specified
self.batch_size = batch_size
self.access_token: str | None = None
@classmethod
def oauth_id(cls) -> DocumentSource:
return DocumentSource.EGNYTE
@classmethod
def oauth_authorization_url(cls, base_domain: str, state: str) -> str:
if not EGNYTE_CLIENT_ID:
raise ValueError("EGNYTE_CLIENT_ID environment variable must be set")
if not EGNYTE_BASE_DOMAIN:
raise ValueError("EGNYTE_DOMAIN environment variable must be set")
if EGNYTE_LOCALHOST_OVERRIDE:
base_domain = EGNYTE_LOCALHOST_OVERRIDE
callback_uri = f"{base_domain.strip('/')}/connector/oauth/callback/egnyte"
return (
f"https://{EGNYTE_BASE_DOMAIN}.egnyte.com/puboauth/token"
f"?client_id={EGNYTE_CLIENT_ID}"
f"&redirect_uri={callback_uri}"
f"&scope=Egnyte.filesystem"
f"&state={state}"
f"&response_type=code"
)
@classmethod
def oauth_code_to_token(cls, code: str) -> dict[str, Any]:
if not EGNYTE_CLIENT_ID:
raise ValueError("EGNYTE_CLIENT_ID environment variable must be set")
if not EGNYTE_CLIENT_SECRET:
raise ValueError("EGNYTE_CLIENT_SECRET environment variable must be set")
if not EGNYTE_BASE_DOMAIN:
raise ValueError("EGNYTE_DOMAIN environment variable must be set")
# Exchange code for token
url = f"https://{EGNYTE_BASE_DOMAIN}.egnyte.com/puboauth/token"
data = {
"client_id": EGNYTE_CLIENT_ID,
"client_secret": EGNYTE_CLIENT_SECRET,
"code": code,
"grant_type": "authorization_code",
"redirect_uri": f"{EGNYTE_LOCALHOST_OVERRIDE or ''}/connector/oauth/callback/egnyte",
"scope": "Egnyte.filesystem",
}
headers = {"Content-Type": "application/x-www-form-urlencoded"}
response = _request_with_retries(
method="POST",
url=url,
data=data,
headers=headers,
# try a lot faster since this is a realtime flow
backoff=0,
delay=0.1,
)
if not response.ok:
raise RuntimeError(f"Failed to exchange code for token: {response.text}")
token_data = response.json()
return {
"domain": EGNYTE_BASE_DOMAIN,
"access_token": token_data["access_token"],
}
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.domain = credentials["domain"]
self.access_token = credentials["access_token"]
return None
def _get_files_list(
self,
path: str,
) -> list[dict[str, Any]]:
if not self.access_token or not self.domain:
raise ConnectorMissingCredentialError("Egnyte")
headers = {
"Authorization": f"Bearer {self.access_token}",
}
params: dict[str, Any] = {
"list_content": True,
}
url = f"{_EGNYTE_API_BASE.format(domain=self.domain)}/fs/{path or ''}"
response = _request_with_retries(
method="GET", url=url, headers=headers, params=params, timeout=_TIMEOUT
)
if not response.ok:
raise RuntimeError(f"Failed to fetch files from Egnyte: {response.text}")
data = response.json()
all_files: list[dict[str, Any]] = []
# Add files from current directory
all_files.extend(data.get("files", []))
# Recursively traverse folders
for item in data.get("folders", []):
all_files.extend(self._get_files_list(item["path"]))
return all_files
def _filter_files(
self,
files: list[dict[str, Any]],
start_time: datetime | None = None,
end_time: datetime | None = None,
) -> list[dict[str, Any]]:
filtered_files = []
for file in files:
if file["is_folder"]:
continue
file_modified = _parse_last_modified(file["last_modified"])
if start_time and file_modified < start_time:
continue
if end_time and file_modified > end_time:
continue
filtered_files.append(file)
return filtered_files
def _process_files(
self,
start_time: datetime | None = None,
end_time: datetime | None = None,
) -> Generator[list[Document], None, None]:
files = self._get_files_list(self.folder_path)
files = self._filter_files(files, start_time, end_time)
current_batch: list[Document] = []
for file in files:
try:
# Set up request with streaming enabled
headers = {
"Authorization": f"Bearer {self.access_token}",
}
url = f"{_EGNYTE_API_BASE.format(domain=self.domain)}/fs-content/{file['path']}"
response = _request_with_retries(
method="GET",
url=url,
headers=headers,
timeout=_TIMEOUT,
stream=True,
)
if not response.ok:
logger.error(
f"Failed to fetch file content: {file['path']} (status code: {response.status_code})"
)
continue
# Stream the response content into a BytesIO buffer
buffer = io.BytesIO()
for chunk in response.iter_content(chunk_size=8192):
if chunk:
buffer.write(chunk)
# Reset buffer's position to the start
buffer.seek(0)
# Process the streamed file content
doc = _process_egnyte_file(
file_metadata=file,
file_content=buffer,
base_url=_EGNYTE_APP_BASE.format(domain=self.domain),
folder_path=self.folder_path,
)
if doc is not None:
current_batch.append(doc)
if len(current_batch) >= self.batch_size:
yield current_batch
current_batch = []
except Exception:
logger.exception(f"Failed to process file {file['path']}")
continue
if current_batch:
yield current_batch
def load_from_state(self) -> GenerateDocumentsOutput:
yield from self._process_files()
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_time = datetime.fromtimestamp(start, tz=timezone.utc)
end_time = datetime.fromtimestamp(end, tz=timezone.utc)
yield from self._process_files(start_time=start_time, end_time=end_time)
if __name__ == "__main__":
connector = EgnyteConnector()
connector.load_credentials(
{
"domain": os.environ["EGNYTE_DOMAIN"],
"access_token": os.environ["EGNYTE_ACCESS_TOKEN"],
}
)
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -15,6 +15,7 @@ from danswer.connectors.danswer_jira.connector import JiraConnector
from danswer.connectors.discourse.connector import DiscourseConnector
from danswer.connectors.document360.connector import Document360Connector
from danswer.connectors.dropbox.connector import DropboxConnector
from danswer.connectors.egnyte.connector import EgnyteConnector
from danswer.connectors.file.connector import LocalFileConnector
from danswer.connectors.fireflies.connector import FirefliesConnector
from danswer.connectors.freshdesk.connector import FreshdeskConnector
@@ -103,6 +104,7 @@ def identify_connector_class(
DocumentSource.XENFORO: XenforoConnector,
DocumentSource.FRESHDESK: FreshdeskConnector,
DocumentSource.FIREFLIES: FirefliesConnector,
DocumentSource.EGNYTE: EgnyteConnector,
}
connector_by_source = connector_map.get(source, {})

View File

@@ -17,11 +17,11 @@ from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.db.engine import get_session_with_tenant
from danswer.file_processing.extract_file_text import check_file_ext_is_valid
from danswer.file_processing.extract_file_text import detect_encoding
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_processing.extract_file_text import get_file_ext
from danswer.file_processing.extract_file_text import is_text_file_extension
from danswer.file_processing.extract_file_text import is_valid_file_ext
from danswer.file_processing.extract_file_text import load_files_from_zip
from danswer.file_processing.extract_file_text import read_pdf_file
from danswer.file_processing.extract_file_text import read_text_file
@@ -50,7 +50,7 @@ def _read_files_and_metadata(
file_content, ignore_dirs=True
):
yield os.path.join(directory_path, file_info.filename), file, metadata
elif check_file_ext_is_valid(extension):
elif is_valid_file_ext(extension):
yield file_name, file_content, metadata
else:
logger.warning(f"Skipping file '{file_name}' with extension '{extension}'")
@@ -63,7 +63,7 @@ def _process_file(
pdf_pass: str | None = None,
) -> list[Document]:
extension = get_file_ext(file_name)
if not check_file_ext_is_valid(extension):
if not is_valid_file_ext(extension):
logger.warning(f"Skipping file '{file_name}' with extension '{extension}'")
return []

View File

@@ -4,11 +4,13 @@ from concurrent.futures import as_completed
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from typing import Any
from typing import cast
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.app_configs import MAX_FILE_SIZE_BYTES
from danswer.configs.constants import DocumentSource
from danswer.connectors.google_drive.doc_conversion import build_slim_document
from danswer.connectors.google_drive.doc_conversion import (
@@ -452,12 +454,14 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
if isinstance(self.creds, ServiceAccountCredentials)
else self._manage_oauth_retrieval
)
return retrieval_method(
drive_files = retrieval_method(
is_slim=is_slim,
start=start,
end=end,
)
return drive_files
def _extract_docs_from_google_drive(
self,
start: SecondsSinceUnixEpoch | None = None,
@@ -473,6 +477,15 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
files_to_process = []
# Gather the files into batches to be processed in parallel
for file in self._fetch_drive_items(is_slim=False, start=start, end=end):
if (
file.get("size")
and int(cast(str, file.get("size"))) > MAX_FILE_SIZE_BYTES
):
logger.warning(
f"Skipping file {file.get('name', 'Unknown')} as it is too large: {file.get('size')} bytes"
)
continue
files_to_process.append(file)
if len(files_to_process) >= LARGE_BATCH_SIZE:
yield from _process_files_batch(

View File

@@ -16,7 +16,7 @@ logger = setup_logger()
FILE_FIELDS = (
"nextPageToken, files(mimeType, id, name, permissions, modifiedTime, webViewLink, "
"shortcutDetails, owners(emailAddress))"
"shortcutDetails, owners(emailAddress), size)"
)
SLIM_FILE_FIELDS = (
"nextPageToken, files(mimeType, id, name, permissions(emailAddress, type), "

View File

@@ -2,6 +2,7 @@ import abc
from collections.abc import Iterator
from typing import Any
from danswer.configs.constants import DocumentSource
from danswer.connectors.models import Document
from danswer.connectors.models import SlimDocument
@@ -64,6 +65,23 @@ class SlimConnector(BaseConnector):
raise NotImplementedError
class OAuthConnector(BaseConnector):
@classmethod
@abc.abstractmethod
def oauth_id(cls) -> DocumentSource:
raise NotImplementedError
@classmethod
@abc.abstractmethod
def oauth_authorization_url(cls, base_domain: str, state: str) -> str:
raise NotImplementedError
@classmethod
@abc.abstractmethod
def oauth_code_to_token(cls, code: str) -> dict[str, Any]:
raise NotImplementedError
# Event driven
class EventConnector(BaseConnector):
@abc.abstractmethod

View File

@@ -132,7 +132,6 @@ class LinearConnector(LoadConnector, PollConnector):
branchName
customerTicketCount
description
descriptionData
comments {
nodes {
url
@@ -215,5 +214,6 @@ class LinearConnector(LoadConnector, PollConnector):
if __name__ == "__main__":
connector = LinearConnector()
connector.load_credentials({"linear_api_key": os.environ["LINEAR_API_KEY"]})
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -171,7 +171,9 @@ def thread_to_doc(
else first_message
)
doc_sem_id = f"{initial_sender_name} in #{channel['name']}: {snippet}"
doc_sem_id = f"{initial_sender_name} in #{channel['name']}: {snippet}".replace(
"\n", " "
)
return Document(
id=f"{channel_id}__{thread[0]['ts']}",

View File

@@ -33,7 +33,7 @@ def get_created_datetime(chat_message: ChatMessage) -> datetime:
def _extract_channel_members(channel: Channel) -> list[BasicExpertInfo]:
channel_members_list: list[BasicExpertInfo] = []
members = channel.members.get().execute_query()
members = channel.members.get().execute_query_retry()
for member in members:
channel_members_list.append(BasicExpertInfo(display_name=member.display_name))
return channel_members_list
@@ -51,7 +51,7 @@ def _get_threads_from_channel(
end = end.replace(tzinfo=timezone.utc)
query = channel.messages.get()
base_messages: list[ChatMessage] = query.execute_query()
base_messages: list[ChatMessage] = query.execute_query_retry()
threads: list[list[ChatMessage]] = []
for base_message in base_messages:
@@ -65,7 +65,7 @@ def _get_threads_from_channel(
continue
reply_query = base_message.replies.get_all()
replies = reply_query.execute_query()
replies = reply_query.execute_query_retry()
# start a list containing the base message and its replies
thread: list[ChatMessage] = [base_message]
@@ -82,7 +82,7 @@ def _get_channels_from_teams(
channels_list: list[Channel] = []
for team in teams:
query = team.channels.get()
channels = query.execute_query()
channels = query.execute_query_retry()
channels_list.extend(channels)
return channels_list
@@ -210,7 +210,7 @@ class TeamsConnector(LoadConnector, PollConnector):
teams_list: list[Team] = []
teams = self.graph_client.teams.get().execute_query()
teams = self.graph_client.teams.get().execute_query_retry()
if len(self.requested_team_list) > 0:
adjusted_request_strings = [
@@ -234,14 +234,25 @@ class TeamsConnector(LoadConnector, PollConnector):
raise ConnectorMissingCredentialError("Teams")
teams = self._get_all_teams()
logger.debug(f"Found available teams: {[str(t) for t in teams]}")
if not teams:
msg = "No teams found."
logger.error(msg)
raise ValueError(msg)
channels = _get_channels_from_teams(
teams=teams,
)
logger.debug(f"Found available channels: {[c.id for c in channels]}")
if not channels:
msg = "No channels found."
logger.error(msg)
raise ValueError(msg)
# goes over channels, converts them into Document objects and then yields them in batches
doc_batch: list[Document] = []
for channel in channels:
logger.debug(f"Fetching threads from channel: {channel.id}")
thread_list = _get_threads_from_channel(channel, start=start, end=end)
for thread in thread_list:
converted_doc = _convert_thread_to_document(channel, thread)
@@ -259,8 +270,8 @@ class TeamsConnector(LoadConnector, PollConnector):
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_datetime = datetime.utcfromtimestamp(start)
end_datetime = datetime.utcfromtimestamp(end)
start_datetime = datetime.fromtimestamp(start, timezone.utc)
end_datetime = datetime.fromtimestamp(end, timezone.utc)
return self._fetch_from_teams(start=start_datetime, end=end_datetime)

View File

@@ -5,7 +5,11 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prune_and_merge import _merge_sections
from danswer.chat.prune_and_merge import ChunkRange
from danswer.chat.prune_and_merge import merge_chunk_intervals
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.enums import QueryFlow
@@ -27,10 +31,6 @@ from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import VespaChunkRequest
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prune_and_merge import _merge_sections
from danswer.llm.answering.prune_and_merge import ChunkRange
from danswer.llm.answering.prune_and_merge import merge_chunk_intervals
from danswer.llm.interfaces import LLM
from danswer.secondary_llm_flows.agentic_evaluation import evaluate_inference_section
from danswer.utils.logger import setup_logger

View File

@@ -204,7 +204,8 @@ def _build_documents_blocks(
continue
seen_docs_identifiers.add(d.document_id)
doc_sem_id = d.semantic_identifier
# Strip newlines from the semantic identifier for Slackbot formatting
doc_sem_id = d.semantic_identifier.replace("\n", " ")
if d.source_type == DocumentSource.SLACK.value:
doc_sem_id = "#" + doc_sem_id

View File

@@ -373,7 +373,9 @@ def handle_regular_answer(
respond_in_thread(
client=client,
channel=channel,
receiver_ids=receiver_ids,
receiver_ids=[message_info.sender]
if message_info.is_bot_msg and message_info.sender
else receiver_ids,
text="Hello! Danswer has some results for you!",
blocks=all_blocks,
thread_ts=message_ts_to_respond_to,

View File

@@ -11,6 +11,7 @@ from retry import retry
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
from slack_sdk.models.blocks import Block
from slack_sdk.models.blocks import SectionBlock
from slack_sdk.models.metadata import Metadata
from slack_sdk.socket_mode import SocketModeClient
@@ -140,6 +141,40 @@ def remove_danswer_bot_tag(message_str: str, client: WebClient) -> str:
return re.sub(rf"<@{bot_tag_id}>\s", "", message_str)
def _check_for_url_in_block(block: Block) -> bool:
"""
Check if the block has a key that contains "url" in it
"""
block_dict = block.to_dict()
def check_dict_for_url(d: dict) -> bool:
for key, value in d.items():
if "url" in key.lower():
return True
if isinstance(value, dict):
if check_dict_for_url(value):
return True
elif isinstance(value, list):
for item in value:
if isinstance(item, dict) and check_dict_for_url(item):
return True
return False
return check_dict_for_url(block_dict)
def _build_error_block(error_message: str) -> Block:
"""
Build an error block to display in slack so that the user can see
the error without completely breaking
"""
display_text = (
"There was an error displaying all of the Onyx answers."
f" Please let an admin or an onyx developer know. Error: {error_message}"
)
return SectionBlock(text=display_text)
@retry(
tries=DANSWER_BOT_NUM_RETRIES,
delay=0.25,
@@ -162,24 +197,9 @@ def respond_in_thread(
message_ids: list[str] = []
if not receiver_ids:
slack_call = make_slack_api_rate_limited(client.chat_postMessage)
response = slack_call(
channel=channel,
text=text,
blocks=blocks,
thread_ts=thread_ts,
metadata=metadata,
unfurl_links=unfurl,
unfurl_media=unfurl,
)
if not response.get("ok"):
raise RuntimeError(f"Failed to post message: {response}")
message_ids.append(response["message_ts"])
else:
slack_call = make_slack_api_rate_limited(client.chat_postEphemeral)
for receiver in receiver_ids:
try:
response = slack_call(
channel=channel,
user=receiver,
text=text,
blocks=blocks,
thread_ts=thread_ts,
@@ -187,8 +207,68 @@ def respond_in_thread(
unfurl_links=unfurl,
unfurl_media=unfurl,
)
if not response.get("ok"):
raise RuntimeError(f"Failed to post message: {response}")
except Exception as e:
logger.warning(f"Failed to post message: {e} \n blocks: {blocks}")
logger.warning("Trying again without blocks that have urls")
if not blocks:
raise e
blocks_without_urls = [
block for block in blocks if not _check_for_url_in_block(block)
]
blocks_without_urls.append(_build_error_block(str(e)))
# Try again wtihout blocks containing url
response = slack_call(
channel=channel,
text=text,
blocks=blocks_without_urls,
thread_ts=thread_ts,
metadata=metadata,
unfurl_links=unfurl,
unfurl_media=unfurl,
)
message_ids.append(response["message_ts"])
else:
slack_call = make_slack_api_rate_limited(client.chat_postEphemeral)
for receiver in receiver_ids:
try:
response = slack_call(
channel=channel,
user=receiver,
text=text,
blocks=blocks,
thread_ts=thread_ts,
metadata=metadata,
unfurl_links=unfurl,
unfurl_media=unfurl,
)
except Exception as e:
logger.warning(f"Failed to post message: {e} \n blocks: {blocks}")
logger.warning("Trying again without blocks that have urls")
if not blocks:
raise e
blocks_without_urls = [
block for block in blocks if not _check_for_url_in_block(block)
]
blocks_without_urls.append(_build_error_block(str(e)))
# Try again wtihout blocks containing url
response = slack_call(
channel=channel,
user=receiver,
text=text,
blocks=blocks_without_urls,
thread_ts=thread_ts,
metadata=metadata,
unfurl_links=unfurl,
unfurl_media=unfurl,
)
message_ids.append(response["message_ts"])
return message_ids

View File

@@ -20,7 +20,6 @@ from danswer.db.models import DocumentByConnectorCredentialPair
from danswer.db.models import User
from danswer.db.models import User__UserGroup
from danswer.server.documents.models import CredentialBase
from danswer.server.documents.models import CredentialDataUpdateRequest
from danswer.utils.logger import setup_logger
@@ -248,7 +247,6 @@ def create_credential(
)
db_session.commit()
return credential
@@ -263,7 +261,8 @@ def _cleanup_credential__user_group_relationships__no_commit(
def alter_credential(
credential_id: int,
credential_data: CredentialDataUpdateRequest,
name: str,
credential_json: dict[str, Any],
user: User,
db_session: Session,
) -> Credential | None:
@@ -273,11 +272,13 @@ def alter_credential(
if credential is None:
return None
credential.name = credential_data.name
credential.name = name
# Update only the keys present in credential_data.credential_json
for key, value in credential_data.credential_json.items():
credential.credential_json[key] = value
# Assign a new dictionary to credential.credential_json
credential.credential_json = {
**credential.credential_json,
**credential_json,
}
credential.user_id = user.id if user is not None else None
db_session.commit()
@@ -310,8 +311,8 @@ def update_credential_json(
credential = fetch_credential_by_id(credential_id, user, db_session)
if credential is None:
return None
credential.credential_json = credential_json
credential.credential_json = credential_json
db_session.commit()
return credential

View File

@@ -522,12 +522,16 @@ def expire_index_attempts(
search_settings_id: int,
db_session: Session,
) -> None:
delete_query = (
delete(IndexAttempt)
not_started_query = (
update(IndexAttempt)
.where(IndexAttempt.search_settings_id == search_settings_id)
.where(IndexAttempt.status == IndexingStatus.NOT_STARTED)
.values(
status=IndexingStatus.CANCELED,
error_msg="Canceled, likely due to model swap",
)
)
db_session.execute(delete_query)
db_session.execute(not_started_query)
update_query = (
update(IndexAttempt)
@@ -549,9 +553,14 @@ def cancel_indexing_attempts_for_ccpair(
include_secondary_index: bool = False,
) -> None:
stmt = (
delete(IndexAttempt)
update(IndexAttempt)
.where(IndexAttempt.connector_credential_pair_id == cc_pair_id)
.where(IndexAttempt.status == IndexingStatus.NOT_STARTED)
.values(
status=IndexingStatus.CANCELED,
error_msg="Canceled by user",
time_started=datetime.now(timezone.utc),
)
)
if not include_secondary_index:

View File

@@ -1,202 +0,0 @@
from uuid import UUID
from fastapi import HTTPException
from sqlalchemy import select
from sqlalchemy.orm import Session
from danswer.db.models import InputPrompt
from danswer.db.models import User
from danswer.server.features.input_prompt.models import InputPromptSnapshot
from danswer.server.manage.models import UserInfo
from danswer.utils.logger import setup_logger
logger = setup_logger()
def insert_input_prompt_if_not_exists(
user: User | None,
input_prompt_id: int | None,
prompt: str,
content: str,
active: bool,
is_public: bool,
db_session: Session,
commit: bool = True,
) -> InputPrompt:
if input_prompt_id is not None:
input_prompt = (
db_session.query(InputPrompt).filter_by(id=input_prompt_id).first()
)
else:
query = db_session.query(InputPrompt).filter(InputPrompt.prompt == prompt)
if user:
query = query.filter(InputPrompt.user_id == user.id)
else:
query = query.filter(InputPrompt.user_id.is_(None))
input_prompt = query.first()
if input_prompt is None:
input_prompt = InputPrompt(
id=input_prompt_id,
prompt=prompt,
content=content,
active=active,
is_public=is_public or user is None,
user_id=user.id if user else None,
)
db_session.add(input_prompt)
if commit:
db_session.commit()
return input_prompt
def insert_input_prompt(
prompt: str,
content: str,
is_public: bool,
user: User | None,
db_session: Session,
) -> InputPrompt:
input_prompt = InputPrompt(
prompt=prompt,
content=content,
active=True,
is_public=is_public or user is None,
user_id=user.id if user is not None else None,
)
db_session.add(input_prompt)
db_session.commit()
return input_prompt
def update_input_prompt(
user: User | None,
input_prompt_id: int,
prompt: str,
content: str,
active: bool,
db_session: Session,
) -> InputPrompt:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if not validate_user_prompt_authorization(user, input_prompt):
raise HTTPException(status_code=401, detail="You don't own this prompt")
input_prompt.prompt = prompt
input_prompt.content = content
input_prompt.active = active
db_session.commit()
return input_prompt
def validate_user_prompt_authorization(
user: User | None, input_prompt: InputPrompt
) -> bool:
prompt = InputPromptSnapshot.from_model(input_prompt=input_prompt)
if prompt.user_id is not None:
if user is None:
return False
user_details = UserInfo.from_model(user)
if str(user_details.id) != str(prompt.user_id):
return False
return True
def remove_public_input_prompt(input_prompt_id: int, db_session: Session) -> None:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if not input_prompt.is_public:
raise HTTPException(status_code=400, detail="This prompt is not public")
db_session.delete(input_prompt)
db_session.commit()
def remove_input_prompt(
user: User | None, input_prompt_id: int, db_session: Session
) -> None:
input_prompt = db_session.scalar(
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
)
if input_prompt is None:
raise ValueError(f"No input prompt with id {input_prompt_id}")
if input_prompt.is_public:
raise HTTPException(
status_code=400, detail="Cannot delete public prompts with this method"
)
if not validate_user_prompt_authorization(user, input_prompt):
raise HTTPException(status_code=401, detail="You do not own this prompt")
db_session.delete(input_prompt)
db_session.commit()
def fetch_input_prompt_by_id(
id: int, user_id: UUID | None, db_session: Session
) -> InputPrompt:
query = select(InputPrompt).where(InputPrompt.id == id)
if user_id:
query = query.where(
(InputPrompt.user_id == user_id) | (InputPrompt.user_id is None)
)
else:
# If no user_id is provided, only fetch prompts without a user_id (aka public)
query = query.where(InputPrompt.user_id == None) # noqa
result = db_session.scalar(query)
if result is None:
raise HTTPException(422, "No input prompt found")
return result
def fetch_public_input_prompts(
db_session: Session,
) -> list[InputPrompt]:
query = select(InputPrompt).where(InputPrompt.is_public)
return list(db_session.scalars(query).all())
def fetch_input_prompts_by_user(
db_session: Session,
user_id: UUID | None,
active: bool | None = None,
include_public: bool = False,
) -> list[InputPrompt]:
query = select(InputPrompt)
if user_id is not None:
if include_public:
query = query.where(
(InputPrompt.user_id == user_id) | InputPrompt.is_public
)
else:
query = query.where(InputPrompt.user_id == user_id)
elif include_public:
query = query.where(InputPrompt.is_public)
if active is not None:
query = query.where(InputPrompt.active == active)
return list(db_session.scalars(query).all())

View File

@@ -159,9 +159,6 @@ class User(SQLAlchemyBaseUserTableUUID, Base):
)
prompts: Mapped[list["Prompt"]] = relationship("Prompt", back_populates="user")
input_prompts: Mapped[list["InputPrompt"]] = relationship(
"InputPrompt", back_populates="user"
)
# Personas owned by this user
personas: Mapped[list["Persona"]] = relationship("Persona", back_populates="user")
@@ -178,31 +175,6 @@ class User(SQLAlchemyBaseUserTableUUID, Base):
)
class InputPrompt(Base):
__tablename__ = "inputprompt"
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
prompt: Mapped[str] = mapped_column(String)
content: Mapped[str] = mapped_column(String)
active: Mapped[bool] = mapped_column(Boolean)
user: Mapped[User | None] = relationship("User", back_populates="input_prompts")
is_public: Mapped[bool] = mapped_column(Boolean, nullable=False, default=True)
user_id: Mapped[UUID | None] = mapped_column(
ForeignKey("user.id", ondelete="CASCADE"), nullable=True
)
class InputPrompt__User(Base):
__tablename__ = "inputprompt__user"
input_prompt_id: Mapped[int] = mapped_column(
ForeignKey("inputprompt.id"), primary_key=True
)
user_id: Mapped[UUID | None] = mapped_column(
ForeignKey("inputprompt.id"), primary_key=True
)
class AccessToken(SQLAlchemyBaseAccessTokenTableUUID, Base):
pass
@@ -596,6 +568,25 @@ class Connector(Base):
list["DocumentByConnectorCredentialPair"]
] = relationship("DocumentByConnectorCredentialPair", back_populates="connector")
# synchronize this validation logic with RefreshFrequencySchema etc on front end
# until we have a centralized validation schema
# TODO(rkuo): experiment with SQLAlchemy validators rather than manual checks
# https://docs.sqlalchemy.org/en/20/orm/mapped_attributes.html
def validate_refresh_freq(self) -> None:
if self.refresh_freq is not None:
if self.refresh_freq < 60:
raise ValueError(
"refresh_freq must be greater than or equal to 60 seconds."
)
def validate_prune_freq(self) -> None:
if self.prune_freq is not None:
if self.prune_freq < 86400:
raise ValueError(
"prune_freq must be greater than or equal to 86400 seconds."
)
class Credential(Base):
__tablename__ = "credential"
@@ -1490,7 +1481,9 @@ class SlackChannelConfig(Base):
__tablename__ = "slack_channel_config"
id: Mapped[int] = mapped_column(primary_key=True)
slack_bot_id: Mapped[int] = mapped_column(ForeignKey("slack_bot.id"), nullable=True)
slack_bot_id: Mapped[int] = mapped_column(
ForeignKey("slack_bot.id"), nullable=False
)
persona_id: Mapped[int | None] = mapped_column(
ForeignKey("persona.id"), nullable=True
)

View File

@@ -453,9 +453,9 @@ def upsert_persona(
"""
if persona_id is not None:
persona = db_session.query(Persona).filter_by(id=persona_id).first()
existing_persona = db_session.query(Persona).filter_by(id=persona_id).first()
else:
persona = _get_persona_by_name(
existing_persona = _get_persona_by_name(
persona_name=name, user=user, db_session=db_session
)
@@ -481,62 +481,78 @@ def upsert_persona(
prompts = None
if prompt_ids is not None:
prompts = db_session.query(Prompt).filter(Prompt.id.in_(prompt_ids)).all()
if not prompts and prompt_ids:
raise ValueError("prompts not found")
if prompts is not None and len(prompts) == 0:
raise ValueError(
f"Invalid Persona config, no valid prompts "
f"specified. Specified IDs were: '{prompt_ids}'"
)
# ensure all specified tools are valid
if tools:
validate_persona_tools(tools)
if persona:
if existing_persona:
# Built-in personas can only be updated through YAML configuration.
# This ensures that core system personas are not modified unintentionally.
if persona.builtin_persona and not builtin_persona:
if existing_persona.builtin_persona and not builtin_persona:
raise ValueError("Cannot update builtin persona with non-builtin.")
# this checks if the user has permission to edit the persona
persona = fetch_persona_by_id(
db_session=db_session, persona_id=persona.id, user=user, get_editable=True
# will raise an Exception if the user does not have permission
existing_persona = fetch_persona_by_id(
db_session=db_session,
persona_id=existing_persona.id,
user=user,
get_editable=True,
)
# The following update excludes `default`, `built-in`, and display priority.
# Display priority is handled separately in the `display-priority` endpoint.
# `default` and `built-in` properties can only be set when creating a persona.
persona.name = name
persona.description = description
persona.num_chunks = num_chunks
persona.chunks_above = chunks_above
persona.chunks_below = chunks_below
persona.llm_relevance_filter = llm_relevance_filter
persona.llm_filter_extraction = llm_filter_extraction
persona.recency_bias = recency_bias
persona.llm_model_provider_override = llm_model_provider_override
persona.llm_model_version_override = llm_model_version_override
persona.starter_messages = starter_messages
persona.deleted = False # Un-delete if previously deleted
persona.is_public = is_public
persona.icon_color = icon_color
persona.icon_shape = icon_shape
existing_persona.name = name
existing_persona.description = description
existing_persona.num_chunks = num_chunks
existing_persona.chunks_above = chunks_above
existing_persona.chunks_below = chunks_below
existing_persona.llm_relevance_filter = llm_relevance_filter
existing_persona.llm_filter_extraction = llm_filter_extraction
existing_persona.recency_bias = recency_bias
existing_persona.llm_model_provider_override = llm_model_provider_override
existing_persona.llm_model_version_override = llm_model_version_override
existing_persona.starter_messages = starter_messages
existing_persona.deleted = False # Un-delete if previously deleted
existing_persona.is_public = is_public
existing_persona.icon_color = icon_color
existing_persona.icon_shape = icon_shape
if remove_image or uploaded_image_id:
persona.uploaded_image_id = uploaded_image_id
persona.is_visible = is_visible
persona.search_start_date = search_start_date
persona.category_id = category_id
existing_persona.uploaded_image_id = uploaded_image_id
existing_persona.is_visible = is_visible
existing_persona.search_start_date = search_start_date
existing_persona.category_id = category_id
# Do not delete any associations manually added unless
# a new updated list is provided
if document_sets is not None:
persona.document_sets.clear()
persona.document_sets = document_sets or []
existing_persona.document_sets.clear()
existing_persona.document_sets = document_sets or []
if prompts is not None:
persona.prompts.clear()
persona.prompts = prompts or []
existing_persona.prompts.clear()
existing_persona.prompts = prompts
if tools is not None:
persona.tools = tools or []
existing_persona.tools = tools or []
persona = existing_persona
else:
persona = Persona(
if not prompts:
raise ValueError(
"Invalid Persona config. "
"Must specify at least one prompt for a new persona."
)
new_persona = Persona(
id=persona_id,
user_id=user.id if user else None,
is_public=is_public,
@@ -549,7 +565,7 @@ def upsert_persona(
llm_filter_extraction=llm_filter_extraction,
recency_bias=recency_bias,
builtin_persona=builtin_persona,
prompts=prompts or [],
prompts=prompts,
document_sets=document_sets or [],
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
@@ -564,8 +580,8 @@ def upsert_persona(
is_default_persona=is_default_persona,
category_id=category_id,
)
db_session.add(persona)
db_session.add(new_persona)
persona = new_persona
if commit:
db_session.commit()
else:

View File

@@ -4,6 +4,8 @@ schema DANSWER_CHUNK_NAME {
# Not to be confused with the UUID generated for this chunk which is called documentid by default
field document_id type string {
indexing: summary | attribute
attribute: fast-search
rank: filter
}
field chunk_id type int {
indexing: summary | attribute

View File

@@ -6,6 +6,7 @@ import zipfile
from collections.abc import Callable
from collections.abc import Iterator
from email.parser import Parser as EmailParser
from io import BytesIO
from pathlib import Path
from typing import Any
from typing import Dict
@@ -15,13 +16,17 @@ import chardet
import docx # type: ignore
import openpyxl # type: ignore
import pptx # type: ignore
from docx import Document
from fastapi import UploadFile
from pypdf import PdfReader
from pypdf.errors import PdfStreamError
from danswer.configs.constants import DANSWER_METADATA_FILENAME
from danswer.configs.constants import FileOrigin
from danswer.file_processing.html_utils import parse_html_page_basic
from danswer.file_processing.unstructured import get_unstructured_api_key
from danswer.file_processing.unstructured import unstructured_to_text
from danswer.file_store.file_store import FileStore
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -65,7 +70,7 @@ def get_file_ext(file_path_or_name: str | Path) -> str:
return extension
def check_file_ext_is_valid(ext: str) -> bool:
def is_valid_file_ext(ext: str) -> bool:
return ext in VALID_FILE_EXTENSIONS
@@ -359,7 +364,7 @@ def extract_file_text(
elif file_name is not None:
final_extension = get_file_ext(file_name)
if check_file_ext_is_valid(final_extension):
if is_valid_file_ext(final_extension):
return extension_to_function.get(final_extension, file_io_to_text)(file)
# Either the file somehow has no name or the extension is not one that we recognize
@@ -375,3 +380,35 @@ def extract_file_text(
) from e
logger.warning(f"Failed to process file {file_name or 'Unknown'}: {str(e)}")
return ""
def convert_docx_to_txt(
file: UploadFile, file_store: FileStore, file_path: str
) -> None:
file.file.seek(0)
docx_content = file.file.read()
doc = Document(BytesIO(docx_content))
# Extract text from the document
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
# Join the extracted text
text_content = "\n".join(full_text)
txt_file_path = docx_to_txt_filename(file_path)
file_store.save_file(
file_name=txt_file_path,
content=BytesIO(text_content.encode("utf-8")),
display_name=file.filename,
file_origin=FileOrigin.CONNECTOR,
file_type="text/plain",
)
def docx_to_txt_filename(file_path: str) -> str:
"""
Convert a .docx file path to its corresponding .txt file path.
"""
return file_path.rsplit(".", 1)[0] + ".txt"

View File

@@ -1,6 +1,6 @@
import base64
from collections.abc import Callable
from io import BytesIO
from typing import Any
from typing import cast
from uuid import uuid4
@@ -13,8 +13,8 @@ from danswer.db.models import ChatMessage
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import FileDescriptor
from danswer.file_store.models import InMemoryChatFile
from danswer.utils.b64 import get_image_type
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
def load_chat_file(
@@ -75,11 +75,58 @@ def save_file_from_url(url: str, tenant_id: str) -> str:
return unique_id
def save_files_from_urls(urls: list[str]) -> list[str]:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
def save_file_from_base64(base64_string: str, tenant_id: str) -> str:
with get_session_with_tenant(tenant_id) as db_session:
unique_id = str(uuid4())
file_store = get_default_file_store(db_session)
file_store.save_file(
file_name=unique_id,
content=BytesIO(base64.b64decode(base64_string)),
display_name="GeneratedImage",
file_origin=FileOrigin.CHAT_IMAGE_GEN,
file_type=get_image_type(base64_string),
)
return unique_id
funcs: list[tuple[Callable[..., Any], tuple[Any, ...]]] = [
(save_file_from_url, (url, tenant_id)) for url in urls
def save_file(
tenant_id: str,
url: str | None = None,
base64_data: str | None = None,
) -> str:
"""Save a file from either a URL or base64 encoded string.
Args:
tenant_id: The tenant ID to save the file under
url: URL to download file from
base64_data: Base64 encoded file data
Returns:
The unique ID of the saved file
Raises:
ValueError: If neither url nor base64_data is provided, or if both are provided
"""
if url is not None and base64_data is not None:
raise ValueError("Cannot specify both url and base64_data")
if url is not None:
return save_file_from_url(url, tenant_id)
elif base64_data is not None:
return save_file_from_base64(base64_data, tenant_id)
else:
raise ValueError("Must specify either url or base64_data")
def save_files(urls: list[str], base64_files: list[str], tenant_id: str) -> list[str]:
# NOTE: be explicit about typing so that if we change things, we get notified
funcs: list[
tuple[
Callable[[str, str | None, str | None], str],
tuple[str, str | None, str | None],
]
] = [(save_file, (tenant_id, url, None)) for url in urls] + [
(save_file, (tenant_id, None, base64_file)) for base64_file in base64_files
]
# Must pass in tenant_id here, since this is called by multithreading
return run_functions_tuples_in_parallel(funcs)

View File

@@ -1,4 +1,5 @@
import traceback
from collections.abc import Callable
from functools import partial
from http import HTTPStatus
from typing import Protocol
@@ -12,6 +13,7 @@ from danswer.access.access import get_access_for_documents
from danswer.access.models import DocumentAccess
from danswer.configs.app_configs import ENABLE_MULTIPASS_INDEXING
from danswer.configs.app_configs import INDEXING_EXCEPTION_LIMIT
from danswer.configs.app_configs import MAX_DOCUMENT_CHARS
from danswer.configs.constants import DEFAULT_BOOST
from danswer.connectors.cross_connector_utils.miscellaneous_utils import (
get_experts_stores_representations,
@@ -202,40 +204,13 @@ def index_doc_batch_with_handler(
def index_doc_batch_prepare(
document_batch: list[Document],
documents: list[Document],
index_attempt_metadata: IndexAttemptMetadata,
db_session: Session,
ignore_time_skip: bool = False,
) -> DocumentBatchPrepareContext | None:
"""Sets up the documents in the relational DB (source of truth) for permissions, metadata, etc.
This preceeds indexing it into the actual document index."""
documents: list[Document] = []
for document in document_batch:
empty_contents = not any(section.text.strip() for section in document.sections)
if (
(not document.title or not document.title.strip())
and not document.semantic_identifier.strip()
and empty_contents
):
# Skip documents that have neither title nor content
# If the document doesn't have either, then there is no useful information in it
# This is again verified later in the pipeline after chunking but at that point there should
# already be no documents that are empty.
logger.warning(
f"Skipping document with ID {document.id} as it has neither title nor content."
)
continue
if document.title is not None and not document.title.strip() and empty_contents:
# The title is explicitly empty ("" and not None) and the document is empty
# so when building the chunk text representation, it will be empty and unuseable
logger.warning(
f"Skipping document with ID {document.id} as the chunks will be empty."
)
continue
documents.append(document)
# Create a trimmed list of docs that don't have a newer updated at
# Shortcuts the time-consuming flow on connector index retries
document_ids: list[str] = [document.id for document in documents]
@@ -282,17 +257,64 @@ def index_doc_batch_prepare(
)
def filter_documents(document_batch: list[Document]) -> list[Document]:
documents: list[Document] = []
for document in document_batch:
empty_contents = not any(section.text.strip() for section in document.sections)
if (
(not document.title or not document.title.strip())
and not document.semantic_identifier.strip()
and empty_contents
):
# Skip documents that have neither title nor content
# If the document doesn't have either, then there is no useful information in it
# This is again verified later in the pipeline after chunking but at that point there should
# already be no documents that are empty.
logger.warning(
f"Skipping document with ID {document.id} as it has neither title nor content."
)
continue
if document.title is not None and not document.title.strip() and empty_contents:
# The title is explicitly empty ("" and not None) and the document is empty
# so when building the chunk text representation, it will be empty and unuseable
logger.warning(
f"Skipping document with ID {document.id} as the chunks will be empty."
)
continue
section_chars = sum(len(section.text) for section in document.sections)
if (
MAX_DOCUMENT_CHARS
and len(document.title or document.semantic_identifier) + section_chars
> MAX_DOCUMENT_CHARS
):
# Skip documents that are too long, later on there are more memory intensive steps done on the text
# and the container will run out of memory and crash. Several other checks are included upstream but
# those are at the connector level so a catchall is still needed.
# Assumption here is that files that are that long, are generated files and not the type users
# generally care for.
logger.warning(
f"Skipping document with ID {document.id} as it is too long."
)
continue
documents.append(document)
return documents
@log_function_time(debug_only=True)
def index_doc_batch(
*,
document_batch: list[Document],
chunker: Chunker,
embedder: IndexingEmbedder,
document_index: DocumentIndex,
document_batch: list[Document],
index_attempt_metadata: IndexAttemptMetadata,
db_session: Session,
ignore_time_skip: bool = False,
tenant_id: str | None = None,
filter_fnc: Callable[[list[Document]], list[Document]] = filter_documents,
) -> tuple[int, int]:
"""Takes different pieces of the indexing pipeline and applies it to a batch of documents
Note that the documents should already be batched at this point so that it does not inflate the
@@ -309,8 +331,11 @@ def index_doc_batch(
is_public=False,
)
logger.debug("Filtering Documents")
filtered_documents = filter_fnc(document_batch)
ctx = index_doc_batch_prepare(
document_batch=document_batch,
documents=filtered_documents,
index_attempt_metadata=index_attempt_metadata,
ignore_time_skip=ignore_time_skip,
db_session=db_session,

View File

@@ -1,163 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import AnswerQuestionStreamReturn
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.override_models import PromptOverride
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
from danswer.db.models import Prompt
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)

View File

@@ -1,20 +0,0 @@
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()

View File

@@ -268,12 +268,16 @@ class DefaultMultiLLM(LLM):
# NOTE: have to set these as environment variables for Litellm since
# not all are able to passed in but they always support them set as env
# variables
# variables. We'll also try passing them in, since litellm just ignores
# addtional kwargs (and some kwargs MUST be passed in rather than set as
# env variables)
if custom_config:
for k, v in custom_config.items():
os.environ[k] = v
model_kwargs = model_kwargs or {}
if custom_config:
model_kwargs.update(custom_config)
if extra_headers:
model_kwargs.update({"extra_headers": extra_headers})
if extra_body:

View File

@@ -0,0 +1,59 @@
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)

View File

@@ -1,15 +1,11 @@
import copy
import io
import json
from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
from typing import cast
from typing import TYPE_CHECKING
from typing import Union
import litellm # type: ignore
import pandas as pd
import tiktoken
from langchain.prompts.base import StringPromptValue
from langchain.prompts.chat import ChatPromptValue
@@ -36,17 +32,15 @@ from danswer.configs.constants import MessageType
from danswer.configs.model_configs import GEN_AI_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_NUM_RESERVED_OUTPUT_TOKENS
from danswer.db.models import ChatMessage
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.prompts.constants import CODE_BLOCK_PAT
from danswer.utils.b64 import get_image_type
from danswer.utils.b64 import get_image_type_from_bytes
from danswer.utils.logger import setup_logger
from shared_configs.configs import LOG_LEVEL
if TYPE_CHECKING:
from danswer.llm.answering.models import PreviousMessage
logger = setup_logger()
@@ -104,92 +98,39 @@ def litellm_exception_to_error_msg(
return error_msg
def translate_danswer_msg_to_langchain(
msg: Union[ChatMessage, "PreviousMessage"],
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts
# Processes CSV files to show the first 5 rows and max_columns (default 40) columns
def _process_csv_file(file: InMemoryChatFile, max_columns: int = 40) -> str:
df = pd.read_csv(io.StringIO(file.content.decode("utf-8")))
csv_preview = df.head().to_string(max_cols=max_columns)
file_name_section = (
f"CSV FILE NAME: {file.filename}\n"
if file.filename
else "CSV FILE (NO NAME PROVIDED):\n"
)
return f"{file_name_section}{CODE_BLOCK_PAT.format(csv_preview)}\n\n\n"
def _build_content(
message: str,
files: list[InMemoryChatFile] | None = None,
) -> str:
"""Applies all non-image files."""
text_files = (
[file for file in files if file.file_type == ChatFileType.PLAIN_TEXT]
if files
else None
)
if not files:
return message
csv_files = (
[file for file in files if file.file_type == ChatFileType.CSV]
if files
else None
)
text_files = [
file
for file in files
if file.file_type in (ChatFileType.PLAIN_TEXT, ChatFileType.CSV)
]
if not text_files and not csv_files:
if not text_files:
return message
final_message_with_files = "FILES:\n\n"
for file in text_files or []:
for file in text_files:
file_content = file.content.decode("utf-8")
file_name_section = f"DOCUMENT: {file.filename}\n" if file.filename else ""
final_message_with_files += (
f"{file_name_section}{CODE_BLOCK_PAT.format(file_content.strip())}\n\n\n"
)
for file in csv_files or []:
final_message_with_files += _process_csv_file(file)
final_message_with_files += message
return final_message_with_files
return final_message_with_files + message
def build_content_with_imgs(
message: str,
files: list[InMemoryChatFile] | None = None,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
message_type: MessageType = MessageType.USER,
) -> str | list[str | dict[str, Any]]: # matching Langchain's BaseMessage content type
files = files or []
@@ -202,6 +143,7 @@ def build_content_with_imgs(
)
img_urls = img_urls or []
b64_imgs = b64_imgs or []
message_main_content = _build_content(message, files)
@@ -220,11 +162,22 @@ def build_content_with_imgs(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{file.to_base64()}",
"url": (
f"data:{get_image_type_from_bytes(file.content)};"
f"base64,{file.to_base64()}"
),
},
}
for file in files
if file.file_type == "image"
for file in img_files
]
+ [
{
"type": "image_url",
"image_url": {
"url": f"data:{get_image_type(b64_img)};base64,{b64_img}",
},
}
for b64_img in b64_imgs
]
+ [
{

View File

@@ -52,12 +52,9 @@ from danswer.server.documents.connector import router as connector_router
from danswer.server.documents.credential import router as credential_router
from danswer.server.documents.document import router as document_router
from danswer.server.documents.indexing import router as indexing_router
from danswer.server.documents.standard_oauth import router as oauth_router
from danswer.server.features.document_set.api import router as document_set_router
from danswer.server.features.folder.api import router as folder_router
from danswer.server.features.input_prompt.api import (
admin_router as admin_input_prompt_router,
)
from danswer.server.features.input_prompt.api import basic_router as input_prompt_router
from danswer.server.features.notifications.api import router as notification_router
from danswer.server.features.persona.api import admin_router as admin_persona_router
from danswer.server.features.persona.api import basic_router as persona_router
@@ -105,7 +102,6 @@ from shared_configs.configs import CORS_ALLOWED_ORIGIN
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import SENTRY_DSN
logger = setup_logger()
@@ -259,8 +255,6 @@ def get_application() -> FastAPI:
)
include_router_with_global_prefix_prepended(application, persona_router)
include_router_with_global_prefix_prepended(application, admin_persona_router)
include_router_with_global_prefix_prepended(application, input_prompt_router)
include_router_with_global_prefix_prepended(application, admin_input_prompt_router)
include_router_with_global_prefix_prepended(application, notification_router)
include_router_with_global_prefix_prepended(application, prompt_router)
include_router_with_global_prefix_prepended(application, tool_router)
@@ -283,6 +277,7 @@ def get_application() -> FastAPI:
)
include_router_with_global_prefix_prepended(application, long_term_logs_router)
include_router_with_global_prefix_prepended(application, api_key_router)
include_router_with_global_prefix_prepended(application, oauth_router)
if AUTH_TYPE == AuthType.DISABLED:
# Server logs this during auth setup verification step

View File

@@ -5,11 +5,11 @@ from typing import cast
from langchain_core.messages import BaseMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.configs.constants import DocumentSource
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Prompt
from danswer.llm.answering.models import PromptConfig
from danswer.prompts.chat_prompts import ADDITIONAL_INFO
from danswer.prompts.chat_prompts import CITATION_REMINDER
from danswer.prompts.constants import CODE_BLOCK_PAT

View File

@@ -3,14 +3,14 @@ from langchain.schema import HumanMessage
from langchain.schema import SystemMessage
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.utils import translate_danswer_msg_to_langchain
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.llm.utils import translate_danswer_msg_to_langchain
from danswer.prompts.chat_prompts import AGGRESSIVE_SEARCH_TEMPLATE
from danswer.prompts.chat_prompts import NO_SEARCH
from danswer.prompts.chat_prompts import REQUIRE_SEARCH_HINT

View File

@@ -4,10 +4,10 @@ from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.chat_configs import DISABLE_LLM_QUERY_REPHRASE
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import HISTORY_QUERY_REPHRASE

View File

@@ -1,24 +0,0 @@
input_prompts:
- id: -5
prompt: "Elaborate"
content: "Elaborate on the above, give me a more in depth explanation."
active: true
is_public: true
- id: -4
prompt: "Reword"
content: "Help me rewrite the following politely and concisely for professional communication:\n"
active: true
is_public: true
- id: -3
prompt: "Email"
content: "Write a professional email for me including a subject line, signature, etc. Template the parts that need editing with [ ]. The email should cover the following points:\n"
active: true
is_public: true
- id: -2
prompt: "Debug"
content: "Provide step-by-step troubleshooting instructions for the following issue:\n"
active: true
is_public: true

View File

@@ -196,7 +196,7 @@ def seed_initial_documents(
docs, chunks = _create_indexable_chunks(processed_docs, tenant_id)
index_doc_batch_prepare(
document_batch=docs,
documents=docs,
index_attempt_metadata=IndexAttemptMetadata(
connector_id=connector_id,
credential_id=PUBLIC_CREDENTIAL_ID,

View File

@@ -1,13 +1,11 @@
import yaml
from sqlalchemy.orm import Session
from danswer.configs.chat_configs import INPUT_PROMPT_YAML
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.context.search.enums import RecencyBiasSetting
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
from danswer.db.models import Persona
from danswer.db.models import Prompt as PromptDBModel
@@ -79,6 +77,9 @@ def load_personas_from_yaml(
if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]
if not prompt_ids:
raise ValueError("Invalid Persona config, no prompts exist")
p_id = persona.get("id")
tool_ids = []
@@ -123,45 +124,24 @@ def load_personas_from_yaml(
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
display_priority=(
existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority")
),
is_visible=(
existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible")
),
db_session=db_session,
)
def load_input_prompts_from_yaml(
db_session: Session, input_prompts_yaml: str = INPUT_PROMPT_YAML
) -> None:
with open(input_prompts_yaml, "r") as file:
data = yaml.safe_load(file)
all_input_prompts = data.get("input_prompts", [])
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
def load_chat_yamls(
db_session: Session,
prompt_yaml: str = PROMPTS_YAML,
personas_yaml: str = PERSONAS_YAML,
input_prompts_yaml: str = INPUT_PROMPT_YAML,
) -> None:
load_prompts_from_yaml(db_session, prompt_yaml)
load_personas_from_yaml(db_session, personas_yaml)
load_input_prompts_from_yaml(db_session, input_prompts_yaml)

View File

@@ -33,8 +33,6 @@ from danswer.db.engine import get_current_tenant_id
from danswer.db.engine import get_session
from danswer.db.enums import AccessType
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import cancel_indexing_attempts_for_ccpair
from danswer.db.index_attempt import cancel_indexing_attempts_past_model
from danswer.db.index_attempt import count_index_attempts_for_connector
from danswer.db.index_attempt import get_latest_index_attempt_for_cc_pair_id
from danswer.db.index_attempt import get_paginated_index_attempts_for_cc_pair_id
@@ -45,6 +43,7 @@ from danswer.db.search_settings import get_current_search_settings
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_pool import get_redis_client
from danswer.server.documents.models import CCPairFullInfo
from danswer.server.documents.models import CCPropertyUpdateRequest
from danswer.server.documents.models import CCStatusUpdateRequest
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
from danswer.server.documents.models import ConnectorCredentialPairMetadata
@@ -192,9 +191,6 @@ def update_cc_pair_status(
db_session
)
cancel_indexing_attempts_for_ccpair(cc_pair_id, db_session)
cancel_indexing_attempts_past_model(db_session)
redis_connector = RedisConnector(tenant_id, cc_pair_id)
try:
@@ -308,6 +304,46 @@ def update_cc_pair_name(
raise HTTPException(status_code=400, detail="Name must be unique")
@router.put("/admin/cc-pair/{cc_pair_id}/property")
def update_cc_pair_property(
cc_pair_id: int,
update_request: CCPropertyUpdateRequest, # in seconds
user: User | None = Depends(current_curator_or_admin_user),
db_session: Session = Depends(get_session),
) -> StatusResponse[int]:
cc_pair = get_connector_credential_pair_from_id(
cc_pair_id=cc_pair_id,
db_session=db_session,
user=user,
get_editable=True,
)
if not cc_pair:
raise HTTPException(
status_code=400, detail="CC Pair not found for current user's permissions"
)
# Can we centralize logic for updating connector properties
# so that we don't need to manually validate everywhere?
if update_request.name == "refresh_frequency":
cc_pair.connector.refresh_freq = int(update_request.value)
cc_pair.connector.validate_refresh_freq()
db_session.commit()
msg = "Refresh frequency updated successfully"
elif update_request.name == "pruning_frequency":
cc_pair.connector.prune_freq = int(update_request.value)
cc_pair.connector.validate_prune_freq()
db_session.commit()
msg = "Pruning frequency updated successfully"
else:
raise HTTPException(
status_code=400, detail=f"Property name {update_request.name} is not valid."
)
return StatusResponse(success=True, message=msg, data=cc_pair_id)
@router.get("/admin/cc-pair/{cc_pair_id}/last_pruned")
def get_cc_pair_last_pruned(
cc_pair_id: int,

View File

@@ -86,6 +86,7 @@ from danswer.db.models import SearchSettings
from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.file_processing.extract_file_text import convert_docx_to_txt
from danswer.file_store.file_store import get_default_file_store
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.redis.redis_connector import RedisConnector
@@ -393,6 +394,12 @@ def upload_files(
file_origin=FileOrigin.CONNECTOR,
file_type=file.content_type or "text/plain",
)
if file.content_type and file.content_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
convert_docx_to_txt(file, file_store, file_path)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return FileUploadResponse(file_paths=deduped_file_paths)
@@ -1010,37 +1017,18 @@ def get_connector_by_id(
class BasicCCPairInfo(BaseModel):
docs_indexed: int
has_successful_run: bool
source: DocumentSource
@router.get("/indexing-status")
@router.get("/connector-status")
def get_basic_connector_indexing_status(
_: User = Depends(current_user),
db_session: Session = Depends(get_session),
) -> list[BasicCCPairInfo]:
cc_pairs = get_connector_credential_pairs(db_session)
cc_pair_identifiers = [
ConnectorCredentialPairIdentifier(
connector_id=cc_pair.connector_id, credential_id=cc_pair.credential_id
)
for cc_pair in cc_pairs
]
document_count_info = get_document_counts_for_cc_pairs(
db_session=db_session,
cc_pair_identifiers=cc_pair_identifiers,
)
cc_pair_to_document_cnt = {
(connector_id, credential_id): cnt
for connector_id, credential_id, cnt in document_count_info
}
return [
BasicCCPairInfo(
docs_indexed=cc_pair_to_document_cnt.get(
(cc_pair.connector_id, cc_pair.credential_id)
)
or 0,
has_successful_run=cc_pair.last_successful_index_time is not None,
source=cc_pair.connector.source,
)

View File

@@ -181,7 +181,13 @@ def update_credential_data(
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
) -> CredentialBase:
credential = alter_credential(credential_id, credential_update, user, db_session)
credential = alter_credential(
credential_id,
credential_update.name,
credential_update.credential_json,
user,
db_session,
)
if credential is None:
raise HTTPException(

View File

@@ -364,6 +364,11 @@ class RunConnectorRequest(BaseModel):
from_beginning: bool = False
class CCPropertyUpdateRequest(BaseModel):
name: str
value: str
"""Connectors Models"""

View File

@@ -0,0 +1,142 @@
import uuid
from typing import Annotated
from typing import cast
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi import Query
from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.auth.users import current_user
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import OAuthConnector
from danswer.db.credentials import create_credential
from danswer.db.engine import get_current_tenant_id
from danswer.db.engine import get_session
from danswer.db.models import User
from danswer.redis.redis_pool import get_redis_client
from danswer.server.documents.models import CredentialBase
from danswer.utils.logger import setup_logger
from danswer.utils.subclasses import find_all_subclasses_in_dir
logger = setup_logger()
router = APIRouter(prefix="/connector/oauth")
_OAUTH_STATE_KEY_FMT = "oauth_state:{state}"
_OAUTH_STATE_EXPIRATION_SECONDS = 10 * 60 # 10 minutes
# Cache for OAuth connectors, populated at module load time
_OAUTH_CONNECTORS: dict[DocumentSource, type[OAuthConnector]] = {}
def _discover_oauth_connectors() -> dict[DocumentSource, type[OAuthConnector]]:
"""Walk through the connectors package to find all OAuthConnector implementations"""
global _OAUTH_CONNECTORS
if _OAUTH_CONNECTORS: # Return cached connectors if already discovered
return _OAUTH_CONNECTORS
oauth_connectors = find_all_subclasses_in_dir(
cast(type[OAuthConnector], OAuthConnector), "danswer.connectors"
)
_OAUTH_CONNECTORS = {cls.oauth_id(): cls for cls in oauth_connectors}
return _OAUTH_CONNECTORS
# Discover OAuth connectors at module load time
_discover_oauth_connectors()
class AuthorizeResponse(BaseModel):
redirect_url: str
@router.get("/authorize/{source}")
def oauth_authorize(
source: DocumentSource,
desired_return_url: Annotated[str | None, Query()] = None,
_: User = Depends(current_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> AuthorizeResponse:
"""Initiates the OAuth flow by redirecting to the provider's auth page"""
oauth_connectors = _discover_oauth_connectors()
if source not in oauth_connectors:
raise HTTPException(status_code=400, detail=f"Unknown OAuth source: {source}")
connector_cls = oauth_connectors[source]
base_url = WEB_DOMAIN
# store state in redis
if not desired_return_url:
desired_return_url = f"{base_url}/admin/connectors/{source}?step=0"
redis_client = get_redis_client(tenant_id=tenant_id)
state = str(uuid.uuid4())
redis_client.set(
_OAUTH_STATE_KEY_FMT.format(state=state),
desired_return_url,
ex=_OAUTH_STATE_EXPIRATION_SECONDS,
)
return AuthorizeResponse(
redirect_url=connector_cls.oauth_authorization_url(base_url, state)
)
class CallbackResponse(BaseModel):
redirect_url: str
@router.get("/callback/{source}")
def oauth_callback(
source: DocumentSource,
code: Annotated[str, Query()],
state: Annotated[str, Query()],
db_session: Session = Depends(get_session),
user: User = Depends(current_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> CallbackResponse:
"""Handles the OAuth callback and exchanges the code for tokens"""
oauth_connectors = _discover_oauth_connectors()
if source not in oauth_connectors:
raise HTTPException(status_code=400, detail=f"Unknown OAuth source: {source}")
connector_cls = oauth_connectors[source]
# get state from redis
redis_client = get_redis_client(tenant_id=tenant_id)
original_url_bytes = cast(
bytes, redis_client.get(_OAUTH_STATE_KEY_FMT.format(state=state))
)
if not original_url_bytes:
raise HTTPException(status_code=400, detail="Invalid OAuth state")
original_url = original_url_bytes.decode("utf-8")
token_info = connector_cls.oauth_code_to_token(code)
# Create a new credential with the token info
credential_data = CredentialBase(
credential_json=token_info,
admin_public=True, # Or based on some logic/parameter
source=source,
name=f"{source.title()} OAuth Credential",
)
credential = create_credential(
credential_data=credential_data,
user=user,
db_session=db_session,
)
return CallbackResponse(
redirect_url=(
f"{original_url}?credentialId={credential.id}"
if "?" not in original_url
else f"{original_url}&credentialId={credential.id}"
)
)

View File

@@ -1,134 +0,0 @@
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from sqlalchemy.orm import Session
from danswer.auth.users import current_admin_user
from danswer.auth.users import current_user
from danswer.db.engine import get_session
from danswer.db.input_prompt import fetch_input_prompt_by_id
from danswer.db.input_prompt import fetch_input_prompts_by_user
from danswer.db.input_prompt import fetch_public_input_prompts
from danswer.db.input_prompt import insert_input_prompt
from danswer.db.input_prompt import remove_input_prompt
from danswer.db.input_prompt import remove_public_input_prompt
from danswer.db.input_prompt import update_input_prompt
from danswer.db.models import User
from danswer.server.features.input_prompt.models import CreateInputPromptRequest
from danswer.server.features.input_prompt.models import InputPromptSnapshot
from danswer.server.features.input_prompt.models import UpdateInputPromptRequest
from danswer.utils.logger import setup_logger
logger = setup_logger()
basic_router = APIRouter(prefix="/input_prompt")
admin_router = APIRouter(prefix="/admin/input_prompt")
@basic_router.get("")
def list_input_prompts(
user: User | None = Depends(current_user),
include_public: bool = False,
db_session: Session = Depends(get_session),
) -> list[InputPromptSnapshot]:
user_prompts = fetch_input_prompts_by_user(
user_id=user.id if user is not None else None,
db_session=db_session,
include_public=include_public,
)
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]
@basic_router.get("/{input_prompt_id}")
def get_input_prompt(
input_prompt_id: int,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
input_prompt = fetch_input_prompt_by_id(
id=input_prompt_id,
user_id=user.id if user is not None else None,
db_session=db_session,
)
return InputPromptSnapshot.from_model(input_prompt=input_prompt)
@basic_router.post("")
def create_input_prompt(
create_input_prompt_request: CreateInputPromptRequest,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
input_prompt = insert_input_prompt(
prompt=create_input_prompt_request.prompt,
content=create_input_prompt_request.content,
is_public=create_input_prompt_request.is_public,
user=user,
db_session=db_session,
)
return InputPromptSnapshot.from_model(input_prompt)
@basic_router.patch("/{input_prompt_id}")
def patch_input_prompt(
input_prompt_id: int,
update_input_prompt_request: UpdateInputPromptRequest,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> InputPromptSnapshot:
try:
updated_input_prompt = update_input_prompt(
user=user,
input_prompt_id=input_prompt_id,
prompt=update_input_prompt_request.prompt,
content=update_input_prompt_request.content,
active=update_input_prompt_request.active,
db_session=db_session,
)
except ValueError as e:
error_msg = "Error occurred while updated input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
return InputPromptSnapshot.from_model(updated_input_prompt)
@basic_router.delete("/{input_prompt_id}")
def delete_input_prompt(
input_prompt_id: int,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> None:
try:
remove_input_prompt(user, input_prompt_id, db_session)
except ValueError as e:
error_msg = "Error occurred while deleting input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
@admin_router.delete("/{input_prompt_id}")
def delete_public_input_prompt(
input_prompt_id: int,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> None:
try:
remove_public_input_prompt(input_prompt_id, db_session)
except ValueError as e:
error_msg = "Error occurred while deleting input prompt"
logger.warn(f"{error_msg}. Stack trace: {e}")
raise HTTPException(status_code=404, detail=error_msg)
@admin_router.get("")
def list_public_input_prompts(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[InputPromptSnapshot]:
user_prompts = fetch_public_input_prompts(
db_session=db_session,
)
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]

View File

@@ -1,47 +0,0 @@
from uuid import UUID
from pydantic import BaseModel
from danswer.db.models import InputPrompt
from danswer.utils.logger import setup_logger
logger = setup_logger()
class CreateInputPromptRequest(BaseModel):
prompt: str
content: str
is_public: bool
class UpdateInputPromptRequest(BaseModel):
prompt: str
content: str
active: bool
class InputPromptResponse(BaseModel):
id: int
prompt: str
content: str
active: bool
class InputPromptSnapshot(BaseModel):
id: int
prompt: str
content: str
active: bool
user_id: UUID | None
is_public: bool
@classmethod
def from_model(cls, input_prompt: InputPrompt) -> "InputPromptSnapshot":
return InputPromptSnapshot(
id=input_prompt.id,
prompt=input_prompt.prompt,
content=input_prompt.content,
active=input_prompt.active,
user_id=input_prompt.user_id,
is_public=input_prompt.is_public,
)

View File

@@ -13,6 +13,7 @@ from danswer.auth.users import current_admin_user
from danswer.auth.users import current_curator_or_admin_user
from danswer.auth.users import current_limited_user
from danswer.auth.users import current_user
from danswer.chat.prompt_builder.utils import build_dummy_prompt
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import NotificationType
from danswer.db.engine import get_session
@@ -33,7 +34,6 @@ from danswer.db.persona import update_persona_shared_users
from danswer.db.persona import update_persona_visibility
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.llm.answering.prompts.utils import build_dummy_prompt
from danswer.server.features.persona.models import CreatePersonaRequest
from danswer.server.features.persona.models import ImageGenerationToolStatus
from danswer.server.features.persona.models import PersonaCategoryCreate

View File

@@ -266,5 +266,7 @@ class FullModelVersionResponse(BaseModel):
class AllUsersResponse(BaseModel):
accepted: list[FullUserSnapshot]
invited: list[InvitedUserSnapshot]
slack_users: list[FullUserSnapshot]
accepted_pages: int
invited_pages: int
slack_users_pages: int

View File

@@ -119,6 +119,7 @@ def set_user_role(
def list_all_users(
q: str | None = None,
accepted_page: int | None = None,
slack_users_page: int | None = None,
invited_page: int | None = None,
user: User | None = Depends(current_curator_or_admin_user),
db_session: Session = Depends(get_session),
@@ -131,7 +132,12 @@ def list_all_users(
for user in list_users(db_session, email_filter_string=q)
if not is_api_key_email_address(user.email)
]
accepted_emails = {user.email for user in users}
slack_users = [user for user in users if user.role == UserRole.SLACK_USER]
accepted_users = [user for user in users if user.role != UserRole.SLACK_USER]
accepted_emails = {user.email for user in accepted_users}
slack_users_emails = {user.email for user in slack_users}
invited_emails = get_invited_users()
if q:
invited_emails = [
@@ -139,10 +145,11 @@ def list_all_users(
]
accepted_count = len(accepted_emails)
slack_users_count = len(slack_users_emails)
invited_count = len(invited_emails)
# If any of q, accepted_page, or invited_page is None, return all users
if accepted_page is None or invited_page is None:
if accepted_page is None or invited_page is None or slack_users_page is None:
return AllUsersResponse(
accepted=[
FullUserSnapshot(
@@ -153,11 +160,23 @@ def list_all_users(
UserStatus.LIVE if user.is_active else UserStatus.DEACTIVATED
),
)
for user in users
for user in accepted_users
],
slack_users=[
FullUserSnapshot(
id=user.id,
email=user.email,
role=user.role,
status=(
UserStatus.LIVE if user.is_active else UserStatus.DEACTIVATED
),
)
for user in slack_users
],
invited=[InvitedUserSnapshot(email=email) for email in invited_emails],
accepted_pages=1,
invited_pages=1,
slack_users_pages=1,
)
# Otherwise, return paginated results
@@ -169,13 +188,27 @@ def list_all_users(
role=user.role,
status=UserStatus.LIVE if user.is_active else UserStatus.DEACTIVATED,
)
for user in users
for user in accepted_users
][accepted_page * USERS_PAGE_SIZE : (accepted_page + 1) * USERS_PAGE_SIZE],
slack_users=[
FullUserSnapshot(
id=user.id,
email=user.email,
role=user.role,
status=UserStatus.LIVE if user.is_active else UserStatus.DEACTIVATED,
)
for user in slack_users
][
slack_users_page
* USERS_PAGE_SIZE : (slack_users_page + 1)
* USERS_PAGE_SIZE
],
invited=[InvitedUserSnapshot(email=email) for email in invited_emails][
invited_page * USERS_PAGE_SIZE : (invited_page + 1) * USERS_PAGE_SIZE
],
accepted_pages=accepted_count // USERS_PAGE_SIZE + 1,
invited_pages=invited_count // USERS_PAGE_SIZE + 1,
slack_users_pages=slack_users_count // USERS_PAGE_SIZE + 1,
)
@@ -194,11 +227,11 @@ def bulk_invite_users(
)
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
normalized_emails = []
new_invited_emails = []
try:
for email in emails:
email_info = validate_email(email)
normalized_emails.append(email_info.normalized) # type: ignore
new_invited_emails.append(email_info.normalized)
except (EmailUndeliverableError, EmailNotValidError) as e:
raise HTTPException(
@@ -210,7 +243,7 @@ def bulk_invite_users(
try:
fetch_ee_implementation_or_noop(
"danswer.server.tenants.provisioning", "add_users_to_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
except IntegrityError as e:
if isinstance(e.orig, UniqueViolation):
@@ -224,7 +257,7 @@ def bulk_invite_users(
initial_invited_users = get_invited_users()
all_emails = list(set(normalized_emails) | set(initial_invited_users))
all_emails = list(set(new_invited_emails) | set(initial_invited_users))
number_of_invited_users = write_invited_users(all_emails)
if not MULTI_TENANT:
@@ -236,7 +269,7 @@ def bulk_invite_users(
)(CURRENT_TENANT_ID_CONTEXTVAR.get(), get_total_users_count(db_session))
if ENABLE_EMAIL_INVITES:
try:
for email in all_emails:
for email in new_invited_emails:
send_user_email_invite(email, current_user)
except Exception as e:
logger.error(f"Error sending email invite to invited users: {e}")
@@ -250,7 +283,7 @@ def bulk_invite_users(
write_invited_users(initial_invited_users) # Reset to original state
fetch_ee_implementation_or_noop(
"danswer.server.tenants.user_mapping", "remove_users_from_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
raise e

View File

@@ -1,6 +1,7 @@
import asyncio
import io
import json
import os
import uuid
from collections.abc import Callable
from collections.abc import Generator
@@ -23,6 +24,9 @@ from danswer.auth.users import current_user
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import extract_headers
from danswer.chat.process_message import stream_chat_message
from danswer.chat.prompt_builder.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import MessageType
@@ -47,13 +51,11 @@ from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.file_processing.extract_file_text import docx_to_txt_filename
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.factory import get_llms_for_persona
@@ -718,6 +720,18 @@ def fetch_chat_file(
if not file_record:
raise HTTPException(status_code=404, detail="File not found")
original_file_name = file_record.display_name
if file_record.file_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
# Check if a converted text file exists for .docx files
txt_file_name = docx_to_txt_filename(original_file_name)
txt_file_id = os.path.join(os.path.dirname(file_id), txt_file_name)
txt_file_record = file_store.read_file_record(txt_file_id)
if txt_file_record:
file_record = txt_file_record
file_id = txt_file_id
media_type = file_record.file_type
file_io = file_store.read_file(file_id, mode="b")

View File

@@ -1,5 +1,6 @@
from datetime import datetime
from typing import Any
from typing import TYPE_CHECKING
from uuid import UUID
from pydantic import BaseModel
@@ -22,6 +23,9 @@ from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
pass
class SourceTag(Tag):
source: DocumentSource

View File

@@ -4,6 +4,7 @@ from sqlalchemy.orm import Session
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import MANAGED_VESPA
from danswer.configs.app_configs import VESPA_NUM_ATTEMPTS_ON_STARTUP
from danswer.configs.constants import KV_REINDEX_KEY
from danswer.configs.constants import KV_SEARCH_SETTINGS
from danswer.configs.model_configs import FAST_GEN_AI_MODEL_VERSION
@@ -38,7 +39,6 @@ from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.natural_language_processing.search_nlp_models import warm_up_cross_encoder
from danswer.seeding.load_docs import seed_initial_documents
from danswer.seeding.load_yamls import load_chat_yamls
from danswer.server.manage.llm.models import LLMProviderUpsertRequest
from danswer.server.settings.store import load_settings
@@ -150,7 +150,7 @@ def setup_danswer(
# update multipass indexing setting based on GPU availability
update_default_multipass_indexing(db_session)
seed_initial_documents(db_session, tenant_id, cohere_enabled)
# seed_initial_documents(db_session, tenant_id, cohere_enabled)
def translate_saved_search_settings(db_session: Session) -> None:
@@ -221,13 +221,13 @@ def setup_vespa(
document_index: DocumentIndex,
index_setting: IndexingSetting,
secondary_index_setting: IndexingSetting | None,
num_attempts: int = VESPA_NUM_ATTEMPTS_ON_STARTUP,
) -> bool:
# Vespa startup is a bit slow, so give it a few seconds
WAIT_SECONDS = 5
VESPA_ATTEMPTS = 5
for x in range(VESPA_ATTEMPTS):
for x in range(num_attempts):
try:
logger.notice(f"Setting up Vespa (attempt {x+1}/{VESPA_ATTEMPTS})...")
logger.notice(f"Setting up Vespa (attempt {x+1}/{num_attempts})...")
document_index.ensure_indices_exist(
index_embedding_dim=index_setting.model_dim,
secondary_index_embedding_dim=secondary_index_setting.model_dim
@@ -244,7 +244,7 @@ def setup_vespa(
time.sleep(WAIT_SECONDS)
logger.error(
f"Vespa setup did not succeed. Attempt limit reached. ({VESPA_ATTEMPTS})"
f"Vespa setup did not succeed. Attempt limit reached. ({num_attempts})"
)
return False

View File

@@ -7,7 +7,7 @@ from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.tool_implementations.custom.custom_tool import (
CustomToolCallSummary,
)

View File

@@ -3,13 +3,13 @@ from collections.abc import Generator
from typing import Any
from typing import TYPE_CHECKING
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.utils.special_types import JSON_ro
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse

View File

@@ -5,6 +5,10 @@ from pydantic import BaseModel
from pydantic import Field
from sqlalchemy.orm import Session
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationConfig
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import PromptConfig
from danswer.configs.app_configs import AZURE_DALLE_API_BASE
from danswer.configs.app_configs import AZURE_DALLE_API_KEY
from danswer.configs.app_configs import AZURE_DALLE_API_VERSION
@@ -19,10 +23,6 @@ from danswer.db.llm import fetch_existing_llm_providers
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.interfaces import LLM
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer

View File

@@ -15,14 +15,14 @@ from langchain_core.messages import SystemMessage
from pydantic import BaseModel
from requests import JSONDecodeError
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import FileOrigin
from danswer.db.engine import get_session_with_default_tenant
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.base_tool import BaseTool
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import CHAT_SESSION_ID_PLACEHOLDER

View File

@@ -4,14 +4,16 @@ from enum import Enum
from typing import Any
from typing import cast
import requests
from litellm import image_generation # type: ignore
from pydantic import BaseModel
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.configs.tool_configs import IMAGE_GENERATION_OUTPUT_FORMAT
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
@@ -56,9 +58,18 @@ Follow Up Input:
""".strip()
class ImageFormat(str, Enum):
URL = "url"
BASE64 = "b64_json"
_DEFAULT_OUTPUT_FORMAT = ImageFormat(IMAGE_GENERATION_OUTPUT_FORMAT)
class ImageGenerationResponse(BaseModel):
revised_prompt: str
url: str
url: str | None
image_data: str | None
class ImageShape(str, Enum):
@@ -80,6 +91,7 @@ class ImageGenerationTool(Tool):
model: str = "dall-e-3",
num_imgs: int = 2,
additional_headers: dict[str, str] | None = None,
output_format: ImageFormat = _DEFAULT_OUTPUT_FORMAT,
) -> None:
self.api_key = api_key
self.api_base = api_base
@@ -89,6 +101,7 @@ class ImageGenerationTool(Tool):
self.num_imgs = num_imgs
self.additional_headers = additional_headers
self.output_format = output_format
@property
def name(self) -> str:
@@ -168,7 +181,7 @@ class ImageGenerationTool(Tool):
)
return build_content_with_imgs(
json.dumps(
message=json.dumps(
[
{
"revised_prompt": image_generation.revised_prompt,
@@ -177,13 +190,10 @@ class ImageGenerationTool(Tool):
for image_generation in image_generations
]
),
# NOTE: we can't pass in the image URLs here, since OpenAI doesn't allow
# Tool messages to contain images
# img_urls=[image_generation.url for image_generation in image_generations],
)
def _generate_image(
self, prompt: str, shape: ImageShape
self, prompt: str, shape: ImageShape, format: ImageFormat
) -> ImageGenerationResponse:
if shape == ImageShape.LANDSCAPE:
size = "1792x1024"
@@ -197,20 +207,32 @@ class ImageGenerationTool(Tool):
prompt=prompt,
model=self.model,
api_key=self.api_key,
# need to pass in None rather than empty str
api_base=self.api_base or None,
api_version=self.api_version or None,
size=size,
n=1,
response_format=format,
extra_headers=build_llm_extra_headers(self.additional_headers),
)
if format == ImageFormat.URL:
url = response.data[0]["url"]
image_data = None
else:
url = None
image_data = response.data[0]["b64_json"]
return ImageGenerationResponse(
revised_prompt=response.data[0]["revised_prompt"],
url=response.data[0]["url"],
url=url,
image_data=image_data,
)
except requests.RequestException as e:
logger.error(f"Error fetching or converting image: {e}")
raise ValueError("Failed to fetch or convert the generated image")
except Exception as e:
logger.debug(f"Error occured during image generation: {e}")
logger.debug(f"Error occurred during image generation: {e}")
error_message = str(e)
if "OpenAIException" in str(type(e)):
@@ -235,9 +257,8 @@ class ImageGenerationTool(Tool):
def run(self, **kwargs: str) -> Generator[ToolResponse, None, None]:
prompt = cast(str, kwargs["prompt"])
shape = ImageShape(kwargs.get("shape", ImageShape.SQUARE))
format = self.output_format
# dalle3 only supports 1 image at a time, which is why we have to
# parallelize this via threading
results = cast(
list[ImageGenerationResponse],
run_functions_tuples_in_parallel(
@@ -247,6 +268,7 @@ class ImageGenerationTool(Tool):
(
prompt,
shape,
format,
),
)
for _ in range(self.num_imgs)
@@ -288,11 +310,17 @@ class ImageGenerationTool(Tool):
if img_generation_response is None:
raise ValueError("No image generation response found")
img_urls = [img.url for img in img_generation_response]
img_urls = [img.url for img in img_generation_response if img.url is not None]
b64_imgs = [
img.image_data
for img in img_generation_response
if img.image_data is not None
]
prompt_builder.update_user_prompt(
build_image_generation_user_prompt(
query=prompt_builder.get_user_message_content(),
img_urls=img_urls,
b64_imgs=b64_imgs,
)
)

View File

@@ -11,11 +11,14 @@ Can you please summarize them in a sentence or two? Do NOT include image urls or
def build_image_generation_user_prompt(
query: str, img_urls: list[str] | None = None
query: str,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
) -> HumanMessage:
return HumanMessage(
content=build_content_with_imgs(
message=IMG_GENERATION_SUMMARY_PROMPT.format(query=query).strip(),
b64_imgs=b64_imgs,
img_urls=img_urls,
)
)

View File

@@ -7,15 +7,15 @@ from typing import cast
import httpx
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import DocumentSource
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.context.search.models import SearchDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import INTERNET_SEARCH_QUERY_REPHRASE
from danswer.prompts.constants import GENERAL_SEP_PAT

View File

@@ -7,10 +7,19 @@ from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import llm_doc_from_inference_section
from danswer.chat.llm_response_handler import LLMCall
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import DanswerContext
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prune_and_merge import prune_and_merge_sections
from danswer.chat.prune_and_merge import prune_sections
from danswer.configs.chat_configs import CONTEXT_CHUNKS_ABOVE
from danswer.configs.chat_configs import CONTEXT_CHUNKS_BELOW
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
@@ -25,17 +34,8 @@ from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.answering.prune_and_merge import prune_and_merge_sections
from danswer.llm.answering.prune_and_merge import prune_sections
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.secondary_llm_flows.choose_search import check_if_need_search
from danswer.secondary_llm_flows.query_expansion import history_based_query_rephrase
from danswer.tools.message import ToolCallSummary
@@ -48,6 +48,9 @@ from danswer.tools.tool_implementations.search_like_tool_utils import (
from danswer.tools.tool_implementations.search_like_tool_utils import (
FINAL_CONTEXT_DOCUMENTS_ID,
)
from danswer.tools.tool_implementations.search_like_tool_utils import (
ORIGINAL_CONTEXT_DOCUMENTS_ID,
)
from danswer.utils.logger import setup_logger
from danswer.utils.special_types import JSON_ro
@@ -391,15 +394,35 @@ class SearchTool(Tool):
"""Other utility functions"""
@classmethod
def get_search_result(cls, llm_call: LLMCall) -> list[LlmDoc] | None:
def get_search_result(
cls, llm_call: LLMCall
) -> tuple[list[LlmDoc], dict[str, int]] | None:
"""
Returns the final search results and a map of docs to their original search rank (which is what is displayed to user)
"""
if not llm_call.tool_call_info:
return None
final_search_results = []
doc_id_to_original_search_rank_map = {}
for yield_item in llm_call.tool_call_info:
if (
isinstance(yield_item, ToolResponse)
and yield_item.id == FINAL_CONTEXT_DOCUMENTS_ID
):
return cast(list[LlmDoc], yield_item.response)
final_search_results = cast(list[LlmDoc], yield_item.response)
elif (
isinstance(yield_item, ToolResponse)
and yield_item.id == ORIGINAL_CONTEXT_DOCUMENTS_ID
):
search_contexts = yield_item.response.contexts
original_doc_search_rank = 1
for idx, doc in enumerate(search_contexts):
if doc.document_id not in doc_id_to_original_search_rank_map:
doc_id_to_original_search_rank_map[
doc.document_id
] = original_doc_search_rank
original_doc_search_rank += 1
return None
return final_search_results, doc_id_to_original_search_rank_map

View File

@@ -2,19 +2,20 @@ from typing import cast
from langchain_core.messages import HumanMessage
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import (
build_citations_system_message,
)
from danswer.llm.answering.prompts.citations_prompt import build_citations_user_message
from danswer.llm.answering.prompts.quotes_prompt import build_quotes_user_message
from danswer.chat.prompt_builder.citations_prompt import build_citations_user_message
from danswer.chat.prompt_builder.quotes_prompt import build_quotes_user_message
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse
ORIGINAL_CONTEXT_DOCUMENTS_ID = "search_doc_content"
FINAL_CONTEXT_DOCUMENTS_ID = "final_context_documents"

View File

@@ -2,8 +2,8 @@ from collections.abc import Callable
from collections.abc import Generator
from typing import Any
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse

View File

@@ -3,8 +3,8 @@ from typing import Any
from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
from danswer.tools.tool import Tool

View File

@@ -0,0 +1,25 @@
import base64
def get_image_type_from_bytes(raw_b64_bytes: bytes) -> str:
magic_number = raw_b64_bytes[:4]
if magic_number.startswith(b"\x89PNG"):
mime_type = "image/png"
elif magic_number.startswith(b"\xFF\xD8"):
mime_type = "image/jpeg"
elif magic_number.startswith(b"GIF8"):
mime_type = "image/gif"
elif magic_number.startswith(b"RIFF") and raw_b64_bytes[8:12] == b"WEBP":
mime_type = "image/webp"
else:
raise ValueError(
"Unsupported image format - only PNG, JPEG, " "GIF, and WEBP are supported."
)
return mime_type
def get_image_type(raw_b64_string: str) -> str:
binary_data = base64.b64decode(raw_b64_string)
return get_image_type_from_bytes(binary_data)

View File

@@ -0,0 +1,77 @@
from __future__ import annotations
import importlib
import os
import pkgutil
import sys
from types import ModuleType
from typing import List
from typing import Type
from typing import TypeVar
T = TypeVar("T")
def import_all_modules_from_dir(dir_path: str) -> List[ModuleType]:
"""
Imports all modules found in the given directory and its subdirectories,
returning a list of imported module objects.
"""
dir_path = os.path.abspath(dir_path)
if dir_path not in sys.path:
sys.path.insert(0, dir_path)
imported_modules: List[ModuleType] = []
for _, package_name, _ in pkgutil.walk_packages([dir_path]):
try:
module = importlib.import_module(package_name)
imported_modules.append(module)
except Exception as e:
# Handle or log exceptions as needed
print(f"Could not import {package_name}: {e}")
return imported_modules
def all_subclasses(cls: Type[T]) -> List[Type[T]]:
"""
Recursively find all subclasses of the given class.
"""
direct_subs = cls.__subclasses__()
result: List[Type[T]] = []
for subclass in direct_subs:
result.append(subclass)
# Extend the result by recursively calling all_subclasses
result.extend(all_subclasses(subclass))
return result
def find_all_subclasses_in_dir(parent_class: Type[T], directory: str) -> List[Type[T]]:
"""
Imports all modules from the given directory (and subdirectories),
then returns all classes that are subclasses of parent_class.
:param parent_class: The class to find subclasses of.
:param directory: The directory to search for subclasses.
:return: A list of all subclasses of parent_class found in the directory.
"""
# First import all modules to ensure classes are loaded into memory
import_all_modules_from_dir(directory)
# Gather all subclasses of the given parent class
subclasses = all_subclasses(parent_class)
return subclasses
# Example usage:
if __name__ == "__main__":
class Animal:
pass
# Suppose "mymodules" contains files that define classes inheriting from Animal
found_subclasses = find_all_subclasses_in_dir(Animal, "mymodules")
for sc in found_subclasses:
print("Found subclass:", sc.__name__)

View File

@@ -11,6 +11,14 @@ SAML_CONF_DIR = os.environ.get("SAML_CONF_DIR") or "/app/ee/danswer/configs/saml
#####
# Auto Permission Sync
#####
# In seconds, default is 5 minutes
CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY = int(
os.environ.get("CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY") or 5 * 60
)
# In seconds, default is 5 minutes
CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY = int(
os.environ.get("CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY") or 5 * 60
)
NUM_PERMISSION_WORKERS = int(os.environ.get("NUM_PERMISSION_WORKERS") or 2)
@@ -28,3 +36,6 @@ JWT_PUBLIC_KEY_URL: str | None = os.getenv("JWT_PUBLIC_KEY_URL", None)
# Super Users
SUPER_USERS = json.loads(os.environ.get("SUPER_USERS", '["pablo@danswer.ai"]'))
SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
OAUTH_SLACK_CLIENT_ID = os.environ.get("OAUTH_SLACK_CLIENT_ID", "")
OAUTH_SLACK_CLIENT_SECRET = os.environ.get("OAUTH_SLACK_CLIENT_SECRET", "")

View File

@@ -170,3 +170,67 @@ def fetch_danswerbot_analytics(
)
return results
def fetch_persona_message_analytics(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily message counts for a specific persona within the given time range."""
query = (
select(
func.count(ChatMessage.id),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]
def fetch_persona_unique_users(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily unique user counts for a specific persona within the given time range."""
query = (
select(
func.count(func.distinct(ChatSession.user_id)),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]

View File

@@ -10,6 +10,9 @@ from danswer.access.utils import prefix_group_w_source
from danswer.configs.constants import DocumentSource
from danswer.db.models import User__ExternalUserGroupId
from danswer.db.users import batch_add_ext_perm_user_if_not_exists
from danswer.utils.logger import setup_logger
logger = setup_logger()
class ExternalUserGroup(BaseModel):
@@ -73,7 +76,13 @@ def replace_user__ext_group_for_cc_pair(
new_external_permissions = []
for external_group in group_defs:
for user_email in external_group.user_emails:
user_id = email_id_map[user_email]
user_id = email_id_map.get(user_email.lower())
if user_id is None:
logger.warning(
f"User in group {external_group.id}"
f" with email {user_email} not found"
)
continue
new_external_permissions.append(
User__ExternalUserGroupId(
user_id=user_id,

View File

@@ -195,6 +195,7 @@ def _fetch_all_page_restrictions_for_space(
confluence_client: OnyxConfluence,
slim_docs: list[SlimDocument],
space_permissions_by_space_key: dict[str, ExternalAccess],
is_cloud: bool,
) -> list[DocExternalAccess]:
"""
For all pages, if a page has restrictions, then use those restrictions.
@@ -222,27 +223,50 @@ def _fetch_all_page_restrictions_for_space(
continue
space_key = slim_doc.perm_sync_data.get("space_key")
if space_permissions := space_permissions_by_space_key.get(space_key):
# If there are no restrictions, then use the space's restrictions
document_restrictions.append(
DocExternalAccess(
doc_id=slim_doc.id,
external_access=space_permissions,
)
if not (space_permissions := space_permissions_by_space_key.get(space_key)):
logger.debug(
f"Individually fetching space permissions for space {space_key}"
)
if (
not space_permissions.is_public
and not space_permissions.external_user_emails
and not space_permissions.external_user_group_ids
):
try:
# If the space permissions are not in the cache, then fetch them
if is_cloud:
retrieved_space_permissions = _get_cloud_space_permissions(
confluence_client=confluence_client, space_key=space_key
)
else:
retrieved_space_permissions = _get_server_space_permissions(
confluence_client=confluence_client, space_key=space_key
)
space_permissions_by_space_key[space_key] = retrieved_space_permissions
space_permissions = retrieved_space_permissions
except Exception as e:
logger.warning(
f"Permissions are empty for document: {slim_doc.id}\n"
"This means space permissions are may be wrong for"
f" Space key: {space_key}"
f"Error fetching space permissions for space {space_key}: {e}"
)
if not space_permissions:
logger.warning(
f"No permissions found for document {slim_doc.id} in space {space_key}"
)
continue
logger.warning(f"No permissions found for document {slim_doc.id}")
# If there are no restrictions, then use the space's restrictions
document_restrictions.append(
DocExternalAccess(
doc_id=slim_doc.id,
external_access=space_permissions,
)
)
if (
not space_permissions.is_public
and not space_permissions.external_user_emails
and not space_permissions.external_user_group_ids
):
logger.warning(
f"Permissions are empty for document: {slim_doc.id}\n"
"This means space permissions are may be wrong for"
f" Space key: {space_key}"
)
logger.debug("Finished fetching all page restrictions for space")
return document_restrictions
@@ -281,4 +305,5 @@ def confluence_doc_sync(
confluence_client=confluence_connector.confluence_client,
slim_docs=slim_docs,
space_permissions_by_space_key=space_permissions_by_space_key,
is_cloud=is_cloud,
)

View File

@@ -3,6 +3,8 @@ from collections.abc import Callable
from danswer.access.models import DocExternalAccess
from danswer.configs.constants import DocumentSource
from danswer.db.models import ConnectorCredentialPair
from ee.danswer.configs.app_configs import CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY
from ee.danswer.configs.app_configs import CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY
from ee.danswer.db.external_perm import ExternalUserGroup
from ee.danswer.external_permissions.confluence.doc_sync import confluence_doc_sync
from ee.danswer.external_permissions.confluence.group_sync import confluence_group_sync
@@ -56,7 +58,7 @@ GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC: set[DocumentSource] = {
# If nothing is specified here, we run the doc_sync every time the celery beat runs
DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all doc permissions every 5 minutes
DocumentSource.CONFLUENCE: 5 * 60,
DocumentSource.CONFLUENCE: CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY,
DocumentSource.SLACK: 5 * 60,
}
@@ -64,7 +66,7 @@ DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
EXTERNAL_GROUP_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all group permissions every 30 minutes
DocumentSource.GOOGLE_DRIVE: 5 * 60,
DocumentSource.CONFLUENCE: 30 * 60,
DocumentSource.CONFLUENCE: CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY,
}

View File

@@ -26,6 +26,7 @@ from ee.danswer.server.enterprise_settings.api import (
)
from ee.danswer.server.manage.standard_answer import router as standard_answer_router
from ee.danswer.server.middleware.tenant_tracking import add_tenant_id_middleware
from ee.danswer.server.oauth import router as oauth_router
from ee.danswer.server.query_and_chat.chat_backend import (
router as chat_router,
)
@@ -119,6 +120,8 @@ def get_application() -> FastAPI:
include_router_with_global_prefix_prepended(application, query_router)
include_router_with_global_prefix_prepended(application, chat_router)
include_router_with_global_prefix_prepended(application, standard_answer_router)
include_router_with_global_prefix_prepended(application, oauth_router)
# Enterprise-only global settings
include_router_with_global_prefix_prepended(
application, enterprise_settings_admin_router

View File

@@ -11,11 +11,16 @@ from danswer.db.engine import get_session
from danswer.db.models import User
from ee.danswer.db.analytics import fetch_danswerbot_analytics
from ee.danswer.db.analytics import fetch_per_user_query_analytics
from ee.danswer.db.analytics import fetch_persona_message_analytics
from ee.danswer.db.analytics import fetch_persona_unique_users
from ee.danswer.db.analytics import fetch_query_analytics
router = APIRouter(prefix="/analytics")
_DEFAULT_LOOKBACK_DAYS = 30
class QueryAnalyticsResponse(BaseModel):
total_queries: int
total_likes: int
@@ -33,7 +38,7 @@ def get_query_analytics(
daily_query_usage_info = fetch_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -64,7 +69,7 @@ def get_user_analytics(
daily_query_usage_info_per_user = fetch_per_user_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -98,7 +103,7 @@ def get_danswerbot_analytics(
daily_danswerbot_info = fetch_danswerbot_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -115,3 +120,74 @@ def get_danswerbot_analytics(
]
return resolution_results
class PersonaMessageAnalyticsResponse(BaseModel):
total_messages: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/messages")
def get_persona_messages(
persona_id: int,
start: datetime.datetime | None = None,
end: datetime.datetime | None = None,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaMessageAnalyticsResponse]:
"""Fetch daily message counts for a single persona within the given time range."""
start = start or (
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
)
end = end or datetime.datetime.utcnow()
persona_message_counts = []
for count, date in fetch_persona_message_analytics(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
):
persona_message_counts.append(
PersonaMessageAnalyticsResponse(
total_messages=count,
date=date,
persona_id=persona_id,
)
)
return persona_message_counts
class PersonaUniqueUsersResponse(BaseModel):
unique_users: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/unique-users")
def get_persona_unique_users(
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaUniqueUsersResponse]:
"""Get unique users per day for a single persona."""
unique_user_counts = []
daily_counts = fetch_persona_unique_users(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
)
for count, date in daily_counts:
unique_user_counts.append(
PersonaUniqueUsersResponse(
unique_users=count,
date=date,
persona_id=persona_id,
)
)
return unique_user_counts

Some files were not shown because too many files have changed in this diff Show More