Compare commits

..

10 Commits

Author SHA1 Message Date
joachim-danswer
1c23cf574c Nits 2025-02-10 17:13:16 -08:00
joachim-danswer
0ccf78ac52 reused error strings & BaseMessage_Content 2025-02-10 16:57:25 -08:00
joachim-danswer
02b4b4bf0d remove execs 2025-02-10 16:21:59 -08:00
joachim-danswer
dade11a2e6 EL - OVERRIDE 2025-02-10 14:41:55 -08:00
joachim-danswer
188a5f0d62 EL comments
- overwrite -> override
 - enums for error types
 - some nits
2025-02-10 14:33:58 -08:00
joachim-danswer
89c0b1ad37 YS comments 2025-02-10 13:29:12 -08:00
pablodanswer
8b20fd31b6 quick update 2025-02-08 17:14:01 -08:00
pablodanswer
6a73245986 quick ux update 2025-02-07 23:40:26 -08:00
joachim-danswer
dd73fdcd08 timeout prep backend 2025-02-07 18:21:35 -08:00
joachim-danswer
768456609a Removal of defaults from various input states + removal of bas 2025-02-07 18:19:18 -08:00
281 changed files with 3263 additions and 3833 deletions

View File

@@ -133,4 +133,3 @@ Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md
## ⭐Star History
[![Star History Chart](https://api.star-history.com/svg?repos=onyx-dot-app/onyx&type=Date)](https://star-history.com/#onyx-dot-app/onyx&Date)

View File

@@ -365,9 +365,7 @@ def confluence_doc_sync(
slim_docs = []
logger.debug("Fetching all slim documents from confluence")
for doc_batch in confluence_connector.retrieve_all_slim_documents(
callback=callback
):
for doc_batch in confluence_connector.retrieve_all_slim_documents():
logger.debug(f"Got {len(doc_batch)} slim documents from confluence")
if callback:
if callback.should_stop():

View File

@@ -15,7 +15,6 @@ logger = setup_logger()
def _get_slim_doc_generator(
cc_pair: ConnectorCredentialPair,
gmail_connector: GmailConnector,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
current_time = datetime.now(timezone.utc)
start_time = (
@@ -25,9 +24,7 @@ def _get_slim_doc_generator(
)
return gmail_connector.retrieve_all_slim_documents(
start=start_time,
end=current_time.timestamp(),
callback=callback,
start=start_time, end=current_time.timestamp()
)
@@ -43,9 +40,7 @@ def gmail_doc_sync(
gmail_connector = GmailConnector(**cc_pair.connector.connector_specific_config)
gmail_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = _get_slim_doc_generator(
cc_pair, gmail_connector, callback=callback
)
slim_doc_generator = _get_slim_doc_generator(cc_pair, gmail_connector)
document_external_access: list[DocExternalAccess] = []
for slim_doc_batch in slim_doc_generator:

View File

@@ -21,7 +21,6 @@ _PERMISSION_ID_PERMISSION_MAP: dict[str, dict[str, Any]] = {}
def _get_slim_doc_generator(
cc_pair: ConnectorCredentialPair,
google_drive_connector: GoogleDriveConnector,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
current_time = datetime.now(timezone.utc)
start_time = (
@@ -31,9 +30,7 @@ def _get_slim_doc_generator(
)
return google_drive_connector.retrieve_all_slim_documents(
start=start_time,
end=current_time.timestamp(),
callback=callback,
start=start_time, end=current_time.timestamp()
)

View File

@@ -20,11 +20,19 @@ def _get_slack_document_ids_and_channels(
slack_connector = SlackPollConnector(**cc_pair.connector.connector_specific_config)
slack_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = slack_connector.retrieve_all_slim_documents(callback=callback)
slim_doc_generator = slack_connector.retrieve_all_slim_documents()
channel_doc_map: dict[str, list[str]] = {}
for doc_metadata_batch in slim_doc_generator:
for doc_metadata in doc_metadata_batch:
if callback:
if callback.should_stop():
raise RuntimeError(
"_get_slack_document_ids_and_channels: Stop signal detected"
)
callback.progress("_get_slack_document_ids_and_channels", 1)
if doc_metadata.perm_sync_data is None:
continue
channel_id = doc_metadata.perm_sync_data["channel_id"]
@@ -32,14 +40,6 @@ def _get_slack_document_ids_and_channels(
channel_doc_map[channel_id] = []
channel_doc_map[channel_id].append(doc_metadata.id)
if callback:
if callback.should_stop():
raise RuntimeError(
"_get_slack_document_ids_and_channels: Stop signal detected"
)
callback.progress("_get_slack_document_ids_and_channels", 1)
return channel_doc_map

View File

@@ -9,7 +9,6 @@ class CoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
@@ -18,4 +17,4 @@ class SubgraphCoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add]
log_messages: Annotated[list[str], add] = []

View File

@@ -1,8 +1,8 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
@@ -12,12 +12,39 @@ from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer
SubQuestionAnswerCheckUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
)
def check_sub_answer(
@@ -53,14 +80,46 @@ def check_sub_answer(
graph_config = cast(GraphConfig, config["metadata"]["config"])
fast_llm = graph_config.tooling.fast_llm
response = list(
fast_llm.stream(
agent_error: AgentErrorLoggingFormat | None = None
response: BaseMessage | None = None
try:
response = fast_llm.invoke(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK,
)
)
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
answer_quality = "yes" in quality_str.lower()
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - check sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - check sub answer")
if agent_error:
answer_quality = True
log_result = agent_error.error_result
else:
if response:
quality_str: str = cast(str, response.content)
answer_quality = binary_string_test(
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
)
else:
answer_quality = True
quality_str = "yes - because LLM error"
log_result = f"Answer quality: {quality_str}"
return SubQuestionAnswerCheckUpdate(
answer_quality=answer_quality,
@@ -69,7 +128,7 @@ def check_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="check sub answer",
node_start_time=node_start_time,
result=f"Answer quality: {quality_str}",
result=log_result,
)
],
)

View File

@@ -16,6 +16,20 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
LLM_ANSWER_ERROR_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -30,11 +44,20 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
)
def generate_sub_answer(
state: AnswerQuestionState,
@@ -57,6 +80,8 @@ def generate_sub_answer(
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
cited_documents: list = []
log_results = "No documents retrieved"
write_custom_event(
"sub_answers",
AgentAnswerPiece(
@@ -79,41 +104,67 @@ def generate_sub_answer(
response: list[str | list[str | dict[str, Any]]] = []
dispatch_timings: list[float] = []
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
agent_error: AgentErrorLoggingFormat | None = None
try:
for message in fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
logger.debug(
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate sub answer")
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
if agent_error:
answer_str = LLM_ANSWER_ERROR_MESSAGE
cited_documents = []
log_results = (
agent_error.error_result
or "Sub-answer generation failed due to LLM error"
)
else:
answer_str = merge_message_runs(response, chunk_separator="")[0].content
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
log_results = None
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -131,7 +182,7 @@ def generate_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="generate sub answer",
node_start_time=node_start_time,
result="",
result=log_results or "",
)
],
)

View File

@@ -42,10 +42,8 @@ class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
class SubQuestionAnsweringInput(SubgraphCoreState):
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
question: str
question_id: str
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.

View File

@@ -26,7 +26,18 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
@@ -42,12 +53,16 @@ from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_ci
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.context.search.models import InferenceSection
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.context.search.models import InferenceSection
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
@@ -57,6 +72,12 @@ from onyx.prompts.agent_search import (
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The initial answer could not be generated.",
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
general_error="General LLM Error. The initial answer could not be generated.",
)
def generate_initial_answer(
state: SubQuestionRetrievalState,
@@ -224,30 +245,82 @@ def generate_initial_answer(
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
agent_error: AgentErrorLoggingFormat | None = None
try:
for message in model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate initial answer")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate initial answer")
if agent_error:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
return InitialAnswerUpdate(
initial_answer=None,
error=AgentErrorLoggingFormat(
error_message=agent_error.error_message or "An LLM error occurred",
error_type=agent_error.error_type,
error_result=agent_error.error_result,
),
initial_agent_stats=None,
generated_sub_questions=sub_questions,
agent_base_end_time=None,
agent_base_metrics=None,
log_messages=[
get_langgraph_node_log_string(
graph_component="initial - generate initial answer",
node_name="generate initial answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"

View File

@@ -25,7 +25,7 @@ def validate_initial_answer(
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True
verdict = True # not actually required as already streamed out. Refinement will do similar
return InitialAnswerQualityUpdate(
initial_answer_quality_eval=verdict,

View File

@@ -23,6 +23,18 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -33,6 +45,11 @@ from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
)
@@ -43,6 +60,12 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. Sub-questions could not be generated.",
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
general_error="General LLM Error. Sub-questions could not be generated.",
)
def decompose_orig_question(
state: SubQuestionRetrievalState,
@@ -112,11 +135,35 @@ def decompose_orig_question(
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
agent_error: AgentErrorLoggingFormat | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = dispatch_separated(
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION,
),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
except LLMTimeoutError as e:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - decompose orig question")
raise e # fail loudly on this critical step
except LLMRateLimitError as e:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - decompose orig question")
raise e
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -125,19 +172,19 @@ def decompose_orig_question(
)
write_custom_event("stream_finished", stop_event, writer)
deomposition_response = merge_content(*streamed_tokens)
if agent_error:
initial_sub_questions: list[str] = []
log_result = agent_error.error_result
else:
deomposition_response = merge_content(*streamed_tokens)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
list_of_subqs = cast(str, deomposition_response).split("\n")
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
return InitialQuestionDecompositionUpdate(
initial_sub_questions=decomp_list,
initial_sub_questions=initial_sub_questions,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
@@ -151,7 +198,7 @@ def decompose_orig_question(
graph_component="initial - generate sub answers",
node_name="decompose original question",
node_start_time=node_start_time,
result=f"decomposed original question into {len(decomp_list)} subquestions",
result=log_result,
)
],
)

View File

@@ -252,9 +252,7 @@ if __name__ == "__main__":
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(
base_question=graph_config.inputs.search_request.query, log_messages=[]
)
inputs = MainInput(log_messages=[])
for thing in compiled_graph.stream(
input=inputs,

View File

@@ -1,6 +1,7 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from langgraph.types import StreamWriter
@@ -10,14 +11,37 @@ from onyx.agents.agent_search.deep_search.main.states import (
)
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import RefinedAnswerImprovement
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out, and the answers could not be compared.",
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
general_error="The LLM encountered an error, and the answers could not be compared.",
)
def compare_answers(
@@ -40,15 +64,46 @@ def compare_answers(
msg = [HumanMessage(content=compare_answers_prompt)]
agent_error: AgentErrorLoggingFormat | None = None
# Get the rewritten queries in a defined format
model = graph_config.tooling.fast_llm
resp: BaseMessage | None = None
refined_answer_improvement: bool | None = None
# no need to stream this
resp = model.invoke(msg)
try:
resp = model.invoke(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
)
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - compare answers")
# continue as True in this support step
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - compare answers")
# continue as True in this support step
if agent_error or resp is None:
refined_answer_improvement = True
if agent_error:
log_result = agent_error.error_result
else:
log_result = "An answer could not be generated."
else:
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
log_result = f"Answer comparison: {refined_answer_improvement}"
write_custom_event(
"refined_answer_improvement",
@@ -65,7 +120,7 @@ def compare_answers(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=f"Answer comparison: {refined_answer_improvement}",
result=log_result,
)
],
)

View File

@@ -21,6 +21,18 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
format_entity_term_extraction,
@@ -30,10 +42,25 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
)
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
)
from onyx.tools.models import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The sub-questions could not be generated.",
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
general_error="The LLM encountered an error. The sub-questions could not be generated.",
)
def create_refined_sub_questions(
@@ -96,29 +123,65 @@ def create_refined_sub_questions(
# Grader
model = graph_config.tooling.fast_llm
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
response = merge_content(*streamed_tokens)
agent_error: AgentErrorLoggingFormat | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = dispatch_separated(
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION,
),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - create refined sub questions")
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - create refined sub questions")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
if agent_error:
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
log_result = agent_error.error_result
write_custom_event(
"refined_sub_question_creation_error",
StreamingError(
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
),
writer,
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
else:
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
return RefinedQuestionDecompositionUpdate(
refined_sub_questions=refined_sub_question_dict,
@@ -128,7 +191,7 @@ def create_refined_sub_questions(
graph_component="main",
node_name="create refined sub questions",
node_start_time=node_start_time,
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
result=log_result,
)
],
)

View File

@@ -26,6 +26,19 @@ def decide_refinement_need(
decision = True # TODO: just for current testing purposes
if state.error:
return RequireRefinemenEvalUpdate(
require_refined_answer_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="decide refinement need",
node_start_time=node_start_time,
result="Timeout Error",
)
],
)
log_messages = [
get_langgraph_node_log_string(
graph_component="main",

View File

@@ -21,6 +21,9 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
@@ -81,6 +84,7 @@ def extract_entities_terms(
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION,
)
cleaned_response = (

View File

@@ -11,7 +11,6 @@ from onyx.agents.agent_search.deep_search.main.models import (
AgentRefinedMetrics,
)
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
from onyx.agents.agent_search.deep_search.main.operations import logger
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.main.states import (
RefinedAnswerUpdate,
@@ -23,7 +22,18 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
@@ -43,8 +53,14 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
@@ -56,6 +72,15 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The refined answer could not be generated.",
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
general_error="The LLM encountered an error. The refined answer could not be generated.",
)
def generate_refined_answer(
@@ -231,28 +256,80 @@ def generate_refined_answer(
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
agent_error: AgentErrorLoggingFormat | None = None
start_stream_token = datetime.now()
try:
for message in model.stream(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate refined answer")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate refined answer")
if agent_error:
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
streamed_tokens.append(content)
return RefinedAnswerUpdate(
refined_answer=None,
refined_answer_quality=False, # TODO: replace this with the actual check value
refined_agent_stats=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=0.0,
refined_question_boost_factor=0.0,
duration_s=None,
),
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="generate refined answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
logger.debug(
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
@@ -266,49 +343,6 @@ def generate_refined_answer(
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (

View File

@@ -17,6 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -76,6 +77,7 @@ class InitialAnswerUpdate(LoggerUpdate):
"""
initial_answer: str | None = None
error: AgentErrorLoggingFormat | None = None
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
@@ -88,6 +90,7 @@ class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
"""
refined_answer: str | None = None
error: AgentErrorLoggingFormat | None = None
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False

View File

@@ -16,14 +16,40 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
QUERY_REWRITING_PROMPT,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
general_error="Query rewriting failed due to LLM error - the original question will be used.",
)
def expand_queries(
@@ -54,13 +80,43 @@ def expand_queries(
)
]
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_num, writer)
)
agent_error: AgentErrorLoggingFormat | None = None
llm_response_list: list[BaseMessage_Content] = []
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
try:
llm_response_list = dispatch_separated(
llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION,
),
dispatch_subquery(level, question_num, writer),
)
except LLMTimeoutError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - expand queries")
rewritten_queries = llm_response.split("\n")
except LLMRateLimitError:
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - expand queries")
# use subquestion as query if query generation fails
if agent_error:
llm_response = ""
rewritten_queries = [question]
log_result = agent_error.error_result
else:
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
0
].content
rewritten_queries = llm_response.split("\n")
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
@@ -69,7 +125,7 @@ def expand_queries(
graph_component="shared - expanded retrieval",
node_name="expand queries",
node_start_time=node_start_time,
result=f"Number of expanded queries: {len(rewritten_queries)}",
result=log_result,
)
],
)

View File

@@ -1,5 +1,6 @@
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
@@ -10,12 +11,41 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLoggingFormat
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
DOCUMENT_VERIFICATION_PROMPT,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
)
def verify_documents(
@@ -26,7 +56,7 @@ def verify_documents(
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing ProSearchConfig
config (RunnableConfig): Configuration containing AgentSearchConfig
Updates:
verified_documents: list[InferenceSection]
@@ -51,11 +81,42 @@ def verify_documents(
)
]
response = fast_llm.invoke(msg)
agent_error: AgentErrorLoggingFormat | None = None
response: BaseMessage | None = None
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(retrieved_document_to_verify)
try:
response = fast_llm.invoke(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
)
except LLMTimeoutError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - verify documents")
except LLMRateLimitError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
agent_error = AgentErrorLoggingFormat(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - verify documents")
if agent_error or response is None:
verified_documents = [retrieved_document_to_verify]
else:
verified_documents = []
if isinstance(response.content, str) and binary_string_test(
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
):
verified_documents.append(retrieved_document_to_verify)
return DocVerificationUpdate(
verified_documents=verified_documents,

View File

@@ -21,9 +21,13 @@ from onyx.context.search.models import InferenceSection
class ExpandedRetrievalInput(SubgraphCoreState):
question: str = ""
base_search: bool = False
# exception from 'no default value'for LangGraph input states
# Here, sub_question_id default Nonoe implies usage for the
# original question. This is sometimes needed for nested sub-graphs
sub_question_id: str | None = None
question: str
base_search: bool
## Update/Return States
@@ -88,4 +92,4 @@ class DocVerificationInput(ExpandedRetrievalInput):
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str = ""
query_to_retrieve: str

View File

@@ -12,7 +12,7 @@ from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput_a,
MainInput as MainInput,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
@@ -21,6 +21,7 @@ from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamingError
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
@@ -33,6 +34,7 @@ from onyx.llm.factory import get_default_llms
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
@@ -72,13 +74,15 @@ def _parse_agent_event(
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
elif event["name"] == "refined_sub_question_creation_error":
return cast(StreamingError, event["data"])
return None
def manage_sync_streaming(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
graph_input: BasicInput | MainInput_a,
graph_input: BasicInput | MainInput,
) -> Iterable[StreamEvent]:
message_id = config.persistence.message_id if config.persistence else None
for event in compiled_graph.stream(
@@ -92,7 +96,7 @@ def manage_sync_streaming(
def run_graph(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
input: BasicInput | MainInput_a,
input: BasicInput | MainInput,
) -> AnswerStream:
config.behavior.perform_initial_search_decomposition = (
INITIAL_SEARCH_DECOMPOSITION_ENABLED
@@ -123,9 +127,7 @@ def run_main_graph(
) -> AnswerStream:
compiled_graph = load_compiled_graph()
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
@@ -172,9 +174,7 @@ if __name__ == "__main__":
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):

View File

@@ -150,3 +150,17 @@ def get_prompt_enrichment_components(
history=history,
date_str=date_str,
)
def binary_string_test(text: str, positive_value: str = "yes") -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
return positive_value.lower() in text.lower()

View File

@@ -0,0 +1,17 @@
from enum import Enum
AGENT_LLM_TIMEOUT_MESSAGE = "The agent timed out. Please try again."
AGENT_LLM_ERROR_MESSAGE = "The agent encountered an error. Please try again."
AGENT_LLM_RATELIMIT_MESSAGE = (
"The agent encountered a rate limit error. Please try again."
)
LLM_ANSWER_ERROR_MESSAGE = "The question was not answered due to an LLM error."
AGENT_POSITIVE_VALUE_STR = "yes"
AGENT_NEGATIVE_VALUE_STR = "no"
class AgentLLMErrorType(str, Enum):
TIMEOUT = "timeout"
RATE_LIMIT = "rate_limit"
GENERAL_ERROR = "general_error"

View File

@@ -1,3 +1,5 @@
from typing import Any
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search.main.models import (
@@ -56,6 +58,12 @@ class InitialAgentResultStats(BaseModel):
agent_effectiveness: dict[str, float | int | None]
class AgentErrorLoggingFormat(BaseModel):
error_message: str
error_type: str
error_result: str | None = None
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
@@ -126,3 +134,12 @@ class AgentPromptEnrichmentComponents(BaseModel):
persona_prompts: PersonaPromptExpressions
history: str
date_str: str
class LLMNodeErrorStrings(BaseModel):
timeout: str = "LLM Timeout Error"
rate_limit: str = "LLM Rate Limit Error"
general_error: str = "General LLM Error"
BaseMessage_Content = str | list[str | dict[str, Any]]

View File

@@ -20,6 +20,7 @@ from onyx.agents.agent_search.models import GraphInputs
from onyx.agents.agent_search.models import GraphPersistence
from onyx.agents.agent_search.models import GraphSearchConfig
from onyx.agents.agent_search.models import GraphTooling
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -34,6 +35,9 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION,
)
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
@@ -46,6 +50,8 @@ from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.llm.interfaces import LLM
from onyx.prompts.agent_search import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
@@ -65,8 +71,9 @@ from onyx.tools.tool_implementations.search.search_tool import (
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.logger import setup_logger
BaseMessage_Content = str | list[str | dict[str, Any]]
logger = setup_logger()
# Post-processing
@@ -372,8 +379,24 @@ def summarize_history(
)
)
history_response = llm.invoke(history_context_prompt)
try:
history_response = llm.invoke(
history_context_prompt,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION,
)
except LLMTimeoutError:
logger.error("LLM Timeout Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
assert isinstance(history_response.content, str)
return history_response.content

View File

@@ -84,10 +84,8 @@ def on_celeryd_init(sender: str, conf: Any = None, **kwargs: Any) -> None:
def on_worker_init(sender: Worker, **kwargs: Any) -> None:
logger.info("worker_init signal received.")
EXTRA_CONCURRENCY = 4 # small extra fudge factor for connection limits
SqlEngine.set_app_name(POSTGRES_CELERY_WORKER_PRIMARY_APP_NAME)
SqlEngine.init_engine(pool_size=sender.concurrency, max_overflow=EXTRA_CONCURRENCY) # type: ignore
SqlEngine.init_engine(pool_size=8, max_overflow=0)
app_base.wait_for_redis(sender, **kwargs)
app_base.wait_for_db(sender, **kwargs)

View File

@@ -18,153 +18,238 @@ BEAT_EXPIRES_DEFAULT = 15 * 60 # 15 minutes (in seconds)
# hack to slow down task dispatch in the cloud until
# we have a better implementation (backpressure, etc)
CLOUD_BEAT_SCHEDULE_MULTIPLIER = 8
# tasks that run in either self-hosted on cloud
beat_task_templates: list[dict] = []
beat_task_templates.extend(
[
{
"name": "check-for-indexing",
"task": OnyxCeleryTask.CHECK_FOR_INDEXING,
"schedule": timedelta(seconds=15),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-connector-deletion",
"task": OnyxCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-vespa-sync",
"task": OnyxCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-pruning",
"task": OnyxCeleryTask.CHECK_FOR_PRUNING,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "monitor-vespa-sync",
"task": OnyxCeleryTask.MONITOR_VESPA_SYNC,
"schedule": timedelta(seconds=5),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-doc-permissions-sync",
"task": OnyxCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
"schedule": timedelta(seconds=30),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-external-group-sync",
"task": OnyxCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "monitor-background-processes",
"task": OnyxCeleryTask.MONITOR_BACKGROUND_PROCESSES,
"schedule": timedelta(minutes=5),
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
"queue": OnyxCeleryQueues.MONITORING,
},
},
]
)
# Only add the LLM model update task if the API URL is configured
if LLM_MODEL_UPDATE_API_URL:
beat_task_templates.append(
{
"name": "check-for-llm-model-update",
"task": OnyxCeleryTask.CHECK_FOR_LLM_MODEL_UPDATE,
"schedule": timedelta(hours=1), # Check every hour
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
},
}
)
def make_cloud_generator_task(task: dict[str, Any]) -> dict[str, Any]:
cloud_task: dict[str, Any] = {}
# constant options for cloud beat task generators
task_schedule: timedelta = task["schedule"]
cloud_task["schedule"] = task_schedule * CLOUD_BEAT_SCHEDULE_MULTIPLIER
cloud_task["options"] = {}
cloud_task["options"]["priority"] = OnyxCeleryPriority.HIGHEST
cloud_task["options"]["expires"] = BEAT_EXPIRES_DEFAULT
# settings dependent on the original task
cloud_task["name"] = f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_{task['name']}"
cloud_task["task"] = OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR
cloud_task["kwargs"] = {}
cloud_task["kwargs"]["task_name"] = task["task"]
optional_fields = ["queue", "priority", "expires"]
for field in optional_fields:
if field in task["options"]:
cloud_task["kwargs"][field] = task["options"][field]
return cloud_task
CLOUD_BEAT_SCHEDULE_MULTIPLIER = 4
# tasks that only run in the cloud
# the name attribute must start with ONYX_CLOUD_CELERY_TASK_PREFIX = "cloud" to be filtered
# by the DynamicTenantScheduler
cloud_tasks_to_schedule: list[dict] = [
cloud_tasks_to_schedule = [
# cloud specific tasks
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-alembic",
"task": OnyxCeleryTask.CLOUD_CHECK_ALEMBIC,
"schedule": timedelta(hours=1),
"schedule": timedelta(hours=1 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"queue": OnyxCeleryQueues.MONITORING,
"priority": OnyxCeleryPriority.HIGH,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
# remaining tasks are cloud generators for per tenant tasks
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-indexing",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=15 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_INDEXING,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-connector-deletion",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=20 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-vespa-sync",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=20 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-prune",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=15 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_PRUNING,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor-vespa-sync",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=15 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.MONITOR_VESPA_SYNC,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-doc-permissions-sync",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=30 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-external-group-sync",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(seconds=20 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor-background-processes",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(minutes=5 * CLOUD_BEAT_SCHEDULE_MULTIPLIER),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.MONITOR_BACKGROUND_PROCESSES,
"queue": OnyxCeleryQueues.MONITORING,
"priority": OnyxCeleryPriority.LOW,
},
},
]
# generate our cloud and self-hosted beat tasks from the templates
for beat_task_template in beat_task_templates:
cloud_task = make_cloud_generator_task(beat_task_template)
cloud_tasks_to_schedule.append(cloud_task)
if LLM_MODEL_UPDATE_API_URL:
cloud_tasks_to_schedule.append(
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-for-llm-model-update",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(
hours=1 * CLOUD_BEAT_SCHEDULE_MULTIPLIER
), # Check every hour
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_FOR_LLM_MODEL_UPDATE,
"priority": OnyxCeleryPriority.LOW,
},
}
)
# tasks that run in either self-hosted on cloud
tasks_to_schedule: list[dict] = []
if not MULTI_TENANT:
tasks_to_schedule = beat_task_templates
tasks_to_schedule.extend(
[
{
"name": "check-for-indexing",
"task": OnyxCeleryTask.CHECK_FOR_INDEXING,
"schedule": timedelta(seconds=15),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-connector-deletion",
"task": OnyxCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-vespa-sync",
"task": OnyxCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-pruning",
"task": OnyxCeleryTask.CHECK_FOR_PRUNING,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "monitor-vespa-sync",
"task": OnyxCeleryTask.MONITOR_VESPA_SYNC,
"schedule": timedelta(seconds=5),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-doc-permissions-sync",
"task": OnyxCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
"schedule": timedelta(seconds=30),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-external-group-sync",
"task": OnyxCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "monitor-background-processes",
"task": OnyxCeleryTask.MONITOR_BACKGROUND_PROCESSES,
"schedule": timedelta(minutes=15),
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
"queue": OnyxCeleryQueues.MONITORING,
},
},
]
)
# Only add the LLM model update task if the API URL is configured
if LLM_MODEL_UPDATE_API_URL:
tasks_to_schedule.append(
{
"name": "check-for-llm-model-update",
"task": OnyxCeleryTask.CHECK_FOR_LLM_MODEL_UPDATE,
"schedule": timedelta(hours=1), # Check every hour
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
},
}
)
def get_cloud_tasks_to_schedule() -> list[dict[str, Any]]:

View File

@@ -186,7 +186,7 @@ def try_generate_document_cc_pair_cleanup_tasks(
sync_type=SyncType.CONNECTOR_DELETION,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
pass
except TaskDependencyError:
redis_connector.delete.set_fence(None)

View File

@@ -228,15 +228,12 @@ def try_creating_permissions_sync_task(
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
try:
with get_session_with_tenant(tenant_id) as db_session:
insert_sync_record(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.EXTERNAL_PERMISSIONS,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
with get_session_with_tenant(tenant_id) as db_session:
insert_sync_record(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.EXTERNAL_PERMISSIONS,
)
# set a basic fence to start
redis_connector.permissions.set_active()
@@ -260,10 +257,11 @@ def try_creating_permissions_sync_task(
)
# fill in the celery task id
redis_connector.permissions.set_active()
payload.celery_task_id = result.id
redis_connector.permissions.set_fence(payload)
payload_id = payload.id
payload_id = payload.celery_task_id
except Exception:
task_logger.exception(f"Unexpected exception: cc_pair={cc_pair_id}")
return None
@@ -292,8 +290,6 @@ def connector_permission_sync_generator_task(
This task assumes that the task has already been properly fenced
"""
payload_id: str | None = None
LoggerContextVars.reset()
doc_permission_sync_ctx_dict = doc_permission_sync_ctx.get()
@@ -336,12 +332,9 @@ def connector_permission_sync_generator_task(
sleep(1)
continue
payload_id = payload.id
logger.info(
f"connector_permission_sync_generator_task - Fence found, continuing...: "
f"fence={redis_connector.permissions.fence_key} "
f"payload_id={payload.id}"
f"fence={redis_connector.permissions.fence_key}"
)
break
@@ -420,9 +413,7 @@ def connector_permission_sync_generator_task(
redis_connector.permissions.generator_complete = tasks_generated
except Exception as e:
task_logger.exception(
f"Permission sync exceptioned: cc_pair={cc_pair_id} payload_id={payload_id}"
)
task_logger.exception(f"Failed to run permission sync: cc_pair={cc_pair_id}")
redis_connector.permissions.generator_clear()
redis_connector.permissions.taskset_clear()
@@ -432,10 +423,6 @@ def connector_permission_sync_generator_task(
if lock.owned():
lock.release()
task_logger.info(
f"Permission sync finished: cc_pair={cc_pair_id} payload_id={payload.id}"
)
@shared_task(
name=OnyxCeleryTask.UPDATE_EXTERNAL_DOCUMENT_PERMISSIONS_TASK,
@@ -672,7 +659,7 @@ def validate_permission_sync_fence(
f"tasks_scanned={tasks_scanned} tasks_not_in_celery={tasks_not_in_celery}"
)
# we're active if there are still tasks to run and those tasks all exist in celery
# we're only active if tasks_scanned > 0 and tasks_not_in_celery == 0
if tasks_scanned > 0 and tasks_not_in_celery == 0:
redis_connector.permissions.set_active()
return
@@ -693,8 +680,7 @@ def validate_permission_sync_fence(
"validate_permission_sync_fence - "
"Resetting fence because no associated celery tasks were found: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key} "
f"payload_id={payload.id}"
f"fence={fence_key}"
)
redis_connector.permissions.reset()

View File

@@ -2,17 +2,15 @@ import time
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from typing import cast
from uuid import uuid4
from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from pydantic import ValidationError
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from ee.onyx.db.connector_credential_pair import get_all_auto_sync_cc_pairs
from ee.onyx.db.connector_credential_pair import get_cc_pairs_by_source
@@ -34,9 +32,7 @@ from onyx.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
from onyx.configs.constants import OnyxRedisSignals
from onyx.db.connector import mark_cc_pair_as_external_group_synced
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.engine import get_session_with_tenant
@@ -53,8 +49,7 @@ from onyx.redis.redis_connector_ext_group_sync import (
RedisConnectorExternalGroupSyncPayload,
)
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.server.utils import make_short_id
from onyx.redis.redis_pool import SCAN_ITER_COUNT_DEFAULT
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -112,11 +107,11 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
bind=True,
)
def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> bool | None:
r = get_redis_client(tenant_id=tenant_id)
# we need to use celery's redis client to access its redis data
# (which lives on a different db number)
r = get_redis_client(tenant_id=tenant_id)
r_replica = get_redis_replica_client(tenant_id=tenant_id)
r_celery: Redis = self.app.broker_connection().channel().client # type: ignore
# r_celery: Redis = self.app.broker_connection().channel().client # type: ignore
lock_beat: RedisLock = r.lock(
OnyxRedisLocks.CHECK_CONNECTOR_EXTERNAL_GROUP_SYNC_BEAT_LOCK,
@@ -154,32 +149,30 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> bool
lock_beat.reacquire()
for cc_pair_id in cc_pair_ids_to_sync:
payload_id = try_creating_external_group_sync_task(
tasks_created = try_creating_external_group_sync_task(
self.app, cc_pair_id, r, tenant_id
)
if not payload_id:
if not tasks_created:
continue
task_logger.info(
f"External group sync queued: cc_pair={cc_pair_id} id={payload_id}"
)
task_logger.info(f"External group sync queued: cc_pair={cc_pair_id}")
# we want to run this less frequently than the overall task
lock_beat.reacquire()
if not r.exists(OnyxRedisSignals.BLOCK_VALIDATE_EXTERNAL_GROUP_SYNC_FENCES):
# clear fences that don't have associated celery tasks in progress
# tasks can be in the queue in redis, in reserved tasks (prefetched by the worker),
# or be currently executing
try:
validate_external_group_sync_fences(
tenant_id, self.app, r, r_replica, r_celery, lock_beat
)
except Exception:
task_logger.exception(
"Exception while validating external group sync fences"
)
# lock_beat.reacquire()
# if not r.exists(OnyxRedisSignals.VALIDATE_EXTERNAL_GROUP_SYNC_FENCES):
# # clear any indexing fences that don't have associated celery tasks in progress
# # tasks can be in the queue in redis, in reserved tasks (prefetched by the worker),
# # or be currently executing
# try:
# validate_external_group_sync_fences(
# tenant_id, self.app, r, r_celery, lock_beat
# )
# except Exception:
# task_logger.exception(
# "Exception while validating external group sync fences"
# )
r.set(OnyxRedisSignals.BLOCK_VALIDATE_EXTERNAL_GROUP_SYNC_FENCES, 1, ex=300)
# r.set(OnyxRedisSignals.VALIDATE_EXTERNAL_GROUP_SYNC_FENCES, 1, ex=60)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -198,11 +191,9 @@ def try_creating_external_group_sync_task(
cc_pair_id: int,
r: Redis,
tenant_id: str | None,
) -> str | None:
) -> int | None:
"""Returns an int if syncing is needed. The int represents the number of sync tasks generated.
Returns None if no syncing is required."""
payload_id: str | None = None
redis_connector = RedisConnector(tenant_id, cc_pair_id)
LOCK_TIMEOUT = 30
@@ -224,28 +215,11 @@ def try_creating_external_group_sync_task(
redis_connector.external_group_sync.generator_clear()
redis_connector.external_group_sync.taskset_clear()
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
try:
with get_session_with_tenant(tenant_id) as db_session:
insert_sync_record(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.EXTERNAL_GROUP,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
# Signal active before creating fence
redis_connector.external_group_sync.set_active()
payload = RedisConnectorExternalGroupSyncPayload(
id=make_short_id(),
submitted=datetime.now(timezone.utc),
started=None,
celery_task_id=None,
)
redis_connector.external_group_sync.set_fence(payload)
custom_task_id = f"{redis_connector.external_group_sync.taskset_key}_{uuid4()}"
@@ -260,10 +234,17 @@ def try_creating_external_group_sync_task(
priority=OnyxCeleryPriority.HIGH,
)
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
with get_session_with_tenant(tenant_id) as db_session:
insert_sync_record(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.EXTERNAL_GROUP,
)
payload.celery_task_id = result.id
redis_connector.external_group_sync.set_fence(payload)
payload_id = payload.id
except Exception:
task_logger.exception(
f"Unexpected exception while trying to create external group sync task: cc_pair={cc_pair_id}"
@@ -273,7 +254,7 @@ def try_creating_external_group_sync_task(
if lock.owned():
lock.release()
return payload_id
return 1
@shared_task(
@@ -331,8 +312,7 @@ def connector_external_group_sync_generator_task(
logger.info(
f"connector_external_group_sync_generator_task - Fence found, continuing...: "
f"fence={redis_connector.external_group_sync.fence_key} "
f"payload_id={payload.id}"
f"fence={redis_connector.external_group_sync.fence_key}"
)
break
@@ -401,7 +381,7 @@ def connector_external_group_sync_generator_task(
)
except Exception as e:
task_logger.exception(
f"External group sync exceptioned: cc_pair={cc_pair_id} payload_id={payload.id}"
f"Failed to run external group sync: cc_pair={cc_pair_id}"
)
with get_session_with_tenant(tenant_id) as db_session:
@@ -421,41 +401,32 @@ def connector_external_group_sync_generator_task(
if lock.owned():
lock.release()
task_logger.info(
f"External group sync finished: cc_pair={cc_pair_id} payload_id={payload.id}"
)
def validate_external_group_sync_fences(
tenant_id: str | None,
celery_app: Celery,
r: Redis,
r_replica: Redis,
r_celery: Redis,
lock_beat: RedisLock,
) -> None:
reserved_tasks = celery_get_unacked_task_ids(
reserved_sync_tasks = celery_get_unacked_task_ids(
OnyxCeleryQueues.CONNECTOR_EXTERNAL_GROUP_SYNC, r_celery
)
# validate all existing external group sync tasks
lock_beat.reacquire()
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
key_str = key_bytes.decode("utf-8")
if not key_str.startswith(RedisConnectorExternalGroupSync.FENCE_PREFIX):
continue
validate_external_group_sync_fence(
tenant_id,
key_bytes,
reserved_tasks,
r_celery,
)
# validate all existing indexing jobs
for key_bytes in r.scan_iter(
RedisConnectorExternalGroupSync.FENCE_PREFIX + "*",
count=SCAN_ITER_COUNT_DEFAULT,
):
lock_beat.reacquire()
with get_session_with_tenant(tenant_id) as db_session:
validate_external_group_sync_fence(
tenant_id,
key_bytes,
reserved_sync_tasks,
r_celery,
db_session,
)
return
@@ -464,6 +435,7 @@ def validate_external_group_sync_fence(
key_bytes: bytes,
reserved_tasks: set[str],
r_celery: Redis,
db_session: Session,
) -> None:
"""Checks for the error condition where an indexing fence is set but the associated celery tasks don't exist.
This can happen if the indexing worker hard crashes or is terminated.
@@ -506,26 +478,26 @@ def validate_external_group_sync_fence(
if not redis_connector.external_group_sync.fenced:
return
try:
payload = redis_connector.external_group_sync.payload
except ValidationError:
task_logger.exception(
"validate_external_group_sync_fence - "
"Resetting fence because fence schema is out of date: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key}"
)
redis_connector.external_group_sync.reset()
return
payload = redis_connector.external_group_sync.payload
if not payload:
return
if not payload.celery_task_id:
# OK, there's actually something for us to validate
if payload.celery_task_id is None:
# the fence is just barely set up.
# if redis_connector_index.active():
# return
# it would be odd to get here as there isn't that much that can go wrong during
# initial fence setup, but it's still worth making sure we can recover
logger.info(
"validate_external_group_sync_fence - "
f"Resetting fence in basic state without any activity: fence={fence_key}"
)
redis_connector.external_group_sync.reset()
return
# OK, there's actually something for us to validate
found = celery_find_task(
payload.celery_task_id, OnyxCeleryQueues.CONNECTOR_EXTERNAL_GROUP_SYNC, r_celery
)
@@ -555,8 +527,7 @@ def validate_external_group_sync_fence(
"validate_external_group_sync_fence - "
"Resetting fence because no associated celery tasks were found: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key} "
f"payload_id={payload.id}"
f"fence={fence_key}"
)
redis_connector.external_group_sync.reset()

View File

@@ -423,8 +423,8 @@ def connector_indexing_task(
# define a callback class
callback = IndexingCallback(
os.getppid(),
redis_connector,
redis_connector_index,
redis_connector.stop.fence_key,
redis_connector_index.generator_progress_key,
lock,
r,
)

View File

@@ -99,16 +99,16 @@ class IndexingCallback(IndexingHeartbeatInterface):
def __init__(
self,
parent_pid: int,
redis_connector: RedisConnector,
redis_connector_index: RedisConnectorIndex,
stop_key: str,
generator_progress_key: str,
redis_lock: RedisLock,
redis_client: Redis,
):
super().__init__()
self.parent_pid = parent_pid
self.redis_connector: RedisConnector = redis_connector
self.redis_connector_index: RedisConnectorIndex = redis_connector_index
self.redis_lock: RedisLock = redis_lock
self.stop_key: str = stop_key
self.generator_progress_key: str = generator_progress_key
self.redis_client = redis_client
self.started: datetime = datetime.now(timezone.utc)
self.redis_lock.reacquire()
@@ -120,7 +120,7 @@ class IndexingCallback(IndexingHeartbeatInterface):
self.last_parent_check = time.monotonic()
def should_stop(self) -> bool:
if self.redis_connector.stop.fenced:
if self.redis_client.exists(self.stop_key):
return True
return False
@@ -143,8 +143,6 @@ class IndexingCallback(IndexingHeartbeatInterface):
# self.last_parent_check = now
try:
self.redis_connector.prune.set_active()
current_time = time.monotonic()
if current_time - self.last_lock_monotonic >= (
CELERY_GENERIC_BEAT_LOCK_TIMEOUT / 4
@@ -167,9 +165,7 @@ class IndexingCallback(IndexingHeartbeatInterface):
redis_lock_dump(self.redis_lock, self.redis_client)
raise
self.redis_client.incrby(
self.redis_connector_index.generator_progress_key, amount
)
self.redis_client.incrby(self.generator_progress_key, amount)
def validate_indexing_fence(

View File

@@ -1,39 +1,28 @@
import time
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from typing import cast
from uuid import uuid4
from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from pydantic import ValidationError
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.celery_redis import celery_find_task
from onyx.background.celery.celery_redis import celery_get_queue_length
from onyx.background.celery.celery_redis import celery_get_queued_task_ids
from onyx.background.celery.celery_redis import celery_get_unacked_task_ids
from onyx.background.celery.celery_utils import extract_ids_from_runnable_connector
from onyx.background.celery.tasks.indexing.utils import IndexingCallback
from onyx.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_PRUNING_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT
from onyx.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
from onyx.configs.constants import OnyxRedisSignals
from onyx.connectors.factory import instantiate_connector
from onyx.connectors.models import InputType
from onyx.db.connector import mark_ccpair_as_pruned
@@ -46,15 +35,10 @@ from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.enums import SyncStatus
from onyx.db.enums import SyncType
from onyx.db.models import ConnectorCredentialPair
from onyx.db.search_settings import get_current_search_settings
from onyx.db.sync_record import insert_sync_record
from onyx.db.sync_record import update_sync_record_status
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_connector_prune import RedisConnectorPrune
from onyx.redis.redis_connector_prune import RedisConnectorPrunePayload
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.server.utils import make_short_id
from onyx.utils.logger import LoggerContextVars
from onyx.utils.logger import pruning_ctx
from onyx.utils.logger import setup_logger
@@ -109,8 +93,6 @@ def _is_pruning_due(cc_pair: ConnectorCredentialPair) -> bool:
)
def check_for_pruning(self: Task, *, tenant_id: str | None) -> bool | None:
r = get_redis_client(tenant_id=tenant_id)
r_replica = get_redis_replica_client(tenant_id=tenant_id)
r_celery: Redis = self.app.broker_connection().channel().client # type: ignore
lock_beat: RedisLock = r.lock(
OnyxRedisLocks.CHECK_PRUNE_BEAT_LOCK,
@@ -141,28 +123,13 @@ def check_for_pruning(self: Task, *, tenant_id: str | None) -> bool | None:
if not _is_pruning_due(cc_pair):
continue
payload_id = try_creating_prune_generator_task(
tasks_created = try_creating_prune_generator_task(
self.app, cc_pair, db_session, r, tenant_id
)
if not payload_id:
if not tasks_created:
continue
task_logger.info(
f"Pruning queued: cc_pair={cc_pair.id} id={payload_id}"
)
# we want to run this less frequently than the overall task
lock_beat.reacquire()
if not r.exists(OnyxRedisSignals.BLOCK_VALIDATE_PRUNING_FENCES):
# clear any permission fences that don't have associated celery tasks in progress
# tasks can be in the queue in redis, in reserved tasks (prefetched by the worker),
# or be currently executing
try:
validate_pruning_fences(tenant_id, r, r_replica, r_celery, lock_beat)
except Exception:
task_logger.exception("Exception while validating pruning fences")
r.set(OnyxRedisSignals.BLOCK_VALIDATE_PRUNING_FENCES, 1, ex=300)
task_logger.info(f"Pruning queued: cc_pair={cc_pair.id}")
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -182,7 +149,7 @@ def try_creating_prune_generator_task(
db_session: Session,
r: Redis,
tenant_id: str | None,
) -> str | None:
) -> int | None:
"""Checks for any conditions that should block the pruning generator task from being
created, then creates the task.
@@ -201,7 +168,7 @@ def try_creating_prune_generator_task(
# we need to serialize starting pruning since it can be triggered either via
# celery beat or manually (API call)
lock: RedisLock = r.lock(
lock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_prune_generator_task",
timeout=LOCK_TIMEOUT,
)
@@ -233,30 +200,7 @@ def try_creating_prune_generator_task(
custom_task_id = f"{redis_connector.prune.generator_task_key}_{uuid4()}"
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
try:
insert_sync_record(
db_session=db_session,
entity_id=cc_pair.id,
sync_type=SyncType.PRUNING,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
# signal active before the fence is set
redis_connector.prune.set_active()
# set a basic fence to start
payload = RedisConnectorPrunePayload(
id=make_short_id(),
submitted=datetime.now(timezone.utc),
started=None,
celery_task_id=None,
)
redis_connector.prune.set_fence(payload)
result = celery_app.send_task(
celery_app.send_task(
OnyxCeleryTask.CONNECTOR_PRUNING_GENERATOR_TASK,
kwargs=dict(
cc_pair_id=cc_pair.id,
@@ -269,11 +213,16 @@ def try_creating_prune_generator_task(
priority=OnyxCeleryPriority.LOW,
)
# fill in the celery task id
payload.celery_task_id = result.id
redis_connector.prune.set_fence(payload)
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
insert_sync_record(
db_session=db_session,
entity_id=cc_pair.id,
sync_type=SyncType.PRUNING,
)
payload_id = payload.id
# set this only after all tasks have been added
redis_connector.prune.set_fence(True)
except Exception:
task_logger.exception(f"Unexpected exception: cc_pair={cc_pair.id}")
return None
@@ -281,7 +230,7 @@ def try_creating_prune_generator_task(
if lock.owned():
lock.release()
return payload_id
return 1
@shared_task(
@@ -303,8 +252,6 @@ def connector_pruning_generator_task(
and compares those IDs to locally stored documents and deletes all locally stored IDs missing
from the most recently pulled document ID list"""
payload_id: str | None = None
LoggerContextVars.reset()
pruning_ctx_dict = pruning_ctx.get()
@@ -318,46 +265,6 @@ def connector_pruning_generator_task(
r = get_redis_client(tenant_id=tenant_id)
# this wait is needed to avoid a race condition where
# the primary worker sends the task and it is immediately executed
# before the primary worker can finalize the fence
start = time.monotonic()
while True:
if time.monotonic() - start > CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT:
raise ValueError(
f"connector_prune_generator_task - timed out waiting for fence to be ready: "
f"fence={redis_connector.prune.fence_key}"
)
if not redis_connector.prune.fenced: # The fence must exist
raise ValueError(
f"connector_prune_generator_task - fence not found: "
f"fence={redis_connector.prune.fence_key}"
)
payload = redis_connector.prune.payload # The payload must exist
if not payload:
raise ValueError(
"connector_prune_generator_task: payload invalid or not found"
)
if payload.celery_task_id is None:
logger.info(
f"connector_prune_generator_task - Waiting for fence: "
f"fence={redis_connector.prune.fence_key}"
)
time.sleep(1)
continue
payload_id = payload.id
logger.info(
f"connector_prune_generator_task - Fence found, continuing...: "
f"fence={redis_connector.prune.fence_key} "
f"payload_id={payload.id}"
)
break
# set thread_local=False since we don't control what thread the indexing/pruning
# might run our callback with
lock: RedisLock = r.lock(
@@ -387,18 +294,6 @@ def connector_pruning_generator_task(
)
return
payload = redis_connector.prune.payload
if not payload:
raise ValueError(f"No fence payload found: cc_pair={cc_pair_id}")
new_payload = RedisConnectorPrunePayload(
id=payload.id,
submitted=payload.submitted,
started=datetime.now(timezone.utc),
celery_task_id=payload.celery_task_id,
)
redis_connector.prune.set_fence(new_payload)
task_logger.info(
f"Pruning generator running connector: "
f"cc_pair={cc_pair_id} "
@@ -412,13 +307,10 @@ def connector_pruning_generator_task(
cc_pair.credential,
)
search_settings = get_current_search_settings(db_session)
redis_connector_index = redis_connector.new_index(search_settings.id)
callback = IndexingCallback(
0,
redis_connector,
redis_connector_index,
redis_connector.stop.fence_key,
redis_connector.prune.generator_progress_key,
lock,
r,
)
@@ -465,9 +357,7 @@ def connector_pruning_generator_task(
redis_connector.prune.generator_complete = tasks_generated
except Exception as e:
task_logger.exception(
f"Pruning exceptioned: cc_pair={cc_pair_id} "
f"connector={connector_id} "
f"payload_id={payload_id}"
f"Failed to run pruning: cc_pair={cc_pair_id} connector={connector_id}"
)
redis_connector.prune.reset()
@@ -476,9 +366,7 @@ def connector_pruning_generator_task(
if lock.owned():
lock.release()
task_logger.info(
f"Pruning generator finished: cc_pair={cc_pair_id} payload_id={payload_id}"
)
task_logger.info(f"Pruning generator finished: cc_pair={cc_pair_id}")
"""Monitoring pruning utils, called in monitor_vespa_sync"""
@@ -527,184 +415,4 @@ def monitor_ccpair_pruning_taskset(
redis_connector.prune.taskset_clear()
redis_connector.prune.generator_clear()
redis_connector.prune.set_fence(None)
def validate_pruning_fences(
tenant_id: str | None,
r: Redis,
r_replica: Redis,
r_celery: Redis,
lock_beat: RedisLock,
) -> None:
# building lookup table can be expensive, so we won't bother
# validating until the queue is small
PERMISSION_SYNC_VALIDATION_MAX_QUEUE_LEN = 1024
queue_len = celery_get_queue_length(OnyxCeleryQueues.CONNECTOR_DELETION, r_celery)
if queue_len > PERMISSION_SYNC_VALIDATION_MAX_QUEUE_LEN:
return
# the queue for a single pruning generator task
reserved_generator_tasks = celery_get_unacked_task_ids(
OnyxCeleryQueues.CONNECTOR_PRUNING, r_celery
)
# the queue for a reasonably large set of lightweight deletion tasks
queued_upsert_tasks = celery_get_queued_task_ids(
OnyxCeleryQueues.CONNECTOR_DELETION, r_celery
)
# Use replica for this because the worst thing that happens
# is that we don't run the validation on this pass
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
key_str = key_bytes.decode("utf-8")
if not key_str.startswith(RedisConnectorPrune.FENCE_PREFIX):
continue
validate_pruning_fence(
tenant_id,
key_bytes,
reserved_generator_tasks,
queued_upsert_tasks,
r,
r_celery,
)
lock_beat.reacquire()
return
def validate_pruning_fence(
tenant_id: str | None,
key_bytes: bytes,
reserved_tasks: set[str],
queued_tasks: set[str],
r: Redis,
r_celery: Redis,
) -> None:
"""See validate_indexing_fence for an overall idea of validation flows.
queued_tasks: the celery queue of lightweight permission sync tasks
reserved_tasks: prefetched tasks for sync task generator
"""
# if the fence doesn't exist, there's nothing to do
fence_key = key_bytes.decode("utf-8")
cc_pair_id_str = RedisConnector.get_id_from_fence_key(fence_key)
if cc_pair_id_str is None:
task_logger.warning(
f"validate_pruning_fence - could not parse id from {fence_key}"
)
return
cc_pair_id = int(cc_pair_id_str)
# parse out metadata and initialize the helper class with it
redis_connector = RedisConnector(tenant_id, int(cc_pair_id))
# check to see if the fence/payload exists
if not redis_connector.prune.fenced:
return
# in the cloud, the payload format may have changed ...
# it's a little sloppy, but just reset the fence for now if that happens
# TODO: add intentional cleanup/abort logic
try:
payload = redis_connector.prune.payload
except ValidationError:
task_logger.exception(
"validate_pruning_fence - "
"Resetting fence because fence schema is out of date: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key}"
)
redis_connector.prune.reset()
return
if not payload:
return
if not payload.celery_task_id:
return
# OK, there's actually something for us to validate
# either the generator task must be in flight or its subtasks must be
found = celery_find_task(
payload.celery_task_id,
OnyxCeleryQueues.CONNECTOR_PRUNING,
r_celery,
)
if found:
# the celery task exists in the redis queue
redis_connector.prune.set_active()
return
if payload.celery_task_id in reserved_tasks:
# the celery task was prefetched and is reserved within a worker
redis_connector.prune.set_active()
return
# look up every task in the current taskset in the celery queue
# every entry in the taskset should have an associated entry in the celery task queue
# because we get the celery tasks first, the entries in our own pruning taskset
# should be roughly a subset of the tasks in celery
# this check isn't very exact, but should be sufficient over a period of time
# A single successful check over some number of attempts is sufficient.
# TODO: if the number of tasks in celery is much lower than than the taskset length
# we might be able to shortcut the lookup since by definition some of the tasks
# must not exist in celery.
tasks_scanned = 0
tasks_not_in_celery = 0 # a non-zero number after completing our check is bad
for member in r.sscan_iter(redis_connector.prune.taskset_key):
tasks_scanned += 1
member_bytes = cast(bytes, member)
member_str = member_bytes.decode("utf-8")
if member_str in queued_tasks:
continue
if member_str in reserved_tasks:
continue
tasks_not_in_celery += 1
task_logger.info(
"validate_pruning_fence task check: "
f"tasks_scanned={tasks_scanned} tasks_not_in_celery={tasks_not_in_celery}"
)
# we're active if there are still tasks to run and those tasks all exist in celery
if tasks_scanned > 0 and tasks_not_in_celery == 0:
redis_connector.prune.set_active()
return
# we may want to enable this check if using the active task list somehow isn't good enough
# if redis_connector_index.generator_locked():
# logger.info(f"{payload.celery_task_id} is currently executing.")
# if we get here, we didn't find any direct indication that the associated celery tasks exist,
# but they still might be there due to gaps in our ability to check states during transitions
# Checking the active signal safeguards us against these transition periods
# (which has a duration that allows us to bridge those gaps)
if redis_connector.prune.active():
return
# celery tasks don't exist and the active signal has expired, possibly due to a crash. Clean it up.
task_logger.warning(
"validate_pruning_fence - "
"Resetting fence because no associated celery tasks were found: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key} "
f"payload_id={payload.id}"
)
redis_connector.prune.reset()
return
redis_connector.prune.set_fence(False)

View File

@@ -339,15 +339,11 @@ def try_generate_document_set_sync_tasks(
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
try:
insert_sync_record(
db_session=db_session,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
insert_sync_record(
db_session=db_session,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
)
# set this only after all tasks have been added
rds.set_fence(tasks_generated)
return tasks_generated
@@ -415,15 +411,11 @@ def try_generate_user_group_sync_tasks(
# create before setting fence to avoid race condition where the monitoring
# task updates the sync record before it is created
try:
insert_sync_record(
db_session=db_session,
entity_id=usergroup_id,
sync_type=SyncType.USER_GROUP,
)
except Exception:
task_logger.exception("insert_sync_record exceptioned.")
insert_sync_record(
db_session=db_session,
entity_id=usergroup_id,
sync_type=SyncType.USER_GROUP,
)
# set this only after all tasks have been added
rug.set_fence(tasks_generated)
@@ -912,7 +904,7 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool | None:
# use a lookup table to find active fences. We still have to verify the fence
# exists since it is an optimization and not the source of truth.
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
keys = cast(set[Any], r.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)

View File

@@ -140,7 +140,6 @@ def build_citations_user_message(
context_docs: list[LlmDoc] | list[InferenceChunk],
all_doc_useful: bool,
history_message: str = "",
context_type: str = "context documents",
) -> HumanMessage:
multilingual_expansion = get_multilingual_expansion()
task_prompt_with_reminder = build_task_prompt_reminders(
@@ -157,7 +156,6 @@ def build_citations_user_message(
optional_ignore = "" if all_doc_useful else DEFAULT_IGNORE_STATEMENT
user_prompt = CITATIONS_PROMPT.format(
context_type=context_type,
optional_ignore_statement=optional_ignore,
context_docs_str=context_docs_str,
task_prompt=task_prompt_with_reminder,
@@ -167,7 +165,6 @@ def build_citations_user_message(
else:
# if no context docs provided, assume we're in the tool calling flow
user_prompt = CITATIONS_PROMPT_FOR_TOOL_CALLING.format(
context_type=context_type,
task_prompt=task_prompt_with_reminder,
user_query=query,
history_block=history_block,

View File

@@ -13,6 +13,21 @@ AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS = 3
AGENT_DEFAULT_MAX_ANSWER_CONTEXT_DOCS = 10
AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH = 2000
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION = 30 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION = 10 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION = 4 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION = 3 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION = 8 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION = 12 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK = 8 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION = 6 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS = 8 # in seconds
#####
# Agent Configs
#####
@@ -77,4 +92,76 @@ AGENT_MAX_STATIC_HISTORY_WORD_LENGTH = int(
or AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH
) # 2000
AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
) # 3
AGENT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION
) # 30
AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION
) # 8
AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION
) # 12
AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK
) # 8
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION
) # 6
AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION
) # 1
AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION
) # 4
AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
) # 8
GRAPH_VERSION_NAME: str = "a"

View File

@@ -324,7 +324,6 @@ class OnyxRedisSignals:
BLOCK_VALIDATE_PERMISSION_SYNC_FENCES = (
"signal:block_validate_permission_sync_fences"
)
BLOCK_VALIDATE_PRUNING_FENCES = "signal:block_validate_pruning_fences"
BLOCK_BUILD_FENCE_LOOKUP_TABLE = "signal:block_build_fence_lookup_table"

View File

@@ -27,7 +27,6 @@ from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.connectors.models import SlimDocument
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -320,7 +319,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
doc_metadata_list: list[SlimDocument] = []
@@ -388,12 +386,4 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
yield doc_metadata_list[:_SLIM_DOC_BATCH_SIZE]
doc_metadata_list = doc_metadata_list[_SLIM_DOC_BATCH_SIZE:]
if callback:
if callback.should_stop():
raise RuntimeError(
"retrieve_all_slim_documents: Stop signal detected"
)
callback.progress("retrieve_all_slim_documents", 1)
yield doc_metadata_list

View File

@@ -30,7 +30,6 @@ from onyx.connectors.models import BasicExpertInfo
from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.connectors.models import SlimDocument
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
from onyx.utils.retry_wrapper import retry_builder
@@ -322,7 +321,6 @@ class GmailConnector(LoadConnector, PollConnector, SlimConnector):
self,
time_range_start: SecondsSinceUnixEpoch | None = None,
time_range_end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
query = _build_time_range_query(time_range_start, time_range_end)
doc_batch = []
@@ -345,15 +343,6 @@ class GmailConnector(LoadConnector, PollConnector, SlimConnector):
if len(doc_batch) > SLIM_BATCH_SIZE:
yield doc_batch
doc_batch = []
if callback:
if callback.should_stop():
raise RuntimeError(
"retrieve_all_slim_documents: Stop signal detected"
)
callback.progress("retrieve_all_slim_documents", 1)
if doc_batch:
yield doc_batch
@@ -379,10 +368,9 @@ class GmailConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
try:
yield from self._fetch_slim_threads(start, end, callback=callback)
yield from self._fetch_slim_threads(start, end)
except Exception as e:
if MISSING_SCOPES_ERROR_STR in str(e):
raise PermissionError(ONYX_SCOPE_INSTRUCTIONS) from e

View File

@@ -42,7 +42,6 @@ from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.interfaces import SlimConnector
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
from onyx.utils.retry_wrapper import retry_builder
@@ -565,7 +564,6 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
slim_batch = []
for file in self._fetch_drive_items(
@@ -578,26 +576,15 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
if len(slim_batch) >= SLIM_BATCH_SIZE:
yield slim_batch
slim_batch = []
if callback:
if callback.should_stop():
raise RuntimeError(
"_extract_slim_docs_from_google_drive: Stop signal detected"
)
callback.progress("_extract_slim_docs_from_google_drive", 1)
yield slim_batch
def retrieve_all_slim_documents(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
try:
yield from self._extract_slim_docs_from_google_drive(
start, end, callback=callback
)
yield from self._extract_slim_docs_from_google_drive(start, end)
except Exception as e:
if MISSING_SCOPES_ERROR_STR in str(e):
raise PermissionError(ONYX_SCOPE_INSTRUCTIONS) from e

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel
from onyx.configs.constants import DocumentSource
from onyx.connectors.models import Document
from onyx.connectors.models import SlimDocument
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
SecondsSinceUnixEpoch = float
@@ -64,7 +63,6 @@ class SlimConnector(BaseConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
raise NotImplementedError

View File

@@ -29,7 +29,6 @@ from onyx.connectors.onyx_jira.utils import build_jira_url
from onyx.connectors.onyx_jira.utils import extract_jira_project
from onyx.connectors.onyx_jira.utils import extract_text_from_adf
from onyx.connectors.onyx_jira.utils import get_comment_strs
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -246,7 +245,6 @@ class JiraConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
jql = f"project = {self.quoted_jira_project}"

View File

@@ -21,7 +21,6 @@ from onyx.connectors.salesforce.sqlite_functions import get_affected_parent_ids_
from onyx.connectors.salesforce.sqlite_functions import get_record
from onyx.connectors.salesforce.sqlite_functions import init_db
from onyx.connectors.salesforce.sqlite_functions import update_sf_db_with_csv
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -177,7 +176,6 @@ class SalesforceConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
doc_metadata_list: list[SlimDocument] = []
for parent_object_type in self.parent_object_list:

View File

@@ -21,7 +21,6 @@ from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.connectors.models import SlimDocument
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -243,7 +242,6 @@ class SlabConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
slim_doc_batch: list[SlimDocument] = []
for post_id in get_all_post_ids(self.slab_bot_token):

View File

@@ -27,7 +27,6 @@ from onyx.connectors.slack.utils import get_message_link
from onyx.connectors.slack.utils import make_paginated_slack_api_call_w_retries
from onyx.connectors.slack.utils import make_slack_api_call_w_retries
from onyx.connectors.slack.utils import SlackTextCleaner
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -99,7 +98,6 @@ def get_channel_messages(
channel: dict[str, Any],
oldest: str | None = None,
latest: str | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> Generator[list[MessageType], None, None]:
"""Get all messages in a channel"""
# join so that the bot can access messages
@@ -117,11 +115,6 @@ def get_channel_messages(
oldest=oldest,
latest=latest,
):
if callback:
if callback.should_stop():
raise RuntimeError("get_channel_messages: Stop signal detected")
callback.progress("get_channel_messages", 0)
yield cast(list[MessageType], result["messages"])
@@ -332,7 +325,6 @@ def _get_all_doc_ids(
channels: list[str] | None = None,
channel_name_regex_enabled: bool = False,
msg_filter_func: Callable[[MessageType], bool] = default_msg_filter,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
"""
Get all document ids in the workspace, channel by channel
@@ -350,7 +342,6 @@ def _get_all_doc_ids(
channel_message_batches = get_channel_messages(
client=client,
channel=channel,
callback=callback,
)
message_ts_set: set[str] = set()
@@ -399,7 +390,6 @@ class SlackPollConnector(PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
if self.client is None:
raise ConnectorMissingCredentialError("Slack")
@@ -408,7 +398,6 @@ class SlackPollConnector(PollConnector, SlimConnector):
client=self.client,
channels=self.channels,
channel_name_regex_enabled=self.channel_regex_enabled,
callback=callback,
)
def poll_source(

View File

@@ -20,7 +20,6 @@ from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.connectors.models import SlimDocument
from onyx.file_processing.html_utils import parse_html_page_basic
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.retry_wrapper import retry_builder
@@ -406,7 +405,6 @@ class ZendeskConnector(LoadConnector, PollConnector, SlimConnector):
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
slim_doc_batch: list[SlimDocument] = []
if self.content_type == "articles":

View File

@@ -152,7 +152,7 @@ class User(SQLAlchemyBaseUserTableUUID, Base):
# if not specified, all assistants are shown
temperature_override_enabled: Mapped[bool] = mapped_column(Boolean, default=False)
auto_scroll: Mapped[bool] = mapped_column(Boolean, default=True)
shortcut_enabled: Mapped[bool] = mapped_column(Boolean, default=False)
shortcut_enabled: Mapped[bool] = mapped_column(Boolean, default=True)
chosen_assistants: Mapped[list[int] | None] = mapped_column(
postgresql.JSONB(), nullable=True, default=None
)

View File

@@ -228,7 +228,6 @@ def create_update_persona(
num_chunks=create_persona_request.num_chunks,
llm_relevance_filter=create_persona_request.llm_relevance_filter,
llm_filter_extraction=create_persona_request.llm_filter_extraction,
is_default_persona=create_persona_request.is_default_persona,
)
versioned_make_persona_private = fetch_versioned_implementation(

View File

@@ -27,7 +27,6 @@ from langchain_core.prompt_values import PromptValue
from onyx.configs.app_configs import LOG_DANSWER_MODEL_INTERACTIONS
from onyx.configs.app_configs import MOCK_LLM_RESPONSE
from onyx.configs.chat_configs import QA_TIMEOUT
from onyx.configs.model_configs import (
DISABLE_LITELLM_STREAMING,
)
@@ -36,7 +35,6 @@ from onyx.configs.model_configs import LITELLM_EXTRA_BODY
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMConfig
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.utils import model_is_reasoning_model
from onyx.server.utils import mask_string
from onyx.utils.logger import setup_logger
from onyx.utils.long_term_log import LongTermLogger
@@ -52,6 +50,18 @@ litellm.telemetry = False
_LLM_PROMPT_LONG_TERM_LOG_CATEGORY = "llm_prompt"
class LLMTimeoutError(Exception):
"""
Exception raised when an LLM call times out.
"""
class LLMRateLimitError(Exception):
"""
Exception raised when an LLM call is rate limited.
"""
def _base_msg_to_role(msg: BaseMessage) -> str:
if isinstance(msg, HumanMessage) or isinstance(msg, HumanMessageChunk):
return "user"
@@ -231,15 +241,15 @@ class DefaultMultiLLM(LLM):
def __init__(
self,
api_key: str | None,
timeout: int,
model_provider: str,
model_name: str,
timeout: int | None = None,
api_base: str | None = None,
api_version: str | None = None,
deployment_name: str | None = None,
max_output_tokens: int | None = None,
custom_llm_provider: str | None = None,
temperature: float | None = None,
temperature: float = GEN_AI_TEMPERATURE,
custom_config: dict[str, str] | None = None,
extra_headers: dict[str, str] | None = None,
extra_body: dict | None = LITELLM_EXTRA_BODY,
@@ -247,16 +257,9 @@ class DefaultMultiLLM(LLM):
long_term_logger: LongTermLogger | None = None,
):
self._timeout = timeout
if timeout is None:
if model_is_reasoning_model(model_name):
self._timeout = QA_TIMEOUT * 10 # Reasoning models are slow
else:
self._timeout = QA_TIMEOUT
self._temperature = GEN_AI_TEMPERATURE if temperature is None else temperature
self._model_provider = model_provider
self._model_version = model_name
self._temperature = temperature
self._api_key = api_key
self._deployment_name = deployment_name
self._api_base = api_base
@@ -389,6 +392,7 @@ class DefaultMultiLLM(LLM):
tool_choice: ToolChoiceOptions | None,
stream: bool,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> litellm.ModelResponse | litellm.CustomStreamWrapper:
# litellm doesn't accept LangChain BaseMessage objects, so we need to convert them
# to a dict representation
@@ -414,7 +418,7 @@ class DefaultMultiLLM(LLM):
stream=stream,
# model params
temperature=0,
timeout=self._timeout,
timeout=timeout_override or self._timeout,
# For now, we don't support parallel tool calls
# NOTE: we can't pass this in if tools are not specified
# or else OpenAI throws an error
@@ -433,6 +437,12 @@ class DefaultMultiLLM(LLM):
except Exception as e:
self._record_error(processed_prompt, e)
# for break pointing
if isinstance(e, litellm.Timeout):
raise LLMTimeoutError(e)
elif isinstance(e, litellm.RateLimitError):
raise LLMRateLimitError(e)
raise e
@property
@@ -453,6 +463,7 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
@@ -460,7 +471,12 @@ class DefaultMultiLLM(LLM):
response = cast(
litellm.ModelResponse,
self._completion(
prompt, tools, tool_choice, False, structured_response_format
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=False,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
),
)
choice = response.choices[0]
@@ -478,19 +494,31 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
if DISABLE_LITELLM_STREAMING:
yield self.invoke(prompt, tools, tool_choice, structured_response_format)
yield self.invoke(
prompt,
tools,
tool_choice,
structured_response_format,
timeout_override,
)
return
output = None
response = cast(
litellm.CustomStreamWrapper,
self._completion(
prompt, tools, tool_choice, True, structured_response_format
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=True,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
),
)
try:

View File

@@ -81,6 +81,7 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
return self._execute(prompt)
@@ -90,5 +91,6 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
yield self._execute(prompt)

View File

@@ -2,6 +2,7 @@ from typing import Any
from onyx.chat.models import PersonaOverrideConfig
from onyx.configs.app_configs import DISABLE_GENERATIVE_AI
from onyx.configs.chat_configs import QA_TIMEOUT
from onyx.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
from onyx.configs.model_configs import GEN_AI_TEMPERATURE
from onyx.db.engine import get_session_context_manager
@@ -87,8 +88,8 @@ def get_llms_for_persona(
def get_default_llms(
timeout: int | None = None,
temperature: float | None = None,
timeout: int = QA_TIMEOUT,
temperature: float = GEN_AI_TEMPERATURE,
additional_headers: dict[str, str] | None = None,
long_term_logger: LongTermLogger | None = None,
) -> tuple[LLM, LLM]:
@@ -137,7 +138,7 @@ def get_llm(
api_version: str | None = None,
custom_config: dict[str, str] | None = None,
temperature: float | None = None,
timeout: int | None = None,
timeout: int = QA_TIMEOUT,
additional_headers: dict[str, str] | None = None,
long_term_logger: LongTermLogger | None = None,
) -> LLM:

View File

@@ -90,12 +90,13 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
return self._invoke_implementation(
prompt, tools, tool_choice, structured_response_format
prompt, tools, tool_choice, structured_response_format, timeout_override
)
@abc.abstractmethod
@@ -105,6 +106,7 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
raise NotImplementedError
@@ -114,12 +116,13 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
messages = self._stream_implementation(
prompt, tools, tool_choice, structured_response_format
prompt, tools, tool_choice, structured_response_format, timeout_override
)
tokens = []
@@ -138,5 +141,6 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
raise NotImplementedError

View File

@@ -29,11 +29,11 @@ OPENAI_PROVIDER_NAME = "openai"
OPEN_AI_MODEL_NAMES = [
"o3-mini",
"o1-mini",
"o1",
"o1-preview",
"o1-2024-12-17",
"gpt-4",
"gpt-4o",
"gpt-4o-mini",
"o1-preview",
"gpt-4-turbo",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",

View File

@@ -543,14 +543,3 @@ def model_supports_image_input(model_name: str, model_provider: str) -> bool:
f"Failed to get model object for {model_provider}/{model_name}"
)
return False
def model_is_reasoning_model(model_name: str) -> bool:
_REASONING_MODEL_NAMES = [
"o1",
"o1-mini",
"o3-mini",
"deepseek-reasoner",
"deepseek-r1",
]
return model_name.lower() in _REASONING_MODEL_NAMES

View File

@@ -5,8 +5,6 @@ UNKNOWN_ANSWER = "I do not have enough information to answer this question."
NO_RECOVERED_DOCS = "No relevant information recovered"
YES = "yes"
NO = "no"
# Framing/Support/Template Prompts
HISTORY_FRAMING_PROMPT = f"""
For more context, here is the history of the conversation so far that preceded this question:

View File

@@ -91,7 +91,7 @@ SAMPLE RESPONSE:
# similar to the chat flow, but with the option of including a
# "conversation history" block
CITATIONS_PROMPT = f"""
Refer to the following {{context_type}} when responding to me.{DEFAULT_IGNORE_STATEMENT}
Refer to the following context documents when responding to me.{DEFAULT_IGNORE_STATEMENT}
CONTEXT:
{GENERAL_SEP_PAT}
@@ -108,7 +108,7 @@ CONTEXT:
# NOTE: need to add the extra line about "getting right to the point" since the
# tool calling models from OpenAI tend to be more verbose
CITATIONS_PROMPT_FOR_TOOL_CALLING = f"""
Refer to the provided {{context_type}} when responding to me.{DEFAULT_IGNORE_STATEMENT} \
Refer to the provided context documents when responding to me.{DEFAULT_IGNORE_STATEMENT} \
You should always get right to the point, and never use extraneous language.
{{history_block}}{{task_prompt}}

View File

@@ -80,8 +80,7 @@ class RedisConnectorPermissionSync:
def get_active_task_count(self) -> int:
"""Count of active permission sync tasks"""
count = 0
for _ in self.redis.sscan_iter(
OnyxRedisConstants.ACTIVE_FENCES,
for _ in self.redis.scan_iter(
RedisConnectorPermissionSync.FENCE_PREFIX + "*",
count=SCAN_ITER_COUNT_DEFAULT,
):

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
import redis
@@ -7,12 +8,10 @@ from pydantic import BaseModel
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.configs.constants import OnyxRedisConstants
from onyx.redis.redis_pool import SCAN_ITER_COUNT_DEFAULT
class RedisConnectorExternalGroupSyncPayload(BaseModel):
id: str
submitted: datetime
started: datetime | None
celery_task_id: str | None
@@ -38,12 +37,6 @@ class RedisConnectorExternalGroupSync:
TASKSET_PREFIX = f"{PREFIX}_taskset" # connectorexternalgroupsync_taskset
SUBTASK_PREFIX = f"{PREFIX}+sub" # connectorexternalgroupsync+sub
# used to signal the overall workflow is still active
# it's impossible to get the exact state of the system at a single point in time
# so we need a signal with a TTL to bridge gaps in our checks
ACTIVE_PREFIX = PREFIX + "_active"
ACTIVE_TTL = 3600
def __init__(self, tenant_id: str | None, id: int, redis: redis.Redis) -> None:
self.tenant_id: str | None = tenant_id
self.id = id
@@ -57,7 +50,6 @@ class RedisConnectorExternalGroupSync:
self.taskset_key = f"{self.TASKSET_PREFIX}_{id}"
self.subtask_prefix: str = f"{self.SUBTASK_PREFIX}_{id}"
self.active_key = f"{self.ACTIVE_PREFIX}_{id}"
def taskset_clear(self) -> None:
self.redis.delete(self.taskset_key)
@@ -74,8 +66,7 @@ class RedisConnectorExternalGroupSync:
def get_active_task_count(self) -> int:
"""Count of active external group syncing tasks"""
count = 0
for _ in self.redis.sscan_iter(
OnyxRedisConstants.ACTIVE_FENCES,
for _ in self.redis.scan_iter(
RedisConnectorExternalGroupSync.FENCE_PREFIX + "*",
count=SCAN_ITER_COUNT_DEFAULT,
):
@@ -92,11 +83,10 @@ class RedisConnectorExternalGroupSync:
@property
def payload(self) -> RedisConnectorExternalGroupSyncPayload | None:
# read related data and evaluate/print task progress
fence_raw = self.redis.get(self.fence_key)
if fence_raw is None:
fence_bytes = cast(Any, self.redis.get(self.fence_key))
if fence_bytes is None:
return None
fence_bytes = cast(bytes, fence_raw)
fence_str = fence_bytes.decode("utf-8")
payload = RedisConnectorExternalGroupSyncPayload.model_validate_json(
cast(str, fence_str)
@@ -109,26 +99,10 @@ class RedisConnectorExternalGroupSync:
payload: RedisConnectorExternalGroupSyncPayload | None,
) -> None:
if not payload:
self.redis.srem(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:
"""This sets a signal to keep the permissioning flow from getting cleaned up within
the expiration time.
The slack in timing is needed to avoid race conditions where simply checking
the celery queue and task status could result in race conditions."""
self.redis.set(self.active_key, 0, ex=self.ACTIVE_TTL)
def active(self) -> bool:
if self.redis.exists(self.active_key):
return True
return False
@property
def generator_complete(self) -> int | None:
@@ -164,8 +138,6 @@ class RedisConnectorExternalGroupSync:
pass
def reset(self) -> None:
self.redis.srem(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
self.redis.delete(self.active_key)
self.redis.delete(self.generator_progress_key)
self.redis.delete(self.generator_complete_key)
self.redis.delete(self.taskset_key)
@@ -180,9 +152,6 @@ class RedisConnectorExternalGroupSync:
@staticmethod
def reset_all(r: redis.Redis) -> None:
"""Deletes all redis values for all connectors"""
for key in r.scan_iter(RedisConnectorExternalGroupSync.ACTIVE_PREFIX + "*"):
r.delete(key)
for key in r.scan_iter(RedisConnectorExternalGroupSync.TASKSET_PREFIX + "*"):
r.delete(key)

View File

@@ -1,11 +1,9 @@
import time
from datetime import datetime
from typing import cast
from uuid import uuid4
import redis
from celery import Celery
from pydantic import BaseModel
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
@@ -18,13 +16,6 @@ from onyx.db.connector_credential_pair import get_connector_credential_pair_from
from onyx.redis.redis_pool import SCAN_ITER_COUNT_DEFAULT
class RedisConnectorPrunePayload(BaseModel):
id: str
submitted: datetime
started: datetime | None
celery_task_id: str | None
class RedisConnectorPrune:
"""Manages interactions with redis for pruning tasks. Should only be accessed
through RedisConnector."""
@@ -45,12 +36,6 @@ class RedisConnectorPrune:
TASKSET_PREFIX = f"{PREFIX}_taskset" # connectorpruning_taskset
SUBTASK_PREFIX = f"{PREFIX}+sub" # connectorpruning+sub
# used to signal the overall workflow is still active
# it's impossible to get the exact state of the system at a single point in time
# so we need a signal with a TTL to bridge gaps in our checks
ACTIVE_PREFIX = PREFIX + "_active"
ACTIVE_TTL = 3600
def __init__(self, tenant_id: str | None, id: int, redis: redis.Redis) -> None:
self.tenant_id: str | None = tenant_id
self.id = id
@@ -64,7 +49,6 @@ class RedisConnectorPrune:
self.taskset_key = f"{self.TASKSET_PREFIX}_{id}"
self.subtask_prefix: str = f"{self.SUBTASK_PREFIX}_{id}"
self.active_key = f"{self.ACTIVE_PREFIX}_{id}"
def taskset_clear(self) -> None:
self.redis.delete(self.taskset_key)
@@ -81,10 +65,8 @@ class RedisConnectorPrune:
def get_active_task_count(self) -> int:
"""Count of active pruning tasks"""
count = 0
for _ in self.redis.sscan_iter(
OnyxRedisConstants.ACTIVE_FENCES,
RedisConnectorPrune.FENCE_PREFIX + "*",
count=SCAN_ITER_COUNT_DEFAULT,
for key in self.redis.scan_iter(
RedisConnectorPrune.FENCE_PREFIX + "*", count=SCAN_ITER_COUNT_DEFAULT
):
count += 1
return count
@@ -96,44 +78,15 @@ class RedisConnectorPrune:
return False
@property
def payload(self) -> RedisConnectorPrunePayload | None:
# read related data and evaluate/print task progress
fence_bytes = cast(bytes, self.redis.get(self.fence_key))
if fence_bytes is None:
return None
fence_str = fence_bytes.decode("utf-8")
payload = RedisConnectorPrunePayload.model_validate_json(cast(str, fence_str))
return payload
def set_fence(
self,
payload: RedisConnectorPrunePayload | None,
) -> None:
if not payload:
def set_fence(self, value: bool) -> None:
if not value:
self.redis.srem(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.set(self.fence_key, 0)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:
"""This sets a signal to keep the permissioning flow from getting cleaned up within
the expiration time.
The slack in timing is needed to avoid race conditions where simply checking
the celery queue and task status could result in race conditions."""
self.redis.set(self.active_key, 0, ex=self.ACTIVE_TTL)
def active(self) -> bool:
if self.redis.exists(self.active_key):
return True
return False
@property
def generator_complete(self) -> int | None:
"""the fence payload is an int representing the starting number of
@@ -209,7 +162,6 @@ class RedisConnectorPrune:
def reset(self) -> None:
self.redis.srem(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
self.redis.delete(self.active_key)
self.redis.delete(self.generator_progress_key)
self.redis.delete(self.generator_complete_key)
self.redis.delete(self.taskset_key)
@@ -224,9 +176,6 @@ class RedisConnectorPrune:
@staticmethod
def reset_all(r: redis.Redis) -> None:
"""Deletes all redis values for all connectors"""
for key in r.scan_iter(RedisConnectorPrune.ACTIVE_PREFIX + "*"):
r.delete(key)
for key in r.scan_iter(RedisConnectorPrune.TASKSET_PREFIX + "*"):
r.delete(key)

View File

@@ -368,17 +368,15 @@ def prune_cc_pair(
f"credential={cc_pair.credential_id} "
f"{cc_pair.connector.name} connector."
)
payload_id = try_creating_prune_generator_task(
tasks_created = try_creating_prune_generator_task(
primary_app, cc_pair, db_session, r, CURRENT_TENANT_ID_CONTEXTVAR.get()
)
if not payload_id:
if not tasks_created:
raise HTTPException(
status_code=HTTPStatus.INTERNAL_SERVER_ERROR,
detail="Pruning task creation failed.",
)
logger.info(f"Pruning queued: cc_pair={cc_pair.id} id={payload_id}")
return StatusResponse(
success=True,
message="Successfully created the pruning task.",
@@ -516,17 +514,15 @@ def sync_cc_pair_groups(
f"credential_id={cc_pair.credential_id} "
f"{cc_pair.connector.name} connector."
)
payload_id = try_creating_external_group_sync_task(
tasks_created = try_creating_external_group_sync_task(
primary_app, cc_pair_id, r, CURRENT_TENANT_ID_CONTEXTVAR.get()
)
if not payload_id:
if not tasks_created:
raise HTTPException(
status_code=HTTPStatus.INTERNAL_SERVER_ERROR,
detail="External group sync task creation failed.",
)
logger.info(f"External group sync queued: cc_pair={cc_pair_id} id={payload_id}")
return StatusResponse(
success=True,
message="Successfully created the external group sync task.",

View File

@@ -279,5 +279,4 @@ class InternetSearchTool(Tool):
using_tool_calling_llm=using_tool_calling_llm,
answer_style_config=self.answer_style_config,
prompt_config=self.prompt_config,
context_type="internet search results",
)

View File

@@ -25,7 +25,6 @@ def build_next_prompt_for_search_like_tool(
using_tool_calling_llm: bool,
answer_style_config: AnswerStyleConfig,
prompt_config: PromptConfig,
context_type: str = "context documents",
) -> AnswerPromptBuilder:
if not using_tool_calling_llm:
final_context_docs_response = next(
@@ -59,7 +58,6 @@ def build_next_prompt_for_search_like_tool(
else False
),
history_message=prompt_builder.single_message_history or "",
context_type=context_type,
)
)

View File

@@ -4,7 +4,7 @@
"rsc": true,
"tsx": true,
"tailwind": {
"config": "tailwind-themes/tailwind.config.js",
"config": "tailwind.config.js",
"css": "src/app/globals.css",
"baseColor": "neutral",
"cssVariables": false,

1021
web/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -4,7 +4,7 @@
"version-comment": "version field must be SemVer or chromatic will barf",
"private": true,
"scripts": {
"dev": "next dev --turbo",
"dev": "next dev --turbopack",
"build": "next build",
"start": "next start",
"lint": "next lint",
@@ -21,17 +21,17 @@
"@radix-ui/react-accordion": "^1.2.2",
"@radix-ui/react-checkbox": "^1.1.2",
"@radix-ui/react-collapsible": "^1.1.2",
"@radix-ui/react-dialog": "^1.1.6",
"@radix-ui/react-dropdown-menu": "^2.1.6",
"@radix-ui/react-dialog": "^1.1.2",
"@radix-ui/react-dropdown-menu": "^2.1.4",
"@radix-ui/react-label": "^2.1.1",
"@radix-ui/react-popover": "^1.1.6",
"@radix-ui/react-popover": "^1.1.2",
"@radix-ui/react-radio-group": "^1.2.2",
"@radix-ui/react-scroll-area": "^1.2.2",
"@radix-ui/react-select": "^2.1.6",
"@radix-ui/react-select": "^2.1.2",
"@radix-ui/react-separator": "^1.1.0",
"@radix-ui/react-slider": "^1.2.2",
"@radix-ui/react-slot": "^1.1.2",
"@radix-ui/react-switch": "^1.1.3",
"@radix-ui/react-slot": "^1.1.0",
"@radix-ui/react-switch": "^1.1.1",
"@radix-ui/react-tabs": "^1.1.1",
"@radix-ui/react-tooltip": "^1.1.3",
"@sentry/nextjs": "^8.50.0",
@@ -56,7 +56,6 @@
"lucide-react": "^0.454.0",
"mdast-util-find-and-replace": "^3.0.1",
"next": "^15.0.2",
"next-themes": "^0.4.4",
"npm": "^10.8.0",
"postcss": "^8.4.31",
"posthog-js": "^1.176.0",

BIN
web/public/LiteLLM.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

BIN
web/public/discord.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

View File

@@ -27,12 +27,8 @@ function SourceTile({
w-40
cursor-pointer
shadow-md
hover:bg-accent-background-hovered
${
preSelect
? "bg-accent-background-hovered subtle-pulse"
: "bg-accent-background"
}
hover:bg-hover
${preSelect ? "bg-hover subtle-pulse" : "bg-hover-light"}
`}
href={sourceMetadata.adminUrl}
>

View File

@@ -56,7 +56,7 @@ function NewApiKeyModal({
<div className="flex mt-2">
<b className="my-auto break-all">{apiKey}</b>
<div
className="ml-2 my-auto p-2 hover:bg-accent-background-hovered rounded cursor-pointer"
className="ml-2 my-auto p-2 hover:bg-hover rounded cursor-pointer"
onClick={() => {
setCopyClicked(true);
navigator.clipboard.writeText(apiKey);
@@ -112,10 +112,7 @@ function Main() {
}
const newApiKeyButton = (
<CreateButton
onClick={() => setShowCreateUpdateForm(true)}
text="Create API Key"
/>
<CreateButton href="/admin/api-key/new" text="Create API Key" />
);
if (apiKeys.length === 0) {
@@ -182,7 +179,7 @@ function Main() {
flex
mb-1
w-fit
hover:bg-accent-background-hovered cursor-pointer
hover:bg-hover cursor-pointer
p-2
rounded-lg
border-border
@@ -206,7 +203,7 @@ function Main() {
flex
mb-1
w-fit
hover:bg-accent-background-hovered cursor-pointer
hover:bg-hover cursor-pointer
p-2
rounded-lg
border-border

View File

@@ -825,7 +825,10 @@ export function AssistantEditor({
</TooltipProvider>
</div>
</div>
<p className="text-sm text-neutral-700 dark:text-neutral-400">
<p
className="text-sm text-subtle"
style={{ color: "rgb(113, 114, 121)" }}
>
Attach additional unique knowledge to this assistant
</p>
</div>
@@ -1214,7 +1217,7 @@ export function AssistantEditor({
setFieldValue("label_ids", newLabelIds);
}}
itemComponent={({ option }) => (
<div className="flex items-center justify-between px-4 py-3 text-sm hover:bg-accent-background-hovered cursor-pointer border-b border-border last:border-b-0">
<div className="flex items-center justify-between px-4 py-3 text-sm hover:bg-hover cursor-pointer border-b border-border last:border-b-0">
<div
className="flex-grow"
onClick={() => {
@@ -1353,7 +1356,7 @@ export function AssistantEditor({
</>
)}
<div className="mt-12 gap-x-2 w-full justify-end flex">
<div className="mt-12 gap-x-2 w-full justify-end flex">
<Button
type="submit"
disabled={isSubmitting || isRequestSuccessful}

View File

@@ -31,7 +31,7 @@ export function HidableSection({
return (
<div>
<div
className="flex hover:bg-accent-background rounded cursor-pointer p-2"
className="flex hover:bg-hover-light rounded cursor-pointer p-2"
onClick={() => setIsHidden(!isHidden)}
>
<SectionHeader includeMargin={false}>{sectionTitle}</SectionHeader>

View File

@@ -187,9 +187,7 @@ export function PersonasTable() {
}
}}
className={`px-1 py-0.5 rounded flex ${
isEditable
? "hover:bg-accent-background-hovered cursor-pointer"
: ""
isEditable ? "hover:bg-hover cursor-pointer" : ""
} select-none w-fit`}
>
<div className="my-auto w-12">
@@ -207,7 +205,7 @@ export function PersonasTable() {
<div className="mr-auto my-auto">
{!persona.builtin_persona && isEditable ? (
<div
className="hover:bg-accent-background-hovered rounded p-1 cursor-pointer"
className="hover:bg-hover rounded p-1 cursor-pointer"
onClick={() => openDeleteModal(persona)}
>
<TrashIcon />

View File

@@ -65,7 +65,7 @@ export default function StarterMessagesList({
onClick={() => {
arrayHelpers.remove(index);
}}
className={`text-text-400 hover:text-red-500 ${
className={`text-gray-400 hover:text-red-500 ${
index === values.length - 1 && !starterMessage.message
? "opacity-50 cursor-not-allowed"
: ""
@@ -105,7 +105,7 @@ export default function StarterMessagesList({
4 ||
isRefreshing ||
!autoStarterMessageEnabled
? "bg-background-800 text-text-300 cursor-not-allowed"
? "bg-neutral-800 text-neutral-300 cursor-not-allowed"
: ""
}
`}

View File

@@ -1,3 +1,4 @@
"use client";
import { PersonasTable } from "./PersonaTable";
import Text from "@/components/ui/text";
import Title from "@/components/ui/title";

View File

@@ -92,9 +92,9 @@ export const ExistingSlackBotForm = ({
<div className="flex flex-col" ref={dropdownRef}>
<div className="flex items-center gap-4">
<div className="border rounded-lg border-background-200">
<div className="border rounded-lg border-gray-200">
<div
className="flex items-center gap-2 cursor-pointer hover:bg-background-100 p-2"
className="flex items-center gap-2 cursor-pointer hover:bg-gray-100 p-2"
onClick={() => setIsExpanded(!isExpanded)}
>
{isExpanded ? (
@@ -117,7 +117,7 @@ export const ExistingSlackBotForm = ({
</div>
{isExpanded && (
<div className="bg-white border rounded-lg border-background-200 shadow-lg absolute mt-12 right-0 z-10 w-full md:w-3/4 lg:w-1/2">
<div className="bg-white border rounded-lg border-gray-200 shadow-lg absolute mt-12 right-0 z-10 w-full md:w-3/4 lg:w-1/2">
<div className="p-4">
<SlackTokensForm
isUpdate={true}
@@ -134,7 +134,7 @@ export const ExistingSlackBotForm = ({
</div>
</div>
<div className="mt-2">
<div className="inline-block border rounded-lg border-background-200 p-2">
<div className="inline-block border rounded-lg border-gray-200 p-2">
<Checkbox
label="Enabled"
checked={formValues.enabled}

View File

@@ -613,7 +613,7 @@ export function SlackChannelConfigFormFields({
<Link
key={ccpairinfo.id}
href={`/admin/connector/${ccpairinfo.id}`}
className="flex items-center p-2 rounded-md hover:bg-background-100 transition-colors"
className="flex items-center p-2 rounded-md hover:bg-gray-100 transition-colors"
>
<div className="mr-2">
<SourceIcon

View File

@@ -84,7 +84,7 @@ function Main() {
{isApiKeySet ? (
<div className="w-full p-3 border rounded-md bg-background text-text flex items-center">
<span className="flex-grow"></span>
<Lock className="h-5 w-5 text-text-400" />
<Lock className="h-5 w-5 text-gray-400" />
</div>
) : (
<input

View File

@@ -25,7 +25,8 @@ function LLMProviderUpdateModal({
}) {
const providerName = existingLlmProvider?.name
? `"${existingLlmProvider.name}"`
: llmProviderDescriptor?.display_name ||
: null ||
llmProviderDescriptor?.display_name ||
llmProviderDescriptor?.name ||
"Custom LLM Provider";
return (
@@ -74,7 +75,7 @@ function LLMProviderDisplay({
return (
<div>
{popup}
<div className="border border-border p-3 dark:bg-neutral-800 dark:border-neutral-700 rounded w-96 flex shadow-md">
<div className="border border-border p-3 rounded w-96 flex shadow-md">
<div className="my-auto">
<div className="font-bold">{providerName} </div>
<div className="text-xs italic">({existingLlmProvider.provider})</div>
@@ -112,7 +113,7 @@ function LLMProviderDisplay({
{existingLlmProvider && (
<div className="my-auto ml-3">
{existingLlmProvider.is_default_provider ? (
<Badge variant="agent">Default</Badge>
<Badge variant="orange">Default</Badge>
) : (
<Badge variant="success">Enabled</Badge>
)}

View File

@@ -348,7 +348,7 @@ export function CustomLLMProviderUpdateForm({
</div>
<div className="my-auto">
<FiX
className="my-auto w-10 h-10 cursor-pointer hover:bg-accent-background-hovered rounded p-2"
className="my-auto w-10 h-10 cursor-pointer hover:bg-hover rounded p-2"
onClick={() => arrayHelpers.remove(index)}
/>
</div>

View File

@@ -73,7 +73,7 @@ function DefaultLLMProviderDisplay({
return (
<div>
{popup}
<div className="border border-border p-3 dark:bg-neutral-800 dark:border-neutral-700 rounded w-96 flex shadow-md">
<div className="border border-border p-3 rounded w-96 flex shadow-md">
<div className="my-auto">
<div className="font-bold">{providerName} </div>
</div>

View File

@@ -12,7 +12,6 @@ import {
OpenSourceIcon,
AnthropicSVG,
IconProps,
OpenAIISVG,
} from "@/components/icons/icons";
import { FaRobot } from "react-icons/fa";
@@ -105,7 +104,7 @@ export const getProviderIcon = (providerName: string, modelName?: string) => {
switch (providerName) {
case "openai":
// Special cases for openai based on modelName
return modelNameToIcon(modelName || "", OpenAIISVG);
return modelNameToIcon(modelName || "", OpenAIIcon);
case "anthropic":
return AnthropicSVG;
case "bedrock":

View File

@@ -111,14 +111,14 @@ function Main() {
<div className="space-y-4">
<div>
<Text className="font-semibold">Reranking Model</Text>
<Text className="text-text-700">
<Text className="text-gray-700">
{searchSettings.rerank_model_name || "Not set"}
</Text>
</div>
<div>
<Text className="font-semibold">Results to Rerank</Text>
<Text className="text-text-700">
<Text className="text-gray-700">
{searchSettings.num_rerank}
</Text>
</div>
@@ -127,7 +127,7 @@ function Main() {
<Text className="font-semibold">
Multilingual Expansion
</Text>
<Text className="text-text-700">
<Text className="text-gray-700">
{searchSettings.multilingual_expansion.length > 0
? searchSettings.multilingual_expansion.join(", ")
: "None"}
@@ -136,7 +136,7 @@ function Main() {
<div>
<Text className="font-semibold">Multipass Indexing</Text>
<Text className="text-text-700">
<Text className="text-gray-700">
{searchSettings.multipass_indexing
? "Enabled"
: "Disabled"}
@@ -147,7 +147,7 @@ function Main() {
<Text className="font-semibold">
Disable Reranking for Streaming
</Text>
<Text className="text-text-700">
<Text className="text-gray-700">
{searchSettings.disable_rerank_for_streaming
? "Yes"
: "No"}

View File

@@ -149,7 +149,7 @@ export function AdvancedConfigDisplay({
<>
<Title className="mt-8 mb-2">Advanced Configuration</Title>
<CardSection>
<ul className="w-full text-sm divide-y divide-neutral-200 dark:divide-neutral-700">
<ul className="w-full text-sm divide-y divide-background-200 dark:divide-background-700">
{pruneFreq && (
<li
key={0}

View File

@@ -11,7 +11,7 @@ export default function DeletionErrorStatus({
<h3 className="text-base font-medium">Deletion Error</h3>
<div className="ml-2 relative group">
<FiInfo className="h-4 w-4 text-error-600 cursor-help" />
<div className="absolute z-10 w-64 p-2 mt-2 text-sm bg-white rounded-md shadow-lg opacity-0 group-hover:opacity-100 transition-opacity duration-300 border border-background-200">
<div className="absolute z-10 w-64 p-2 mt-2 text-sm bg-white rounded-md shadow-lg opacity-0 group-hover:opacity-100 transition-opacity duration-300 border border-gray-200">
This error occurred while attempting to delete the connector. You
may re-attempt a deletion by clicking the &quot;Delete&quot; button.
</div>

View File

@@ -293,7 +293,7 @@ function Main({ ccPairId }: { ccPairId: number }) {
<b className="text-emphasis">{ccPair.num_docs_indexed}</b>
</div>
{!ccPair.is_editable_for_current_user && (
<div className="text-sm mt-2 text-text-500 italic">
<div className="text-sm mt-2 text-neutral-500 italic">
{ccPair.access_type === "public"
? "Public connectors are not editable by curators."
: ccPair.access_type === "sync"

View File

@@ -62,7 +62,6 @@ import {
} from "@/lib/connectors/oauth";
import { CreateStdOAuthCredential } from "@/components/credentials/actions/CreateStdOAuthCredential";
import { Spinner } from "@/components/Spinner";
import { Button } from "@/components/ui/button";
export interface AdvancedConfig {
refreshFreq: number;
pruneFreq: number;
@@ -465,9 +464,8 @@ export default function AddConnector({
{!createCredentialFormToggle && (
<div className="mt-6 flex space-x-4">
{/* Button to pop up a form to manually enter credentials */}
<Button
variant="secondary"
className="mt-6 text-sm mr-4"
<button
className="mt-6 text-sm bg-background-900 px-2 py-1.5 flex text-text-200 flex-none rounded mr-4"
onClick={async () => {
if (oauthDetails && oauthDetails.oauth_enabled) {
if (oauthDetails.additional_kwargs.length > 0) {
@@ -497,7 +495,7 @@ export default function AddConnector({
}}
>
Create New
</Button>
</button>
{/* Button to sign in via OAuth */}
{oauthSupportedSources.includes(connector) &&
(NEXT_PUBLIC_CLOUD_ENABLED ||

View File

@@ -50,10 +50,11 @@ const NavigationRow = ({
</SquareNavigationButton>
)}
</div>
<div className="flex justify-center">
{(formStep > 0 || noCredentials) && (
<SquareNavigationButton
className="bg-agent text-white py-2.5 px-3.5 disabled:opacity-50"
className="bg-accent text-white py-2.5 px-3.5 disabled:opacity-50"
disabled={!isValid}
onClick={onSubmit}
>
@@ -62,6 +63,7 @@ const NavigationRow = ({
</SquareNavigationButton>
)}
</div>
<div className="flex justify-end">
{formStep === 0 && (
<SquareNavigationButton

View File

@@ -96,7 +96,7 @@ export default function Sidebar() {
<div className="mx-auto w-full max-w-2xl px-4 py-8">
<div className="relative">
{connector != "file" && (
<div className="absolute h-[85%] left-[6px] top-[8px] bottom-0 w-0.5 bg-background-300"></div>
<div className="absolute h-[85%] left-[6px] top-[8px] bottom-0 w-0.5 bg-gray-300"></div>
)}
{settingSteps.map((step, index) => {
const allowed =
@@ -119,7 +119,7 @@ export default function Sidebar() {
<div className="flex-shrink-0 mr-4 z-10">
<div
className={`rounded-full h-3.5 w-3.5 flex items-center justify-center ${
allowed ? "bg-blue-500" : "bg-background-300"
allowed ? "bg-blue-500" : "bg-gray-300"
}`}
>
{formStep === index && (
@@ -129,7 +129,7 @@ export default function Sidebar() {
</div>
<div
className={`${
index <= formStep ? "text-text-800" : "text-text-500"
index <= formStep ? "text-gray-800" : "text-gray-500"
}`}
>
{step}

View File

@@ -16,7 +16,7 @@ export default function NumberInput({
}) {
return (
<div className="w-full flex flex-col">
<label className="block text-base font-medium text-text-700 dark:text-neutral-100 mb-1">
<label className="block text-base font-medium text-text-700 mb-1">
{label}
{optional && <span className="text-text-500 ml-1">(optional)</span>}
</label>
@@ -27,10 +27,10 @@ export default function NumberInput({
name={name}
min="-1"
className={`mt-2 block w-full px-3 py-2
bg-[#fff] dark:bg-transparent border border-background-300 rounded-md
text-sm shadow-sm placeholder-text-400
bg-white border border-gray-300 rounded-md
text-sm shadow-sm placeholder-gray-400
focus:outline-none focus:border-sky-500 focus:ring-1 focus:ring-sky-500
disabled:bg-background-50 disabled:text-text-500 disabled:border-background-200 disabled:shadow-none
disabled:bg-gray-50 disabled:text-gray-500 disabled:border-gray-200 disabled:shadow-none
invalid:border-pink-500 invalid:text-pink-600
focus:invalid:border-pink-500 focus:invalid:ring-pink-500`}
/>

View File

@@ -30,10 +30,10 @@ export default function NumberInput({
min="-1"
value={value === 0 && showNeverIfZero ? "Never" : value}
className={`mt-2 block w-full px-3 py-2
bg-white border border-background-300 rounded-md
text-sm shadow-sm placeholder-text-400
bg-white border border-gray-300 rounded-md
text-sm shadow-sm placeholder-gray-400
focus:outline-none focus:border-sky-500 focus:ring-1 focus:ring-sky-500
disabled:bg-background-50 disabled:text-text-500 disabled:border-background-200 disabled:shadow-none
disabled:bg-gray-50 disabled:text-gray-500 disabled:border-gray-200 disabled:shadow-none
invalid:border-pink-500 invalid:text-pink-600
focus:invalid:border-pink-500 focus:invalid:ring-pink-500`}
/>

View File

@@ -34,9 +34,9 @@ export const DriveJsonUpload = ({
<>
<input
className={
"mr-3 text-sm text-text-900 border border-background-300 " +
"cursor-pointer bg-backgrournd dark:text-text-400 focus:outline-none " +
"dark:bg-background-700 dark:border-background-600 dark:placeholder-text-400"
"mr-3 text-sm text-gray-900 border border-gray-300 " +
"cursor-pointer bg-backgrournd dark:text-gray-400 focus:outline-none " +
"dark:bg-gray-700 dark:border-gray-600 dark:placeholder-gray-400"
}
type="file"
accept=".json"

View File

@@ -34,9 +34,9 @@ const DriveJsonUpload = ({
<>
<input
className={
"mr-3 text-sm text-text-900 border border-background-300 overflow-visible " +
"cursor-pointer bg-background dark:text-text-400 focus:outline-none " +
"dark:bg-background-700 dark:border-background-600 dark:placeholder-text-400"
"mr-3 text-sm text-gray-900 border border-gray-300 overflow-visible " +
"cursor-pointer bg-background dark:text-gray-400 focus:outline-none " +
"dark:bg-gray-700 dark:border-gray-600 dark:placeholder-gray-400"
}
type="file"
accept=".json"

View File

@@ -50,7 +50,7 @@ const DocumentDisplay = ({
</a>
</div>
<div className="flex flex-wrap gap-x-2 mt-1 text-xs">
<div className="px-1 py-0.5 bg-accent-background-hovered rounded flex">
<div className="px-1 py-0.5 bg-hover rounded flex">
<p className="mr-1 my-auto">Boost:</p>
<ScoreSection
documentId={document.document_id}
@@ -77,7 +77,7 @@ const DocumentDisplay = ({
});
}
}}
className="px-1 py-0.5 bg-accent-background-hovered hover:bg-accent-background rounded flex cursor-pointer select-none"
className="px-1 py-0.5 bg-hover hover:bg-hover-light rounded flex cursor-pointer select-none"
>
<div className="my-auto">
{document.hidden ? (
@@ -169,7 +169,7 @@ export function Explorer({
<div>
{popup}
<div className="justify-center py-2">
<div className="flex items-center w-full border-2 border-border rounded-lg px-4 py-2 focus-within:border-accent bg-background-search dark:bg-transparent">
<div className="flex items-center w-full border-2 border-border rounded-lg px-4 py-2 focus-within:border-accent bg-background-search">
<MagnifyingGlass />
<textarea
autoFocus
@@ -221,7 +221,7 @@ export function Explorer({
</div>
)}
{!query && (
<div className="flex text-text-darker mt-3">
<div className="flex text-emphasis mt-3">
Search for a document above to modify its boost or hide it from
searches.
</div>

View File

@@ -37,7 +37,7 @@ const IsVisibleSection = ({
);
onUpdate(response);
}}
className="flex text-error cursor-pointer hover:bg-accent-background-hovered py-1 px-2 w-fit rounded-full"
className="flex text-error cursor-pointer hover:bg-hover py-1 px-2 w-fit rounded-full"
>
<div className="select-none">Hidden</div>
<div className="ml-1 my-auto">
@@ -53,7 +53,7 @@ const IsVisibleSection = ({
);
onUpdate(response);
}}
className="flex cursor-pointer hover:bg-accent-background-hovered py-1 px-2 w-fit rounded-full"
className="flex cursor-pointer hover:bg-hover py-1 px-2 w-fit rounded-full"
>
<div className="my-auto select-none">Visible</div>
<div className="ml-1 my-auto">

Some files were not shown because too many files have changed in this diff Show More