Compare commits

..

1 Commits

Author SHA1 Message Date
Weves
5f82de7c45 Debug test 2024-09-23 11:05:27 -07:00
475 changed files with 5013 additions and 43425 deletions

View File

@@ -32,20 +32,16 @@ inputs:
description: 'Cache destinations'
required: false
retry-wait-time:
description: 'Time to wait before attempt 2 in seconds'
description: 'Time to wait before retry in seconds'
required: false
default: '60'
retry-wait-time-2:
description: 'Time to wait before attempt 3 in seconds'
required: false
default: '120'
default: '5'
runs:
using: "composite"
steps:
- name: Build and push Docker image (Attempt 1 of 3)
- name: Build and push Docker image (First Attempt)
id: buildx1
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
continue-on-error: true
with:
context: ${{ inputs.context }}
@@ -58,17 +54,16 @@ runs:
cache-from: ${{ inputs.cache-from }}
cache-to: ${{ inputs.cache-to }}
- name: Wait before attempt 2
- name: Wait to retry
if: steps.buildx1.outcome != 'success'
run: |
echo "First attempt failed. Waiting ${{ inputs.retry-wait-time }} seconds before retry..."
sleep ${{ inputs.retry-wait-time }}
shell: bash
- name: Build and push Docker image (Attempt 2 of 3)
id: buildx2
- name: Build and push Docker image (Retry Attempt)
if: steps.buildx1.outcome != 'success'
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
context: ${{ inputs.context }}
file: ${{ inputs.file }}
@@ -79,31 +74,3 @@ runs:
tags: ${{ inputs.tags }}
cache-from: ${{ inputs.cache-from }}
cache-to: ${{ inputs.cache-to }}
- name: Wait before attempt 3
if: steps.buildx1.outcome != 'success' && steps.buildx2.outcome != 'success'
run: |
echo "Second attempt failed. Waiting ${{ inputs.retry-wait-time-2 }} seconds before retry..."
sleep ${{ inputs.retry-wait-time-2 }}
shell: bash
- name: Build and push Docker image (Attempt 3 of 3)
id: buildx3
if: steps.buildx1.outcome != 'success' && steps.buildx2.outcome != 'success'
uses: docker/build-push-action@v6
with:
context: ${{ inputs.context }}
file: ${{ inputs.file }}
platforms: ${{ inputs.platforms }}
pull: ${{ inputs.pull }}
push: ${{ inputs.push }}
load: ${{ inputs.load }}
tags: ${{ inputs.tags }}
cache-from: ${{ inputs.cache-from }}
cache-to: ${{ inputs.cache-to }}
- name: Report failure
if: steps.buildx1.outcome != 'success' && steps.buildx2.outcome != 'success' && steps.buildx3.outcome != 'success'
run: |
echo "All attempts failed. Possible transient infrastucture issues? Try again later or inspect logs for details."
shell: bash

View File

@@ -7,17 +7,16 @@ on:
env:
REGISTRY_IMAGE: danswer/danswer-backend
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build-and-push:
# TODO: investigate a matrix build like the web container
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
# TODO: make this a matrix build like the web containers
runs-on:
group: amd64-image-builders
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -32,7 +31,7 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install -y build-essential
- name: Backend Image Docker Build and Push
uses: docker/build-push-action@v5
with:
@@ -42,20 +41,12 @@ jobs:
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
${{ env.REGISTRY_IMAGE }}:latest
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
# To run locally: trivy image --severity HIGH,CRITICAL danswer/danswer-backend
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}

View File

@@ -5,18 +5,14 @@ on:
tags:
- '*'
env:
REGISTRY_IMAGE: danswer/danswer-model-server
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build-and-push:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on:
group: amd64-image-builders
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -35,21 +31,13 @@ jobs:
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
danswer/danswer-model-server:${{ github.ref_name }}
danswer/danswer-model-server:latest
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: docker.io/danswer/danswer-model-server:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'

View File

@@ -7,15 +7,11 @@ on:
env:
REGISTRY_IMAGE: danswer/danswer-web-server
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
jobs:
build:
runs-on:
- runs-on
- runner=${{ matrix.platform == 'linux/amd64' && '8cpu-linux-x64' || '8cpu-linux-arm64' }}
- run-id=${{ github.run_id }}
- tag=platform-${{ matrix.platform }}
runs-on:
group: ${{ matrix.platform == 'linux/amd64' && 'amd64-image-builders' || 'arm64-image-builders' }}
strategy:
fail-fast: false
matrix:
@@ -39,7 +35,7 @@ jobs:
images: ${{ env.REGISTRY_IMAGE }}
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
type=raw,value=${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
type=raw,value=${{ env.REGISTRY_IMAGE }}:latest
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -116,16 +112,8 @@ jobs:
run: |
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
# trivy has their own rate limiting issues causing this action to flake
# we worked around it by hardcoding to different db repos in env
# can re-enable when they figure it out
# https://github.com/aquasecurity/trivy/discussions/7538
# https://github.com/aquasecurity/trivy-action/issues/389
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'

View File

@@ -1,6 +1,3 @@
# This workflow is set up to be manually triggered via the GitHub Action tab.
# Given a version, it will tag those backend and webserver images as "latest".
name: Tag Latest Version
on:
@@ -12,9 +9,7 @@ on:
jobs:
tag:
# See https://runs-on.com/runners/linux/
# use a lower powered instance since this just does i/o to docker hub
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: ubuntu-latest
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1

View File

@@ -1,172 +0,0 @@
# This workflow is intended to be manually triggered via the GitHub Action tab.
# Given a hotfix branch, it will attempt to open a PR to all release branches and
# by default auto merge them
name: Hotfix release branches
on:
workflow_dispatch:
inputs:
hotfix_commit:
description: 'Hotfix commit hash'
required: true
hotfix_suffix:
description: 'Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})'
required: true
release_branch_pattern:
description: 'Release branch pattern (regex)'
required: true
default: 'release/.*'
auto_merge:
description: 'Automatically merge the hotfix PRs'
required: true
type: choice
default: 'true'
options:
- true
- false
jobs:
hotfix_release_branches:
permissions: write-all
# See https://runs-on.com/runners/linux/
# use a lower powered instance since this just does i/o to docker hub
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
steps:
# needs RKUO_DEPLOY_KEY for write access to merge PR's
- name: Checkout Repository
uses: actions/checkout@v4
with:
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
fetch-depth: 0
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@danswer.ai"
- name: Fetch All Branches
run: |
git fetch --all --prune
- name: Verify Hotfix Commit Exists
run: |
git rev-parse --verify "${{ github.event.inputs.hotfix_commit }}" || { echo "Commit not found: ${{ github.event.inputs.hotfix_commit }}"; exit 1; }
- name: Get Release Branches
id: get_release_branches
run: |
BRANCHES=$(git branch -r | grep -E "${{ github.event.inputs.release_branch_pattern }}" | sed 's|origin/||' | tr -d ' ')
if [ -z "$BRANCHES" ]; then
echo "No release branches found matching pattern '${{ github.event.inputs.release_branch_pattern }}'."
exit 1
fi
echo "Found release branches:"
echo "$BRANCHES"
# Join the branches into a single line separated by commas
BRANCHES_JOINED=$(echo "$BRANCHES" | tr '\n' ',' | sed 's/,$//')
# Set the branches as an output
echo "branches=$BRANCHES_JOINED" >> $GITHUB_OUTPUT
# notes on all the vagaries of wiring up automated PR's
# https://github.com/peter-evans/create-pull-request/blob/main/docs/concepts-guidelines.md#triggering-further-workflow-runs
# we must use a custom token for GH_TOKEN to trigger the subsequent PR checks
- name: Create and Merge Pull Requests to Matching Release Branches
env:
HOTFIX_COMMIT: ${{ github.event.inputs.hotfix_commit }}
HOTFIX_SUFFIX: ${{ github.event.inputs.hotfix_suffix }}
AUTO_MERGE: ${{ github.event.inputs.auto_merge }}
GH_TOKEN: ${{ secrets.RKUO_PERSONAL_ACCESS_TOKEN }}
run: |
# Get the branches from the previous step
BRANCHES="${{ steps.get_release_branches.outputs.branches }}"
# Convert BRANCHES to an array
IFS=$',' read -ra BRANCH_ARRAY <<< "$BRANCHES"
# Loop through each release branch and create and merge a PR
for RELEASE_BRANCH in "${BRANCH_ARRAY[@]}"; do
echo "Processing $RELEASE_BRANCH..."
# Parse out the release version by removing "release/" from the branch name
RELEASE_VERSION=${RELEASE_BRANCH#release/}
echo "Release version parsed: $RELEASE_VERSION"
HOTFIX_BRANCH="hotfix/${RELEASE_VERSION}-${HOTFIX_SUFFIX}"
echo "Creating PR from $HOTFIX_BRANCH to $RELEASE_BRANCH"
# Checkout the release branch
echo "Checking out $RELEASE_BRANCH"
git checkout "$RELEASE_BRANCH"
# Create the new hotfix branch
if git rev-parse --verify "$HOTFIX_BRANCH" >/dev/null 2>&1; then
echo "Hotfix branch $HOTFIX_BRANCH already exists. Skipping branch creation."
else
echo "Branching $RELEASE_BRANCH to $HOTFIX_BRANCH"
git checkout -b "$HOTFIX_BRANCH"
fi
# Check if the hotfix commit is a merge commit
if git rev-list --merges -n 1 "$HOTFIX_COMMIT" >/dev/null 2>&1; then
# -m 1 uses the target branch as the base (which is what we want)
echo "Hotfix commit $HOTFIX_COMMIT is a merge commit, using -m 1 for cherry-pick"
CHERRY_PICK_CMD="git cherry-pick -m 1 $HOTFIX_COMMIT"
else
CHERRY_PICK_CMD="git cherry-pick $HOTFIX_COMMIT"
fi
# Perform the cherry-pick
echo "Executing: $CHERRY_PICK_CMD"
eval "$CHERRY_PICK_CMD"
if [ $? -ne 0 ]; then
echo "Cherry-pick failed for $HOTFIX_COMMIT on $HOTFIX_BRANCH. Aborting..."
git cherry-pick --abort
continue
fi
# Push the hotfix branch to the remote
echo "Pushing $HOTFIX_BRANCH..."
git push origin "$HOTFIX_BRANCH"
echo "Hotfix branch $HOTFIX_BRANCH created and pushed."
# Check if PR already exists
EXISTING_PR=$(gh pr list --head "$HOTFIX_BRANCH" --base "$RELEASE_BRANCH" --state open --json number --jq '.[0].number')
if [ -n "$EXISTING_PR" ]; then
echo "An open PR already exists: #$EXISTING_PR. Skipping..."
continue
fi
# Create a new PR and capture the output
PR_OUTPUT=$(gh pr create --title "Merge $HOTFIX_BRANCH into $RELEASE_BRANCH" \
--body "Automated PR to merge \`$HOTFIX_BRANCH\` into \`$RELEASE_BRANCH\`." \
--head "$HOTFIX_BRANCH" --base "$RELEASE_BRANCH")
# Extract the URL from the output
PR_URL=$(echo "$PR_OUTPUT" | grep -Eo 'https://github.com/[^ ]+')
echo "Pull request created: $PR_URL"
# Extract PR number from URL
PR_NUMBER=$(basename "$PR_URL")
echo "Pull request created: $PR_NUMBER"
if [ "$AUTO_MERGE" == "true" ]; then
echo "Attempting to merge pull request #$PR_NUMBER"
# Attempt to merge the PR
gh pr merge "$PR_NUMBER" --merge --auto --delete-branch
if [ $? -eq 0 ]; then
echo "Pull request #$PR_NUMBER merged successfully."
else
# Optionally, handle the error or continue
echo "Failed to merge pull request #$PR_NUMBER."
fi
fi
done

View File

@@ -12,8 +12,7 @@ on:
jobs:
lint-test:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,hdd=256,"run-id=${{ github.run_id }}"]
runs-on: Amd64
# fetch-depth 0 is required for helm/chart-testing-action
steps:

View File

@@ -3,14 +3,11 @@ name: Python Checks
on:
merge_group:
pull_request:
branches:
- main
- 'release/**'
branches: [ main ]
jobs:
mypy-check:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: ubuntu-latest
steps:
- name: Checkout code

View File

@@ -15,14 +15,10 @@ env:
CONFLUENCE_TEST_PAGE_ID: ${{ secrets.CONFLUENCE_TEST_PAGE_ID }}
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
# Jira
JIRA_USER_EMAIL: ${{ secrets.JIRA_USER_EMAIL }}
JIRA_API_TOKEN: ${{ secrets.JIRA_API_TOKEN }}
jobs:
connectors-check:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: ubuntu-latest
env:
PYTHONPATH: ./backend

View File

@@ -1,58 +0,0 @@
name: Connector Tests
on:
schedule:
# This cron expression runs the job daily at 16:00 UTC (9am PT)
- cron: "0 16 * * *"
env:
# Bedrock
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_REGION_NAME: ${{ secrets.AWS_REGION_NAME }}
# OpenAI
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
jobs:
connectors-check:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
env:
PYTHONPATH: ./backend
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
cache: "pip"
cache-dependency-path: |
backend/requirements/default.txt
backend/requirements/dev.txt
- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: |
py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/llm
py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/embedding
- name: Alert on Failure
if: failure() && github.event_name == 'schedule'
env:
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
run: |
curl -X POST \
-H 'Content-type: application/json' \
--data '{"text":"Scheduled Model Tests failed! Check the run at: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}"}' \
$SLACK_WEBHOOK

View File

@@ -3,14 +3,11 @@ name: Python Unit Tests
on:
merge_group:
pull_request:
branches:
- main
- 'release/**'
branches: [ main ]
jobs:
backend-check:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: ubuntu-latest
env:
PYTHONPATH: ./backend

View File

@@ -1,6 +1,6 @@
name: Quality Checks PR
concurrency:
group: Quality-Checks-PR-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
group: Quality-Checks-PR-${{ github.head_ref }}
cancel-in-progress: true
on:
@@ -9,8 +9,7 @@ on:
jobs:
quality-checks:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:

View File

@@ -1,23 +1,19 @@
name: Run Integration Tests v2
name: Run Integration Tests
concurrency:
group: Run-Integration-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
group: Run-Integration-Tests-${{ github.head_ref }}
cancel-in-progress: true
on:
merge_group:
pull_request:
branches:
- main
- 'release/**'
branches: [ main ]
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
jobs:
integration-tests:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
runs-on: Amd64
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -31,35 +27,25 @@ jobs:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# tag every docker image with "test" so that we can spin up the correct set
# of images during testing
# We don't need to build the Web Docker image since it's not yet used
# in the integration tests. We have a separate action to verify that it builds
# successfully.
# NOTE: we don't need to build the Web Docker image since it's not used
# during the IT for now. We have a separate action to verify it builds
# succesfully
- name: Pull Web Docker image
run: |
docker pull danswer/danswer-web-server:latest
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:test
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:it
# we use the runs-on cache for docker builds
# in conjunction with runs-on runners, it has better speed and unlimited caching
# https://runs-on.com/caching/s3-cache-for-github-actions/
# https://runs-on.com/caching/docker/
# https://github.com/moby/buildkit#s3-cache-experimental
# images are built and run locally for testing purposes. Not pushed.
- name: Build Backend Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64
tags: danswer/danswer-backend:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
tags: danswer/danswer-backend:it
cache-from: type=registry,ref=danswer/danswer-backend:it
cache-to: |
type=registry,ref=danswer/danswer-backend:it,mode=max
type=inline
- name: Build Model Server Docker image
uses: ./.github/actions/custom-build-and-push
@@ -67,11 +53,11 @@ jobs:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64
tags: danswer/danswer-model-server:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
tags: danswer/danswer-model-server:it
cache-from: type=registry,ref=danswer/danswer-model-server:it
cache-to: |
type=registry,ref=danswer/danswer-model-server:it,mode=max
type=inline
- name: Build integration test Docker image
uses: ./.github/actions/custom-build-and-push
@@ -79,11 +65,11 @@ jobs:
context: ./backend
file: ./backend/tests/integration/Dockerfile
platforms: linux/amd64
tags: danswer/danswer-integration:test
push: false
load: true
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/integration/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/integration/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
tags: danswer/integration-test-runner:it
cache-from: type=registry,ref=danswer/integration-test-runner:it
cache-to: |
type=registry,ref=danswer/integration-test-runner:it,mode=max
type=inline
- name: Start Docker containers
run: |
@@ -92,7 +78,7 @@ jobs:
AUTH_TYPE=basic \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
IMAGE_TAG=it \
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
id: start_docker
@@ -134,7 +120,6 @@ jobs:
run: |
echo "Running integration tests..."
docker run --rm --network danswer-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
@@ -143,9 +128,7 @@ jobs:
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
-e TEST_WEB_HOSTNAME=test-runner \
danswer/danswer-integration:test
danswer/integration-test-runner:it
continue-on-error: true
id: run_tests

View File

@@ -1,54 +0,0 @@
name: Nightly Tag Push
on:
schedule:
- cron: '0 10 * * *' # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
permissions:
contents: write # Allows pushing tags to the repository
jobs:
create-and-push-tag:
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
steps:
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
# implement here which needs an actual user's deploy key
- name: Checkout code
uses: actions/checkout@v4
with:
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
- name: Set up Git user
run: |
git config user.name "Richard Kuo [bot]"
git config user.email "rkuo[bot]@danswer.ai"
- name: Check for existing nightly tag
id: check_tag
run: |
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
echo "A tag starting with 'nightly-latest' already exists on HEAD."
echo "tag_exists=true" >> $GITHUB_OUTPUT
else
echo "No tag starting with 'nightly-latest' exists on HEAD."
echo "tag_exists=false" >> $GITHUB_OUTPUT
fi
# don't tag again if HEAD already has a nightly-latest tag on it
- name: Create Nightly Tag
if: steps.check_tag.outputs.tag_exists == 'false'
env:
DATE: ${{ github.run_id }}
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
echo "Creating tag: $TAG_NAME"
git tag $TAG_NAME
- name: Push Tag
if: steps.check_tag.outputs.tag_exists == 'false'
run: |
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
git push origin $TAG_NAME

View File

@@ -1 +0,0 @@
backend/tests/integration/tests/pruning/website

View File

@@ -22,7 +22,7 @@ Your input is vital to making sure that Danswer moves in the right direction.
Before starting on implementation, please raise a GitHub issue.
And always feel free to message us (Chris Weaver / Yuhong Sun) on
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ) /
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2afut44lv-Rw3kSWu6_OmdAXRpCv80DQ) /
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.

View File

@@ -101,7 +101,7 @@ COPY ./scripts/force_delete_connector_by_id.py /app/scripts/force_delete_connect
# Put logo in assets
COPY ./assets /app/assets
ENV PYTHONPATH=/app
ENV PYTHONPATH /app
# Default command which does nothing
# This container is used by api server and background which specify their own CMD

View File

@@ -1,109 +0,0 @@
FROM python:3.11.7-slim-bookworm
LABEL com.danswer.maintainer="founders@danswer.ai"
LABEL com.danswer.description="This image is the web/frontend container of Danswer which \
contains code for both the Community and Enterprise editions of Danswer. If you do not \
have a contract or agreement with DanswerAI, you are not permitted to use the Enterprise \
Edition features outside of personal development or testing purposes. Please reach out to \
founders@danswer.ai for more information. Please visit https://github.com/danswer-ai/danswer"
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.3-dev
ENV DANSWER_VERSION=${DANSWER_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
# Install system dependencies
# cmake needed for psycopg (postgres)
# libpq-dev needed for psycopg (postgres)
# curl included just for users' convenience
# zip for Vespa step futher down
# ca-certificates for HTTPS
RUN apt-get update && \
apt-get install -y \
cmake \
curl \
zip \
ca-certificates \
libgnutls30=3.7.9-2+deb12u3 \
libblkid1=2.38.1-5+deb12u1 \
libmount1=2.38.1-5+deb12u1 \
libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 \
libxmlsec1-dev \
pkg-config \
gcc && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean
# Install Python dependencies
# Remove py which is pulled in by retry, py is not needed and is a CVE
COPY ./requirements/default.txt /tmp/requirements.txt
COPY ./requirements/ee.txt /tmp/ee-requirements.txt
RUN pip install --no-cache-dir --upgrade \
--retries 5 \
--timeout 30 \
-r /tmp/requirements.txt \
-r /tmp/ee-requirements.txt && \
pip uninstall -y py && \
playwright install chromium && \
playwright install-deps chromium && \
ln -s /usr/local/bin/supervisord /usr/bin/supervisord
# Cleanup for CVEs and size reduction
# https://github.com/tornadoweb/tornado/issues/3107
# xserver-common and xvfb included by playwright installation but not needed after
# perl-base is part of the base Python Debian image but not needed for Danswer functionality
# perl-base could only be removed with --allow-remove-essential
RUN apt-get update && \
apt-get remove -y --allow-remove-essential \
perl-base \
xserver-common \
xvfb \
cmake \
libldap-2.5-0 \
libxmlsec1-dev \
pkg-config \
gcc && \
apt-get install -y libxmlsec1-openssl && \
apt-get autoremove -y && \
rm -rf /var/lib/apt/lists/* && \
rm -f /usr/local/lib/python3.11/site-packages/tornado/test/test.key
# Pre-downloading models for setups with limited egress
RUN python -c "from tokenizers import Tokenizer; \
Tokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1')"
# Pre-downloading NLTK for setups with limited egress
RUN python -c "import nltk; \
nltk.download('stopwords', quiet=True); \
nltk.download('punkt', quiet=True);"
# nltk.download('wordnet', quiet=True); introduce this back if lemmatization is needed
# Set up application files
WORKDIR /app
# Enterprise Version Files
COPY ./ee /app/ee
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
# Set up application files
COPY ./danswer /app/danswer
COPY ./shared_configs /app/shared_configs
COPY ./alembic /app/alembic
COPY ./alembic_tenants /app/alembic_tenants
COPY ./alembic.ini /app/alembic.ini
COPY supervisord.conf /usr/etc/supervisord.conf
# Escape hatch
COPY ./scripts/force_delete_connector_by_id.py /app/scripts/force_delete_connector_by_id.py
# Put logo in assets
COPY ./assets /app/assets
ENV PYTHONPATH=/app
# Default command which does nothing
# This container is used by api server and background which specify their own CMD
CMD ["tail", "-f", "/dev/null"]

View File

@@ -55,6 +55,6 @@ COPY ./shared_configs /app/shared_configs
# Model Server main code
COPY ./model_server /app/model_server
ENV PYTHONPATH=/app
ENV PYTHONPATH /app
CMD ["uvicorn", "model_server.main:app", "--host", "0.0.0.0", "--port", "9000"]

View File

@@ -1,6 +1,6 @@
# A generic, single database configuration.
[DEFAULT]
[alembic]
# path to migration scripts
script_location = alembic
@@ -47,8 +47,7 @@ prepend_sys_path = .
# version_path_separator = :
# version_path_separator = ;
# version_path_separator = space
version_path_separator = os
# Use os.pathsep. Default configuration used for new projects.
version_path_separator = os # Use os.pathsep. Default configuration used for new projects.
# set to 'true' to search source files recursively
# in each "version_locations" directory
@@ -107,12 +106,3 @@ formatter = generic
[formatter_generic]
format = %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S
[alembic]
script_location = alembic
version_locations = %(script_location)s/versions
[schema_private]
script_location = alembic_tenants
version_locations = %(script_location)s/versions

View File

@@ -1,52 +1,46 @@
from typing import Any
import asyncio
from logging.config import fileConfig
from alembic import context
from danswer.db.engine import build_connection_string
from danswer.db.models import Base
from sqlalchemy import pool
from sqlalchemy.engine import Connection
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.sql import text
from danswer.configs.app_configs import MULTI_TENANT
from danswer.db.engine import build_connection_string
from danswer.db.models import Base
from celery.backends.database.session import ResultModelBase # type: ignore
from sqlalchemy.schema import SchemaItem
# Alembic Config object
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
# Interpret the config file for Python logging.
# This line sets up loggers basically.
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# Add your model's MetaData object here
# add your model's MetaData object here
# for 'autogenerate' support
# from myapp import mymodel
# target_metadata = mymodel.Base.metadata
target_metadata = [Base.metadata, ResultModelBase.metadata]
def get_schema_options() -> tuple[str, bool]:
x_args_raw = context.get_x_argument()
x_args = {}
for arg in x_args_raw:
for pair in arg.split(","):
if "=" in pair:
key, value = pair.split("=", 1)
x_args[key.strip()] = value.strip()
schema_name = x_args.get("schema", "public")
create_schema = x_args.get("create_schema", "true").lower() == "true"
return schema_name, create_schema
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
def include_object(
object: Any, name: str, type_: str, reflected: bool, compare_to: Any
object: SchemaItem,
name: str,
type_: str,
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:
if type_ == "table" and name in EXCLUDE_TABLES:
return False
@@ -55,24 +49,21 @@ def include_object(
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
schema_name, _ = get_schema_options()
url = build_connection_string()
"""
url = build_connection_string()
context.configure(
url=url,
target_metadata=target_metadata, # type: ignore
literal_binds=True,
include_object=include_object,
version_table_schema=schema_name,
include_schemas=True,
script_location=config.get_main_option("script_location"),
dialect_opts={"paramstyle": "named"},
)
@@ -81,37 +72,22 @@ def run_migrations_offline() -> None:
def do_run_migrations(connection: Connection) -> None:
schema_name, create_schema = get_schema_options()
if MULTI_TENANT and schema_name == "public":
raise ValueError(
"Cannot run default migrations in public schema when multi-tenancy is enabled. "
"Please specify a tenant-specific schema."
)
if create_schema:
connection.execute(text(f'CREATE SCHEMA IF NOT EXISTS "{schema_name}"'))
connection.execute(text("COMMIT"))
# Set search_path to the target schema
connection.execute(text(f'SET search_path TO "{schema_name}"'))
context.configure(
connection=connection,
target_metadata=target_metadata, # type: ignore
include_object=include_object,
version_table_schema=schema_name,
include_schemas=True,
compare_type=True,
compare_server_default=True,
script_location=config.get_main_option("script_location"),
)
) # type: ignore
with context.begin_transaction():
context.run_migrations()
async def run_async_migrations() -> None:
"""In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = create_async_engine(
build_connection_string(),
poolclass=pool.NullPool,
@@ -124,6 +100,8 @@ async def run_async_migrations() -> None:
def run_migrations_online() -> None:
"""Run migrations in 'online' mode."""
asyncio.run(run_async_migrations())

View File

@@ -1,46 +0,0 @@
"""fix_user__external_user_group_id_fk
Revision ID: 46b7a812670f
Revises: f32615f71aeb
Create Date: 2024-09-23 12:58:03.894038
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "46b7a812670f"
down_revision = "f32615f71aeb"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Drop the existing primary key
op.drop_constraint(
"user__external_user_group_id_pkey",
"user__external_user_group_id",
type_="primary",
)
# Add the new composite primary key
op.create_primary_key(
"user__external_user_group_id_pkey",
"user__external_user_group_id",
["user_id", "external_user_group_id", "cc_pair_id"],
)
def downgrade() -> None:
# Drop the composite primary key
op.drop_constraint(
"user__external_user_group_id_pkey",
"user__external_user_group_id",
type_="primary",
)
# Delete all entries from the table
op.execute("DELETE FROM user__external_user_group_id")
# Recreate the original primary key on user_id
op.create_primary_key(
"user__external_user_group_id_pkey", "user__external_user_group_id", ["user_id"]
)

View File

@@ -9,7 +9,7 @@ import json
from typing import cast
from alembic import op
import sqlalchemy as sa
from danswer.key_value_store.factory import get_kv_store
from danswer.dynamic_configs.factory import get_dynamic_config_store
# revision identifiers, used by Alembic.
revision = "703313b75876"
@@ -54,7 +54,9 @@ def upgrade() -> None:
)
try:
settings_json = cast(str, get_kv_store().load("token_budget_settings"))
settings_json = cast(
str, get_dynamic_config_store().load("token_budget_settings")
)
settings = json.loads(settings_json)
is_enabled = settings.get("enable_token_budget", False)
@@ -69,7 +71,7 @@ def upgrade() -> None:
)
# Delete the dynamic config
get_kv_store().delete("token_budget_settings")
get_dynamic_config_store().delete("token_budget_settings")
except Exception:
# Ignore if the dynamic config is not found

View File

@@ -1,27 +0,0 @@
"""add last_pruned to the connector_credential_pair table
Revision ID: ac5eaac849f9
Revises: 52a219fb5233
Create Date: 2024-09-10 15:04:26.437118
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "ac5eaac849f9"
down_revision = "46b7a812670f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# last pruned represents the last time the connector was pruned
op.add_column(
"connector_credential_pair",
sa.Column("last_pruned", sa.DateTime(timezone=True), nullable=True),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "last_pruned")

View File

@@ -20,7 +20,7 @@ depends_on: None = None
def upgrade() -> None:
conn = op.get_bind()
existing_ids_and_chosen_assistants = conn.execute(
sa.text('select id, chosen_assistants from "user"')
sa.text("select id, chosen_assistants from public.user")
)
op.drop_column(
"user",
@@ -37,7 +37,7 @@ def upgrade() -> None:
for id, chosen_assistants in existing_ids_and_chosen_assistants:
conn.execute(
sa.text(
'update "user" set chosen_assistants = :chosen_assistants where id = :id'
"update public.user set chosen_assistants = :chosen_assistants where id = :id"
),
{"chosen_assistants": json.dumps(chosen_assistants), "id": id},
)
@@ -46,7 +46,7 @@ def upgrade() -> None:
def downgrade() -> None:
conn = op.get_bind()
existing_ids_and_chosen_assistants = conn.execute(
sa.text('select id, chosen_assistants from "user"')
sa.text("select id, chosen_assistants from public.user")
)
op.drop_column(
"user",
@@ -59,7 +59,7 @@ def downgrade() -> None:
for id, chosen_assistants in existing_ids_and_chosen_assistants:
conn.execute(
sa.text(
'update "user" set chosen_assistants = :chosen_assistants where id = :id'
"update public.user set chosen_assistants = :chosen_assistants where id = :id"
),
{"chosen_assistants": chosen_assistants, "id": id},
)

View File

@@ -1,26 +0,0 @@
"""add_deployment_name_to_llmprovider
Revision ID: e4334d5b33ba
Revises: ac5eaac849f9
Create Date: 2024-10-04 09:52:34.896867
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "e4334d5b33ba"
down_revision = "ac5eaac849f9"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"llm_provider", sa.Column("deployment_name", sa.String(), nullable=True)
)
def downgrade() -> None:
op.drop_column("llm_provider", "deployment_name")

View File

@@ -1,3 +0,0 @@
These files are for public table migrations when operating with multi tenancy.
If you are not a Danswer developer, you can ignore this directory entirely.

View File

@@ -1,111 +0,0 @@
import asyncio
from logging.config import fileConfig
from sqlalchemy import pool
from sqlalchemy.engine import Connection
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.schema import SchemaItem
from alembic import context
from danswer.db.engine import build_connection_string
from danswer.db.models import PublicBase
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
# Interpret the config file for Python logging.
# This line sets up loggers basically.
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# add your model's MetaData object here
# for 'autogenerate' support
# from myapp import mymodel
# target_metadata = mymodel.Base.metadata
target_metadata = [PublicBase.metadata]
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
def include_object(
object: SchemaItem,
name: str,
type_: str,
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:
if type_ == "table" and name in EXCLUDE_TABLES:
return False
return True
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = build_connection_string()
context.configure(
url=url,
target_metadata=target_metadata, # type: ignore
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def do_run_migrations(connection: Connection) -> None:
context.configure(
connection=connection,
target_metadata=target_metadata, # type: ignore
include_object=include_object,
) # type: ignore
with context.begin_transaction():
context.run_migrations()
async def run_async_migrations() -> None:
"""In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = create_async_engine(
build_connection_string(),
poolclass=pool.NullPool,
)
async with connectable.connect() as connection:
await connection.run_sync(do_run_migrations)
await connectable.dispose()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode."""
asyncio.run(run_async_migrations())
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

View File

@@ -1,24 +0,0 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision = ${repr(up_revision)}
down_revision = ${repr(down_revision)}
branch_labels = ${repr(branch_labels)}
depends_on = ${repr(depends_on)}
def upgrade() -> None:
${upgrades if upgrades else "pass"}
def downgrade() -> None:
${downgrades if downgrades else "pass"}

View File

@@ -1,24 +0,0 @@
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision = "14a83a331951"
down_revision = None
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"user_tenant_mapping",
sa.Column("email", sa.String(), nullable=False),
sa.Column("tenant_id", sa.String(), nullable=False),
sa.UniqueConstraint("email", "tenant_id", name="uq_user_tenant"),
sa.UniqueConstraint("email", name="uq_email"),
schema="public",
)
def downgrade() -> None:
op.drop_table("user_tenant_mapping", schema="public")

View File

@@ -1,20 +1,20 @@
from typing import cast
from danswer.configs.constants import KV_USER_STORE_KEY
from danswer.key_value_store.factory import get_kv_store
from danswer.key_value_store.interface import JSON_ro
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.dynamic_configs.interface import ConfigNotFoundError
from danswer.dynamic_configs.interface import JSON_ro
def get_invited_users() -> list[str]:
try:
store = get_kv_store()
store = get_dynamic_config_store()
return cast(list, store.load(KV_USER_STORE_KEY))
except KvKeyNotFoundError:
except ConfigNotFoundError:
return list()
def write_invited_users(emails: list[str]) -> int:
store = get_kv_store()
store = get_dynamic_config_store()
store.store(KV_USER_STORE_KEY, cast(JSON_ro, emails))
return len(emails)

View File

@@ -4,29 +4,29 @@ from typing import cast
from danswer.auth.schemas import UserRole
from danswer.configs.constants import KV_NO_AUTH_USER_PREFERENCES_KEY
from danswer.key_value_store.store import KeyValueStore
from danswer.key_value_store.store import KvKeyNotFoundError
from danswer.dynamic_configs.store import ConfigNotFoundError
from danswer.dynamic_configs.store import DynamicConfigStore
from danswer.server.manage.models import UserInfo
from danswer.server.manage.models import UserPreferences
def set_no_auth_user_preferences(
store: KeyValueStore, preferences: UserPreferences
store: DynamicConfigStore, preferences: UserPreferences
) -> None:
store.store(KV_NO_AUTH_USER_PREFERENCES_KEY, preferences.model_dump())
def load_no_auth_user_preferences(store: KeyValueStore) -> UserPreferences:
def load_no_auth_user_preferences(store: DynamicConfigStore) -> UserPreferences:
try:
preferences_data = cast(
Mapping[str, Any], store.load(KV_NO_AUTH_USER_PREFERENCES_KEY)
)
return UserPreferences(**preferences_data)
except KvKeyNotFoundError:
except ConfigNotFoundError:
return UserPreferences(chosen_assistants=None, default_model=None)
def fetch_no_auth_user(store: KeyValueStore) -> UserInfo:
def fetch_no_auth_user(store: DynamicConfigStore) -> UserInfo:
return UserInfo(
id="__no_auth_user__",
email="anonymous@danswer.ai",

View File

@@ -34,7 +34,6 @@ class UserRead(schemas.BaseUser[uuid.UUID]):
class UserCreate(schemas.BaseUserCreate):
role: UserRole = UserRole.BASIC
has_web_login: bool | None = True
tenant_id: str | None = None
class UserUpdate(schemas.BaseUserUpdate):

View File

@@ -8,7 +8,6 @@ from email.mime.text import MIMEText
from typing import Optional
from typing import Tuple
import jwt
from email_validator import EmailNotValidError
from email_validator import validate_email
from fastapi import APIRouter
@@ -26,14 +25,11 @@ from fastapi_users import schemas
from fastapi_users import UUIDIDMixin
from fastapi_users.authentication import AuthenticationBackend
from fastapi_users.authentication import CookieTransport
from fastapi_users.authentication import JWTStrategy
from fastapi_users.authentication import Strategy
from fastapi_users.authentication.strategy.db import AccessTokenDatabase
from fastapi_users.authentication.strategy.db import DatabaseStrategy
from fastapi_users.openapi import OpenAPIResponseType
from fastapi_users_db_sqlalchemy import SQLAlchemyUserDatabase
from sqlalchemy import select
from sqlalchemy.orm import attributes
from sqlalchemy.orm import Session
from danswer.auth.invited_users import get_invited_users
@@ -41,13 +37,9 @@ from danswer.auth.schemas import UserCreate
from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DATA_PLANE_SECRET
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import EMAIL_FROM
from danswer.configs.app_configs import EXPECTED_API_KEY
from danswer.configs.app_configs import MULTI_TENANT
from danswer.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from danswer.configs.app_configs import SECRET_JWT_KEY
from danswer.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
from danswer.configs.app_configs import SMTP_PASS
from danswer.configs.app_configs import SMTP_PORT
@@ -65,21 +57,15 @@ from danswer.db.auth import get_access_token_db
from danswer.db.auth import get_default_admin_user_emails
from danswer.db.auth import get_user_count
from danswer.db.auth import get_user_db
from danswer.db.auth import SQLAlchemyUserAdminDB
from danswer.db.engine import get_async_session_with_tenant
from danswer.db.engine import get_session
from danswer.db.engine import get_session_with_tenant
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.models import AccessToken
from danswer.db.models import OAuthAccount
from danswer.db.models import User
from danswer.db.models import UserTenantMapping
from danswer.db.users import get_user_by_email
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
from danswer.utils.telemetry import RecordType
from danswer.utils.variable_functionality import fetch_versioned_implementation
from shared_configs.configs import current_tenant_id
logger = setup_logger()
@@ -147,8 +133,8 @@ def verify_email_is_invited(email: str) -> None:
raise PermissionError("User not on allowed user whitelist")
def verify_email_in_whitelist(email: str, tenant_id: str | None = None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
def verify_email_in_whitelist(email: str) -> None:
with Session(get_sqlalchemy_engine()) as db_session:
if not get_user_by_email(email, db_session):
verify_email_is_invited(email)
@@ -168,20 +154,6 @@ def verify_email_domain(email: str) -> None:
)
def get_tenant_id_for_email(email: str) -> str:
if not MULTI_TENANT:
return "public"
# Implement logic to get tenant_id from the mapping table
with Session(get_sqlalchemy_engine()) as db_session:
result = db_session.execute(
select(UserTenantMapping.tenant_id).where(UserTenantMapping.email == email)
)
tenant_id = result.scalar_one_or_none()
if tenant_id is None:
raise exceptions.UserNotExists()
return tenant_id
def send_user_verification_email(
user_email: str,
token: str,
@@ -246,29 +218,6 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
raise exceptions.UserAlreadyExists()
return user
async def on_after_login(
self,
user: User,
request: Request | None = None,
response: Response | None = None,
) -> None:
if response is None or not MULTI_TENANT:
return
tenant_id = get_tenant_id_for_email(user.email)
tenant_token = jwt.encode(
{"tenant_id": tenant_id}, SECRET_JWT_KEY, algorithm="HS256"
)
response.set_cookie(
key="tenant_details",
value=tenant_token,
httponly=True,
secure=WEB_DOMAIN.startswith("https"),
samesite="lax",
)
async def oauth_callback(
self: "BaseUserManager[models.UOAP, models.ID]",
oauth_name: str,
@@ -282,111 +231,45 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
associate_by_email: bool = False,
is_verified_by_default: bool = False,
) -> models.UOAP:
# Get tenant_id from mapping table
try:
tenant_id = (
get_tenant_id_for_email(account_email) if MULTI_TENANT else "public"
verify_email_in_whitelist(account_email)
verify_email_domain(account_email)
user = await super().oauth_callback( # type: ignore
oauth_name=oauth_name,
access_token=access_token,
account_id=account_id,
account_email=account_email,
expires_at=expires_at,
refresh_token=refresh_token,
request=request,
associate_by_email=associate_by_email,
is_verified_by_default=is_verified_by_default,
)
# NOTE: Most IdPs have very short expiry times, and we don't want to force the user to
# re-authenticate that frequently, so by default this is disabled
if expires_at and TRACK_EXTERNAL_IDP_EXPIRY:
oidc_expiry = datetime.fromtimestamp(expires_at, tz=timezone.utc)
await self.user_db.update(user, update_dict={"oidc_expiry": oidc_expiry})
# this is needed if an organization goes from `TRACK_EXTERNAL_IDP_EXPIRY=true` to `false`
# otherwise, the oidc expiry will always be old, and the user will never be able to login
if user.oidc_expiry and not TRACK_EXTERNAL_IDP_EXPIRY:
await self.user_db.update(user, update_dict={"oidc_expiry": None})
# Handle case where user has used product outside of web and is now creating an account through web
if not user.has_web_login:
await self.user_db.update(
user,
update_dict={
"is_verified": is_verified_by_default,
"has_web_login": True,
},
)
except exceptions.UserNotExists:
raise HTTPException(status_code=401, detail="User not found")
user.is_verified = is_verified_by_default
user.has_web_login = True
if not tenant_id:
raise HTTPException(status_code=401, detail="User not found")
token = None
async with get_async_session_with_tenant(tenant_id) as db_session:
token = current_tenant_id.set(tenant_id)
# Print a list of tables in the current database session
verify_email_in_whitelist(account_email, tenant_id)
verify_email_domain(account_email)
if MULTI_TENANT:
tenant_user_db = SQLAlchemyUserAdminDB(db_session, User, OAuthAccount)
self.user_db = tenant_user_db
self.database = tenant_user_db
oauth_account_dict = {
"oauth_name": oauth_name,
"access_token": access_token,
"account_id": account_id,
"account_email": account_email,
"expires_at": expires_at,
"refresh_token": refresh_token,
}
try:
# Attempt to get user by OAuth account
user = await self.get_by_oauth_account(oauth_name, account_id)
except exceptions.UserNotExists:
try:
# Attempt to get user by email
user = await self.get_by_email(account_email)
if not associate_by_email:
raise exceptions.UserAlreadyExists()
user = await self.user_db.add_oauth_account(
user, oauth_account_dict
)
# If user not found by OAuth account or email, create a new user
except exceptions.UserNotExists:
password = self.password_helper.generate()
user_dict = {
"email": account_email,
"hashed_password": self.password_helper.hash(password),
"is_verified": is_verified_by_default,
}
user = await self.user_db.create(user_dict)
user = await self.user_db.add_oauth_account(
user, oauth_account_dict
)
await self.on_after_register(user, request)
else:
for existing_oauth_account in user.oauth_accounts:
if (
existing_oauth_account.account_id == account_id
and existing_oauth_account.oauth_name == oauth_name
):
user = await self.user_db.update_oauth_account(
user, existing_oauth_account, oauth_account_dict
)
# NOTE: Most IdPs have very short expiry times, and we don't want to force the user to
# re-authenticate that frequently, so by default this is disabled
if expires_at and TRACK_EXTERNAL_IDP_EXPIRY:
oidc_expiry = datetime.fromtimestamp(expires_at, tz=timezone.utc)
await self.user_db.update(
user, update_dict={"oidc_expiry": oidc_expiry}
)
# Handle case where user has used product outside of web and is now creating an account through web
if not user.has_web_login: # type: ignore
await self.user_db.update(
user,
{
"is_verified": is_verified_by_default,
"has_web_login": True,
},
)
user.is_verified = is_verified_by_default
user.has_web_login = True # type: ignore
# this is needed if an organization goes from `TRACK_EXTERNAL_IDP_EXPIRY=true` to `false`
# otherwise, the oidc expiry will always be old, and the user will never be able to login
if (
user.oidc_expiry is not None # type: ignore
and not TRACK_EXTERNAL_IDP_EXPIRY
):
await self.user_db.update(user, {"oidc_expiry": None})
user.oidc_expiry = None # type: ignore
if token:
current_tenant_id.reset(token)
return user
return user
async def on_after_register(
self, user: User, request: Optional[Request] = None
@@ -417,51 +300,28 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
async def authenticate(
self, credentials: OAuth2PasswordRequestForm
) -> Optional[User]:
email = credentials.username
# Get tenant_id from mapping table
tenant_id = get_tenant_id_for_email(email)
if not tenant_id:
# User not found in mapping
try:
user = await self.get_by_email(credentials.username)
except exceptions.UserNotExists:
self.password_helper.hash(credentials.password)
return None
# Create a tenant-specific session
async with get_async_session_with_tenant(tenant_id) as tenant_session:
tenant_user_db: SQLAlchemyUserDatabase = SQLAlchemyUserDatabase(
tenant_session, User
if not user.has_web_login:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="NO_WEB_LOGIN_AND_HAS_NO_PASSWORD",
)
self.user_db = tenant_user_db
# Proceed with authentication
try:
user = await self.get_by_email(email)
verified, updated_password_hash = self.password_helper.verify_and_update(
credentials.password, user.hashed_password
)
if not verified:
return None
except exceptions.UserNotExists:
self.password_helper.hash(credentials.password)
return None
if updated_password_hash is not None:
await self.user_db.update(user, {"hashed_password": updated_password_hash})
has_web_login = attributes.get_attribute(user, "has_web_login")
if not has_web_login:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="NO_WEB_LOGIN_AND_HAS_NO_PASSWORD",
)
verified, updated_password_hash = self.password_helper.verify_and_update(
credentials.password, user.hashed_password
)
if not verified:
return None
if updated_password_hash is not None:
await self.user_db.update(
user, {"hashed_password": updated_password_hash}
)
return user
return user
async def get_user_manager(
@@ -476,26 +336,21 @@ cookie_transport = CookieTransport(
)
def get_jwt_strategy() -> JWTStrategy:
return JWTStrategy(
secret=USER_AUTH_SECRET,
lifetime_seconds=SESSION_EXPIRE_TIME_SECONDS,
)
def get_database_strategy(
access_token_db: AccessTokenDatabase[AccessToken] = Depends(get_access_token_db),
) -> DatabaseStrategy:
return DatabaseStrategy(
strategy = DatabaseStrategy(
access_token_db, lifetime_seconds=SESSION_EXPIRE_TIME_SECONDS # type: ignore
)
return strategy
auth_backend = AuthenticationBackend(
name="jwt" if MULTI_TENANT else "database",
name="database",
transport=cookie_transport,
get_strategy=get_jwt_strategy if MULTI_TENANT else get_database_strategy, # type: ignore
) # type: ignore
get_strategy=get_database_strategy,
)
class FastAPIUserWithLogoutRouter(FastAPIUsers[models.UP, models.ID]):
@@ -509,11 +364,9 @@ class FastAPIUserWithLogoutRouter(FastAPIUsers[models.UP, models.ID]):
This way the login router does not need to be included
"""
router = APIRouter()
get_current_user_token = self.authenticator.current_user_token(
active=True, verified=requires_verification
)
logout_responses: OpenAPIResponseType = {
**{
status.HTTP_401_UNAUTHORIZED: {
@@ -560,8 +413,8 @@ async def optional_user_(
async def optional_user(
request: Request,
db_session: Session = Depends(get_session),
user: User | None = Depends(optional_fastapi_current_user),
db_session: Session = Depends(get_session),
) -> User | None:
versioned_fetch_user = fetch_versioned_implementation(
"danswer.auth.users", "optional_user_"
@@ -652,28 +505,3 @@ async def current_admin_user(user: User | None = Depends(current_user)) -> User
def get_default_admin_user_emails_() -> list[str]:
# No default seeding available for Danswer MIT
return []
async def control_plane_dep(request: Request) -> None:
api_key = request.headers.get("X-API-KEY")
if api_key != EXPECTED_API_KEY:
logger.warning("Invalid API key")
raise HTTPException(status_code=401, detail="Invalid API key")
auth_header = request.headers.get("Authorization")
if not auth_header or not auth_header.startswith("Bearer "):
logger.warning("Invalid authorization header")
raise HTTPException(status_code=401, detail="Invalid authorization header")
token = auth_header.split(" ")[1]
try:
payload = jwt.decode(token, DATA_PLANE_SECRET, algorithms=["HS256"])
if payload.get("scope") != "tenant:create":
logger.warning("Insufficient permissions")
raise HTTPException(status_code=403, detail="Insufficient permissions")
except jwt.ExpiredSignatureError:
logger.warning("Token has expired")
raise HTTPException(status_code=401, detail="Token has expired")
except jwt.InvalidTokenError:
logger.warning("Invalid token")
raise HTTPException(status_code=401, detail="Invalid token")

File diff suppressed because it is too large Load Diff

View File

@@ -21,7 +21,6 @@ from danswer.db.document import (
)
from danswer.db.document_set import construct_document_select_by_docset
from danswer.utils.variable_functionality import fetch_versioned_implementation
from danswer.utils.variable_functionality import global_version
class RedisObjectHelper(ABC):
@@ -107,7 +106,6 @@ class RedisObjectHelper(ABC):
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
pass
@@ -123,7 +121,6 @@ class RedisDocumentSet(RedisObjectHelper):
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
last_lock_time = time.monotonic()
@@ -148,7 +145,7 @@ class RedisDocumentSet(RedisObjectHelper):
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id, tenant_id=tenant_id),
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.LOW,
@@ -170,15 +167,11 @@ class RedisUserGroup(RedisObjectHelper):
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
if not global_version.is_ee_version():
return 0
try:
construct_document_select_by_usergroup = fetch_versioned_implementation(
"danswer.db.user_group",
@@ -207,7 +200,7 @@ class RedisUserGroup(RedisObjectHelper):
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id, tenant_id=tenant_id),
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.LOW,
@@ -247,7 +240,6 @@ class RedisConnectorCredentialPair(RedisObjectHelper):
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
last_lock_time = time.monotonic()
@@ -282,7 +274,7 @@ class RedisConnectorCredentialPair(RedisObjectHelper):
# Priority on sync's triggered by new indexing should be medium
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id, tenant_id=tenant_id),
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.MEDIUM,
@@ -304,7 +296,6 @@ class RedisConnectorDeletion(RedisObjectHelper):
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
last_lock_time = time.monotonic()
@@ -341,7 +332,6 @@ class RedisConnectorDeletion(RedisObjectHelper):
document_id=doc.id,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
tenant_id=tenant_id,
),
queue=DanswerCeleryQueues.CONNECTOR_DELETION,
task_id=custom_task_id,
@@ -353,127 +343,6 @@ class RedisConnectorDeletion(RedisObjectHelper):
return len(async_results)
class RedisConnectorPruning(RedisObjectHelper):
"""Celery will kick off a long running generator task to crawl the connector and
find any missing docs, which will each then get a new cleanup task. The progress of
those tasks will then be monitored to completion.
Example rough happy path order:
Check connectorpruning_fence_1
Send generator task with id connectorpruning+generator_1_{uuid}
generator runs connector with callbacks that increment connectorpruning_generator_progress_1
generator creates many subtasks with id connectorpruning+sub_1_{uuid}
in taskset connectorpruning_taskset_1
on completion, generator sets connectorpruning_generator_complete_1
celery postrun removes subtasks from taskset
monitor beat task cleans up when taskset reaches 0 items
"""
PREFIX = "connectorpruning"
FENCE_PREFIX = PREFIX + "_fence" # a fence for the entire pruning process
GENERATOR_TASK_PREFIX = PREFIX + "+generator"
TASKSET_PREFIX = PREFIX + "_taskset" # stores a list of prune tasks id's
SUBTASK_PREFIX = PREFIX + "+sub"
GENERATOR_PROGRESS_PREFIX = (
PREFIX + "_generator_progress"
) # a signal that contains generator progress
GENERATOR_COMPLETE_PREFIX = (
PREFIX + "_generator_complete"
) # a signal that the generator has finished
def __init__(self, id: int) -> None:
"""id: the cc_pair_id of the connector credential pair"""
super().__init__(id)
self.documents_to_prune: set[str] = set()
@property
def generator_task_id_prefix(self) -> str:
return f"{self.GENERATOR_TASK_PREFIX}_{self._id}"
@property
def generator_progress_key(self) -> str:
# example: connectorpruning_generator_progress_1
return f"{self.GENERATOR_PROGRESS_PREFIX}_{self._id}"
@property
def generator_complete_key(self) -> str:
# example: connectorpruning_generator_complete_1
return f"{self.GENERATOR_COMPLETE_PREFIX}_{self._id}"
@property
def subtask_id_prefix(self) -> str:
return f"{self.SUBTASK_PREFIX}_{self._id}"
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock | None,
tenant_id: str | None,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
cc_pair = get_connector_credential_pair_from_id(self._id, db_session)
if not cc_pair:
return None
for doc_id in self.documents_to_prune:
current_time = time.monotonic()
if lock and current_time - last_lock_time >= (
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT / 4
):
lock.reacquire()
last_lock_time = current_time
# celery's default task id format is "dd32ded3-00aa-4884-8b21-42f8332e7fac"
# the actual redis key is "celery-task-meta-dd32ded3-00aa-4884-8b21-42f8332e7fac"
# we prefix the task id so it's easier to keep track of who created the task
# aka "documentset_1_6dd32ded3-00aa-4884-8b21-42f8332e7fac"
custom_task_id = f"{self.subtask_id_prefix}_{uuid4()}"
# add to the tracking taskset in redis BEFORE creating the celery task.
# note that for the moment we are using a single taskset key, not differentiated by cc_pair id
redis_client.sadd(self.taskset_key, custom_task_id)
# Priority on sync's triggered by new indexing should be medium
result = celery_app.send_task(
"document_by_cc_pair_cleanup_task",
kwargs=dict(
document_id=doc_id,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
tenant_id=tenant_id,
),
queue=DanswerCeleryQueues.CONNECTOR_DELETION,
task_id=custom_task_id,
priority=DanswerCeleryPriority.MEDIUM,
)
async_results.append(result)
return len(async_results)
def is_pruning(self, db_session: Session, redis_client: Redis) -> bool:
"""A single example of a helper method being refactored into the redis helper"""
cc_pair = get_connector_credential_pair_from_id(
cc_pair_id=self._id, db_session=db_session
)
if not cc_pair:
raise ValueError(f"cc_pair_id {self._id} does not exist.")
if redis_client.exists(self.fence_key):
return True
return False
def celery_get_queue_length(queue: str, r: Redis) -> int:
"""This is a redis specific way to get the length of a celery queue.
It is priority aware and knows how to count across the multiple redis lists

View File

@@ -1,11 +1,11 @@
from collections.abc import Callable
from datetime import datetime
from datetime import timezone
from typing import Any
from sqlalchemy.orm import Session
from danswer.background.celery.celery_redis import RedisConnectorDeletion
from danswer.background.task_utils import name_cc_prune_task
from danswer.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
from danswer.configs.app_configs import MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
rate_limit_builder,
@@ -16,14 +16,20 @@ from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.models import Document
from danswer.db.connector_credential_pair import get_connector_credential_pair
from danswer.db.engine import get_db_current_time
from danswer.db.enums import TaskStatus
from danswer.db.models import Connector
from danswer.db.models import Credential
from danswer.db.models import TaskQueueState
from danswer.redis.redis_pool import get_redis_client
from danswer.db.tasks import check_task_is_live_and_not_timed_out
from danswer.db.tasks import get_latest_task
from danswer.db.tasks import get_latest_task_by_type
from danswer.redis.redis_pool import RedisPool
from danswer.server.documents.models import DeletionAttemptSnapshot
from danswer.utils.logger import setup_logger
logger = setup_logger()
redis_pool = RedisPool()
def _get_deletion_status(
@@ -40,7 +46,7 @@ def _get_deletion_status(
rcd = RedisConnectorDeletion(cc_pair.id)
r = get_redis_client()
r = redis_pool.get_client()
if not r.exists(rcd.fence_key):
return None
@@ -63,19 +69,53 @@ def get_deletion_attempt_snapshot(
)
def should_prune_cc_pair(
connector: Connector, credential: Credential, db_session: Session
) -> bool:
if not connector.prune_freq:
return False
pruning_task_name = name_cc_prune_task(
connector_id=connector.id, credential_id=credential.id
)
last_pruning_task = get_latest_task(pruning_task_name, db_session)
current_db_time = get_db_current_time(db_session)
if not last_pruning_task:
time_since_initialization = current_db_time - connector.time_created
if time_since_initialization.total_seconds() >= connector.prune_freq:
return True
return False
if not ALLOW_SIMULTANEOUS_PRUNING:
pruning_type_task_name = name_cc_prune_task()
last_pruning_type_task = get_latest_task_by_type(
pruning_type_task_name, db_session
)
if last_pruning_type_task and check_task_is_live_and_not_timed_out(
last_pruning_type_task, db_session
):
return False
if check_task_is_live_and_not_timed_out(last_pruning_task, db_session):
return False
if not last_pruning_task.start_time:
return False
time_since_last_pruning = current_db_time - last_pruning_task.start_time
return time_since_last_pruning.total_seconds() >= connector.prune_freq
def document_batch_to_ids(doc_batch: list[Document]) -> set[str]:
return {doc.id for doc in doc_batch}
def extract_ids_from_runnable_connector(
runnable_connector: BaseConnector,
progress_callback: Callable[[int], None] | None = None,
) -> set[str]:
def extract_ids_from_runnable_connector(runnable_connector: BaseConnector) -> set[str]:
"""
If the PruneConnector hasnt been implemented for the given connector, just pull
all docs using the load_from_state and grab out the IDs.
Optionally, a callback can be passed to handle the length of each document batch.
all docs using the load_from_state and grab out the IDs
"""
all_connector_doc_ids: set[str] = set()
@@ -98,36 +138,6 @@ def extract_ids_from_runnable_connector(
max_calls=MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE, period=60
)(document_batch_to_ids)
for doc_batch in doc_batch_generator:
if progress_callback:
progress_callback(len(doc_batch))
all_connector_doc_ids.update(doc_batch_processing_func(doc_batch))
return all_connector_doc_ids
def celery_is_listening_to_queue(worker: Any, name: str) -> bool:
"""Checks to see if we're listening to the named queue"""
# how to get a list of queues this worker is listening to
# https://stackoverflow.com/questions/29790523/how-to-determine-which-queues-a-celery-worker-is-consuming-at-runtime
queue_names = list(worker.app.amqp.queues.consume_from.keys())
for queue_name in queue_names:
if queue_name == name:
return True
return False
def celery_is_worker_primary(worker: Any) -> bool:
"""There are multiple approaches that could be taken to determine if a celery worker
is 'primary', as defined by us. But the way we do it is to check the hostname set
for the celery worker, which can be done either in celeryconfig.py or on the
command line with '--hostname'."""
hostname = worker.hostname
if hostname.startswith("light"):
return False
if hostname.startswith("heavy"):
return False
return True

View File

@@ -1,11 +1,7 @@
# docs: https://docs.celeryq.dev/en/stable/userguide/configuration.html
import urllib.parse
from danswer.configs.app_configs import CELERY_BROKER_POOL_LIMIT
from danswer.configs.app_configs import CELERY_RESULT_EXPIRES
from danswer.configs.app_configs import REDIS_DB_NUMBER_CELERY
from danswer.configs.app_configs import REDIS_DB_NUMBER_CELERY_RESULT_BACKEND
from danswer.configs.app_configs import REDIS_HEALTH_CHECK_INTERVAL
from danswer.configs.app_configs import REDIS_HOST
from danswer.configs.app_configs import REDIS_PASSWORD
from danswer.configs.app_configs import REDIS_PORT
@@ -13,13 +9,12 @@ from danswer.configs.app_configs import REDIS_SSL
from danswer.configs.app_configs import REDIS_SSL_CA_CERTS
from danswer.configs.app_configs import REDIS_SSL_CERT_REQS
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import REDIS_SOCKET_KEEPALIVE_OPTIONS
CELERY_SEPARATOR = ":"
CELERY_PASSWORD_PART = ""
if REDIS_PASSWORD:
CELERY_PASSWORD_PART = ":" + urllib.parse.quote(REDIS_PASSWORD, safe="") + "@"
CELERY_PASSWORD_PART = f":{REDIS_PASSWORD}@"
REDIS_SCHEME = "redis"
@@ -41,30 +36,12 @@ result_backend = f"{REDIS_SCHEME}://{CELERY_PASSWORD_PART}{REDIS_HOST}:{REDIS_PO
# can stall other tasks.
worker_prefetch_multiplier = 4
broker_connection_retry_on_startup = True
broker_pool_limit = CELERY_BROKER_POOL_LIMIT
# redis broker settings
# https://docs.celeryq.dev/projects/kombu/en/stable/reference/kombu.transport.redis.html
broker_transport_options = {
"priority_steps": list(range(len(DanswerCeleryPriority))),
"sep": CELERY_SEPARATOR,
"queue_order_strategy": "priority",
"retry_on_timeout": True,
"health_check_interval": REDIS_HEALTH_CHECK_INTERVAL,
"socket_keepalive": True,
"socket_keepalive_options": REDIS_SOCKET_KEEPALIVE_OPTIONS,
}
# redis backend settings
# https://docs.celeryq.dev/en/stable/userguide/configuration.html#redis-backend-settings
# there doesn't appear to be a way to set socket_keepalive_options on the redis result backend
redis_socket_keepalive = True
redis_retry_on_timeout = True
redis_backend_health_check_interval = REDIS_HEALTH_CHECK_INTERVAL
task_default_priority = DanswerCeleryPriority.MEDIUM
task_acks_late = True

View File

@@ -1,113 +0,0 @@
import redis
from celery import shared_task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from sqlalchemy.orm import Session
from sqlalchemy.orm.exc import ObjectDeletedError
from danswer.background.celery.celery_app import celery_app
from danswer.background.celery.celery_app import task_logger
from danswer.background.celery.celery_redis import RedisConnectorDeletion
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerRedisLocks
from danswer.db.connector_credential_pair import get_connector_credential_pairs
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.models import ConnectorCredentialPair
from danswer.redis.redis_pool import get_redis_client
@shared_task(
name="check_for_connector_deletion_task",
soft_time_limit=JOB_TIMEOUT,
trail=False,
)
def check_for_connector_deletion_task(tenant_id: str | None) -> None:
r = get_redis_client()
lock_beat = r.lock(
DanswerRedisLocks.CHECK_CONNECTOR_DELETION_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
try:
# these tasks should never overlap
if not lock_beat.acquire(blocking=False):
return
with Session(get_sqlalchemy_engine()) as db_session:
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair in cc_pairs:
try_generate_document_cc_pair_cleanup_tasks(
cc_pair, db_session, r, lock_beat, tenant_id
)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
except Exception:
task_logger.exception("Unexpected exception")
finally:
if lock_beat.owned():
lock_beat.release()
def try_generate_document_cc_pair_cleanup_tasks(
cc_pair: ConnectorCredentialPair,
db_session: Session,
r: Redis,
lock_beat: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
"""Returns an int if syncing is needed. The int represents the number of sync tasks generated.
Note that syncing can still be required even if the number of sync tasks generated is zero.
Returns None if no syncing is required.
"""
lock_beat.reacquire()
rcd = RedisConnectorDeletion(cc_pair.id)
# don't generate sync tasks if tasks are still pending
if r.exists(rcd.fence_key):
return None
# we need to refresh the state of the object inside the fence
# to avoid a race condition with db.commit/fence deletion
# at the end of this taskset
try:
db_session.refresh(cc_pair)
except ObjectDeletedError:
return None
if cc_pair.status != ConnectorCredentialPairStatus.DELETING:
return None
# add tasks to celery and build up the task set to monitor in redis
r.delete(rcd.taskset_key)
# Add all documents that need to be updated into the queue
task_logger.info(
f"RedisConnectorDeletion.generate_tasks starting. cc_pair_id={cc_pair.id}"
)
tasks_generated = rcd.generate_tasks(
celery_app, db_session, r, lock_beat, tenant_id
)
if tasks_generated is None:
return None
# Currently we are allowing the sync to proceed with 0 tasks.
# It's possible for sets/groups to be generated initially with no entries
# and they still need to be marked as up to date.
# if tasks_generated == 0:
# return 0
task_logger.info(
f"RedisConnectorDeletion.generate_tasks finished. "
f"cc_pair_id={cc_pair.id} tasks_generated={tasks_generated}"
)
# set this only after all tasks have been added
r.set(rcd.fence_key, tasks_generated)
return tasks_generated

View File

@@ -1,137 +0,0 @@
#####
# Periodic Tasks
#####
import json
from typing import Any
from celery import shared_task
from celery.contrib.abortable import AbortableTask # type: ignore
from celery.exceptions import TaskRevokedError
from sqlalchemy import inspect
from sqlalchemy import text
from sqlalchemy.orm import Session
from danswer.background.celery.celery_app import task_logger
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import PostgresAdvisoryLocks
from danswer.db.engine import get_sqlalchemy_engine # type: ignore
@shared_task(
name="kombu_message_cleanup_task",
soft_time_limit=JOB_TIMEOUT,
bind=True,
base=AbortableTask,
)
def kombu_message_cleanup_task(self: Any) -> int:
"""Runs periodically to clean up the kombu_message table"""
# we will select messages older than this amount to clean up
KOMBU_MESSAGE_CLEANUP_AGE = 7 # days
KOMBU_MESSAGE_CLEANUP_PAGE_LIMIT = 1000
ctx = {}
ctx["last_processed_id"] = 0
ctx["deleted"] = 0
ctx["cleanup_age"] = KOMBU_MESSAGE_CLEANUP_AGE
ctx["page_limit"] = KOMBU_MESSAGE_CLEANUP_PAGE_LIMIT
with Session(get_sqlalchemy_engine()) as db_session:
# Exit the task if we can't take the advisory lock
result = db_session.execute(
text("SELECT pg_try_advisory_lock(:id)"),
{"id": PostgresAdvisoryLocks.KOMBU_MESSAGE_CLEANUP_LOCK_ID.value},
).scalar()
if not result:
return 0
while True:
if self.is_aborted():
raise TaskRevokedError("kombu_message_cleanup_task was aborted.")
b = kombu_message_cleanup_task_helper(ctx, db_session)
if not b:
break
db_session.commit()
if ctx["deleted"] > 0:
task_logger.info(
f"Deleted {ctx['deleted']} orphaned messages from kombu_message."
)
return ctx["deleted"]
def kombu_message_cleanup_task_helper(ctx: dict, db_session: Session) -> bool:
"""
Helper function to clean up old messages from the `kombu_message` table that are no longer relevant.
This function retrieves messages from the `kombu_message` table that are no longer visible and
older than a specified interval. It checks if the corresponding task_id exists in the
`celery_taskmeta` table. If the task_id does not exist, the message is deleted.
Args:
ctx (dict): A context dictionary containing configuration parameters such as:
- 'cleanup_age' (int): The age in days after which messages are considered old.
- 'page_limit' (int): The maximum number of messages to process in one batch.
- 'last_processed_id' (int): The ID of the last processed message to handle pagination.
- 'deleted' (int): A counter to track the number of deleted messages.
db_session (Session): The SQLAlchemy database session for executing queries.
Returns:
bool: Returns True if there are more rows to process, False if not.
"""
inspector = inspect(db_session.bind)
if not inspector:
return False
# With the move to redis as celery's broker and backend, kombu tables may not even exist.
# We can fail silently.
if not inspector.has_table("kombu_message"):
return False
query = text(
"""
SELECT id, timestamp, payload
FROM kombu_message WHERE visible = 'false'
AND timestamp < CURRENT_TIMESTAMP - INTERVAL :interval_days
AND id > :last_processed_id
ORDER BY id
LIMIT :page_limit
"""
)
kombu_messages = db_session.execute(
query,
{
"interval_days": f"{ctx['cleanup_age']} days",
"page_limit": ctx["page_limit"],
"last_processed_id": ctx["last_processed_id"],
},
).fetchall()
if len(kombu_messages) == 0:
return False
for msg in kombu_messages:
payload = json.loads(msg[2])
task_id = payload["headers"]["id"]
# Check if task_id exists in celery_taskmeta
task_exists = db_session.execute(
text("SELECT 1 FROM celery_taskmeta WHERE task_id = :task_id"),
{"task_id": task_id},
).fetchone()
# If task_id does not exist, delete the message
if not task_exists:
result = db_session.execute(
text("DELETE FROM kombu_message WHERE id = :message_id"),
{"message_id": msg[0]},
)
if result.rowcount > 0: # type: ignore
ctx["deleted"] += 1
ctx["last_processed_id"] = msg[0]
return True

View File

@@ -1,251 +0,0 @@
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from uuid import uuid4
import redis
from celery import shared_task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from sqlalchemy.orm import Session
from danswer.background.celery.celery_app import celery_app
from danswer.background.celery.celery_app import task_logger
from danswer.background.celery.celery_redis import RedisConnectorPruning
from danswer.background.celery.celery_utils import extract_ids_from_runnable_connector
from danswer.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerRedisLocks
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.models import InputType
from danswer.db.connector_credential_pair import get_connector_credential_pair
from danswer.db.connector_credential_pair import get_connector_credential_pairs
from danswer.db.document import get_documents_for_connector_credential_pair
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.models import ConnectorCredentialPair
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
logger = setup_logger()
@shared_task(
name="check_for_prune_task_2",
soft_time_limit=JOB_TIMEOUT,
)
def check_for_prune_task_2(tenant_id: str | None) -> None:
r = get_redis_client()
lock_beat = r.lock(
DanswerRedisLocks.CHECK_PRUNE_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
try:
# these tasks should never overlap
if not lock_beat.acquire(blocking=False):
return
with get_session_with_tenant(tenant_id) as db_session:
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair in cc_pairs:
tasks_created = ccpair_pruning_generator_task_creation_helper(
cc_pair, db_session, tenant_id, r, lock_beat
)
if not tasks_created:
continue
task_logger.info(f"Pruning started: cc_pair_id={cc_pair.id}")
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
except Exception:
task_logger.exception("Unexpected exception")
finally:
if lock_beat.owned():
lock_beat.release()
def ccpair_pruning_generator_task_creation_helper(
cc_pair: ConnectorCredentialPair,
db_session: Session,
tenant_id: str | None,
r: Redis,
lock_beat: redis.lock.Lock,
) -> int | None:
"""Returns an int if pruning is triggered.
The int represents the number of prune tasks generated (in this case, only one
because the task is a long running generator task.)
Returns None if no pruning is triggered (due to not being needed or
other reasons such as simultaneous pruning restrictions.
Checks for scheduling related conditions, then delegates the rest of the checks to
try_creating_prune_generator_task.
"""
lock_beat.reacquire()
# skip pruning if no prune frequency is set
# pruning can still be forced via the API which will run a pruning task directly
if not cc_pair.connector.prune_freq:
return None
# skip pruning if the next scheduled prune time hasn't been reached yet
last_pruned = cc_pair.last_pruned
if not last_pruned:
# if never pruned, use the connector time created as the last_pruned time
last_pruned = cc_pair.connector.time_created
next_prune = last_pruned + timedelta(seconds=cc_pair.connector.prune_freq)
if datetime.now(timezone.utc) < next_prune:
return None
return try_creating_prune_generator_task(cc_pair, db_session, r, tenant_id)
def try_creating_prune_generator_task(
cc_pair: ConnectorCredentialPair,
db_session: Session,
r: Redis,
tenant_id: str | None,
) -> int | None:
"""Checks for any conditions that should block the pruning generator task from being
created, then creates the task.
Does not check for scheduling related conditions as this function
is used to trigger prunes immediately.
"""
if not ALLOW_SIMULTANEOUS_PRUNING:
for key in r.scan_iter(RedisConnectorPruning.FENCE_PREFIX + "*"):
return None
rcp = RedisConnectorPruning(cc_pair.id)
# skip pruning if already pruning
if r.exists(rcp.fence_key):
return None
# skip pruning if the cc_pair is deleting
db_session.refresh(cc_pair)
if cc_pair.status == ConnectorCredentialPairStatus.DELETING:
return None
# add a long running generator task to the queue
r.delete(rcp.generator_complete_key)
r.delete(rcp.taskset_key)
custom_task_id = f"{rcp.generator_task_id_prefix}_{uuid4()}"
celery_app.send_task(
"connector_pruning_generator_task",
kwargs=dict(
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
tenant_id=tenant_id,
),
queue=DanswerCeleryQueues.CONNECTOR_PRUNING,
task_id=custom_task_id,
priority=DanswerCeleryPriority.LOW,
)
# set this only after all tasks have been added
r.set(rcp.fence_key, 1)
return 1
@shared_task(name="connector_pruning_generator_task", soft_time_limit=JOB_TIMEOUT)
def connector_pruning_generator_task(
connector_id: int, credential_id: int, tenant_id: str | None
) -> None:
"""connector pruning task. For a cc pair, this task pulls all document IDs from the source
and compares those IDs to locally stored documents and deletes all locally stored IDs missing
from the most recently pulled document ID list"""
r = get_redis_client()
with get_session_with_tenant(tenant_id) as db_session:
try:
cc_pair = get_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
if not cc_pair:
task_logger.warning(
f"ccpair not found for {connector_id} {credential_id}"
)
return
rcp = RedisConnectorPruning(cc_pair.id)
# Define the callback function
def redis_increment_callback(amount: int) -> None:
r.incrby(rcp.generator_progress_key, amount)
runnable_connector = instantiate_connector(
db_session,
cc_pair.connector.source,
InputType.PRUNE,
cc_pair.connector.connector_specific_config,
cc_pair.credential,
)
# a list of docs in the source
all_connector_doc_ids: set[str] = extract_ids_from_runnable_connector(
runnable_connector, redis_increment_callback
)
# a list of docs in our local index
all_indexed_document_ids = {
doc.id
for doc in get_documents_for_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
}
# generate list of docs to remove (no longer in the source)
doc_ids_to_remove = list(all_indexed_document_ids - all_connector_doc_ids)
task_logger.info(
f"Pruning set collected: "
f"cc_pair_id={cc_pair.id} "
f"docs_to_remove={len(doc_ids_to_remove)} "
f"doc_source={cc_pair.connector.source}"
)
rcp.documents_to_prune = set(doc_ids_to_remove)
task_logger.info(
f"RedisConnectorPruning.generate_tasks starting. cc_pair_id={cc_pair.id}"
)
tasks_generated = rcp.generate_tasks(
celery_app, db_session, r, None, tenant_id
)
if tasks_generated is None:
return None
task_logger.info(
f"RedisConnectorPruning.generate_tasks finished. "
f"cc_pair_id={cc_pair.id} tasks_generated={tasks_generated}"
)
r.set(rcp.generator_complete_key, tasks_generated)
except Exception as e:
task_logger.exception(
f"Failed to run pruning for connector id {connector_id}."
)
r.delete(rcp.generator_progress_key)
r.delete(rcp.taskset_key)
r.delete(rcp.fence_key)
raise e

View File

@@ -1,126 +0,0 @@
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from danswer.access.access import get_access_for_document
from danswer.background.celery.celery_app import task_logger
from danswer.db.document import delete_document_by_connector_credential_pair__no_commit
from danswer.db.document import delete_documents_complete__no_commit
from danswer.db.document import get_document
from danswer.db.document import get_document_connector_count
from danswer.db.document import mark_document_as_synced
from danswer.db.document_set import fetch_document_sets_for_document
from danswer.db.engine import get_session_with_tenant
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import VespaDocumentFields
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
@shared_task(
name="document_by_cc_pair_cleanup_task",
bind=True,
soft_time_limit=45,
time_limit=60,
max_retries=3,
)
def document_by_cc_pair_cleanup_task(
self: Task,
document_id: str,
connector_id: int,
credential_id: int,
tenant_id: str | None,
) -> bool:
"""A lightweight subtask used to clean up document to cc pair relationships.
Created by connection deletion and connector pruning parent tasks."""
"""
To delete a connector / credential pair:
(1) find all documents associated with connector / credential pair where there
this the is only connector / credential pair that has indexed it
(2) delete all documents from document stores
(3) delete all entries from postgres
(4) find all documents associated with connector / credential pair where there
are multiple connector / credential pairs that have indexed it
(5) update document store entries to remove access associated with the
connector / credential pair from the access list
(6) delete all relevant entries from postgres
"""
try:
with get_session_with_tenant(tenant_id) as db_session:
action = "skip"
chunks_affected = 0
curr_ind_name, sec_ind_name = get_both_index_names(db_session)
document_index = get_default_document_index(
primary_index_name=curr_ind_name, secondary_index_name=sec_ind_name
)
count = get_document_connector_count(db_session, document_id)
if count == 1:
# count == 1 means this is the only remaining cc_pair reference to the doc
# delete it from vespa and the db
action = "delete"
chunks_affected = document_index.delete_single(document_id)
delete_documents_complete__no_commit(
db_session=db_session,
document_ids=[document_id],
)
elif count > 1:
action = "update"
# count > 1 means the document still has cc_pair references
doc = get_document(document_id, db_session)
if not doc:
return False
# the below functions do not include cc_pairs being deleted.
# i.e. they will correctly omit access for the current cc_pair
doc_access = get_access_for_document(
document_id=document_id, db_session=db_session
)
doc_sets = fetch_document_sets_for_document(document_id, db_session)
update_doc_sets: set[str] = set(doc_sets)
fields = VespaDocumentFields(
document_sets=update_doc_sets,
access=doc_access,
boost=doc.boost,
hidden=doc.hidden,
)
# update Vespa. OK if doc doesn't exist. Raises exception otherwise.
chunks_affected = document_index.update_single(
document_id, fields=fields
)
# there are still other cc_pair references to the doc, so just resync to Vespa
delete_document_by_connector_credential_pair__no_commit(
db_session=db_session,
document_id=document_id,
connector_credential_pair_identifier=ConnectorCredentialPairIdentifier(
connector_id=connector_id,
credential_id=credential_id,
),
)
mark_document_as_synced(document_id, db_session)
else:
pass
task_logger.info(
f"document_id={document_id} refcount={count} action={action} chunks={chunks_affected}"
)
db_session.commit()
except SoftTimeLimitExceeded:
task_logger.info(f"SoftTimeLimitExceeded exception. doc_id={document_id}")
except Exception as e:
task_logger.exception("Unexpected exception")
# Exponential backoff from 2^4 to 2^6 ... i.e. 16, 32, 64
countdown = 2 ** (self.request.retries + 4)
self.retry(exc=e, countdown=countdown)
return True

View File

@@ -1,621 +0,0 @@
import traceback
from typing import cast
import redis
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from sqlalchemy.orm import Session
from danswer.access.access import get_access_for_document
from danswer.background.celery.celery_app import celery_app
from danswer.background.celery.celery_app import task_logger
from danswer.background.celery.celery_redis import celery_get_queue_length
from danswer.background.celery.celery_redis import RedisConnectorCredentialPair
from danswer.background.celery.celery_redis import RedisConnectorDeletion
from danswer.background.celery.celery_redis import RedisConnectorPruning
from danswer.background.celery.celery_redis import RedisDocumentSet
from danswer.background.celery.celery_redis import RedisUserGroup
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerRedisLocks
from danswer.db.connector import fetch_connector_by_id
from danswer.db.connector import mark_ccpair_as_pruned
from danswer.db.connector_credential_pair import add_deletion_failure_message
from danswer.db.connector_credential_pair import (
delete_connector_credential_pair__no_commit,
)
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.connector_credential_pair import get_connector_credential_pairs
from danswer.db.document import count_documents_by_needs_sync
from danswer.db.document import get_document
from danswer.db.document import mark_document_as_synced
from danswer.db.document_set import delete_document_set
from danswer.db.document_set import delete_document_set_cc_pair_relationship__no_commit
from danswer.db.document_set import fetch_document_sets
from danswer.db.document_set import fetch_document_sets_for_document
from danswer.db.document_set import get_document_set_by_id
from danswer.db.document_set import mark_document_set_as_synced
from danswer.db.engine import get_session_with_tenant
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.index_attempt import delete_index_attempts
from danswer.db.models import DocumentSet
from danswer.db.models import UserGroup
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import UpdateRequest
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.variable_functionality import fetch_versioned_implementation
from danswer.utils.variable_functionality import (
fetch_versioned_implementation_with_fallback,
)
from danswer.utils.variable_functionality import global_version
from danswer.utils.variable_functionality import noop_fallback
# celery auto associates tasks created inside another task,
# which bloats the result metadata considerably. trail=False prevents this.
@shared_task(
name="check_for_vespa_sync_task",
soft_time_limit=JOB_TIMEOUT,
trail=False,
)
def check_for_vespa_sync_task(tenant_id: str | None) -> None:
"""Runs periodically to check if any document needs syncing.
Generates sets of tasks for Celery if syncing is needed."""
r = get_redis_client()
lock_beat = r.lock(
DanswerRedisLocks.CHECK_VESPA_SYNC_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
try:
# these tasks should never overlap
if not lock_beat.acquire(blocking=False):
return
with get_session_with_tenant(tenant_id) as db_session:
try_generate_stale_document_sync_tasks(db_session, r, lock_beat, tenant_id)
# check if any document sets are not synced
document_set_info = fetch_document_sets(
user_id=None, db_session=db_session, include_outdated=True
)
for document_set, _ in document_set_info:
try_generate_document_set_sync_tasks(
document_set, db_session, r, lock_beat, tenant_id
)
# check if any user groups are not synced
if global_version.is_ee_version():
try:
fetch_user_groups = fetch_versioned_implementation(
"danswer.db.user_group", "fetch_user_groups"
)
user_groups = fetch_user_groups(
db_session=db_session, only_up_to_date=False
)
for usergroup in user_groups:
try_generate_user_group_sync_tasks(
usergroup, db_session, r, lock_beat, tenant_id
)
except ModuleNotFoundError:
# Always exceptions on the MIT version, which is expected
# We shouldn't actually get here if the ee version check works
pass
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
except Exception:
task_logger.exception("Unexpected exception")
finally:
if lock_beat.owned():
lock_beat.release()
def try_generate_stale_document_sync_tasks(
db_session: Session, r: Redis, lock_beat: redis.lock.Lock, tenant_id: str | None
) -> int | None:
# the fence is up, do nothing
if r.exists(RedisConnectorCredentialPair.get_fence_key()):
return None
r.delete(RedisConnectorCredentialPair.get_taskset_key()) # delete the taskset
# add tasks to celery and build up the task set to monitor in redis
stale_doc_count = count_documents_by_needs_sync(db_session)
if stale_doc_count == 0:
return None
task_logger.info(
f"Stale documents found (at least {stale_doc_count}). Generating sync tasks by cc pair."
)
task_logger.info("RedisConnector.generate_tasks starting by cc_pair.")
# rkuo: we could technically sync all stale docs in one big pass.
# but I feel it's more understandable to group the docs by cc_pair
total_tasks_generated = 0
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair in cc_pairs:
rc = RedisConnectorCredentialPair(cc_pair.id)
tasks_generated = rc.generate_tasks(
celery_app, db_session, r, lock_beat, tenant_id
)
if tasks_generated is None:
continue
if tasks_generated == 0:
continue
task_logger.info(
f"RedisConnector.generate_tasks finished for single cc_pair. "
f"cc_pair_id={cc_pair.id} tasks_generated={tasks_generated}"
)
total_tasks_generated += tasks_generated
task_logger.info(
f"RedisConnector.generate_tasks finished for all cc_pairs. total_tasks_generated={total_tasks_generated}"
)
r.set(RedisConnectorCredentialPair.get_fence_key(), total_tasks_generated)
return total_tasks_generated
def try_generate_document_set_sync_tasks(
document_set: DocumentSet,
db_session: Session,
r: Redis,
lock_beat: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
lock_beat.reacquire()
rds = RedisDocumentSet(document_set.id)
# don't generate document set sync tasks if tasks are still pending
if r.exists(rds.fence_key):
return None
# don't generate sync tasks if we're up to date
# race condition with the monitor/cleanup function if we use a cached result!
db_session.refresh(document_set)
if document_set.is_up_to_date:
return None
# add tasks to celery and build up the task set to monitor in redis
r.delete(rds.taskset_key)
task_logger.info(
f"RedisDocumentSet.generate_tasks starting. document_set_id={document_set.id}"
)
# Add all documents that need to be updated into the queue
tasks_generated = rds.generate_tasks(
celery_app, db_session, r, lock_beat, tenant_id
)
if tasks_generated is None:
return None
# Currently we are allowing the sync to proceed with 0 tasks.
# It's possible for sets/groups to be generated initially with no entries
# and they still need to be marked as up to date.
# if tasks_generated == 0:
# return 0
task_logger.info(
f"RedisDocumentSet.generate_tasks finished. "
f"document_set_id={document_set.id} tasks_generated={tasks_generated}"
)
# set this only after all tasks have been added
r.set(rds.fence_key, tasks_generated)
return tasks_generated
def try_generate_user_group_sync_tasks(
usergroup: UserGroup,
db_session: Session,
r: Redis,
lock_beat: redis.lock.Lock,
tenant_id: str | None,
) -> int | None:
lock_beat.reacquire()
rug = RedisUserGroup(usergroup.id)
# don't generate sync tasks if tasks are still pending
if r.exists(rug.fence_key):
return None
# race condition with the monitor/cleanup function if we use a cached result!
db_session.refresh(usergroup)
if usergroup.is_up_to_date:
return None
# add tasks to celery and build up the task set to monitor in redis
r.delete(rug.taskset_key)
# Add all documents that need to be updated into the queue
task_logger.info(
f"RedisUserGroup.generate_tasks starting. usergroup_id={usergroup.id}"
)
tasks_generated = rug.generate_tasks(
celery_app, db_session, r, lock_beat, tenant_id
)
if tasks_generated is None:
return None
# Currently we are allowing the sync to proceed with 0 tasks.
# It's possible for sets/groups to be generated initially with no entries
# and they still need to be marked as up to date.
# if tasks_generated == 0:
# return 0
task_logger.info(
f"RedisUserGroup.generate_tasks finished. "
f"usergroup_id={usergroup.id} tasks_generated={tasks_generated}"
)
# set this only after all tasks have been added
r.set(rug.fence_key, tasks_generated)
return tasks_generated
def monitor_connector_taskset(r: Redis) -> None:
fence_value = r.get(RedisConnectorCredentialPair.get_fence_key())
if fence_value is None:
return
try:
initial_count = int(cast(int, fence_value))
except ValueError:
task_logger.error("The value is not an integer.")
return
count = r.scard(RedisConnectorCredentialPair.get_taskset_key())
task_logger.info(
f"Stale document sync progress: remaining={count} initial={initial_count}"
)
if count == 0:
r.delete(RedisConnectorCredentialPair.get_taskset_key())
r.delete(RedisConnectorCredentialPair.get_fence_key())
task_logger.info(f"Successfully synced stale documents. count={initial_count}")
def monitor_document_set_taskset(
key_bytes: bytes, r: Redis, db_session: Session
) -> None:
fence_key = key_bytes.decode("utf-8")
document_set_id = RedisDocumentSet.get_id_from_fence_key(fence_key)
if document_set_id is None:
task_logger.warning(f"could not parse document set id from {fence_key}")
return
rds = RedisDocumentSet(document_set_id)
fence_value = r.get(rds.fence_key)
if fence_value is None:
return
try:
initial_count = int(cast(int, fence_value))
except ValueError:
task_logger.error("The value is not an integer.")
return
count = cast(int, r.scard(rds.taskset_key))
task_logger.info(
f"Document set sync progress: document_set_id={document_set_id} remaining={count} initial={initial_count}"
)
if count > 0:
return
document_set = cast(
DocumentSet,
get_document_set_by_id(db_session=db_session, document_set_id=document_set_id),
) # casting since we "know" a document set with this ID exists
if document_set:
if not document_set.connector_credential_pairs:
# if there are no connectors, then delete the document set.
delete_document_set(document_set_row=document_set, db_session=db_session)
task_logger.info(
f"Successfully deleted document set with ID: '{document_set_id}'!"
)
else:
mark_document_set_as_synced(document_set_id, db_session)
task_logger.info(
f"Successfully synced document set with ID: '{document_set_id}'!"
)
r.delete(rds.taskset_key)
r.delete(rds.fence_key)
def monitor_connector_deletion_taskset(key_bytes: bytes, r: Redis) -> None:
fence_key = key_bytes.decode("utf-8")
cc_pair_id = RedisConnectorDeletion.get_id_from_fence_key(fence_key)
if cc_pair_id is None:
task_logger.warning(f"could not parse cc_pair_id from {fence_key}")
return
rcd = RedisConnectorDeletion(cc_pair_id)
fence_value = r.get(rcd.fence_key)
if fence_value is None:
return
try:
initial_count = int(cast(int, fence_value))
except ValueError:
task_logger.error("The value is not an integer.")
return
count = cast(int, r.scard(rcd.taskset_key))
task_logger.info(
f"Connector deletion progress: cc_pair_id={cc_pair_id} remaining={count} initial={initial_count}"
)
if count > 0:
return
with Session(get_sqlalchemy_engine()) as db_session:
cc_pair = get_connector_credential_pair_from_id(cc_pair_id, db_session)
if not cc_pair:
task_logger.warning(
f"monitor_connector_deletion_taskset - cc_pair_id not found: cc_pair_id={cc_pair_id}"
)
return
try:
# clean up the rest of the related Postgres entities
# index attempts
delete_index_attempts(
db_session=db_session,
cc_pair_id=cc_pair.id,
)
# document sets
delete_document_set_cc_pair_relationship__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# user groups
cleanup_user_groups = fetch_versioned_implementation_with_fallback(
"danswer.db.user_group",
"delete_user_group_cc_pair_relationship__no_commit",
noop_fallback,
)
cleanup_user_groups(
cc_pair_id=cc_pair.id,
db_session=db_session,
)
# finally, delete the cc-pair
delete_connector_credential_pair__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# if there are no credentials left, delete the connector
connector = fetch_connector_by_id(
db_session=db_session,
connector_id=cc_pair.connector_id,
)
if not connector or not len(connector.credentials):
task_logger.info(
"Found no credentials left for connector, deleting connector"
)
db_session.delete(connector)
db_session.commit()
except Exception as e:
stack_trace = traceback.format_exc()
error_message = f"Error: {str(e)}\n\nStack Trace:\n{stack_trace}"
add_deletion_failure_message(db_session, cc_pair.id, error_message)
task_logger.exception(
f"Failed to run connector_deletion. "
f"cc_pair_id={cc_pair_id} connector_id={cc_pair.connector_id} credential_id={cc_pair.credential_id}"
)
raise e
task_logger.info(
f"Successfully deleted cc_pair: "
f"cc_pair_id={cc_pair_id} "
f"connector_id={cc_pair.connector_id} "
f"credential_id={cc_pair.credential_id} "
f"docs_deleted={initial_count}"
)
r.delete(rcd.taskset_key)
r.delete(rcd.fence_key)
def monitor_ccpair_pruning_taskset(
key_bytes: bytes, r: Redis, db_session: Session
) -> None:
fence_key = key_bytes.decode("utf-8")
cc_pair_id = RedisConnectorPruning.get_id_from_fence_key(fence_key)
if cc_pair_id is None:
task_logger.warning(
f"monitor_connector_pruning_taskset: could not parse cc_pair_id from {fence_key}"
)
return
rcp = RedisConnectorPruning(cc_pair_id)
fence_value = r.get(rcp.fence_key)
if fence_value is None:
return
generator_value = r.get(rcp.generator_complete_key)
if generator_value is None:
return
try:
initial_count = int(cast(int, generator_value))
except ValueError:
task_logger.error("The value is not an integer.")
return
count = cast(int, r.scard(rcp.taskset_key))
task_logger.info(
f"Connector pruning progress: cc_pair_id={cc_pair_id} remaining={count} initial={initial_count}"
)
if count > 0:
return
mark_ccpair_as_pruned(cc_pair_id, db_session)
task_logger.info(
f"Successfully pruned connector credential pair. cc_pair_id={cc_pair_id}"
)
r.delete(rcp.taskset_key)
r.delete(rcp.generator_progress_key)
r.delete(rcp.generator_complete_key)
r.delete(rcp.fence_key)
@shared_task(name="monitor_vespa_sync", soft_time_limit=300, bind=True)
def monitor_vespa_sync(self: Task, tenant_id: str | None) -> None:
"""This is a celery beat task that monitors and finalizes metadata sync tasksets.
It scans for fence values and then gets the counts of any associated tasksets.
If the count is 0, that means all tasks finished and we should clean up.
This task lock timeout is CELERY_METADATA_SYNC_BEAT_LOCK_TIMEOUT seconds, so don't
do anything too expensive in this function!
"""
r = get_redis_client()
lock_beat: redis.lock.Lock = r.lock(
DanswerRedisLocks.MONITOR_VESPA_SYNC_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
try:
# prevent overlapping tasks
if not lock_beat.acquire(blocking=False):
return
# print current queue lengths
r_celery = self.app.broker_connection().channel().client # type: ignore
n_celery = celery_get_queue_length("celery", r)
n_sync = celery_get_queue_length(
DanswerCeleryQueues.VESPA_METADATA_SYNC, r_celery
)
n_deletion = celery_get_queue_length(
DanswerCeleryQueues.CONNECTOR_DELETION, r_celery
)
n_pruning = celery_get_queue_length(
DanswerCeleryQueues.CONNECTOR_PRUNING, r_celery
)
task_logger.info(
f"Queue lengths: celery={n_celery} sync={n_sync} deletion={n_deletion} pruning={n_pruning}"
)
lock_beat.reacquire()
if r.exists(RedisConnectorCredentialPair.get_fence_key()):
monitor_connector_taskset(r)
lock_beat.reacquire()
for key_bytes in r.scan_iter(RedisConnectorDeletion.FENCE_PREFIX + "*"):
monitor_connector_deletion_taskset(key_bytes, r)
with get_session_with_tenant(tenant_id) as db_session:
lock_beat.reacquire()
for key_bytes in r.scan_iter(RedisDocumentSet.FENCE_PREFIX + "*"):
monitor_document_set_taskset(key_bytes, r, db_session)
lock_beat.reacquire()
for key_bytes in r.scan_iter(RedisUserGroup.FENCE_PREFIX + "*"):
monitor_usergroup_taskset = (
fetch_versioned_implementation_with_fallback(
"danswer.background.celery.tasks.vespa.tasks",
"monitor_usergroup_taskset",
noop_fallback,
)
)
monitor_usergroup_taskset(key_bytes, r, db_session)
lock_beat.reacquire()
for key_bytes in r.scan_iter(RedisConnectorPruning.FENCE_PREFIX + "*"):
monitor_ccpair_pruning_taskset(key_bytes, r, db_session)
# uncomment for debugging if needed
# r_celery = celery_app.broker_connection().channel().client
# length = celery_get_queue_length(DanswerCeleryQueues.VESPA_METADATA_SYNC, r_celery)
# task_logger.warning(f"queue={DanswerCeleryQueues.VESPA_METADATA_SYNC} length={length}")
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
finally:
if lock_beat.owned():
lock_beat.release()
@shared_task(
name="vespa_metadata_sync_task",
bind=True,
soft_time_limit=45,
time_limit=60,
max_retries=3,
)
def vespa_metadata_sync_task(
self: Task, document_id: str, tenant_id: str | None
) -> bool:
task_logger.info(f"document_id={document_id}")
try:
with get_session_with_tenant(tenant_id) as db_session:
curr_ind_name, sec_ind_name = get_both_index_names(db_session)
document_index = get_default_document_index(
primary_index_name=curr_ind_name, secondary_index_name=sec_ind_name
)
doc = get_document(document_id, db_session)
if not doc:
return False
# document set sync
doc_sets = fetch_document_sets_for_document(document_id, db_session)
update_doc_sets: set[str] = set(doc_sets)
# User group sync
doc_access = get_access_for_document(
document_id=document_id, db_session=db_session
)
update_request = UpdateRequest(
document_ids=[document_id],
document_sets=update_doc_sets,
access=doc_access,
boost=doc.boost,
hidden=doc.hidden,
)
# update Vespa
document_index.update(update_requests=[update_request])
# update db last. Worst case = we crash right before this and
# the sync might repeat again later
mark_document_as_synced(document_id, db_session)
except SoftTimeLimitExceeded:
task_logger.info(f"SoftTimeLimitExceeded exception. doc_id={document_id}")
except Exception as e:
task_logger.exception("Unexpected exception")
# Exponential backoff from 2^4 to 2^6 ... i.e. 16, 32, 64
countdown = 2 ** (self.request.retries + 4)
self.retry(exc=e, countdown=countdown)
return True

View File

@@ -0,0 +1,110 @@
"""
To delete a connector / credential pair:
(1) find all documents associated with connector / credential pair where there
this the is only connector / credential pair that has indexed it
(2) delete all documents from document stores
(3) delete all entries from postgres
(4) find all documents associated with connector / credential pair where there
are multiple connector / credential pairs that have indexed it
(5) update document store entries to remove access associated with the
connector / credential pair from the access list
(6) delete all relevant entries from postgres
"""
from sqlalchemy.orm import Session
from danswer.access.access import get_access_for_documents
from danswer.db.document import delete_documents_by_connector_credential_pair__no_commit
from danswer.db.document import delete_documents_complete__no_commit
from danswer.db.document import get_document_connector_counts
from danswer.db.document import prepare_to_modify_documents
from danswer.db.document_set import fetch_document_sets_for_documents
from danswer.db.engine import get_sqlalchemy_engine
from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.interfaces import UpdateRequest
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
from danswer.utils.logger import setup_logger
logger = setup_logger()
_DELETION_BATCH_SIZE = 1000
def delete_connector_credential_pair_batch(
document_ids: list[str],
connector_id: int,
credential_id: int,
document_index: DocumentIndex,
) -> None:
"""
Removes a batch of documents ids from a cc-pair. If no other cc-pair uses a document anymore
it gets permanently deleted.
"""
with Session(get_sqlalchemy_engine()) as db_session:
# acquire lock for all documents in this batch so that indexing can't
# override the deletion
with prepare_to_modify_documents(
db_session=db_session, document_ids=document_ids
):
document_connector_counts = get_document_connector_counts(
db_session=db_session, document_ids=document_ids
)
# figure out which docs need to be completely deleted
document_ids_to_delete = [
document_id
for document_id, cnt in document_connector_counts
if cnt == 1
]
logger.debug(f"Deleting documents: {document_ids_to_delete}")
document_index.delete(doc_ids=document_ids_to_delete)
delete_documents_complete__no_commit(
db_session=db_session,
document_ids=document_ids_to_delete,
)
# figure out which docs need to be updated
document_ids_to_update = [
document_id for document_id, cnt in document_connector_counts if cnt > 1
]
# maps document id to list of document set names
new_doc_sets_for_documents: dict[str, set[str]] = {
document_id_and_document_set_names_tuple[0]: set(
document_id_and_document_set_names_tuple[1]
)
for document_id_and_document_set_names_tuple in fetch_document_sets_for_documents(
db_session=db_session,
document_ids=document_ids_to_update,
)
}
# determine future ACLs for documents in batch
access_for_documents = get_access_for_documents(
document_ids=document_ids_to_update,
db_session=db_session,
)
# update Vespa
logger.debug(f"Updating documents: {document_ids_to_update}")
update_requests = [
UpdateRequest(
document_ids=[document_id],
access=access,
document_sets=new_doc_sets_for_documents[document_id],
)
for document_id, access in access_for_documents.items()
]
document_index.update(update_requests=update_requests)
# clean up Postgres
delete_documents_by_connector_credential_pair__no_commit(
db_session=db_session,
document_ids=document_ids_to_update,
connector_credential_pair_identifier=ConnectorCredentialPairIdentifier(
connector_id=connector_id,
credential_id=credential_id,
),
)
db_session.commit()

View File

@@ -4,7 +4,6 @@ from datetime import datetime
from datetime import timedelta
from datetime import timezone
from sqlalchemy import text
from sqlalchemy.orm import Session
from danswer.background.indexing.checkpointing import get_time_windows_for_index_attempt
@@ -15,10 +14,9 @@ from danswer.configs.app_configs import POLL_CONNECTOR_OFFSET
from danswer.connectors.connector_runner import ConnectorRunner
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.models import IndexAttemptMetadata
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.connector_credential_pair import get_last_successful_attempt_time
from danswer.db.connector_credential_pair import update_connector_credential_pair
from danswer.db.engine import get_session_with_tenant
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import mark_attempt_failed
@@ -31,7 +29,6 @@ from danswer.db.models import IndexingStatus
from danswer.db.models import IndexModelStatus
from danswer.document_index.factory import get_default_document_index
from danswer.indexing.embedder import DefaultIndexingEmbedder
from danswer.indexing.indexing_heartbeat import IndexingHeartbeat
from danswer.indexing.indexing_pipeline import build_indexing_pipeline
from danswer.utils.logger import IndexAttemptSingleton
from danswer.utils.logger import setup_logger
@@ -47,12 +44,11 @@ def _get_connector_runner(
attempt: IndexAttempt,
start_time: datetime,
end_time: datetime,
tenant_id: str | None,
) -> ConnectorRunner:
"""
NOTE: `start_time` and `end_time` are only used for poll connectors
Returns an iterator of document batches and whether the returned documents
Returns an interator of document batches and whether the returned documents
are the complete list of existing documents of the connector. If the task
of type LOAD_STATE, the list will be considered complete and otherwise incomplete.
"""
@@ -70,17 +66,12 @@ def _get_connector_runner(
logger.exception(f"Unable to instantiate connector due to {e}")
# since we failed to even instantiate the connector, we pause the CCPair since
# it will never succeed
cc_pair = get_connector_credential_pair_from_id(
attempt.connector_credential_pair.id, db_session
update_connector_credential_pair(
db_session=db_session,
connector_id=attempt.connector_credential_pair.connector.id,
credential_id=attempt.connector_credential_pair.credential.id,
status=ConnectorCredentialPairStatus.PAUSED,
)
if cc_pair and cc_pair.status == ConnectorCredentialPairStatus.ACTIVE:
update_connector_credential_pair(
db_session=db_session,
connector_id=attempt.connector_credential_pair.connector.id,
credential_id=attempt.connector_credential_pair.credential.id,
status=ConnectorCredentialPairStatus.PAUSED,
)
raise e
return ConnectorRunner(
@@ -89,7 +80,8 @@ def _get_connector_runner(
def _run_indexing(
db_session: Session, index_attempt: IndexAttempt, tenant_id: str | None
db_session: Session,
index_attempt: IndexAttempt,
) -> None:
"""
1. Get documents which are either new or updated from specified application
@@ -111,26 +103,16 @@ def _run_indexing(
)
embedding_model = DefaultIndexingEmbedder.from_db_search_settings(
search_settings=search_settings,
heartbeat=IndexingHeartbeat(
index_attempt_id=index_attempt.id,
db_session=db_session,
# let the world know we're still making progress after
# every 10 batches
freq=10,
),
search_settings=search_settings
)
indexing_pipeline = build_indexing_pipeline(
attempt_id=index_attempt.id,
embedder=embedding_model,
document_index=document_index,
ignore_time_skip=(
index_attempt.from_beginning
or (search_settings.status == IndexModelStatus.FUTURE)
),
ignore_time_skip=index_attempt.from_beginning
or (search_settings.status == IndexModelStatus.FUTURE),
db_session=db_session,
tenant_id=tenant_id,
)
db_cc_pair = index_attempt.connector_credential_pair
@@ -187,7 +169,6 @@ def _run_indexing(
attempt=index_attempt,
start_time=window_start,
end_time=window_end,
tenant_id=tenant_id,
)
all_connector_doc_ids: set[str] = set()
@@ -215,9 +196,7 @@ def _run_indexing(
db_session.refresh(index_attempt)
if index_attempt.status != IndexingStatus.IN_PROGRESS:
# Likely due to user manually disabling it or model swap
raise RuntimeError(
f"Index Attempt was canceled, status is {index_attempt.status}"
)
raise RuntimeError("Index Attempt was canceled")
batch_description = []
for doc in doc_batch:
@@ -378,21 +357,12 @@ def _run_indexing(
)
def _prepare_index_attempt(
db_session: Session, index_attempt_id: int, tenant_id: str | None
) -> IndexAttempt:
def _prepare_index_attempt(db_session: Session, index_attempt_id: int) -> IndexAttempt:
# make sure that the index attempt can't change in between checking the
# status and marking it as in_progress. This setting will be discarded
# after the next commit:
# https://docs.sqlalchemy.org/en/20/orm/session_transaction.html#setting-isolation-for-individual-transactions
db_session.connection(execution_options={"isolation_level": "SERIALIZABLE"}) # type: ignore
if tenant_id is not None:
# Explicitly set the search path for the given tenant
db_session.execute(text(f'SET search_path TO "{tenant_id}"'))
# Verify the search path was set correctly
result = db_session.execute(text("SHOW search_path"))
current_search_path = result.scalar()
logger.info(f"Current search path set to: {current_search_path}")
attempt = get_index_attempt(
db_session=db_session,
@@ -415,11 +385,12 @@ def _prepare_index_attempt(
def run_indexing_entrypoint(
index_attempt_id: int,
tenant_id: str | None,
connector_credential_pair_id: int,
is_ee: bool = False,
index_attempt_id: int, connector_credential_pair_id: int, is_ee: bool = False
) -> None:
"""Entrypoint for indexing run when using dask distributed.
Wraps the actual logic in a `try` block so that we can catch any exceptions
and mark the attempt as failed."""
try:
if is_ee:
global_version.set_ee()
@@ -429,29 +400,26 @@ def run_indexing_entrypoint(
IndexAttemptSingleton.set_cc_and_index_id(
index_attempt_id, connector_credential_pair_id
)
with get_session_with_tenant(tenant_id) as db_session:
attempt = _prepare_index_attempt(db_session, index_attempt_id, tenant_id)
with Session(get_sqlalchemy_engine()) as db_session:
# make sure that it is valid to run this indexing attempt + mark it
# as in progress
attempt = _prepare_index_attempt(db_session, index_attempt_id)
logger.info(
f"Indexing starting for tenant {tenant_id}: "
if tenant_id is not None
else ""
+ f"connector='{attempt.connector_credential_pair.connector.name}' "
f"Indexing starting: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
)
_run_indexing(db_session, attempt, tenant_id)
_run_indexing(db_session, attempt)
logger.info(
f"Indexing finished for tenant {tenant_id}: "
if tenant_id is not None
else ""
+ f"connector='{attempt.connector_credential_pair.connector.name}' "
f"Indexing finished: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
)
except Exception as e:
logger.exception(
f"Indexing job with ID '{index_attempt_id}' for tenant {tenant_id} failed due to {e}"
)
logger.exception(f"Indexing job with ID '{index_attempt_id}' failed due to {e}")

View File

@@ -6,8 +6,6 @@ import dask
from dask.distributed import Client
from dask.distributed import Future
from distributed import LocalCluster
from sqlalchemy import text
from sqlalchemy.exc import ProgrammingError
from sqlalchemy.orm import Session
from danswer.background.indexing.dask_utils import ResourceLogger
@@ -17,17 +15,15 @@ from danswer.background.indexing.run_indexing import run_indexing_entrypoint
from danswer.configs.app_configs import CLEANUP_INDEXING_JOBS_TIMEOUT
from danswer.configs.app_configs import DASK_JOB_CLIENT_ENABLED
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import MULTI_TENANT
from danswer.configs.app_configs import NUM_INDEXING_WORKERS
from danswer.configs.app_configs import NUM_SECONDARY_INDEXING_WORKERS
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import POSTGRES_INDEXER_APP_NAME
from danswer.configs.constants import TENANT_ID_PREFIX
from danswer.db.connector import fetch_connectors
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
from danswer.db.engine import get_db_current_time
from danswer.db.engine import get_session_with_tenant
from danswer.db.engine import SqlEngine
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.engine import init_sqlalchemy_engine
from danswer.db.index_attempt import create_index_attempt
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import get_inprogress_index_attempts
@@ -100,20 +96,14 @@ def _should_create_new_indexing(
if last_index.status == IndexingStatus.IN_PROGRESS:
return False
else:
if (
connector.id == 0 or connector.source == DocumentSource.INGESTION_API
): # Ingestion API
if connector.id == 0: # Ingestion API
return False
return True
# If the connector is paused or is the ingestion API, don't index
# NOTE: during an embedding model switch over, the following logic
# is bypassed by the above check for a future model
if (
not cc_pair.status.is_active()
or connector.id == 0
or connector.source == DocumentSource.INGESTION_API
):
if not cc_pair.status.is_active() or connector.id == 0:
return False
if not last_index:
@@ -157,15 +147,13 @@ def _mark_run_failed(
"""Main funcs"""
def create_indexing_jobs(
existing_jobs: dict[int, Future | SimpleJob], tenant_id: str | None
) -> None:
def create_indexing_jobs(existing_jobs: dict[int, Future | SimpleJob]) -> None:
"""Creates new indexing jobs for each connector / credential pair which is:
1. Enabled
2. `refresh_frequency` time has passed since the last indexing run for this pair
3. There is not already an ongoing indexing attempt for this pair
"""
with get_session_with_tenant(tenant_id) as db_session:
with Session(get_sqlalchemy_engine()) as db_session:
ongoing: set[tuple[int | None, int]] = set()
for attempt_id in existing_jobs:
attempt = get_index_attempt(
@@ -220,12 +208,11 @@ def create_indexing_jobs(
def cleanup_indexing_jobs(
existing_jobs: dict[int, Future | SimpleJob],
tenant_id: str | None,
timeout_hours: int = CLEANUP_INDEXING_JOBS_TIMEOUT,
) -> dict[int, Future | SimpleJob]:
existing_jobs_copy = existing_jobs.copy()
# clean up completed jobs
with get_session_with_tenant(tenant_id) as db_session:
with Session(get_sqlalchemy_engine()) as db_session:
for attempt_id, job in existing_jobs.items():
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=attempt_id
@@ -263,41 +250,38 @@ def cleanup_indexing_jobs(
)
# clean up in-progress jobs that were never completed
try:
connectors = fetch_connectors(db_session)
for connector in connectors:
in_progress_indexing_attempts = get_inprogress_index_attempts(
connector.id, db_session
)
for index_attempt in in_progress_indexing_attempts:
if index_attempt.id in existing_jobs:
# If index attempt is canceled, stop the run
if index_attempt.status == IndexingStatus.FAILED:
existing_jobs[index_attempt.id].cancel()
# check to see if the job has been updated in last `timeout_hours` hours, if not
# assume it to frozen in some bad state and just mark it as failed. Note: this relies
# on the fact that the `time_updated` field is constantly updated every
# batch of documents indexed
current_db_time = get_db_current_time(db_session=db_session)
time_since_update = current_db_time - index_attempt.time_updated
if time_since_update.total_seconds() > 60 * 60 * timeout_hours:
existing_jobs[index_attempt.id].cancel()
_mark_run_failed(
db_session=db_session,
index_attempt=index_attempt,
failure_reason="Indexing run frozen - no updates in the last three hours. "
"The run will be re-attempted at next scheduled indexing time.",
)
else:
# If job isn't known, simply mark it as failed
connectors = fetch_connectors(db_session)
for connector in connectors:
in_progress_indexing_attempts = get_inprogress_index_attempts(
connector.id, db_session
)
for index_attempt in in_progress_indexing_attempts:
if index_attempt.id in existing_jobs:
# If index attempt is canceled, stop the run
if index_attempt.status == IndexingStatus.FAILED:
existing_jobs[index_attempt.id].cancel()
# check to see if the job has been updated in last `timeout_hours` hours, if not
# assume it to frozen in some bad state and just mark it as failed. Note: this relies
# on the fact that the `time_updated` field is constantly updated every
# batch of documents indexed
current_db_time = get_db_current_time(db_session=db_session)
time_since_update = current_db_time - index_attempt.time_updated
if time_since_update.total_seconds() > 60 * 60 * timeout_hours:
existing_jobs[index_attempt.id].cancel()
_mark_run_failed(
db_session=db_session,
index_attempt=index_attempt,
failure_reason=_UNEXPECTED_STATE_FAILURE_REASON,
failure_reason="Indexing run frozen - no updates in the last three hours. "
"The run will be re-attempted at next scheduled indexing time.",
)
except ProgrammingError:
logger.debug(f"No Connector Table exists for: {tenant_id}")
else:
# If job isn't known, simply mark it as failed
_mark_run_failed(
db_session=db_session,
index_attempt=index_attempt,
failure_reason=_UNEXPECTED_STATE_FAILURE_REASON,
)
return existing_jobs_copy
@@ -305,15 +289,13 @@ def kickoff_indexing_jobs(
existing_jobs: dict[int, Future | SimpleJob],
client: Client | SimpleJobClient,
secondary_client: Client | SimpleJobClient,
tenant_id: str | None,
) -> dict[int, Future | SimpleJob]:
existing_jobs_copy = existing_jobs.copy()
current_session = get_session_with_tenant(tenant_id)
engine = get_sqlalchemy_engine()
# Don't include jobs waiting in the Dask queue that just haven't started running
# Also (rarely) don't include for jobs that started but haven't updated the indexing tables yet
with current_session as db_session:
with Session(engine) as db_session:
# get_not_started_index_attempts orders its returned results from oldest to newest
# we must process attempts in a FIFO manner to prevent connector starvation
new_indexing_attempts = [
@@ -344,7 +326,7 @@ def kickoff_indexing_jobs(
logger.warning(
f"Skipping index attempt as Connector has been deleted: {attempt}"
)
with current_session as db_session:
with Session(engine) as db_session:
mark_attempt_failed(
attempt, db_session, failure_reason="Connector is null"
)
@@ -353,7 +335,7 @@ def kickoff_indexing_jobs(
logger.warning(
f"Skipping index attempt as Credential has been deleted: {attempt}"
)
with current_session as db_session:
with Session(engine) as db_session:
mark_attempt_failed(
attempt, db_session, failure_reason="Credential is null"
)
@@ -364,9 +346,8 @@ def kickoff_indexing_jobs(
run = client.submit(
run_indexing_entrypoint,
attempt.id,
tenant_id,
attempt.connector_credential_pair_id,
global_version.is_ee_version(),
global_version.get_is_ee_version(),
pure=False,
)
if not run:
@@ -376,9 +357,8 @@ def kickoff_indexing_jobs(
run = secondary_client.submit(
run_indexing_entrypoint,
attempt.id,
tenant_id,
attempt.connector_credential_pair_id,
global_version.is_ee_version(),
global_version.get_is_ee_version(),
pure=False,
)
if not run:
@@ -412,40 +392,41 @@ def kickoff_indexing_jobs(
return existing_jobs_copy
def get_all_tenant_ids() -> list[str] | list[None]:
if not MULTI_TENANT:
return [None]
with get_session_with_tenant(tenant_id="public") as session:
result = session.execute(
text(
"""
SELECT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('pg_catalog', 'information_schema', 'public')"""
)
)
tenant_ids = [row[0] for row in result]
valid_tenants = [
tenant
for tenant in tenant_ids
if tenant is None or tenant.startswith(TENANT_ID_PREFIX)
]
return valid_tenants
def update_loop(
delay: int = 10,
num_workers: int = NUM_INDEXING_WORKERS,
num_secondary_workers: int = NUM_SECONDARY_INDEXING_WORKERS,
) -> None:
engine = get_sqlalchemy_engine()
with Session(engine) as db_session:
check_index_swap(db_session=db_session)
search_settings = get_current_search_settings(db_session)
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
if search_settings.provider_type is None:
logger.notice("Running a first inference to warm up embedding model")
embedding_model = EmbeddingModel.from_db_model(
search_settings=search_settings,
server_host=INDEXING_MODEL_SERVER_HOST,
server_port=MODEL_SERVER_PORT,
)
warm_up_bi_encoder(
embedding_model=embedding_model,
)
client_primary: Client | SimpleJobClient
client_secondary: Client | SimpleJobClient
if DASK_JOB_CLIENT_ENABLED:
cluster_primary = LocalCluster(
n_workers=num_workers,
threads_per_worker=1,
# there are warning about high memory usage + "Event loop unresponsive"
# which are not relevant to us since our workers are expected to use a
# lot of memory + involve CPU intensive tasks that will not relinquish
# the event loop
silence_logs=logging.ERROR,
)
cluster_secondary = LocalCluster(
@@ -461,67 +442,32 @@ def update_loop(
client_primary = SimpleJobClient(n_workers=num_workers)
client_secondary = SimpleJobClient(n_workers=num_secondary_workers)
existing_jobs: dict[str | None, dict[int, Future | SimpleJob]] = {}
existing_jobs: dict[int, Future | SimpleJob] = {}
logger.notice("Startup complete. Waiting for indexing jobs...")
while True:
start = time.time()
start_time_utc = datetime.utcfromtimestamp(start).strftime("%Y-%m-%d %H:%M:%S")
logger.debug(f"Running update, current UTC time: {start_time_utc}")
if existing_jobs:
# TODO: make this debug level once the "no jobs are being scheduled" issue is resolved
logger.debug(
"Found existing indexing jobs: "
f"{[(tenant_id, list(jobs.keys())) for tenant_id, jobs in existing_jobs.items()]}"
f"{[(attempt_id, job.status) for attempt_id, job in existing_jobs.items()]}"
)
try:
tenants = get_all_tenant_ids()
for tenant_id in tenants:
try:
logger.debug(
f"Processing {'index attempts' if tenant_id is None else f'tenant {tenant_id}'}"
)
with get_session_with_tenant(tenant_id) as db_session:
check_index_swap(db_session=db_session)
if not MULTI_TENANT:
search_settings = get_current_search_settings(db_session)
if search_settings.provider_type is None:
logger.notice(
"Running a first inference to warm up embedding model"
)
embedding_model = EmbeddingModel.from_db_model(
search_settings=search_settings,
server_host=INDEXING_MODEL_SERVER_HOST,
server_port=MODEL_SERVER_PORT,
)
warm_up_bi_encoder(embedding_model=embedding_model)
logger.notice("First inference complete.")
tenant_jobs = existing_jobs.get(tenant_id, {})
tenant_jobs = cleanup_indexing_jobs(
existing_jobs=tenant_jobs, tenant_id=tenant_id
)
create_indexing_jobs(existing_jobs=tenant_jobs, tenant_id=tenant_id)
tenant_jobs = kickoff_indexing_jobs(
existing_jobs=tenant_jobs,
client=client_primary,
secondary_client=client_secondary,
tenant_id=tenant_id,
)
existing_jobs[tenant_id] = tenant_jobs
except Exception as e:
logger.exception(
f"Failed to process tenant {tenant_id or 'default'}: {e}"
)
with Session(get_sqlalchemy_engine()) as db_session:
check_index_swap(db_session)
existing_jobs = cleanup_indexing_jobs(existing_jobs=existing_jobs)
create_indexing_jobs(existing_jobs=existing_jobs)
existing_jobs = kickoff_indexing_jobs(
existing_jobs=existing_jobs,
client=client_primary,
secondary_client=client_secondary,
)
except Exception as e:
logger.exception(f"Failed to run update due to {e}")
sleep_time = delay - (time.time() - start)
if sleep_time > 0:
time.sleep(sleep_time)
@@ -529,9 +475,7 @@ def update_loop(
def update__main() -> None:
set_is_ee_based_on_env_variable()
# initialize the Postgres connection pool
SqlEngine.set_app_name(POSTGRES_INDEXER_APP_NAME)
init_sqlalchemy_engine(POSTGRES_INDEXER_APP_NAME)
logger.notice("Starting indexing service")
update_loop()

View File

@@ -6,6 +6,7 @@ from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
from danswer.db.models import Persona
@@ -17,32 +18,30 @@ from danswer.db.persona import upsert_prompt
from danswer.search.enums import RecencyBiasSetting
def load_prompts_from_yaml(
db_session: Session, prompts_yaml: str = PROMPTS_YAML
) -> None:
def load_prompts_from_yaml(prompts_yaml: str = PROMPTS_YAML) -> None:
with open(prompts_yaml, "r") as file:
data = yaml.safe_load(file)
all_prompts = data.get("prompts", [])
for prompt in all_prompts:
upsert_prompt(
user=None,
prompt_id=prompt.get("id"),
name=prompt["name"],
description=prompt["description"].strip(),
system_prompt=prompt["system"].strip(),
task_prompt=prompt["task"].strip(),
include_citations=prompt["include_citations"],
datetime_aware=prompt.get("datetime_aware", True),
default_prompt=True,
personas=None,
db_session=db_session,
commit=True,
)
with Session(get_sqlalchemy_engine()) as db_session:
for prompt in all_prompts:
upsert_prompt(
user=None,
prompt_id=prompt.get("id"),
name=prompt["name"],
description=prompt["description"].strip(),
system_prompt=prompt["system"].strip(),
task_prompt=prompt["task"].strip(),
include_citations=prompt["include_citations"],
datetime_aware=prompt.get("datetime_aware", True),
default_prompt=True,
personas=None,
db_session=db_session,
commit=True,
)
def load_personas_from_yaml(
db_session: Session,
personas_yaml: str = PERSONAS_YAML,
default_chunks: float = MAX_CHUNKS_FED_TO_CHAT,
) -> None:
@@ -50,117 +49,117 @@ def load_personas_from_yaml(
data = yaml.safe_load(file)
all_personas = data.get("personas", [])
for persona in all_personas:
doc_set_names = persona["document_sets"]
doc_sets: list[DocumentSetDBModel] = [
get_or_create_document_set_by_name(db_session, name)
for name in doc_set_names
]
# Assume if user hasn't set any document sets for the persona, the user may want
# to later attach document sets to the persona manually, therefore, don't overwrite/reset
# the document sets for the persona
doc_set_ids: list[int] | None = None
if doc_sets:
doc_set_ids = [doc_set.id for doc_set in doc_sets]
else:
doc_set_ids = None
prompt_ids: list[int] | None = None
prompt_set_names = persona["prompts"]
if prompt_set_names:
prompts: list[PromptDBModel | None] = [
get_prompt_by_name(prompt_name, user=None, db_session=db_session)
for prompt_name in prompt_set_names
with Session(get_sqlalchemy_engine()) as db_session:
for persona in all_personas:
doc_set_names = persona["document_sets"]
doc_sets: list[DocumentSetDBModel] = [
get_or_create_document_set_by_name(db_session, name)
for name in doc_set_names
]
if any([prompt is None for prompt in prompts]):
raise ValueError("Invalid Persona configs, not all prompts exist")
if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]
# Assume if user hasn't set any document sets for the persona, the user may want
# to later attach document sets to the persona manually, therefore, don't overwrite/reset
# the document sets for the persona
doc_set_ids: list[int] | None = None
if doc_sets:
doc_set_ids = [doc_set.id for doc_set in doc_sets]
else:
doc_set_ids = None
p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")
prompt_ids: list[int] | None = None
prompt_set_names = persona["prompts"]
if prompt_set_names:
prompts: list[PromptDBModel | None] = [
get_prompt_by_name(prompt_name, user=None, db_session=db_session)
for prompt_name in prompt_set_names
]
if any([prompt is None for prompt in prompts]):
raise ValueError("Invalid Persona configs, not all prompts exist")
if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]
p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)
llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")
# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"
existing_persona = (
db_session.query(Persona)
.filter(Persona.name == persona["name"])
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)
llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")
# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"
existing_persona = (
db_session.query(Persona).filter(Persona.name == persona["name"]).first()
)
upsert_persona(
user=None,
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
num_chunks=persona.get("num_chunks")
if persona.get("num_chunks") is not None
else default_chunks,
llm_relevance_filter=persona.get("llm_relevance_filter"),
starter_messages=persona.get("starter_messages"),
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)
upsert_persona(
user=None,
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
num_chunks=persona.get("num_chunks")
if persona.get("num_chunks") is not None
else default_chunks,
llm_relevance_filter=persona.get("llm_relevance_filter"),
starter_messages=persona.get("starter_messages"),
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)
def load_input_prompts_from_yaml(
db_session: Session, input_prompts_yaml: str = INPUT_PROMPT_YAML
) -> None:
def load_input_prompts_from_yaml(input_prompts_yaml: str = INPUT_PROMPT_YAML) -> None:
with open(input_prompts_yaml, "r") as file:
data = yaml.safe_load(file)
all_input_prompts = data.get("input_prompts", [])
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
with Session(get_sqlalchemy_engine()) as db_session:
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
def load_chat_yamls(
db_session: Session,
prompt_yaml: str = PROMPTS_YAML,
personas_yaml: str = PERSONAS_YAML,
input_prompts_yaml: str = INPUT_PROMPT_YAML,
) -> None:
load_prompts_from_yaml(db_session, prompt_yaml)
load_personas_from_yaml(db_session, personas_yaml)
load_input_prompts_from_yaml(db_session, input_prompts_yaml)
load_prompts_from_yaml(prompt_yaml)
load_personas_from_yaml(personas_yaml)
load_input_prompts_from_yaml(input_prompts_yaml)

View File

@@ -18,10 +18,6 @@ from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import MessageSpecificCitations
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.configs.app_configs import AZURE_DALLE_API_BASE
from danswer.configs.app_configs import AZURE_DALLE_API_KEY
from danswer.configs.app_configs import AZURE_DALLE_API_VERSION
from danswer.configs.app_configs import AZURE_DALLE_DEPLOYMENT_NAME
from danswer.configs.chat_configs import BING_API_KEY
from danswer.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
@@ -564,26 +560,7 @@ def stream_chat_message_objects(
and llm.config.api_key
and llm.config.model_provider == "openai"
):
img_generation_llm_config = LLMConfig(
model_provider=llm.config.model_provider,
model_name="dall-e-3",
temperature=GEN_AI_TEMPERATURE,
api_key=llm.config.api_key,
api_base=llm.config.api_base,
api_version=llm.config.api_version,
)
elif (
llm.config.model_provider == "azure"
and AZURE_DALLE_API_KEY is not None
):
img_generation_llm_config = LLMConfig(
model_provider="azure",
model_name=f"azure/{AZURE_DALLE_DEPLOYMENT_NAME}",
temperature=GEN_AI_TEMPERATURE,
api_key=AZURE_DALLE_API_KEY,
api_base=AZURE_DALLE_API_BASE,
api_version=AZURE_DALLE_API_VERSION,
)
img_generation_llm_config = llm.config
else:
llm_providers = fetch_existing_llm_providers(db_session)
openai_provider = next(
@@ -602,7 +579,7 @@ def stream_chat_message_objects(
)
img_generation_llm_config = LLMConfig(
model_provider=openai_provider.provider,
model_name="dall-e-3",
model_name=openai_provider.default_model_name,
temperature=GEN_AI_TEMPERATURE,
api_key=openai_provider.api_key,
api_base=openai_provider.api_base,
@@ -614,7 +591,6 @@ def stream_chat_message_objects(
api_base=img_generation_llm_config.api_base,
api_version=img_generation_llm_config.api_version,
additional_headers=litellm_additional_headers,
model=img_generation_llm_config.model_name,
)
]
elif tool_cls.__name__ == InternetSearchTool.__name__:

View File

@@ -138,12 +138,6 @@ POSTGRES_HOST = os.environ.get("POSTGRES_HOST") or "localhost"
POSTGRES_PORT = os.environ.get("POSTGRES_PORT") or "5432"
POSTGRES_DB = os.environ.get("POSTGRES_DB") or "postgres"
POSTGRES_API_SERVER_POOL_SIZE = int(
os.environ.get("POSTGRES_API_SERVER_POOL_SIZE") or 40
)
POSTGRES_API_SERVER_POOL_OVERFLOW = int(
os.environ.get("POSTGRES_API_SERVER_POOL_OVERFLOW") or 10
)
# defaults to False
POSTGRES_POOL_PRE_PING = os.environ.get("POSTGRES_POOL_PRE_PING", "").lower() == "true"
@@ -170,29 +164,13 @@ REDIS_DB_NUMBER_CELERY_RESULT_BACKEND = int(
)
REDIS_DB_NUMBER_CELERY = int(os.environ.get("REDIS_DB_NUMBER_CELERY", 15)) # broker
# will propagate to both our redis client as well as celery's redis client
REDIS_HEALTH_CHECK_INTERVAL = int(os.environ.get("REDIS_HEALTH_CHECK_INTERVAL", 60))
# our redis client only, not celery's
REDIS_POOL_MAX_CONNECTIONS = int(os.environ.get("REDIS_POOL_MAX_CONNECTIONS", 128))
# https://docs.celeryq.dev/en/stable/userguide/configuration.html#redis-backend-settings
# should be one of "required", "optional", or "none"
REDIS_SSL_CERT_REQS = os.getenv("REDIS_SSL_CERT_REQS", "none")
REDIS_SSL_CA_CERTS = os.getenv("REDIS_SSL_CA_CERTS", None)
REDIS_SSL_CA_CERTS = os.getenv("REDIS_SSL_CA_CERTS", "")
CELERY_RESULT_EXPIRES = int(os.environ.get("CELERY_RESULT_EXPIRES", 86400)) # seconds
# https://docs.celeryq.dev/en/stable/userguide/configuration.html#broker-pool-limit
# Setting to None may help when there is a proxy in the way closing idle connections
CELERY_BROKER_POOL_LIMIT_DEFAULT = 10
try:
CELERY_BROKER_POOL_LIMIT = int(
os.environ.get("CELERY_BROKER_POOL_LIMIT", CELERY_BROKER_POOL_LIMIT_DEFAULT)
)
except ValueError:
CELERY_BROKER_POOL_LIMIT = CELERY_BROKER_POOL_LIMIT_DEFAULT
#####
# Connector Configs
#####
@@ -269,10 +247,6 @@ JIRA_CONNECTOR_LABELS_TO_SKIP = [
for ignored_tag in os.environ.get("JIRA_CONNECTOR_LABELS_TO_SKIP", "").split(",")
if ignored_tag
]
# Maximum size for Jira tickets in bytes (default: 100KB)
JIRA_CONNECTOR_MAX_TICKET_SIZE = int(
os.environ.get("JIRA_CONNECTOR_MAX_TICKET_SIZE", 100 * 1024)
)
GONG_CONNECTOR_START_TIME = os.environ.get("GONG_CONNECTOR_START_TIME")
@@ -296,7 +270,7 @@ ALLOW_SIMULTANEOUS_PRUNING = (
os.environ.get("ALLOW_SIMULTANEOUS_PRUNING", "").lower() == "true"
)
# This is the maximum rate at which documents are queried for a pruning job. 0 disables the limitation.
# This is the maxiumum rate at which documents are queried for a pruning job. 0 disables the limitation.
MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE = int(
os.environ.get("MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE", 0)
)
@@ -360,10 +334,12 @@ INDEXING_TRACER_INTERVAL = int(os.environ.get("INDEXING_TRACER_INTERVAL", 0))
# exception without aborting the attempt.
INDEXING_EXCEPTION_LIMIT = int(os.environ.get("INDEXING_EXCEPTION_LIMIT", 0))
#####
# Miscellaneous
#####
# File based Key Value store no longer used
DYNAMIC_CONFIG_STORE = "PostgresBackedDynamicConfigStore"
JOB_TIMEOUT = 60 * 60 * 6 # 6 hours default
# used to allow the background indexing jobs to use a different embedding
# model server than the API server
@@ -401,9 +377,6 @@ CUSTOM_ANSWER_VALIDITY_CONDITIONS = json.loads(
os.environ.get("CUSTOM_ANSWER_VALIDITY_CONDITIONS", "[]")
)
VESPA_REQUEST_TIMEOUT = int(os.environ.get("VESPA_REQUEST_TIMEOUT") or "5")
SYSTEM_RECURSION_LIMIT = int(os.environ.get("SYSTEM_RECURSION_LIMIT") or "1000")
#####
# Enterprise Edition Configs
@@ -415,19 +388,3 @@ SYSTEM_RECURSION_LIMIT = int(os.environ.get("SYSTEM_RECURSION_LIMIT") or "1000")
ENTERPRISE_EDITION_ENABLED = (
os.environ.get("ENABLE_PAID_ENTERPRISE_EDITION_FEATURES", "").lower() == "true"
)
# Azure DALL-E Configurations
AZURE_DALLE_API_VERSION = os.environ.get("AZURE_DALLE_API_VERSION")
AZURE_DALLE_API_KEY = os.environ.get("AZURE_DALLE_API_KEY")
AZURE_DALLE_API_BASE = os.environ.get("AZURE_DALLE_API_BASE")
AZURE_DALLE_DEPLOYMENT_NAME = os.environ.get("AZURE_DALLE_DEPLOYMENT_NAME")
MULTI_TENANT = os.environ.get("MULTI_TENANT", "").lower() == "true"
SECRET_JWT_KEY = os.environ.get("SECRET_JWT_KEY", "")
DATA_PLANE_SECRET = os.environ.get("DATA_PLANE_SECRET", "")
EXPECTED_API_KEY = os.environ.get("EXPECTED_API_KEY", "")
ENABLE_EMAIL_INVITES = os.environ.get("ENABLE_EMAIL_INVITES", "").lower() == "true"

View File

@@ -1,5 +1,3 @@
import platform
import socket
from enum import auto
from enum import Enum
@@ -31,20 +29,14 @@ DISABLED_GEN_AI_MSG = (
"You can still use Danswer as a search engine."
)
# Prefix used for all tenant ids
TENANT_ID_PREFIX = "tenant_"
# Postgres connection constants for application_name
POSTGRES_WEB_APP_NAME = "web"
POSTGRES_INDEXER_APP_NAME = "indexer"
POSTGRES_CELERY_APP_NAME = "celery"
POSTGRES_CELERY_BEAT_APP_NAME = "celery_beat"
POSTGRES_CELERY_WORKER_PRIMARY_APP_NAME = "celery_worker_primary"
POSTGRES_CELERY_WORKER_LIGHT_APP_NAME = "celery_worker_light"
POSTGRES_CELERY_WORKER_HEAVY_APP_NAME = "celery_worker_heavy"
POSTGRES_CELERY_WORKER_APP_NAME = "celery_worker"
POSTGRES_PERMISSIONS_APP_NAME = "permissions"
POSTGRES_UNKNOWN_APP_NAME = "unknown"
POSTGRES_DEFAULT_SCHEMA = "public"
# API Keys
DANSWER_API_KEY_PREFIX = "API_KEY__"
@@ -54,7 +46,6 @@ UNNAMED_KEY_PLACEHOLDER = "Unnamed"
# Key-Value store keys
KV_REINDEX_KEY = "needs_reindexing"
KV_SEARCH_SETTINGS = "search_settings"
KV_UNSTRUCTURED_API_KEY = "unstructured_api_key"
KV_USER_STORE_KEY = "INVITED_USERS"
KV_NO_AUTH_USER_PREFERENCES_KEY = "no_auth_user_preferences"
KV_CRED_KEY = "credential_id_{}"
@@ -71,7 +62,6 @@ KV_ENTERPRISE_SETTINGS_KEY = "danswer_enterprise_settings"
KV_CUSTOM_ANALYTICS_SCRIPT_KEY = "__custom_analytics_script__"
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT = 60
CELERY_PRIMARY_WORKER_LOCK_TIMEOUT = 120
class DocumentSource(str, Enum):
@@ -114,7 +104,6 @@ class DocumentSource(str, Enum):
R2 = "r2"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
OCI_STORAGE = "oci_storage"
XENFORO = "xenforo"
NOT_APPLICABLE = "not_applicable"
@@ -190,17 +179,17 @@ class PostgresAdvisoryLocks(Enum):
class DanswerCeleryQueues:
VESPA_DOCSET_SYNC_GENERATOR = "vespa_docset_sync_generator"
VESPA_USERGROUP_SYNC_GENERATOR = "vespa_usergroup_sync_generator"
VESPA_METADATA_SYNC = "vespa_metadata_sync"
CONNECTOR_DELETION = "connector_deletion"
CONNECTOR_PRUNING = "connector_pruning"
class DanswerRedisLocks:
PRIMARY_WORKER = "da_lock:primary_worker"
CHECK_VESPA_SYNC_BEAT_LOCK = "da_lock:check_vespa_sync_beat"
MONITOR_VESPA_SYNC_BEAT_LOCK = "da_lock:monitor_vespa_sync_beat"
CHECK_CONNECTOR_DELETION_BEAT_LOCK = "da_lock:check_connector_deletion_beat"
CHECK_PRUNE_BEAT_LOCK = "da_lock:check_prune_beat"
MONITOR_CONNECTOR_DELETION_BEAT_LOCK = "da_lock:monitor_connector_deletion_beat"
class DanswerCeleryPriority(int, Enum):
@@ -209,13 +198,3 @@ class DanswerCeleryPriority(int, Enum):
MEDIUM = auto()
LOW = auto()
LOWEST = auto()
REDIS_SOCKET_KEEPALIVE_OPTIONS = {}
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPINTVL] = 15
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPCNT] = 3
if platform.system() == "Darwin":
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPALIVE] = 60 # type: ignore
else:
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPIDLE] = 60 # type: ignore

View File

@@ -194,8 +194,8 @@ class BlobStorageConnector(LoadConnector, PollConnector):
try:
text = extract_file_text(
name,
BytesIO(downloaded_file),
file_name=name,
break_on_unprocessable=False,
)
batch.append(

View File

@@ -1,32 +0,0 @@
import bs4
def build_confluence_document_id(base_url: str, content_url: str) -> str:
"""For confluence, the document id is the page url for a page based document
or the attachment download url for an attachment based document
Args:
base_url (str): The base url of the Confluence instance
content_url (str): The url of the page or attachment download url
Returns:
str: The document id
"""
return f"{base_url}{content_url}"
def get_used_attachments(text: str) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachment in used
Args:
text (str): The page content
Returns:
list[str]: List of filenames currently in use by the page text
"""
files_in_used = []
soup = bs4.BeautifulSoup(text, "html.parser")
for attachment in soup.findAll("ri:attachment"):
files_in_used.append(attachment.attrs["ri:filename"])
return files_in_used

View File

@@ -22,10 +22,6 @@ from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.confluence.confluence_utils import (
build_confluence_document_id,
)
from danswer.connectors.confluence.confluence_utils import get_used_attachments
from danswer.connectors.confluence.rate_limit_handler import (
make_confluence_call_handle_rate_limit,
)
@@ -109,6 +105,24 @@ def parse_html_page(text: str, confluence_client: Confluence) -> str:
return format_document_soup(soup)
def get_used_attachments(text: str, confluence_client: Confluence) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachment in used
Args:
text (str): The page content
confluence_client (Confluence): Confluence client
Returns:
list[str]: List of filename currently in used
"""
files_in_used = []
soup = bs4.BeautifulSoup(text, "html.parser")
for attachment in soup.findAll("ri:attachment"):
files_in_used.append(attachment.attrs["ri:filename"])
return files_in_used
def _comment_dfs(
comments_str: str,
comment_pages: Collection[dict[str, Any]],
@@ -519,9 +533,7 @@ class ConfluenceConnector(LoadConnector, PollConnector):
return None
extracted_text = extract_file_text(
io.BytesIO(response.content),
file_name=attachment["title"],
break_on_unprocessable=False,
attachment["title"], io.BytesIO(response.content), False
)
if len(extracted_text) > CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD:
logger.warning(
@@ -612,22 +624,19 @@ class ConfluenceConnector(LoadConnector, PollConnector):
page_html = (
page["body"].get("storage", page["body"].get("view", {})).get("value")
)
# The url and the id are the same
page_url = build_confluence_document_id(
self.wiki_base, page["_links"]["webui"]
)
page_url = self.wiki_base + page["_links"]["webui"]
if not page_html:
logger.debug("Page is empty, skipping: %s", page_url)
continue
page_text = parse_html_page(page_html, self.confluence_client)
files_in_used = get_used_attachments(page_html)
files_in_used = get_used_attachments(page_html, self.confluence_client)
attachment_text, unused_page_attachments = self._fetch_attachments(
self.confluence_client, page_id, files_in_used
)
unused_attachments.extend(unused_page_attachments)
page_text += "\n" + attachment_text if attachment_text else ""
page_text += attachment_text
comments_text = self._fetch_comments(self.confluence_client, page_id)
page_text += comments_text
doc_metadata: dict[str, str | list[str]] = {"Wiki Space Name": self.space}
@@ -674,9 +683,8 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if time_filter and not time_filter(last_updated):
continue
# The url and the id are the same
attachment_url = build_confluence_document_id(
self.wiki_base, attachment["_links"]["download"]
attachment_url = self._attachment_to_download_link(
self.confluence_client, attachment
)
attachment_content = self._attachment_to_content(
self.confluence_client, attachment

View File

@@ -50,12 +50,6 @@ def make_confluence_call_handle_rate_limit(confluence_call: F) -> F:
pass
if retry_after is not None:
if retry_after > 600:
logger.warning(
f"Clamping retry_after from {retry_after} to {max_delay} seconds..."
)
retry_after = max_delay
logger.warning(
f"Rate limit hit. Retrying after {retry_after} seconds..."
)

View File

@@ -9,7 +9,6 @@ from jira.resources import Issue
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.app_configs import JIRA_CONNECTOR_LABELS_TO_SKIP
from danswer.configs.app_configs import JIRA_CONNECTOR_MAX_TICKET_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
from danswer.connectors.interfaces import GenerateDocumentsOutput
@@ -135,18 +134,10 @@ def fetch_jira_issues_batch(
else extract_text_from_adf(jira.raw["fields"]["description"])
)
comments = _get_comment_strs(jira, comment_email_blacklist)
ticket_content = f"{description}\n" + "\n".join(
semantic_rep = f"{description}\n" + "\n".join(
[f"Comment: {comment}" for comment in comments if comment]
)
# Check ticket size
if len(ticket_content.encode("utf-8")) > JIRA_CONNECTOR_MAX_TICKET_SIZE:
logger.info(
f"Skipping {jira.key} because it exceeds the maximum size of "
f"{JIRA_CONNECTOR_MAX_TICKET_SIZE} bytes."
)
continue
page_url = f"{jira_client.client_info()}/browse/{jira.key}"
people = set()
@@ -189,7 +180,7 @@ def fetch_jira_issues_batch(
doc_batch.append(
Document(
id=page_url,
sections=[Section(link=page_url, text=ticket_content)],
sections=[Section(link=page_url, text=semantic_rep)],
source=DocumentSource.JIRA,
semantic_identifier=jira.fields.summary,
doc_updated_at=time_str_to_utc(jira.fields.updated),
@@ -245,12 +236,10 @@ class JiraConnector(LoadConnector, PollConnector):
if self.jira_client is None:
raise ConnectorMissingCredentialError("Jira")
# Quote the project name to handle reserved words
quoted_project = f'"{self.jira_project}"'
start_ind = 0
while True:
doc_batch, fetched_batch_size = fetch_jira_issues_batch(
jql=f"project = {quoted_project}",
jql=f"project = {self.jira_project}",
start_index=start_ind,
jira_client=self.jira_client,
batch_size=self.batch_size,
@@ -278,10 +267,8 @@ class JiraConnector(LoadConnector, PollConnector):
"%Y-%m-%d %H:%M"
)
# Quote the project name to handle reserved words
quoted_project = f'"{self.jira_project}"'
jql = (
f"project = {quoted_project} AND "
f"project = {self.jira_project} AND "
f"updated >= '{start_date_str}' AND "
f"updated <= '{end_date_str}'"
)

View File

@@ -97,8 +97,8 @@ class DropboxConnector(LoadConnector, PollConnector):
link = self._get_shared_link(entry.path_display)
try:
text = extract_file_text(
entry.name,
BytesIO(downloaded_file),
file_name=entry.name,
break_on_unprocessable=False,
)
batch.append(

View File

@@ -42,7 +42,6 @@ from danswer.connectors.slack.load_connector import SlackLoadConnector
from danswer.connectors.teams.connector import TeamsConnector
from danswer.connectors.web.connector import WebConnector
from danswer.connectors.wikipedia.connector import WikipediaConnector
from danswer.connectors.xenforo.connector import XenforoConnector
from danswer.connectors.zendesk.connector import ZendeskConnector
from danswer.connectors.zulip.connector import ZulipConnector
from danswer.db.credentials import backend_update_credential_json
@@ -63,7 +62,6 @@ def identify_connector_class(
DocumentSource.SLACK: {
InputType.LOAD_STATE: SlackLoadConnector,
InputType.POLL: SlackPollConnector,
InputType.PRUNE: SlackPollConnector,
},
DocumentSource.GITHUB: GithubConnector,
DocumentSource.GMAIL: GmailConnector,
@@ -99,7 +97,6 @@ def identify_connector_class(
DocumentSource.R2: BlobStorageConnector,
DocumentSource.GOOGLE_CLOUD_STORAGE: BlobStorageConnector,
DocumentSource.OCI_STORAGE: BlobStorageConnector,
DocumentSource.XENFORO: XenforoConnector,
}
connector_by_source = connector_map.get(source, {})

View File

@@ -74,14 +74,13 @@ def _process_file(
)
# Using the PDF reader function directly to pass in password cleanly
elif extension == ".pdf" and pdf_pass is not None:
elif extension == ".pdf":
file_content_raw, file_metadata = read_pdf_file(file=file, pdf_pass=pdf_pass)
else:
file_content_raw = extract_file_text(
file=file,
file_name=file_name,
break_on_unprocessable=True,
file=file,
)
all_metadata = {**metadata, **file_metadata} if metadata else file_metadata

View File

@@ -25,7 +25,7 @@ from danswer.connectors.gmail.constants import (
from danswer.connectors.gmail.constants import SCOPES
from danswer.db.credentials import update_credential_json
from danswer.db.models import User
from danswer.key_value_store.factory import get_kv_store
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.server.documents.models import CredentialBase
from danswer.server.documents.models import GoogleAppCredentials
from danswer.server.documents.models import GoogleServiceAccountKey
@@ -72,7 +72,7 @@ def get_gmail_creds_for_service_account(
def verify_csrf(credential_id: int, state: str) -> None:
csrf = get_kv_store().load(KV_CRED_KEY.format(str(credential_id)))
csrf = get_dynamic_config_store().load(KV_CRED_KEY.format(str(credential_id)))
if csrf != state:
raise PermissionError(
"State from Gmail Connector callback does not match expected"
@@ -80,7 +80,7 @@ def verify_csrf(credential_id: int, state: str) -> None:
def get_gmail_auth_url(credential_id: int) -> str:
creds_str = str(get_kv_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
credential_json = json.loads(creds_str)
flow = InstalledAppFlow.from_client_config(
credential_json,
@@ -92,14 +92,14 @@ def get_gmail_auth_url(credential_id: int) -> str:
parsed_url = cast(ParseResult, urlparse(auth_url))
params = parse_qs(parsed_url.query)
get_kv_store().store(
get_dynamic_config_store().store(
KV_CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True
) # type: ignore
return str(auth_url)
def get_auth_url(credential_id: int) -> str:
creds_str = str(get_kv_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
credential_json = json.loads(creds_str)
flow = InstalledAppFlow.from_client_config(
credential_json,
@@ -111,7 +111,7 @@ def get_auth_url(credential_id: int) -> str:
parsed_url = cast(ParseResult, urlparse(auth_url))
params = parse_qs(parsed_url.query)
get_kv_store().store(
get_dynamic_config_store().store(
KV_CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True
) # type: ignore
return str(auth_url)
@@ -158,40 +158,42 @@ def build_service_account_creds(
def get_google_app_gmail_cred() -> GoogleAppCredentials:
creds_str = str(get_kv_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
return GoogleAppCredentials(**json.loads(creds_str))
def upsert_google_app_gmail_cred(app_credentials: GoogleAppCredentials) -> None:
get_kv_store().store(KV_GMAIL_CRED_KEY, app_credentials.json(), encrypt=True)
get_dynamic_config_store().store(
KV_GMAIL_CRED_KEY, app_credentials.json(), encrypt=True
)
def delete_google_app_gmail_cred() -> None:
get_kv_store().delete(KV_GMAIL_CRED_KEY)
get_dynamic_config_store().delete(KV_GMAIL_CRED_KEY)
def get_gmail_service_account_key() -> GoogleServiceAccountKey:
creds_str = str(get_kv_store().load(KV_GMAIL_SERVICE_ACCOUNT_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_SERVICE_ACCOUNT_KEY))
return GoogleServiceAccountKey(**json.loads(creds_str))
def upsert_gmail_service_account_key(
service_account_key: GoogleServiceAccountKey,
) -> None:
get_kv_store().store(
get_dynamic_config_store().store(
KV_GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
)
def upsert_service_account_key(service_account_key: GoogleServiceAccountKey) -> None:
get_kv_store().store(
get_dynamic_config_store().store(
KV_GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
)
def delete_gmail_service_account_key() -> None:
get_kv_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)
get_dynamic_config_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)
def delete_service_account_key() -> None:
get_kv_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)
get_dynamic_config_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)

View File

@@ -36,8 +36,6 @@ from danswer.connectors.models import Section
from danswer.file_processing.extract_file_text import docx_to_text
from danswer.file_processing.extract_file_text import pptx_to_text
from danswer.file_processing.extract_file_text import read_pdf_file
from danswer.file_processing.unstructured import get_unstructured_api_key
from danswer.file_processing.unstructured import unstructured_to_text
from danswer.utils.batching import batch_generator
from danswer.utils.logger import setup_logger
@@ -329,24 +327,16 @@ def extract_text(file: dict[str, str], service: discovery.Resource) -> str:
GDriveMimeType.MARKDOWN.value,
]:
return service.files().get_media(fileId=file["id"]).execute().decode("utf-8")
if mime_type in [
GDriveMimeType.WORD_DOC.value,
GDriveMimeType.POWERPOINT.value,
GDriveMimeType.PDF.value,
]:
elif mime_type == GDriveMimeType.WORD_DOC.value:
response = service.files().get_media(fileId=file["id"]).execute()
if get_unstructured_api_key():
return unstructured_to_text(
file=io.BytesIO(response), file_name=file.get("name", file["id"])
)
if mime_type == GDriveMimeType.WORD_DOC.value:
return docx_to_text(file=io.BytesIO(response))
elif mime_type == GDriveMimeType.PDF.value:
text, _ = read_pdf_file(file=io.BytesIO(response))
return text
elif mime_type == GDriveMimeType.POWERPOINT.value:
return pptx_to_text(file=io.BytesIO(response))
return docx_to_text(file=io.BytesIO(response))
elif mime_type == GDriveMimeType.PDF.value:
response = service.files().get_media(fileId=file["id"]).execute()
text, _ = read_pdf_file(file=io.BytesIO(response))
return text
elif mime_type == GDriveMimeType.POWERPOINT.value:
response = service.files().get_media(fileId=file["id"]).execute()
return pptx_to_text(file=io.BytesIO(response))
return UNSUPPORTED_FILE_TYPE_CONTENT

View File

@@ -28,7 +28,7 @@ from danswer.connectors.google_drive.constants import FETCH_GROUPS_SCOPES
from danswer.connectors.google_drive.constants import FETCH_PERMISSIONS_SCOPES
from danswer.db.credentials import update_credential_json
from danswer.db.models import User
from danswer.key_value_store.factory import get_kv_store
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.server.documents.models import CredentialBase
from danswer.server.documents.models import GoogleAppCredentials
from danswer.server.documents.models import GoogleServiceAccountKey
@@ -134,7 +134,7 @@ def get_google_drive_creds(
def verify_csrf(credential_id: int, state: str) -> None:
csrf = get_kv_store().load(KV_CRED_KEY.format(str(credential_id)))
csrf = get_dynamic_config_store().load(KV_CRED_KEY.format(str(credential_id)))
if csrf != state:
raise PermissionError(
"State from Google Drive Connector callback does not match expected"
@@ -142,7 +142,7 @@ def verify_csrf(credential_id: int, state: str) -> None:
def get_auth_url(credential_id: int) -> str:
creds_str = str(get_kv_store().load(KV_GOOGLE_DRIVE_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GOOGLE_DRIVE_CRED_KEY))
credential_json = json.loads(creds_str)
flow = InstalledAppFlow.from_client_config(
credential_json,
@@ -154,7 +154,7 @@ def get_auth_url(credential_id: int) -> str:
parsed_url = cast(ParseResult, urlparse(auth_url))
params = parse_qs(parsed_url.query)
get_kv_store().store(
get_dynamic_config_store().store(
KV_CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True
) # type: ignore
return str(auth_url)
@@ -202,28 +202,32 @@ def build_service_account_creds(
def get_google_app_cred() -> GoogleAppCredentials:
creds_str = str(get_kv_store().load(KV_GOOGLE_DRIVE_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(KV_GOOGLE_DRIVE_CRED_KEY))
return GoogleAppCredentials(**json.loads(creds_str))
def upsert_google_app_cred(app_credentials: GoogleAppCredentials) -> None:
get_kv_store().store(KV_GOOGLE_DRIVE_CRED_KEY, app_credentials.json(), encrypt=True)
get_dynamic_config_store().store(
KV_GOOGLE_DRIVE_CRED_KEY, app_credentials.json(), encrypt=True
)
def delete_google_app_cred() -> None:
get_kv_store().delete(KV_GOOGLE_DRIVE_CRED_KEY)
get_dynamic_config_store().delete(KV_GOOGLE_DRIVE_CRED_KEY)
def get_service_account_key() -> GoogleServiceAccountKey:
creds_str = str(get_kv_store().load(KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY))
creds_str = str(
get_dynamic_config_store().load(KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY)
)
return GoogleServiceAccountKey(**json.loads(creds_str))
def upsert_service_account_key(service_account_key: GoogleServiceAccountKey) -> None:
get_kv_store().store(
get_dynamic_config_store().store(
KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
)
def delete_service_account_key() -> None:
get_kv_store().delete(KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY)
get_dynamic_config_store().delete(KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY)

View File

@@ -40,8 +40,8 @@ def _convert_driveitem_to_document(
driveitem: DriveItem,
) -> Document:
file_text = extract_file_text(
file=io.BytesIO(driveitem.get_content().execute_query().value),
file_name=driveitem.name,
file=io.BytesIO(driveitem.get_content().execute_query().value),
break_on_unprocessable=False,
)

View File

@@ -8,12 +8,13 @@ from typing import cast
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
from slack_sdk.web import SlackResponse
from danswer.configs.app_configs import ENABLE_EXPENSIVE_EXPERT_CALLS
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.retry_wrapper import retry_builder
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import IdConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import BasicExpertInfo
@@ -22,8 +23,9 @@ from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.connectors.slack.utils import expert_info_from_slack_id
from danswer.connectors.slack.utils import get_message_link
from danswer.connectors.slack.utils import make_paginated_slack_api_call_w_retries
from danswer.connectors.slack.utils import make_slack_api_call_w_retries
from danswer.connectors.slack.utils import make_slack_api_call_logged
from danswer.connectors.slack.utils import make_slack_api_call_paginated
from danswer.connectors.slack.utils import make_slack_api_rate_limited
from danswer.connectors.slack.utils import SlackTextCleaner
from danswer.utils.logger import setup_logger
@@ -36,18 +38,47 @@ MessageType = dict[str, Any]
# list of messages in a thread
ThreadType = list[MessageType]
basic_retry_wrapper = retry_builder()
def _collect_paginated_channels(
def _make_paginated_slack_api_call(
call: Callable[..., SlackResponse], **kwargs: Any
) -> Generator[dict[str, Any], None, None]:
return make_slack_api_call_paginated(
basic_retry_wrapper(
make_slack_api_rate_limited(make_slack_api_call_logged(call))
)
)(**kwargs)
def _make_slack_api_call(
call: Callable[..., SlackResponse], **kwargs: Any
) -> SlackResponse:
return basic_retry_wrapper(
make_slack_api_rate_limited(make_slack_api_call_logged(call))
)(**kwargs)
def get_channel_info(client: WebClient, channel_id: str) -> ChannelType:
"""Get information about a channel. Needed to convert channel ID to channel name"""
return _make_slack_api_call(client.conversations_info, channel=channel_id)[0][
"channel"
]
def _get_channels(
client: WebClient,
exclude_archived: bool,
channel_types: list[str],
get_private: bool,
) -> list[ChannelType]:
channels: list[dict[str, Any]] = []
for result in make_paginated_slack_api_call_w_retries(
for result in _make_paginated_slack_api_call(
client.conversations_list,
exclude_archived=exclude_archived,
# also get private channels the bot is added to
types=channel_types,
types=["public_channel", "private_channel"]
if get_private
else ["public_channel"],
):
channels.extend(result["channels"])
@@ -57,38 +88,19 @@ def _collect_paginated_channels(
def get_channels(
client: WebClient,
exclude_archived: bool = True,
get_public: bool = True,
get_private: bool = True,
) -> list[ChannelType]:
"""Get all channels in the workspace"""
channels: list[dict[str, Any]] = []
channel_types = []
if get_public:
channel_types.append("public_channel")
if get_private:
channel_types.append("private_channel")
# try getting private channels as well at first
try:
channels = _collect_paginated_channels(
client=client,
exclude_archived=exclude_archived,
channel_types=channel_types,
return _get_channels(
client=client, exclude_archived=exclude_archived, get_private=True
)
except SlackApiError as e:
logger.info(f"Unable to fetch private channels due to - {e}")
logger.info("trying again without private channels")
if get_public:
channel_types = ["public_channel"]
else:
logger.warning("No channels to fetch")
return []
channels = _collect_paginated_channels(
client=client,
exclude_archived=exclude_archived,
channel_types=channel_types,
)
return channels
return _get_channels(
client=client, exclude_archived=exclude_archived, get_private=False
)
def get_channel_messages(
@@ -100,14 +112,14 @@ def get_channel_messages(
"""Get all messages in a channel"""
# join so that the bot can access messages
if not channel["is_member"]:
make_slack_api_call_w_retries(
_make_slack_api_call(
client.conversations_join,
channel=channel["id"],
is_private=channel["is_private"],
)
logger.info(f"Successfully joined '{channel['name']}'")
for result in make_paginated_slack_api_call_w_retries(
for result in _make_paginated_slack_api_call(
client.conversations_history,
channel=channel["id"],
oldest=oldest,
@@ -119,7 +131,7 @@ def get_channel_messages(
def get_thread(client: WebClient, channel_id: str, thread_id: str) -> ThreadType:
"""Get all messages in a thread"""
threads: list[MessageType] = []
for result in make_paginated_slack_api_call_w_retries(
for result in _make_paginated_slack_api_call(
client.conversations_replies, channel=channel_id, ts=thread_id
):
threads.extend(result["messages"])
@@ -205,17 +217,12 @@ _DISALLOWED_MSG_SUBTYPES = {
"group_leave",
"group_archive",
"group_unarchive",
"channel_leave",
"channel_name",
"channel_join",
}
def default_msg_filter(message: MessageType) -> bool:
def _default_msg_filter(message: MessageType) -> bool:
# Don't keep messages from bots
if message.get("bot_id") or message.get("app_id"):
if message.get("bot_profile", {}).get("name") == "DanswerConnector":
return False
return True
# Uninformative
@@ -259,14 +266,14 @@ def filter_channels(
]
def _get_all_docs(
def get_all_docs(
client: WebClient,
workspace: str,
channels: list[str] | None = None,
channel_name_regex_enabled: bool = False,
oldest: str | None = None,
latest: str | None = None,
msg_filter_func: Callable[[MessageType], bool] = default_msg_filter,
msg_filter_func: Callable[[MessageType], bool] = _default_msg_filter,
) -> Generator[Document, None, None]:
"""Get all documents in the workspace, channel by channel"""
slack_cleaner = SlackTextCleaner(client=client)
@@ -321,44 +328,7 @@ def _get_all_docs(
)
def _get_all_doc_ids(
client: WebClient,
channels: list[str] | None = None,
channel_name_regex_enabled: bool = False,
msg_filter_func: Callable[[MessageType], bool] = default_msg_filter,
) -> set[str]:
"""
Get all document ids in the workspace, channel by channel
This is pretty identical to get_all_docs, but it returns a set of ids instead of documents
This makes it an order of magnitude faster than get_all_docs
"""
all_channels = get_channels(client)
filtered_channels = filter_channels(
all_channels, channels, channel_name_regex_enabled
)
all_doc_ids = set()
for channel in filtered_channels:
channel_message_batches = get_channel_messages(
client=client,
channel=channel,
)
for message_batch in channel_message_batches:
for message in message_batch:
if msg_filter_func(message):
continue
# The document id is the channel id and the ts of the first message in the thread
# Since we already have the first message of the thread, we dont have to
# fetch the thread for id retrieval, saving time and API calls
all_doc_ids.add(f"{channel['id']}__{message['ts']}")
return all_doc_ids
class SlackPollConnector(PollConnector, IdConnector):
class SlackPollConnector(PollConnector):
def __init__(
self,
workspace: str,
@@ -379,16 +349,6 @@ class SlackPollConnector(PollConnector, IdConnector):
self.client = WebClient(token=bot_token)
return None
def retrieve_all_source_ids(self) -> set[str]:
if self.client is None:
raise ConnectorMissingCredentialError("Slack")
return _get_all_doc_ids(
client=self.client,
channels=self.channels,
channel_name_regex_enabled=self.channel_regex_enabled,
)
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
@@ -396,7 +356,7 @@ class SlackPollConnector(PollConnector, IdConnector):
raise ConnectorMissingCredentialError("Slack")
documents: list[Document] = []
for document in _get_all_docs(
for document in get_all_docs(
client=self.client,
workspace=self.workspace,
channels=self.channels,

View File

@@ -10,13 +10,11 @@ from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
from slack_sdk.web import SlackResponse
from danswer.connectors.cross_connector_utils.retry_wrapper import retry_builder
from danswer.connectors.models import BasicExpertInfo
from danswer.utils.logger import setup_logger
logger = setup_logger()
basic_retry_wrapper = retry_builder()
# number of messages we request per page when fetching paginated slack messages
_SLACK_LIMIT = 900
@@ -36,7 +34,7 @@ def get_message_link(
)
def _make_slack_api_call_logged(
def make_slack_api_call_logged(
call: Callable[..., SlackResponse],
) -> Callable[..., SlackResponse]:
@wraps(call)
@@ -49,7 +47,7 @@ def _make_slack_api_call_logged(
return logged_call
def _make_slack_api_call_paginated(
def make_slack_api_call_paginated(
call: Callable[..., SlackResponse],
) -> Callable[..., Generator[dict[str, Any], None, None]]:
"""Wraps calls to slack API so that they automatically handle pagination"""
@@ -118,24 +116,6 @@ def make_slack_api_rate_limited(
return rate_limited_call
def make_slack_api_call_w_retries(
call: Callable[..., SlackResponse], **kwargs: Any
) -> SlackResponse:
return basic_retry_wrapper(
make_slack_api_rate_limited(_make_slack_api_call_logged(call))
)(**kwargs)
def make_paginated_slack_api_call_w_retries(
call: Callable[..., SlackResponse], **kwargs: Any
) -> Generator[dict[str, Any], None, None]:
return _make_slack_api_call_paginated(
basic_retry_wrapper(
make_slack_api_rate_limited(_make_slack_api_call_logged(call))
)
)(**kwargs)
def expert_info_from_slack_id(
user_id: str | None,
client: WebClient,

View File

@@ -1,244 +0,0 @@
"""
This is the XenforoConnector class. It is used to connect to a Xenforo forum and load or update documents from the forum.
To use this class, you need to provide the URL of the Xenforo forum board you want to connect to when creating an instance
of the class. The URL should be a string that starts with 'http://' or 'https://', followed by the domain name of the
forum, followed by the board name. For example:
base_url = 'https://www.example.com/forum/boards/some-topic/'
The `load_from_state` method is used to load documents from the forum. It takes an optional `state` parameter, which
can be used to specify a state from which to start loading documents.
"""
import re
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from urllib.parse import urlparse
import pytz
import requests
from bs4 import BeautifulSoup
from bs4 import Tag
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.miscellaneous_utils import datetime_to_utc
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.utils.logger import setup_logger
logger = setup_logger()
def get_title(soup: BeautifulSoup) -> str:
el = soup.find("h1", "p-title-value")
if not el:
return ""
title = el.text
for char in (";", ":", "!", "*", "/", "\\", "?", '"', "<", ">", "|"):
title = title.replace(char, "_")
return title
def get_pages(soup: BeautifulSoup, url: str) -> list[str]:
page_tags = soup.select("li.pageNav-page")
page_numbers = []
for button in page_tags:
if re.match(r"^\d+$", button.text):
page_numbers.append(button.text)
max_pages = int(max(page_numbers, key=int)) if page_numbers else 1
all_pages = []
for x in range(1, int(max_pages) + 1):
all_pages.append(f"{url}page-{x}")
return all_pages
def parse_post_date(post_element: BeautifulSoup) -> datetime:
el = post_element.find("time")
if not isinstance(el, Tag) or "datetime" not in el.attrs:
return datetime.utcfromtimestamp(0).replace(tzinfo=timezone.utc)
date_value = el["datetime"]
# Ensure date_value is a string (if it's a list, take the first element)
if isinstance(date_value, list):
date_value = date_value[0]
post_date = datetime.strptime(date_value, "%Y-%m-%dT%H:%M:%S%z")
return datetime_to_utc(post_date)
def scrape_page_posts(
soup: BeautifulSoup,
page_index: int,
url: str,
initial_run: bool,
start_time: datetime,
) -> list:
title = get_title(soup)
documents = []
for post in soup.find_all("div", class_="message-inner"):
post_date = parse_post_date(post)
if initial_run or post_date > start_time:
el = post.find("div", class_="bbWrapper")
if not el:
continue
post_text = el.get_text(strip=True) + "\n"
author_tag = post.find("a", class_="username")
if author_tag is None:
author_tag = post.find("span", class_="username")
author = author_tag.get_text(strip=True) if author_tag else "Deleted author"
formatted_time = post_date.strftime("%Y-%m-%d %H:%M:%S")
# TODO: if a caller calls this for each page of a thread, it may see the
# same post multiple times if there is a sticky post
# that appears on each page of a thread.
# it's important to generate unique doc id's, so page index is part of the
# id. We may want to de-dupe this stuff inside the indexing service.
document = Document(
id=f"{DocumentSource.XENFORO.value}_{title}_{page_index}_{formatted_time}",
sections=[Section(link=url, text=post_text)],
title=title,
source=DocumentSource.XENFORO,
semantic_identifier=title,
primary_owners=[BasicExpertInfo(display_name=author)],
metadata={
"type": "post",
"author": author,
"time": formatted_time,
},
doc_updated_at=post_date,
)
documents.append(document)
return documents
class XenforoConnector(LoadConnector):
# Class variable to track if the connector has been run before
has_been_run_before = False
def __init__(self, base_url: str) -> None:
self.base_url = base_url
self.initial_run = not XenforoConnector.has_been_run_before
self.start = datetime.utcnow().replace(tzinfo=pytz.utc) - timedelta(days=1)
self.cookies: dict[str, str] = {}
# mimic user browser to avoid being blocked by the website (see: https://www.useragents.me/)
self.headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/121.0.0.0 Safari/537.36"
}
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
if credentials:
logger.warning("Unexpected credentials provided for Xenforo Connector")
return None
def load_from_state(self) -> GenerateDocumentsOutput:
# Standardize URL to always end in /.
if self.base_url[-1] != "/":
self.base_url += "/"
# Remove all extra parameters from the end such as page, post.
matches = ("threads/", "boards/", "forums/")
for each in matches:
if each in self.base_url:
try:
self.base_url = self.base_url[
0 : self.base_url.index(
"/", self.base_url.index(each) + len(each)
)
+ 1
]
except ValueError:
pass
doc_batch: list[Document] = []
all_threads = []
# If the URL contains "boards/" or "forums/", find all threads.
if "boards/" in self.base_url or "forums/" in self.base_url:
pages = get_pages(self.requestsite(self.base_url), self.base_url)
# Get all pages on thread_list_page
for pre_count, thread_list_page in enumerate(pages, start=1):
logger.info(
f"Getting pages from thread_list_page.. Current: {pre_count}/{len(pages)}\r"
)
all_threads += self.get_threads(thread_list_page)
# If the URL contains "threads/", add the thread to the list.
elif "threads/" in self.base_url:
all_threads.append(self.base_url)
# Process all threads
for thread_count, thread_url in enumerate(all_threads, start=1):
soup = self.requestsite(thread_url)
if soup is None:
logger.error(f"Failed to load page: {self.base_url}")
continue
pages = get_pages(soup, thread_url)
# Getting all pages for all threads
for page_index, page in enumerate(pages, start=1):
logger.info(
f"Progress: Page {page_index}/{len(pages)} - Thread {thread_count}/{len(all_threads)}\r"
)
soup_page = self.requestsite(page)
doc_batch.extend(
scrape_page_posts(
soup_page, page_index, thread_url, self.initial_run, self.start
)
)
if doc_batch:
yield doc_batch
# Mark the initial run finished after all threads and pages have been processed
XenforoConnector.has_been_run_before = True
def get_threads(self, url: str) -> list[str]:
soup = self.requestsite(url)
thread_tags = soup.find_all(class_="structItem-title")
base_url = "{uri.scheme}://{uri.netloc}".format(uri=urlparse(url))
threads = []
for x in thread_tags:
y = x.find_all(href=True)
for element in y:
link = element["href"]
if "threads/" in link:
stripped = link[0 : link.rfind("/") + 1]
if base_url + stripped not in threads:
threads.append(base_url + stripped)
return threads
def requestsite(self, url: str) -> BeautifulSoup:
try:
response = requests.get(
url, cookies=self.cookies, headers=self.headers, timeout=10
)
if response.status_code != 200:
logger.error(
f"<{url}> Request Error: {response.status_code} - {response.reason}"
)
return BeautifulSoup(response.text, "html.parser")
except TimeoutError:
logger.error("Timed out Error.")
except Exception as e:
logger.error(f"Error on {url}")
logger.exception(e)
return BeautifulSoup("", "html.parser")
if __name__ == "__main__":
connector = XenforoConnector(
# base_url="https://cassiopaea.org/forum/threads/how-to-change-your-emotional-state.41381/"
base_url="https://xenforo.com/community/threads/whats-new-with-enhanced-search-resource-manager-and-media-gallery-in-xenforo-2-3.220935/"
)
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -5,6 +5,7 @@ from typing import cast
from typing import Optional
from typing import TypeVar
from fastapi import HTTPException
from retry import retry
from slack_sdk import WebClient
from slack_sdk.models.blocks import DividerBlock
@@ -154,8 +155,12 @@ def handle_regular_answer(
with Session(get_sqlalchemy_engine()) as db_session:
if len(new_message_request.messages) > 1:
if new_message_request.persona_config:
raise RuntimeError("Slack bot does not support persona config")
elif new_message_request.persona_id is not None:
raise HTTPException(
status_code=403,
detail="Slack bot does not support persona config",
)
elif new_message_request.persona_id:
persona = cast(
Persona,
fetch_persona_by_id(
@@ -165,10 +170,6 @@ def handle_regular_answer(
get_editable=False,
),
)
else:
raise RuntimeError(
"No persona id provided, this should never happen."
)
llm, _ = get_llms_for_persona(persona)

View File

@@ -49,7 +49,7 @@ from danswer.danswerbot.slack.utils import rephrase_slack_message
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.search_settings import get_current_search_settings
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.dynamic_configs.interface import ConfigNotFoundError
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.one_shot_answer.models import ThreadMessage
@@ -131,8 +131,9 @@ def prefilter_requests(req: SocketModeRequest, client: SocketModeClient) -> bool
)
return False
bot_tag_id = get_danswer_bot_app_id(client.web_client)
if event_type == "message":
bot_tag_id = get_danswer_bot_app_id(client.web_client)
is_dm = event.get("channel_type") == "im"
is_tagged = bot_tag_id and bot_tag_id in msg
is_danswer_bot_msg = bot_tag_id and bot_tag_id in event.get("user", "")
@@ -158,10 +159,8 @@ def prefilter_requests(req: SocketModeRequest, client: SocketModeClient) -> bool
slack_bot_config = get_slack_bot_config_for_channel(
channel_name=channel_name, db_session=db_session
)
# If DanswerBot is not specifically tagged and the channel is not set to respond to bots, ignore the message
if (not bot_tag_id or bot_tag_id not in msg) and (
not slack_bot_config
or not slack_bot_config.channel_config.get("respond_to_bots")
if not slack_bot_config or not slack_bot_config.channel_config.get(
"respond_to_bots"
):
channel_specific_logger.info("Ignoring message from bot")
return False
@@ -448,9 +447,8 @@ def process_slack_event(client: SocketModeClient, req: SocketModeRequest) -> Non
return view_routing(req, client)
elif req.type == "events_api" or req.type == "slash_commands":
return process_message(req, client)
except Exception as e:
logger.exception(f"Failed to process slack event. Error: {e}")
logger.error(f"Slack request payload: {req.payload}")
except Exception:
logger.exception("Failed to process slack event")
def _get_socket_client(slack_bot_tokens: SlackBotTokens) -> SocketModeClient:
@@ -524,7 +522,7 @@ if __name__ == "__main__":
# Let the handlers run in the background + re-check for token updates every 60 seconds
Event().wait(timeout=60)
except KvKeyNotFoundError:
except ConfigNotFoundError:
# try again every 30 seconds. This is needed since the user may add tokens
# via the UI at any point in the programs lifecycle - if we just allow it to
# fail, then the user will need to restart the containers after adding tokens

View File

@@ -2,7 +2,7 @@ import os
from typing import cast
from danswer.configs.constants import KV_SLACK_BOT_TOKENS_CONFIG_KEY
from danswer.key_value_store.factory import get_kv_store
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.server.manage.models import SlackBotTokens
@@ -13,7 +13,7 @@ def fetch_tokens() -> SlackBotTokens:
if app_token and bot_token:
return SlackBotTokens(app_token=app_token, bot_token=bot_token)
dynamic_config_store = get_kv_store()
dynamic_config_store = get_dynamic_config_store()
return SlackBotTokens(
**cast(dict, dynamic_config_store.load(key=KV_SLACK_BOT_TOKENS_CONFIG_KEY))
)
@@ -22,7 +22,7 @@ def fetch_tokens() -> SlackBotTokens:
def save_tokens(
tokens: SlackBotTokens,
) -> None:
dynamic_config_store = get_kv_store()
dynamic_config_store = get_dynamic_config_store()
dynamic_config_store.store(
key=KV_SLACK_BOT_TOKENS_CONFIG_KEY, val=dict(tokens), encrypt=True
)

View File

@@ -430,58 +430,35 @@ def read_slack_thread(
replies = cast(dict, response.data).get("messages", [])
for reply in replies:
if "user" in reply and "bot_id" not in reply:
message = reply["text"]
user_sem_id = (
fetch_user_semantic_id_from_id(reply.get("user"), client)
or "Unknown User"
)
message = remove_danswer_bot_tag(reply["text"], client=client)
user_sem_id = fetch_user_semantic_id_from_id(reply["user"], client)
message_type = MessageType.USER
else:
self_app_id = get_danswer_bot_app_id(client)
if reply.get("user") == self_app_id:
# DanswerBot response
message_type = MessageType.ASSISTANT
user_sem_id = "Assistant"
# DanswerBot responses have both text and blocks
# The useful content is in the blocks, specifically the first block unless there are
# auto-detected filters
blocks = reply.get("blocks")
if not blocks:
logger.warning(f"DanswerBot response has no blocks: {reply}")
continue
message = blocks[0].get("text", {}).get("text")
# If auto-detected filters are on, use the second block for the actual answer
# The first block is the auto-detected filters
if message.startswith("_Filters"):
if len(blocks) < 2:
logger.warning(f"Only filter blocks found: {reply}")
continue
# This is the DanswerBot answer format, if there is a change to how we respond,
# this will need to be updated to get the correct "answer" portion
message = reply["blocks"][1].get("text", {}).get("text")
else:
# Other bots are not counted as the LLM response which only comes from Danswer
message_type = MessageType.USER
bot_user_name = fetch_user_semantic_id_from_id(
reply.get("user"), client
)
user_sem_id = bot_user_name or "Unknown" + " Bot"
# For other bots, just use the text as we have no way of knowing that the
# useful portion is
message = reply.get("text")
if not message:
message = blocks[0].get("text", {}).get("text")
if not message:
logger.warning("Skipping Slack thread message, no text found")
# Only include bot messages from Danswer, other bots are not taken in as context
if self_app_id != reply.get("user"):
continue
message = remove_danswer_bot_tag(message, client=client)
blocks = reply["blocks"]
if len(blocks) <= 1:
continue
# For the old flow, the useful block is the second one after the header block that says AI Answer
if reply["blocks"][0]["text"]["text"] == "AI Answer":
message = reply["blocks"][1]["text"]["text"]
else:
# for the new flow, the answer is the first block
message = reply["blocks"][0]["text"]["text"]
if message.startswith("_Filters"):
if len(blocks) <= 2:
continue
message = reply["blocks"][2]["text"]["text"]
user_sem_id = "Assistant"
message_type = MessageType.ASSISTANT
thread_messages.append(
ThreadMessage(message=message, sender=user_sem_id, role=message_type)
)

View File

@@ -13,7 +13,7 @@ from sqlalchemy.future import select
from danswer.auth.schemas import UserRole
from danswer.db.engine import get_async_session
from danswer.db.engine import get_async_session_with_tenant
from danswer.db.engine import get_sqlalchemy_async_engine
from danswer.db.models import AccessToken
from danswer.db.models import OAuthAccount
from danswer.db.models import User
@@ -34,7 +34,7 @@ def get_default_admin_user_emails() -> list[str]:
async def get_user_count() -> int:
async with get_async_session_with_tenant() as asession:
async with AsyncSession(get_sqlalchemy_async_engine()) as asession:
stmt = select(func.count(User.id))
result = await asession.execute(stmt)
user_count = result.scalar()

View File

@@ -1,5 +1,3 @@
from datetime import datetime
from datetime import timezone
from typing import cast
from sqlalchemy import and_
@@ -270,15 +268,3 @@ def create_initial_default_connector(db_session: Session) -> None:
)
db_session.add(connector)
db_session.commit()
def mark_ccpair_as_pruned(cc_pair_id: int, db_session: Session) -> None:
stmt = select(ConnectorCredentialPair).where(
ConnectorCredentialPair.id == cc_pair_id
)
cc_pair = db_session.scalar(stmt)
if cc_pair is None:
raise ValueError(f"No cc_pair with ID: {cc_pair_id}")
cc_pair.last_pruned = datetime.now(timezone.utc)
db_session.commit()

View File

@@ -26,7 +26,9 @@ from danswer.db.models import UserRole
from danswer.server.models import StatusResponse
from danswer.utils.logger import setup_logger
from ee.danswer.db.external_perm import delete_user__ext_group_for_cc_pair__no_commit
from ee.danswer.external_permissions.sync_params import check_if_valid_sync_source
from ee.danswer.external_permissions.permission_sync_function_map import (
check_if_valid_sync_source,
)
logger = setup_logger()
@@ -390,7 +392,6 @@ def add_credential_to_connector(
)
db_session.add(association)
db_session.flush() # make sure the association has an id
db_session.refresh(association)
if groups and access_type != AccessType.SYNC:
_relate_groups_to_cc_pair__no_commit(

View File

@@ -104,18 +104,6 @@ def construct_document_select_for_connector_credential_pair(
return stmt
def get_document_ids_for_connector_credential_pair(
db_session: Session, connector_id: int, credential_id: int, limit: int | None = None
) -> list[str]:
doc_ids_stmt = select(DocumentByConnectorCredentialPair.id).where(
and_(
DocumentByConnectorCredentialPair.connector_id == connector_id,
DocumentByConnectorCredentialPair.credential_id == credential_id,
)
)
return list(db_session.execute(doc_ids_stmt).scalars().all())
def get_documents_for_connector_credential_pair(
db_session: Session, connector_id: int, credential_id: int, limit: int | None = None
) -> Sequence[DbDocument]:
@@ -132,8 +120,8 @@ def get_documents_for_connector_credential_pair(
def get_documents_by_ids(
db_session: Session,
document_ids: list[str],
db_session: Session,
) -> list[DbDocument]:
stmt = select(DbDocument).where(DbDocument.id.in_(document_ids))
documents = db_session.execute(stmt).scalars().all()

View File

@@ -1,18 +1,10 @@
import contextlib
import re
import threading
import time
from collections.abc import AsyncGenerator
from collections.abc import Generator
from contextlib import asynccontextmanager
from contextlib import contextmanager
from datetime import datetime
from typing import Any
from typing import ContextManager
import jwt
from fastapi import HTTPException
from fastapi import Request
from sqlalchemy import event
from sqlalchemy import text
from sqlalchemy.engine import create_engine
@@ -25,9 +17,6 @@ from sqlalchemy.orm import sessionmaker
from danswer.configs.app_configs import LOG_POSTGRES_CONN_COUNTS
from danswer.configs.app_configs import LOG_POSTGRES_LATENCY
from danswer.configs.app_configs import MULTI_TENANT
from danswer.configs.app_configs import POSTGRES_API_SERVER_POOL_OVERFLOW
from danswer.configs.app_configs import POSTGRES_API_SERVER_POOL_SIZE
from danswer.configs.app_configs import POSTGRES_DB
from danswer.configs.app_configs import POSTGRES_HOST
from danswer.configs.app_configs import POSTGRES_PASSWORD
@@ -35,24 +24,27 @@ from danswer.configs.app_configs import POSTGRES_POOL_PRE_PING
from danswer.configs.app_configs import POSTGRES_POOL_RECYCLE
from danswer.configs.app_configs import POSTGRES_PORT
from danswer.configs.app_configs import POSTGRES_USER
from danswer.configs.app_configs import SECRET_JWT_KEY
from danswer.configs.constants import POSTGRES_DEFAULT_SCHEMA
from danswer.configs.constants import POSTGRES_UNKNOWN_APP_NAME
from danswer.utils.logger import setup_logger
from shared_configs.configs import current_tenant_id
logger = setup_logger()
SYNC_DB_API = "psycopg2"
ASYNC_DB_API = "asyncpg"
POSTGRES_APP_NAME = (
POSTGRES_UNKNOWN_APP_NAME # helps to diagnose open connections in postgres
)
# global so we don't create more than one engine per process
# outside of being best practice, this is needed so we can properly pool
# connections and not create a new pool on every request
_SYNC_ENGINE: Engine | None = None
_ASYNC_ENGINE: AsyncEngine | None = None
SessionFactory: sessionmaker[Session] | None = None
if LOG_POSTGRES_LATENCY:
# Function to log before query execution
@event.listens_for(Engine, "before_cursor_execute")
@@ -116,78 +108,6 @@ def get_db_current_time(db_session: Session) -> datetime:
return result
# Regular expression to validate schema names to prevent SQL injection
SCHEMA_NAME_REGEX = re.compile(r"^[a-zA-Z0-9_-]+$")
def is_valid_schema_name(name: str) -> bool:
return SCHEMA_NAME_REGEX.match(name) is not None
class SqlEngine:
"""Class to manage a global SQLAlchemy engine (needed for proper resource control).
Will eventually subsume most of the standalone functions in this file.
Sync only for now.
"""
_engine: Engine | None = None
_lock: threading.Lock = threading.Lock()
_app_name: str = POSTGRES_UNKNOWN_APP_NAME
# Default parameters for engine creation
DEFAULT_ENGINE_KWARGS = {
"pool_size": 20,
"max_overflow": 5,
"pool_pre_ping": POSTGRES_POOL_PRE_PING,
"pool_recycle": POSTGRES_POOL_RECYCLE,
}
def __init__(self) -> None:
pass
@classmethod
def _init_engine(cls, **engine_kwargs: Any) -> Engine:
"""Private helper method to create and return an Engine."""
connection_string = build_connection_string(
db_api=SYNC_DB_API, app_name=cls._app_name + "_sync"
)
merged_kwargs = {**cls.DEFAULT_ENGINE_KWARGS, **engine_kwargs}
return create_engine(connection_string, **merged_kwargs)
@classmethod
def init_engine(cls, **engine_kwargs: Any) -> None:
"""Allow the caller to init the engine with extra params. Different clients
such as the API server and different Celery workers and tasks
need different settings.
"""
with cls._lock:
if not cls._engine:
cls._engine = cls._init_engine(**engine_kwargs)
@classmethod
def get_engine(cls) -> Engine:
"""Gets the SQLAlchemy engine. Will init a default engine if init hasn't
already been called. You probably want to init first!
"""
if not cls._engine:
with cls._lock:
if not cls._engine:
cls._engine = cls._init_engine()
return cls._engine
@classmethod
def set_app_name(cls, app_name: str) -> None:
"""Class method to set the app name."""
cls._app_name = app_name
@classmethod
def get_app_name(cls) -> str:
"""Class method to get current app name."""
if not cls._app_name:
return ""
return cls._app_name
def build_connection_string(
*,
db_api: str = ASYNC_DB_API,
@@ -200,187 +120,69 @@ def build_connection_string(
) -> str:
if app_name:
return f"postgresql+{db_api}://{user}:{password}@{host}:{port}/{db}?application_name={app_name}"
return f"postgresql+{db_api}://{user}:{password}@{host}:{port}/{db}"
def init_sqlalchemy_engine(app_name: str) -> None:
global POSTGRES_APP_NAME
POSTGRES_APP_NAME = app_name
def get_sqlalchemy_engine() -> Engine:
return SqlEngine.get_engine()
global _SYNC_ENGINE
if _SYNC_ENGINE is None:
connection_string = build_connection_string(
db_api=SYNC_DB_API, app_name=POSTGRES_APP_NAME + "_sync"
)
_SYNC_ENGINE = create_engine(
connection_string,
pool_size=5,
max_overflow=0,
pool_pre_ping=POSTGRES_POOL_PRE_PING,
pool_recycle=POSTGRES_POOL_RECYCLE,
)
return _SYNC_ENGINE
def get_sqlalchemy_async_engine() -> AsyncEngine:
global _ASYNC_ENGINE
if _ASYNC_ENGINE is None:
# Underlying asyncpg cannot accept application_name directly in the connection string
# underlying asyncpg cannot accept application_name directly in the connection string
# https://github.com/MagicStack/asyncpg/issues/798
connection_string = build_connection_string()
_ASYNC_ENGINE = create_async_engine(
connection_string,
connect_args={
"server_settings": {
"application_name": SqlEngine.get_app_name() + "_async"
}
"server_settings": {"application_name": POSTGRES_APP_NAME + "_async"}
},
# async engine is only used by API server, so we can use those values
# here as well
pool_size=POSTGRES_API_SERVER_POOL_SIZE,
max_overflow=POSTGRES_API_SERVER_POOL_OVERFLOW,
pool_size=5,
max_overflow=0,
pool_pre_ping=POSTGRES_POOL_PRE_PING,
pool_recycle=POSTGRES_POOL_RECYCLE,
)
return _ASYNC_ENGINE
# Dependency to get the current tenant ID
# If no token is present, uses the default schema for this use case
def get_current_tenant_id(request: Request) -> str:
"""Dependency that extracts the tenant ID from the JWT token in the request and sets the context variable."""
if not MULTI_TENANT:
tenant_id = POSTGRES_DEFAULT_SCHEMA
current_tenant_id.set(tenant_id)
return tenant_id
token = request.cookies.get("tenant_details")
if not token:
current_value = current_tenant_id.get()
# If no token is present, use the default schema or handle accordingly
return current_value
try:
payload = jwt.decode(token, SECRET_JWT_KEY, algorithms=["HS256"])
tenant_id = payload.get("tenant_id")
if not tenant_id:
return current_tenant_id.get()
if not is_valid_schema_name(tenant_id):
raise HTTPException(status_code=400, detail="Invalid tenant ID format")
current_tenant_id.set(tenant_id)
return tenant_id
except jwt.InvalidTokenError:
return current_tenant_id.get()
except Exception as e:
logger.error(f"Unexpected error in get_current_tenant_id: {str(e)}")
raise HTTPException(status_code=500, detail="Internal server error")
@asynccontextmanager
async def get_async_session_with_tenant(
tenant_id: str | None = None,
) -> AsyncGenerator[AsyncSession, None]:
if tenant_id is None:
tenant_id = current_tenant_id.get()
if not is_valid_schema_name(tenant_id):
logger.error(f"Invalid tenant ID: {tenant_id}")
raise Exception("Invalid tenant ID")
engine = get_sqlalchemy_async_engine()
async_session_factory = sessionmaker(
bind=engine, expire_on_commit=False, class_=AsyncSession
) # type: ignore
async with async_session_factory() as session:
try:
# Set the search_path to the tenant's schema
await session.execute(text(f'SET search_path = "{tenant_id}"'))
except Exception as e:
logger.error(f"Error setting search_path: {str(e)}")
# You can choose to re-raise the exception or handle it
# Here, we'll re-raise to prevent proceeding with an incorrect session
raise
else:
yield session
@contextmanager
def get_session_with_tenant(
tenant_id: str | None = None,
) -> Generator[Session, None, None]:
"""Generate a database session with the appropriate tenant schema set."""
engine = get_sqlalchemy_engine()
if tenant_id is None:
tenant_id = current_tenant_id.get()
if not is_valid_schema_name(tenant_id):
raise HTTPException(status_code=400, detail="Invalid tenant ID")
# Establish a raw connection without starting a transaction
with engine.connect() as connection:
# Access the raw DBAPI connection
dbapi_connection = connection.connection
# Execute SET search_path outside of any transaction
cursor = dbapi_connection.cursor()
try:
cursor.execute(f'SET search_path TO "{tenant_id}"')
# Optionally verify the search_path was set correctly
cursor.execute("SHOW search_path")
cursor.fetchone()
finally:
cursor.close()
# Proceed to create a session using the connection
with Session(bind=connection, expire_on_commit=False) as session:
try:
yield session
finally:
# Reset search_path to default after the session is used
if MULTI_TENANT:
cursor = dbapi_connection.cursor()
try:
cursor.execute('SET search_path TO "$user", public')
finally:
cursor.close()
def get_session_generator_with_tenant(
tenant_id: str | None = None,
) -> Generator[Session, None, None]:
with get_session_with_tenant(tenant_id) as session:
yield session
def get_session_context_manager() -> ContextManager[Session]:
return contextlib.contextmanager(get_session)()
def get_session() -> Generator[Session, None, None]:
"""Generate a database session with the appropriate tenant schema set."""
tenant_id = current_tenant_id.get()
if tenant_id == "public" and MULTI_TENANT:
raise HTTPException(status_code=401, detail="User must authenticate")
engine = get_sqlalchemy_engine()
with Session(engine, expire_on_commit=False) as session:
if MULTI_TENANT:
if not is_valid_schema_name(tenant_id):
raise HTTPException(status_code=400, detail="Invalid tenant ID")
# Set the search_path to the tenant's schema
session.execute(text(f'SET search_path = "{tenant_id}"'))
# The line below was added to monitor the latency caused by Postgres connections
# during API calls.
# with tracer.trace("db.get_session"):
with Session(get_sqlalchemy_engine(), expire_on_commit=False) as session:
yield session
async def get_async_session() -> AsyncGenerator[AsyncSession, None]:
"""Generate an async database session with the appropriate tenant schema set."""
tenant_id = current_tenant_id.get()
engine = get_sqlalchemy_async_engine()
async with AsyncSession(engine, expire_on_commit=False) as async_session:
if MULTI_TENANT:
if not is_valid_schema_name(tenant_id):
raise HTTPException(status_code=400, detail="Invalid tenant ID")
# Set the search_path to the tenant's schema
await async_session.execute(text(f'SET search_path = "{tenant_id}"'))
async with AsyncSession(
get_sqlalchemy_async_engine(), expire_on_commit=False
) as async_session:
yield async_session
def get_session_context_manager() -> ContextManager[Session]:
"""Context manager for database sessions."""
return contextlib.contextmanager(get_session_generator_with_tenant)()
def get_session_factory() -> sessionmaker[Session]:
"""Get a session factory."""
global SessionFactory
if SessionFactory is None:
SessionFactory = sessionmaker(bind=get_sqlalchemy_engine())
return SessionFactory
async def warm_up_connections(
sync_connections_to_warm_up: int = 20, async_connections_to_warm_up: int = 20
) -> None:
@@ -402,3 +204,10 @@ async def warm_up_connections(
await async_conn.execute(text("SELECT 1"))
for async_conn in async_connections:
await async_conn.close()
def get_session_factory() -> sessionmaker[Session]:
global SessionFactory
if SessionFactory is None:
SessionFactory = sessionmaker(bind=get_sqlalchemy_engine())
return SessionFactory

View File

@@ -64,12 +64,19 @@ def upsert_cloud_embedding_provider(
def upsert_llm_provider(
llm_provider: LLMProviderUpsertRequest,
db_session: Session,
is_creation: bool = True,
) -> FullLLMProvider:
existing_llm_provider = db_session.scalar(
select(LLMProviderModel).where(LLMProviderModel.name == llm_provider.name)
)
if existing_llm_provider and is_creation:
raise ValueError(f"LLM Provider with name {llm_provider.name} already exists")
if not existing_llm_provider:
if not is_creation:
raise ValueError(
f"LLM Provider with name {llm_provider.name} does not exist"
)
existing_llm_provider = LLMProviderModel(name=llm_provider.name)
db_session.add(existing_llm_provider)
@@ -83,7 +90,6 @@ def upsert_llm_provider(
existing_llm_provider.model_names = llm_provider.model_names
existing_llm_provider.is_public = llm_provider.is_public
existing_llm_provider.display_model_names = llm_provider.display_model_names
existing_llm_provider.deployment_name = llm_provider.deployment_name
if not existing_llm_provider.id:
# If its not already in the db, we need to generate an ID by flushing

View File

@@ -50,7 +50,7 @@ from danswer.db.enums import IndexingStatus
from danswer.db.enums import IndexModelStatus
from danswer.db.enums import TaskStatus
from danswer.db.pydantic_type import PydanticType
from danswer.key_value_store.interface import JSON_ro
from danswer.dynamic_configs.interface import JSON_ro
from danswer.file_store.models import FileDescriptor
from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
@@ -414,12 +414,6 @@ class ConnectorCredentialPair(Base):
last_successful_index_time: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), default=None
)
# last successful prune
last_pruned: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), nullable=True, index=True
)
total_docs_indexed: Mapped[int] = mapped_column(Integer, default=0)
connector: Mapped["Connector"] = relationship(
@@ -1143,8 +1137,6 @@ class LLMProvider(Base):
postgresql.ARRAY(String), nullable=True
)
deployment_name: Mapped[str | None] = mapped_column(String, nullable=True)
# should only be set for a single provider
is_default_provider: Mapped[bool | None] = mapped_column(Boolean, unique=True)
# EE only
@@ -1733,9 +1725,7 @@ class User__ExternalUserGroupId(Base):
user_id: Mapped[UUID] = mapped_column(ForeignKey("user.id"), primary_key=True)
# These group ids have been prefixed by the source type
external_user_group_id: Mapped[str] = mapped_column(String, primary_key=True)
cc_pair_id: Mapped[int] = mapped_column(
ForeignKey("connector_credential_pair.id"), primary_key=True
)
cc_pair_id: Mapped[int] = mapped_column(ForeignKey("connector_credential_pair.id"))
class UsageReport(Base):
@@ -1763,23 +1753,3 @@ class UsageReport(Base):
requestor = relationship("User")
file = relationship("PGFileStore")
"""
Multi-tenancy related tables
"""
class PublicBase(DeclarativeBase):
__abstract__ = True
class UserTenantMapping(Base):
__tablename__ = "user_tenant_mapping"
__table_args__ = (
UniqueConstraint("email", "tenant_id", name="uq_user_tenant"),
{"schema": "public"},
)
email: Mapped[str] = mapped_column(String, nullable=False, primary_key=True)
tenant_id: Mapped[str] = mapped_column(String, nullable=False)

View File

@@ -11,7 +11,7 @@ from danswer.db.index_attempt import (
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.db.search_settings import update_search_settings_status
from danswer.key_value_store.factory import get_kv_store
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -54,7 +54,7 @@ def check_index_swap(db_session: Session) -> None:
)
if cc_pair_count > 0:
kv_store = get_kv_store()
kv_store = get_dynamic_config_store()
kv_store.store(KV_REINDEX_KEY, False)
# Expire jobs for the now past index/embedding model

View File

@@ -1,4 +1,3 @@
from sqlalchemy import and_
from sqlalchemy import delete
from sqlalchemy import func
from sqlalchemy import or_
@@ -108,14 +107,12 @@ def create_or_add_document_tag_list(
return all_tags
def find_tags(
def get_tags_by_value_prefix_for_source_types(
tag_key_prefix: str | None,
tag_value_prefix: str | None,
sources: list[DocumentSource] | None,
limit: int | None,
db_session: Session,
# if set, both tag_key_prefix and tag_value_prefix must be a match
require_both_to_match: bool = False,
) -> list[Tag]:
query = select(Tag)
@@ -125,11 +122,7 @@ def find_tags(
conditions.append(Tag.tag_key.ilike(f"{tag_key_prefix}%"))
if tag_value_prefix:
conditions.append(Tag.tag_value.ilike(f"{tag_value_prefix}%"))
final_prefix_condition = (
and_(*conditions) if require_both_to_match else or_(*conditions)
)
query = query.where(final_prefix_condition)
query = query.where(or_(*conditions))
if sources:
query = query.where(Tag.source.in_(sources))

View File

@@ -1,6 +1,3 @@
from sqlalchemy.orm import Session
from danswer.db.search_settings import get_current_search_settings
from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.vespa.index import VespaIndex
@@ -16,14 +13,3 @@ def get_default_document_index(
return VespaIndex(
index_name=primary_index_name, secondary_index_name=secondary_index_name
)
def get_current_primary_default_document_index(db_session: Session) -> DocumentIndex:
"""
TODO: Use redis to cache this or something
"""
search_settings = get_current_search_settings(db_session)
return get_default_document_index(
primary_index_name=search_settings.index_name,
secondary_index_name=None,
)

View File

@@ -55,21 +55,6 @@ class DocumentMetadata:
from_ingestion_api: bool = False
@dataclass
class VespaDocumentFields:
"""
Specifies fields in Vespa for a document. Fields set to None will be ignored.
Perhaps we should name this in an implementation agnostic fashion, but it's more
understandable like this for now.
"""
# all other fields except these 4 will always be left alone by the update request
access: DocumentAccess | None = None
document_sets: set[str] | None = None
boost: float | None = None
hidden: bool | None = None
@dataclass
class UpdateRequest:
"""
@@ -171,16 +156,6 @@ class Deletable(abc.ABC):
Class must implement the ability to delete document by their unique document ids.
"""
@abc.abstractmethod
def delete_single(self, doc_id: str) -> int:
"""
Given a single document id, hard delete it from the document index
Parameters:
- doc_id: document id as specified by the connector
"""
raise NotImplementedError
@abc.abstractmethod
def delete(self, doc_ids: list[str]) -> None:
"""
@@ -203,9 +178,11 @@ class Updatable(abc.ABC):
"""
@abc.abstractmethod
def update_single(self, doc_id: str, fields: VespaDocumentFields) -> int:
def update_single(self, update_request: UpdateRequest) -> None:
"""
Updates all chunks for a document with the specified fields.
Updates some set of chunks for a document. The document and fields to update
are specified in the update request. Each update request in the list applies
its changes to a list of document ids.
None values mean that the field does not need an update.
The rationale for a single update function is that it allows retries and parallelism
@@ -213,10 +190,14 @@ class Updatable(abc.ABC):
us to individually handle error conditions per document.
Parameters:
- fields: the fields to update in the document. Any field set to None will not be changed.
- update_request: for a list of document ids in the update request, apply the same updates
to all of the documents with those ids.
Return:
None
- an HTTPStatus code. The code can used to decide whether to fail immediately,
retry, etc. Although this method likely hits an HTTP API behind the
scenes, the usage of HTTPStatus is a convenience and the interface is not
actually HTTP specific.
"""
raise NotImplementedError

View File

@@ -1,6 +1,5 @@
import concurrent.futures
import io
import logging
import os
import re
import time
@@ -14,8 +13,6 @@ from typing import cast
import httpx
import requests
from danswer.configs.app_configs import DOCUMENT_INDEX_NAME
from danswer.configs.app_configs import VESPA_REQUEST_TIMEOUT
from danswer.configs.chat_configs import DOC_TIME_DECAY
from danswer.configs.chat_configs import NUM_RETURNED_HITS
from danswer.configs.chat_configs import TITLE_CONTENT_RATIO
@@ -25,7 +22,6 @@ from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.interfaces import DocumentInsertionRecord
from danswer.document_index.interfaces import UpdateRequest
from danswer.document_index.interfaces import VespaChunkRequest
from danswer.document_index.interfaces import VespaDocumentFields
from danswer.document_index.vespa.chunk_retrieval import batch_search_api_retrieval
from danswer.document_index.vespa.chunk_retrieval import (
get_all_vespa_ids_for_document_id,
@@ -62,8 +58,8 @@ from danswer.document_index.vespa_constants import VESPA_APPLICATION_ENDPOINT
from danswer.document_index.vespa_constants import VESPA_DIM_REPLACEMENT_PAT
from danswer.document_index.vespa_constants import VESPA_TIMEOUT
from danswer.document_index.vespa_constants import YQL_BASE
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.indexing.models import DocMetadataAwareIndexChunk
from danswer.key_value_store.factory import get_kv_store
from danswer.search.models import IndexFilters
from danswer.search.models import InferenceChunkUncleaned
from danswer.utils.batching import batch_generator
@@ -72,10 +68,6 @@ from shared_configs.model_server_models import Embedding
logger = setup_logger()
# Set the logging level to WARNING to ignore INFO and DEBUG logs
httpx_logger = logging.getLogger("httpx")
httpx_logger.setLevel(logging.WARNING)
@dataclass
class _VespaUpdateRequest:
@@ -148,7 +140,7 @@ class VespaIndex(DocumentIndex):
SEARCH_THREAD_NUMBER_PAT, str(VESPA_SEARCHER_THREADS)
)
kv_store = get_kv_store()
kv_store = get_dynamic_config_store()
needs_reindexing = False
try:
@@ -212,7 +204,7 @@ class VespaIndex(DocumentIndex):
# indexing / updates / deletes since we have to make a large volume of requests.
with (
concurrent.futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor,
httpx.Client(http2=True, timeout=VESPA_REQUEST_TIMEOUT) as http_client,
httpx.Client(http2=True) as http_client,
):
# Check for existing documents, existing documents need to have all of their chunks deleted
# prior to indexing as the document size (num chunks) may have shrunk
@@ -276,7 +268,7 @@ class VespaIndex(DocumentIndex):
# indexing / updates / deletes since we have to make a large volume of requests.
with (
concurrent.futures.ThreadPoolExecutor(max_workers=NUM_THREADS) as executor,
httpx.Client(http2=True, timeout=VESPA_REQUEST_TIMEOUT) as http_client,
httpx.Client(http2=True) as http_client,
):
for update_batch in batch_generator(updates, batch_size):
future_to_document_id = {
@@ -385,89 +377,90 @@ class VespaIndex(DocumentIndex):
time.monotonic() - update_start,
)
def update_single(self, doc_id: str, fields: VespaDocumentFields) -> int:
def update_single(self, update_request: UpdateRequest) -> None:
"""Note: if the document id does not exist, the update will be a no-op and the
function will complete with no errors or exceptions.
Handle other exceptions if you wish to implement retry behavior
"""
total_chunks_updated = 0
if len(update_request.document_ids) != 1:
raise ValueError("update_request must contain a single document id")
# Handle Vespa character limitations
# Mutating update_request but it's not used later anyway
normalized_doc_id = replace_invalid_doc_id_characters(doc_id)
update_request.document_ids = [
replace_invalid_doc_id_characters(doc_id)
for doc_id in update_request.document_ids
]
# Build the _VespaUpdateRequest objects
update_dict: dict[str, dict] = {"fields": {}}
if fields.boost is not None:
update_dict["fields"][BOOST] = {"assign": fields.boost}
if fields.document_sets is not None:
update_dict["fields"][DOCUMENT_SETS] = {
"assign": {document_set: 1 for document_set in fields.document_sets}
}
if fields.access is not None:
update_dict["fields"][ACCESS_CONTROL_LIST] = {
"assign": {acl_entry: 1 for acl_entry in fields.access.to_acl()}
}
if fields.hidden is not None:
update_dict["fields"][HIDDEN] = {"assign": fields.hidden}
if not update_dict["fields"]:
logger.error("Update request received but nothing to update")
return 0
# update_start = time.monotonic()
# Fetch all chunks for each document ahead of time
index_names = [self.index_name]
if self.secondary_index_name:
index_names.append(self.secondary_index_name)
with httpx.Client(http2=True, timeout=VESPA_REQUEST_TIMEOUT) as http_client:
for index_name in index_names:
params = httpx.QueryParams(
{
"selection": f"{index_name}.document_id=='{normalized_doc_id}'",
"cluster": DOCUMENT_INDEX_NAME,
}
chunk_id_start_time = time.monotonic()
all_doc_chunk_ids: list[str] = []
for index_name in index_names:
for document_id in update_request.document_ids:
# this calls vespa and can raise http exceptions
doc_chunk_ids = get_all_vespa_ids_for_document_id(
document_id=document_id,
index_name=index_name,
filters=None,
get_large_chunks=True,
)
all_doc_chunk_ids.extend(doc_chunk_ids)
logger.debug(
f"Took {time.monotonic() - chunk_id_start_time:.2f} seconds to fetch all Vespa chunk IDs"
)
# Build the _VespaUpdateRequest objects
update_dict: dict[str, dict] = {"fields": {}}
if update_request.boost is not None:
update_dict["fields"][BOOST] = {"assign": update_request.boost}
if update_request.document_sets is not None:
update_dict["fields"][DOCUMENT_SETS] = {
"assign": {
document_set: 1 for document_set in update_request.document_sets
}
}
if update_request.access is not None:
update_dict["fields"][ACCESS_CONTROL_LIST] = {
"assign": {acl_entry: 1 for acl_entry in update_request.access.to_acl()}
}
if update_request.hidden is not None:
update_dict["fields"][HIDDEN] = {"assign": update_request.hidden}
if not update_dict["fields"]:
logger.error("Update request received but nothing to update")
return
processed_update_requests: list[_VespaUpdateRequest] = []
for document_id in update_request.document_ids:
for doc_chunk_id in all_doc_chunk_ids:
processed_update_requests.append(
_VespaUpdateRequest(
document_id=document_id,
url=f"{DOCUMENT_ID_ENDPOINT.format(index_name=self.index_name)}/{doc_chunk_id}",
update_request=update_dict,
)
)
while True:
try:
resp = http_client.put(
f"{DOCUMENT_ID_ENDPOINT.format(index_name=self.index_name)}",
params=params,
headers={"Content-Type": "application/json"},
json=update_dict,
)
resp.raise_for_status()
except httpx.HTTPStatusError as e:
logger.error(
f"Failed to update chunks, details: {e.response.text}"
)
raise
resp_data = resp.json()
if "documentCount" in resp_data:
chunks_updated = resp_data["documentCount"]
total_chunks_updated += chunks_updated
# Check for continuation token to handle pagination
if "continuation" not in resp_data:
break # Exit loop if no continuation token
if not resp_data["continuation"]:
break # Exit loop if continuation token is empty
params = params.set("continuation", resp_data["continuation"])
logger.debug(
f"VespaIndex.update_single: "
f"index={index_name} "
f"doc={normalized_doc_id} "
f"chunks_updated={total_chunks_updated}"
with httpx.Client(http2=True) as http_client:
for update in processed_update_requests:
http_client.put(
update.url,
headers={"Content-Type": "application/json"},
json=update.update_request,
)
return total_chunks_updated
# logger.debug(
# "Finished updating Vespa documents in %.2f seconds",
# time.monotonic() - update_start,
# )
return
def delete(self, doc_ids: list[str]) -> None:
logger.info(f"Deleting {len(doc_ids)} documents from Vespa")
@@ -476,7 +469,7 @@ class VespaIndex(DocumentIndex):
# NOTE: using `httpx` here since `requests` doesn't support HTTP2. This is beneficial for
# indexing / updates / deletes since we have to make a large volume of requests.
with httpx.Client(http2=True, timeout=VESPA_REQUEST_TIMEOUT) as http_client:
with httpx.Client(http2=True) as http_client:
index_names = [self.index_name]
if self.secondary_index_name:
index_names.append(self.secondary_index_name)
@@ -485,70 +478,6 @@ class VespaIndex(DocumentIndex):
delete_vespa_docs(
document_ids=doc_ids, index_name=index_name, http_client=http_client
)
return
def delete_single(self, doc_id: str) -> int:
"""Possibly faster overall than the delete method due to using a single
delete call with a selection query."""
total_chunks_deleted = 0
# Vespa deletion is poorly documented ... luckily we found this
# https://docs.vespa.ai/en/operations/batch-delete.html#example
doc_id = replace_invalid_doc_id_characters(doc_id)
# NOTE: using `httpx` here since `requests` doesn't support HTTP2. This is beneficial for
# indexing / updates / deletes since we have to make a large volume of requests.
index_names = [self.index_name]
if self.secondary_index_name:
index_names.append(self.secondary_index_name)
with httpx.Client(http2=True, timeout=VESPA_REQUEST_TIMEOUT) as http_client:
for index_name in index_names:
params = httpx.QueryParams(
{
"selection": f"{index_name}.document_id=='{doc_id}'",
"cluster": DOCUMENT_INDEX_NAME,
}
)
while True:
try:
resp = http_client.delete(
f"{DOCUMENT_ID_ENDPOINT.format(index_name=index_name)}",
params=params,
)
resp.raise_for_status()
except httpx.HTTPStatusError as e:
logger.error(
f"Failed to delete chunk, details: {e.response.text}"
)
raise
resp_data = resp.json()
if "documentCount" in resp_data:
chunks_deleted = resp_data["documentCount"]
total_chunks_deleted += chunks_deleted
# Check for continuation token to handle pagination
if "continuation" not in resp_data:
break # Exit loop if no continuation token
if not resp_data["continuation"]:
break # Exit loop if continuation token is empty
params = params.set("continuation", resp_data["continuation"])
logger.debug(
f"VespaIndex.delete_single: "
f"index={index_name} "
f"doc={doc_id} "
f"chunks_deleted={total_chunks_deleted}"
)
return total_chunks_deleted
def id_based_retrieval(
self,

View File

@@ -0,0 +1,15 @@
from danswer.configs.app_configs import DYNAMIC_CONFIG_STORE
from danswer.dynamic_configs.interface import DynamicConfigStore
from danswer.dynamic_configs.store import FileSystemBackedDynamicConfigStore
from danswer.dynamic_configs.store import PostgresBackedDynamicConfigStore
def get_dynamic_config_store() -> DynamicConfigStore:
dynamic_config_store_type = DYNAMIC_CONFIG_STORE
if dynamic_config_store_type == FileSystemBackedDynamicConfigStore.__name__:
raise NotImplementedError("File based config store no longer supported")
if dynamic_config_store_type == PostgresBackedDynamicConfigStore.__name__:
return PostgresBackedDynamicConfigStore()
# TODO: change exception type
raise Exception("Unknown dynamic config store type")

View File

@@ -9,11 +9,11 @@ JSON_ro: TypeAlias = (
)
class KvKeyNotFoundError(Exception):
class ConfigNotFoundError(Exception):
pass
class KeyValueStore:
class DynamicConfigStore:
@abc.abstractmethod
def store(self, key: str, val: JSON_ro, encrypt: bool = False) -> None:
raise NotImplementedError

View File

@@ -0,0 +1,102 @@
import json
import os
from collections.abc import Iterator
from contextlib import contextmanager
from pathlib import Path
from typing import cast
from filelock import FileLock
from sqlalchemy.orm import Session
from danswer.db.engine import get_session_factory
from danswer.db.models import KVStore
from danswer.dynamic_configs.interface import ConfigNotFoundError
from danswer.dynamic_configs.interface import DynamicConfigStore
from danswer.dynamic_configs.interface import JSON_ro
FILE_LOCK_TIMEOUT = 10
def _get_file_lock(file_name: Path) -> FileLock:
return FileLock(file_name.with_suffix(".lock"))
class FileSystemBackedDynamicConfigStore(DynamicConfigStore):
def __init__(self, dir_path: str) -> None:
# TODO (chris): maybe require all possible keys to be passed in
# at app start somehow to prevent key overlaps
self.dir_path = Path(dir_path)
def store(self, key: str, val: JSON_ro, encrypt: bool = False) -> None:
file_path = self.dir_path / key
lock = _get_file_lock(file_path)
with lock.acquire(timeout=FILE_LOCK_TIMEOUT):
with open(file_path, "w+") as f:
json.dump(val, f)
def load(self, key: str) -> JSON_ro:
file_path = self.dir_path / key
if not file_path.exists():
raise ConfigNotFoundError
lock = _get_file_lock(file_path)
with lock.acquire(timeout=FILE_LOCK_TIMEOUT):
with open(self.dir_path / key) as f:
return cast(JSON_ro, json.load(f))
def delete(self, key: str) -> None:
file_path = self.dir_path / key
if not file_path.exists():
raise ConfigNotFoundError
lock = _get_file_lock(file_path)
with lock.acquire(timeout=FILE_LOCK_TIMEOUT):
os.remove(file_path)
class PostgresBackedDynamicConfigStore(DynamicConfigStore):
@contextmanager
def get_session(self) -> Iterator[Session]:
factory = get_session_factory()
session: Session = factory()
try:
yield session
finally:
session.close()
def store(self, key: str, val: JSON_ro, encrypt: bool = False) -> None:
# The actual encryption/decryption is done in Postgres, we just need to choose
# which field to set
encrypted_val = val if encrypt else None
plain_val = val if not encrypt else None
with self.get_session() as session:
obj = session.query(KVStore).filter_by(key=key).first()
if obj:
obj.value = plain_val
obj.encrypted_value = encrypted_val
else:
obj = KVStore(
key=key, value=plain_val, encrypted_value=encrypted_val
) # type: ignore
session.query(KVStore).filter_by(key=key).delete() # just in case
session.add(obj)
session.commit()
def load(self, key: str) -> JSON_ro:
with self.get_session() as session:
obj = session.query(KVStore).filter_by(key=key).first()
if not obj:
raise ConfigNotFoundError
if obj.value is not None:
return cast(JSON_ro, obj.value)
if obj.encrypted_value is not None:
return cast(JSON_ro, obj.encrypted_value)
return None
def delete(self, key: str) -> None:
with self.get_session() as session:
result = session.query(KVStore).filter_by(key=key).delete() # type: ignore
if result == 0:
raise ConfigNotFoundError
session.commit()

View File

@@ -20,8 +20,6 @@ from pypdf.errors import PdfStreamError
from danswer.configs.constants import DANSWER_METADATA_FILENAME
from danswer.file_processing.html_utils import parse_html_page_basic
from danswer.file_processing.unstructured import get_unstructured_api_key
from danswer.file_processing.unstructured import unstructured_to_text
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -333,10 +331,9 @@ def file_io_to_text(file: IO[Any]) -> str:
def extract_file_text(
file_name: str | None,
file: IO[Any],
file_name: str,
break_on_unprocessable: bool = True,
extension: str | None = None,
) -> str:
extension_to_function: dict[str, Callable[[IO[Any]], str]] = {
".pdf": pdf_to_text,
@@ -348,29 +345,22 @@ def extract_file_text(
".html": parse_html_page_basic,
}
try:
if get_unstructured_api_key():
return unstructured_to_text(file, file_name)
def _process_file() -> str:
if file_name:
extension = get_file_ext(file_name)
if check_file_ext_is_valid(extension):
return extension_to_function.get(extension, file_io_to_text)(file)
if file_name or extension:
if extension is not None:
final_extension = extension
elif file_name is not None:
final_extension = get_file_ext(file_name)
if check_file_ext_is_valid(final_extension):
return extension_to_function.get(final_extension, file_io_to_text)(file)
# Either the file somehow has no name or the extension is not one that we recognize
# Either the file somehow has no name or the extension is not one that we are familiar with
if is_text_file(file):
return file_io_to_text(file)
raise ValueError("Unknown file extension and unknown text encoding")
try:
return _process_file()
except Exception as e:
if break_on_unprocessable:
raise RuntimeError(
f"Failed to process file {file_name or 'Unknown'}: {str(e)}"
) from e
logger.warning(f"Failed to process file {file_name or 'Unknown'}: {str(e)}")
raise RuntimeError(f"Failed to process file: {str(e)}") from e
logger.warning(f"Failed to process file: {str(e)}")
return ""

View File

@@ -1,67 +0,0 @@
from typing import Any
from typing import cast
from typing import IO
from unstructured.staging.base import dict_to_elements
from unstructured_client import UnstructuredClient # type: ignore
from unstructured_client.models import operations # type: ignore
from unstructured_client.models import shared
from danswer.configs.constants import KV_UNSTRUCTURED_API_KEY
from danswer.key_value_store.factory import get_kv_store
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.utils.logger import setup_logger
logger = setup_logger()
def get_unstructured_api_key() -> str | None:
kv_store = get_kv_store()
try:
return cast(str, kv_store.load(KV_UNSTRUCTURED_API_KEY))
except KvKeyNotFoundError:
return None
def update_unstructured_api_key(api_key: str) -> None:
kv_store = get_kv_store()
kv_store.store(KV_UNSTRUCTURED_API_KEY, api_key)
def delete_unstructured_api_key() -> None:
kv_store = get_kv_store()
kv_store.delete(KV_UNSTRUCTURED_API_KEY)
def _sdk_partition_request(
file: IO[Any], file_name: str, **kwargs: Any
) -> operations.PartitionRequest:
try:
request = operations.PartitionRequest(
partition_parameters=shared.PartitionParameters(
files=shared.Files(content=file.read(), file_name=file_name),
**kwargs,
),
)
return request
except Exception as e:
logger.error(f"Error creating partition request for file {file_name}: {str(e)}")
raise
def unstructured_to_text(file: IO[Any], file_name: str) -> str:
logger.debug(f"Starting to read file: {file_name}")
req = _sdk_partition_request(file, file_name, strategy="auto")
unstructured_client = UnstructuredClient(api_key_auth=get_unstructured_api_key())
response = unstructured_client.general.partition(req) # type: ignore
elements = dict_to_elements(response.elements)
if response.status_code != 200:
err = f"Received unexpected status code {response.status_code} from Unstructured API."
logger.error(err)
raise ValueError(err)
return "\n\n".join(str(el) for el in elements)

View File

@@ -10,7 +10,6 @@ from danswer.connectors.cross_connector_utils.miscellaneous_utils import (
get_metadata_keys_to_ignore,
)
from danswer.connectors.models import Document
from danswer.indexing.indexing_heartbeat import Heartbeat
from danswer.indexing.models import DocAwareChunk
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.utils.logger import setup_logger
@@ -27,7 +26,6 @@ CHUNK_OVERLAP = 0
MAX_METADATA_PERCENTAGE = 0.25
CHUNK_MIN_CONTENT = 256
logger = setup_logger()
@@ -125,7 +123,6 @@ class Chunker:
chunk_token_limit: int = DOC_EMBEDDING_CONTEXT_SIZE,
chunk_overlap: int = CHUNK_OVERLAP,
mini_chunk_size: int = MINI_CHUNK_SIZE,
heartbeat: Heartbeat | None = None,
) -> None:
from llama_index.text_splitter import SentenceSplitter
@@ -134,7 +131,6 @@ class Chunker:
self.enable_multipass = enable_multipass
self.enable_large_chunks = enable_large_chunks
self.tokenizer = tokenizer
self.heartbeat = heartbeat
self.blurb_splitter = SentenceSplitter(
tokenizer=tokenizer.tokenize,
@@ -259,7 +255,7 @@ class Chunker:
# If the chunk does not have any useable content, it will not be indexed
return chunks
def _handle_single_document(self, document: Document) -> list[DocAwareChunk]:
def chunk(self, document: Document) -> list[DocAwareChunk]:
# Specifically for reproducing an issue with gmail
if document.source == DocumentSource.GMAIL:
logger.debug(f"Chunking {document.semantic_identifier}")
@@ -306,13 +302,3 @@ class Chunker:
normal_chunks.extend(large_chunks)
return normal_chunks
def chunk(self, documents: list[Document]) -> list[DocAwareChunk]:
final_chunks: list[DocAwareChunk] = []
for document in documents:
final_chunks.extend(self._handle_single_document(document))
if self.heartbeat:
self.heartbeat.heartbeat()
return final_chunks

View File

@@ -1,8 +1,12 @@
from abc import ABC
from abc import abstractmethod
from sqlalchemy.orm import Session
from danswer.db.models import IndexModelStatus
from danswer.db.models import SearchSettings
from danswer.indexing.indexing_heartbeat import Heartbeat
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.indexing.models import ChunkEmbedding
from danswer.indexing.models import DocAwareChunk
from danswer.indexing.models import IndexChunk
@@ -20,9 +24,6 @@ logger = setup_logger()
class IndexingEmbedder(ABC):
"""Converts chunks into chunks with embeddings. Note that one chunk may have
multiple embeddings associated with it."""
def __init__(
self,
model_name: str,
@@ -32,7 +33,6 @@ class IndexingEmbedder(ABC):
provider_type: EmbeddingProvider | None,
api_key: str | None,
api_url: str | None,
heartbeat: Heartbeat | None,
):
self.model_name = model_name
self.normalize = normalize
@@ -54,7 +54,6 @@ class IndexingEmbedder(ABC):
server_host=INDEXING_MODEL_SERVER_HOST,
server_port=INDEXING_MODEL_SERVER_PORT,
retrim_content=True,
heartbeat=heartbeat,
)
@abstractmethod
@@ -75,7 +74,6 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
provider_type: EmbeddingProvider | None = None,
api_key: str | None = None,
api_url: str | None = None,
heartbeat: Heartbeat | None = None,
):
super().__init__(
model_name,
@@ -85,7 +83,6 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
provider_type,
api_key,
api_url,
heartbeat,
)
@log_function_time()
@@ -169,7 +166,7 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
title_embed_dict[title] = title_embedding
new_embedded_chunk = IndexChunk(
**chunk.model_dump(),
**chunk.dict(),
embeddings=ChunkEmbedding(
full_embedding=chunk_embeddings[0],
mini_chunk_embeddings=chunk_embeddings[1:],
@@ -183,7 +180,7 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
@classmethod
def from_db_search_settings(
cls, search_settings: SearchSettings, heartbeat: Heartbeat | None = None
cls, search_settings: SearchSettings
) -> "DefaultIndexingEmbedder":
return cls(
model_name=search_settings.model_name,
@@ -193,5 +190,28 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
provider_type=search_settings.provider_type,
api_key=search_settings.api_key,
api_url=search_settings.api_url,
heartbeat=heartbeat,
)
def get_embedding_model_from_search_settings(
db_session: Session, index_model_status: IndexModelStatus = IndexModelStatus.PRESENT
) -> IndexingEmbedder:
search_settings: SearchSettings | None
if index_model_status == IndexModelStatus.PRESENT:
search_settings = get_current_search_settings(db_session)
elif index_model_status == IndexModelStatus.FUTURE:
search_settings = get_secondary_search_settings(db_session)
if not search_settings:
raise RuntimeError("No secondary index configured")
else:
raise RuntimeError("Not supporting embedding model rollbacks")
return DefaultIndexingEmbedder(
model_name=search_settings.model_name,
normalize=search_settings.normalize,
query_prefix=search_settings.query_prefix,
passage_prefix=search_settings.passage_prefix,
provider_type=search_settings.provider_type,
api_key=search_settings.api_key,
api_url=search_settings.api_url,
)

View File

@@ -1,41 +0,0 @@
import abc
from typing import Any
from sqlalchemy import func
from sqlalchemy.orm import Session
from danswer.db.index_attempt import get_index_attempt
from danswer.utils.logger import setup_logger
logger = setup_logger()
class Heartbeat(abc.ABC):
"""Useful for any long-running work that goes through a bunch of items
and needs to occasionally give updates on progress.
e.g. chunking, embedding, updating vespa, etc."""
@abc.abstractmethod
def heartbeat(self, metadata: Any = None) -> None:
raise NotImplementedError
class IndexingHeartbeat(Heartbeat):
def __init__(self, index_attempt_id: int, db_session: Session, freq: int):
self.cnt = 0
self.index_attempt_id = index_attempt_id
self.db_session = db_session
self.freq = freq
def heartbeat(self, metadata: Any = None) -> None:
self.cnt += 1
if self.cnt % self.freq == 0:
index_attempt = get_index_attempt(
db_session=self.db_session, index_attempt_id=self.index_attempt_id
)
if index_attempt:
index_attempt.time_updated = func.now()
self.db_session.commit()
else:
logger.error("Index attempt not found, this should not happen!")

View File

@@ -31,7 +31,6 @@ from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.interfaces import DocumentMetadata
from danswer.indexing.chunker import Chunker
from danswer.indexing.embedder import IndexingEmbedder
from danswer.indexing.indexing_heartbeat import IndexingHeartbeat
from danswer.indexing.models import DocAwareChunk
from danswer.indexing.models import DocMetadataAwareIndexChunk
from danswer.utils.logger import setup_logger
@@ -137,7 +136,6 @@ def index_doc_batch_with_handler(
attempt_id: int | None,
db_session: Session,
ignore_time_skip: bool = False,
tenant_id: str | None = None,
) -> tuple[int, int]:
r = (0, 0)
try:
@@ -149,7 +147,6 @@ def index_doc_batch_with_handler(
index_attempt_metadata=index_attempt_metadata,
db_session=db_session,
ignore_time_skip=ignore_time_skip,
tenant_id=tenant_id,
)
except Exception as e:
if INDEXING_EXCEPTION_LIMIT == 0:
@@ -223,8 +220,8 @@ def index_doc_batch_prepare(
document_ids = [document.id for document in documents]
db_docs: list[DBDocument] = get_documents_by_ids(
db_session=db_session,
document_ids=document_ids,
db_session=db_session,
)
# Skip indexing docs that don't have a newer updated at
@@ -263,7 +260,6 @@ def index_doc_batch(
index_attempt_metadata: IndexAttemptMetadata,
db_session: Session,
ignore_time_skip: bool = False,
tenant_id: str | None = None,
) -> tuple[int, int]:
"""Takes different pieces of the indexing pipeline and applies it to a batch of documents
Note that the documents should already be batched at this point so that it does not inflate the
@@ -287,10 +283,18 @@ def index_doc_batch(
return 0, 0
logger.debug("Starting chunking")
chunks: list[DocAwareChunk] = chunker.chunk(ctx.updatable_docs)
chunks: list[DocAwareChunk] = []
for document in ctx.updatable_docs:
chunks.extend(chunker.chunk(document=document))
logger.debug("Starting embedding")
chunks_with_embeddings = embedder.embed_chunks(chunks) if chunks else []
chunks_with_embeddings = (
embedder.embed_chunks(
chunks=chunks,
)
if chunks
else []
)
updatable_ids = [doc.id for doc in ctx.updatable_docs]
@@ -327,7 +331,6 @@ def index_doc_batch(
if chunk.source_document.id in ctx.id_to_db_doc_map
else DEFAULT_BOOST
),
tenant_id=tenant_id,
)
for chunk in chunks_with_embeddings
]
@@ -377,7 +380,6 @@ def build_indexing_pipeline(
chunker: Chunker | None = None,
ignore_time_skip: bool = False,
attempt_id: int | None = None,
tenant_id: str | None = None,
) -> IndexingPipelineProtocol:
"""Builds a pipeline which takes in a list (batch) of docs and indexes them."""
search_settings = get_current_search_settings(db_session)
@@ -404,13 +406,6 @@ def build_indexing_pipeline(
tokenizer=embedder.embedding_model.tokenizer,
enable_multipass=multipass,
enable_large_chunks=enable_large_chunks,
# after every doc, update status in case there are a bunch of
# really long docs
heartbeat=IndexingHeartbeat(
index_attempt_id=attempt_id, db_session=db_session, freq=1
)
if attempt_id
else None,
)
return partial(
@@ -421,5 +416,4 @@ def build_indexing_pipeline(
ignore_time_skip=ignore_time_skip,
attempt_id=attempt_id,
db_session=db_session,
tenant_id=tenant_id,
)

View File

@@ -75,7 +75,6 @@ class DocMetadataAwareIndexChunk(IndexChunk):
negative -> ranked lower.
"""
tenant_id: str | None = None
access: "DocumentAccess"
document_sets: set[str]
boost: int
@@ -87,7 +86,6 @@ class DocMetadataAwareIndexChunk(IndexChunk):
access: "DocumentAccess",
document_sets: set[str],
boost: int,
tenant_id: str | None,
) -> "DocMetadataAwareIndexChunk":
index_chunk_data = index_chunk.model_dump()
return cls(
@@ -95,7 +93,6 @@ class DocMetadataAwareIndexChunk(IndexChunk):
access=access,
document_sets=document_sets,
boost=boost,
tenant_id=tenant_id,
)

View File

@@ -1,7 +0,0 @@
from danswer.key_value_store.interface import KeyValueStore
from danswer.key_value_store.store import PgRedisKVStore
def get_kv_store() -> KeyValueStore:
# this is the only one supported currently
return PgRedisKVStore()

View File

@@ -1,112 +0,0 @@
import json
from collections.abc import Iterator
from contextlib import contextmanager
from typing import cast
from fastapi import HTTPException
from sqlalchemy import text
from sqlalchemy.orm import Session
from danswer.configs.app_configs import MULTI_TENANT
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.engine import is_valid_schema_name
from danswer.db.models import KVStore
from danswer.key_value_store.interface import JSON_ro
from danswer.key_value_store.interface import KeyValueStore
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
from shared_configs.configs import current_tenant_id
logger = setup_logger()
REDIS_KEY_PREFIX = "danswer_kv_store:"
KV_REDIS_KEY_EXPIRATION = 60 * 60 * 24 # 1 Day
class PgRedisKVStore(KeyValueStore):
def __init__(self) -> None:
self.redis_client = get_redis_client()
@contextmanager
def get_session(self) -> Iterator[Session]:
engine = get_sqlalchemy_engine()
with Session(engine, expire_on_commit=False) as session:
if MULTI_TENANT:
tenant_id = current_tenant_id.get()
if tenant_id == "public":
raise HTTPException(
status_code=401, detail="User must authenticate"
)
if not is_valid_schema_name(tenant_id):
raise HTTPException(status_code=400, detail="Invalid tenant ID")
# Set the search_path to the tenant's schema
session.execute(text(f'SET search_path = "{tenant_id}"'))
yield session
def store(self, key: str, val: JSON_ro, encrypt: bool = False) -> None:
# Not encrypted in Redis, but encrypted in Postgres
try:
self.redis_client.set(
REDIS_KEY_PREFIX + key, json.dumps(val), ex=KV_REDIS_KEY_EXPIRATION
)
except Exception as e:
# Fallback gracefully to Postgres if Redis fails
logger.error(f"Failed to set value in Redis for key '{key}': {str(e)}")
encrypted_val = val if encrypt else None
plain_val = val if not encrypt else None
with self.get_session() as session:
obj = session.query(KVStore).filter_by(key=key).first()
if obj:
obj.value = plain_val
obj.encrypted_value = encrypted_val
else:
obj = KVStore(
key=key, value=plain_val, encrypted_value=encrypted_val
) # type: ignore
session.query(KVStore).filter_by(key=key).delete() # just in case
session.add(obj)
session.commit()
def load(self, key: str) -> JSON_ro:
try:
redis_value = self.redis_client.get(REDIS_KEY_PREFIX + key)
if redis_value:
assert isinstance(redis_value, bytes)
return json.loads(redis_value.decode("utf-8"))
except Exception as e:
logger.error(f"Failed to get value from Redis for key '{key}': {str(e)}")
with self.get_session() as session:
obj = session.query(KVStore).filter_by(key=key).first()
if not obj:
raise KvKeyNotFoundError
if obj.value is not None:
value = obj.value
elif obj.encrypted_value is not None:
value = obj.encrypted_value
else:
value = None
try:
self.redis_client.set(REDIS_KEY_PREFIX + key, json.dumps(value))
except Exception as e:
logger.error(f"Failed to set value in Redis for key '{key}': {str(e)}")
return cast(JSON_ro, value)
def delete(self, key: str) -> None:
try:
self.redis_client.delete(REDIS_KEY_PREFIX + key)
except Exception as e:
logger.error(f"Failed to delete value from Redis for key '{key}': {str(e)}")
with self.get_session() as session:
result = session.query(KVStore).filter_by(key=key).delete() # type: ignore
if result == 0:
raise KvKeyNotFoundError
session.commit()

View File

@@ -1,4 +1,3 @@
import itertools
from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
@@ -311,15 +310,13 @@ class Answer:
)
)
yield tool_runner.tool_final_result()
if not self.skip_gen_ai_answer_generation:
prompt = prompt_builder.build(tool_call_summary=tool_call_summary)
yield from self._process_llm_stream(
prompt=prompt,
# as of now, we don't support multiple tool calls in sequence, which is why
# we don't need to pass this in here
# tools=[tool.tool_definition() for tool in self.tools],
)
prompt = prompt_builder.build(tool_call_summary=tool_call_summary)
yield from self._process_llm_stream(
prompt=prompt,
tools=[tool.tool_definition() for tool in self.tools],
)
return
@@ -415,10 +412,6 @@ class Answer:
logger.notice(f"Chosen tool: {chosen_tool_and_args}")
if not chosen_tool_and_args:
if self.skip_gen_ai_answer_generation:
raise ValueError(
"skip_gen_ai_answer_generation is True, but no tool was chosen; no answer will be generated"
)
prompt_builder.update_system_prompt(
default_build_system_message(self.prompt_config)
)
@@ -483,10 +476,10 @@ class Answer:
final = tool_runner.tool_final_result()
yield final
if not self.skip_gen_ai_answer_generation:
prompt = prompt_builder.build()
yield from self._process_llm_stream(prompt=prompt, tools=None)
prompt = prompt_builder.build()
yield from self._process_llm_stream(prompt=prompt, tools=None)
@property
def processed_streamed_output(self) -> AnswerStream:
@@ -561,7 +554,8 @@ class Answer:
def _stream() -> Iterator[str]:
nonlocal stream_stop_info
for item in itertools.chain([message], stream):
yield cast(str, message)
for item in stream:
if isinstance(item, StreamStopInfo):
stream_stop_info = item
return

View File

@@ -18,7 +18,6 @@ from danswer.prompts.chat_prompts import REQUIRE_CITATION_STATEMENT
from danswer.prompts.constants import DEFAULT_IGNORE_STATEMENT
from danswer.prompts.direct_qa_prompts import CITATIONS_PROMPT
from danswer.prompts.direct_qa_prompts import CITATIONS_PROMPT_FOR_TOOL_CALLING
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK
from danswer.prompts.prompt_utils import add_date_time_to_prompt
from danswer.prompts.prompt_utils import build_complete_context_str
from danswer.prompts.prompt_utils import build_task_prompt_reminders
@@ -144,12 +143,6 @@ def build_citations_user_message(
prompt=prompt_config, use_language_hint=bool(multilingual_expansion)
)
history_block = (
HISTORY_BLOCK.format(history_str=history_message) + "\n"
if history_message
else ""
)
if context_docs:
context_docs_str = build_complete_context_str(context_docs)
optional_ignore = "" if all_doc_useful else DEFAULT_IGNORE_STATEMENT
@@ -159,14 +152,14 @@ def build_citations_user_message(
context_docs_str=context_docs_str,
task_prompt=task_prompt_with_reminder,
user_query=question,
history_block=history_block,
history_block=history_message,
)
else:
# if no context docs provided, assume we're in the tool calling flow
user_prompt = CITATIONS_PROMPT_FOR_TOOL_CALLING.format(
task_prompt=task_prompt_with_reminder,
user_query=question,
history_block=history_block,
history_block=history_message,
)
user_prompt = user_prompt.strip()

View File

@@ -204,7 +204,6 @@ class DefaultMultiLLM(LLM):
model_name: str,
api_base: str | None = None,
api_version: str | None = None,
deployment_name: str | None = None,
max_output_tokens: int | None = None,
custom_llm_provider: str | None = None,
temperature: float = GEN_AI_TEMPERATURE,
@@ -216,7 +215,6 @@ class DefaultMultiLLM(LLM):
self._model_version = model_name
self._temperature = temperature
self._api_key = api_key
self._deployment_name = deployment_name
self._api_base = api_base
self._api_version = api_version
self._custom_llm_provider = custom_llm_provider
@@ -285,20 +283,17 @@ class DefaultMultiLLM(LLM):
_convert_message_to_dict(msg) if isinstance(msg, BaseMessage) else msg
for msg in prompt
]
elif isinstance(prompt, str):
prompt = [_convert_message_to_dict(HumanMessage(content=prompt))]
try:
return litellm.completion(
# model choice
model=f"{self.config.model_provider}/{self.config.deployment_name or self.config.model_name}",
# NOTE: have to pass in None instead of empty string for these
# otherwise litellm can have some issues with bedrock
api_key=self._api_key or None,
base_url=self._api_base or None,
api_version=self._api_version or None,
custom_llm_provider=self._custom_llm_provider or None,
model=f"{self.config.model_provider}/{self.config.model_name}",
api_key=self._api_key,
base_url=self._api_base,
api_version=self._api_version,
custom_llm_provider=self._custom_llm_provider,
# actual input
messages=prompt,
tools=tools,
@@ -327,7 +322,6 @@ class DefaultMultiLLM(LLM):
api_key=self._api_key,
api_base=self._api_base,
api_version=self._api_version,
deployment_name=self._deployment_name,
)
def _invoke_implementation(

View File

@@ -88,7 +88,6 @@ def get_default_llms(
return get_llm(
provider=llm_provider.provider,
model=model,
deployment_name=llm_provider.deployment_name,
api_key=llm_provider.api_key,
api_base=llm_provider.api_base,
api_version=llm_provider.api_version,
@@ -104,7 +103,6 @@ def get_default_llms(
def get_llm(
provider: str,
model: str,
deployment_name: str | None = None,
api_key: str | None = None,
api_base: str | None = None,
api_version: str | None = None,

View File

@@ -24,7 +24,7 @@ class LLMConfig(BaseModel):
api_key: str | None = None
api_base: str | None = None
api_version: str | None = None
deployment_name: str | None = None
# This disables the "model_" protected namespace for pydantic
model_config = {"protected_namespaces": ()}

Some files were not shown because too many files have changed in this diff Show More