Compare commits

..

1 Commits

916 changed files with 23253 additions and 73638 deletions

View File

@@ -1,25 +0,0 @@
## Description
[Provide a brief description of the changes in this PR]
## How Has This Been Tested?
[Describe the tests you ran to verify your changes]
## Accepted Risk
[Any know risks or failure modes to point out to reviewers]
## Related Issue(s)
[If applicable, link to the issue(s) this PR addresses]
## Checklist:
- [ ] All of the automated tests pass
- [ ] All PR comments are addressed and marked resolved
- [ ] If there are migrations, they have been rebased to latest main
- [ ] If there are new dependencies, they are added to the requirements
- [ ] If there are new environment variables, they are added to all of the deployment methods
- [ ] If there are new APIs that don't require auth, they are added to PUBLIC_ENDPOINT_SPECS
- [ ] Docker images build and basic functionalities work
- [ ] Author has done a final read through of the PR right before merge

View File

@@ -1,33 +0,0 @@
name: Build Backend Image on Merge Group
on:
merge_group:
types: [checks_requested]
env:
REGISTRY_IMAGE: danswer/danswer-backend
jobs:
build:
# TODO: make this a matrix build like the web containers
runs-on:
group: amd64-image-builders
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Backend Image Docker Build
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64,linux/arm64
push: false
tags: |
${{ env.REGISTRY_IMAGE }}:latest
build-args: |
DANSWER_VERSION=v0.0.1

View File

@@ -5,38 +5,33 @@ on:
tags:
- '*'
env:
REGISTRY_IMAGE: danswer/danswer-backend
jobs:
build-and-push:
# TODO: make this a matrix build like the web containers
runs-on:
group: amd64-image-builders
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub
uses: docker/login-action@v3
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Backend Image Docker Build and Push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v2
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: |
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
${{ env.REGISTRY_IMAGE }}:latest
danswer/danswer-backend:${{ github.ref_name }}
danswer/danswer-backend:latest
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
@@ -44,6 +39,6 @@ jobs:
uses: aquasecurity/trivy-action@master
with:
# To run locally: trivy image --severity HIGH,CRITICAL danswer/danswer-backend
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
image-ref: docker.io/danswer/danswer-backend:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
trivyignores: ./backend/.trivyignore

View File

@@ -7,24 +7,23 @@ on:
jobs:
build-and-push:
runs-on:
group: amd64-image-builders
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub
uses: docker/login-action@v3
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Model Server Image Docker Build and Push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v2
with:
context: ./backend
file: ./backend/Dockerfile.model_server

View File

@@ -5,115 +5,38 @@ on:
tags:
- '*'
env:
REGISTRY_IMAGE: danswer/danswer-web-server
jobs:
build:
runs-on:
group: ${{ matrix.platform == 'linux/amd64' && 'amd64-image-builders' || 'arm64-image-builders' }}
strategy:
fail-fast: false
matrix:
platform:
- linux/amd64
- linux/arm64
steps:
- name: Prepare
run: |
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
type=raw,value=${{ env.REGISTRY_IMAGE }}:latest
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v5
with:
context: ./web
file: ./web/Dockerfile
platforms: ${{ matrix.platform }}
push: true
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}
outputs: type=image,name=${{ env.REGISTRY_IMAGE }},push-by-digest=true,name-canonical=true,push=true
- name: Export digest
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
with:
name: digests-${{ env.PLATFORM_PAIR }}
path: /tmp/digests/*
if-no-files-found: error
retention-days: 1
merge:
build-and-push:
runs-on: ubuntu-latest
needs:
- build
steps:
- name: Download digests
uses: actions/download-artifact@v4
with:
path: /tmp/digests
pattern: digests-*
merge-multiple: true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Create manifest list and push
working-directory: /tmp/digests
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
with:
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Web Image Docker Build and Push
uses: docker/build-push-action@v2
with:
context: ./web
file: ./web/Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: |
danswer/danswer-web-server:${{ github.ref_name }}
danswer/danswer-web-server:latest
build-args: |
DANSWER_VERSION=${{ github.ref_name }}
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@master
with:
image-ref: docker.io/danswer/danswer-web-server:${{ github.ref_name }}
severity: 'CRITICAL,HIGH'

View File

@@ -1,53 +0,0 @@
name: Build Web Image on Merge Group
on:
merge_group:
types: [checks_requested]
env:
REGISTRY_IMAGE: danswer/danswer-web-server
jobs:
build:
runs-on:
group: ${{ matrix.platform == 'linux/amd64' && 'amd64-image-builders' || 'arm64-image-builders' }}
strategy:
fail-fast: false
matrix:
platform:
- linux/amd64
- linux/arm64
steps:
- name: Prepare
run: |
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:latest
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build by digest
id: build
uses: docker/build-push-action@v5
with:
context: ./web
file: ./web/Dockerfile
platforms: ${{ matrix.platform }}
push: false
build-args: |
DANSWER_VERSION=v0.0.1
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}

2
.gitignore vendored
View File

@@ -5,5 +5,3 @@
.idea
/deployment/data/nginx/app.conf
.vscode/launch.json
*.sw?
/backend/tests/regression/answer_quality/search_test_config.yaml

View File

@@ -1,52 +0,0 @@
# Copy this file to .env at the base of the repo and fill in the <REPLACE THIS> values
# This will help with development iteration speed and reduce repeat tasks for dev
# Also check out danswer/backend/scripts/restart_containers.sh for a script to restart the containers which Danswer relies on outside of VSCode/Cursor processes
# For local dev, often user Authentication is not needed
AUTH_TYPE=disabled
# Always keep these on for Dev
# Logs all model prompts to stdout
LOG_DANSWER_MODEL_INTERACTIONS=True
# More verbose logging
LOG_LEVEL=debug
# This passes top N results to LLM an additional time for reranking prior to answer generation
# This step is quite heavy on token usage so we disable it for dev generally
DISABLE_LLM_DOC_RELEVANCE=True
# Useful if you want to toggle auth on/off (google_oauth/OIDC specifically)
OAUTH_CLIENT_ID=<REPLACE THIS>
OAUTH_CLIENT_SECRET=<REPLACE THIS>
# Generally not useful for dev, we don't generally want to set up an SMTP server for dev
REQUIRE_EMAIL_VERIFICATION=False
# Set these so if you wipe the DB, you don't end up having to go through the UI every time
GEN_AI_API_KEY=<REPLACE THIS>
# If answer quality isn't important for dev, use 3.5 turbo due to it being cheaper
GEN_AI_MODEL_VERSION=gpt-3.5-turbo
FAST_GEN_AI_MODEL_VERSION=gpt-3.5-turbo
# For Danswer Slack Bot, overrides the UI values so no need to set this up via UI every time
# Only needed if using DanswerBot
#DANSWER_BOT_SLACK_APP_TOKEN=<REPLACE THIS>
#DANSWER_BOT_SLACK_BOT_TOKEN=<REPLACE THIS>
# Python stuff
PYTHONPATH=./backend
PYTHONUNBUFFERED=1
# Internet Search
BING_API_KEY=<REPLACE THIS>
# Enable the full set of Danswer Enterprise Edition features
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you are using this for local testing/development)
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=False

View File

@@ -17,7 +17,6 @@
"request": "launch",
"cwd": "${workspaceRoot}/web",
"runtimeExecutable": "npm",
"envFile": "${workspaceFolder}/.env",
"runtimeArgs": [
"run", "dev"
],
@@ -29,7 +28,6 @@
"request": "launch",
"module": "uvicorn",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"env": {
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1"
@@ -39,8 +37,7 @@
"--reload",
"--port",
"9000"
],
"consoleTitle": "Model Server"
]
},
{
"name": "API Server",
@@ -48,9 +45,8 @@
"request": "launch",
"module": "uvicorn",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"env": {
"LOG_DANSWER_MODEL_INTERACTIONS": "True",
"LOG_ALL_MODEL_INTERACTIONS": "True",
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1"
},
@@ -59,8 +55,7 @@
"--reload",
"--port",
"8080"
],
"consoleTitle": "API Server"
]
},
{
"name": "Indexing",
@@ -68,14 +63,12 @@
"request": "launch",
"program": "danswer/background/update.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"env": {
"ENABLE_MULTIPASS_INDEXING": "false",
"ENABLE_MINI_CHUNK": "false",
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "."
},
"consoleTitle": "Indexing"
}
},
// Celery and all async jobs, usually would include indexing as well but this is handled separately above for dev
{
@@ -84,17 +77,14 @@
"request": "launch",
"program": "scripts/dev_run_background_jobs.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"env": {
"LOG_DANSWER_MODEL_INTERACTIONS": "True",
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "."
},
"args": [
"--no-indexing"
],
"consoleTitle": "Background Jobs"
]
},
// For the listner to access the Slack API,
// DANSWER_BOT_SLACK_APP_TOKEN & DANSWER_BOT_SLACK_BOT_TOKEN need to be set in .env file located in the root of the project
@@ -110,36 +100,6 @@
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "."
}
},
{
"name": "Pytest",
"type": "python",
"request": "launch",
"module": "pytest",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"env": {
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "."
},
"args": [
"-v"
// Specify a sepcific module/test to run or provide nothing to run all tests
//"tests/unit/danswer/llm/answering/test_prune_and_merge.py"
]
}
],
"compounds": [
{
"name": "Run Danswer",
"configurations": [
"Web Server",
"Model Server",
"API Server",
"Indexing",
"Background Jobs",
]
}
]
}
}

View File

@@ -72,10 +72,6 @@ For convenience here's a command for it:
python -m venv .venv
source .venv/bin/activate
```
--> Note that this virtual environment MUST NOT be set up WITHIN the danswer
directory
_For Windows, activate the virtual environment using Command Prompt:_
```bash
.venv\Scripts\activate

View File

@@ -1,10 +1,6 @@
Copyright (c) 2023-present DanswerAI, Inc.
MIT License
Portions of this software are licensed as follows:
* All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
* All third party components incorporated into the Danswer Software are licensed under the original license provided by the owner of the applicable component.
* Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
Copyright (c) 2023 Yuhong Sun, Chris Weaver
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -11,7 +11,7 @@
<a href="https://docs.danswer.dev/" target="_blank">
<img src="https://img.shields.io/badge/docs-view-blue" alt="Documentation">
</a>
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ" target="_blank">
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2afut44lv-Rw3kSWu6_OmdAXRpCv80DQ" target="_blank">
<img src="https://img.shields.io/badge/slack-join-blue.svg?logo=slack" alt="Slack">
</a>
<a href="https://discord.gg/TDJ59cGV2X" target="_blank">
@@ -105,25 +105,5 @@ Efficiently pulls the latest changes from:
* Websites
* And more ...
## 📚 Editions
There are two editions of Danswer:
* Danswer Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Danswer you will get if you follow the Deployment guide above.
* Danswer Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
* Single Sign-On (SSO), with support for both SAML and OIDC
* Role-based access control
* Document permission inheritance from connected sources
* Usage analytics and query history accessible to admins
* Whitelabeling
* API key authentication
* Encryption of secrets
* Any many more! Checkout [our website](https://www.danswer.ai/) for the latest.
To try the Danswer Enterprise Edition:
1. Checkout our [Cloud product](https://app.danswer.ai/signup).
2. For self-hosting, contact us at [founders@danswer.ai](mailto:founders@danswer.ai) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
## 💡 Contributing
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.

2
backend/.gitignore vendored
View File

@@ -5,7 +5,7 @@ site_crawls/
.ipynb_checkpoints/
api_keys.py
*ipynb
.env*
.env
vespa-app.zip
dynamic_config_storage/
celerybeat-schedule*

View File

@@ -1,17 +1,15 @@
FROM python:3.11.7-slim-bookworm
LABEL com.danswer.maintainer="founders@danswer.ai"
LABEL com.danswer.description="This image is the web/frontend container of Danswer which \
contains code for both the Community and Enterprise editions of Danswer. If you do not \
have a contract or agreement with DanswerAI, you are not permitted to use the Enterprise \
Edition features outside of personal development or testing purposes. Please reach out to \
founders@danswer.ai for more information. Please visit https://github.com/danswer-ai/danswer"
LABEL com.danswer.description="This image is for the backend of Danswer. It is MIT Licensed and \
free for all to use. You can find it at https://hub.docker.com/r/danswer/danswer-backend. For \
more details, visit https://github.com/danswer-ai/danswer."
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.3-dev
ENV DANSWER_VERSION=${DANSWER_VERSION}
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
# Install system dependencies
# cmake needed for psycopg (postgres)
# libpq-dev needed for psycopg (postgres)
@@ -19,32 +17,18 @@ RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
# zip for Vespa step futher down
# ca-certificates for HTTPS
RUN apt-get update && \
apt-get install -y \
cmake \
curl \
zip \
ca-certificates \
libgnutls30=3.7.9-2+deb12u3 \
libblkid1=2.38.1-5+deb12u1 \
libmount1=2.38.1-5+deb12u1 \
libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 \
libxmlsec1-dev \
pkg-config \
gcc && \
apt-get install -y cmake curl zip ca-certificates libgnutls30=3.7.9-2+deb12u2 \
libblkid1=2.38.1-5+deb12u1 libmount1=2.38.1-5+deb12u1 libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean
# Install Python dependencies
# Remove py which is pulled in by retry, py is not needed and is a CVE
COPY ./requirements/default.txt /tmp/requirements.txt
COPY ./requirements/ee.txt /tmp/ee-requirements.txt
RUN pip install --no-cache-dir --upgrade \
-r /tmp/requirements.txt \
-r /tmp/ee-requirements.txt && \
RUN pip install --no-cache-dir --upgrade -r /tmp/requirements.txt && \
pip uninstall -y py && \
playwright install chromium && \
playwright install-deps chromium && \
playwright install chromium && playwright install-deps chromium && \
ln -s /usr/local/bin/supervisord /usr/bin/supervisord
# Cleanup for CVEs and size reduction
@@ -52,25 +36,14 @@ RUN pip install --no-cache-dir --upgrade \
# xserver-common and xvfb included by playwright installation but not needed after
# perl-base is part of the base Python Debian image but not needed for Danswer functionality
# perl-base could only be removed with --allow-remove-essential
RUN apt-get update && \
apt-get remove -y --allow-remove-essential \
perl-base \
xserver-common \
xvfb \
cmake \
libldap-2.5-0 \
libxmlsec1-dev \
pkg-config \
gcc && \
apt-get install -y libxmlsec1-openssl && \
RUN apt-get remove -y --allow-remove-essential perl-base xserver-common xvfb cmake \
libldap-2.5-0 libldap-2.5-0 && \
apt-get autoremove -y && \
rm -rf /var/lib/apt/lists/* && \
rm -f /usr/local/lib/python3.11/site-packages/tornado/test/test.key
rm /usr/local/lib/python3.11/site-packages/tornado/test/test.key
# Pre-downloading models for setups with limited egress
RUN python -c "from tokenizers import Tokenizer; \
Tokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1')"
RUN python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('intfloat/e5-base-v2')"
# Pre-downloading NLTK for setups with limited egress
RUN python -c "import nltk; \
@@ -80,24 +53,12 @@ nltk.download('punkt', quiet=True);"
# Set up application files
WORKDIR /app
# Enterprise Version Files
COPY ./ee /app/ee
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
# Set up application files
COPY ./danswer /app/danswer
COPY ./shared_configs /app/shared_configs
COPY ./alembic /app/alembic
COPY ./alembic.ini /app/alembic.ini
COPY supervisord.conf /usr/etc/supervisord.conf
# Escape hatch
COPY ./scripts/force_delete_connector_by_id.py /app/scripts/force_delete_connector_by_id.py
# Put logo in assets
COPY ./assets /app/assets
ENV PYTHONPATH /app
# Default command which does nothing

View File

@@ -18,18 +18,14 @@ RUN apt-get remove -y --allow-remove-essential perl-base && \
apt-get autoremove -y
# Pre-downloading models for setups with limited egress
# Download tokenizers, distilbert for the Danswer model
# Download model weights
# Run Nomic to pull in the custom architecture and have it cached locally
RUN python -c "from transformers import AutoTokenizer; \
AutoTokenizer.from_pretrained('distilbert-base-uncased', cache_folder='/root/.cache/temp_huggingface/hub/'); \
AutoTokenizer.from_pretrained('mixedbread-ai/mxbai-rerank-xsmall-v1', cache_folder='/root/.cache/temp_huggingface/hub/'); \
RUN python -c "from transformers import AutoModel, AutoTokenizer, TFDistilBertForSequenceClassification; \
from huggingface_hub import snapshot_download; \
snapshot_download(repo_id='danswer/hybrid-intent-token-classifier', revision='v1.0.3', cache_dir='/root/.cache/temp_huggingface/hub/'); \
snapshot_download('nomic-ai/nomic-embed-text-v1', cache_dir='/root/.cache/temp_huggingface/hub/'); \
snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1', cache_dir='/root/.cache/temp_huggingface/hub/'); \
from sentence_transformers import SentenceTransformer; \
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True, cache_folder='/root/.cache/temp_huggingface/hub/');"
AutoTokenizer.from_pretrained('danswer/intent-model'); \
AutoTokenizer.from_pretrained('intfloat/e5-base-v2'); \
AutoTokenizer.from_pretrained('mixedbread-ai/mxbai-rerank-xsmall-v1'); \
snapshot_download('danswer/intent-model'); \
snapshot_download('intfloat/e5-base-v2'); \
snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1')"
WORKDIR /app

View File

@@ -1,27 +0,0 @@
"""Add thread specific model selection
Revision ID: 0568ccf46a6b
Revises: e209dc5a8156
Create Date: 2024-06-19 14:25:36.376046
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "0568ccf46a6b"
down_revision = "e209dc5a8156"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"chat_session",
sa.Column("current_alternate_model", sa.String(), nullable=True),
)
def downgrade() -> None:
op.drop_column("chat_session", "current_alternate_model")

View File

@@ -1,32 +0,0 @@
"""add search doc relevance details
Revision ID: 05c07bf07c00
Revises: b896bbd0d5a7
Create Date: 2024-07-10 17:48:15.886653
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "05c07bf07c00"
down_revision = "b896bbd0d5a7"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"search_doc",
sa.Column("is_relevant", sa.Boolean(), nullable=True),
)
op.add_column(
"search_doc",
sa.Column("relevance_explanation", sa.String(), nullable=True),
)
def downgrade() -> None:
op.drop_column("search_doc", "relevance_explanation")
op.drop_column("search_doc", "is_relevant")

View File

@@ -1,26 +0,0 @@
"""add_indexing_start_to_connector
Revision ID: 08a1eda20fe1
Revises: 8a87bd6ec550
Create Date: 2024-07-23 11:12:39.462397
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "08a1eda20fe1"
down_revision = "8a87bd6ec550"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"connector", sa.Column("indexing_start", sa.DateTime(), nullable=True)
)
def downgrade() -> None:
op.drop_column("connector", "indexing_start")

View File

@@ -1,44 +0,0 @@
"""notifications
Revision ID: 213fd978c6d8
Revises: 5fc1f54cc252
Create Date: 2024-08-10 11:13:36.070790
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "213fd978c6d8"
down_revision = "5fc1f54cc252"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"notification",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column(
"notif_type",
sa.String(),
nullable=False,
),
sa.Column(
"user_id",
sa.UUID(),
nullable=True,
),
sa.Column("dismissed", sa.Boolean(), nullable=False),
sa.Column("last_shown", sa.DateTime(timezone=True), nullable=False),
sa.Column("first_shown", sa.DateTime(timezone=True), nullable=False),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
def downgrade() -> None:
op.drop_table("notification")

View File

@@ -1,86 +0,0 @@
"""remove-feedback-foreignkey-constraint
Revision ID: 23957775e5f5
Revises: bc9771dccadf
Create Date: 2024-06-27 16:04:51.480437
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "23957775e5f5"
down_revision = "bc9771dccadf"
branch_labels = None # type: ignore
depends_on = None # type: ignore
def upgrade() -> None:
op.drop_constraint(
"chat_feedback__chat_message_fk", "chat_feedback", type_="foreignkey"
)
op.create_foreign_key(
"chat_feedback__chat_message_fk",
"chat_feedback",
"chat_message",
["chat_message_id"],
["id"],
ondelete="SET NULL",
)
op.alter_column(
"chat_feedback", "chat_message_id", existing_type=sa.Integer(), nullable=True
)
op.drop_constraint(
"document_retrieval_feedback__chat_message_fk",
"document_retrieval_feedback",
type_="foreignkey",
)
op.create_foreign_key(
"document_retrieval_feedback__chat_message_fk",
"document_retrieval_feedback",
"chat_message",
["chat_message_id"],
["id"],
ondelete="SET NULL",
)
op.alter_column(
"document_retrieval_feedback",
"chat_message_id",
existing_type=sa.Integer(),
nullable=True,
)
def downgrade() -> None:
op.alter_column(
"chat_feedback", "chat_message_id", existing_type=sa.Integer(), nullable=False
)
op.drop_constraint(
"chat_feedback__chat_message_fk", "chat_feedback", type_="foreignkey"
)
op.create_foreign_key(
"chat_feedback__chat_message_fk",
"chat_feedback",
"chat_message",
["chat_message_id"],
["id"],
)
op.alter_column(
"document_retrieval_feedback",
"chat_message_id",
existing_type=sa.Integer(),
nullable=False,
)
op.drop_constraint(
"document_retrieval_feedback__chat_message_fk",
"document_retrieval_feedback",
type_="foreignkey",
)
op.create_foreign_key(
"document_retrieval_feedback__chat_message_fk",
"document_retrieval_feedback",
"chat_message",
["chat_message_id"],
["id"],
)

View File

@@ -160,28 +160,12 @@ def downgrade() -> None:
nullable=False,
),
)
# Check if the constraint exists before dropping
conn = op.get_bind()
inspector = sa.inspect(conn)
constraints = inspector.get_foreign_keys("index_attempt")
if any(
constraint["name"] == "fk_index_attempt_credential_id"
for constraint in constraints
):
op.drop_constraint(
"fk_index_attempt_credential_id", "index_attempt", type_="foreignkey"
)
if any(
constraint["name"] == "fk_index_attempt_connector_id"
for constraint in constraints
):
op.drop_constraint(
"fk_index_attempt_connector_id", "index_attempt", type_="foreignkey"
)
op.drop_constraint(
"fk_index_attempt_credential_id", "index_attempt", type_="foreignkey"
)
op.drop_constraint(
"fk_index_attempt_connector_id", "index_attempt", type_="foreignkey"
)
op.drop_column("index_attempt", "credential_id")
op.drop_column("index_attempt", "connector_id")
op.drop_table("connector_credential_pair")

View File

@@ -1,70 +0,0 @@
"""Add icon_color and icon_shape to Persona
Revision ID: 325975216eb3
Revises: 91ffac7e65b3
Create Date: 2024-07-24 21:29:31.784562
"""
import random
from alembic import op
import sqlalchemy as sa
from sqlalchemy.sql import table, column, select
# revision identifiers, used by Alembic.
revision = "325975216eb3"
down_revision = "91ffac7e65b3"
branch_labels: None = None
depends_on: None = None
colorOptions = [
"#FF6FBF",
"#6FB1FF",
"#B76FFF",
"#FFB56F",
"#6FFF8D",
"#FF6F6F",
"#6FFFFF",
]
# Function to generate a random shape ensuring at least 3 of the middle 4 squares are filled
def generate_random_shape() -> int:
center_squares = [12, 10, 6, 14, 13, 11, 7, 15]
center_fill = random.choice(center_squares)
remaining_squares = [i for i in range(16) if not (center_fill & (1 << i))]
random.shuffle(remaining_squares)
for i in range(10 - bin(center_fill).count("1")):
center_fill |= 1 << remaining_squares[i]
return center_fill
def upgrade() -> None:
op.add_column("persona", sa.Column("icon_color", sa.String(), nullable=True))
op.add_column("persona", sa.Column("icon_shape", sa.Integer(), nullable=True))
op.add_column("persona", sa.Column("uploaded_image_id", sa.String(), nullable=True))
persona = table(
"persona",
column("id", sa.Integer),
column("icon_color", sa.String),
column("icon_shape", sa.Integer),
)
conn = op.get_bind()
personas = conn.execute(select(persona.c.id))
for persona_id in personas:
random_color = random.choice(colorOptions)
random_shape = generate_random_shape()
conn.execute(
persona.update()
.where(persona.c.id == persona_id[0])
.values(icon_color=random_color, icon_shape=random_shape)
)
def downgrade() -> None:
op.drop_column("persona", "icon_shape")
op.drop_column("persona", "uploaded_image_id")
op.drop_column("persona", "icon_color")

View File

@@ -11,8 +11,8 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "3879338f8ba1"
down_revision = "f1c6478c3fd8"
branch_labels: None = None
depends_on: None = None
branch_labels = None
depends_on = None
def upgrade() -> None:

View File

@@ -1,35 +0,0 @@
"""add alternate assistant to chat message
Revision ID: 3a7802814195
Revises: 23957775e5f5
Create Date: 2024-06-05 11:18:49.966333
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "3a7802814195"
down_revision = "23957775e5f5"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"chat_message", sa.Column("alternate_assistant_id", sa.Integer(), nullable=True)
)
op.create_foreign_key(
"fk_chat_message_persona",
"chat_message",
"persona",
["alternate_assistant_id"],
["id"],
)
def downgrade() -> None:
op.drop_constraint("fk_chat_message_persona", "chat_message", type_="foreignkey")
op.drop_column("chat_message", "alternate_assistant_id")

View File

@@ -1,42 +0,0 @@
"""Rename index_origin to index_recursively
Revision ID: 1d6ad76d1f37
Revises: e1392f05e840
Create Date: 2024-08-01 12:38:54.466081
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "1d6ad76d1f37"
down_revision = "e1392f05e840"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE connector
SET connector_specific_config = jsonb_set(
connector_specific_config,
'{index_recursively}',
'true'::jsonb
) - 'index_origin'
WHERE connector_specific_config ? 'index_origin'
"""
)
def downgrade() -> None:
op.execute(
"""
UPDATE connector
SET connector_specific_config = jsonb_set(
connector_specific_config,
'{index_origin}',
connector_specific_config->'index_recursively'
) - 'index_recursively'
WHERE connector_specific_config ? 'index_recursively'
"""
)

View File

@@ -1,65 +0,0 @@
"""add cloud embedding model and update embedding_model
Revision ID: 44f856ae2a4a
Revises: d716b0791ddd
Create Date: 2024-06-28 20:01:05.927647
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "44f856ae2a4a"
down_revision = "d716b0791ddd"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
# Create embedding_provider table
op.create_table(
"embedding_provider",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("name", sa.String(), nullable=False),
sa.Column("api_key", sa.LargeBinary(), nullable=True),
sa.Column("default_model_id", sa.Integer(), nullable=True),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("name"),
)
# Add cloud_provider_id to embedding_model table
op.add_column(
"embedding_model", sa.Column("cloud_provider_id", sa.Integer(), nullable=True)
)
# Add foreign key constraints
op.create_foreign_key(
"fk_embedding_model_cloud_provider",
"embedding_model",
"embedding_provider",
["cloud_provider_id"],
["id"],
)
op.create_foreign_key(
"fk_embedding_provider_default_model",
"embedding_provider",
"embedding_model",
["default_model_id"],
["id"],
)
def downgrade() -> None:
# Remove foreign key constraints
op.drop_constraint(
"fk_embedding_model_cloud_provider", "embedding_model", type_="foreignkey"
)
op.drop_constraint(
"fk_embedding_provider_default_model", "embedding_provider", type_="foreignkey"
)
# Remove cloud_provider_id column
op.drop_column("embedding_model", "cloud_provider_id")
# Drop embedding_provider table
op.drop_table("embedding_provider")

View File

@@ -1,23 +0,0 @@
"""added is_internet to DBDoc
Revision ID: 4505fd7302e1
Revises: c18cdf4b497e
Create Date: 2024-06-18 20:46:09.095034
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4505fd7302e1"
down_revision = "c18cdf4b497e"
def upgrade() -> None:
op.add_column("search_doc", sa.Column("is_internet", sa.Boolean(), nullable=True))
op.add_column("tool", sa.Column("display_name", sa.String(), nullable=True))
def downgrade() -> None:
op.drop_column("tool", "display_name")
op.drop_column("search_doc", "is_internet")

View File

@@ -1,49 +0,0 @@
"""Add display_model_names to llm_provider
Revision ID: 473a1a7ca408
Revises: 325975216eb3
Create Date: 2024-07-25 14:31:02.002917
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "473a1a7ca408"
down_revision = "325975216eb3"
branch_labels: None = None
depends_on: None = None
default_models_by_provider = {
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini"],
"bedrock": [
"meta.llama3-1-70b-instruct-v1:0",
"meta.llama3-1-8b-instruct-v1:0",
"anthropic.claude-3-opus-20240229-v1:0",
"mistral.mistral-large-2402-v1:0",
"anthropic.claude-3-5-sonnet-20240620-v1:0",
],
"anthropic": ["claude-3-opus-20240229", "claude-3-5-sonnet-20240620"],
}
def upgrade() -> None:
op.add_column(
"llm_provider",
sa.Column("display_model_names", postgresql.ARRAY(sa.String()), nullable=True),
)
connection = op.get_bind()
for provider, models in default_models_by_provider.items():
connection.execute(
sa.text(
"UPDATE llm_provider SET display_model_names = :models WHERE provider = :provider"
),
{"models": models, "provider": provider},
)
def downgrade() -> None:
op.drop_column("llm_provider", "display_model_names")

View File

@@ -1,61 +0,0 @@
"""Add support for custom tools
Revision ID: 48d14957fe80
Revises: b85f02ec1308
Create Date: 2024-06-09 14:58:19.946509
"""
from alembic import op
import fastapi_users_db_sqlalchemy
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "48d14957fe80"
down_revision = "b85f02ec1308"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"tool",
sa.Column(
"openapi_schema",
postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
),
)
op.add_column(
"tool",
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
)
op.create_foreign_key("tool_user_fk", "tool", "user", ["user_id"], ["id"])
op.create_table(
"tool_call",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("tool_id", sa.Integer(), nullable=False),
sa.Column("tool_name", sa.String(), nullable=False),
sa.Column(
"tool_arguments", postgresql.JSONB(astext_type=sa.Text()), nullable=False
),
sa.Column(
"tool_result", postgresql.JSONB(astext_type=sa.Text()), nullable=False
),
sa.Column(
"message_id", sa.Integer(), sa.ForeignKey("chat_message.id"), nullable=False
),
)
def downgrade() -> None:
op.drop_table("tool_call")
op.drop_constraint("tool_user_fk", "tool", type_="foreignkey")
op.drop_column("tool", "user_id")
op.drop_column("tool", "openapi_schema")

View File

@@ -1,80 +0,0 @@
"""Moved status to connector credential pair
Revision ID: 4a951134c801
Revises: 7477a5f5d728
Create Date: 2024-08-10 19:20:34.527559
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4a951134c801"
down_revision = "7477a5f5d728"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"status",
sa.Enum(
"ACTIVE",
"PAUSED",
"DELETING",
name="connectorcredentialpairstatus",
native_enum=False,
),
nullable=True,
),
)
# Update status of connector_credential_pair based on connector's disabled status
op.execute(
"""
UPDATE connector_credential_pair
SET status = CASE
WHEN (
SELECT disabled
FROM connector
WHERE connector.id = connector_credential_pair.connector_id
) = FALSE THEN 'ACTIVE'
ELSE 'PAUSED'
END
"""
)
# Make the status column not nullable after setting values
op.alter_column("connector_credential_pair", "status", nullable=False)
op.drop_column("connector", "disabled")
def downgrade() -> None:
op.add_column(
"connector",
sa.Column("disabled", sa.BOOLEAN(), autoincrement=False, nullable=True),
)
# Update disabled status of connector based on connector_credential_pair's status
op.execute(
"""
UPDATE connector
SET disabled = CASE
WHEN EXISTS (
SELECT 1
FROM connector_credential_pair
WHERE connector_credential_pair.connector_id = connector.id
AND connector_credential_pair.status = 'ACTIVE'
) THEN FALSE
ELSE TRUE
END
"""
)
# Make the disabled column not nullable after setting values
op.alter_column("connector", "disabled", nullable=False)
op.drop_column("connector_credential_pair", "status")

View File

@@ -1,72 +0,0 @@
"""Add type to credentials
Revision ID: 4ea2c93919c1
Revises: 473a1a7ca408
Create Date: 2024-07-18 13:07:13.655895
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4ea2c93919c1"
down_revision = "473a1a7ca408"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
# Add the new 'source' column to the 'credential' table
op.add_column(
"credential",
sa.Column(
"source",
sa.String(length=100), # Use String instead of Enum
nullable=True, # Initially allow NULL values
),
)
op.add_column(
"credential",
sa.Column(
"name",
sa.String(),
nullable=True,
),
)
# Create a temporary table that maps each credential to a single connector source.
# This is needed because a credential can be associated with multiple connectors,
# but we want to assign a single source to each credential.
# We use DISTINCT ON to ensure we only get one row per credential_id.
op.execute(
"""
CREATE TEMPORARY TABLE temp_connector_credential AS
SELECT DISTINCT ON (cc.credential_id)
cc.credential_id,
c.source AS connector_source
FROM connector_credential_pair cc
JOIN connector c ON cc.connector_id = c.id
"""
)
# Update the 'source' column in the 'credential' table
op.execute(
"""
UPDATE credential cred
SET source = COALESCE(
(SELECT connector_source
FROM temp_connector_credential temp
WHERE cred.id = temp.credential_id),
'NOT_APPLICABLE'
)
"""
)
# If no exception was raised, alter the column
op.alter_column("credential", "source", nullable=True) # TODO modify
# # ### end Alembic commands ###
def downgrade() -> None:
op.drop_column("credential", "source")
op.drop_column("credential", "name")

View File

@@ -1,25 +0,0 @@
"""hybrid-enum
Revision ID: 5fc1f54cc252
Revises: 1d6ad76d1f37
Create Date: 2024-08-06 15:35:40.278485
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "5fc1f54cc252"
down_revision = "1d6ad76d1f37"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.drop_column("persona", "search_type")
def downgrade() -> None:
op.add_column("persona", sa.Column("search_type", sa.String(), nullable=True))
op.execute("UPDATE persona SET search_type = 'SEMANTIC'")
op.alter_column("persona", "search_type", nullable=False)

View File

@@ -1,68 +0,0 @@
"""More Descriptive Filestore
Revision ID: 70f00c45c0f2
Revises: 3879338f8ba1
Create Date: 2024-05-17 17:51:41.926893
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "70f00c45c0f2"
down_revision = "3879338f8ba1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column("file_store", sa.Column("display_name", sa.String(), nullable=True))
op.add_column(
"file_store",
sa.Column(
"file_origin",
sa.String(),
nullable=False,
server_default="connector", # Default to connector
),
)
op.add_column(
"file_store",
sa.Column(
"file_type", sa.String(), nullable=False, server_default="text/plain"
),
)
op.add_column(
"file_store",
sa.Column(
"file_metadata",
postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
),
)
op.execute(
"""
UPDATE file_store
SET file_origin = CASE
WHEN file_name LIKE 'chat__%' THEN 'chat_upload'
ELSE 'connector'
END,
file_name = CASE
WHEN file_name LIKE 'chat__%' THEN SUBSTR(file_name, 7)
ELSE file_name
END,
file_type = CASE
WHEN file_name LIKE 'chat__%' THEN 'image/png'
ELSE 'text/plain'
END
"""
)
def downgrade() -> None:
op.drop_column("file_store", "file_metadata")
op.drop_column("file_store", "file_type")
op.drop_column("file_store", "file_origin")
op.drop_column("file_store", "display_name")

View File

@@ -1,24 +0,0 @@
"""Added model defaults for users
Revision ID: 7477a5f5d728
Revises: 213fd978c6d8
Create Date: 2024-08-04 19:00:04.512634
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "7477a5f5d728"
down_revision = "213fd978c6d8"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column("user", sa.Column("default_model", sa.Text(), nullable=True))
def downgrade() -> None:
op.drop_column("user", "default_model")

View File

@@ -28,9 +28,5 @@ def upgrade() -> None:
def downgrade() -> None:
op.create_unique_constraint(
"connector_credential_pair__name__key", "connector_credential_pair", ["name"]
)
op.alter_column(
"connector_credential_pair", "name", existing_type=sa.String(), nullable=True
)
# This wasn't really required by the code either, no good reason to make it unique again
pass

View File

@@ -1,41 +0,0 @@
"""add_llm_group_permissions_control
Revision ID: 795b20b85b4b
Revises: 05c07bf07c00
Create Date: 2024-07-19 11:54:35.701558
"""
from alembic import op
import sqlalchemy as sa
revision = "795b20b85b4b"
down_revision = "05c07bf07c00"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"llm_provider__user_group",
sa.Column("llm_provider_id", sa.Integer(), nullable=False),
sa.Column("user_group_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["llm_provider_id"],
["llm_provider.id"],
),
sa.ForeignKeyConstraint(
["user_group_id"],
["user_group.id"],
),
sa.PrimaryKeyConstraint("llm_provider_id", "user_group_id"),
)
op.add_column(
"llm_provider",
sa.Column("is_public", sa.Boolean(), nullable=False, server_default="true"),
)
def downgrade() -> None:
op.drop_table("llm_provider__user_group")
op.drop_column("llm_provider", "is_public")

View File

@@ -1,35 +0,0 @@
"""added slack_auto_filter
Revision ID: 7aea705850d5
Revises: 4505fd7302e1
Create Date: 2024-07-10 11:01:23.581015
"""
from alembic import op
import sqlalchemy as sa
revision = "7aea705850d5"
down_revision = "4505fd7302e1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"slack_bot_config",
sa.Column("enable_auto_filters", sa.Boolean(), nullable=True),
)
op.execute(
"UPDATE slack_bot_config SET enable_auto_filters = FALSE WHERE enable_auto_filters IS NULL"
)
op.alter_column(
"slack_bot_config",
"enable_auto_filters",
existing_type=sa.Boolean(),
nullable=False,
server_default=sa.false(),
)
def downgrade() -> None:
op.drop_column("slack_bot_config", "enable_auto_filters")

View File

@@ -1,103 +0,0 @@
"""associate index attempts with ccpair
Revision ID: 8a87bd6ec550
Revises: 4ea2c93919c1
Create Date: 2024-07-22 15:15:52.558451
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "8a87bd6ec550"
down_revision = "4ea2c93919c1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
# Add the new connector_credential_pair_id column
op.add_column(
"index_attempt",
sa.Column("connector_credential_pair_id", sa.Integer(), nullable=True),
)
# Create a foreign key constraint to the connector_credential_pair table
op.create_foreign_key(
"fk_index_attempt_connector_credential_pair_id",
"index_attempt",
"connector_credential_pair",
["connector_credential_pair_id"],
["id"],
)
# Populate the new connector_credential_pair_id column using existing connector_id and credential_id
op.execute(
"""
UPDATE index_attempt ia
SET connector_credential_pair_id =
CASE
WHEN ia.credential_id IS NULL THEN
(SELECT id FROM connector_credential_pair
WHERE connector_id = ia.connector_id
LIMIT 1)
ELSE
(SELECT id FROM connector_credential_pair
WHERE connector_id = ia.connector_id
AND credential_id = ia.credential_id)
END
WHERE ia.connector_id IS NOT NULL
"""
)
# Make the new connector_credential_pair_id column non-nullable
op.alter_column("index_attempt", "connector_credential_pair_id", nullable=False)
# Drop the old connector_id and credential_id columns
op.drop_column("index_attempt", "connector_id")
op.drop_column("index_attempt", "credential_id")
# Update the index to use connector_credential_pair_id
op.create_index(
"ix_index_attempt_latest_for_connector_credential_pair",
"index_attempt",
["connector_credential_pair_id", "time_created"],
)
def downgrade() -> None:
# Add back the old connector_id and credential_id columns
op.add_column(
"index_attempt", sa.Column("connector_id", sa.Integer(), nullable=True)
)
op.add_column(
"index_attempt", sa.Column("credential_id", sa.Integer(), nullable=True)
)
# Populate the old connector_id and credential_id columns using the connector_credential_pair_id
op.execute(
"""
UPDATE index_attempt ia
SET connector_id = ccp.connector_id, credential_id = ccp.credential_id
FROM connector_credential_pair ccp
WHERE ia.connector_credential_pair_id = ccp.id
"""
)
# Make the old connector_id and credential_id columns non-nullable
op.alter_column("index_attempt", "connector_id", nullable=False)
op.alter_column("index_attempt", "credential_id", nullable=False)
# Drop the new connector_credential_pair_id column
op.drop_constraint(
"fk_index_attempt_connector_credential_pair_id",
"index_attempt",
type_="foreignkey",
)
op.drop_column("index_attempt", "connector_credential_pair_id")
op.create_index(
"ix_index_attempt_latest_for_connector_credential_pair",
"index_attempt",
["connector_id", "credential_id", "time_created"],
)

View File

@@ -1,26 +0,0 @@
"""add expiry time
Revision ID: 91ffac7e65b3
Revises: bc9771dccadf
Create Date: 2024-06-24 09:39:56.462242
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "91ffac7e65b3"
down_revision = "795b20b85b4b"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"user", sa.Column("oidc_expiry", sa.DateTime(timezone=True), nullable=True)
)
def downgrade() -> None:
op.drop_column("user", "oidc_expiry")

View File

@@ -1,27 +0,0 @@
"""Add chosen_assistants to User table
Revision ID: a3bfd0d64902
Revises: ec85f2b3c544
Create Date: 2024-05-26 17:22:24.834741
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "a3bfd0d64902"
down_revision = "ec85f2b3c544"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"user",
sa.Column("chosen_assistants", postgresql.ARRAY(sa.Integer()), nullable=True),
)
def downgrade() -> None:
op.drop_column("user", "chosen_assistants")

View File

@@ -16,6 +16,7 @@ depends_on: None = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.alter_column(
"connector_credential_pair",
"last_attempt_status",
@@ -28,9 +29,11 @@ def upgrade() -> None:
),
nullable=True,
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.alter_column(
"connector_credential_pair",
"last_attempt_status",
@@ -43,3 +46,4 @@ def downgrade() -> None:
),
nullable=False,
)
# ### end Alembic commands ###

View File

@@ -1,28 +0,0 @@
"""fix-file-type-migration
Revision ID: b85f02ec1308
Revises: a3bfd0d64902
Create Date: 2024-05-31 18:09:26.658164
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "b85f02ec1308"
down_revision = "a3bfd0d64902"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE file_store
SET file_origin = UPPER(file_origin)
"""
)
def downgrade() -> None:
# Let's not break anything on purpose :)
pass

View File

@@ -1,23 +0,0 @@
"""backfill is_internet data to False
Revision ID: b896bbd0d5a7
Revises: 44f856ae2a4a
Create Date: 2024-07-16 15:21:05.718571
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "b896bbd0d5a7"
down_revision = "44f856ae2a4a"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute("UPDATE search_doc SET is_internet = FALSE WHERE is_internet IS NULL")
def downgrade() -> None:
pass

View File

@@ -1,51 +0,0 @@
"""create usage reports table
Revision ID: bc9771dccadf
Revises: 0568ccf46a6b
Create Date: 2024-06-18 10:04:26.800282
"""
from alembic import op
import sqlalchemy as sa
import fastapi_users_db_sqlalchemy
# revision identifiers, used by Alembic.
revision = "bc9771dccadf"
down_revision = "0568ccf46a6b"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"usage_reports",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("report_name", sa.String(), nullable=False),
sa.Column(
"requestor_user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("period_from", sa.DateTime(timezone=True), nullable=True),
sa.Column("period_to", sa.DateTime(timezone=True), nullable=True),
sa.ForeignKeyConstraint(
["report_name"],
["file_store.file_name"],
),
sa.ForeignKeyConstraint(
["requestor_user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
def downgrade() -> None:
op.drop_table("usage_reports")

View File

@@ -1,75 +0,0 @@
"""Add standard_answer tables
Revision ID: c18cdf4b497e
Revises: 3a7802814195
Create Date: 2024-06-06 15:15:02.000648
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "c18cdf4b497e"
down_revision = "3a7802814195"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"standard_answer",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("keyword", sa.String(), nullable=False),
sa.Column("answer", sa.String(), nullable=False),
sa.Column("active", sa.Boolean(), nullable=False),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("keyword"),
)
op.create_table(
"standard_answer_category",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("name", sa.String(), nullable=False),
sa.PrimaryKeyConstraint("id"),
sa.UniqueConstraint("name"),
)
op.create_table(
"standard_answer__standard_answer_category",
sa.Column("standard_answer_id", sa.Integer(), nullable=False),
sa.Column("standard_answer_category_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["standard_answer_category_id"],
["standard_answer_category.id"],
),
sa.ForeignKeyConstraint(
["standard_answer_id"],
["standard_answer.id"],
),
sa.PrimaryKeyConstraint("standard_answer_id", "standard_answer_category_id"),
)
op.create_table(
"slack_bot_config__standard_answer_category",
sa.Column("slack_bot_config_id", sa.Integer(), nullable=False),
sa.Column("standard_answer_category_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["slack_bot_config_id"],
["slack_bot_config.id"],
),
sa.ForeignKeyConstraint(
["standard_answer_category_id"],
["standard_answer_category.id"],
),
sa.PrimaryKeyConstraint("slack_bot_config_id", "standard_answer_category_id"),
)
op.add_column(
"chat_session", sa.Column("slack_thread_id", sa.String(), nullable=True)
)
def downgrade() -> None:
op.drop_column("chat_session", "slack_thread_id")
op.drop_table("slack_bot_config__standard_answer_category")
op.drop_table("standard_answer__standard_answer_category")
op.drop_table("standard_answer_category")
op.drop_table("standard_answer")

View File

@@ -19,9 +19,6 @@ depends_on: None = None
def upgrade() -> None:
op.drop_table("deletion_attempt")
# Remove the DeletionStatus enum
op.execute("DROP TYPE IF EXISTS deletionstatus;")
def downgrade() -> None:
op.create_table(

View File

@@ -1,45 +0,0 @@
"""combined slack id fields
Revision ID: d716b0791ddd
Revises: 7aea705850d5
Create Date: 2024-07-10 17:57:45.630550
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "d716b0791ddd"
down_revision = "7aea705850d5"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE slack_bot_config
SET channel_config = jsonb_set(
channel_config,
'{respond_member_group_list}',
coalesce(channel_config->'respond_team_member_list', '[]'::jsonb) ||
coalesce(channel_config->'respond_slack_group_list', '[]'::jsonb)
) - 'respond_team_member_list' - 'respond_slack_group_list'
"""
)
def downgrade() -> None:
op.execute(
"""
UPDATE slack_bot_config
SET channel_config = jsonb_set(
jsonb_set(
channel_config - 'respond_member_group_list',
'{respond_team_member_list}',
'[]'::jsonb
),
'{respond_slack_group_list}',
'[]'::jsonb
)
"""
)

View File

@@ -136,4 +136,4 @@ def downgrade() -> None:
)
op.drop_column("index_attempt", "embedding_model_id")
op.drop_table("embedding_model")
op.execute("DROP TYPE IF EXISTS indexmodelstatus;")
op.execute("DROP TYPE indexmodelstatus;")

View File

@@ -1,58 +0,0 @@
"""Added input prompts
Revision ID: e1392f05e840
Revises: 08a1eda20fe1
Create Date: 2024-07-13 19:09:22.556224
"""
import fastapi_users_db_sqlalchemy
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "e1392f05e840"
down_revision = "08a1eda20fe1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"inputprompt",
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
sa.Column("prompt", sa.String(), nullable=False),
sa.Column("content", sa.String(), nullable=False),
sa.Column("active", sa.Boolean(), nullable=False),
sa.Column("is_public", sa.Boolean(), nullable=False),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"inputprompt__user",
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
sa.Column("user_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["input_prompt_id"],
["inputprompt.id"],
),
sa.ForeignKeyConstraint(
["user_id"],
["inputprompt.id"],
),
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
)
def downgrade() -> None:
op.drop_table("inputprompt__user")
op.drop_table("inputprompt")

View File

@@ -1,22 +0,0 @@
"""added-prune-frequency
Revision ID: e209dc5a8156
Revises: 48d14957fe80
Create Date: 2024-06-16 16:02:35.273231
"""
from alembic import op
import sqlalchemy as sa
revision = "e209dc5a8156"
down_revision = "48d14957fe80"
branch_labels = None # type: ignore
depends_on = None # type: ignore
def upgrade() -> None:
op.add_column("connector", sa.Column("prune_freq", sa.Integer(), nullable=True))
def downgrade() -> None:
op.drop_column("connector", "prune_freq")

View File

@@ -1,59 +0,0 @@
"""migrate tool calls
Revision ID: eb690a089310
Revises: ee3f4b47fad5
Create Date: 2024-08-04 17:07:47.533051
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "eb690a089310"
down_revision = "ee3f4b47fad5"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Create the new column
op.add_column(
"chat_message", sa.Column("tool_call_id", sa.Integer(), nullable=True)
)
op.create_foreign_key(
"fk_chat_message_tool_call",
"chat_message",
"tool_call",
["tool_call_id"],
["id"],
)
# Migrate existing data
op.execute(
"UPDATE chat_message SET tool_call_id = (SELECT id FROM tool_call WHERE tool_call.message_id = chat_message.id LIMIT 1)"
)
# Drop the old relationship
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
op.drop_column("tool_call", "message_id")
def downgrade() -> None:
# Add back the old column
op.add_column(
"tool_call",
sa.Column("message_id", sa.INTEGER(), autoincrement=False, nullable=True),
)
op.create_foreign_key(
"tool_call_message_id_fkey", "tool_call", "chat_message", ["message_id"], ["id"]
)
# Migrate data back
op.execute(
"UPDATE tool_call SET message_id = (SELECT id FROM chat_message WHERE chat_message.tool_call_id = tool_call.id)"
)
# Drop the new column
op.drop_constraint("fk_chat_message_tool_call", "chat_message", type_="foreignkey")
op.drop_column("chat_message", "tool_call_id")

View File

@@ -1,31 +0,0 @@
"""Remove Last Attempt Status from CC Pair
Revision ID: ec85f2b3c544
Revises: 3879338f8ba1
Create Date: 2024-05-23 21:39:46.126010
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "ec85f2b3c544"
down_revision = "70f00c45c0f2"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.drop_column("connector_credential_pair", "last_attempt_status")
def downgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"last_attempt_status",
sa.VARCHAR(),
autoincrement=False,
nullable=True,
),
)

View File

@@ -1,28 +0,0 @@
"""Added alternate model to chat message
Revision ID: ee3f4b47fad5
Revises: 4a951134c801
Create Date: 2024-08-12 00:11:50.915845
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "ee3f4b47fad5"
down_revision = "4a951134c801"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"chat_message",
sa.Column("alternate_model", sa.String(length=255), nullable=True),
)
def downgrade() -> None:
op.drop_column("chat_message", "alternate_model")

View File

@@ -1,2 +0,0 @@
*
!.gitignore

View File

@@ -1,23 +1,25 @@
from sqlalchemy.orm import Session
from danswer.access.models import DocumentAccess
from danswer.access.utils import prefix_user
from danswer.configs.constants import PUBLIC_DOC_PAT
from danswer.db.document import get_acccess_info_for_documents
from danswer.db.models import User
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
from danswer.utils.variable_functionality import fetch_versioned_implementation
def _get_access_for_documents(
document_ids: list[str],
db_session: Session,
cc_pair_to_delete: ConnectorCredentialPairIdentifier | None = None,
) -> dict[str, DocumentAccess]:
document_access_info = get_acccess_info_for_documents(
db_session=db_session,
document_ids=document_ids,
cc_pair_to_delete=cc_pair_to_delete,
)
return {
document_id: DocumentAccess.build(user_ids, [], is_public)
document_id: DocumentAccess.build(user_ids, is_public)
for document_id, user_ids, is_public in document_access_info
}
@@ -25,16 +27,23 @@ def _get_access_for_documents(
def get_access_for_documents(
document_ids: list[str],
db_session: Session,
cc_pair_to_delete: ConnectorCredentialPairIdentifier | None = None,
) -> dict[str, DocumentAccess]:
"""Fetches all access information for the given documents."""
versioned_get_access_for_documents_fn = fetch_versioned_implementation(
"danswer.access.access", "_get_access_for_documents"
)
return versioned_get_access_for_documents_fn(
document_ids, db_session
document_ids, db_session, cc_pair_to_delete
) # type: ignore
def prefix_user(user_id: str) -> str:
"""Prefixes a user ID to eliminate collision with group names.
This assumes that groups are prefixed with a different prefix."""
return f"user_id:{user_id}"
def _get_acl_for_user(user: User | None, db_session: Session) -> set[str]:
"""Returns a list of ACL entries that the user has access to. This is meant to be
used downstream to filter out documents that the user does not have access to. The

View File

@@ -1,30 +1,20 @@
from dataclasses import dataclass
from uuid import UUID
from danswer.access.utils import prefix_user
from danswer.access.utils import prefix_user_group
from danswer.configs.constants import PUBLIC_DOC_PAT
@dataclass(frozen=True)
class DocumentAccess:
user_ids: set[str] # stringified UUIDs
user_groups: set[str] # names of user groups associated with this document
is_public: bool
def to_acl(self) -> list[str]:
return (
[prefix_user(user_id) for user_id in self.user_ids]
+ [prefix_user_group(group_name) for group_name in self.user_groups]
+ ([PUBLIC_DOC_PAT] if self.is_public else [])
)
return list(self.user_ids) + ([PUBLIC_DOC_PAT] if self.is_public else [])
@classmethod
def build(
cls, user_ids: list[UUID | None], user_groups: list[str], is_public: bool
) -> "DocumentAccess":
def build(cls, user_ids: list[UUID | None], is_public: bool) -> "DocumentAccess":
return cls(
user_ids={str(user_id) for user_id in user_ids if user_id},
user_groups=set(user_groups),
is_public=is_public,
)

View File

@@ -1,10 +0,0 @@
def prefix_user(user_id: str) -> str:
"""Prefixes a user ID to eliminate collision with group names.
This assumes that groups are prefixed with a different prefix."""
return f"user_id:{user_id}"
def prefix_user_group(user_group_name: str) -> str:
"""Prefixes a user group name to eliminate collision with user IDs.
This assumes that user ids are prefixed with a different prefix."""
return f"group:{user_group_name}"

View File

@@ -1,20 +0,0 @@
from typing import cast
from danswer.configs.constants import KV_USER_STORE_KEY
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.dynamic_configs.interface import ConfigNotFoundError
from danswer.dynamic_configs.interface import JSON_ro
def get_invited_users() -> list[str]:
try:
store = get_dynamic_config_store()
return cast(list, store.load(KV_USER_STORE_KEY))
except ConfigNotFoundError:
return list()
def write_invited_users(emails: list[str]) -> int:
store = get_dynamic_config_store()
store.store(KV_USER_STORE_KEY, cast(JSON_ro, emails))
return len(emails)

View File

@@ -1,38 +0,0 @@
from collections.abc import Mapping
from typing import Any
from typing import cast
from danswer.auth.schemas import UserRole
from danswer.configs.constants import KV_NO_AUTH_USER_PREFERENCES_KEY
from danswer.dynamic_configs.store import ConfigNotFoundError
from danswer.dynamic_configs.store import DynamicConfigStore
from danswer.server.manage.models import UserInfo
from danswer.server.manage.models import UserPreferences
def set_no_auth_user_preferences(
store: DynamicConfigStore, preferences: UserPreferences
) -> None:
store.store(KV_NO_AUTH_USER_PREFERENCES_KEY, preferences.dict())
def load_no_auth_user_preferences(store: DynamicConfigStore) -> UserPreferences:
try:
preferences_data = cast(
Mapping[str, Any], store.load(KV_NO_AUTH_USER_PREFERENCES_KEY)
)
return UserPreferences(**preferences_data)
except ConfigNotFoundError:
return UserPreferences(chosen_assistants=None, default_model=None)
def fetch_no_auth_user(store: DynamicConfigStore) -> UserInfo:
return UserInfo(
id="__no_auth_user__",
email="anonymous@danswer.ai",
is_active=True,
is_superuser=False,
is_verified=True,
role=UserRole.ADMIN,
preferences=load_no_auth_user_preferences(store),
)

View File

@@ -9,12 +9,6 @@ class UserRole(str, Enum):
ADMIN = "admin"
class UserStatus(str, Enum):
LIVE = "live"
INVITED = "invited"
DEACTIVATED = "deactivated"
class UserRead(schemas.BaseUser[uuid.UUID]):
role: UserRole

View File

@@ -1,8 +1,7 @@
import os
import smtplib
import uuid
from collections.abc import AsyncGenerator
from datetime import datetime
from datetime import timezone
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Optional
@@ -28,7 +27,6 @@ from fastapi_users.openapi import OpenAPIResponseType
from fastapi_users_db_sqlalchemy import SQLAlchemyUserDatabase
from sqlalchemy.orm import Session
from danswer.auth.invited_users import get_invited_users
from danswer.auth.schemas import UserCreate
from danswer.auth.schemas import UserRole
from danswer.configs.app_configs import AUTH_TYPE
@@ -48,31 +46,21 @@ from danswer.configs.constants import DANSWER_API_KEY_DUMMY_EMAIL_DOMAIN
from danswer.configs.constants import DANSWER_API_KEY_PREFIX
from danswer.configs.constants import UNNAMED_KEY_PLACEHOLDER
from danswer.db.auth import get_access_token_db
from danswer.db.auth import get_default_admin_user_emails
from danswer.db.auth import get_user_count
from danswer.db.auth import get_user_db
from danswer.db.engine import get_session
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.models import AccessToken
from danswer.db.models import User
from danswer.db.users import get_user_by_email
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
from danswer.utils.telemetry import RecordType
from danswer.utils.variable_functionality import (
fetch_versioned_implementation,
)
from danswer.utils.variable_functionality import fetch_versioned_implementation
logger = setup_logger()
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True
if user and user.role == UserRole.ADMIN:
return True
return False
USER_WHITELIST_FILE = "/home/danswer_whitelist.txt"
_user_whitelist: list[str] | None = None
def verify_auth_setting() -> None:
@@ -104,16 +92,22 @@ def user_needs_to_be_verified() -> bool:
return AUTH_TYPE != AuthType.BASIC or REQUIRE_EMAIL_VERIFICATION
def verify_email_is_invited(email: str) -> None:
whitelist = get_invited_users()
if (whitelist and email not in whitelist) or not email:
raise PermissionError("User not on allowed user whitelist")
def get_user_whitelist() -> list[str]:
global _user_whitelist
if _user_whitelist is None:
if os.path.exists(USER_WHITELIST_FILE):
with open(USER_WHITELIST_FILE, "r") as file:
_user_whitelist = [line.strip() for line in file]
else:
_user_whitelist = []
return _user_whitelist
def verify_email_in_whitelist(email: str) -> None:
with Session(get_sqlalchemy_engine()) as db_session:
if not get_user_by_email(email, db_session):
verify_email_is_invited(email)
whitelist = get_user_whitelist()
if (whitelist and email not in whitelist) or not email:
raise PermissionError("User not on allowed user whitelist")
def verify_email_domain(email: str) -> None:
@@ -165,11 +159,11 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
safe: bool = False,
request: Optional[Request] = None,
) -> models.UP:
verify_email_is_invited(user_create.email)
verify_email_in_whitelist(user_create.email)
verify_email_domain(user_create.email)
if hasattr(user_create, "role"):
user_count = await get_user_count()
if user_count == 0 or user_create.email in get_default_admin_user_emails():
if user_count == 0:
user_create.role = UserRole.ADMIN
else:
user_create.role = UserRole.BASIC
@@ -191,7 +185,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
verify_email_in_whitelist(account_email)
verify_email_domain(account_email)
user = await super().oauth_callback( # type: ignore
return await super().oauth_callback( # type: ignore
oauth_name=oauth_name,
access_token=access_token,
account_id=account_id,
@@ -203,14 +197,6 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
is_verified_by_default=is_verified_by_default,
)
# NOTE: google oauth expires after 1hr. We don't want to force the user to
# re-authenticate that frequently, so for now we'll just ignore this for
# google oauth users
if expires_at and AUTH_TYPE != AuthType.GOOGLE_OAUTH:
oidc_expiry = datetime.fromtimestamp(expires_at, tz=timezone.utc)
await self.user_db.update(user, update_dict={"oidc_expiry": oidc_expiry})
return user
async def on_after_register(
self, user: User, request: Optional[Request] = None
) -> None:
@@ -253,12 +239,10 @@ cookie_transport = CookieTransport(
def get_database_strategy(
access_token_db: AccessTokenDatabase[AccessToken] = Depends(get_access_token_db),
) -> DatabaseStrategy:
strategy = DatabaseStrategy(
return DatabaseStrategy(
access_token_db, lifetime_seconds=SESSION_EXPIRE_TIME_SECONDS # type: ignore
)
return strategy
auth_backend = AuthenticationBackend(
name="database",
@@ -355,12 +339,6 @@ async def double_check_user(
detail="Access denied. User is not verified.",
)
if user.oidc_expiry and user.oidc_expiry < datetime.now(timezone.utc):
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User's OIDC token has expired.",
)
return user
@@ -379,5 +357,4 @@ async def current_admin_user(user: User | None = Depends(current_user)) -> User
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User is not an admin.",
)
return user

View File

@@ -4,24 +4,13 @@ from typing import cast
from celery import Celery # type: ignore
from sqlalchemy.orm import Session
from danswer.background.celery.celery_utils import extract_ids_from_runnable_connector
from danswer.background.celery.celery_utils import should_kick_off_deletion_of_cc_pair
from danswer.background.celery.celery_utils import should_prune_cc_pair
from danswer.background.celery.celery_utils import should_sync_doc_set
from danswer.background.connector_deletion import delete_connector_credential_pair
from danswer.background.connector_deletion import delete_connector_credential_pair_batch
from danswer.background.task_utils import build_celery_task_wrapper
from danswer.background.task_utils import name_cc_cleanup_task
from danswer.background.task_utils import name_cc_prune_task
from danswer.background.task_utils import name_document_set_sync_task
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import POSTGRES_CELERY_APP_NAME
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.models import InputType
from danswer.db.connector_credential_pair import get_connector_credential_pair
from danswer.db.connector_credential_pair import get_connector_credential_pairs
from danswer.db.deletion_attempt import check_deletion_attempt_is_allowed
from danswer.db.document import get_documents_for_connector_credential_pair
from danswer.db.document import prepare_to_modify_documents
from danswer.db.document_set import delete_document_set
from danswer.db.document_set import fetch_document_sets
@@ -33,6 +22,8 @@ from danswer.db.engine import build_connection_string
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.engine import SYNC_DB_API
from danswer.db.models import DocumentSet
from danswer.db.tasks import check_live_task_not_timed_out
from danswer.db.tasks import get_latest_task
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import UpdateRequest
@@ -40,9 +31,7 @@ from danswer.utils.logger import setup_logger
logger = setup_logger()
connection_string = build_connection_string(
db_api=SYNC_DB_API, app_name=POSTGRES_CELERY_APP_NAME
)
connection_string = build_connection_string(db_api=SYNC_DB_API)
celery_broker_url = f"sqla+{connection_string}"
celery_backend_url = f"db+{connection_string}"
celery_app = Celery(__name__, broker=celery_broker_url, backend=celery_backend_url)
@@ -79,9 +68,7 @@ def cleanup_connector_credential_pair_task(
f"{connector_id} and Credential ID: {credential_id} does not exist."
)
deletion_attempt_disallowed_reason = check_deletion_attempt_is_allowed(
connector_credential_pair=cc_pair, db_session=db_session
)
deletion_attempt_disallowed_reason = check_deletion_attempt_is_allowed(cc_pair)
if deletion_attempt_disallowed_reason:
raise ValueError(deletion_attempt_disallowed_reason)
@@ -101,74 +88,6 @@ def cleanup_connector_credential_pair_task(
raise e
@build_celery_task_wrapper(name_cc_prune_task)
@celery_app.task(soft_time_limit=JOB_TIMEOUT)
def prune_documents_task(connector_id: int, credential_id: int) -> None:
"""connector pruning task. For a cc pair, this task pulls all document IDs from the source
and compares those IDs to locally stored documents and deletes all locally stored IDs missing
from the most recently pulled document ID list"""
with Session(get_sqlalchemy_engine()) as db_session:
try:
cc_pair = get_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
if not cc_pair:
logger.warning(f"ccpair not found for {connector_id} {credential_id}")
return
runnable_connector = instantiate_connector(
cc_pair.connector.source,
InputType.PRUNE,
cc_pair.connector.connector_specific_config,
cc_pair.credential,
db_session,
)
all_connector_doc_ids: set[str] = extract_ids_from_runnable_connector(
runnable_connector
)
all_indexed_document_ids = {
doc.id
for doc in get_documents_for_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
}
doc_ids_to_remove = list(all_indexed_document_ids - all_connector_doc_ids)
curr_ind_name, sec_ind_name = get_both_index_names(db_session)
document_index = get_default_document_index(
primary_index_name=curr_ind_name, secondary_index_name=sec_ind_name
)
if len(doc_ids_to_remove) == 0:
logger.info(
f"No docs to prune from {cc_pair.connector.source} connector"
)
return
logger.info(
f"pruning {len(doc_ids_to_remove)} doc(s) from {cc_pair.connector.source} connector"
)
delete_connector_credential_pair_batch(
document_ids=doc_ids_to_remove,
connector_id=connector_id,
credential_id=credential_id,
document_index=document_index,
)
except Exception as e:
logger.exception(
f"Failed to run pruning for connector id {connector_id} due to {e}"
)
raise e
@build_celery_task_wrapper(name_document_set_sync_task)
@celery_app.task(soft_time_limit=JOB_TIMEOUT)
def sync_document_set_task(document_set_id: int) -> None:
@@ -256,68 +175,32 @@ def sync_document_set_task(document_set_id: int) -> None:
soft_time_limit=JOB_TIMEOUT,
)
def check_for_document_sets_sync_task() -> None:
"""Runs periodically to check if any sync tasks should be run and adds them
to the queue"""
"""Runs periodically to check if any document sets are out of sync
Creates a task to sync the set if needed"""
with Session(get_sqlalchemy_engine()) as db_session:
# check if any document sets are not synced
document_set_info = fetch_document_sets(
user_id=None, db_session=db_session, include_outdated=True
)
for document_set, _ in document_set_info:
if should_sync_doc_set(document_set, db_session):
logger.info(f"Syncing the {document_set.name} document set")
if not document_set.is_up_to_date:
task_name = name_document_set_sync_task(document_set.id)
latest_sync = get_latest_task(task_name, db_session)
if latest_sync and check_live_task_not_timed_out(
latest_sync, db_session
):
logger.info(
f"Document set '{document_set.id}' is already syncing. Skipping."
)
continue
logger.info(f"Document set {document_set.id} syncing now!")
sync_document_set_task.apply_async(
kwargs=dict(document_set_id=document_set.id),
)
@celery_app.task(
name="check_for_cc_pair_deletion_task",
soft_time_limit=JOB_TIMEOUT,
)
def check_for_cc_pair_deletion_task() -> None:
"""Runs periodically to check if any deletion tasks should be run"""
with Session(get_sqlalchemy_engine()) as db_session:
# check if any document sets are not synced
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair in cc_pairs:
if should_kick_off_deletion_of_cc_pair(cc_pair, db_session):
logger.info(f"Deleting the {cc_pair.name} connector credential pair")
cleanup_connector_credential_pair_task.apply_async(
kwargs=dict(
connector_id=cc_pair.connector.id,
credential_id=cc_pair.credential.id,
),
)
@celery_app.task(
name="check_for_prune_task",
soft_time_limit=JOB_TIMEOUT,
)
def check_for_prune_task() -> None:
"""Runs periodically to check if any prune tasks should be run and adds them
to the queue"""
with Session(get_sqlalchemy_engine()) as db_session:
all_cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair in all_cc_pairs:
if should_prune_cc_pair(
connector=cc_pair.connector,
credential=cc_pair.credential,
db_session=db_session,
):
logger.info(f"Pruning the {cc_pair.connector.name} connector")
prune_documents_task.apply_async(
kwargs=dict(
connector_id=cc_pair.connector.id,
credential_id=cc_pair.credential.id,
)
)
#####
# Celery Beat (Periodic Tasks) Settings
#####
@@ -326,18 +209,4 @@ celery_app.conf.beat_schedule = {
"task": "check_for_document_sets_sync_task",
"schedule": timedelta(seconds=5),
},
"check-for-cc-pair-deletion": {
"task": "check_for_cc_pair_deletion_task",
# don't need to check too often, since we kick off a deletion initially
# during the API call that actually marks the CC pair for deletion
"schedule": timedelta(minutes=1),
},
}
celery_app.conf.beat_schedule.update(
{
"check-for-prune": {
"task": "check_for_prune_task",
"schedule": timedelta(seconds=5),
},
}
)

View File

@@ -1,9 +0,0 @@
"""Entry point for running celery worker / celery beat."""
from danswer.utils.variable_functionality import fetch_versioned_implementation
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
set_is_ee_based_on_env_variable()
celery_app = fetch_versioned_implementation(
"danswer.background.celery.celery_app", "celery_app"
)

View File

@@ -1,170 +1,23 @@
from datetime import datetime
from datetime import timezone
from sqlalchemy.orm import Session
from danswer.background.task_utils import name_cc_cleanup_task
from danswer.background.task_utils import name_cc_prune_task
from danswer.background.task_utils import name_document_set_sync_task
from danswer.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
from danswer.configs.app_configs import MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
rate_limit_builder,
)
from danswer.connectors.interfaces import BaseConnector
from danswer.connectors.interfaces import IdConnector
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.models import Document
from danswer.db.deletion_attempt import check_deletion_attempt_is_allowed
from danswer.db.engine import get_db_current_time
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.models import Connector
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import Credential
from danswer.db.models import DocumentSet
from danswer.db.models import TaskQueueState
from danswer.db.tasks import check_task_is_live_and_not_timed_out
from danswer.db.tasks import get_latest_task
from danswer.db.tasks import get_latest_task_by_type
from danswer.server.documents.models import DeletionAttemptSnapshot
from danswer.utils.logger import setup_logger
logger = setup_logger()
def get_deletion_status(
connector_id: int, credential_id: int, db_session: Session
) -> TaskQueueState | None:
) -> DeletionAttemptSnapshot | None:
cleanup_task_name = name_cc_cleanup_task(
connector_id=connector_id, credential_id=credential_id
)
return get_latest_task(task_name=cleanup_task_name, db_session=db_session)
task_state = get_latest_task(task_name=cleanup_task_name, db_session=db_session)
def get_deletion_attempt_snapshot(
connector_id: int, credential_id: int, db_session: Session
) -> DeletionAttemptSnapshot | None:
deletion_task = get_deletion_status(connector_id, credential_id, db_session)
if not deletion_task:
if not task_state:
return None
return DeletionAttemptSnapshot(
connector_id=connector_id,
credential_id=credential_id,
status=deletion_task.status,
status=task_state.status,
)
def should_kick_off_deletion_of_cc_pair(
cc_pair: ConnectorCredentialPair, db_session: Session
) -> bool:
if cc_pair.status != ConnectorCredentialPairStatus.DELETING:
return False
if check_deletion_attempt_is_allowed(cc_pair, db_session):
return False
deletion_task = get_deletion_status(
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
db_session=db_session,
)
if deletion_task and check_task_is_live_and_not_timed_out(
deletion_task,
db_session,
# 1 hour timeout
timeout=60 * 60,
):
return False
return True
def should_sync_doc_set(document_set: DocumentSet, db_session: Session) -> bool:
if document_set.is_up_to_date:
return False
task_name = name_document_set_sync_task(document_set.id)
latest_sync = get_latest_task(task_name, db_session)
if latest_sync and check_task_is_live_and_not_timed_out(latest_sync, db_session):
logger.info(f"Document set '{document_set.id}' is already syncing. Skipping.")
return False
logger.info(f"Document set {document_set.id} syncing now!")
return True
def should_prune_cc_pair(
connector: Connector, credential: Credential, db_session: Session
) -> bool:
if not connector.prune_freq:
return False
pruning_task_name = name_cc_prune_task(
connector_id=connector.id, credential_id=credential.id
)
last_pruning_task = get_latest_task(pruning_task_name, db_session)
current_db_time = get_db_current_time(db_session)
if not last_pruning_task:
time_since_initialization = current_db_time - connector.time_created
if time_since_initialization.total_seconds() >= connector.prune_freq:
return True
return False
if not ALLOW_SIMULTANEOUS_PRUNING:
pruning_type_task_name = name_cc_prune_task()
last_pruning_type_task = get_latest_task_by_type(
pruning_type_task_name, db_session
)
if last_pruning_type_task and check_task_is_live_and_not_timed_out(
last_pruning_type_task, db_session
):
return False
if check_task_is_live_and_not_timed_out(last_pruning_task, db_session):
return False
if not last_pruning_task.start_time:
return False
time_since_last_pruning = current_db_time - last_pruning_task.start_time
return time_since_last_pruning.total_seconds() >= connector.prune_freq
def document_batch_to_ids(doc_batch: list[Document]) -> set[str]:
return {doc.id for doc in doc_batch}
def extract_ids_from_runnable_connector(runnable_connector: BaseConnector) -> set[str]:
"""
If the PruneConnector hasnt been implemented for the given connector, just pull
all docs using the load_from_state and grab out the IDs
"""
all_connector_doc_ids: set[str] = set()
doc_batch_generator = None
if isinstance(runnable_connector, IdConnector):
all_connector_doc_ids = runnable_connector.retrieve_all_source_ids()
elif isinstance(runnable_connector, LoadConnector):
doc_batch_generator = runnable_connector.load_from_state()
elif isinstance(runnable_connector, PollConnector):
start = datetime(1970, 1, 1, tzinfo=timezone.utc).timestamp()
end = datetime.now(timezone.utc).timestamp()
doc_batch_generator = runnable_connector.poll_source(start=start, end=end)
else:
raise RuntimeError("Pruning job could not find a valid runnable_connector.")
if doc_batch_generator:
doc_batch_processing_func = document_batch_to_ids
if MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE:
doc_batch_processing_func = rate_limit_builder(
max_calls=MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE, period=60
)(document_batch_to_ids)
for doc_batch in doc_batch_generator:
all_connector_doc_ids.update(doc_batch_processing_func(doc_batch))
return all_connector_doc_ids

View File

@@ -10,6 +10,8 @@ are multiple connector / credential pairs that have indexed it
connector / credential pair from the access list
(6) delete all relevant entries from postgres
"""
import time
from sqlalchemy.orm import Session
from danswer.access.access import get_access_for_documents
@@ -22,8 +24,10 @@ from danswer.db.document import delete_documents_complete__no_commit
from danswer.db.document import get_document_connector_cnts
from danswer.db.document import get_documents_for_connector_credential_pair
from danswer.db.document import prepare_to_modify_documents
from danswer.db.document_set import delete_document_set_cc_pair_relationship__no_commit
from danswer.db.document_set import fetch_document_sets_for_documents
from danswer.db.document_set import get_document_sets_by_ids
from danswer.db.document_set import (
mark_cc_pair__document_set_relationships_to_be_deleted__no_commit,
)
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.index_attempt import delete_index_attempts
from danswer.db.models import ConnectorCredentialPair
@@ -31,17 +35,13 @@ from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.interfaces import UpdateRequest
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import (
fetch_versioned_implementation_with_fallback,
)
from danswer.utils.variable_functionality import noop_fallback
logger = setup_logger()
_DELETION_BATCH_SIZE = 1000
def delete_connector_credential_pair_batch(
def _delete_connector_credential_pair_batch(
document_ids: list[str],
connector_id: int,
credential_id: int,
@@ -78,37 +78,25 @@ def delete_connector_credential_pair_batch(
document_ids_to_update = [
document_id for document_id, cnt in document_connector_cnts if cnt > 1
]
# maps document id to list of document set names
new_doc_sets_for_documents: dict[str, set[str]] = {
document_id_and_document_set_names_tuple[0]: set(
document_id_and_document_set_names_tuple[1]
)
for document_id_and_document_set_names_tuple in fetch_document_sets_for_documents(
db_session=db_session,
document_ids=document_ids_to_update,
)
}
# determine future ACLs for documents in batch
access_for_documents = get_access_for_documents(
document_ids=document_ids_to_update,
db_session=db_session,
cc_pair_to_delete=ConnectorCredentialPairIdentifier(
connector_id=connector_id,
credential_id=credential_id,
),
)
# update Vespa
logger.debug(f"Updating documents: {document_ids_to_update}")
update_requests = [
UpdateRequest(
document_ids=[document_id],
access=access,
document_sets=new_doc_sets_for_documents[document_id],
)
for document_id, access in access_for_documents.items()
]
logger.debug(f"Updating documents: {document_ids_to_update}")
document_index.update(update_requests=update_requests)
# clean up Postgres
delete_document_by_connector_credential_pair__no_commit(
db_session=db_session,
document_ids=document_ids_to_update,
@@ -120,6 +108,48 @@ def delete_connector_credential_pair_batch(
db_session.commit()
def cleanup_synced_entities(
cc_pair: ConnectorCredentialPair, db_session: Session
) -> None:
"""Updates the document sets associated with the connector / credential pair,
then relies on the document set sync script to kick off Celery jobs which will
sync these updates to Vespa.
Waits until the document sets are synced before returning."""
logger.info(f"Cleaning up Document Sets for CC Pair with ID: '{cc_pair.id}'")
document_sets_ids_to_sync = list(
mark_cc_pair__document_set_relationships_to_be_deleted__no_commit(
cc_pair_id=cc_pair.id,
db_session=db_session,
)
)
db_session.commit()
# wait till all document sets are synced before continuing
while True:
all_synced = True
document_sets = get_document_sets_by_ids(
db_session=db_session, document_set_ids=document_sets_ids_to_sync
)
for document_set in document_sets:
if not document_set.is_up_to_date:
all_synced = False
if all_synced:
break
# wait for 30 seconds before checking again
db_session.commit() # end transaction
logger.info(
f"Document sets '{document_sets_ids_to_sync}' not synced yet, waiting 30s"
)
time.sleep(30)
logger.info(
f"Finished cleaning up Document Sets for CC Pair with ID: '{cc_pair.id}'"
)
def delete_connector_credential_pair(
db_session: Session,
document_index: DocumentIndex,
@@ -139,7 +169,7 @@ def delete_connector_credential_pair(
if not documents:
break
delete_connector_credential_pair_batch(
_delete_connector_credential_pair_batch(
document_ids=[document.id for document in documents],
connector_id=connector_id,
credential_id=credential_id,
@@ -147,33 +177,17 @@ def delete_connector_credential_pair(
)
num_docs_deleted += len(documents)
# Clean up document sets / access information from Postgres
# and sync these updates to Vespa
# TODO: add user group cleanup with `fetch_versioned_implementation`
cleanup_synced_entities(cc_pair, db_session)
# clean up the rest of the related Postgres entities
# index attempts
delete_index_attempts(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
# document sets
delete_document_set_cc_pair_relationship__no_commit(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
# user groups
cleanup_user_groups = fetch_versioned_implementation_with_fallback(
"danswer.db.user_group",
"delete_user_group_cc_pair_relationship__no_commit",
noop_fallback,
)
cleanup_user_groups(
cc_pair_id=cc_pair.id,
db_session=db_session,
)
# finally, delete the cc-pair
delete_connector_credential_pair__no_commit(
db_session=db_session,
connector_id=connector_id,

View File

@@ -41,12 +41,6 @@ def _initializer(
return func(*args, **kwargs)
def _run_in_process(
func: Callable, args: list | tuple, kwargs: dict[str, Any] | None = None
) -> None:
_initializer(func, args, kwargs)
@dataclass
class SimpleJob:
"""Drop in replacement for `dask.distributed.Future`"""
@@ -111,15 +105,13 @@ class SimpleJobClient:
"""NOTE: `pure` arg is needed so this can be a drop in replacement for Dask"""
self._cleanup_completed_jobs()
if len(self.jobs) >= self.n_workers:
logger.debug(
f"No available workers to run job. Currently running '{len(self.jobs)}' jobs, with a limit of '{self.n_workers}'."
)
logger.debug("No available workers to run job")
return None
job_id = self.job_id_counter
self.job_id_counter += 1
process = Process(target=_run_in_process, args=(func, args), daemon=True)
process = Process(target=_initializer(func=func, args=args), daemon=True)
job = SimpleJob(id=job_id, process=process)
process.start()

View File

@@ -6,10 +6,11 @@ from datetime import timezone
from sqlalchemy.orm import Session
from danswer.background.connector_deletion import (
_delete_connector_credential_pair_batch,
)
from danswer.background.indexing.checkpointing import get_time_windows_for_index_attempt
from danswer.background.indexing.tracer import DanswerTracer
from danswer.configs.app_configs import INDEXING_SIZE_WARNING_THRESHOLD
from danswer.configs.app_configs import INDEXING_TRACER_INTERVAL
from danswer.configs.app_configs import DISABLE_DOCUMENT_CLEANUP
from danswer.configs.app_configs import POLL_CONNECTOR_OFFSET
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.interfaces import GenerateDocumentsOutput
@@ -17,13 +18,15 @@ from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.models import IndexAttemptMetadata
from danswer.connectors.models import InputType
from danswer.db.connector import disable_connector
from danswer.db.connector_credential_pair import get_last_successful_attempt_time
from danswer.db.connector_credential_pair import update_connector_credential_pair
from danswer.db.credentials import backend_update_credential_json
from danswer.db.document import get_documents_for_connector_credential_pair
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.index_attempt import mark_attempt_in_progress
from danswer.db.index_attempt import mark_attempt_in_progress__no_commit
from danswer.db.index_attempt import mark_attempt_succeeded
from danswer.db.index_attempt import update_docs_indexed
from danswer.db.models import IndexAttempt
@@ -34,19 +37,16 @@ from danswer.indexing.embedder import DefaultIndexingEmbedder
from danswer.indexing.indexing_pipeline import build_indexing_pipeline
from danswer.utils.logger import IndexAttemptSingleton
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import global_version
logger = setup_logger()
INDEXING_TRACER_NUM_PRINT_ENTRIES = 5
def _get_document_generator(
db_session: Session,
attempt: IndexAttempt,
start_time: datetime,
end_time: datetime,
) -> GenerateDocumentsOutput:
) -> tuple[GenerateDocumentsOutput, bool]:
"""
NOTE: `start_time` and `end_time` are only used for poll connectors
@@ -54,38 +54,31 @@ def _get_document_generator(
are the complete list of existing documents of the connector. If the task
of type LOAD_STATE, the list will be considered complete and otherwise incomplete.
"""
task = attempt.connector_credential_pair.connector.input_type
task = attempt.connector.input_type
try:
runnable_connector = instantiate_connector(
attempt.connector_credential_pair.connector.source,
runnable_connector, new_credential_json = instantiate_connector(
attempt.connector.source,
task,
attempt.connector_credential_pair.connector.connector_specific_config,
attempt.connector_credential_pair.credential,
db_session,
attempt.connector.connector_specific_config,
attempt.credential.credential_json,
)
if new_credential_json is not None:
backend_update_credential_json(
attempt.credential, new_credential_json, db_session
)
except Exception as e:
logger.exception(f"Unable to instantiate connector due to {e}")
# since we failed to even instantiate the connector, we pause the CCPair since
# it will never succeed
update_connector_credential_pair(
db_session=db_session,
connector_id=attempt.connector_credential_pair.connector.id,
credential_id=attempt.connector_credential_pair.credential.id,
status=ConnectorCredentialPairStatus.PAUSED,
)
disable_connector(attempt.connector.id, db_session)
raise e
if task == InputType.LOAD_STATE:
assert isinstance(runnable_connector, LoadConnector)
doc_batch_generator = runnable_connector.load_from_state()
is_listing_complete = True
elif task == InputType.POLL:
assert isinstance(runnable_connector, PollConnector)
if (
attempt.connector_credential_pair.connector_id is None
or attempt.connector_credential_pair.connector_id is None
):
if attempt.connector_id is None or attempt.credential_id is None:
raise ValueError(
f"Polling attempt {attempt.id} is missing connector_id or credential_id, "
f"can't fetch time range."
@@ -95,12 +88,13 @@ def _get_document_generator(
doc_batch_generator = runnable_connector.poll_source(
start=start_time.timestamp(), end=end_time.timestamp()
)
is_listing_complete = False
else:
# Event types cannot be handled by a background type
raise RuntimeError(f"Invalid task type: {task}")
return doc_batch_generator
return doc_batch_generator, is_listing_complete
def _run_indexing(
@@ -126,8 +120,11 @@ def _run_indexing(
primary_index_name=index_name, secondary_index_name=None
)
embedding_model = DefaultIndexingEmbedder.from_db_embedding_model(
db_embedding_model
embedding_model = DefaultIndexingEmbedder(
model_name=db_embedding_model.model_name,
normalize=db_embedding_model.normalize,
query_prefix=db_embedding_model.query_prefix,
passage_prefix=db_embedding_model.passage_prefix,
)
indexing_pipeline = build_indexing_pipeline(
@@ -138,31 +135,19 @@ def _run_indexing(
db_session=db_session,
)
db_cc_pair = index_attempt.connector_credential_pair
db_connector = index_attempt.connector_credential_pair.connector
db_credential = index_attempt.connector_credential_pair.credential
db_connector = index_attempt.connector
db_credential = index_attempt.credential
last_successful_index_time = (
db_connector.indexing_start.timestamp()
if index_attempt.from_beginning and db_connector.indexing_start is not None
else (
0.0
if index_attempt.from_beginning
else get_last_successful_attempt_time(
connector_id=db_connector.id,
credential_id=db_credential.id,
embedding_model=index_attempt.embedding_model,
db_session=db_session,
)
0.0
if index_attempt.from_beginning
else get_last_successful_attempt_time(
connector_id=db_connector.id,
credential_id=db_credential.id,
embedding_model=index_attempt.embedding_model,
db_session=db_session,
)
)
if INDEXING_TRACER_INTERVAL > 0:
logger.info(f"Memory tracer starting: interval={INDEXING_TRACER_INTERVAL}")
tracer = DanswerTracer()
tracer.start()
tracer.snap()
net_doc_change = 0
document_count = 0
chunk_count = 0
@@ -175,24 +160,20 @@ def _run_indexing(
source_type=db_connector.source,
)
):
window_start = max(
window_start - timedelta(minutes=POLL_CONNECTOR_OFFSET),
datetime(1970, 1, 1, tzinfo=timezone.utc),
)
doc_batch_generator, is_listing_complete = _get_document_generator(
db_session=db_session,
attempt=index_attempt,
start_time=window_start,
end_time=window_end,
)
try:
window_start = max(
window_start - timedelta(minutes=POLL_CONNECTOR_OFFSET),
datetime(1970, 1, 1, tzinfo=timezone.utc),
)
doc_batch_generator = _get_document_generator(
db_session=db_session,
attempt=index_attempt,
start_time=window_start,
end_time=window_end,
)
all_connector_doc_ids: set[str] = set()
tracer_counter = 0
if INDEXING_TRACER_INTERVAL > 0:
tracer.snap()
for doc_batch in doc_batch_generator:
# Check if connector is disabled mid run and stop if so unless it's the secondary
# index being built. We want to populate it even for paused connectors
@@ -200,7 +181,7 @@ def _run_indexing(
# contents still need to be initially pulled.
db_session.refresh(db_connector)
if (
db_cc_pair.status == ConnectorCredentialPairStatus.PAUSED
db_connector.disabled
and db_embedding_model.status != IndexModelStatus.FUTURE
):
# let the `except` block handle this
@@ -211,25 +192,12 @@ def _run_indexing(
# Likely due to user manually disabling it or model swap
raise RuntimeError("Index Attempt was canceled")
batch_description = []
for doc in doc_batch:
batch_description.append(doc.to_short_descriptor())
doc_size = 0
for section in doc.sections:
doc_size += len(section.text)
if doc_size > INDEXING_SIZE_WARNING_THRESHOLD:
logger.warning(
f"Document size: doc='{doc.to_short_descriptor()}' "
f"size={doc_size} "
f"threshold={INDEXING_SIZE_WARNING_THRESHOLD}"
)
logger.debug(f"Indexing batch of documents: {batch_description}")
logger.debug(
f"Indexing batch of documents: {[doc.to_short_descriptor() for doc in doc_batch]}"
)
new_docs, total_batch_chunks = indexing_pipeline(
document_batch=doc_batch,
documents=doc_batch,
index_attempt_metadata=IndexAttemptMetadata(
connector_id=db_connector.id,
credential_id=db_credential.id,
@@ -256,16 +224,38 @@ def _run_indexing(
docs_removed_from_index=0,
)
tracer_counter += 1
if (
INDEXING_TRACER_INTERVAL > 0
and tracer_counter % INDEXING_TRACER_INTERVAL == 0
):
logger.info(
f"Running trace comparison for batch {tracer_counter}. interval={INDEXING_TRACER_INTERVAL}"
if is_listing_complete and not DISABLE_DOCUMENT_CLEANUP:
# clean up all documents from the index that have not been returned from the connector
all_indexed_document_ids = {
d.id
for d in get_documents_for_connector_credential_pair(
db_session=db_session,
connector_id=db_connector.id,
credential_id=db_credential.id,
)
tracer.snap()
tracer.log_previous_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
}
doc_ids_to_remove = list(
all_indexed_document_ids - all_connector_doc_ids
)
logger.debug(
f"Cleaning up {len(doc_ids_to_remove)} documents that are not contained in the newest connector state"
)
# delete docs from cc-pair and receive the number of completely deleted docs in return
_delete_connector_credential_pair_batch(
document_ids=doc_ids_to_remove,
connector_id=db_connector.id,
credential_id=db_credential.id,
document_index=document_index,
)
update_docs_indexed(
db_session=db_session,
index_attempt=index_attempt,
total_docs_indexed=document_count,
new_docs_indexed=net_doc_change,
docs_removed_from_index=len(doc_ids_to_remove),
)
run_end_dt = window_end
if is_primary:
@@ -273,6 +263,7 @@ def _run_indexing(
db_session=db_session,
connector_id=db_connector.id,
credential_id=db_credential.id,
attempt_status=IndexingStatus.IN_PROGRESS,
net_docs=net_doc_change,
run_dt=run_end_dt,
)
@@ -289,7 +280,7 @@ def _run_indexing(
# to give better clarity in the UI, as the next run will never happen.
if (
ind == 0
or db_cc_pair.status == ConnectorCredentialPairStatus.PAUSED
or db_connector.disabled
or index_attempt.status != IndexingStatus.IN_PROGRESS
):
mark_attempt_failed(
@@ -301,40 +292,32 @@ def _run_indexing(
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=db_connector.id,
credential_id=db_credential.id,
connector_id=index_attempt.connector.id,
credential_id=index_attempt.credential.id,
attempt_status=IndexingStatus.FAILED,
net_docs=net_doc_change,
)
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
# break => similar to success case. As mentioned above, if the next run fails for the same
# reason it will then be marked as a failure
break
if INDEXING_TRACER_INTERVAL > 0:
logger.info(
f"Running trace comparison between start and end of indexing. {tracer_counter} batches processed."
)
tracer.snap()
tracer.log_first_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
tracer.stop()
logger.info("Memory tracer stopped.")
mark_attempt_succeeded(index_attempt, db_session)
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=db_connector.id,
credential_id=db_credential.id,
attempt_status=IndexingStatus.SUCCESS,
run_dt=run_end_dt,
)
elapsed_time = time.time() - start_time
logger.info(
f"Connector succeeded: docs={document_count} chunks={chunk_count} elapsed={elapsed_time:.2f}s"
f"Indexed or refreshed {document_count} total documents for a total of {chunk_count} indexed chunks"
)
logger.info(
f"Connector successfully finished, elapsed time: {time.time() - start_time} seconds"
)
@@ -349,7 +332,6 @@ def _prepare_index_attempt(db_session: Session, index_attempt_id: int) -> IndexA
db_session=db_session,
index_attempt_id=index_attempt_id,
)
if attempt is None:
raise RuntimeError(f"Unable to find IndexAttempt for ID '{index_attempt_id}'")
@@ -360,19 +342,26 @@ def _prepare_index_attempt(db_session: Session, index_attempt_id: int) -> IndexA
)
# only commit once, to make sure this all happens in a single transaction
mark_attempt_in_progress(attempt, db_session)
mark_attempt_in_progress__no_commit(attempt)
is_primary = attempt.embedding_model.status == IndexModelStatus.PRESENT
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=attempt.connector.id,
credential_id=attempt.credential.id,
attempt_status=IndexingStatus.IN_PROGRESS,
)
else:
db_session.commit()
return attempt
def run_indexing_entrypoint(index_attempt_id: int, is_ee: bool = False) -> None:
def run_indexing_entrypoint(index_attempt_id: int) -> None:
"""Entrypoint for indexing run when using dask distributed.
Wraps the actual logic in a `try` block so that we can catch any exceptions
and mark the attempt as failed."""
try:
if is_ee:
global_version.set_ee()
# set the indexing attempt ID so that all log messages from this process
# will have it added as a prefix
IndexAttemptSingleton.set_index_attempt_id(index_attempt_id)
@@ -383,19 +372,17 @@ def run_indexing_entrypoint(index_attempt_id: int, is_ee: bool = False) -> None:
attempt = _prepare_index_attempt(db_session, index_attempt_id)
logger.info(
f"Indexing starting: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
f"Running indexing attempt for connector: '{attempt.connector.name}', "
f"with config: '{attempt.connector.connector_specific_config}', and "
f"with credentials: '{attempt.credential_id}'"
)
_run_indexing(db_session, attempt)
logger.info(
f"Indexing finished: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
f"Completed indexing attempt for connector: '{attempt.connector.name}', "
f"with config: '{attempt.connector.connector_specific_config}', and "
f"with credentials: '{attempt.credential_id}'"
)
except Exception as e:
logger.exception(f"Indexing job with ID '{index_attempt_id}' failed due to {e}")

View File

@@ -1,77 +0,0 @@
import tracemalloc
from danswer.utils.logger import setup_logger
logger = setup_logger()
DANSWER_TRACEMALLOC_FRAMES = 10
class DanswerTracer:
def __init__(self) -> None:
self.snapshot_first: tracemalloc.Snapshot | None = None
self.snapshot_prev: tracemalloc.Snapshot | None = None
self.snapshot: tracemalloc.Snapshot | None = None
def start(self) -> None:
tracemalloc.start(DANSWER_TRACEMALLOC_FRAMES)
def stop(self) -> None:
tracemalloc.stop()
def snap(self) -> None:
snapshot = tracemalloc.take_snapshot()
# Filter out irrelevant frames (e.g., from tracemalloc itself or importlib)
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, tracemalloc.__file__), # Exclude tracemalloc
tracemalloc.Filter(
False, "<frozen importlib._bootstrap>"
), # Exclude importlib
tracemalloc.Filter(
False, "<frozen importlib._bootstrap_external>"
), # Exclude external importlib
)
)
if not self.snapshot_first:
self.snapshot_first = snapshot
if self.snapshot:
self.snapshot_prev = self.snapshot
self.snapshot = snapshot
def log_snapshot(self, numEntries: int) -> None:
if not self.snapshot:
return
stats = self.snapshot.statistics("traceback")
for s in stats[:numEntries]:
logger.info(f"Tracer snap: {s}")
for line in s.traceback:
logger.info(f"* {line}")
@staticmethod
def log_diff(
snap_current: tracemalloc.Snapshot,
snap_previous: tracemalloc.Snapshot,
numEntries: int,
) -> None:
stats = snap_current.compare_to(snap_previous, "traceback")
for s in stats[:numEntries]:
logger.info(f"Tracer diff: {s}")
for line in s.traceback.format():
logger.info(f"* {line}")
def log_previous_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_prev:
return
DanswerTracer.log_diff(self.snapshot, self.snapshot_prev, numEntries)
def log_first_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_first:
return
DanswerTracer.log_diff(self.snapshot, self.snapshot_first, numEntries)

View File

@@ -22,15 +22,6 @@ def name_document_set_sync_task(document_set_id: int) -> str:
return f"sync_doc_set_{document_set_id}"
def name_cc_prune_task(
connector_id: int | None = None, credential_id: int | None = None
) -> str:
task_name = f"prune_connector_credential_pair_{connector_id}_{credential_id}"
if not connector_id or not credential_id:
task_name = "prune_connector_credential_pair"
return task_name
T = TypeVar("T", bound=Callable)

View File

@@ -16,32 +16,27 @@ from danswer.configs.app_configs import CLEANUP_INDEXING_JOBS_TIMEOUT
from danswer.configs.app_configs import DASK_JOB_CLIENT_ENABLED
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import NUM_INDEXING_WORKERS
from danswer.configs.app_configs import NUM_SECONDARY_INDEXING_WORKERS
from danswer.configs.constants import POSTGRES_INDEXER_APP_NAME
from danswer.db.connector import fetch_connectors
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
from danswer.db.connector_credential_pair import mark_all_in_progress_cc_pairs_failed
from danswer.db.connector_credential_pair import update_connector_credential_pair
from danswer.db.embedding_model import get_current_db_embedding_model
from danswer.db.embedding_model import get_secondary_db_embedding_model
from danswer.db.engine import get_db_current_time
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.engine import init_sqlalchemy_engine
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import create_index_attempt
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import get_inprogress_index_attempts
from danswer.db.index_attempt import get_last_attempt_for_cc_pair
from danswer.db.index_attempt import get_last_attempt
from danswer.db.index_attempt import get_not_started_index_attempts
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import Connector
from danswer.db.models import EmbeddingModel
from danswer.db.models import IndexAttempt
from danswer.db.models import IndexingStatus
from danswer.db.models import IndexModelStatus
from danswer.db.swap_index import check_index_swap
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.search.search_nlp_models import warm_up_encoders
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import global_version
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
from shared_configs.configs import INDEXING_MODEL_SERVER_HOST
from shared_configs.configs import LOG_LEVEL
from shared_configs.configs import MODEL_SERVER_PORT
@@ -58,14 +53,12 @@ _UNEXPECTED_STATE_FAILURE_REASON = (
def _should_create_new_indexing(
cc_pair: ConnectorCredentialPair,
connector: Connector,
last_index: IndexAttempt | None,
model: EmbeddingModel,
secondary_index_building: bool,
db_session: Session,
) -> bool:
connector = cc_pair.connector
# User can still manually create single indexing attempts via the UI for the
# currently in use index
if DISABLE_INDEX_UPDATE_ON_SWAP:
@@ -73,46 +66,28 @@ def _should_create_new_indexing(
return False
# When switching over models, always index at least once
if model.status == IndexModelStatus.FUTURE:
if last_index:
# No new index if the last index attempt succeeded
# Once is enough. The model will never be able to swap otherwise.
if last_index.status == IndexingStatus.SUCCESS:
return False
# No new index if the last index attempt is waiting to start
if last_index.status == IndexingStatus.NOT_STARTED:
return False
# No new index if the last index attempt is running
if last_index.status == IndexingStatus.IN_PROGRESS:
return False
else:
if connector.id == 0: # Ingestion API
return False
if model.status == IndexModelStatus.FUTURE and not last_index:
if connector.id == 0: # Ingestion API
return False
return True
# If the connector is paused or is the ingestion API, don't index
# NOTE: during an embedding model switch over, the following logic
# is bypassed by the above check for a future model
if cc_pair.status == ConnectorCredentialPairStatus.PAUSED or connector.id == 0:
# If the connector is disabled, don't index
# NOTE: during an embedding model switch over, we ignore this
# and index the disabled connectors as well (which is why this if
# statement is below the first condition above)
if connector.disabled:
return False
if not last_index:
return True
if connector.refresh_freq is None:
return False
if not last_index:
return True
# Only one scheduled/ongoing job per connector at a time
# this prevents cases where
# (1) the "latest" index_attempt is scheduled so we show
# that in the UI despite another index_attempt being in-progress
# (2) multiple scheduled index_attempts at a time
if (
last_index.status == IndexingStatus.NOT_STARTED
or last_index.status == IndexingStatus.IN_PROGRESS
):
# Only one scheduled job per connector at a time
# Can schedule another one if the current one is already running however
# Because the currently running one will not be until the latest time
# Note, this last index is for the given embedding model
if last_index.status == IndexingStatus.NOT_STARTED:
return False
current_db_time = get_db_current_time(db_session)
@@ -136,14 +111,25 @@ def _mark_run_failed(
"""Marks the `index_attempt` row as failed + updates the `
connector_credential_pair` to reflect that the run failed"""
logger.warning(
f"Marking in-progress attempt 'connector: {index_attempt.connector_credential_pair.connector_id}, "
f"credential: {index_attempt.connector_credential_pair.credential_id}' as failed due to {failure_reason}"
f"Marking in-progress attempt 'connector: {index_attempt.connector_id}, "
f"credential: {index_attempt.credential_id}' as failed due to {failure_reason}"
)
mark_attempt_failed(
index_attempt=index_attempt,
db_session=db_session,
failure_reason=failure_reason,
)
if (
index_attempt.connector_id is not None
and index_attempt.credential_id is not None
and index_attempt.embedding_model.status == IndexModelStatus.PRESENT
):
update_connector_credential_pair(
db_session=db_session,
connector_id=index_attempt.connector_id,
credential_id=index_attempt.credential_id,
attempt_status=IndexingStatus.FAILED,
)
"""Main funcs"""
@@ -156,7 +142,7 @@ def create_indexing_jobs(existing_jobs: dict[int, Future | SimpleJob]) -> None:
3. There is not already an ongoing indexing attempt for this pair
"""
with Session(get_sqlalchemy_engine()) as db_session:
ongoing: set[tuple[int | None, int]] = set()
ongoing: set[tuple[int | None, int | None, int]] = set()
for attempt_id in existing_jobs:
attempt = get_index_attempt(
db_session=db_session, index_attempt_id=attempt_id
@@ -169,7 +155,8 @@ def create_indexing_jobs(existing_jobs: dict[int, Future | SimpleJob]) -> None:
continue
ongoing.add(
(
attempt.connector_credential_pair_id,
attempt.connector_id,
attempt.credential_id,
attempt.embedding_model_id,
)
)
@@ -179,26 +166,41 @@ def create_indexing_jobs(existing_jobs: dict[int, Future | SimpleJob]) -> None:
if secondary_embedding_model is not None:
embedding_models.append(secondary_embedding_model)
all_connector_credential_pairs = fetch_connector_credential_pairs(db_session)
for cc_pair in all_connector_credential_pairs:
for model in embedding_models:
# Check if there is an ongoing indexing attempt for this connector credential pair
if (cc_pair.id, model.id) in ongoing:
continue
all_connectors = fetch_connectors(db_session)
for connector in all_connectors:
for association in connector.credentials:
for model in embedding_models:
credential = association.credential
last_attempt = get_last_attempt_for_cc_pair(
cc_pair.id, model.id, db_session
)
if not _should_create_new_indexing(
cc_pair=cc_pair,
last_index=last_attempt,
model=model,
secondary_index_building=len(embedding_models) > 1,
db_session=db_session,
):
continue
# Check if there is an ongoing indexing attempt for this connector + credential pair
if (connector.id, credential.id, model.id) in ongoing:
continue
create_index_attempt(cc_pair.id, model.id, db_session)
last_attempt = get_last_attempt(
connector.id, credential.id, model.id, db_session
)
if not _should_create_new_indexing(
connector=connector,
last_index=last_attempt,
model=model,
secondary_index_building=len(embedding_models) > 1,
db_session=db_session,
):
continue
create_index_attempt(
connector.id, credential.id, model.id, db_session
)
# CC-Pair will have the status that it should for the primary index
# Will be re-sync-ed once the indices are swapped
if model.status == IndexModelStatus.PRESENT:
update_connector_credential_pair(
db_session=db_session,
connector_id=connector.id,
credential_id=credential.id,
attempt_status=IndexingStatus.NOT_STARTED,
)
def cleanup_indexing_jobs(
@@ -290,28 +292,24 @@ def kickoff_indexing_jobs(
# Don't include jobs waiting in the Dask queue that just haven't started running
# Also (rarely) don't include for jobs that started but haven't updated the indexing tables yet
with Session(engine) as db_session:
# get_not_started_index_attempts orders its returned results from oldest to newest
# we must process attempts in a FIFO manner to prevent connector starvation
new_indexing_attempts = [
(attempt, attempt.embedding_model)
for attempt in get_not_started_index_attempts(db_session)
if attempt.id not in existing_jobs
]
logger.debug(f"Found {len(new_indexing_attempts)} new indexing task(s).")
logger.info(f"Found {len(new_indexing_attempts)} new indexing tasks.")
if not new_indexing_attempts:
return existing_jobs
indexing_attempt_count = 0
for attempt, embedding_model in new_indexing_attempts:
use_secondary_index = (
embedding_model.status == IndexModelStatus.FUTURE
if embedding_model is not None
else False
)
if attempt.connector_credential_pair.connector is None:
if attempt.connector is None:
logger.warning(
f"Skipping index attempt as Connector has been deleted: {attempt}"
)
@@ -320,7 +318,7 @@ def kickoff_indexing_jobs(
attempt, db_session, failure_reason="Connector is null"
)
continue
if attempt.connector_credential_pair.credential is None:
if attempt.credential is None:
logger.warning(
f"Skipping index attempt as Credential has been deleted: {attempt}"
)
@@ -332,67 +330,39 @@ def kickoff_indexing_jobs(
if use_secondary_index:
run = secondary_client.submit(
run_indexing_entrypoint,
attempt.id,
global_version.get_is_ee_version(),
pure=False,
run_indexing_entrypoint, attempt.id, pure=False
)
else:
run = client.submit(
run_indexing_entrypoint,
attempt.id,
global_version.get_is_ee_version(),
pure=False,
)
run = client.submit(run_indexing_entrypoint, attempt.id, pure=False)
if run:
if indexing_attempt_count == 0:
logger.info(
f"Indexing dispatch starts: pending={len(new_indexing_attempts)}"
)
indexing_attempt_count += 1
secondary_str = " (secondary index)" if use_secondary_index else ""
secondary_str = "(secondary index) " if use_secondary_index else ""
logger.info(
f"Indexing dispatched{secondary_str}: "
f"attempt_id={attempt.id} "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.credential_id}'"
f"Kicked off {secondary_str}"
f"indexing attempt for connector: '{attempt.connector.name}', "
f"with config: '{attempt.connector.connector_specific_config}', and "
f"with credentials: '{attempt.credential_id}'"
)
existing_jobs_copy[attempt.id] = run
if indexing_attempt_count > 0:
logger.info(
f"Indexing dispatch results: "
f"initial_pending={len(new_indexing_attempts)} "
f"started={indexing_attempt_count} "
f"remaining={len(new_indexing_attempts) - indexing_attempt_count}"
)
return existing_jobs_copy
def update_loop(
delay: int = 10,
num_workers: int = NUM_INDEXING_WORKERS,
num_secondary_workers: int = NUM_SECONDARY_INDEXING_WORKERS,
) -> None:
def update_loop(delay: int = 10, num_workers: int = NUM_INDEXING_WORKERS) -> None:
engine = get_sqlalchemy_engine()
with Session(engine) as db_session:
check_index_swap(db_session=db_session)
db_embedding_model = get_current_db_embedding_model(db_session)
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
if db_embedding_model.cloud_provider_id is None:
logger.debug("Running a first inference to warm up embedding model")
warm_up_bi_encoder(
embedding_model=db_embedding_model,
model_server_host=INDEXING_MODEL_SERVER_HOST,
model_server_port=MODEL_SERVER_PORT,
)
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
logger.info("Running a first inference to warm up embedding model")
warm_up_encoders(
model_name=db_embedding_model.model_name,
normalize=db_embedding_model.normalize,
model_server_host=INDEXING_MODEL_SERVER_HOST,
model_server_port=MODEL_SERVER_PORT,
)
client_primary: Client | SimpleJobClient
client_secondary: Client | SimpleJobClient
@@ -407,7 +377,7 @@ def update_loop(
silence_logs=logging.ERROR,
)
cluster_secondary = LocalCluster(
n_workers=num_secondary_workers,
n_workers=num_workers,
threads_per_worker=1,
silence_logs=logging.ERROR,
)
@@ -417,18 +387,23 @@ def update_loop(
client_primary.register_worker_plugin(ResourceLogger())
else:
client_primary = SimpleJobClient(n_workers=num_workers)
client_secondary = SimpleJobClient(n_workers=num_secondary_workers)
client_secondary = SimpleJobClient(n_workers=num_workers)
existing_jobs: dict[int, Future | SimpleJob] = {}
with Session(engine) as db_session:
# Previous version did not always clean up cc-pairs well leaving some connectors undeleteable
# This ensures that bad states get cleaned up
mark_all_in_progress_cc_pairs_failed(db_session)
while True:
start = time.time()
start_time_utc = datetime.utcfromtimestamp(start).strftime("%Y-%m-%d %H:%M:%S")
logger.debug(f"Running update, current UTC time: {start_time_utc}")
logger.info(f"Running update, current UTC time: {start_time_utc}")
if existing_jobs:
# TODO: make this debug level once the "no jobs are being scheduled" issue is resolved
logger.debug(
logger.info(
"Found existing indexing jobs: "
f"{[(attempt_id, job.status) for attempt_id, job in existing_jobs.items()]}"
)
@@ -451,10 +426,7 @@ def update_loop(
def update__main() -> None:
set_is_ee_based_on_env_variable()
init_sqlalchemy_engine(POSTGRES_INDEXER_APP_NAME)
logger.info("Starting indexing service")
logger.info("Starting Indexing Loop")
update_loop()

View File

@@ -1,4 +1,5 @@
import re
from collections.abc import Sequence
from typing import cast
from sqlalchemy.orm import Session
@@ -8,45 +9,53 @@ from danswer.chat.models import LlmDoc
from danswer.db.chat import get_chat_messages_by_session
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.search.models import InferenceChunk
from danswer.search.models import InferenceSection
from danswer.utils.logger import setup_logger
logger = setup_logger()
def llm_doc_from_inference_section(inference_section: InferenceSection) -> LlmDoc:
def llm_doc_from_inference_section(inf_chunk: InferenceSection) -> LlmDoc:
return LlmDoc(
document_id=inference_section.center_chunk.document_id,
document_id=inf_chunk.document_id,
# This one is using the combined content of all the chunks of the section
# In default settings, this is the same as just the content of base chunk
content=inference_section.combined_content,
blurb=inference_section.center_chunk.blurb,
semantic_identifier=inference_section.center_chunk.semantic_identifier,
source_type=inference_section.center_chunk.source_type,
metadata=inference_section.center_chunk.metadata,
updated_at=inference_section.center_chunk.updated_at,
link=inference_section.center_chunk.source_links[0]
if inference_section.center_chunk.source_links
else None,
source_links=inference_section.center_chunk.source_links,
content=inf_chunk.combined_content,
blurb=inf_chunk.blurb,
semantic_identifier=inf_chunk.semantic_identifier,
source_type=inf_chunk.source_type,
metadata=inf_chunk.metadata,
updated_at=inf_chunk.updated_at,
link=inf_chunk.source_links[0] if inf_chunk.source_links else None,
source_links=inf_chunk.source_links,
)
def map_document_id_order(
chunks: Sequence[InferenceChunk | LlmDoc], one_indexed: bool = True
) -> dict[str, int]:
order_mapping = {}
current = 1 if one_indexed else 0
for chunk in chunks:
if chunk.document_id not in order_mapping:
order_mapping[chunk.document_id] = current
current += 1
return order_mapping
def create_chat_chain(
chat_session_id: int,
db_session: Session,
prefetch_tool_calls: bool = True,
parent_id: int | None = None,
) -> tuple[ChatMessage, list[ChatMessage]]:
"""Build the linear chain of messages without including the root message"""
mainline_messages: list[ChatMessage] = []
all_chat_messages = get_chat_messages_by_session(
chat_session_id=chat_session_id,
user_id=None,
db_session=db_session,
skip_permission_check=True,
prefetch_tool_calls=prefetch_tool_calls,
)
id_to_msg = {msg.id: msg for msg in all_chat_messages}
@@ -62,7 +71,7 @@ def create_chat_chain(
current_message: ChatMessage | None = root_message
while current_message is not None:
child_msg = current_message.latest_child_message
if not child_msg or (parent_id and current_message.id == parent_id):
if not child_msg:
break
current_message = id_to_msg.get(child_msg)

View File

@@ -1,24 +0,0 @@
input_prompts:
- id: -5
prompt: "Elaborate"
content: "Elaborate on the above, give me a more in depth explanation."
active: true
is_public: true
- id: -4
prompt: "Reword"
content: "Help me rewrite the following politely and concisely for professional communication:\n"
active: true
is_public: true
- id: -3
prompt: "Email"
content: "Write a professional email for me including a subject line, signature, etc. Template the parts that need editing with [ ]. The email should cover the following points:\n"
active: true
is_public: true
- id: -2
prompt: "Debug"
content: "Provide step-by-step troubleshooting instructions for the following issue:\n"
active: true
is_public: true

View File

@@ -1,20 +1,18 @@
from typing import cast
import yaml
from sqlalchemy.orm import Session
from danswer.configs.chat_configs import INPUT_PROMPT_YAML
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.db.chat import get_prompt_by_name
from danswer.db.chat import upsert_persona
from danswer.db.chat import upsert_prompt
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
from danswer.db.models import Persona
from danswer.db.models import Prompt as PromptDBModel
from danswer.db.models import Tool as ToolDBModel
from danswer.db.persona import get_prompt_by_name
from danswer.db.persona import upsert_persona
from danswer.db.persona import upsert_prompt
from danswer.search.enums import RecencyBiasSetting
@@ -52,7 +50,7 @@ def load_personas_from_yaml(
with Session(get_sqlalchemy_engine()) as db_session:
for persona in all_personas:
doc_set_names = persona["document_sets"]
doc_sets: list[DocumentSetDBModel] = [
doc_sets: list[DocumentSetDBModel] | None = [
get_or_create_document_set_by_name(db_session, name)
for name in doc_set_names
]
@@ -60,51 +58,27 @@ def load_personas_from_yaml(
# Assume if user hasn't set any document sets for the persona, the user may want
# to later attach document sets to the persona manually, therefore, don't overwrite/reset
# the document sets for the persona
doc_set_ids: list[int] | None = None
if doc_sets:
doc_set_ids = [doc_set.id for doc_set in doc_sets]
else:
doc_set_ids = None
if not doc_sets:
doc_sets = None
prompt_ids: list[int] | None = None
prompt_set_names = persona["prompts"]
if prompt_set_names:
prompts: list[PromptDBModel | None] = [
if not prompt_set_names:
prompts: list[PromptDBModel | None] | None = None
else:
prompts = [
get_prompt_by_name(prompt_name, user=None, db_session=db_session)
for prompt_name in prompt_set_names
]
if any([prompt is None for prompt in prompts]):
raise ValueError("Invalid Persona configs, not all prompts exist")
if prompts:
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]
if not prompts:
prompts = None
p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)
llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")
# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"
existing_persona = (
db_session.query(Persona)
.filter(Persona.name == persona["name"])
.first()
)
upsert_persona(
user=None,
# Negative to not conflict with existing personas
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
@@ -114,52 +88,20 @@ def load_personas_from_yaml(
llm_relevance_filter=persona.get("llm_relevance_filter"),
starter_messages=persona.get("starter_messages"),
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
llm_model_provider_override=None,
llm_model_version_override=None,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
tool_ids=tool_ids,
prompts=cast(list[PromptDBModel] | None, prompts),
document_sets=doc_sets,
default_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)
def load_input_prompts_from_yaml(input_prompts_yaml: str = INPUT_PROMPT_YAML) -> None:
with open(input_prompts_yaml, "r") as file:
data = yaml.safe_load(file)
all_input_prompts = data.get("input_prompts", [])
with Session(get_sqlalchemy_engine()) as db_session:
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
def load_chat_yamls(
prompt_yaml: str = PROMPTS_YAML,
personas_yaml: str = PERSONAS_YAML,
input_prompts_yaml: str = INPUT_PROMPT_YAML,
) -> None:
load_prompts_from_yaml(prompt_yaml)
load_personas_from_yaml(personas_yaml)
load_input_prompts_from_yaml(input_prompts_yaml)

View File

@@ -42,32 +42,11 @@ class QADocsResponse(RetrievalDocs):
return initial_dict
# Second chunk of info for streaming QA
class LLMRelevanceFilterResponse(BaseModel):
relevant_chunk_indices: list[int]
class RelevanceAnalysis(BaseModel):
relevant: bool
content: str | None = None
class SectionRelevancePiece(RelevanceAnalysis):
"""LLM analysis mapped to an Inference Section"""
document_id: str
chunk_id: int # ID of the center chunk for a given inference section
class DocumentRelevance(BaseModel):
"""Contains all relevance information for a given search"""
relevance_summaries: dict[str, RelevanceAnalysis]
class Delimiter(BaseModel):
delimiter: bool
class DanswerAnswerPiece(BaseModel):
# A small piece of a complete answer. Used for streaming back answers.
answer_piece: str | None # if None, specifies the end of an Answer
@@ -80,14 +59,8 @@ class CitationInfo(BaseModel):
document_id: str
class MessageResponseIDInfo(BaseModel):
user_message_id: int | None
reserved_assistant_message_id: int
class StreamingError(BaseModel):
error: str
stack_trace: str | None = None
class DanswerQuote(BaseModel):
@@ -133,20 +106,13 @@ class ImageGenerationDisplay(BaseModel):
file_ids: list[str]
class CustomToolResponse(BaseModel):
response: dict
tool_name: str
AnswerQuestionPossibleReturn = (
DanswerAnswerPiece
| DanswerQuotes
| CitationInfo
| DanswerContexts
| ImageGenerationDisplay
| CustomToolResponse
| StreamingError
| Delimiter
)

View File

@@ -5,7 +5,7 @@ personas:
# this is for DanswerBot to use when tagged in a non-configured channel
# Careful setting specific IDs, this won't autoincrement the next ID value for postgres
- id: 0
name: "Knowledge"
name: "Danswer"
description: >
Assistant with access to documents from your Connected Sources.
# Default Prompt objects attached to the persona, see prompts.yaml
@@ -17,7 +17,7 @@ personas:
num_chunks: 10
# Enable/Disable usage of the LLM chunk filter feature whereby each chunk is passed to the LLM to determine
# if the chunk is useful or not towards the latest user query
# This feature can be overriden for all personas via DISABLE_LLM_DOC_RELEVANCE env variable
# This feature can be overriden for all personas via DISABLE_LLM_CHUNK_FILTER env variable
llm_relevance_filter: true
# Enable/Disable usage of the LLM to extract query time filters including source type and time range filters
llm_filter_extraction: true
@@ -37,15 +37,12 @@ personas:
# - "Engineer Onboarding"
# - "Benefits"
document_sets: []
icon_shape: 23013
icon_color: "#6FB1FF"
display_priority: 1
is_visible: true
- id: 1
name: "General"
name: "GPT"
description: >
Assistant with no access to documents. Chat with just the Large Language Model.
Assistant with no access to documents. Chat with just the Language Model.
prompts:
- "OnlyLLM"
num_chunks: 0
@@ -53,10 +50,7 @@ personas:
llm_filter_extraction: true
recency_bias: "auto"
document_sets: []
icon_shape: 50910
icon_color: "#FF6F6F"
display_priority: 0
is_visible: true
- id: 2
name: "Paraphrase"
@@ -69,25 +63,3 @@ personas:
llm_filter_extraction: true
recency_bias: "auto"
document_sets: []
icon_shape: 45519
icon_color: "#6FFF8D"
display_priority: 2
is_visible: false
- id: 3
name: "Art"
description: >
Assistant for generating images based on descriptions.
prompts:
- "ImageGeneration"
num_chunks: 0
llm_relevance_filter: false
llm_filter_extraction: false
recency_bias: "no_decay"
document_sets: []
icon_shape: 234124
icon_color: "#9B59B6"
image_generation: true
display_priority: 3
is_visible: true

View File

@@ -7,21 +7,15 @@ from sqlalchemy.orm import Session
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import Delimiter
from danswer.chat.models import ImageGenerationDisplay
from danswer.chat.models import LlmDoc
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.configs.chat_configs import BING_API_KEY
from danswer.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.constants import MessageType
from danswer.configs.model_configs import GEN_AI_TEMPERATURE
from danswer.db.chat import attach_files_to_chat_message
from danswer.db.chat import create_db_search_doc
from danswer.db.chat import create_new_chat_message
from danswer.db.chat import get_chat_message
@@ -29,16 +23,13 @@ from danswer.db.chat import get_chat_session_by_id
from danswer.db.chat import get_db_search_doc_by_id
from danswer.db.chat import get_doc_query_identifiers_from_model
from danswer.db.chat import get_or_create_root_message
from danswer.db.chat import reserve_message_id
from danswer.db.chat import translate_db_message_to_chat_message_detail
from danswer.db.chat import translate_db_search_doc_to_server_search_doc
from danswer.db.embedding_model import get_current_db_embedding_model
from danswer.db.engine import get_session_context_manager
from danswer.db.llm import fetch_existing_llm_providers
from danswer.db.models import SearchDoc as DbSearchDoc
from danswer.db.models import ToolCall
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.document_index.factory import get_default_document_index
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
@@ -51,47 +42,25 @@ from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.interfaces import LLMConfig
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.search.enums import LLMEvaluationType
from danswer.llm.factory import get_llm_for_persona
from danswer.llm.utils import get_default_llm_tokenizer
from danswer.search.enums import OptionalSearchSetting
from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
from danswer.search.models import InferenceSection
from danswer.search.retrieval.search_runner import inference_sections_from_ids
from danswer.search.retrieval.search_runner import inference_documents_from_ids
from danswer.search.utils import chunks_or_sections_to_search_docs
from danswer.search.utils import dedupe_documents
from danswer.search.utils import drop_llm_indices
from danswer.search.utils import relevant_sections_to_indices
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.server.utils import get_json_line
from danswer.tools.built_in_tools import get_built_in_tool_by_id
from danswer.tools.custom.custom_tool import build_custom_tools_from_openapi_schema
from danswer.tools.custom.custom_tool import CUSTOM_TOOL_RESPONSE_ID
from danswer.tools.custom.custom_tool import CustomToolCallSummary
from danswer.tools.factory import get_tool_cls
from danswer.tools.force import ForceUseTool
from danswer.tools.images.image_generation_tool import IMAGE_GENERATION_RESPONSE_ID
from danswer.tools.images.image_generation_tool import ImageGenerationResponse
from danswer.tools.images.image_generation_tool import ImageGenerationTool
from danswer.tools.internet_search.internet_search_tool import (
INTERNET_SEARCH_RESPONSE_ID,
)
from danswer.tools.internet_search.internet_search_tool import (
internet_search_response_to_search_docs,
)
from danswer.tools.internet_search.internet_search_tool import InternetSearchResponse
from danswer.tools.internet_search.internet_search_tool import InternetSearchTool
from danswer.tools.search.search_tool import SEARCH_RESPONSE_SUMMARY_ID
from danswer.tools.search.search_tool import SearchResponseSummary
from danswer.tools.search.search_tool import SearchTool
from danswer.tools.search.search_tool import SECTION_RELEVANCE_LIST_ID
from danswer.tools.tool import Tool
from danswer.tools.tool import ToolResponse
from danswer.tools.tool_runner import ToolCallMetadata
from danswer.tools.utils import compute_all_tool_tokens
from danswer.tools.utils import explicit_tool_calling_supported
from danswer.utils.logger import setup_logger
@@ -124,21 +93,14 @@ def _handle_search_tool_response_summary(
packet: ToolResponse,
db_session: Session,
selected_search_docs: list[DbSearchDoc] | None,
dedupe_docs: bool = False,
) -> tuple[QADocsResponse, list[DbSearchDoc], list[int] | None]:
) -> tuple[QADocsResponse, list[DbSearchDoc]]:
response_sumary = cast(SearchResponseSummary, packet.response)
dropped_inds = None
if not selected_search_docs:
top_docs = chunks_or_sections_to_search_docs(response_sumary.top_sections)
deduped_docs = top_docs
if dedupe_docs:
deduped_docs, dropped_inds = dedupe_documents(top_docs)
reference_db_search_docs = [
create_db_search_doc(server_search_doc=doc, db_session=db_session)
for doc in deduped_docs
create_db_search_doc(server_search_doc=top_doc, db_session=db_session)
for top_doc in top_docs
]
else:
reference_db_search_docs = selected_search_docs
@@ -158,81 +120,35 @@ def _handle_search_tool_response_summary(
recency_bias_multiplier=response_sumary.recency_bias_multiplier,
),
reference_db_search_docs,
dropped_inds,
)
def _handle_internet_search_tool_response_summary(
packet: ToolResponse,
db_session: Session,
) -> tuple[QADocsResponse, list[DbSearchDoc]]:
internet_search_response = cast(InternetSearchResponse, packet.response)
server_search_docs = internet_search_response_to_search_docs(
internet_search_response
)
reference_db_search_docs = [
create_db_search_doc(server_search_doc=doc, db_session=db_session)
for doc in server_search_docs
]
response_docs = [
translate_db_search_doc_to_server_search_doc(db_search_doc)
for db_search_doc in reference_db_search_docs
]
return (
QADocsResponse(
rephrased_query=internet_search_response.revised_query,
top_documents=response_docs,
predicted_flow=QueryFlow.QUESTION_ANSWER,
predicted_search=SearchType.SEMANTIC,
applied_source_filters=[],
applied_time_cutoff=None,
recency_bias_multiplier=1.0,
),
reference_db_search_docs,
)
def _get_force_search_settings(
new_msg_req: CreateChatMessageRequest, tools: list[Tool]
) -> ForceUseTool:
internet_search_available = any(
isinstance(tool, InternetSearchTool) for tool in tools
)
search_tool_available = any(isinstance(tool, SearchTool) for tool in tools)
if not internet_search_available and not search_tool_available:
# Does not matter much which tool is set here as force is false and neither tool is available
return ForceUseTool(force_use=False, tool_name=SearchTool._NAME)
tool_name = SearchTool._NAME if search_tool_available else InternetSearchTool._NAME
# Currently, the internet search tool does not support query override
args = (
{"query": new_msg_req.query_override}
if new_msg_req.query_override and tool_name == SearchTool._NAME
else None
)
if new_msg_req.file_descriptors:
# If user has uploaded files they're using, don't run any of the search tools
return ForceUseTool(force_use=False, tool_name=tool_name)
should_force_search = any(
[
def _check_should_force_search(
new_msg_req: CreateChatMessageRequest,
) -> ForceUseTool | None:
if (
new_msg_req.query_override
or (
new_msg_req.retrieval_options
and new_msg_req.retrieval_options.run_search
== OptionalSearchSetting.ALWAYS,
new_msg_req.search_doc_ids,
DISABLE_LLM_CHOOSE_SEARCH,
]
)
and new_msg_req.retrieval_options.run_search == OptionalSearchSetting.ALWAYS
)
or new_msg_req.search_doc_ids
):
args = (
{"query": new_msg_req.query_override}
if new_msg_req.query_override
else None
)
# if we are using selected docs, just put something here so the Tool doesn't need
# to build its own args via an LLM call
if new_msg_req.search_doc_ids:
args = {"query": new_msg_req.message}
if should_force_search:
# If we are using selected docs, just put something here so the Tool doesn't need to build its own args via an LLM call
args = {"query": new_msg_req.message} if new_msg_req.search_doc_ids else args
return ForceUseTool(force_use=True, tool_name=tool_name, args=args)
return ForceUseTool(force_use=False, tool_name=tool_name, args=args)
return ForceUseTool(
tool_name=SearchTool.name(),
args=args,
)
return None
ChatPacket = (
@@ -243,9 +159,6 @@ ChatPacket = (
| DanswerAnswerPiece
| CitationInfo
| ImageGenerationDisplay
| CustomToolResponse
| MessageResponseIDInfo
| Delimiter
)
ChatPacketStream = Iterator[ChatPacket]
@@ -261,15 +174,15 @@ def stream_chat_message_objects(
max_document_percentage: float = CHAT_TARGET_CHUNK_PERCENTAGE,
# if specified, uses the last user message and does not create a new user message based
# on the `new_msg_req.message`. Currently, requires a state where the last message is a
# user message (e.g. this can only be used for the chat-seeding flow).
use_existing_user_message: bool = False,
litellm_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
) -> ChatPacketStream:
"""Streams in order:
1. [conditional] Retrieved documents if a search needs to be run
2. [conditional] LLM selected chunk indices if LLM chunk filtering is turned on
3. [always] A set of streamed LLM tokens or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
try:
user_id = user.id if user is not None else None
@@ -285,18 +198,7 @@ def stream_chat_message_objects(
parent_id = new_msg_req.parent_message_id
reference_doc_ids = new_msg_req.search_doc_ids
retrieval_options = new_msg_req.retrieval_options
alternate_assistant_id = new_msg_req.alternate_assistant_id
# use alternate persona if alternative assistant id is passed in
if alternate_assistant_id is not None:
persona = get_persona_by_id(
alternate_assistant_id,
user=user,
db_session=db_session,
is_for_edit=False,
)
else:
persona = chat_session.persona
persona = chat_session.persona
prompt_id = new_msg_req.prompt_id
if prompt_id is None and persona.prompts:
@@ -308,21 +210,13 @@ def stream_chat_message_objects(
)
try:
llm, fast_llm = get_llms_for_persona(
persona=persona,
llm_override=new_msg_req.llm_override or chat_session.llm_override,
additional_headers=litellm_additional_headers,
llm = get_llm_for_persona(
persona, new_msg_req.llm_override or chat_session.llm_override
)
except GenAIDisabledException:
raise RuntimeError("LLM is disabled. Can't use chat flow without LLM.")
llm_provider = llm.config.model_provider
llm_model_name = llm.config.model_name
llm_tokenizer = get_tokenizer(
model_name=llm_model_name,
provider_type=llm_provider,
)
llm_tokenizer = get_default_llm_tokenizer()
llm_tokenizer_encode_func = cast(
Callable[[str], list[int]], llm_tokenizer.encode
)
@@ -346,16 +240,7 @@ def stream_chat_message_objects(
else:
parent_message = root_message
user_message = None
if new_msg_req.regenerate:
final_msg, history_msgs = create_chat_chain(
parent_id=parent_id,
chat_session_id=chat_session_id,
db_session=db_session,
)
elif not use_existing_user_message:
if not use_existing_user_message:
# Create new message at the right place in the tree and update the parent's child pointer
# Don't commit yet until we verify the chat message chain
user_message = create_new_chat_message(
@@ -365,7 +250,10 @@ def stream_chat_message_objects(
message=message_text,
token_count=len(llm_tokenizer_encode_func(message_text)),
message_type=MessageType.USER,
files=None, # Need to attach later for optimization to only load files once in parallel
files=[
{"id": str(file_id), "type": ChatFileType.IMAGE}
for file_id in new_msg_req.file_ids
],
db_session=db_session,
commit=False,
)
@@ -380,8 +268,8 @@ def stream_chat_message_objects(
"Be sure to update the chat pointers before calling this."
)
# NOTE: do not commit user message - it will be committed when the
# assistant message is successfully generated
# Save now to save the latest chat message
db_session.commit()
else:
# re-create linear history of messages
final_msg, history_msgs = create_chat_chain(
@@ -394,36 +282,14 @@ def stream_chat_message_objects(
"when the last message is not a user message."
)
# Disable Query Rephrasing for the first message
# This leads to a better first response since the LLM rephrasing the question
# leads to worst search quality
if not history_msgs:
new_msg_req.query_override = (
new_msg_req.query_override or new_msg_req.message
)
# load all files needed for this chat chain in memory
files = load_all_chat_files(
history_msgs, new_msg_req.file_descriptors, db_session
)
files = load_all_chat_files(history_msgs, new_msg_req.file_ids, db_session)
latest_query_files = [
file
for file in files
if file.file_id in [f["id"] for f in new_msg_req.file_descriptors]
file for file in files if file.file_id in new_msg_req.file_ids
]
if user_message:
attach_files_to_chat_message(
chat_message=user_message,
files=[
new_file.to_file_descriptor() for new_file in latest_query_files
],
db_session=db_session,
commit=False,
)
selected_db_search_docs = None
selected_sections: list[InferenceSection] | None = None
selected_llm_docs: list[LlmDoc] | None = None
if reference_doc_ids:
identifier_tuples = get_doc_query_identifiers_from_model(
search_doc_ids=reference_doc_ids,
@@ -433,8 +299,8 @@ def stream_chat_message_objects(
)
# Generates full documents currently
# May extend to use sections instead in the future
selected_sections = inference_sections_from_ids(
# May extend to include chunk ranges
selected_llm_docs = inference_documents_from_ids(
doc_identifiers=identifier_tuples,
document_index=document_index,
)
@@ -464,157 +330,90 @@ def stream_chat_message_objects(
use_sections=new_msg_req.chunks_above > 0
or new_msg_req.chunks_below > 0,
)
reserved_message_id = reserve_message_id(
db_session=db_session,
chat_session_id=chat_session_id,
parent_message=user_message.id
if user_message is not None
else parent_message.id,
message_type=MessageType.ASSISTANT,
)
yield MessageResponseIDInfo(
user_message_id=user_message.id if user_message else None,
reserved_assistant_message_id=reserved_message_id,
)
alternate_model = (
new_msg_req.llm_override.model_version if new_msg_req.llm_override else None
)
# Cannot determine these without the LLM step or breaking out early
partial_response = partial(
create_new_chat_message,
chat_session_id=chat_session_id,
parent_message=final_msg,
prompt_id=prompt_id,
alternate_model=alternate_model,
# message=,
# rephrased_query=,
# token_count=,
message_type=MessageType.ASSISTANT,
alternate_assistant_id=new_msg_req.alternate_assistant_id,
# error=,
# reference_docs=,
db_session=db_session,
commit=False,
commit=True,
)
if not final_msg.prompt:
raise RuntimeError("No Prompt found")
prompt_config = (
PromptConfig.from_model(
final_msg.prompt,
prompt_override=(
new_msg_req.prompt_override or chat_session.prompt_override
),
)
if not persona
else PromptConfig.from_model(persona.prompts[0])
prompt_config = PromptConfig.from_model(
final_msg.prompt,
prompt_override=(
new_msg_req.prompt_override or chat_session.prompt_override
),
)
# find out what tools to use
search_tool: SearchTool | None = None
tool_dict: dict[int, list[Tool]] = {} # tool_id to tool
for db_tool_model in persona.tools:
# handle in-code tools specially
if db_tool_model.in_code_tool_id:
tool_cls = get_built_in_tool_by_id(db_tool_model.id, db_session)
if tool_cls.__name__ == SearchTool.__name__ and not latest_query_files:
search_tool = SearchTool(
db_session=db_session,
user=user,
persona=persona,
retrieval_options=retrieval_options,
prompt_config=prompt_config,
llm=llm,
fast_llm=fast_llm,
pruning_config=document_pruning_config,
selected_sections=selected_sections,
chunks_above=new_msg_req.chunks_above,
chunks_below=new_msg_req.chunks_below,
full_doc=new_msg_req.full_doc,
evaluation_type=LLMEvaluationType.BASIC
if persona.llm_relevance_filter
else LLMEvaluationType.SKIP,
)
tool_dict[db_tool_model.id] = [search_tool]
elif tool_cls.__name__ == ImageGenerationTool.__name__:
img_generation_llm_config: LLMConfig | None = None
if (
llm
and llm.config.api_key
and llm.config.model_provider == "openai"
):
img_generation_llm_config = llm.config
else:
llm_providers = fetch_existing_llm_providers(db_session)
openai_provider = next(
iter(
[
llm_provider
for llm_provider in llm_providers
if llm_provider.provider == "openai"
]
),
None,
)
if not openai_provider or not openai_provider.api_key:
raise ValueError(
"Image generation tool requires an OpenAI API key"
)
img_generation_llm_config = LLMConfig(
model_provider=openai_provider.provider,
model_name=openai_provider.default_model_name,
temperature=GEN_AI_TEMPERATURE,
api_key=openai_provider.api_key,
api_base=openai_provider.api_base,
api_version=openai_provider.api_version,
)
tool_dict[db_tool_model.id] = [
ImageGenerationTool(
api_key=cast(str, img_generation_llm_config.api_key),
api_base=img_generation_llm_config.api_base,
api_version=img_generation_llm_config.api_version,
additional_headers=litellm_additional_headers,
)
]
elif tool_cls.__name__ == InternetSearchTool.__name__:
bing_api_key = BING_API_KEY
if not bing_api_key:
raise ValueError(
"Internet search tool requires a Bing API key, please contact your Danswer admin to get it added!"
)
tool_dict[db_tool_model.id] = [
InternetSearchTool(api_key=bing_api_key)
]
continue
# handle all custom tools
if db_tool_model.openapi_schema:
tool_dict[db_tool_model.id] = cast(
list[Tool],
build_custom_tools_from_openapi_schema(
db_tool_model.openapi_schema
),
)
tools: list[Tool] = []
for tool_list in tool_dict.values():
tools.extend(tool_list)
persona_tool_classes = [
get_tool_cls(tool, db_session) for tool in persona.tools
]
# factor in tool definition size when pruning
document_pruning_config.tool_num_tokens = compute_all_tool_tokens(
tools, llm_tokenizer
persona_tool_classes
)
document_pruning_config.using_tool_message = explicit_tool_calling_supported(
llm_provider, llm_model_name
llm.config.model_provider, llm.config.model_name
)
tool_has_been_called = False # TODO remove
# NOTE: for now, only support SearchTool and ImageGenerationTool
# in the future, will support arbitrary user-defined tools
search_tool: SearchTool | None = None
tools: list[Tool] = []
for tool_cls in persona_tool_classes:
if tool_cls.__name__ == SearchTool.__name__:
search_tool = SearchTool(
db_session=db_session,
user=user,
persona=persona,
retrieval_options=retrieval_options,
prompt_config=prompt_config,
llm_config=llm.config,
pruning_config=document_pruning_config,
selected_docs=selected_llm_docs,
chunks_above=new_msg_req.chunks_above,
chunks_below=new_msg_req.chunks_below,
full_doc=new_msg_req.full_doc,
)
tools.append(search_tool)
elif tool_cls.__name__ == ImageGenerationTool.__name__:
dalle_key = None
if llm and llm.config.api_key and llm.config.model_provider == "openai":
dalle_key = llm.config.api_key
else:
llm_providers = fetch_existing_llm_providers(db_session)
openai_provider = next(
iter(
[
llm_provider
for llm_provider in llm_providers
if llm_provider.provider == "openai"
]
),
None,
)
if not openai_provider or not openai_provider.api_key:
raise ValueError(
"Image generation tool requires an OpenAI API key"
)
dalle_key = openai_provider.api_key
tools.append(ImageGenerationTool(api_key=dalle_key))
# LLM prompt building, response capturing, etc.
answer = Answer(
is_connected=is_connected,
question=final_msg.message,
latest_query_files=latest_query_files,
answer_style_config=AnswerStyleConfig(
@@ -626,71 +425,34 @@ def stream_chat_message_objects(
prompt_config=prompt_config,
llm=(
llm
or get_main_llm_from_tuple(
get_llms_for_persona(
persona=persona,
llm_override=(
new_msg_req.llm_override or chat_session.llm_override
),
additional_headers=litellm_additional_headers,
)
or get_llm_for_persona(
persona, new_msg_req.llm_override or chat_session.llm_override
)
),
message_history=[
PreviousMessage.from_chat_message(msg, files) for msg in history_msgs
],
tools=tools,
force_use_tool=_get_force_search_settings(new_msg_req, tools),
force_use_tool=_check_should_force_search(new_msg_req),
)
reference_db_search_docs = None
qa_docs_response = None
ai_message_files = None # any files to associate with the AI message e.g. dall-e generated images
dropped_indices = None
tool_result = None
for packet in answer.processed_streamed_output:
if isinstance(packet, ToolResponse):
tool_has_been_called = True
if packet.id == SEARCH_RESPONSE_SUMMARY_ID:
(
qa_docs_response,
reference_db_search_docs,
dropped_indices,
) = _handle_search_tool_response_summary(
packet=packet,
db_session=db_session,
selected_search_docs=selected_db_search_docs,
# Deduping happens at the last step to avoid harming quality by dropping content early on
dedupe_docs=retrieval_options.dedupe_docs
if retrieval_options
else False,
packet, db_session, selected_db_search_docs
)
yield qa_docs_response
elif packet.id == SECTION_RELEVANCE_LIST_ID:
relevance_sections = packet.response
if reference_db_search_docs is not None:
llm_indices = relevant_sections_to_indices(
relevance_sections=relevance_sections,
items=[
translate_db_search_doc_to_server_search_doc(doc)
for doc in reference_db_search_docs
],
)
if dropped_indices:
llm_indices = drop_llm_indices(
llm_indices=llm_indices,
search_docs=reference_db_search_docs,
dropped_indices=dropped_indices,
)
yield LLMRelevanceFilterResponse(
relevant_chunk_indices=llm_indices
)
yield LLMRelevanceFilterResponse(
relevant_chunk_indices=packet.response
)
elif packet.id == IMAGE_GENERATION_RESPONSE_ID:
img_generation_response = cast(
list[ImageGenerationResponse], packet.response
@@ -706,154 +468,50 @@ def stream_chat_message_objects(
yield ImageGenerationDisplay(
file_ids=[str(file_id) for file_id in file_ids]
)
elif packet.id == INTERNET_SEARCH_RESPONSE_ID:
(
qa_docs_response,
reference_db_search_docs,
) = _handle_internet_search_tool_response_summary(
packet=packet,
db_session=db_session,
)
yield qa_docs_response
elif packet.id == CUSTOM_TOOL_RESPONSE_ID:
custom_tool_response = cast(CustomToolCallSummary, packet.response)
yield CustomToolResponse(
response=custom_tool_response.tool_result,
tool_name=custom_tool_response.tool_name,
)
else:
if isinstance(packet, Delimiter):
db_citations = None
if reference_db_search_docs:
db_citations = translate_citations(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id: dict[str, int] = {}
for tool_id, tool_list in tool_dict.items():
for tool in tool_list:
tool_name_to_tool_id[tool.name] = tool_id
if tool_result is None:
tool_call = None
else:
tool_call = ToolCall(
tool_id=tool_name_to_tool_id[tool_result.tool_name],
tool_name=tool_result.tool_name,
tool_arguments=tool_result.tool_args,
tool_result=tool_result.tool_result,
)
gen_ai_response_message = partial_response(
message=answer.llm_answer,
rephrased_query=(
qa_docs_response.rephrased_query
if qa_docs_response
else None
),
reference_docs=reference_db_search_docs,
files=ai_message_files,
token_count=len(llm_tokenizer_encode_func(answer.llm_answer)),
citations=db_citations,
error=None,
tool_call=tool_call,
)
db_session.commit() # actually save user / assistant message
msg_detail_response = translate_db_message_to_chat_message_detail(
gen_ai_response_message
)
yield msg_detail_response
yield Delimiter(delimiter=True)
partial_response = partial(
create_new_chat_message,
chat_session_id=chat_session_id,
parent_message=gen_ai_response_message,
prompt_id=prompt_id,
# message=,
# rephrased_query=,
# token_count=,
message_type=MessageType.ASSISTANT,
alternate_assistant_id=new_msg_req.alternate_assistant_id,
# error=,
# reference_docs=,
db_session=db_session,
commit=False,
)
else:
if isinstance(packet, ToolCallMetadata):
tool_result = packet
yield cast(ChatPacket, packet)
logger.debug("Reached end of stream")
yield cast(ChatPacket, packet)
except Exception as e:
error_msg = str(e)
logger.exception(f"Failed to process chat message: {error_msg}")
logger.exception(e)
client_error_msg = litellm_exception_to_error_msg(e, llm)
if llm.config.api_key and len(llm.config.api_key) > 2:
error_msg = error_msg.replace(llm.config.api_key, "[REDACTED_API_KEY]")
yield StreamingError(error=client_error_msg, stack_trace=error_msg)
db_session.rollback()
# Frontend will erase whatever answer and show this instead
# This will be the issue 99% of the time
yield StreamingError(error="LLM failed to respond, have you set your API key?")
return
if not tool_has_been_called:
try:
db_citations = None
if reference_db_search_docs:
db_citations = translate_citations(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id = {}
for tool_id, tool_list in tool_dict.items():
for tool in tool_list:
tool_name_to_tool_id[tool.name] = tool_id
gen_ai_response_message = partial_response(
reserved_message_id=reserved_message_id,
message=answer.llm_answer,
rephrased_query=(
qa_docs_response.rephrased_query if qa_docs_response else None
),
reference_docs=reference_db_search_docs,
files=ai_message_files,
token_count=len(llm_tokenizer_encode_func(answer.llm_answer)),
citations=db_citations,
error=None,
tool_call=ToolCall(
tool_id=tool_name_to_tool_id[tool_result.tool_name],
tool_name=tool_result.tool_name,
tool_arguments=tool_result.tool_args,
tool_result=tool_result.tool_result,
)
if tool_result
else None,
# Post-LLM answer processing
try:
db_citations = None
if reference_db_search_docs:
db_citations = translate_citations(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
logger.debug("Committing messages")
db_session.commit() # actually save user / assistant message
# Saving Gen AI answer and responding with message info
gen_ai_response_message = partial_response(
message=answer.llm_answer,
rephrased_query=(
qa_docs_response.rephrased_query if qa_docs_response else None
),
reference_docs=reference_db_search_docs,
files=ai_message_files,
token_count=len(llm_tokenizer_encode_func(answer.llm_answer)),
citations=db_citations,
error=None,
)
msg_detail_response = translate_db_message_to_chat_message_detail(
gen_ai_response_message
)
msg_detail_response = translate_db_message_to_chat_message_detail(
gen_ai_response_message
)
yield msg_detail_response
except Exception as e:
error_msg = str(e)
logger.exception(error_msg)
yield msg_detail_response
except Exception as e:
logger.exception(e)
# Frontend will erase whatever answer and show this instead
yield StreamingError(error="Failed to parse LLM output")
# Frontend will erase whatever answer and show this instead
yield StreamingError(error="Failed to parse LLM output")
@log_generator_function_time()
@@ -861,8 +519,6 @@ def stream_chat_message(
new_msg_req: CreateChatMessageRequest,
user: User | None,
use_existing_user_message: bool = False,
litellm_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
) -> Iterator[str]:
with get_session_context_manager() as db_session:
objects = stream_chat_message_objects(
@@ -870,8 +526,6 @@ def stream_chat_message(
user=user,
db_session=db_session,
use_existing_user_message=use_existing_user_message,
litellm_additional_headers=litellm_additional_headers,
is_connected=is_connected,
)
for obj in objects:
yield get_json_line(obj.dict())

View File

@@ -8,7 +8,6 @@ prompts:
# System Prompt (as shown in UI)
system: >
You are a question answering system that is constantly learning and improving.
The current date is DANSWER_DATETIME_REPLACEMENT.
You can process and comprehend vast amounts of text and utilize this knowledge to provide
grounded, accurate, and concise answers to diverse queries.
@@ -22,45 +21,18 @@ prompts:
I have not read or seen any of the documents and do not want to read them.
If there are no relevant documents, refer to the chat history and your internal knowledge.
If there are no relevant documents, refer to the chat history and existing knowledge.
# Inject a statement at the end of system prompt to inform the LLM of the current date/time
# If the DANSWER_DATETIME_REPLACEMENT is set, the date/time is inserted there instead
# Format looks like: "October 16, 2023 14:30"
datetime_aware: true
# Prompts the LLM to include citations in the for [1], [2] etc.
# which get parsed to match the passed in sources
include_citations: true
- name: "ImageGeneration"
description: "Generates images based on user prompts!"
system: >
You are an advanced image generation system capable of creating diverse and detailed images.
You can interpret user prompts and generate high-quality, creative images that match their descriptions.
You always strive to create safe and appropriate content, avoiding any harmful or offensive imagery.
task: >
Generate an image based on the user's description.
Provide a detailed description of the generated image, including key elements, colors, and composition.
If the request is not possible or appropriate, explain why and suggest alternatives.
datetime_aware: true
include_citations: false
- name: "OnlyLLM"
description: "Chat directly with the LLM!"
system: >
You are a helpful AI assistant. The current date is DANSWER_DATETIME_REPLACEMENT
You give concise responses to very simple questions, but provide more thorough responses to
more complex and open-ended questions.
You are happy to help with writing, analysis, question answering, math, coding and all sorts
of other tasks. You use markdown where reasonable and also for coding.
system: "You are a helpful assistant."
task: ""
datetime_aware: true
include_citations: true
@@ -71,11 +43,10 @@ prompts:
system: >
You are a text summarizing assistant that highlights the most important knowledge from the
context provided, prioritizing the information that relates to the user query.
The current date is DANSWER_DATETIME_REPLACEMENT.
You ARE NOT creative and always stick to the provided documents.
If there are no documents, refer to the conversation history.
IMPORTANT: YOU ONLY SUMMARIZE THE IMPORTANT INFORMATION FROM THE PROVIDED DOCUMENTS,
NEVER USE YOUR OWN KNOWLEDGE.
task: >
@@ -90,8 +61,7 @@ prompts:
description: "Recites information from retrieved context! Least creative but most safe!"
system: >
Quote and cite relevant information from provided context based on the user query.
The current date is DANSWER_DATETIME_REPLACEMENT.
You only provide quotes that are EXACT substrings from provided documents!
If there are no documents provided,

View File

@@ -4,7 +4,6 @@ import urllib.parse
from danswer.configs.constants import AuthType
from danswer.configs.constants import DocumentIndexType
from danswer.file_processing.enums import HtmlBasedConnectorTransformLinksStrategy
#####
# App Configs
@@ -46,14 +45,13 @@ DISABLE_AUTH = AUTH_TYPE == AuthType.DISABLED
# Encryption key secret is used to encrypt connector credentials, api keys, and other sensitive
# information. This provides an extra layer of security on top of Postgres access controls
# and is available in Danswer EE
ENCRYPTION_KEY_SECRET = os.environ.get("ENCRYPTION_KEY_SECRET") or ""
ENCRYPTION_KEY_SECRET = os.environ.get("ENCRYPTION_KEY_SECRET")
# Turn off mask if admin users should see full credentials for data connectors.
MASK_CREDENTIAL_PREFIX = (
os.environ.get("MASK_CREDENTIAL_PREFIX", "True").lower() != "false"
)
SESSION_EXPIRE_TIME_SECONDS = int(
os.environ.get("SESSION_EXPIRE_TIME_SECONDS") or 86400 * 7
) # 7 days
@@ -129,17 +127,6 @@ POSTGRES_HOST = os.environ.get("POSTGRES_HOST") or "localhost"
POSTGRES_PORT = os.environ.get("POSTGRES_PORT") or "5432"
POSTGRES_DB = os.environ.get("POSTGRES_DB") or "postgres"
# defaults to False
POSTGRES_POOL_PRE_PING = os.environ.get("POSTGRES_POOL_PRE_PING", "").lower() == "true"
# recycle timeout in seconds
POSTGRES_POOL_RECYCLE_DEFAULT = 60 * 20 # 20 minutes
try:
POSTGRES_POOL_RECYCLE = int(
os.environ.get("POSTGRES_POOL_RECYCLE", POSTGRES_POOL_RECYCLE_DEFAULT)
)
except ValueError:
POSTGRES_POOL_RECYCLE = POSTGRES_POOL_RECYCLE_DEFAULT
#####
# Connector Configs
@@ -173,11 +160,6 @@ WEB_CONNECTOR_OAUTH_CLIENT_SECRET = os.environ.get("WEB_CONNECTOR_OAUTH_CLIENT_S
WEB_CONNECTOR_OAUTH_TOKEN_URL = os.environ.get("WEB_CONNECTOR_OAUTH_TOKEN_URL")
WEB_CONNECTOR_VALIDATE_URLS = os.environ.get("WEB_CONNECTOR_VALIDATE_URLS")
HTML_BASED_CONNECTOR_TRANSFORM_LINKS_STRATEGY = os.environ.get(
"HTML_BASED_CONNECTOR_TRANSFORM_LINKS_STRATEGY",
HtmlBasedConnectorTransformLinksStrategy.STRIP,
)
NOTION_CONNECTOR_ENABLE_RECURSIVE_PAGE_LOOKUP = (
os.environ.get("NOTION_CONNECTOR_ENABLE_RECURSIVE_PAGE_LOOKUP", "").lower()
== "true"
@@ -196,17 +178,6 @@ CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES = (
os.environ.get("CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES", "").lower() == "true"
)
# Save pages labels as Danswer metadata tags
# The reason to skip this would be to reduce the number of calls to Confluence due to rate limit concerns
CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING = (
os.environ.get("CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING", "").lower() == "true"
)
# Attachments exceeding this size will not be retrieved (in bytes)
CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD = int(
os.environ.get("CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD", 50 * 1024 * 1024)
)
JIRA_CONNECTOR_LABELS_TO_SKIP = [
ignored_tag
for ignored_tag in os.environ.get("JIRA_CONNECTOR_LABELS_TO_SKIP", "").split(",")
@@ -217,10 +188,6 @@ GONG_CONNECTOR_START_TIME = os.environ.get("GONG_CONNECTOR_START_TIME")
GITHUB_CONNECTOR_BASE_URL = os.environ.get("GITHUB_CONNECTOR_BASE_URL") or None
GITLAB_CONNECTOR_INCLUDE_CODE_FILES = (
os.environ.get("GITLAB_CONNECTOR_INCLUDE_CODE_FILES", "").lower() == "true"
)
DASK_JOB_CLIENT_ENABLED = (
os.environ.get("DASK_JOB_CLIENT_ENABLED", "").lower() == "true"
)
@@ -228,23 +195,6 @@ EXPERIMENTAL_CHECKPOINTING_ENABLED = (
os.environ.get("EXPERIMENTAL_CHECKPOINTING_ENABLED", "").lower() == "true"
)
PRUNING_DISABLED = -1
DEFAULT_PRUNING_FREQ = 60 * 60 * 24 # Once a day
ALLOW_SIMULTANEOUS_PRUNING = (
os.environ.get("ALLOW_SIMULTANEOUS_PRUNING", "").lower() == "true"
)
# This is the maxiumum rate at which documents are queried for a pruning job. 0 disables the limitation.
MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE = int(
os.environ.get("MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE", 0)
)
# comma delimited list of zendesk article labels to skip indexing for
ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS = os.environ.get(
"ZENDESK_CONNECTOR_SKIP_ARTICLE_LABELS", ""
).split(",")
#####
# Indexing Configs
@@ -265,35 +215,20 @@ DISABLE_INDEX_UPDATE_ON_SWAP = (
# fairly large amount of memory in order to increase substantially, since
# each worker loads the embedding models into memory.
NUM_INDEXING_WORKERS = int(os.environ.get("NUM_INDEXING_WORKERS") or 1)
NUM_SECONDARY_INDEXING_WORKERS = int(
os.environ.get("NUM_SECONDARY_INDEXING_WORKERS") or NUM_INDEXING_WORKERS
)
CHUNK_OVERLAP = 0
# More accurate results at the expense of indexing speed and index size (stores additional 4 MINI_CHUNK vectors)
ENABLE_MULTIPASS_INDEXING = (
os.environ.get("ENABLE_MULTIPASS_INDEXING", "").lower() == "true"
)
ENABLE_MINI_CHUNK = os.environ.get("ENABLE_MINI_CHUNK", "").lower() == "true"
# Finer grained chunking for more detail retention
# Slightly larger since the sentence aware split is a max cutoff so most minichunks will be under MINI_CHUNK_SIZE
# tokens. But we need it to be at least as big as 1/4th chunk size to avoid having a tiny mini-chunk at the end
MINI_CHUNK_SIZE = 150
# This is the number of regular chunks per large chunk
LARGE_CHUNK_RATIO = 4
# Include the document level metadata in each chunk. If the metadata is too long, then it is thrown out
# We don't want the metadata to overwhelm the actual contents of the chunk
SKIP_METADATA_IN_CHUNK = os.environ.get("SKIP_METADATA_IN_CHUNK", "").lower() == "true"
# Timeout to wait for job's last update before killing it, in hours
CLEANUP_INDEXING_JOBS_TIMEOUT = int(os.environ.get("CLEANUP_INDEXING_JOBS_TIMEOUT", 3))
# The indexer will warn in the logs whenver a document exceeds this threshold (in bytes)
INDEXING_SIZE_WARNING_THRESHOLD = int(
os.environ.get("INDEXING_SIZE_WARNING_THRESHOLD", 100 * 1024 * 1024)
# If set to true, then will not clean up documents that "no longer exist" when running Load connectors
DISABLE_DOCUMENT_CLEANUP = (
os.environ.get("DISABLE_DOCUMENT_CLEANUP", "").lower() == "true"
)
# during indexing, will log verbose memory diff stats every x batches and at the end.
# 0 disables this behavior and is the default.
INDEXING_TRACER_INTERVAL = int(os.environ.get("INDEXING_TRACER_INTERVAL", 0))
#####
# Miscellaneous
@@ -307,20 +242,15 @@ JOB_TIMEOUT = 60 * 60 * 6 # 6 hours default
CURRENT_PROCESS_IS_AN_INDEXING_JOB = (
os.environ.get("CURRENT_PROCESS_IS_AN_INDEXING_JOB", "").lower() == "true"
)
# Sets LiteLLM to verbose logging
# Logs every model prompt and output, mostly used for development or exploration purposes
LOG_ALL_MODEL_INTERACTIONS = (
os.environ.get("LOG_ALL_MODEL_INTERACTIONS", "").lower() == "true"
)
# Logs Danswer only model interactions like prompts, responses, messages etc.
LOG_DANSWER_MODEL_INTERACTIONS = (
os.environ.get("LOG_DANSWER_MODEL_INTERACTIONS", "").lower() == "true"
)
# If set to `true` will enable additional logs about Vespa query performance
# (time spent on finding the right docs + time spent fetching summaries from disk)
LOG_VESPA_TIMING_INFORMATION = (
os.environ.get("LOG_VESPA_TIMING_INFORMATION", "").lower() == "true"
)
LOG_ENDPOINT_LATENCY = os.environ.get("LOG_ENDPOINT_LATENCY", "").lower() == "true"
# Anonymous usage telemetry
DISABLE_TELEMETRY = os.environ.get("DISABLE_TELEMETRY", "").lower() == "true"
@@ -333,15 +263,3 @@ TOKEN_BUDGET_GLOBALLY_ENABLED = (
CUSTOM_ANSWER_VALIDITY_CONDITIONS = json.loads(
os.environ.get("CUSTOM_ANSWER_VALIDITY_CONDITIONS", "[]")
)
#####
# Enterprise Edition Configs
#####
# NOTE: this should only be enabled if you have purchased an enterprise license.
# if you're interested in an enterprise license, please reach out to us at
# founders@danswer.ai OR message Chris Weaver or Yuhong Sun in the Danswer
# Slack community (https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ)
ENTERPRISE_EDITION_ENABLED = (
os.environ.get("ENABLE_PAID_ENTERPRISE_EDITION_FEATURES", "").lower() == "true"
)

View File

@@ -3,13 +3,9 @@ import os
PROMPTS_YAML = "./danswer/chat/prompts.yaml"
PERSONAS_YAML = "./danswer/chat/personas.yaml"
INPUT_PROMPT_YAML = "./danswer/chat/input_prompts.yaml"
NUM_RETURNED_HITS = 50
# Used for LLM filtering and reranking
# We want this to be approximately the number of results we want to show on the first page
# It cannot be too large due to cost and latency implications
NUM_POSTPROCESSED_RESULTS = 20
NUM_RERANKED_RESULTS = 15
# May be less depending on model
MAX_CHUNKS_FED_TO_CHAT = float(os.environ.get("MAX_CHUNKS_FED_TO_CHAT") or 10.0)
@@ -29,10 +25,14 @@ BASE_RECENCY_DECAY = 0.5
FAVOR_RECENT_DECAY_MULTIPLIER = 2.0
# Currently this next one is not configurable via env
DISABLE_LLM_QUERY_ANSWERABILITY = QA_PROMPT_OVERRIDE == "weak"
# For the highest matching base size chunk, how many chunks above and below do we pull in by default
# Note this is not in any of the deployment configs yet
CONTEXT_CHUNKS_ABOVE = int(os.environ.get("CONTEXT_CHUNKS_ABOVE") or 0)
CONTEXT_CHUNKS_BELOW = int(os.environ.get("CONTEXT_CHUNKS_BELOW") or 0)
DISABLE_LLM_FILTER_EXTRACTION = (
os.environ.get("DISABLE_LLM_FILTER_EXTRACTION", "").lower() == "true"
)
# Whether the LLM should evaluate all of the document chunks passed in for usefulness
# in relation to the user query
DISABLE_LLM_CHUNK_FILTER = (
os.environ.get("DISABLE_LLM_CHUNK_FILTER", "").lower() == "true"
)
# Whether the LLM should be used to decide if a search would help given the chat history
DISABLE_LLM_CHOOSE_SEARCH = (
os.environ.get("DISABLE_LLM_CHOOSE_SEARCH", "").lower() == "true"
@@ -43,11 +43,17 @@ DISABLE_LLM_QUERY_REPHRASE = (
# 1 edit per 20 characters, currently unused due to fuzzy match being too slow
QUOTE_ALLOWED_ERROR_PERCENT = 0.05
QA_TIMEOUT = int(os.environ.get("QA_TIMEOUT") or "60") # 60 seconds
# Include additional document/chunk metadata in prompt to GenerativeAI
INCLUDE_METADATA = False
# Keyword Search Drop Stopwords
# If user has changed the default model, would most likely be to use a multilingual
# model, the stopwords are NLTK english stopwords so then we would want to not drop the keywords
if os.environ.get("EDIT_KEYWORD_QUERY"):
EDIT_KEYWORD_QUERY = os.environ.get("EDIT_KEYWORD_QUERY", "").lower() == "true"
else:
EDIT_KEYWORD_QUERY = not os.environ.get("DOCUMENT_ENCODER_MODEL")
# Weighting factor between Vector and Keyword Search, 1 for completely vector search
HYBRID_ALPHA = max(0, min(1, float(os.environ.get("HYBRID_ALPHA") or 0.62)))
HYBRID_ALPHA_KEYWORD = max(
0, min(1, float(os.environ.get("HYBRID_ALPHA_KEYWORD") or 0.4))
)
# Weighting factor between Title and Content of documents during search, 1 for completely
# Title based. Default heavily favors Content because Title is also included at the top of
# Content. This is to avoid cases where the Content is very relevant but it may not be clear
@@ -55,35 +61,12 @@ HYBRID_ALPHA_KEYWORD = max(
TITLE_CONTENT_RATIO = max(
0, min(1, float(os.environ.get("TITLE_CONTENT_RATIO") or 0.20))
)
# A list of languages passed to the LLM to rephase the query
# For example "English,French,Spanish", be sure to use the "," separator
MULTILINGUAL_QUERY_EXPANSION = os.environ.get("MULTILINGUAL_QUERY_EXPANSION") or None
LANGUAGE_HINT = "\n" + (
os.environ.get("LANGUAGE_HINT")
or "IMPORTANT: Respond in the same language as my query!"
)
LANGUAGE_CHAT_NAMING_HINT = (
os.environ.get("LANGUAGE_CHAT_NAMING_HINT")
or "The name of the conversation must be in the same language as the user query."
)
# Agentic search takes significantly more tokens and therefore has much higher cost.
# This configuration allows users to get a search-only experience with instant results
# and no involvement from the LLM.
# Additionally, some LLM providers have strict rate limits which may prohibit
# sending many API requests at once (as is done in agentic search).
# Whether the LLM should evaluate all of the document chunks passed in for usefulness
# in relation to the user query
DISABLE_LLM_DOC_RELEVANCE = (
os.environ.get("DISABLE_LLM_DOC_RELEVANCE", "").lower() == "true"
)
# Stops streaming answers back to the UI if this pattern is seen:
STOP_STREAM_PAT = os.environ.get("STOP_STREAM_PAT") or None
# The backend logic for this being True isn't fully supported yet
HARD_DELETE_CHATS = False
# Internet Search
BING_API_KEY = os.environ.get("BING_API_KEY") or None

View File

@@ -1,6 +1,25 @@
from enum import Enum
DOCUMENT_ID = "document_id"
CHUNK_ID = "chunk_id"
BLURB = "blurb"
CONTENT = "content"
SOURCE_TYPE = "source_type"
SOURCE_LINKS = "source_links"
SOURCE_LINK = "link"
SEMANTIC_IDENTIFIER = "semantic_identifier"
TITLE = "title"
SKIP_TITLE_EMBEDDING = "skip_title"
SECTION_CONTINUATION = "section_continuation"
EMBEDDINGS = "embeddings"
TITLE_EMBEDDING = "title_embedding"
ALLOWED_USERS = "allowed_users"
ACCESS_CONTROL_LIST = "access_control_list"
DOCUMENT_SETS = "document_sets"
TIME_FILTER = "time_filter"
METADATA = "metadata"
METADATA_LIST = "metadata_list"
MATCH_HIGHLIGHTS = "match_highlights"
# stored in the `metadata` of a chunk. Used to signify that this chunk should
# not be used for QA. For example, Google Drive file types which can't be parsed
# are still useful as a search result but not for QA.
@@ -8,22 +27,31 @@ IGNORE_FOR_QA = "ignore_for_qa"
# NOTE: deprecated, only used for porting key from old system
GEN_AI_API_KEY_STORAGE_KEY = "genai_api_key"
PUBLIC_DOC_PAT = "PUBLIC"
PUBLIC_DOCUMENT_SET = "__PUBLIC"
QUOTE = "quote"
BOOST = "boost"
DOC_UPDATED_AT = "doc_updated_at" # Indexed as seconds since epoch
PRIMARY_OWNERS = "primary_owners"
SECONDARY_OWNERS = "secondary_owners"
RECENCY_BIAS = "recency_bias"
HIDDEN = "hidden"
SCORE = "score"
ID_SEPARATOR = ":;:"
DEFAULT_BOOST = 0
SESSION_KEY = "session"
# For tool calling
MAXIMUM_TOOL_CALL_SEQUENCE = 5
QUERY_EVENT_ID = "query_event_id"
LLM_CHUNKS = "llm_chunks"
TOKEN_BUDGET = "token_budget"
TOKEN_BUDGET_TIME_PERIOD = "token_budget_time_period"
ENABLE_TOKEN_BUDGET = "enable_token_budget"
TOKEN_BUDGET_SETTINGS = "token_budget_settings"
# For chunking/processing chunks
RETURN_SEPARATOR = "\n\r\n"
TITLE_SEPARATOR = "\n\r\n"
SECTION_SEPARATOR = "\n\n"
# For combining attributes, doesn't have to be unique/perfect to work
INDEX_SEPARATOR = "==="
# For File Connector Metadata override file
DANSWER_METADATA_FILENAME = ".danswer_metadata.json"
# Messages
DISABLED_GEN_AI_MSG = (
@@ -32,37 +60,12 @@ DISABLED_GEN_AI_MSG = (
"You can still use Danswer as a search engine."
)
# Postgres connection constants for application_name
POSTGRES_WEB_APP_NAME = "web"
POSTGRES_INDEXER_APP_NAME = "indexer"
POSTGRES_CELERY_APP_NAME = "celery"
POSTGRES_CELERY_BEAT_APP_NAME = "celery_beat"
POSTGRES_CELERY_WORKER_APP_NAME = "celery_worker"
POSTGRES_PERMISSIONS_APP_NAME = "permissions"
POSTGRES_UNKNOWN_APP_NAME = "unknown"
# API Keys
DANSWER_API_KEY_PREFIX = "API_KEY__"
DANSWER_API_KEY_DUMMY_EMAIL_DOMAIN = "danswerapikey.ai"
UNNAMED_KEY_PLACEHOLDER = "Unnamed"
# Key-Value store keys
KV_REINDEX_KEY = "needs_reindexing"
KV_SEARCH_SETTINGS = "search_settings"
KV_USER_STORE_KEY = "INVITED_USERS"
KV_NO_AUTH_USER_PREFERENCES_KEY = "no_auth_user_preferences"
KV_CRED_KEY = "credential_id_{}"
KV_GMAIL_CRED_KEY = "gmail_app_credential"
KV_GMAIL_SERVICE_ACCOUNT_KEY = "gmail_service_account_key"
KV_GOOGLE_DRIVE_CRED_KEY = "google_drive_app_credential"
KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY = "google_drive_service_account_key"
KV_SLACK_BOT_TOKENS_CONFIG_KEY = "slack_bot_tokens_config_key"
KV_GEN_AI_KEY_CHECK_TIME = "genai_api_key_last_check_time"
KV_SETTINGS_KEY = "danswer_settings"
KV_CUSTOMER_UUID_KEY = "customer_uuid"
KV_ENTERPRISE_SETTINGS_KEY = "danswer_enterprise_settings"
KV_CUSTOM_ANALYTICS_SCRIPT_KEY = "__custom_analytics_script__"
class DocumentSource(str, Enum):
# Special case, document passed in via Danswer APIs without specifying a source type
@@ -90,34 +93,9 @@ class DocumentSource(str, Enum):
GOOGLE_SITES = "google_sites"
ZENDESK = "zendesk"
LOOPIO = "loopio"
DROPBOX = "dropbox"
SHAREPOINT = "sharepoint"
TEAMS = "teams"
SALESFORCE = "salesforce"
DISCOURSE = "discourse"
AXERO = "axero"
CLICKUP = "clickup"
MEDIAWIKI = "mediawiki"
WIKIPEDIA = "wikipedia"
S3 = "s3"
R2 = "r2"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
OCI_STORAGE = "oci_storage"
NOT_APPLICABLE = "not_applicable"
class NotificationType(str, Enum):
REINDEX = "reindex"
class BlobType(str, Enum):
R2 = "r2"
S3 = "s3"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
OCI_STORAGE = "oci_storage"
# Special case, for internet search
NOT_APPLICABLE = "not_applicable"
class DocumentIndexType(str, Enum):
@@ -133,11 +111,6 @@ class AuthType(str, Enum):
SAML = "saml"
class QAFeedbackType(str, Enum):
LIKE = "like" # User likes the answer, used for metrics
DISLIKE = "dislike" # User dislikes the answer, used for metrics
class SearchFeedbackType(str, Enum):
ENDORSE = "endorse" # boost this document for all future queries
REJECT = "reject" # down-boost this document for all future queries
@@ -157,11 +130,3 @@ class TokenRateLimitScope(str, Enum):
USER = "user"
USER_GROUP = "user_group"
GLOBAL = "global"
class FileOrigin(str, Enum):
CHAT_UPLOAD = "chat_upload"
CHAT_IMAGE_GEN = "chat_image_gen"
CONNECTOR = "connector"
GENERATED_REPORT = "generated_report"
OTHER = "other"

View File

@@ -47,6 +47,10 @@ DANSWER_BOT_DISPLAY_ERROR_MSGS = os.environ.get(
DANSWER_BOT_RESPOND_EVERY_CHANNEL = (
os.environ.get("DANSWER_BOT_RESPOND_EVERY_CHANNEL", "").lower() == "true"
)
# Auto detect query options like time cutoff or heavily favor recently updated docs
DISABLE_DANSWER_BOT_FILTER_DETECT = (
os.environ.get("DISABLE_DANSWER_BOT_FILTER_DETECT", "").lower() == "true"
)
# Add a second LLM call post Answer to verify if the Answer is valid
# Throws out answers that don't directly or fully answer the user query
# This is the default for all DanswerBot channels unless the channel is configured individually
@@ -69,7 +73,3 @@ DANSWER_BOT_MAX_WAIT_TIME = int(os.environ.get("DANSWER_BOT_MAX_WAIT_TIME") or 1
DANSWER_BOT_FEEDBACK_REMINDER = int(
os.environ.get("DANSWER_BOT_FEEDBACK_REMINDER") or 0
)
# Set to True to rephrase the Slack users messages
DANSWER_BOT_REPHRASE_MESSAGE = (
os.environ.get("DANSWER_BOT_REPHRASE_MESSAGE", "").lower() == "true"
)

View File

@@ -12,15 +12,13 @@ import os
# The useable models configured as below must be SentenceTransformer compatible
# NOTE: DO NOT CHANGE SET THESE UNLESS YOU KNOW WHAT YOU ARE DOING
# IDEALLY, YOU SHOULD CHANGE EMBEDDING MODELS VIA THE UI
DEFAULT_DOCUMENT_ENCODER_MODEL = "nomic-ai/nomic-embed-text-v1"
DEFAULT_DOCUMENT_ENCODER_MODEL = "intfloat/e5-base-v2"
DOCUMENT_ENCODER_MODEL = (
os.environ.get("DOCUMENT_ENCODER_MODEL") or DEFAULT_DOCUMENT_ENCODER_MODEL
)
# If the below is changed, Vespa deployment must also be changed
DOC_EMBEDDING_DIM = int(os.environ.get("DOC_EMBEDDING_DIM") or 768)
# Model should be chosen with 512 context size, ideally don't change this
# If multipass_indexing is enabled, the max context size would be set to
# DOC_EMBEDDING_CONTEXT_SIZE * LARGE_CHUNK_RATIO
DOC_EMBEDDING_CONTEXT_SIZE = 512
NORMALIZE_EMBEDDINGS = (
os.environ.get("NORMALIZE_EMBEDDINGS") or "true"
@@ -36,15 +34,16 @@ OLD_DEFAULT_MODEL_NORMALIZE_EMBEDDINGS = False
SIM_SCORE_RANGE_LOW = float(os.environ.get("SIM_SCORE_RANGE_LOW") or 0.0)
SIM_SCORE_RANGE_HIGH = float(os.environ.get("SIM_SCORE_RANGE_HIGH") or 1.0)
# Certain models like e5, BGE, etc use a prefix for asymmetric retrievals (query generally shorter than docs)
ASYM_QUERY_PREFIX = os.environ.get("ASYM_QUERY_PREFIX", "search_query: ")
ASYM_PASSAGE_PREFIX = os.environ.get("ASYM_PASSAGE_PREFIX", "search_document: ")
ASYM_QUERY_PREFIX = os.environ.get("ASYM_QUERY_PREFIX", "query: ")
ASYM_PASSAGE_PREFIX = os.environ.get("ASYM_PASSAGE_PREFIX", "passage: ")
# Purely an optimization, memory limitation consideration
BATCH_SIZE_ENCODE_CHUNKS = 8
# don't send over too many chunks at once, as sending too many could cause timeouts
BATCH_SIZE_ENCODE_CHUNKS_FOR_API_EMBEDDING_SERVICES = 512
# For score display purposes, only way is to know the expected ranges
CROSS_ENCODER_RANGE_MAX = 1
CROSS_ENCODER_RANGE_MIN = 0
CROSS_ENCODER_RANGE_MAX = 12
CROSS_ENCODER_RANGE_MIN = -12
# Unused currently, can't be used with the current default encoder model due to its output range
SEARCH_DISTANCE_CUTOFF = 0
#####
@@ -101,7 +100,7 @@ DISABLE_LITELLM_STREAMING = (
).lower() == "true"
# extra headers to pass to LiteLLM
LITELLM_EXTRA_HEADERS: dict[str, str] | None = None
LITELLM_EXTRA_HEADERS = None
_LITELLM_EXTRA_HEADERS_RAW = os.environ.get("LITELLM_EXTRA_HEADERS")
if _LITELLM_EXTRA_HEADERS_RAW:
try:
@@ -114,18 +113,3 @@ if _LITELLM_EXTRA_HEADERS_RAW:
logger.error(
"Failed to parse LITELLM_EXTRA_HEADERS, must be a valid JSON object"
)
# if specified, will pass through request headers to the call to the LLM
LITELLM_PASS_THROUGH_HEADERS: list[str] | None = None
_LITELLM_PASS_THROUGH_HEADERS_RAW = os.environ.get("LITELLM_PASS_THROUGH_HEADERS")
if _LITELLM_PASS_THROUGH_HEADERS_RAW:
try:
LITELLM_PASS_THROUGH_HEADERS = json.loads(_LITELLM_PASS_THROUGH_HEADERS_RAW)
except Exception:
# need to import here to avoid circular imports
from danswer.utils.logger import setup_logger
logger = setup_logger()
logger.error(
"Failed to parse LITELLM_PASS_THROUGH_HEADERS, must be a valid JSON object"
)

View File

@@ -1,277 +0,0 @@
import os
from datetime import datetime
from datetime import timezone
from io import BytesIO
from typing import Any
from typing import Optional
import boto3
from botocore.client import Config
from mypy_boto3_s3 import S3Client
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import BlobType
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.utils.logger import setup_logger
logger = setup_logger()
class BlobStorageConnector(LoadConnector, PollConnector):
def __init__(
self,
bucket_type: str,
bucket_name: str,
prefix: str = "",
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.bucket_type: BlobType = BlobType(bucket_type)
self.bucket_name = bucket_name
self.prefix = prefix if not prefix or prefix.endswith("/") else prefix + "/"
self.batch_size = batch_size
self.s3_client: Optional[S3Client] = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
"""Checks for boto3 credentials based on the bucket type.
(1) R2: Access Key ID, Secret Access Key, Account ID
(2) S3: AWS Access Key ID, AWS Secret Access Key
(3) GOOGLE_CLOUD_STORAGE: Access Key ID, Secret Access Key, Project ID
(4) OCI_STORAGE: Namespace, Region, Access Key ID, Secret Access Key
For each bucket type, the method initializes the appropriate S3 client:
- R2: Uses Cloudflare R2 endpoint with S3v4 signature
- S3: Creates a standard boto3 S3 client
- GOOGLE_CLOUD_STORAGE: Uses Google Cloud Storage endpoint
- OCI_STORAGE: Uses Oracle Cloud Infrastructure Object Storage endpoint
Raises ConnectorMissingCredentialError if required credentials are missing.
Raises ValueError for unsupported bucket types.
"""
logger.info(
f"Loading credentials for {self.bucket_name} or type {self.bucket_type}"
)
if self.bucket_type == BlobType.R2:
if not all(
credentials.get(key)
for key in ["r2_access_key_id", "r2_secret_access_key", "account_id"]
):
raise ConnectorMissingCredentialError("Cloudflare R2")
self.s3_client = boto3.client(
"s3",
endpoint_url=f"https://{credentials['account_id']}.r2.cloudflarestorage.com",
aws_access_key_id=credentials["r2_access_key_id"],
aws_secret_access_key=credentials["r2_secret_access_key"],
region_name="auto",
config=Config(signature_version="s3v4"),
)
elif self.bucket_type == BlobType.S3:
if not all(
credentials.get(key)
for key in ["aws_access_key_id", "aws_secret_access_key"]
):
raise ConnectorMissingCredentialError("Google Cloud Storage")
session = boto3.Session(
aws_access_key_id=credentials["aws_access_key_id"],
aws_secret_access_key=credentials["aws_secret_access_key"],
)
self.s3_client = session.client("s3")
elif self.bucket_type == BlobType.GOOGLE_CLOUD_STORAGE:
if not all(
credentials.get(key) for key in ["access_key_id", "secret_access_key"]
):
raise ConnectorMissingCredentialError("Google Cloud Storage")
self.s3_client = boto3.client(
"s3",
endpoint_url="https://storage.googleapis.com",
aws_access_key_id=credentials["access_key_id"],
aws_secret_access_key=credentials["secret_access_key"],
region_name="auto",
)
elif self.bucket_type == BlobType.OCI_STORAGE:
if not all(
credentials.get(key)
for key in ["namespace", "region", "access_key_id", "secret_access_key"]
):
raise ConnectorMissingCredentialError("Oracle Cloud Infrastructure")
self.s3_client = boto3.client(
"s3",
endpoint_url=f"https://{credentials['namespace']}.compat.objectstorage.{credentials['region']}.oraclecloud.com",
aws_access_key_id=credentials["access_key_id"],
aws_secret_access_key=credentials["secret_access_key"],
region_name=credentials["region"],
)
else:
raise ValueError(f"Unsupported bucket type: {self.bucket_type}")
return None
def _download_object(self, key: str) -> bytes:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blob storage")
object = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return object["Body"].read()
# NOTE: Left in as may be useful for one-off access to documents and sharing across orgs.
# def _get_presigned_url(self, key: str) -> str:
# if self.s3_client is None:
# raise ConnectorMissingCredentialError("Blog storage")
# url = self.s3_client.generate_presigned_url(
# "get_object",
# Params={"Bucket": self.bucket_name, "Key": key},
# ExpiresIn=self.presign_length,
# )
# return url
def _get_blob_link(self, key: str) -> str:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blob storage")
if self.bucket_type == BlobType.R2:
account_id = self.s3_client.meta.endpoint_url.split("//")[1].split(".")[0]
return f"https://{account_id}.r2.cloudflarestorage.com/{self.bucket_name}/{key}"
elif self.bucket_type == BlobType.S3:
region = self.s3_client.meta.region_name
return f"https://{self.bucket_name}.s3.{region}.amazonaws.com/{key}"
elif self.bucket_type == BlobType.GOOGLE_CLOUD_STORAGE:
return f"https://storage.cloud.google.com/{self.bucket_name}/{key}"
elif self.bucket_type == BlobType.OCI_STORAGE:
namespace = self.s3_client.meta.endpoint_url.split("//")[1].split(".")[0]
region = self.s3_client.meta.region_name
return f"https://objectstorage.{region}.oraclecloud.com/n/{namespace}/b/{self.bucket_name}/o/{key}"
else:
raise ValueError(f"Unsupported bucket type: {self.bucket_type}")
def _yield_blob_objects(
self,
start: datetime,
end: datetime,
) -> GenerateDocumentsOutput:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blob storage")
paginator = self.s3_client.get_paginator("list_objects_v2")
pages = paginator.paginate(Bucket=self.bucket_name, Prefix=self.prefix)
batch: list[Document] = []
for page in pages:
if "Contents" not in page:
continue
for obj in page["Contents"]:
if obj["Key"].endswith("/"):
continue
last_modified = obj["LastModified"].replace(tzinfo=timezone.utc)
if not start <= last_modified <= end:
continue
downloaded_file = self._download_object(obj["Key"])
link = self._get_blob_link(obj["Key"])
name = os.path.basename(obj["Key"])
try:
text = extract_file_text(
name,
BytesIO(downloaded_file),
break_on_unprocessable=False,
)
batch.append(
Document(
id=f"{self.bucket_type}:{self.bucket_name}:{obj['Key']}",
sections=[Section(link=link, text=text)],
source=DocumentSource(self.bucket_type.value),
semantic_identifier=name,
doc_updated_at=last_modified,
metadata={},
)
)
if len(batch) == self.batch_size:
yield batch
batch = []
except Exception as e:
logger.exception(
f"Error decoding object {obj['Key']} as UTF-8: {e}"
)
if batch:
yield batch
def load_from_state(self) -> GenerateDocumentsOutput:
logger.info("Loading blob objects")
return self._yield_blob_objects(
start=datetime(1970, 1, 1, tzinfo=timezone.utc),
end=datetime.now(timezone.utc),
)
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blob storage")
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)
for batch in self._yield_blob_objects(start_datetime, end_datetime):
yield batch
return None
if __name__ == "__main__":
credentials_dict = {
"aws_access_key_id": os.environ.get("AWS_ACCESS_KEY_ID"),
"aws_secret_access_key": os.environ.get("AWS_SECRET_ACCESS_KEY"),
}
# Initialize the connector
connector = BlobStorageConnector(
bucket_type=os.environ.get("BUCKET_TYPE") or "s3",
bucket_name=os.environ.get("BUCKET_NAME") or "test",
prefix="",
)
try:
connector.load_credentials(credentials_dict)
document_batch_generator = connector.load_from_state()
for document_batch in document_batch_generator:
print("First batch of documents:")
for doc in document_batch:
print(f"Document ID: {doc.id}")
print(f"Semantic Identifier: {doc.semantic_identifier}")
print(f"Source: {doc.source}")
print(f"Updated At: {doc.doc_updated_at}")
print("Sections:")
for section in doc.sections:
print(f" - Link: {section.link}")
print(f" - Text: {section.text[:100]}...")
print("---")
break
except ConnectorMissingCredentialError as e:
print(f"Error: {e}")
except Exception as e:
print(f"An unexpected error occurred: {e}")

View File

@@ -1,216 +0,0 @@
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import Optional
import requests
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
rate_limit_builder,
)
from danswer.connectors.cross_connector_utils.retry_wrapper import retry_builder
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
CLICKUP_API_BASE_URL = "https://api.clickup.com/api/v2"
class ClickupConnector(LoadConnector, PollConnector):
def __init__(
self,
batch_size: int = INDEX_BATCH_SIZE,
api_token: str | None = None,
team_id: str | None = None,
connector_type: str | None = None,
connector_ids: list[str] | None = None,
retrieve_task_comments: bool = True,
) -> None:
self.batch_size = batch_size
self.api_token = api_token
self.team_id = team_id
self.connector_type = connector_type if connector_type else "workspace"
self.connector_ids = connector_ids
self.retrieve_task_comments = retrieve_task_comments
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.api_token = credentials["clickup_api_token"]
self.team_id = credentials["clickup_team_id"]
return None
@retry_builder()
@rate_limit_builder(max_calls=100, period=60)
def _make_request(self, endpoint: str, params: Optional[dict] = None) -> Any:
if not self.api_token:
raise ConnectorMissingCredentialError("Clickup")
headers = {"Authorization": self.api_token}
response = requests.get(
f"{CLICKUP_API_BASE_URL}/{endpoint}", headers=headers, params=params
)
response.raise_for_status()
return response.json()
def _get_task_comments(self, task_id: str) -> list[Section]:
url_endpoint = f"/task/{task_id}/comment"
response = self._make_request(url_endpoint)
comments = [
Section(
link=f'https://app.clickup.com/t/{task_id}?comment={comment_dict["id"]}',
text=comment_dict["comment_text"],
)
for comment_dict in response["comments"]
]
return comments
def _get_all_tasks_filtered(
self,
start: int | None = None,
end: int | None = None,
) -> GenerateDocumentsOutput:
doc_batch: list[Document] = []
page: int = 0
params = {
"include_markdown_description": "true",
"include_closed": "true",
"page": page,
}
if start is not None:
params["date_updated_gt"] = start
if end is not None:
params["date_updated_lt"] = end
if self.connector_type == "list":
params["list_ids[]"] = self.connector_ids
elif self.connector_type == "folder":
params["project_ids[]"] = self.connector_ids
elif self.connector_type == "space":
params["space_ids[]"] = self.connector_ids
url_endpoint = f"/team/{self.team_id}/task"
while True:
response = self._make_request(url_endpoint, params)
page += 1
params["page"] = page
for task in response["tasks"]:
document = Document(
id=task["id"],
source=DocumentSource.CLICKUP,
semantic_identifier=task["name"],
doc_updated_at=(
datetime.fromtimestamp(
round(float(task["date_updated"]) / 1000, 3)
).replace(tzinfo=timezone.utc)
),
primary_owners=[
BasicExpertInfo(
display_name=task["creator"]["username"],
email=task["creator"]["email"],
)
],
secondary_owners=[
BasicExpertInfo(
display_name=assignee["username"],
email=assignee["email"],
)
for assignee in task["assignees"]
],
title=task["name"],
sections=[
Section(
link=task["url"],
text=(
task["markdown_description"]
if "markdown_description" in task
else task["description"]
),
)
],
metadata={
"id": task["id"],
"status": task["status"]["status"],
"list": task["list"]["name"],
"project": task["project"]["name"],
"folder": task["folder"]["name"],
"space_id": task["space"]["id"],
"tags": [tag["name"] for tag in task["tags"]],
"priority": (
task["priority"]["priority"]
if "priority" in task and task["priority"] is not None
else ""
),
},
)
extra_fields = [
"date_created",
"date_updated",
"date_closed",
"date_done",
"due_date",
]
for extra_field in extra_fields:
if extra_field in task and task[extra_field] is not None:
document.metadata[extra_field] = task[extra_field]
if self.retrieve_task_comments:
document.sections.extend(self._get_task_comments(task["id"]))
doc_batch.append(document)
if len(doc_batch) >= self.batch_size:
yield doc_batch
doc_batch = []
if response.get("last_page") is True or len(response["tasks"]) < 100:
break
if doc_batch:
yield doc_batch
def load_from_state(self) -> GenerateDocumentsOutput:
if self.api_token is None:
raise ConnectorMissingCredentialError("Clickup")
return self._get_all_tasks_filtered(None, None)
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
if self.api_token is None:
raise ConnectorMissingCredentialError("Clickup")
return self._get_all_tasks_filtered(int(start * 1000), int(end * 1000))
if __name__ == "__main__":
import os
clickup_connector = ClickupConnector()
clickup_connector.load_credentials(
{
"clickup_api_token": os.environ["clickup_api_token"],
"clickup_team_id": os.environ["clickup_team_id"],
}
)
latest_docs = clickup_connector.load_from_state()
for doc in latest_docs:
print(doc)

View File

@@ -1,5 +1,3 @@
import io
import os
from collections.abc import Callable
from collections.abc import Collection
from datetime import datetime
@@ -13,10 +11,8 @@ import bs4
from atlassian import Confluence # type:ignore
from requests import HTTPError
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_LABELS_TO_SKIP
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
@@ -31,25 +27,22 @@ from danswer.connectors.models import BasicExpertInfo
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_processing.html_utils import format_document_soup
from danswer.utils.logger import setup_logger
logger = setup_logger()
# Potential Improvements
# 1. Include attachments, etc
# 2. Segment into Sections for more accurate linking, can split by headers but make sure no text/ordering is lost
# 1. If wiki page instead of space, do a search of all the children of the page instead of index all in the space
# 2. Include attachments, etc
# 3. Segment into Sections for more accurate linking, can split by headers but make sure no text/ordering is lost
def _extract_confluence_keys_from_cloud_url(wiki_url: str) -> tuple[str, str, str]:
def _extract_confluence_keys_from_cloud_url(wiki_url: str) -> tuple[str, str]:
"""Sample
URL w/ page: https://danswer.atlassian.net/wiki/spaces/1234abcd/pages/5678efgh/overview
URL w/o page: https://danswer.atlassian.net/wiki/spaces/ASAM/overview
https://danswer.atlassian.net/wiki/spaces/1234abcd/overview
wiki_base is https://danswer.atlassian.net/wiki
space is 1234abcd
page_id is 5678efgh
"""
parsed_url = urlparse(wiki_url)
wiki_base = (
@@ -58,25 +51,18 @@ def _extract_confluence_keys_from_cloud_url(wiki_url: str) -> tuple[str, str, st
+ parsed_url.netloc
+ parsed_url.path.split("/spaces")[0]
)
path_parts = parsed_url.path.split("/")
space = path_parts[3]
page_id = path_parts[5] if len(path_parts) > 5 else ""
return wiki_base, space, page_id
space = parsed_url.path.split("/")[3]
return wiki_base, space
def _extract_confluence_keys_from_datacenter_url(wiki_url: str) -> tuple[str, str, str]:
def _extract_confluence_keys_from_datacenter_url(wiki_url: str) -> tuple[str, str]:
"""Sample
URL w/ page https://danswer.ai/confluence/display/1234abcd/pages/5678efgh/overview
URL w/o page https://danswer.ai/confluence/display/1234abcd/overview
https://danswer.ai/confluence/display/1234abcd/overview
wiki_base is https://danswer.ai/confluence
space is 1234abcd
page_id is 5678efgh
"""
# /display/ is always right before the space and at the end of the base print()
# /display/ is always right before the space and at the end of the base url
DISPLAY = "/display/"
PAGE = "/pages/"
parsed_url = urlparse(wiki_url)
wiki_base = (
@@ -86,13 +72,10 @@ def _extract_confluence_keys_from_datacenter_url(wiki_url: str) -> tuple[str, st
+ parsed_url.path.split(DISPLAY)[0]
)
space = DISPLAY.join(parsed_url.path.split(DISPLAY)[1:]).split("/")[0]
page_id = ""
if (content := parsed_url.path.split(PAGE)) and len(content) > 1:
page_id = content[1]
return wiki_base, space, page_id
return wiki_base, space
def extract_confluence_keys_from_url(wiki_url: str) -> tuple[str, str, str, bool]:
def extract_confluence_keys_from_url(wiki_url: str) -> tuple[str, str, bool]:
is_confluence_cloud = (
".atlassian.net/wiki/spaces/" in wiki_url
or ".jira.com/wiki/spaces/" in wiki_url
@@ -100,19 +83,15 @@ def extract_confluence_keys_from_url(wiki_url: str) -> tuple[str, str, str, bool
try:
if is_confluence_cloud:
wiki_base, space, page_id = _extract_confluence_keys_from_cloud_url(
wiki_url
)
wiki_base, space = _extract_confluence_keys_from_cloud_url(wiki_url)
else:
wiki_base, space, page_id = _extract_confluence_keys_from_datacenter_url(
wiki_url
)
wiki_base, space = _extract_confluence_keys_from_datacenter_url(wiki_url)
except Exception as e:
error_msg = f"Not a valid Confluence Wiki Link, unable to extract wiki base, space, and page id. Exception: {e}"
error_msg = f"Not a valid Confluence Wiki Link, unable to extract wiki base and space names. Exception: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
return wiki_base, space, page_id, is_confluence_cloud
return wiki_base, space, is_confluence_cloud
@lru_cache()
@@ -168,24 +147,6 @@ def parse_html_page(text: str, confluence_client: Confluence) -> str:
return format_document_soup(soup)
def get_used_attachments(text: str, confluence_client: Confluence) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachment in used
Args:
text (str): The page content
confluence_client (Confluence): Confluence client
Returns:
list[str]: List of filename currently in used
"""
files_in_used = []
soup = bs4.BeautifulSoup(text, "html.parser")
for attachment in soup.findAll("ri:attachment"):
files_in_used.append(attachment.attrs["ri:filename"])
return files_in_used
def _comment_dfs(
comments_str: str,
comment_pages: Collection[dict[str, Any]],
@@ -213,137 +174,10 @@ def _comment_dfs(
return comments_str
class RecursiveIndexer:
def __init__(
self,
batch_size: int,
confluence_client: Confluence,
index_recursively: bool,
origin_page_id: str,
) -> None:
self.batch_size = 1
# batch_size
self.confluence_client = confluence_client
self.index_recursively = index_recursively
self.origin_page_id = origin_page_id
self.pages = self.recurse_children_pages(0, self.origin_page_id)
def get_origin_page(self) -> list[dict[str, Any]]:
return [self._fetch_origin_page()]
def get_pages(self, ind: int, size: int) -> list[dict]:
if ind * size > len(self.pages):
return []
return self.pages[ind * size : (ind + 1) * size]
def _fetch_origin_page(
self,
) -> dict[str, Any]:
get_page_by_id = make_confluence_call_handle_rate_limit(
self.confluence_client.get_page_by_id
)
try:
origin_page = get_page_by_id(
self.origin_page_id, expand="body.storage.value,version"
)
return origin_page
except Exception as e:
logger.warning(
f"Appending orgin page with id {self.origin_page_id} failed: {e}"
)
return {}
def recurse_children_pages(
self,
start_ind: int,
page_id: str,
) -> list[dict[str, Any]]:
pages: list[dict[str, Any]] = []
current_level_pages: list[dict[str, Any]] = []
next_level_pages: list[dict[str, Any]] = []
# Initial fetch of first level children
index = start_ind
while batch := self._fetch_single_depth_child_pages(
index, self.batch_size, page_id
):
current_level_pages.extend(batch)
index += len(batch)
pages.extend(current_level_pages)
# Recursively index children and children's children, etc.
while current_level_pages:
for child in current_level_pages:
child_index = 0
while child_batch := self._fetch_single_depth_child_pages(
child_index, self.batch_size, child["id"]
):
next_level_pages.extend(child_batch)
child_index += len(child_batch)
pages.extend(next_level_pages)
current_level_pages = next_level_pages
next_level_pages = []
try:
origin_page = self._fetch_origin_page()
pages.append(origin_page)
except Exception as e:
logger.warning(f"Appending origin page with id {page_id} failed: {e}")
return pages
def _fetch_single_depth_child_pages(
self, start_ind: int, batch_size: int, page_id: str
) -> list[dict[str, Any]]:
child_pages: list[dict[str, Any]] = []
get_page_child_by_type = make_confluence_call_handle_rate_limit(
self.confluence_client.get_page_child_by_type
)
try:
child_page = get_page_child_by_type(
page_id,
type="page",
start=start_ind,
limit=batch_size,
expand="body.storage.value,version",
)
child_pages.extend(child_page)
return child_pages
except Exception:
logger.warning(
f"Batch failed with page {page_id} at offset {start_ind} "
f"with size {batch_size}, processing pages individually..."
)
for i in range(batch_size):
ind = start_ind + i
try:
child_page = get_page_child_by_type(
page_id,
type="page",
start=ind,
limit=1,
expand="body.storage.value,version",
)
child_pages.extend(child_page)
except Exception as e:
logger.warning(f"Page {page_id} at offset {ind} failed: {e}")
raise e
return child_pages
class ConfluenceConnector(LoadConnector, PollConnector):
def __init__(
self,
wiki_page_url: str,
index_recursively: bool = True,
batch_size: int = INDEX_BATCH_SIZE,
continue_on_failure: bool = CONTINUE_ON_CONNECTOR_FAILURE,
# if a page has one of the labels specified in this list, we will just
@@ -354,26 +188,10 @@ class ConfluenceConnector(LoadConnector, PollConnector):
self.batch_size = batch_size
self.continue_on_failure = continue_on_failure
self.labels_to_skip = set(labels_to_skip)
self.recursive_indexer: RecursiveIndexer | None = None
self.index_recursively = index_recursively
(
self.wiki_base,
self.space,
self.page_id,
self.is_cloud,
) = extract_confluence_keys_from_url(wiki_page_url)
self.space_level_scan = False
self.confluence_client: Confluence | None = None
if self.page_id is None or self.page_id == "":
self.space_level_scan = True
logger.info(
f"wiki_base: {self.wiki_base}, space: {self.space}, page_id: {self.page_id},"
+ f" space_level_scan: {self.space_level_scan}, index_recursively: {self.index_recursively}"
self.wiki_base, self.space, self.is_cloud = extract_confluence_keys_from_url(
wiki_page_url
)
self.confluence_client: Confluence | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
username = credentials["confluence_username"]
@@ -392,8 +210,8 @@ class ConfluenceConnector(LoadConnector, PollConnector):
self,
confluence_client: Confluence,
start_ind: int,
) -> list[dict[str, Any]]:
def _fetch_space(start_ind: int, batch_size: int) -> list[dict[str, Any]]:
) -> Collection[dict[str, Any]]:
def _fetch(start_ind: int, batch_size: int) -> Collection[dict[str, Any]]:
get_all_pages_from_space = make_confluence_call_handle_rate_limit(
confluence_client.get_all_pages_from_space
)
@@ -402,11 +220,9 @@ class ConfluenceConnector(LoadConnector, PollConnector):
self.space,
start=start_ind,
limit=batch_size,
status=(
"current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None
),
status="current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None,
expand="body.storage.value,version",
)
except Exception:
@@ -425,11 +241,9 @@ class ConfluenceConnector(LoadConnector, PollConnector):
self.space,
start=start_ind + i,
limit=1,
status=(
"current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None
),
status="current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None,
expand="body.storage.value,version",
)
)
@@ -450,44 +264,17 @@ class ConfluenceConnector(LoadConnector, PollConnector):
return view_pages
def _fetch_page(start_ind: int, batch_size: int) -> list[dict[str, Any]]:
if self.recursive_indexer is None:
self.recursive_indexer = RecursiveIndexer(
origin_page_id=self.page_id,
batch_size=self.batch_size,
confluence_client=self.confluence_client,
index_recursively=self.index_recursively,
)
if self.index_recursively:
return self.recursive_indexer.get_pages(start_ind, batch_size)
else:
return self.recursive_indexer.get_origin_page()
pages: list[dict[str, Any]] = []
try:
pages = (
_fetch_space(start_ind, self.batch_size)
if self.space_level_scan
else _fetch_page(start_ind, self.batch_size)
)
return pages
return _fetch(start_ind, self.batch_size)
except Exception as e:
if not self.continue_on_failure:
raise e
# error checking phase, only reachable if `self.continue_on_failure=True`
pages: list[dict[str, Any]] = []
for i in range(self.batch_size):
try:
pages = (
_fetch_space(start_ind, self.batch_size)
if self.space_level_scan
else _fetch_page(start_ind, self.batch_size)
)
return pages
pages.extend(_fetch(start_ind + i, 1))
except Exception:
logger.exception(
"Ran into exception when fetching pages from Confluence"
@@ -499,7 +286,6 @@ class ConfluenceConnector(LoadConnector, PollConnector):
get_page_child_by_type = make_confluence_call_handle_rate_limit(
confluence_client.get_page_child_by_type
)
try:
comment_pages = cast(
Collection[dict[str, Any]],
@@ -535,61 +321,6 @@ class ConfluenceConnector(LoadConnector, PollConnector):
logger.exception("Ran into exception when fetching labels from Confluence")
return []
def _fetch_attachments(
self, confluence_client: Confluence, page_id: str, files_in_used: list[str]
) -> str:
get_attachments_from_content = make_confluence_call_handle_rate_limit(
confluence_client.get_attachments_from_content
)
files_attachment_content: list = []
try:
attachments_container = get_attachments_from_content(
page_id, start=0, limit=500
)
for attachment in attachments_container["results"]:
if attachment["metadata"]["mediaType"] in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
continue
if attachment["title"] not in files_in_used:
continue
download_link = confluence_client.url + attachment["_links"]["download"]
attachment_size = attachment["extensions"]["fileSize"]
if attachment_size > CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD:
logger.warning(
f"Skipping {download_link} due to size. "
f"size={attachment_size} "
f"threshold={CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD}"
)
continue
download_link = confluence_client.url + attachment["_links"]["download"]
response = confluence_client._session.get(download_link)
if response.status_code == 200:
extract = extract_file_text(
attachment["title"], io.BytesIO(response.content), False
)
files_attachment_content.append(extract)
except Exception as e:
if not self.continue_on_failure:
raise e
logger.exception(
f"Ran into exception when fetching attachments from Confluence: {e}"
)
return "\n".join(files_attachment_content)
def _get_doc_batch(
self, start_ind: int, time_filter: Callable[[datetime], bool] | None = None
) -> tuple[list[Document], int]:
@@ -597,8 +328,8 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if self.confluence_client is None:
raise ConnectorMissingCredentialError("Confluence")
batch = self._fetch_pages(self.confluence_client, start_ind)
batch = self._fetch_pages(self.confluence_client, start_ind)
for page in batch:
last_modified_str = page["version"]["when"]
author = cast(str | None, page["version"].get("by", {}).get("email"))
@@ -614,18 +345,15 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if time_filter is None or time_filter(last_modified):
page_id = page["id"]
if self.labels_to_skip or not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING:
page_labels = self._fetch_labels(self.confluence_client, page_id)
# check disallowed labels
if self.labels_to_skip:
page_labels = self._fetch_labels(self.confluence_client, page_id)
label_intersection = self.labels_to_skip.intersection(page_labels)
if label_intersection:
logger.info(
f"Page with ID '{page_id}' has a label which has been "
f"designated as disallowed: {label_intersection}. Skipping."
)
continue
page_html = (
@@ -638,19 +366,8 @@ class ConfluenceConnector(LoadConnector, PollConnector):
logger.debug("Page is empty, skipping: %s", page_url)
continue
page_text = parse_html_page(page_html, self.confluence_client)
files_in_used = get_used_attachments(page_html, self.confluence_client)
attachment_text = self._fetch_attachments(
self.confluence_client, page_id, files_in_used
)
page_text += attachment_text
comments_text = self._fetch_comments(self.confluence_client, page_id)
page_text += comments_text
doc_metadata: dict[str, str | list[str]] = {
"Wiki Space Name": self.space
}
if not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING and page_labels:
doc_metadata["labels"] = page_labels
doc_batch.append(
Document(
@@ -659,10 +376,12 @@ class ConfluenceConnector(LoadConnector, PollConnector):
source=DocumentSource.CONFLUENCE,
semantic_identifier=page["title"],
doc_updated_at=last_modified,
primary_owners=(
[BasicExpertInfo(email=author)] if author else None
),
metadata=doc_metadata,
primary_owners=[BasicExpertInfo(email=author)]
if author
else None,
metadata={
"Wiki Space Name": self.space,
},
)
)
return doc_batch, len(batch)
@@ -704,6 +423,8 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if __name__ == "__main__":
import os
connector = ConfluenceConnector(os.environ["CONFLUENCE_TEST_SPACE_URL"])
connector.load_credentials(
{

View File

@@ -1,14 +1,10 @@
import time
from collections.abc import Callable
from typing import Any
from typing import cast
from typing import TypeVar
from requests import HTTPError
from danswer.utils.logger import setup_logger
logger = setup_logger()
from retry import retry
F = TypeVar("F", bound=Callable[..., Any])
@@ -22,38 +18,23 @@ class ConfluenceRateLimitError(Exception):
def make_confluence_call_handle_rate_limit(confluence_call: F) -> F:
@retry(
exceptions=ConfluenceRateLimitError,
tries=10,
delay=1,
max_delay=600, # 10 minutes
backoff=2,
jitter=1,
)
def wrapped_call(*args: list[Any], **kwargs: Any) -> Any:
starting_delay = 5
backoff = 2
max_delay = 600
for attempt in range(10):
try:
return confluence_call(*args, **kwargs)
except HTTPError as e:
if (
e.response.status_code == 429
or RATE_LIMIT_MESSAGE_LOWERCASE in e.response.text.lower()
):
retry_after = None
try:
retry_after = int(e.response.headers.get("Retry-After"))
except (ValueError, TypeError):
pass
if retry_after:
logger.warning(
f"Rate limit hit. Retrying after {retry_after} seconds..."
)
time.sleep(retry_after)
else:
logger.warning(
"Rate limit hit. Retrying with exponential backoff..."
)
delay = min(starting_delay * (backoff**attempt), max_delay)
time.sleep(delay)
else:
# re-raise, let caller handle
raise
try:
return confluence_call(*args, **kwargs)
except HTTPError as e:
if (
e.response.status_code == 429
or RATE_LIMIT_MESSAGE_LOWERCASE in e.response.text.lower()
):
raise ConfluenceRateLimitError()
raise
return cast(F, wrapped_call)

View File

@@ -6,7 +6,6 @@ from typing import TypeVar
from dateutil.parser import parse
from danswer.configs.constants import IGNORE_FOR_QA
from danswer.connectors.models import BasicExpertInfo
from danswer.utils.text_processing import is_valid_email
@@ -58,7 +57,3 @@ def process_in_batches(
) -> Iterator[list[U]]:
for i in range(0, len(objects), batch_size):
yield [process_function(obj) for obj in objects[i : i + batch_size]]
def get_metadata_keys_to_ignore() -> list[str]:
return [IGNORE_FOR_QA]

View File

@@ -56,16 +56,6 @@ def extract_text_from_content(content: dict) -> str:
return " ".join(texts)
def best_effort_get_field_from_issue(jira_issue: Issue, field: str) -> Any:
if hasattr(jira_issue.fields, field):
return getattr(jira_issue.fields, field)
try:
return jira_issue.raw["fields"][field]
except Exception:
return None
def _get_comment_strs(
jira: Issue, comment_email_blacklist: tuple[str, ...] = ()
) -> list[str]:
@@ -127,10 +117,8 @@ def fetch_jira_issues_batch(
continue
comments = _get_comment_strs(jira, comment_email_blacklist)
semantic_rep = (
f"{jira.fields.description}\n"
if jira.fields.description
else "" + "\n".join([f"Comment: {comment}" for comment in comments])
semantic_rep = f"{jira.fields.description}\n" + "\n".join(
[f"Comment: {comment}" for comment in comments]
)
page_url = f"{jira_client.client_info()}/browse/{jira.key}"
@@ -159,18 +147,14 @@ def fetch_jira_issues_batch(
pass
metadata_dict = {}
priority = best_effort_get_field_from_issue(jira, "priority")
if priority:
metadata_dict["priority"] = priority.name
status = best_effort_get_field_from_issue(jira, "status")
if status:
metadata_dict["status"] = status.name
resolution = best_effort_get_field_from_issue(jira, "resolution")
if resolution:
metadata_dict["resolution"] = resolution.name
labels = best_effort_get_field_from_issue(jira, "labels")
if labels:
metadata_dict["label"] = labels
if jira.fields.priority:
metadata_dict["priority"] = jira.fields.priority.name
if jira.fields.status:
metadata_dict["status"] = jira.fields.status.name
if jira.fields.resolution:
metadata_dict["resolution"] = jira.fields.resolution.name
if jira.fields.labels:
metadata_dict["label"] = jira.fields.labels
doc_batch.append(
Document(

View File

@@ -11,9 +11,6 @@ from requests import Response
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
rate_limit_builder,
)
from danswer.connectors.cross_connector_utils.retry_wrapper import retry_builder
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import PollConnector
@@ -61,36 +58,63 @@ class DiscourseConnector(PollConnector):
self.category_id_map: dict[int, str] = {}
self.batch_size = batch_size
self.permissions: DiscoursePerms | None = None
self.active_categories: set | None = None
@rate_limit_builder(max_calls=50, period=60)
def _make_request(self, endpoint: str, params: dict | None = None) -> Response:
if not self.permissions:
raise ConnectorMissingCredentialError("Discourse")
return discourse_request(endpoint, self.permissions, params)
self.permissions: DiscoursePerms | None = None
def _get_categories_map(
self,
) -> None:
assert self.permissions is not None
categories_endpoint = urllib.parse.urljoin(self.base_url, "categories.json")
response = self._make_request(
response = discourse_request(
endpoint=categories_endpoint,
perms=self.permissions,
params={"include_subcategories": True},
)
categories = response.json()["category_list"]["categories"]
self.category_id_map = {
cat["id"]: cat["name"]
for cat in categories
if not self.categories or cat["name"].lower() in self.categories
category["id"]: category["name"]
for category in categories
if not self.categories or category["name"].lower() in self.categories
}
self.active_categories = set(self.category_id_map)
def _get_latest_topics(
self, start: datetime | None, end: datetime | None
) -> list[int]:
assert self.permissions is not None
topic_ids = []
valid_categories = set(self.category_id_map.keys())
latest_endpoint = urllib.parse.urljoin(self.base_url, "latest.json")
response = discourse_request(endpoint=latest_endpoint, perms=self.permissions)
topics = response.json()["topic_list"]["topics"]
for topic in topics:
last_time = topic.get("last_posted_at")
if not last_time:
continue
last_time_dt = time_str_to_utc(last_time)
if start and start > last_time_dt:
continue
if end and end < last_time_dt:
continue
if valid_categories and topic.get("category_id") not in valid_categories:
continue
topic_ids.append(topic["id"])
return topic_ids
def _get_doc_from_topic(self, topic_id: int) -> Document:
assert self.permissions is not None
topic_endpoint = urllib.parse.urljoin(self.base_url, f"t/{topic_id}.json")
response = self._make_request(endpoint=topic_endpoint)
response = discourse_request(
endpoint=topic_endpoint,
perms=self.permissions,
)
topic = response.json()
topic_url = urllib.parse.urljoin(self.base_url, f"t/{topic['slug']}")
@@ -114,16 +138,10 @@ class DiscourseConnector(PollConnector):
sections.append(
Section(link=topic_url, text=parse_html_page_basic(post["cooked"]))
)
category_name = self.category_id_map.get(topic["category_id"])
metadata: dict[str, str | list[str]] = (
{
"category": category_name,
}
if category_name
else {}
)
metadata: dict[str, str | list[str]] = {
"category": self.category_id_map[topic["category_id"]],
}
if topic.get("tags"):
metadata["tags"] = topic["tags"]
@@ -139,78 +157,26 @@ class DiscourseConnector(PollConnector):
)
return doc
def _get_latest_topics(
self, start: datetime | None, end: datetime | None, page: int
) -> list[int]:
assert self.permissions is not None
topic_ids = []
if not self.categories:
latest_endpoint = urllib.parse.urljoin(
self.base_url, f"latest.json?page={page}"
)
response = self._make_request(endpoint=latest_endpoint)
topics = response.json()["topic_list"]["topics"]
else:
topics = []
empty_categories = []
for category_id in self.category_id_map.keys():
category_endpoint = urllib.parse.urljoin(
self.base_url, f"c/{category_id}.json?page={page}&sys=latest"
)
response = self._make_request(endpoint=category_endpoint)
new_topics = response.json()["topic_list"]["topics"]
if len(new_topics) == 0:
empty_categories.append(category_id)
topics.extend(new_topics)
for empty_category in empty_categories:
self.category_id_map.pop(empty_category)
for topic in topics:
last_time = topic.get("last_posted_at")
if not last_time:
continue
last_time_dt = time_str_to_utc(last_time)
if (start and start > last_time_dt) or (end and end < last_time_dt):
continue
topic_ids.append(topic["id"])
if len(topic_ids) >= self.batch_size:
break
return topic_ids
def _yield_discourse_documents(
self,
start: datetime,
end: datetime,
self, topic_ids: list[int]
) -> GenerateDocumentsOutput:
page = 1
while topic_ids := self._get_latest_topics(start, end, page):
doc_batch: list[Document] = []
for topic_id in topic_ids:
doc_batch.append(self._get_doc_from_topic(topic_id))
if len(doc_batch) >= self.batch_size:
yield doc_batch
doc_batch = []
doc_batch: list[Document] = []
for topic_id in topic_ids:
doc_batch.append(self._get_doc_from_topic(topic_id))
if doc_batch:
if len(doc_batch) >= self.batch_size:
yield doc_batch
page += 1
doc_batch = []
def load_credentials(
self,
credentials: dict[str, Any],
) -> dict[str, Any] | None:
if doc_batch:
yield doc_batch
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.permissions = DiscoursePerms(
api_key=credentials["discourse_api_key"],
api_username=credentials["discourse_api_username"],
)
return None
def poll_source(
@@ -218,13 +184,16 @@ class DiscourseConnector(PollConnector):
) -> GenerateDocumentsOutput:
if self.permissions is None:
raise ConnectorMissingCredentialError("Discourse")
start_datetime = datetime.utcfromtimestamp(start).replace(tzinfo=timezone.utc)
end_datetime = datetime.utcfromtimestamp(end).replace(tzinfo=timezone.utc)
self._get_categories_map()
yield from self._yield_discourse_documents(start_datetime, end_datetime)
latest_topic_ids = self._get_latest_topics(
start=start_datetime, end=end_datetime
)
return self._yield_discourse_documents(latest_topic_ids)
if __name__ == "__main__":
@@ -240,5 +209,7 @@ if __name__ == "__main__":
current = time.time()
one_year_ago = current - 24 * 60 * 60 * 360
latest_docs = connector.poll_source(one_year_ago, current)
print(next(latest_docs))

View File

@@ -1,155 +0,0 @@
from datetime import timezone
from io import BytesIO
from typing import Any
from dropbox import Dropbox # type: ignore
from dropbox.exceptions import ApiError # type:ignore
from dropbox.files import FileMetadata # type:ignore
from dropbox.files import FolderMetadata # type:ignore
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.utils.logger import setup_logger
logger = setup_logger()
class DropboxConnector(LoadConnector, PollConnector):
def __init__(self, batch_size: int = INDEX_BATCH_SIZE) -> None:
self.batch_size = batch_size
self.dropbox_client: Dropbox | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.dropbox_client = Dropbox(credentials["dropbox_access_token"])
return None
def _download_file(self, path: str) -> bytes:
"""Download a single file from Dropbox."""
if self.dropbox_client is None:
raise ConnectorMissingCredentialError("Dropbox")
_, resp = self.dropbox_client.files_download(path)
return resp.content
def _get_shared_link(self, path: str) -> str:
"""Create a shared link for a file in Dropbox."""
if self.dropbox_client is None:
raise ConnectorMissingCredentialError("Dropbox")
try:
# Check if a shared link already exists
shared_links = self.dropbox_client.sharing_list_shared_links(path=path)
if shared_links.links:
return shared_links.links[0].url
link_metadata = (
self.dropbox_client.sharing_create_shared_link_with_settings(path)
)
return link_metadata.url
except ApiError as err:
logger.exception(f"Failed to create a shared link for {path}: {err}")
return ""
def _yield_files_recursive(
self,
path: str,
start: SecondsSinceUnixEpoch | None,
end: SecondsSinceUnixEpoch | None,
) -> GenerateDocumentsOutput:
"""Yield files in batches from a specified Dropbox folder, including subfolders."""
if self.dropbox_client is None:
raise ConnectorMissingCredentialError("Dropbox")
result = self.dropbox_client.files_list_folder(
path,
limit=self.batch_size,
recursive=False,
include_non_downloadable_files=False,
)
while True:
batch: list[Document] = []
for entry in result.entries:
if isinstance(entry, FileMetadata):
modified_time = entry.client_modified
if modified_time.tzinfo is None:
# If no timezone info, assume it is UTC
modified_time = modified_time.replace(tzinfo=timezone.utc)
else:
# If not in UTC, translate it
modified_time = modified_time.astimezone(timezone.utc)
time_as_seconds = int(modified_time.timestamp())
if start and time_as_seconds < start:
continue
if end and time_as_seconds > end:
continue
downloaded_file = self._download_file(entry.path_display)
link = self._get_shared_link(entry.path_display)
try:
text = extract_file_text(
entry.name,
BytesIO(downloaded_file),
break_on_unprocessable=False,
)
batch.append(
Document(
id=f"doc:{entry.id}",
sections=[Section(link=link, text=text)],
source=DocumentSource.DROPBOX,
semantic_identifier=entry.name,
doc_updated_at=modified_time,
metadata={"type": "article"},
)
)
except Exception as e:
logger.exception(
f"Error decoding file {entry.path_display} as utf-8 error occurred: {e}"
)
elif isinstance(entry, FolderMetadata):
yield from self._yield_files_recursive(entry.path_lower, start, end)
if batch:
yield batch
if not result.has_more:
break
result = self.dropbox_client.files_list_folder_continue(result.cursor)
def load_from_state(self) -> GenerateDocumentsOutput:
return self.poll_source(None, None)
def poll_source(
self, start: SecondsSinceUnixEpoch | None, end: SecondsSinceUnixEpoch | None
) -> GenerateDocumentsOutput:
if self.dropbox_client is None:
raise ConnectorMissingCredentialError("Dropbox")
for batch in self._yield_files_recursive("", start, end):
yield batch
return None
if __name__ == "__main__":
import os
connector = DropboxConnector()
connector.load_credentials(
{
"dropbox_access_token": os.environ["DROPBOX_ACCESS_TOKEN"],
}
)
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -1,18 +1,13 @@
from typing import Any
from typing import Type
from sqlalchemy.orm import Session
from danswer.configs.constants import DocumentSource
from danswer.connectors.axero.connector import AxeroConnector
from danswer.connectors.blob.connector import BlobStorageConnector
from danswer.connectors.bookstack.connector import BookstackConnector
from danswer.connectors.clickup.connector import ClickupConnector
from danswer.connectors.confluence.connector import ConfluenceConnector
from danswer.connectors.danswer_jira.connector import JiraConnector
from danswer.connectors.discourse.connector import DiscourseConnector
from danswer.connectors.document360.connector import Document360Connector
from danswer.connectors.dropbox.connector import DropboxConnector
from danswer.connectors.file.connector import LocalFileConnector
from danswer.connectors.github.connector import GithubConnector
from danswer.connectors.gitlab.connector import GitlabConnector
@@ -28,23 +23,17 @@ from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.linear.connector import LinearConnector
from danswer.connectors.loopio.connector import LoopioConnector
from danswer.connectors.mediawiki.wiki import MediaWikiConnector
from danswer.connectors.models import InputType
from danswer.connectors.notion.connector import NotionConnector
from danswer.connectors.productboard.connector import ProductboardConnector
from danswer.connectors.requesttracker.connector import RequestTrackerConnector
from danswer.connectors.salesforce.connector import SalesforceConnector
from danswer.connectors.sharepoint.connector import SharepointConnector
from danswer.connectors.slab.connector import SlabConnector
from danswer.connectors.slack.connector import SlackPollConnector
from danswer.connectors.slack.load_connector import SlackLoadConnector
from danswer.connectors.teams.connector import TeamsConnector
from danswer.connectors.web.connector import WebConnector
from danswer.connectors.wikipedia.connector import WikipediaConnector
from danswer.connectors.zendesk.connector import ZendeskConnector
from danswer.connectors.zulip.connector import ZulipConnector
from danswer.db.credentials import backend_update_credential_json
from danswer.db.models import Credential
class ConnectorMissingException(Exception):
@@ -82,19 +71,9 @@ def identify_connector_class(
DocumentSource.GOOGLE_SITES: GoogleSitesConnector,
DocumentSource.ZENDESK: ZendeskConnector,
DocumentSource.LOOPIO: LoopioConnector,
DocumentSource.DROPBOX: DropboxConnector,
DocumentSource.SHAREPOINT: SharepointConnector,
DocumentSource.TEAMS: TeamsConnector,
DocumentSource.SALESFORCE: SalesforceConnector,
DocumentSource.DISCOURSE: DiscourseConnector,
DocumentSource.AXERO: AxeroConnector,
DocumentSource.CLICKUP: ClickupConnector,
DocumentSource.MEDIAWIKI: MediaWikiConnector,
DocumentSource.WIKIPEDIA: WikipediaConnector,
DocumentSource.S3: BlobStorageConnector,
DocumentSource.R2: BlobStorageConnector,
DocumentSource.GOOGLE_CLOUD_STORAGE: BlobStorageConnector,
DocumentSource.OCI_STORAGE: BlobStorageConnector,
}
connector_by_source = connector_map.get(source, {})
@@ -120,6 +99,7 @@ def identify_connector_class(
raise ConnectorMissingException(
f"Connector for source={source} does not accept input_type={input_type}"
)
return connector
@@ -127,14 +107,10 @@ def instantiate_connector(
source: DocumentSource,
input_type: InputType,
connector_specific_config: dict[str, Any],
credential: Credential,
db_session: Session,
) -> BaseConnector:
credentials: dict[str, Any],
) -> tuple[BaseConnector, dict[str, Any] | None]:
connector_class = identify_connector_class(source, input_type)
connector = connector_class(**connector_specific_config)
new_credentials = connector.load_credentials(credential.credential_json)
new_credentials = connector.load_credentials(credentials)
if new_credentials is not None:
backend_update_credential_json(credential, new_credentials, db_session)
return connector
return connector, new_credentials

View File

@@ -69,9 +69,7 @@ def _process_file(
if is_text_file_extension(file_name):
encoding = detect_encoding(file)
file_content_raw, file_metadata = read_text_file(
file, encoding=encoding, ignore_danswer_metadata=False
)
file_content_raw, file_metadata = read_text_file(file, encoding=encoding)
# Using the PDF reader function directly to pass in password cleanly
elif extension == ".pdf":
@@ -85,18 +83,8 @@ def _process_file(
all_metadata = {**metadata, **file_metadata} if metadata else file_metadata
# add a prefix to avoid conflicts with other connectors
doc_id = f"FILE_CONNECTOR__{file_name}"
if metadata:
doc_id = metadata.get("document_id") or doc_id
# If this is set, we will show this in the UI as the "name" of the file
file_display_name = all_metadata.get("file_display_name") or os.path.basename(
file_name
)
title = (
all_metadata["title"] or "" if "title" in all_metadata else file_display_name
)
file_display_name_override = all_metadata.get("file_display_name")
time_updated = all_metadata.get("time_updated", datetime.now(timezone.utc))
if isinstance(time_updated, str):
@@ -111,7 +99,6 @@ def _process_file(
for k, v in all_metadata.items()
if k
not in [
"document_id",
"time_updated",
"doc_updated_at",
"link",
@@ -119,7 +106,6 @@ def _process_file(
"secondary_owners",
"filename",
"file_display_name",
"title",
]
}
@@ -138,13 +124,13 @@ def _process_file(
return [
Document(
id=doc_id,
id=f"FILE_CONNECTOR__{file_name}", # add a prefix to avoid conflicts with other connectors
sections=[
Section(link=all_metadata.get("link"), text=file_content_raw.strip())
],
source=DocumentSource.FILE,
semantic_identifier=file_display_name,
title=title,
semantic_identifier=file_display_name_override
or os.path.basename(file_name),
doc_updated_at=final_time_updated,
primary_owners=p_owners,
secondary_owners=s_owners,

View File

@@ -1,6 +1,4 @@
import fnmatch
import itertools
from collections import deque
from collections.abc import Iterable
from collections.abc import Iterator
from datetime import datetime
@@ -8,10 +6,7 @@ from datetime import timezone
from typing import Any
import gitlab
import pytz
from gitlab.v4.objects import Project
from danswer.configs.app_configs import GITLAB_CONNECTOR_INCLUDE_CODE_FILES
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
@@ -24,13 +19,7 @@ from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.utils.logger import setup_logger
# List of directories/Files to exclude
exclude_patterns = [
"logs",
".github/",
".gitlab/",
".pre-commit-config.yaml",
]
logger = setup_logger()
@@ -83,37 +72,6 @@ def _convert_issue_to_document(issue: Any) -> Document:
return doc
def _convert_code_to_document(
project: Project, file: Any, url: str, projectName: str, projectOwner: str
) -> Document:
file_content_obj = project.files.get(
file_path=file["path"], ref="master"
) # Replace 'master' with your branch name if needed
try:
file_content = file_content_obj.decode().decode("utf-8")
except UnicodeDecodeError:
file_content = file_content_obj.decode().decode("latin-1")
file_url = f"{url}/{projectOwner}/{projectName}/-/blob/master/{file['path']}" # Construct the file URL
doc = Document(
id=file["id"],
sections=[Section(link=file_url, text=file_content)],
source=DocumentSource.GITLAB,
semantic_identifier=file["name"],
doc_updated_at=datetime.now().replace(
tzinfo=timezone.utc
), # Use current time as updated_at
primary_owners=[], # Fill this as needed
metadata={"type": "CodeFile"},
)
return doc
def _should_exclude(path: str) -> bool:
"""Check if a path matches any of the exclude patterns."""
return any(fnmatch.fnmatch(path, pattern) for pattern in exclude_patterns)
class GitlabConnector(LoadConnector, PollConnector):
def __init__(
self,
@@ -123,7 +81,6 @@ class GitlabConnector(LoadConnector, PollConnector):
state_filter: str = "all",
include_mrs: bool = True,
include_issues: bool = True,
include_code_files: bool = GITLAB_CONNECTOR_INCLUDE_CODE_FILES,
) -> None:
self.project_owner = project_owner
self.project_name = project_name
@@ -131,7 +88,6 @@ class GitlabConnector(LoadConnector, PollConnector):
self.state_filter = state_filter
self.include_mrs = include_mrs
self.include_issues = include_issues
self.include_code_files = include_code_files
self.gitlab_client: gitlab.Gitlab | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
@@ -145,80 +101,45 @@ class GitlabConnector(LoadConnector, PollConnector):
) -> GenerateDocumentsOutput:
if self.gitlab_client is None:
raise ConnectorMissingCredentialError("Gitlab")
project: gitlab.Project = self.gitlab_client.projects.get(
project = self.gitlab_client.projects.get(
f"{self.project_owner}/{self.project_name}"
)
# Fetch code files
if self.include_code_files:
# Fetching using BFS as project.report_tree with recursion causing slow load
queue = deque([""]) # Start with the root directory
while queue:
current_path = queue.popleft()
files = project.repository_tree(path=current_path, all=True)
for file_batch in _batch_gitlab_objects(files, self.batch_size):
code_doc_batch: list[Document] = []
for file in file_batch:
if _should_exclude(file["path"]):
continue
if file["type"] == "blob":
code_doc_batch.append(
_convert_code_to_document(
project,
file,
self.gitlab_client.url,
self.project_name,
self.project_owner,
)
)
elif file["type"] == "tree":
queue.append(file["path"])
if code_doc_batch:
yield code_doc_batch
if self.include_mrs:
merge_requests = project.mergerequests.list(
state=self.state_filter, order_by="updated_at", sort="desc"
)
for mr_batch in _batch_gitlab_objects(merge_requests, self.batch_size):
mr_doc_batch: list[Document] = []
doc_batch: list[Document] = []
for mr in mr_batch:
mr.updated_at = datetime.strptime(
mr.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
mr.updated_at, "%Y-%m-%dT%H:%M:%S.%fZ"
)
if start is not None and mr.updated_at < start.replace(
tzinfo=pytz.UTC
):
yield mr_doc_batch
if start is not None and mr.updated_at < start:
yield doc_batch
return
if end is not None and mr.updated_at > end.replace(tzinfo=pytz.UTC):
if end is not None and mr.updated_at > end:
continue
mr_doc_batch.append(_convert_merge_request_to_document(mr))
yield mr_doc_batch
doc_batch.append(_convert_merge_request_to_document(mr))
yield doc_batch
if self.include_issues:
issues = project.issues.list(state=self.state_filter)
for issue_batch in _batch_gitlab_objects(issues, self.batch_size):
issue_doc_batch: list[Document] = []
doc_batch = []
for issue in issue_batch:
issue.updated_at = datetime.strptime(
issue.updated_at, "%Y-%m-%dT%H:%M:%S.%f%z"
issue.updated_at, "%Y-%m-%dT%H:%M:%S.%fZ"
)
if start is not None:
start = start.replace(tzinfo=pytz.UTC)
if issue.updated_at < start:
yield issue_doc_batch
return
if end is not None:
end = end.replace(tzinfo=pytz.UTC)
if issue.updated_at > end:
continue
issue_doc_batch.append(_convert_issue_to_document(issue))
yield issue_doc_batch
if start is not None and issue.updated_at < start:
yield doc_batch
return
if end is not None and issue.updated_at > end:
continue
doc_batch.append(_convert_issue_to_document(issue))
yield doc_batch
def load_from_state(self) -> GenerateDocumentsOutput:
return self._fetch_from_gitlab()
@@ -242,12 +163,11 @@ if __name__ == "__main__":
state_filter="all",
include_mrs=True,
include_issues=True,
include_code_files=GITLAB_CONNECTOR_INCLUDE_CODE_FILES,
)
connector.load_credentials(
{
"gitlab_access_token": os.environ["GITLAB_ACCESS_TOKEN"],
"github_access_token": os.environ["GITLAB_ACCESS_TOKEN"],
"gitlab_url": os.environ["GITLAB_URL"],
}
)

View File

@@ -3,8 +3,7 @@ from typing import Any
from typing import cast
from typing import Dict
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
from google.auth.credentials import Credentials # type: ignore
from googleapiclient import discovery # type: ignore
from danswer.configs.app_configs import INDEX_BATCH_SIZE
@@ -37,7 +36,7 @@ logger = setup_logger()
class GmailConnector(LoadConnector, PollConnector):
def __init__(self, batch_size: int = INDEX_BATCH_SIZE) -> None:
self.batch_size = batch_size
self.creds: OAuthCredentials | ServiceAccountCredentials | None = None
self.creds: Credentials | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, str] | None:
"""Checks for two different types of credentials.
@@ -46,7 +45,7 @@ class GmailConnector(LoadConnector, PollConnector):
(2) A credential which holds a service account key JSON file, which
can then be used to impersonate any user in the workspace.
"""
creds: OAuthCredentials | ServiceAccountCredentials | None = None
creds = None
new_creds_dict = None
if DB_CREDENTIALS_DICT_TOKEN_KEY in credentials:
access_token_json_str = cast(
@@ -75,7 +74,7 @@ class GmailConnector(LoadConnector, PollConnector):
str | None, credentials.get(DB_CREDENTIALS_DICT_DELEGATED_USER_KEY)
)
if delegated_user_email:
creds = creds.with_subject(delegated_user_email) if creds else None # type: ignore
creds = creds.with_subject(delegated_user_email) if creds else None
if creds is None:
raise PermissionError(

View File

@@ -11,17 +11,16 @@ from google_auth_oauthlib.flow import InstalledAppFlow # type: ignore
from sqlalchemy.orm import Session
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import KV_CRED_KEY
from danswer.configs.constants import KV_GMAIL_CRED_KEY
from danswer.configs.constants import KV_GMAIL_SERVICE_ACCOUNT_KEY
from danswer.connectors.gmail.constants import CRED_KEY
from danswer.connectors.gmail.constants import (
DB_CREDENTIALS_DICT_DELEGATED_USER_KEY,
)
from danswer.connectors.gmail.constants import DB_CREDENTIALS_DICT_TOKEN_KEY
from danswer.connectors.gmail.constants import GMAIL_CRED_KEY
from danswer.connectors.gmail.constants import (
GMAIL_DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY,
)
from danswer.connectors.gmail.constants import GMAIL_SERVICE_ACCOUNT_KEY
from danswer.connectors.gmail.constants import SCOPES
from danswer.db.credentials import update_credential_json
from danswer.db.models import User
@@ -72,7 +71,7 @@ def get_gmail_creds_for_service_account(
def verify_csrf(credential_id: int, state: str) -> None:
csrf = get_dynamic_config_store().load(KV_CRED_KEY.format(str(credential_id)))
csrf = get_dynamic_config_store().load(CRED_KEY.format(str(credential_id)))
if csrf != state:
raise PermissionError(
"State from Gmail Connector callback does not match expected"
@@ -80,7 +79,7 @@ def verify_csrf(credential_id: int, state: str) -> None:
def get_gmail_auth_url(credential_id: int) -> str:
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(GMAIL_CRED_KEY))
credential_json = json.loads(creds_str)
flow = InstalledAppFlow.from_client_config(
credential_json,
@@ -92,14 +91,12 @@ def get_gmail_auth_url(credential_id: int) -> str:
parsed_url = cast(ParseResult, urlparse(auth_url))
params = parse_qs(parsed_url.query)
get_dynamic_config_store().store(
KV_CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True
) # type: ignore
get_dynamic_config_store().store(CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True) # type: ignore
return str(auth_url)
def get_auth_url(credential_id: int) -> str:
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(GMAIL_CRED_KEY))
credential_json = json.loads(creds_str)
flow = InstalledAppFlow.from_client_config(
credential_json,
@@ -111,9 +108,7 @@ def get_auth_url(credential_id: int) -> str:
parsed_url = cast(ParseResult, urlparse(auth_url))
params = parse_qs(parsed_url.query)
get_dynamic_config_store().store(
KV_CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True
) # type: ignore
get_dynamic_config_store().store(CRED_KEY.format(credential_id), params.get("state", [None])[0], encrypt=True) # type: ignore
return str(auth_url)
@@ -151,29 +146,28 @@ def build_service_account_creds(
credential_dict[DB_CREDENTIALS_DICT_DELEGATED_USER_KEY] = delegated_user_email
return CredentialBase(
source=DocumentSource.GMAIL,
credential_json=credential_dict,
admin_public=True,
)
def get_google_app_gmail_cred() -> GoogleAppCredentials:
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_CRED_KEY))
creds_str = str(get_dynamic_config_store().load(GMAIL_CRED_KEY))
return GoogleAppCredentials(**json.loads(creds_str))
def upsert_google_app_gmail_cred(app_credentials: GoogleAppCredentials) -> None:
get_dynamic_config_store().store(
KV_GMAIL_CRED_KEY, app_credentials.json(), encrypt=True
GMAIL_CRED_KEY, app_credentials.json(), encrypt=True
)
def delete_google_app_gmail_cred() -> None:
get_dynamic_config_store().delete(KV_GMAIL_CRED_KEY)
get_dynamic_config_store().delete(GMAIL_CRED_KEY)
def get_gmail_service_account_key() -> GoogleServiceAccountKey:
creds_str = str(get_dynamic_config_store().load(KV_GMAIL_SERVICE_ACCOUNT_KEY))
creds_str = str(get_dynamic_config_store().load(GMAIL_SERVICE_ACCOUNT_KEY))
return GoogleServiceAccountKey(**json.loads(creds_str))
@@ -181,19 +175,19 @@ def upsert_gmail_service_account_key(
service_account_key: GoogleServiceAccountKey,
) -> None:
get_dynamic_config_store().store(
KV_GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
)
def upsert_service_account_key(service_account_key: GoogleServiceAccountKey) -> None:
get_dynamic_config_store().store(
KV_GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
GMAIL_SERVICE_ACCOUNT_KEY, service_account_key.json(), encrypt=True
)
def delete_gmail_service_account_key() -> None:
get_dynamic_config_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)
get_dynamic_config_store().delete(GMAIL_SERVICE_ACCOUNT_KEY)
def delete_service_account_key() -> None:
get_dynamic_config_store().delete(KV_GMAIL_SERVICE_ACCOUNT_KEY)
get_dynamic_config_store().delete(GMAIL_SERVICE_ACCOUNT_KEY)

View File

@@ -1,4 +1,7 @@
DB_CREDENTIALS_DICT_TOKEN_KEY = "gmail_tokens"
GMAIL_DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY = "gmail_service_account_key"
DB_CREDENTIALS_DICT_DELEGATED_USER_KEY = "gmail_delegated_user"
CRED_KEY = "credential_id_{}"
GMAIL_CRED_KEY = "gmail_app_credential"
GMAIL_SERVICE_ACCOUNT_KEY = "gmail_service_account_key"
SCOPES = ["https://www.googleapis.com/auth/gmail.readonly"]

View File

@@ -198,10 +198,7 @@ class GongConnector(LoadConnector, PollConnector):
f"Indexing Gong call from {call_time_str.split('T', 1)[0]}: {call_title}"
)
call_parties = cast(list[dict] | None, call_details.get("parties"))
if call_parties is None:
logger.error(f"Couldn't get parties for Call ID: {call_id}")
call_parties = []
call_parties = call_details["parties"]
id_to_name_map = self._parse_parties(call_parties)

Some files were not shown because too many files have changed in this diff Show More