mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-20 01:05:46 +00:00
Compare commits
1 Commits
fix-local-
...
additional
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fdfd8bc16e |
@@ -12,40 +12,29 @@ env:
|
||||
BUILDKIT_PROGRESS: plain
|
||||
|
||||
jobs:
|
||||
|
||||
# Bypassing this for now as the idea of not building is glitching
|
||||
# releases and builds that depends on everything being tagged in docker
|
||||
# 1) Preliminary job to check if the changed files are relevant
|
||||
# check_model_server_changes:
|
||||
# runs-on: ubuntu-latest
|
||||
# outputs:
|
||||
# changed: ${{ steps.check.outputs.changed }}
|
||||
# steps:
|
||||
# - name: Checkout code
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Check if relevant files changed
|
||||
# id: check
|
||||
# run: |
|
||||
# # Default to "false"
|
||||
# echo "changed=false" >> $GITHUB_OUTPUT
|
||||
#
|
||||
# # Compare the previous commit (github.event.before) to the current one (github.sha)
|
||||
# # If any file in backend/model_server/** or backend/Dockerfile.model_server is changed,
|
||||
# # set changed=true
|
||||
# if git diff --name-only ${{ github.event.before }} ${{ github.sha }} \
|
||||
# | grep -E '^backend/model_server/|^backend/Dockerfile.model_server'; then
|
||||
# echo "changed=true" >> $GITHUB_OUTPUT
|
||||
# fi
|
||||
|
||||
# 1) Preliminary job to check if the changed files are relevant
|
||||
check_model_server_changes:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
changed: "true"
|
||||
changed: ${{ steps.check.outputs.changed }}
|
||||
steps:
|
||||
- name: Bypass check and set output
|
||||
run: echo "changed=true" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check if relevant files changed
|
||||
id: check
|
||||
run: |
|
||||
# Default to "false"
|
||||
echo "changed=false" >> $GITHUB_OUTPUT
|
||||
|
||||
# Compare the previous commit (github.event.before) to the current one (github.sha)
|
||||
# If any file in backend/model_server/** or backend/Dockerfile.model_server is changed,
|
||||
# set changed=true
|
||||
if git diff --name-only ${{ github.event.before }} ${{ github.sha }} \
|
||||
| grep -E '^backend/model_server/|^backend/Dockerfile.model_server'; then
|
||||
echo "changed=true" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
build-amd64:
|
||||
needs: [check_model_server_changes]
|
||||
if: needs.check_model_server_changes.outputs.changed == 'true'
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
name: Connector Tests
|
||||
|
||||
on:
|
||||
merge_group:
|
||||
pull_request:
|
||||
branches: [main]
|
||||
schedule:
|
||||
@@ -52,7 +51,7 @@ env:
|
||||
jobs:
|
||||
connectors-check:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
|
||||
env:
|
||||
PYTHONPATH: ./backend
|
||||
@@ -77,7 +76,7 @@ jobs:
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
|
||||
playwright install chromium
|
||||
playwright install-deps chromium
|
||||
|
||||
|
||||
- name: Run Tests
|
||||
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
|
||||
run: py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/connectors
|
||||
|
||||
@@ -1,125 +0,0 @@
|
||||
"""Update GitHub connector repo_name to repositories
|
||||
|
||||
Revision ID: 3934b1bc7b62
|
||||
Revises: b7c2b63c4a03
|
||||
Create Date: 2025-03-05 10:50:30.516962
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import json
|
||||
import logging
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "3934b1bc7b62"
|
||||
down_revision = "b7c2b63c4a03"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
logger = logging.getLogger("alembic.runtime.migration")
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Get all GitHub connectors
|
||||
conn = op.get_bind()
|
||||
|
||||
# First get all GitHub connectors
|
||||
github_connectors = conn.execute(
|
||||
sa.text(
|
||||
"""
|
||||
SELECT id, connector_specific_config
|
||||
FROM connector
|
||||
WHERE source = 'GITHUB'
|
||||
"""
|
||||
)
|
||||
).fetchall()
|
||||
|
||||
# Update each connector's config
|
||||
updated_count = 0
|
||||
for connector_id, config in github_connectors:
|
||||
try:
|
||||
if not config:
|
||||
logger.warning(f"Connector {connector_id} has no config, skipping")
|
||||
continue
|
||||
|
||||
# Parse the config if it's a string
|
||||
if isinstance(config, str):
|
||||
config = json.loads(config)
|
||||
|
||||
if "repo_name" not in config:
|
||||
continue
|
||||
|
||||
# Create new config with repositories instead of repo_name
|
||||
new_config = dict(config)
|
||||
repo_name_value = new_config.pop("repo_name")
|
||||
new_config["repositories"] = repo_name_value
|
||||
|
||||
# Update the connector with the new config
|
||||
conn.execute(
|
||||
sa.text(
|
||||
"""
|
||||
UPDATE connector
|
||||
SET connector_specific_config = :new_config
|
||||
WHERE id = :connector_id
|
||||
"""
|
||||
),
|
||||
{"connector_id": connector_id, "new_config": json.dumps(new_config)},
|
||||
)
|
||||
updated_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating connector {connector_id}: {str(e)}")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Get all GitHub connectors
|
||||
conn = op.get_bind()
|
||||
|
||||
logger.debug(
|
||||
"Starting rollback of GitHub connectors from repositories to repo_name"
|
||||
)
|
||||
|
||||
github_connectors = conn.execute(
|
||||
sa.text(
|
||||
"""
|
||||
SELECT id, connector_specific_config
|
||||
FROM connector
|
||||
WHERE source = 'GITHUB'
|
||||
"""
|
||||
)
|
||||
).fetchall()
|
||||
|
||||
logger.debug(f"Found {len(github_connectors)} GitHub connectors to rollback")
|
||||
|
||||
# Revert each GitHub connector to use repo_name instead of repositories
|
||||
reverted_count = 0
|
||||
for connector_id, config in github_connectors:
|
||||
try:
|
||||
if not config:
|
||||
continue
|
||||
|
||||
# Parse the config if it's a string
|
||||
if isinstance(config, str):
|
||||
config = json.loads(config)
|
||||
|
||||
if "repositories" not in config:
|
||||
continue
|
||||
|
||||
# Create new config with repo_name instead of repositories
|
||||
new_config = dict(config)
|
||||
repositories_value = new_config.pop("repositories")
|
||||
new_config["repo_name"] = repositories_value
|
||||
|
||||
# Update the connector with the new config
|
||||
conn.execute(
|
||||
sa.text(
|
||||
"""
|
||||
UPDATE connector
|
||||
SET connector_specific_config = :new_config
|
||||
WHERE id = :connector_id
|
||||
"""
|
||||
),
|
||||
{"new_config": json.dumps(new_config), "connector_id": connector_id},
|
||||
)
|
||||
reverted_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"Error reverting connector {connector_id}: {str(e)}")
|
||||
@@ -134,9 +134,7 @@ def fetch_chat_sessions_eagerly_by_time(
|
||||
limit: int | None = 500,
|
||||
initial_time: datetime | None = None,
|
||||
) -> list[ChatSession]:
|
||||
"""Sorted by oldest to newest, then by message id"""
|
||||
|
||||
asc_time_order: UnaryExpression = asc(ChatSession.time_created)
|
||||
time_order: UnaryExpression = desc(ChatSession.time_created)
|
||||
message_order: UnaryExpression = asc(ChatMessage.id)
|
||||
|
||||
filters: list[ColumnElement | BinaryExpression] = [
|
||||
@@ -149,7 +147,8 @@ def fetch_chat_sessions_eagerly_by_time(
|
||||
subquery = (
|
||||
db_session.query(ChatSession.id, ChatSession.time_created)
|
||||
.filter(*filters)
|
||||
.order_by(asc_time_order)
|
||||
.order_by(ChatSession.id, time_order)
|
||||
.distinct(ChatSession.id)
|
||||
.limit(limit)
|
||||
.subquery()
|
||||
)
|
||||
@@ -165,7 +164,7 @@ def fetch_chat_sessions_eagerly_by_time(
|
||||
ChatMessage.chat_message_feedbacks
|
||||
),
|
||||
)
|
||||
.order_by(asc_time_order, message_order)
|
||||
.order_by(time_order, message_order)
|
||||
)
|
||||
|
||||
chat_sessions = query.all()
|
||||
|
||||
@@ -16,20 +16,13 @@ from onyx.db.models import UsageReport
|
||||
from onyx.file_store.file_store import get_default_file_store
|
||||
|
||||
|
||||
# Gets skeletons of all messages in the given range
|
||||
# Gets skeletons of all message
|
||||
def get_empty_chat_messages_entries__paginated(
|
||||
db_session: Session,
|
||||
period: tuple[datetime, datetime],
|
||||
limit: int | None = 500,
|
||||
initial_time: datetime | None = None,
|
||||
) -> tuple[Optional[datetime], list[ChatMessageSkeleton]]:
|
||||
"""Returns a tuple where:
|
||||
first element is the most recent timestamp out of the sessions iterated
|
||||
- this timestamp can be used to paginate forward in time
|
||||
second element is a list of messages belonging to all the sessions iterated
|
||||
|
||||
Only messages of type USER are returned
|
||||
"""
|
||||
chat_sessions = fetch_chat_sessions_eagerly_by_time(
|
||||
start=period[0],
|
||||
end=period[1],
|
||||
@@ -59,17 +52,18 @@ def get_empty_chat_messages_entries__paginated(
|
||||
if len(chat_sessions) == 0:
|
||||
return None, []
|
||||
|
||||
return chat_sessions[-1].time_created, message_skeletons
|
||||
return chat_sessions[0].time_created, message_skeletons
|
||||
|
||||
|
||||
def get_all_empty_chat_message_entries(
|
||||
db_session: Session,
|
||||
period: tuple[datetime, datetime],
|
||||
) -> Generator[list[ChatMessageSkeleton], None, None]:
|
||||
"""period is the range of time over which to fetch messages."""
|
||||
initial_time: Optional[datetime] = period[0]
|
||||
ind = 0
|
||||
while True:
|
||||
# iterate from oldest to newest
|
||||
ind += 1
|
||||
|
||||
time_created, message_skeletons = get_empty_chat_messages_entries__paginated(
|
||||
db_session,
|
||||
period,
|
||||
|
||||
@@ -15,7 +15,7 @@ from ee.onyx.server.enterprise_settings.api import (
|
||||
)
|
||||
from ee.onyx.server.manage.standard_answer import router as standard_answer_router
|
||||
from ee.onyx.server.middleware.tenant_tracking import add_tenant_id_middleware
|
||||
from ee.onyx.server.oauth.api import router as ee_oauth_router
|
||||
from ee.onyx.server.oauth.api import router as oauth_router
|
||||
from ee.onyx.server.query_and_chat.chat_backend import (
|
||||
router as chat_router,
|
||||
)
|
||||
@@ -128,7 +128,7 @@ def get_application() -> FastAPI:
|
||||
include_router_with_global_prefix_prepended(application, query_router)
|
||||
include_router_with_global_prefix_prepended(application, chat_router)
|
||||
include_router_with_global_prefix_prepended(application, standard_answer_router)
|
||||
include_router_with_global_prefix_prepended(application, ee_oauth_router)
|
||||
include_router_with_global_prefix_prepended(application, oauth_router)
|
||||
|
||||
# Enterprise-only global settings
|
||||
include_router_with_global_prefix_prepended(
|
||||
|
||||
@@ -80,7 +80,6 @@ class ConfluenceCloudOAuth:
|
||||
"search:confluence%20"
|
||||
# granular scope
|
||||
"read:attachment:confluence%20" # possibly unneeded unless calling v2 attachments api
|
||||
"read:content-details:confluence%20" # for permission sync
|
||||
"offline_access"
|
||||
)
|
||||
|
||||
|
||||
@@ -48,15 +48,10 @@ def fetch_and_process_chat_session_history(
|
||||
feedback_type: QAFeedbackType | None,
|
||||
limit: int | None = 500,
|
||||
) -> list[ChatSessionSnapshot]:
|
||||
# observed to be slow a scale of 8192 sessions and 4 messages per session
|
||||
|
||||
# this is a little slow (5 seconds)
|
||||
chat_sessions = fetch_chat_sessions_eagerly_by_time(
|
||||
start=start, end=end, db_session=db_session, limit=limit
|
||||
)
|
||||
|
||||
# this is VERY slow (80 seconds) due to create_chat_chain being called
|
||||
# for each session. Needs optimizing.
|
||||
chat_session_snapshots = [
|
||||
snapshot_from_chat_session(chat_session=chat_session, db_session=db_session)
|
||||
for chat_session in chat_sessions
|
||||
@@ -251,8 +246,6 @@ def get_query_history_as_csv(
|
||||
detail="Query history has been disabled by the administrator.",
|
||||
)
|
||||
|
||||
# this call is very expensive and is timing out via endpoint
|
||||
# TODO: optimize call and/or generate via background task
|
||||
complete_chat_session_history = fetch_and_process_chat_session_history(
|
||||
db_session=db_session,
|
||||
start=start or datetime.fromtimestamp(0, tz=timezone.utc),
|
||||
|
||||
@@ -48,5 +48,4 @@ def store_product_gating(tenant_id: str, application_status: ApplicationStatus)
|
||||
|
||||
def get_gated_tenants() -> set[str]:
|
||||
redis_client = get_redis_replica_client(tenant_id=ONYX_CLOUD_TENANT_ID)
|
||||
gated_tenants_bytes = cast(set[bytes], redis_client.smembers(GATED_TENANTS_KEY))
|
||||
return {tenant_id.decode("utf-8") for tenant_id in gated_tenants_bytes}
|
||||
return cast(set[str], redis_client.smembers(GATED_TENANTS_KEY))
|
||||
|
||||
@@ -55,11 +55,7 @@ logger = logging.getLogger(__name__)
|
||||
async def get_or_provision_tenant(
|
||||
email: str, referral_source: str | None = None, request: Request | None = None
|
||||
) -> str:
|
||||
"""
|
||||
Get existing tenant ID for an email or create a new tenant if none exists.
|
||||
This function should only be called after we have verified we want this user's tenant to exist.
|
||||
It returns the tenant ID associated with the email, creating a new tenant if necessary.
|
||||
"""
|
||||
"""Get existing tenant ID for an email or create a new tenant if none exists."""
|
||||
if not MULTI_TENANT:
|
||||
return POSTGRES_DEFAULT_SCHEMA
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ MODEL_WARM_UP_STRING = "hi " * 512
|
||||
DEFAULT_OPENAI_MODEL = "text-embedding-3-small"
|
||||
DEFAULT_COHERE_MODEL = "embed-english-light-v3.0"
|
||||
DEFAULT_VOYAGE_MODEL = "voyage-large-2-instruct"
|
||||
DEFAULT_VERTEX_MODEL = "text-embedding-005"
|
||||
DEFAULT_VERTEX_MODEL = "text-embedding-004"
|
||||
|
||||
|
||||
class EmbeddingModelTextType:
|
||||
|
||||
@@ -5,7 +5,6 @@ from types import TracebackType
|
||||
from typing import cast
|
||||
from typing import Optional
|
||||
|
||||
import aioboto3 # type: ignore
|
||||
import httpx
|
||||
import openai
|
||||
import vertexai # type: ignore
|
||||
@@ -29,13 +28,11 @@ from model_server.constants import DEFAULT_VERTEX_MODEL
|
||||
from model_server.constants import DEFAULT_VOYAGE_MODEL
|
||||
from model_server.constants import EmbeddingModelTextType
|
||||
from model_server.constants import EmbeddingProvider
|
||||
from model_server.utils import pass_aws_key
|
||||
from model_server.utils import simple_log_function_time
|
||||
from onyx.utils.logger import setup_logger
|
||||
from shared_configs.configs import API_BASED_EMBEDDING_TIMEOUT
|
||||
from shared_configs.configs import INDEXING_ONLY
|
||||
from shared_configs.configs import OPENAI_EMBEDDING_TIMEOUT
|
||||
from shared_configs.configs import VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
|
||||
from shared_configs.enums import EmbedTextType
|
||||
from shared_configs.enums import RerankerProvider
|
||||
from shared_configs.model_server_models import Embedding
|
||||
@@ -185,24 +182,17 @@ class CloudEmbedding:
|
||||
vertexai.init(project=project_id, credentials=credentials)
|
||||
client = TextEmbeddingModel.from_pretrained(model)
|
||||
|
||||
inputs = [TextEmbeddingInput(text, embedding_type) for text in texts]
|
||||
|
||||
# Split into batches of 25 texts
|
||||
max_texts_per_batch = VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
|
||||
batches = [
|
||||
inputs[i : i + max_texts_per_batch]
|
||||
for i in range(0, len(inputs), max_texts_per_batch)
|
||||
]
|
||||
|
||||
# Dispatch all embedding calls asynchronously at once
|
||||
tasks = [
|
||||
client.get_embeddings_async(batch, auto_truncate=True) for batch in batches
|
||||
]
|
||||
|
||||
# Wait for all tasks to complete in parallel
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return [embedding.values for batch in results for embedding in batch]
|
||||
embeddings = await client.get_embeddings_async(
|
||||
[
|
||||
TextEmbeddingInput(
|
||||
text,
|
||||
embedding_type,
|
||||
)
|
||||
for text in texts
|
||||
],
|
||||
auto_truncate=True, # This is the default
|
||||
)
|
||||
return [embedding.values for embedding in embeddings]
|
||||
|
||||
async def _embed_litellm_proxy(
|
||||
self, texts: list[str], model_name: str | None
|
||||
@@ -457,7 +447,7 @@ async def local_rerank(query: str, docs: list[str], model_name: str) -> list[flo
|
||||
)
|
||||
|
||||
|
||||
async def cohere_rerank_api(
|
||||
async def cohere_rerank(
|
||||
query: str, docs: list[str], model_name: str, api_key: str
|
||||
) -> list[float]:
|
||||
cohere_client = CohereAsyncClient(api_key=api_key)
|
||||
@@ -467,45 +457,6 @@ async def cohere_rerank_api(
|
||||
return [result.relevance_score for result in sorted_results]
|
||||
|
||||
|
||||
async def cohere_rerank_aws(
|
||||
query: str,
|
||||
docs: list[str],
|
||||
model_name: str,
|
||||
region_name: str,
|
||||
aws_access_key_id: str,
|
||||
aws_secret_access_key: str,
|
||||
) -> list[float]:
|
||||
session = aioboto3.Session(
|
||||
aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key
|
||||
)
|
||||
async with session.client(
|
||||
"bedrock-runtime", region_name=region_name
|
||||
) as bedrock_client:
|
||||
body = json.dumps(
|
||||
{
|
||||
"query": query,
|
||||
"documents": docs,
|
||||
"api_version": 2,
|
||||
}
|
||||
)
|
||||
# Invoke the Bedrock model asynchronously
|
||||
response = await bedrock_client.invoke_model(
|
||||
modelId=model_name,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
body=body,
|
||||
)
|
||||
|
||||
# Read the response asynchronously
|
||||
response_body = json.loads(await response["body"].read())
|
||||
|
||||
# Extract and sort the results
|
||||
results = response_body.get("results", [])
|
||||
sorted_results = sorted(results, key=lambda item: item["index"])
|
||||
|
||||
return [result["relevance_score"] for result in sorted_results]
|
||||
|
||||
|
||||
async def litellm_rerank(
|
||||
query: str, docs: list[str], api_url: str, model_name: str, api_key: str | None
|
||||
) -> list[float]:
|
||||
@@ -621,32 +572,15 @@ async def process_rerank_request(rerank_request: RerankRequest) -> RerankRespons
|
||||
elif rerank_request.provider_type == RerankerProvider.COHERE:
|
||||
if rerank_request.api_key is None:
|
||||
raise RuntimeError("Cohere Rerank Requires an API Key")
|
||||
sim_scores = await cohere_rerank_api(
|
||||
sim_scores = await cohere_rerank(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
api_key=rerank_request.api_key,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
|
||||
elif rerank_request.provider_type == RerankerProvider.BEDROCK:
|
||||
if rerank_request.api_key is None:
|
||||
raise RuntimeError("Bedrock Rerank Requires an API Key")
|
||||
aws_access_key_id, aws_secret_access_key, aws_region = pass_aws_key(
|
||||
rerank_request.api_key
|
||||
)
|
||||
sim_scores = await cohere_rerank_aws(
|
||||
query=rerank_request.query,
|
||||
docs=rerank_request.documents,
|
||||
model_name=rerank_request.model_name,
|
||||
region_name=aws_region,
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
)
|
||||
return RerankResponse(scores=sim_scores)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {rerank_request.provider_type}")
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error during reranking process:\n{str(e)}")
|
||||
raise HTTPException(
|
||||
|
||||
@@ -70,32 +70,3 @@ def get_gpu_type() -> str:
|
||||
return GPUStatus.MAC_MPS
|
||||
|
||||
return GPUStatus.NONE
|
||||
|
||||
|
||||
def pass_aws_key(api_key: str) -> tuple[str, str, str]:
|
||||
"""Parse AWS API key string into components.
|
||||
|
||||
Args:
|
||||
api_key: String in format 'aws_ACCESSKEY_SECRETKEY_REGION'
|
||||
|
||||
Returns:
|
||||
Tuple of (access_key, secret_key, region)
|
||||
|
||||
Raises:
|
||||
ValueError: If key format is invalid
|
||||
"""
|
||||
if not api_key.startswith("aws"):
|
||||
raise ValueError("API key must start with 'aws' prefix")
|
||||
|
||||
parts = api_key.split("_")
|
||||
if len(parts) != 4:
|
||||
raise ValueError(
|
||||
f"API key must be in format 'aws_ACCESSKEY_SECRETKEY_REGION', got {len(parts) - 1} parts"
|
||||
"this is an onyx specific format for formatting the aws secrets for bedrock"
|
||||
)
|
||||
|
||||
try:
|
||||
_, aws_access_key_id, aws_secret_access_key, aws_region = parts
|
||||
return aws_access_key_id, aws_secret_access_key, aws_region
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to parse AWS key components: {str(e)}")
|
||||
|
||||
@@ -31,7 +31,6 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_CHECK
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
@@ -93,7 +92,6 @@ def check_sub_answer(
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
quality_str: str = cast(str, response.content)
|
||||
|
||||
@@ -46,7 +46,6 @@ from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
@@ -120,7 +119,6 @@ def generate_sub_answer(
|
||||
for message in fast_llm.stream(
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBANSWER_GENERATION,
|
||||
):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
|
||||
@@ -43,7 +43,6 @@ from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrin
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_section_list,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import _should_restrict_tokens
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
@@ -63,7 +62,6 @@ from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
@@ -155,9 +153,8 @@ def generate_initial_answer(
|
||||
)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
get_retrieved_sections=lambda: answer_generation_documents.context_documents,
|
||||
get_reranked_sections=lambda: answer_generation_documents.streaming_documents,
|
||||
get_final_context_sections=lambda: answer_generation_documents.context_documents,
|
||||
reranked_sections=answer_generation_documents.streaming_documents,
|
||||
final_context_sections=answer_generation_documents.context_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
@@ -281,9 +278,6 @@ def generate_initial_answer(
|
||||
for message in model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
if _should_restrict_tokens(model.config)
|
||||
else None,
|
||||
):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
|
||||
@@ -34,7 +34,6 @@ from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUESTION_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
|
||||
@@ -142,7 +141,6 @@ def decompose_orig_question(
|
||||
model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUESTION_GENERATION,
|
||||
),
|
||||
dispatch_subquestion(0, writer),
|
||||
sep_callback=dispatch_subquestion_sep(0, writer),
|
||||
|
||||
@@ -33,7 +33,6 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import RefinedAnswerImprovement
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_COMPARE_ANSWERS
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
@@ -113,7 +112,6 @@ def compare_answers(
|
||||
model.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
|
||||
@@ -43,7 +43,6 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUESTION_GENERATION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
)
|
||||
@@ -145,7 +144,6 @@ def create_refined_sub_questions(
|
||||
model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUESTION_GENERATION,
|
||||
),
|
||||
dispatch_subquestion(1, writer),
|
||||
sep_callback=dispatch_subquestion_sep(1, writer),
|
||||
|
||||
@@ -50,7 +50,13 @@ def decide_refinement_need(
|
||||
)
|
||||
]
|
||||
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=graph_config.behavior.allow_refinement and decision,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
if graph_config.behavior.allow_refinement:
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=decision,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
else:
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=False,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
|
||||
@@ -21,7 +21,6 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
)
|
||||
@@ -97,7 +96,6 @@ def extract_entities_terms(
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
|
||||
max_tokens=AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION,
|
||||
)
|
||||
|
||||
cleaned_response = (
|
||||
|
||||
@@ -46,7 +46,6 @@ from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_section_list,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import _should_restrict_tokens
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
@@ -69,8 +68,6 @@ from onyx.chat.models import StreamingError
|
||||
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
|
||||
@@ -182,9 +179,8 @@ def generate_validate_refined_answer(
|
||||
)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
get_retrieved_sections=lambda: answer_generation_documents.context_documents,
|
||||
get_reranked_sections=lambda: answer_generation_documents.streaming_documents,
|
||||
get_final_context_sections=lambda: answer_generation_documents.context_documents,
|
||||
reranked_sections=answer_generation_documents.streaming_documents,
|
||||
final_context_sections=answer_generation_documents.context_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
@@ -306,11 +302,7 @@ def generate_validate_refined_answer(
|
||||
|
||||
def stream_refined_answer() -> list[str]:
|
||||
for message in model.stream(
|
||||
msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_ANSWER_GENERATION
|
||||
if _should_restrict_tokens(model.config)
|
||||
else None,
|
||||
msg, timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
|
||||
):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
@@ -417,7 +409,6 @@ def generate_validate_refined_answer(
|
||||
validation_model.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
refined_answer_quality = binary_string_test_after_answer_separator(
|
||||
text=cast(str, validation_response.content),
|
||||
|
||||
@@ -13,6 +13,7 @@ from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.context.search.models import IndexFilters
|
||||
from onyx.tools.models import SearchQueryInfo
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
@@ -143,6 +144,8 @@ def get_query_info(results: list[QueryRetrievalResult]) -> SearchQueryInfo:
|
||||
if result.query_info is not None:
|
||||
query_info = result.query_info
|
||||
break
|
||||
|
||||
assert query_info is not None, "must have query info"
|
||||
return query_info
|
||||
return query_info or SearchQueryInfo(
|
||||
predicted_search=None,
|
||||
final_filters=IndexFilters(access_control_list=None),
|
||||
recency_bias_multiplier=1.0,
|
||||
)
|
||||
|
||||
@@ -33,7 +33,6 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_SUBQUERY_GENERATION
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
|
||||
)
|
||||
@@ -97,7 +96,6 @@ def expand_queries(
|
||||
model.stream(
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_SUBQUERY_GENERATION,
|
||||
),
|
||||
dispatch_subquery(level, question_num, writer),
|
||||
)
|
||||
|
||||
@@ -56,9 +56,8 @@ def format_results(
|
||||
relevance_list = relevance_from_docs(reranked_documents)
|
||||
for tool_response in yield_search_responses(
|
||||
query=state.question,
|
||||
get_retrieved_sections=lambda: reranked_documents,
|
||||
get_reranked_sections=lambda: state.retrieved_documents,
|
||||
get_final_context_sections=lambda: reranked_documents,
|
||||
reranked_sections=state.retrieved_documents,
|
||||
final_context_sections=reranked_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
|
||||
@@ -91,7 +91,7 @@ def retrieve_documents(
|
||||
retrieved_docs = retrieved_docs[:AGENT_MAX_QUERY_RETRIEVAL_RESULTS]
|
||||
|
||||
if AGENT_RETRIEVAL_STATS:
|
||||
pre_rerank_docs = callback_container[0] if callback_container else []
|
||||
pre_rerank_docs = callback_container[0]
|
||||
fit_scores = get_fit_scores(
|
||||
pre_rerank_docs,
|
||||
retrieved_docs,
|
||||
|
||||
@@ -25,7 +25,6 @@ from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrin
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_VALIDATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
|
||||
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
@@ -94,7 +93,6 @@ def verify_documents(
|
||||
fast_llm.invoke,
|
||||
prompt=msg,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_VALIDATION,
|
||||
)
|
||||
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
@@ -44,9 +44,7 @@ def call_tool(
|
||||
tool = tool_choice.tool
|
||||
tool_args = tool_choice.tool_args
|
||||
tool_id = tool_choice.id
|
||||
tool_runner = ToolRunner(
|
||||
tool, tool_args, override_kwargs=tool_choice.search_tool_override_kwargs
|
||||
)
|
||||
tool_runner = ToolRunner(tool, tool_args)
|
||||
tool_kickoff = tool_runner.kickoff()
|
||||
|
||||
emit_packet(tool_kickoff, writer)
|
||||
|
||||
@@ -15,17 +15,8 @@ from onyx.chat.tool_handling.tool_response_handler import get_tool_by_name
|
||||
from onyx.chat.tool_handling.tool_response_handler import (
|
||||
get_tool_call_for_non_tool_calling_llm_impl,
|
||||
)
|
||||
from onyx.context.search.preprocessing.preprocessing import query_analysis
|
||||
from onyx.context.search.retrieval.search_runner import get_query_embedding
|
||||
from onyx.tools.models import SearchToolOverrideKwargs
|
||||
from onyx.tools.tool import Tool
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchTool
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import run_in_background
|
||||
from onyx.utils.threadpool_concurrency import TimeoutThread
|
||||
from onyx.utils.threadpool_concurrency import wait_on_background
|
||||
from onyx.utils.timing import log_function_time
|
||||
from shared_configs.model_server_models import Embedding
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -34,7 +25,6 @@ logger = setup_logger()
|
||||
# and a function that handles extracting the necessary fields
|
||||
# from the state and config
|
||||
# TODO: fan-out to multiple tool call nodes? Make this configurable?
|
||||
@log_function_time(print_only=True)
|
||||
def choose_tool(
|
||||
state: ToolChoiceState,
|
||||
config: RunnableConfig,
|
||||
@@ -47,31 +37,6 @@ def choose_tool(
|
||||
should_stream_answer = state.should_stream_answer
|
||||
|
||||
agent_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
|
||||
force_use_tool = agent_config.tooling.force_use_tool
|
||||
|
||||
embedding_thread: TimeoutThread[Embedding] | None = None
|
||||
keyword_thread: TimeoutThread[tuple[bool, list[str]]] | None = None
|
||||
override_kwargs: SearchToolOverrideKwargs | None = None
|
||||
if (
|
||||
not agent_config.behavior.use_agentic_search
|
||||
and agent_config.tooling.search_tool is not None
|
||||
and (
|
||||
not force_use_tool.force_use or force_use_tool.tool_name == SearchTool.name
|
||||
)
|
||||
):
|
||||
override_kwargs = SearchToolOverrideKwargs()
|
||||
# Run in a background thread to avoid blocking the main thread
|
||||
embedding_thread = run_in_background(
|
||||
get_query_embedding,
|
||||
agent_config.inputs.search_request.query,
|
||||
agent_config.persistence.db_session,
|
||||
)
|
||||
keyword_thread = run_in_background(
|
||||
query_analysis,
|
||||
agent_config.inputs.search_request.query,
|
||||
)
|
||||
|
||||
using_tool_calling_llm = agent_config.tooling.using_tool_calling_llm
|
||||
prompt_builder = state.prompt_snapshot or agent_config.inputs.prompt_builder
|
||||
|
||||
@@ -82,6 +47,7 @@ def choose_tool(
|
||||
tools = [
|
||||
tool for tool in (agent_config.tooling.tools or []) if tool.name in state.tools
|
||||
]
|
||||
force_use_tool = agent_config.tooling.force_use_tool
|
||||
|
||||
tool, tool_args = None, None
|
||||
if force_use_tool.force_use and force_use_tool.args is not None:
|
||||
@@ -105,22 +71,11 @@ def choose_tool(
|
||||
# If we have a tool and tool args, we are ready to request a tool call.
|
||||
# This only happens if the tool call was forced or we are using a non-tool calling LLM.
|
||||
if tool and tool_args:
|
||||
if embedding_thread and tool.name == SearchTool._NAME:
|
||||
# Wait for the embedding thread to finish
|
||||
embedding = wait_on_background(embedding_thread)
|
||||
assert override_kwargs is not None, "must have override kwargs"
|
||||
override_kwargs.precomputed_query_embedding = embedding
|
||||
if keyword_thread and tool.name == SearchTool._NAME:
|
||||
is_keyword, keywords = wait_on_background(keyword_thread)
|
||||
assert override_kwargs is not None, "must have override kwargs"
|
||||
override_kwargs.precomputed_is_keyword = is_keyword
|
||||
override_kwargs.precomputed_keywords = keywords
|
||||
return ToolChoiceUpdate(
|
||||
tool_choice=ToolChoice(
|
||||
tool=tool,
|
||||
tool_args=tool_args,
|
||||
id=str(uuid4()),
|
||||
search_tool_override_kwargs=override_kwargs,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -143,16 +98,8 @@ def choose_tool(
|
||||
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
|
||||
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
|
||||
prompt=built_prompt,
|
||||
tools=(
|
||||
[tool.tool_definition() for tool in tools] or None
|
||||
if using_tool_calling_llm
|
||||
else None
|
||||
),
|
||||
tool_choice=(
|
||||
"required"
|
||||
if tools and force_use_tool.force_use and using_tool_calling_llm
|
||||
else None
|
||||
),
|
||||
tools=[tool.tool_definition() for tool in tools] or None,
|
||||
tool_choice=("required" if tools and force_use_tool.force_use else None),
|
||||
structured_response_format=structured_response_format,
|
||||
)
|
||||
|
||||
@@ -198,22 +145,10 @@ def choose_tool(
|
||||
logger.debug(f"Selected tool: {selected_tool.name}")
|
||||
logger.debug(f"Selected tool call request: {selected_tool_call_request}")
|
||||
|
||||
if embedding_thread and selected_tool.name == SearchTool._NAME:
|
||||
# Wait for the embedding thread to finish
|
||||
embedding = wait_on_background(embedding_thread)
|
||||
assert override_kwargs is not None, "must have override kwargs"
|
||||
override_kwargs.precomputed_query_embedding = embedding
|
||||
if keyword_thread and selected_tool.name == SearchTool._NAME:
|
||||
is_keyword, keywords = wait_on_background(keyword_thread)
|
||||
assert override_kwargs is not None, "must have override kwargs"
|
||||
override_kwargs.precomputed_is_keyword = is_keyword
|
||||
override_kwargs.precomputed_keywords = keywords
|
||||
|
||||
return ToolChoiceUpdate(
|
||||
tool_choice=ToolChoice(
|
||||
tool=selected_tool,
|
||||
tool_args=selected_tool_call_request["args"],
|
||||
id=selected_tool_call_request["id"],
|
||||
search_tool_override_kwargs=override_kwargs,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -9,23 +9,18 @@ from onyx.agents.agent_search.basic.states import BasicState
|
||||
from onyx.agents.agent_search.basic.utils import process_llm_stream
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import OnyxContexts
|
||||
from onyx.tools.tool_implementations.search.search_tool import (
|
||||
SEARCH_RESPONSE_SUMMARY_ID,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
|
||||
from onyx.tools.tool_implementations.search.search_utils import (
|
||||
context_from_inference_section,
|
||||
SEARCH_DOC_CONTENT_ID,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search_like_tool_utils import (
|
||||
FINAL_CONTEXT_DOCUMENTS_ID,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def basic_use_tool_response(
|
||||
state: BasicState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> BasicOutput:
|
||||
@@ -55,13 +50,11 @@ def basic_use_tool_response(
|
||||
for yield_item in tool_call_responses:
|
||||
if yield_item.id == FINAL_CONTEXT_DOCUMENTS_ID:
|
||||
final_search_results = cast(list[LlmDoc], yield_item.response)
|
||||
elif yield_item.id == SEARCH_RESPONSE_SUMMARY_ID:
|
||||
search_response_summary = cast(SearchResponseSummary, yield_item.response)
|
||||
for section in search_response_summary.top_sections:
|
||||
if section.center_chunk.document_id not in initial_search_results:
|
||||
initial_search_results.append(
|
||||
context_from_inference_section(section)
|
||||
)
|
||||
elif yield_item.id == SEARCH_DOC_CONTENT_ID:
|
||||
search_contexts = cast(OnyxContexts, yield_item.response).contexts
|
||||
for doc in search_contexts:
|
||||
if doc.document_id not in initial_search_results:
|
||||
initial_search_results.append(doc)
|
||||
|
||||
new_tool_call_chunk = AIMessageChunk(content="")
|
||||
if not agent_config.behavior.skip_gen_ai_answer_generation:
|
||||
|
||||
@@ -2,7 +2,6 @@ from pydantic import BaseModel
|
||||
|
||||
from onyx.chat.prompt_builder.answer_prompt_builder import PromptSnapshot
|
||||
from onyx.tools.message import ToolCallSummary
|
||||
from onyx.tools.models import SearchToolOverrideKwargs
|
||||
from onyx.tools.models import ToolCallFinalResult
|
||||
from onyx.tools.models import ToolCallKickoff
|
||||
from onyx.tools.models import ToolResponse
|
||||
@@ -36,7 +35,6 @@ class ToolChoice(BaseModel):
|
||||
tool: Tool
|
||||
tool_args: dict
|
||||
id: str | None
|
||||
search_tool_override_kwargs: SearchToolOverrideKwargs | None = None
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@@ -13,11 +13,6 @@ AGENT_NEGATIVE_VALUE_STR = "no"
|
||||
AGENT_ANSWER_SEPARATOR = "Answer:"
|
||||
|
||||
|
||||
EMBEDDING_KEY = "embedding"
|
||||
IS_KEYWORD_KEY = "is_keyword"
|
||||
KEYWORDS_KEY = "keywords"
|
||||
|
||||
|
||||
class AgentLLMErrorType(str, Enum):
|
||||
TIMEOUT = "timeout"
|
||||
RATE_LIMIT = "rate_limit"
|
||||
|
||||
@@ -42,7 +42,6 @@ from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
|
||||
from onyx.configs.agent_configs import AGENT_MAX_TOKENS_HISTORY_SUMMARY
|
||||
from onyx.configs.agent_configs import (
|
||||
AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
|
||||
)
|
||||
@@ -62,7 +61,6 @@ from onyx.db.persona import Persona
|
||||
from onyx.llm.chat_llm import LLMRateLimitError
|
||||
from onyx.llm.chat_llm import LLMTimeoutError
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.llm.interfaces import LLMConfig
|
||||
from onyx.prompts.agent_search import (
|
||||
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
|
||||
)
|
||||
@@ -404,7 +402,6 @@ def summarize_history(
|
||||
llm.invoke,
|
||||
history_context_prompt,
|
||||
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
|
||||
max_tokens=AGENT_MAX_TOKENS_HISTORY_SUMMARY,
|
||||
)
|
||||
except (LLMTimeoutError, TimeoutError):
|
||||
logger.error("LLM Timeout Error - summarize history")
|
||||
@@ -508,9 +505,3 @@ def get_deduplicated_structured_subquestion_documents(
|
||||
cited_documents=dedup_inference_section_list(cited_docs),
|
||||
context_documents=dedup_inference_section_list(context_docs),
|
||||
)
|
||||
|
||||
|
||||
def _should_restrict_tokens(llm_config: LLMConfig) -> bool:
|
||||
return not (
|
||||
llm_config.model_provider == "openai" and llm_config.model_name.startswith("o")
|
||||
)
|
||||
|
||||
@@ -587,20 +587,14 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
|
||||
) -> Optional[User]:
|
||||
email = credentials.username
|
||||
|
||||
tenant_id: str | None = None
|
||||
try:
|
||||
tenant_id = fetch_ee_implementation_or_noop(
|
||||
"onyx.server.tenants.provisioning",
|
||||
"get_tenant_id_for_email",
|
||||
None,
|
||||
)(
|
||||
email=email,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"User attempted to login with invalid credentials: {str(e)}"
|
||||
)
|
||||
|
||||
# Get tenant_id from mapping table
|
||||
tenant_id = await fetch_ee_implementation_or_noop(
|
||||
"onyx.server.tenants.provisioning",
|
||||
"get_or_provision_tenant",
|
||||
async_return_default_schema,
|
||||
)(
|
||||
email=email,
|
||||
)
|
||||
if not tenant_id:
|
||||
# User not found in mapping
|
||||
self.password_helper.hash(credentials.password)
|
||||
|
||||
@@ -111,6 +111,5 @@ celery_app.autodiscover_tasks(
|
||||
"onyx.background.celery.tasks.vespa",
|
||||
"onyx.background.celery.tasks.connector_deletion",
|
||||
"onyx.background.celery.tasks.doc_permission_syncing",
|
||||
"onyx.background.celery.tasks.indexing",
|
||||
]
|
||||
)
|
||||
|
||||
@@ -1,73 +0,0 @@
|
||||
# backend/onyx/background/celery/memory_monitoring.py
|
||||
import logging
|
||||
import os
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
import psutil
|
||||
|
||||
from onyx.utils.logger import is_running_in_container
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
# Regular application logger
|
||||
logger = setup_logger()
|
||||
|
||||
# Only set up memory monitoring in container environment
|
||||
if is_running_in_container():
|
||||
# Set up a dedicated memory monitoring logger
|
||||
MEMORY_LOG_DIR = "/var/log/persisted-logs/memory"
|
||||
MEMORY_LOG_FILE = os.path.join(MEMORY_LOG_DIR, "memory_usage.log")
|
||||
MEMORY_LOG_MAX_BYTES = 10 * 1024 * 1024 # 10MB
|
||||
MEMORY_LOG_BACKUP_COUNT = 5 # Keep 5 backup files
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(MEMORY_LOG_DIR, exist_ok=True)
|
||||
|
||||
# Create a dedicated logger for memory monitoring
|
||||
memory_logger = logging.getLogger("memory_monitoring")
|
||||
memory_logger.setLevel(logging.INFO)
|
||||
|
||||
# Create a rotating file handler
|
||||
memory_handler = RotatingFileHandler(
|
||||
MEMORY_LOG_FILE,
|
||||
maxBytes=MEMORY_LOG_MAX_BYTES,
|
||||
backupCount=MEMORY_LOG_BACKUP_COUNT,
|
||||
)
|
||||
|
||||
# Create a formatter that includes all relevant information
|
||||
memory_formatter = logging.Formatter(
|
||||
"%(asctime)s [%(levelname)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
|
||||
)
|
||||
memory_handler.setFormatter(memory_formatter)
|
||||
memory_logger.addHandler(memory_handler)
|
||||
else:
|
||||
# Create a null logger when not in container
|
||||
memory_logger = logging.getLogger("memory_monitoring")
|
||||
memory_logger.addHandler(logging.NullHandler())
|
||||
|
||||
|
||||
def emit_process_memory(
|
||||
pid: int, process_name: str, additional_metadata: dict[str, str | int]
|
||||
) -> None:
|
||||
# Skip memory monitoring if not in container
|
||||
if not is_running_in_container():
|
||||
return
|
||||
|
||||
try:
|
||||
process = psutil.Process(pid)
|
||||
memory_info = process.memory_info()
|
||||
cpu_percent = process.cpu_percent(interval=0.1)
|
||||
|
||||
# Build metadata string from additional_metadata dictionary
|
||||
metadata_str = " ".join(
|
||||
[f"{key}={value}" for key, value in additional_metadata.items()]
|
||||
)
|
||||
metadata_str = f" {metadata_str}" if metadata_str else ""
|
||||
|
||||
memory_logger.info(
|
||||
f"PROCESS_MEMORY process_name={process_name} pid={pid} "
|
||||
f"rss_mb={memory_info.rss / (1024 * 1024):.2f} "
|
||||
f"vms_mb={memory_info.vms / (1024 * 1024):.2f} "
|
||||
f"cpu={cpu_percent:.2f}{metadata_str}"
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("Error monitoring process memory.")
|
||||
@@ -23,7 +23,6 @@ from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.background.celery.apps.app_base import task_logger
|
||||
from onyx.background.celery.celery_utils import httpx_init_vespa_pool
|
||||
from onyx.background.celery.memory_monitoring import emit_process_memory
|
||||
from onyx.background.celery.tasks.indexing.utils import get_unfenced_index_attempt_ids
|
||||
from onyx.background.celery.tasks.indexing.utils import IndexingCallback
|
||||
from onyx.background.celery.tasks.indexing.utils import should_index
|
||||
@@ -985,9 +984,6 @@ def connector_indexing_proxy_task(
|
||||
redis_connector = RedisConnector(tenant_id, cc_pair_id)
|
||||
redis_connector_index = redis_connector.new_index(search_settings_id)
|
||||
|
||||
# Track the last time memory info was emitted
|
||||
last_memory_emit_time = 0.0
|
||||
|
||||
try:
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
index_attempt = get_index_attempt(
|
||||
@@ -1028,23 +1024,6 @@ def connector_indexing_proxy_task(
|
||||
job.release()
|
||||
break
|
||||
|
||||
# log the memory usage for tracking down memory leaks / connector-specific memory issues
|
||||
pid = job.process.pid
|
||||
if pid is not None:
|
||||
# Only emit memory info once per minute (60 seconds)
|
||||
current_time = time.monotonic()
|
||||
if current_time - last_memory_emit_time >= 60.0:
|
||||
emit_process_memory(
|
||||
pid,
|
||||
"indexing_worker",
|
||||
{
|
||||
"cc_pair_id": cc_pair_id,
|
||||
"search_settings_id": search_settings_id,
|
||||
"index_attempt_id": index_attempt_id,
|
||||
},
|
||||
)
|
||||
last_memory_emit_time = current_time
|
||||
|
||||
# if a termination signal is detected, break (exit point will clean up)
|
||||
if self.request.id and redis_connector_index.terminating(self.request.id):
|
||||
task_logger.warning(
|
||||
@@ -1191,7 +1170,6 @@ def connector_indexing_proxy_task(
|
||||
return
|
||||
|
||||
|
||||
# primary
|
||||
@shared_task(
|
||||
name=OnyxCeleryTask.CHECK_FOR_CHECKPOINT_CLEANUP,
|
||||
soft_time_limit=300,
|
||||
@@ -1239,7 +1217,6 @@ def check_for_checkpoint_cleanup(*, tenant_id: str) -> None:
|
||||
)
|
||||
|
||||
|
||||
# light worker
|
||||
@shared_task(
|
||||
name=OnyxCeleryTask.CLEANUP_CHECKPOINT,
|
||||
bind=True,
|
||||
|
||||
@@ -15,8 +15,6 @@ from onyx.chat.stream_processing.answer_response_handler import (
|
||||
from onyx.chat.tool_handling.tool_response_handler import ToolResponseHandler
|
||||
|
||||
|
||||
# This is Legacy code that is not used anymore.
|
||||
# It is kept here for reference.
|
||||
class LLMResponseHandlerManager:
|
||||
"""
|
||||
This class is responsible for postprocessing the LLM response stream.
|
||||
|
||||
@@ -756,7 +756,6 @@ def stream_chat_message_objects(
|
||||
)
|
||||
|
||||
# LLM prompt building, response capturing, etc.
|
||||
|
||||
answer = Answer(
|
||||
prompt_builder=prompt_builder,
|
||||
is_connected=is_connected,
|
||||
|
||||
@@ -90,97 +90,97 @@ class CitationProcessor:
|
||||
next(group for group in citation.groups() if group is not None)
|
||||
)
|
||||
|
||||
if not (1 <= numerical_value <= self.max_citation_num):
|
||||
continue
|
||||
|
||||
context_llm_doc = self.context_docs[numerical_value - 1]
|
||||
final_citation_num = self.final_order_mapping[
|
||||
context_llm_doc.document_id
|
||||
]
|
||||
|
||||
if final_citation_num not in self.citation_order:
|
||||
self.citation_order.append(final_citation_num)
|
||||
|
||||
citation_order_idx = self.citation_order.index(final_citation_num) + 1
|
||||
|
||||
# get the value that was displayed to user, should always
|
||||
# be in the display_doc_order_dict. But check anyways
|
||||
if context_llm_doc.document_id in self.display_order_mapping:
|
||||
displayed_citation_num = self.display_order_mapping[
|
||||
if 1 <= numerical_value <= self.max_citation_num:
|
||||
context_llm_doc = self.context_docs[numerical_value - 1]
|
||||
final_citation_num = self.final_order_mapping[
|
||||
context_llm_doc.document_id
|
||||
]
|
||||
else:
|
||||
displayed_citation_num = final_citation_num
|
||||
logger.warning(
|
||||
f"Doc {context_llm_doc.document_id} not in display_doc_order_dict. Used LLM citation number instead."
|
||||
|
||||
if final_citation_num not in self.citation_order:
|
||||
self.citation_order.append(final_citation_num)
|
||||
|
||||
citation_order_idx = (
|
||||
self.citation_order.index(final_citation_num) + 1
|
||||
)
|
||||
|
||||
# Skip consecutive citations of the same work
|
||||
if final_citation_num in self.current_citations:
|
||||
start, end = citation.span()
|
||||
real_start = length_to_add + start
|
||||
diff = end - start
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: length_to_add + start]
|
||||
+ self.curr_segment[real_start + diff :]
|
||||
)
|
||||
length_to_add -= diff
|
||||
continue
|
||||
|
||||
# Handle edge case where LLM outputs citation itself
|
||||
if self.curr_segment.startswith("[["):
|
||||
match = re.match(r"\[\[(\d+)\]\]", self.curr_segment)
|
||||
if match:
|
||||
try:
|
||||
doc_id = int(match.group(1))
|
||||
context_llm_doc = self.context_docs[doc_id - 1]
|
||||
yield CitationInfo(
|
||||
# citation_num is now the number post initial ranking, i.e. as displayed to user
|
||||
citation_num=displayed_citation_num,
|
||||
document_id=context_llm_doc.document_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Manual LLM citation didn't properly cite documents {e}"
|
||||
)
|
||||
# get the value that was displayed to user, should always
|
||||
# be in the display_doc_order_dict. But check anyways
|
||||
if context_llm_doc.document_id in self.display_order_mapping:
|
||||
displayed_citation_num = self.display_order_mapping[
|
||||
context_llm_doc.document_id
|
||||
]
|
||||
else:
|
||||
displayed_citation_num = final_citation_num
|
||||
logger.warning(
|
||||
"Manual LLM citation wasn't able to close brackets"
|
||||
f"Doc {context_llm_doc.document_id} not in display_doc_order_dict. Used LLM citation number instead."
|
||||
)
|
||||
continue
|
||||
|
||||
link = context_llm_doc.link
|
||||
# Skip consecutive citations of the same work
|
||||
if final_citation_num in self.current_citations:
|
||||
start, end = citation.span()
|
||||
real_start = length_to_add + start
|
||||
diff = end - start
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: length_to_add + start]
|
||||
+ self.curr_segment[real_start + diff :]
|
||||
)
|
||||
length_to_add -= diff
|
||||
continue
|
||||
|
||||
self.past_cite_count = len(self.llm_out)
|
||||
self.current_citations.append(final_citation_num)
|
||||
# Handle edge case where LLM outputs citation itself
|
||||
if self.curr_segment.startswith("[["):
|
||||
match = re.match(r"\[\[(\d+)\]\]", self.curr_segment)
|
||||
if match:
|
||||
try:
|
||||
doc_id = int(match.group(1))
|
||||
context_llm_doc = self.context_docs[doc_id - 1]
|
||||
yield CitationInfo(
|
||||
# citation_num is now the number post initial ranking, i.e. as displayed to user
|
||||
citation_num=displayed_citation_num,
|
||||
document_id=context_llm_doc.document_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Manual LLM citation didn't properly cite documents {e}"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
"Manual LLM citation wasn't able to close brackets"
|
||||
)
|
||||
continue
|
||||
|
||||
if citation_order_idx not in self.cited_inds:
|
||||
self.cited_inds.add(citation_order_idx)
|
||||
yield CitationInfo(
|
||||
# citation number is now the one that was displayed to user
|
||||
citation_num=displayed_citation_num,
|
||||
document_id=context_llm_doc.document_id,
|
||||
)
|
||||
link = context_llm_doc.link
|
||||
|
||||
start, end = citation.span()
|
||||
if link:
|
||||
prev_length = len(self.curr_segment)
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: start + length_to_add]
|
||||
+ f"[[{displayed_citation_num}]]({link})" # use the value that was displayed to user
|
||||
+ self.curr_segment[end + length_to_add :]
|
||||
)
|
||||
length_to_add += len(self.curr_segment) - prev_length
|
||||
else:
|
||||
prev_length = len(self.curr_segment)
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: start + length_to_add]
|
||||
+ f"[[{displayed_citation_num}]]()" # use the value that was displayed to user
|
||||
+ self.curr_segment[end + length_to_add :]
|
||||
)
|
||||
length_to_add += len(self.curr_segment) - prev_length
|
||||
self.past_cite_count = len(self.llm_out)
|
||||
self.current_citations.append(final_citation_num)
|
||||
|
||||
last_citation_end = end + length_to_add
|
||||
if citation_order_idx not in self.cited_inds:
|
||||
self.cited_inds.add(citation_order_idx)
|
||||
yield CitationInfo(
|
||||
# citation number is now the one that was displayed to user
|
||||
citation_num=displayed_citation_num,
|
||||
document_id=context_llm_doc.document_id,
|
||||
)
|
||||
|
||||
start, end = citation.span()
|
||||
if link:
|
||||
prev_length = len(self.curr_segment)
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: start + length_to_add]
|
||||
+ f"[[{displayed_citation_num}]]({link})" # use the value that was displayed to user
|
||||
+ self.curr_segment[end + length_to_add :]
|
||||
)
|
||||
length_to_add += len(self.curr_segment) - prev_length
|
||||
else:
|
||||
prev_length = len(self.curr_segment)
|
||||
self.curr_segment = (
|
||||
self.curr_segment[: start + length_to_add]
|
||||
+ f"[[{displayed_citation_num}]]()" # use the value that was displayed to user
|
||||
+ self.curr_segment[end + length_to_add :]
|
||||
)
|
||||
length_to_add += len(self.curr_segment) - prev_length
|
||||
|
||||
last_citation_end = end + length_to_add
|
||||
|
||||
if last_citation_end > 0:
|
||||
result += self.curr_segment[:last_citation_end]
|
||||
|
||||
@@ -217,20 +217,20 @@ AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION = int(
|
||||
)
|
||||
|
||||
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION = 6 # in seconds
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION = 4 # in seconds
|
||||
AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_GENERATION = 40 # in seconds
|
||||
AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_GENERATION = 30 # in seconds
|
||||
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_GENERATION
|
||||
)
|
||||
|
||||
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION = 10 # in seconds
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION = 5 # in seconds
|
||||
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION
|
||||
@@ -243,13 +243,13 @@ AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION = int(
|
||||
)
|
||||
|
||||
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION = 15 # in seconds
|
||||
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION = 5 # in seconds
|
||||
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION = 45 # in seconds
|
||||
AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION = 30 # in seconds
|
||||
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION
|
||||
@@ -333,45 +333,4 @@ AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION = int(
|
||||
or AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_VALIDATION = 4
|
||||
AGENT_MAX_TOKENS_VALIDATION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_VALIDATION") or AGENT_DEFAULT_MAX_TOKENS_VALIDATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_SUBANSWER_GENERATION = 256
|
||||
AGENT_MAX_TOKENS_SUBANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_SUBANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_SUBANSWER_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_ANSWER_GENERATION = 1024
|
||||
AGENT_MAX_TOKENS_ANSWER_GENERATION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_ANSWER_GENERATION")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_ANSWER_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_SUBQUESTION_GENERATION = 256
|
||||
AGENT_MAX_TOKENS_SUBQUESTION_GENERATION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_SUBQUESTION_GENERATION")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_SUBQUESTION_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_ENTITY_TERM_EXTRACTION = 1024
|
||||
AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_ENTITY_TERM_EXTRACTION")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_ENTITY_TERM_EXTRACTION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_SUBQUERY_GENERATION = 64
|
||||
AGENT_MAX_TOKENS_SUBQUERY_GENERATION = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_SUBQUERY_GENERATION")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_SUBQUERY_GENERATION
|
||||
)
|
||||
|
||||
AGENT_DEFAULT_MAX_TOKENS_HISTORY_SUMMARY = 128
|
||||
AGENT_MAX_TOKENS_HISTORY_SUMMARY = int(
|
||||
os.environ.get("AGENT_MAX_TOKENS_HISTORY_SUMMARY")
|
||||
or AGENT_DEFAULT_MAX_TOKENS_HISTORY_SUMMARY
|
||||
)
|
||||
|
||||
GRAPH_VERSION_NAME: str = "a"
|
||||
|
||||
@@ -640,6 +640,3 @@ TEST_ENV = os.environ.get("TEST_ENV", "").lower() == "true"
|
||||
MOCK_LLM_RESPONSE = (
|
||||
os.environ.get("MOCK_LLM_RESPONSE") if os.environ.get("MOCK_LLM_RESPONSE") else None
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB = 20
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
from onyx.configs.app_configs import DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB
|
||||
from onyx.server.settings.store import load_settings
|
||||
|
||||
|
||||
def get_image_extraction_and_analysis_enabled() -> bool:
|
||||
"""Get image extraction and analysis enabled setting from workspace settings or fallback to False"""
|
||||
try:
|
||||
settings = load_settings()
|
||||
if settings.image_extraction_and_analysis_enabled is not None:
|
||||
return settings.image_extraction_and_analysis_enabled
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_search_time_image_analysis_enabled() -> bool:
|
||||
"""Get search time image analysis enabled setting from workspace settings or fallback to False"""
|
||||
try:
|
||||
settings = load_settings()
|
||||
if settings.search_time_image_analysis_enabled is not None:
|
||||
return settings.search_time_image_analysis_enabled
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_image_analysis_max_size_mb() -> int:
|
||||
"""Get image analysis max size MB setting from workspace settings or fallback to environment variable"""
|
||||
try:
|
||||
settings = load_settings()
|
||||
if settings.image_analysis_max_size_mb is not None:
|
||||
return settings.image_analysis_max_size_mb
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB
|
||||
@@ -200,6 +200,7 @@ class AirtableConnector(LoadConnector):
|
||||
return attachment_response.content
|
||||
|
||||
logger.error(f"Failed to refresh attachment for {filename}")
|
||||
|
||||
raise
|
||||
|
||||
attachment_content = get_attachment_with_retry(url, record_id)
|
||||
|
||||
@@ -11,12 +11,13 @@ from onyx.configs.app_configs import CONFLUENCE_TIMEZONE_OFFSET
|
||||
from onyx.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
from onyx.configs.app_configs import INDEX_BATCH_SIZE
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.connectors.confluence.onyx_confluence import extract_text_from_confluence_html
|
||||
from onyx.connectors.confluence.onyx_confluence import attachment_to_content
|
||||
from onyx.connectors.confluence.onyx_confluence import (
|
||||
extract_text_from_confluence_html,
|
||||
)
|
||||
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
|
||||
from onyx.connectors.confluence.utils import build_confluence_document_id
|
||||
from onyx.connectors.confluence.utils import convert_attachment_to_content
|
||||
from onyx.connectors.confluence.utils import datetime_from_string
|
||||
from onyx.connectors.confluence.utils import process_attachment
|
||||
from onyx.connectors.confluence.utils import validate_attachment_filetype
|
||||
from onyx.connectors.exceptions import ConnectorValidationError
|
||||
from onyx.connectors.exceptions import CredentialExpiredError
|
||||
@@ -35,26 +36,28 @@ from onyx.connectors.models import ConnectorMissingCredentialError
|
||||
from onyx.connectors.models import Document
|
||||
from onyx.connectors.models import Section
|
||||
from onyx.connectors.models import SlimDocument
|
||||
from onyx.connectors.vision_enabled_connector import VisionEnabledConnector
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
# Potential Improvements
|
||||
# 1. Segment into Sections for more accurate linking, can split by headers but make sure no text/ordering is lost
|
||||
# 1. Include attachments, etc
|
||||
# 2. Segment into Sections for more accurate linking, can split by headers but make sure no text/ordering is lost
|
||||
|
||||
_COMMENT_EXPANSION_FIELDS = ["body.storage.value"]
|
||||
_PAGE_EXPANSION_FIELDS = [
|
||||
"body.storage.value",
|
||||
"version",
|
||||
"space",
|
||||
"metadata.labels",
|
||||
"history.lastUpdated",
|
||||
]
|
||||
_ATTACHMENT_EXPANSION_FIELDS = [
|
||||
"version",
|
||||
"space",
|
||||
"metadata.labels",
|
||||
]
|
||||
|
||||
_RESTRICTIONS_EXPANSION_FIELDS = [
|
||||
"space",
|
||||
"restrictions.read.restrictions.user",
|
||||
@@ -66,6 +69,9 @@ _RESTRICTIONS_EXPANSION_FIELDS = [
|
||||
_SLIM_DOC_BATCH_SIZE = 5000
|
||||
|
||||
_ATTACHMENT_EXTENSIONS_TO_FILTER_OUT = [
|
||||
"png",
|
||||
"jpg",
|
||||
"jpeg",
|
||||
"gif",
|
||||
"mp4",
|
||||
"mov",
|
||||
@@ -81,11 +87,7 @@ _FULL_EXTENSION_FILTER_STRING = "".join(
|
||||
|
||||
|
||||
class ConfluenceConnector(
|
||||
LoadConnector,
|
||||
PollConnector,
|
||||
SlimConnector,
|
||||
CredentialsConnector,
|
||||
VisionEnabledConnector,
|
||||
LoadConnector, PollConnector, SlimConnector, CredentialsConnector
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -103,24 +105,13 @@ class ConfluenceConnector(
|
||||
labels_to_skip: list[str] = CONFLUENCE_CONNECTOR_LABELS_TO_SKIP,
|
||||
timezone_offset: float = CONFLUENCE_TIMEZONE_OFFSET,
|
||||
) -> None:
|
||||
self.wiki_base = wiki_base
|
||||
self.is_cloud = is_cloud
|
||||
self.space = space
|
||||
self.page_id = page_id
|
||||
self.index_recursively = index_recursively
|
||||
self.cql_query = cql_query
|
||||
self.batch_size = batch_size
|
||||
self.continue_on_failure = continue_on_failure
|
||||
self.labels_to_skip = labels_to_skip
|
||||
self.timezone_offset = timezone_offset
|
||||
self._confluence_client: OnyxConfluence | None = None
|
||||
self._fetched_titles: set[str] = set()
|
||||
|
||||
# Initialize vision LLM using the mixin
|
||||
self.initialize_vision_llm()
|
||||
self.is_cloud = is_cloud
|
||||
|
||||
# Remove trailing slash from wiki_base if present
|
||||
self.wiki_base = wiki_base.rstrip("/")
|
||||
|
||||
"""
|
||||
If nothing is provided, we default to fetching all pages
|
||||
Only one or none of the following options should be specified so
|
||||
@@ -162,6 +153,8 @@ class ConfluenceConnector(
|
||||
"max_backoff_seconds": 60,
|
||||
}
|
||||
|
||||
self._confluence_client: OnyxConfluence | None = None
|
||||
|
||||
@property
|
||||
def confluence_client(self) -> OnyxConfluence:
|
||||
if self._confluence_client is None:
|
||||
@@ -191,6 +184,7 @@ class ConfluenceConnector(
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
) -> str:
|
||||
page_query = self.base_cql_page_query + self.cql_label_filter
|
||||
|
||||
# Add time filters
|
||||
if start:
|
||||
formatted_start_time = datetime.fromtimestamp(
|
||||
@@ -202,6 +196,7 @@ class ConfluenceConnector(
|
||||
"%Y-%m-%d %H:%M"
|
||||
)
|
||||
page_query += f" and lastmodified <= '{formatted_end_time}'"
|
||||
|
||||
return page_query
|
||||
|
||||
def _construct_attachment_query(self, confluence_page_id: str) -> str:
|
||||
@@ -212,10 +207,11 @@ class ConfluenceConnector(
|
||||
|
||||
def _get_comment_string_for_page_id(self, page_id: str) -> str:
|
||||
comment_string = ""
|
||||
|
||||
comment_cql = f"type=comment and container='{page_id}'"
|
||||
comment_cql += self.cql_label_filter
|
||||
expand = ",".join(_COMMENT_EXPANSION_FIELDS)
|
||||
|
||||
expand = ",".join(_COMMENT_EXPANSION_FIELDS)
|
||||
for comment in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=comment_cql,
|
||||
expand=expand,
|
||||
@@ -226,179 +222,123 @@ class ConfluenceConnector(
|
||||
confluence_object=comment,
|
||||
fetched_titles=set(),
|
||||
)
|
||||
|
||||
return comment_string
|
||||
|
||||
def _convert_page_to_document(self, page: dict[str, Any]) -> Document | None:
|
||||
def _convert_object_to_document(
|
||||
self,
|
||||
confluence_object: dict[str, Any],
|
||||
parent_content_id: str | None = None,
|
||||
) -> Document | None:
|
||||
"""
|
||||
Converts a Confluence page to a Document object.
|
||||
Includes the page content, comments, and attachments.
|
||||
"""
|
||||
try:
|
||||
# Extract basic page information
|
||||
page_id = page["id"]
|
||||
page_title = page["title"]
|
||||
page_url = f"{self.wiki_base}{page['_links']['webui']}"
|
||||
Takes in a confluence object, extracts all metadata, and converts it into a document.
|
||||
If its a page, it extracts the text, adds the comments for the document text.
|
||||
If its an attachment, it just downloads the attachment and converts that into a document.
|
||||
|
||||
# Get the page content
|
||||
page_content = extract_text_from_confluence_html(
|
||||
self.confluence_client, page, self._fetched_titles
|
||||
parent_content_id: if the object is an attachment, specifies the content id that
|
||||
the attachment is attached to
|
||||
"""
|
||||
# The url and the id are the same
|
||||
object_url = build_confluence_document_id(
|
||||
self.wiki_base, confluence_object["_links"]["webui"], self.is_cloud
|
||||
)
|
||||
|
||||
object_text = None
|
||||
# Extract text from page
|
||||
if confluence_object["type"] == "page":
|
||||
object_text = extract_text_from_confluence_html(
|
||||
confluence_client=self.confluence_client,
|
||||
confluence_object=confluence_object,
|
||||
fetched_titles={confluence_object.get("title", "")},
|
||||
)
|
||||
# Add comments to text
|
||||
object_text += self._get_comment_string_for_page_id(confluence_object["id"])
|
||||
elif confluence_object["type"] == "attachment":
|
||||
object_text = attachment_to_content(
|
||||
confluence_client=self.confluence_client,
|
||||
attachment=confluence_object,
|
||||
parent_content_id=parent_content_id,
|
||||
)
|
||||
|
||||
# Create the main section for the page content
|
||||
sections = [Section(text=page_content, link=page_url)]
|
||||
|
||||
# Process comments if available
|
||||
comment_text = self._get_comment_string_for_page_id(page_id)
|
||||
if comment_text:
|
||||
sections.append(Section(text=comment_text, link=f"{page_url}#comments"))
|
||||
|
||||
# Process attachments
|
||||
if "children" in page and "attachment" in page["children"]:
|
||||
attachments = self.confluence_client.get_attachments_for_page(
|
||||
page_id, expand="metadata"
|
||||
)
|
||||
|
||||
for attachment in attachments.get("results", []):
|
||||
# Process each attachment
|
||||
result = process_attachment(
|
||||
self.confluence_client,
|
||||
attachment,
|
||||
page_title,
|
||||
self.image_analysis_llm,
|
||||
)
|
||||
|
||||
if result.text:
|
||||
# Create a section for the attachment text
|
||||
attachment_section = Section(
|
||||
text=result.text,
|
||||
link=f"{page_url}#attachment-{attachment['id']}",
|
||||
image_file_name=result.file_name,
|
||||
)
|
||||
sections.append(attachment_section)
|
||||
elif result.error:
|
||||
logger.warning(
|
||||
f"Error processing attachment '{attachment.get('title')}': {result.error}"
|
||||
)
|
||||
|
||||
# Extract metadata
|
||||
metadata = {}
|
||||
if "space" in page:
|
||||
metadata["space"] = page["space"].get("name", "")
|
||||
|
||||
# Extract labels
|
||||
labels = []
|
||||
if "metadata" in page and "labels" in page["metadata"]:
|
||||
for label in page["metadata"]["labels"].get("results", []):
|
||||
labels.append(label.get("name", ""))
|
||||
if labels:
|
||||
metadata["labels"] = labels
|
||||
|
||||
# Extract owners
|
||||
primary_owners = []
|
||||
if "version" in page and "by" in page["version"]:
|
||||
author = page["version"]["by"]
|
||||
display_name = author.get("displayName", "Unknown")
|
||||
primary_owners.append(BasicExpertInfo(display_name=display_name))
|
||||
|
||||
# Create the document
|
||||
return Document(
|
||||
id=build_confluence_document_id(
|
||||
self.wiki_base, page["_links"]["webui"], self.is_cloud
|
||||
),
|
||||
sections=sections,
|
||||
source=DocumentSource.CONFLUENCE,
|
||||
semantic_identifier=page_title,
|
||||
metadata=metadata,
|
||||
doc_updated_at=datetime_from_string(page["version"]["when"]),
|
||||
primary_owners=primary_owners if primary_owners else None,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error converting page {page.get('id', 'unknown')}: {e}")
|
||||
if not self.continue_on_failure:
|
||||
raise
|
||||
if object_text is None:
|
||||
# This only happens for attachments that are not parseable
|
||||
return None
|
||||
|
||||
# Get space name
|
||||
doc_metadata: dict[str, str | list[str]] = {
|
||||
"Wiki Space Name": confluence_object["space"]["name"]
|
||||
}
|
||||
|
||||
# Get labels
|
||||
label_dicts = (
|
||||
confluence_object.get("metadata", {}).get("labels", {}).get("results", [])
|
||||
)
|
||||
page_labels = [label.get("name") for label in label_dicts if label.get("name")]
|
||||
if page_labels:
|
||||
doc_metadata["labels"] = page_labels
|
||||
|
||||
# Get last modified and author email
|
||||
version_dict = confluence_object.get("version", {})
|
||||
last_modified = (
|
||||
datetime_from_string(version_dict.get("when"))
|
||||
if version_dict.get("when")
|
||||
else None
|
||||
)
|
||||
author_email = version_dict.get("by", {}).get("email")
|
||||
|
||||
title = confluence_object.get("title", "Untitled Document")
|
||||
|
||||
return Document(
|
||||
id=object_url,
|
||||
sections=[Section(link=object_url, text=object_text)],
|
||||
source=DocumentSource.CONFLUENCE,
|
||||
semantic_identifier=title,
|
||||
doc_updated_at=last_modified,
|
||||
primary_owners=(
|
||||
[BasicExpertInfo(email=author_email)] if author_email else None
|
||||
),
|
||||
metadata=doc_metadata,
|
||||
)
|
||||
|
||||
def _fetch_document_batches(
|
||||
self,
|
||||
start: SecondsSinceUnixEpoch | None = None,
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
) -> GenerateDocumentsOutput:
|
||||
"""
|
||||
Yields batches of Documents. For each page:
|
||||
- Create a Document with 1 Section for the page text/comments
|
||||
- Then fetch attachments. For each attachment:
|
||||
- Attempt to convert it with convert_attachment_to_content(...)
|
||||
- If successful, create a new Section with the extracted text or summary.
|
||||
"""
|
||||
doc_batch: list[Document] = []
|
||||
confluence_page_ids: list[str] = []
|
||||
|
||||
page_query = self._construct_page_query(start, end)
|
||||
logger.debug(f"page_query: {page_query}")
|
||||
|
||||
# Fetch pages as Documents
|
||||
for page in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=page_query,
|
||||
expand=",".join(_PAGE_EXPANSION_FIELDS),
|
||||
limit=self.batch_size,
|
||||
):
|
||||
# Build doc from page
|
||||
doc = self._convert_page_to_document(page)
|
||||
if not doc:
|
||||
continue
|
||||
|
||||
# Now get attachments for that page:
|
||||
attachment_query = self._construct_attachment_query(page["id"])
|
||||
# We'll use the page's XML to provide context if we summarize an image
|
||||
confluence_xml = page.get("body", {}).get("storage", {}).get("value", "")
|
||||
logger.debug(f"_fetch_document_batches: {page['id']}")
|
||||
confluence_page_ids.append(page["id"])
|
||||
doc = self._convert_object_to_document(page)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
|
||||
# Fetch attachments as Documents
|
||||
for confluence_page_id in confluence_page_ids:
|
||||
attachment_query = self._construct_attachment_query(confluence_page_id)
|
||||
# TODO: maybe should add time filter as well?
|
||||
for attachment in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=attachment_query,
|
||||
expand=",".join(_ATTACHMENT_EXPANSION_FIELDS),
|
||||
):
|
||||
attachment["metadata"].get("mediaType", "")
|
||||
if not validate_attachment_filetype(
|
||||
attachment, self.image_analysis_llm
|
||||
):
|
||||
continue
|
||||
|
||||
# Attempt to get textual content or image summarization:
|
||||
try:
|
||||
logger.info(f"Processing attachment: {attachment['title']}")
|
||||
response = convert_attachment_to_content(
|
||||
confluence_client=self.confluence_client,
|
||||
attachment=attachment,
|
||||
page_context=confluence_xml,
|
||||
llm=self.image_analysis_llm,
|
||||
)
|
||||
if response is None:
|
||||
continue
|
||||
|
||||
content_text, file_storage_name = response
|
||||
|
||||
object_url = build_confluence_document_id(
|
||||
self.wiki_base, attachment["_links"]["webui"], self.is_cloud
|
||||
)
|
||||
|
||||
if content_text:
|
||||
doc.sections.append(
|
||||
Section(
|
||||
text=content_text,
|
||||
link=object_url,
|
||||
image_file_name=file_storage_name,
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to extract/summarize attachment {attachment['title']}",
|
||||
exc_info=e,
|
||||
)
|
||||
if not self.continue_on_failure:
|
||||
raise
|
||||
|
||||
doc_batch.append(doc)
|
||||
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
doc = self._convert_object_to_document(attachment, confluence_page_id)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
|
||||
if doc_batch:
|
||||
yield doc_batch
|
||||
@@ -419,63 +359,55 @@ class ConfluenceConnector(
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> GenerateSlimDocumentOutput:
|
||||
"""
|
||||
Return 'slim' docs (IDs + minimal permission data).
|
||||
Does not fetch actual text. Used primarily for incremental permission sync.
|
||||
"""
|
||||
doc_metadata_list: list[SlimDocument] = []
|
||||
|
||||
restrictions_expand = ",".join(_RESTRICTIONS_EXPANSION_FIELDS)
|
||||
|
||||
# Query pages
|
||||
page_query = self.base_cql_page_query + self.cql_label_filter
|
||||
for page in self.confluence_client.cql_paginate_all_expansions(
|
||||
cql=page_query,
|
||||
expand=restrictions_expand,
|
||||
limit=_SLIM_DOC_BATCH_SIZE,
|
||||
):
|
||||
# If the page has restrictions, add them to the perm_sync_data
|
||||
# These will be used by doc_sync.py to sync permissions
|
||||
page_restrictions = page.get("restrictions")
|
||||
page_space_key = page.get("space", {}).get("key")
|
||||
page_ancestors = page.get("ancestors", [])
|
||||
|
||||
page_perm_sync_data = {
|
||||
"restrictions": page_restrictions or {},
|
||||
"space_key": page_space_key,
|
||||
"ancestors": page_ancestors,
|
||||
"ancestors": page_ancestors or [],
|
||||
}
|
||||
|
||||
doc_metadata_list.append(
|
||||
SlimDocument(
|
||||
id=build_confluence_document_id(
|
||||
self.wiki_base, page["_links"]["webui"], self.is_cloud
|
||||
self.wiki_base,
|
||||
page["_links"]["webui"],
|
||||
self.is_cloud,
|
||||
),
|
||||
perm_sync_data=page_perm_sync_data,
|
||||
)
|
||||
)
|
||||
|
||||
# Query attachments for each page
|
||||
attachment_query = self._construct_attachment_query(page["id"])
|
||||
for attachment in self.confluence_client.cql_paginate_all_expansions(
|
||||
cql=attachment_query,
|
||||
expand=restrictions_expand,
|
||||
limit=_SLIM_DOC_BATCH_SIZE,
|
||||
):
|
||||
# If you skip images, you'll skip them in the permission sync
|
||||
attachment["metadata"].get("mediaType", "")
|
||||
if not validate_attachment_filetype(
|
||||
attachment, self.image_analysis_llm
|
||||
):
|
||||
if not validate_attachment_filetype(attachment):
|
||||
continue
|
||||
|
||||
attachment_restrictions = attachment.get("restrictions", {})
|
||||
attachment_restrictions = attachment.get("restrictions")
|
||||
if not attachment_restrictions:
|
||||
attachment_restrictions = page_restrictions or {}
|
||||
attachment_restrictions = page_restrictions
|
||||
|
||||
attachment_space_key = attachment.get("space", {}).get("key")
|
||||
if not attachment_space_key:
|
||||
attachment_space_key = page_space_key
|
||||
|
||||
attachment_perm_sync_data = {
|
||||
"restrictions": attachment_restrictions,
|
||||
"restrictions": attachment_restrictions or {},
|
||||
"space_key": attachment_space_key,
|
||||
}
|
||||
|
||||
@@ -489,16 +421,16 @@ class ConfluenceConnector(
|
||||
perm_sync_data=attachment_perm_sync_data,
|
||||
)
|
||||
)
|
||||
|
||||
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:
|
||||
yield doc_metadata_list[:_SLIM_DOC_BATCH_SIZE]
|
||||
doc_metadata_list = doc_metadata_list[_SLIM_DOC_BATCH_SIZE:]
|
||||
|
||||
if callback and callback.should_stop():
|
||||
raise RuntimeError(
|
||||
"retrieve_all_slim_documents: Stop signal detected"
|
||||
)
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError(
|
||||
"retrieve_all_slim_documents: Stop signal detected"
|
||||
)
|
||||
|
||||
callback.progress("retrieve_all_slim_documents", 1)
|
||||
|
||||
yield doc_metadata_list
|
||||
|
||||
@@ -144,12 +144,6 @@ class OnyxConfluence:
|
||||
self.static_credentials = credential_json
|
||||
return credential_json, False
|
||||
|
||||
if not OAUTH_CONFLUENCE_CLOUD_CLIENT_ID:
|
||||
raise RuntimeError("OAUTH_CONFLUENCE_CLOUD_CLIENT_ID must be set!")
|
||||
|
||||
if not OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET:
|
||||
raise RuntimeError("OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET must be set!")
|
||||
|
||||
# check if we should refresh tokens. we're deciding to refresh halfway
|
||||
# to expiration
|
||||
now = datetime.now(timezone.utc)
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
import io
|
||||
import math
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from datetime import timezone
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
from typing import TYPE_CHECKING
|
||||
@@ -15,28 +12,14 @@ from urllib.parse import parse_qs
|
||||
from urllib.parse import quote
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import bs4
|
||||
import requests
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.configs.app_configs import (
|
||||
CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD,
|
||||
)
|
||||
from onyx.configs.constants import FileOrigin
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
|
||||
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.db.models import PGFileStore
|
||||
from onyx.db.pg_file_store import create_populate_lobj
|
||||
from onyx.db.pg_file_store import save_bytes_to_pgfilestore
|
||||
from onyx.db.pg_file_store import upsert_pgfilestore
|
||||
from onyx.file_processing.extract_file_text import extract_file_text
|
||||
from onyx.file_processing.file_validation import is_valid_image_type
|
||||
from onyx.file_processing.image_utils import store_image_and_create_section
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
pass
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -52,229 +35,15 @@ class TokenResponse(BaseModel):
|
||||
scope: str
|
||||
|
||||
|
||||
def validate_attachment_filetype(
|
||||
attachment: dict[str, Any], llm: LLM | None = None
|
||||
) -> bool:
|
||||
"""
|
||||
Validates if the attachment is a supported file type.
|
||||
If LLM is provided, also checks if it's an image that can be processed.
|
||||
"""
|
||||
attachment.get("metadata", {})
|
||||
media_type = attachment.get("metadata", {}).get("mediaType", "")
|
||||
|
||||
if media_type.startswith("image/"):
|
||||
return llm is not None and is_valid_image_type(media_type)
|
||||
|
||||
# For non-image files, check if we support the extension
|
||||
title = attachment.get("title", "")
|
||||
extension = Path(title).suffix.lstrip(".").lower() if "." in title else ""
|
||||
return extension in ["pdf", "doc", "docx", "txt", "md", "rtf"]
|
||||
|
||||
|
||||
class AttachmentProcessingResult(BaseModel):
|
||||
"""
|
||||
A container for results after processing a Confluence attachment.
|
||||
'text' is the textual content of the attachment.
|
||||
'file_name' is the final file name used in PGFileStore to store the content.
|
||||
'error' holds an exception or string if something failed.
|
||||
"""
|
||||
|
||||
text: str | None
|
||||
file_name: str | None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
def _download_attachment(
|
||||
confluence_client: "OnyxConfluence", attachment: dict[str, Any]
|
||||
) -> bytes | None:
|
||||
"""
|
||||
Retrieves the raw bytes of an attachment from Confluence. Returns None on error.
|
||||
"""
|
||||
download_link = confluence_client.url + attachment["_links"]["download"]
|
||||
resp = confluence_client._session.get(download_link)
|
||||
if resp.status_code != 200:
|
||||
logger.warning(
|
||||
f"Failed to fetch {download_link} with status code {resp.status_code}"
|
||||
)
|
||||
return None
|
||||
return resp.content
|
||||
|
||||
|
||||
def process_attachment(
|
||||
confluence_client: "OnyxConfluence",
|
||||
attachment: dict[str, Any],
|
||||
page_context: str,
|
||||
llm: LLM | None,
|
||||
) -> AttachmentProcessingResult:
|
||||
"""
|
||||
Processes a Confluence attachment. If it's a document, extracts text,
|
||||
or if it's an image and an LLM is available, summarizes it. Returns a structured result.
|
||||
"""
|
||||
try:
|
||||
# Get the media type from the attachment metadata
|
||||
media_type = attachment.get("metadata", {}).get("mediaType", "")
|
||||
|
||||
# Validate the attachment type
|
||||
if not validate_attachment_filetype(attachment, llm):
|
||||
return AttachmentProcessingResult(
|
||||
text=None,
|
||||
file_name=None,
|
||||
error=f"Unsupported file type: {media_type}",
|
||||
)
|
||||
|
||||
# Download the attachment
|
||||
raw_bytes = _download_attachment(confluence_client, attachment)
|
||||
if raw_bytes is None:
|
||||
return AttachmentProcessingResult(
|
||||
text=None, file_name=None, error="Failed to download attachment"
|
||||
)
|
||||
|
||||
# Process image attachments with LLM if available
|
||||
if media_type.startswith("image/") and llm:
|
||||
return _process_image_attachment(
|
||||
confluence_client, attachment, page_context, llm, raw_bytes, media_type
|
||||
)
|
||||
|
||||
# Process document attachments
|
||||
try:
|
||||
text = extract_file_text(
|
||||
file=BytesIO(raw_bytes),
|
||||
file_name=attachment["title"],
|
||||
)
|
||||
|
||||
# Skip if the text is too long
|
||||
if len(text) > CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD:
|
||||
return AttachmentProcessingResult(
|
||||
text=None,
|
||||
file_name=None,
|
||||
error=f"Attachment text too long: {len(text)} chars",
|
||||
)
|
||||
|
||||
return AttachmentProcessingResult(text=text, file_name=None, error=None)
|
||||
except Exception as e:
|
||||
return AttachmentProcessingResult(
|
||||
text=None, file_name=None, error=f"Failed to extract text: {e}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return AttachmentProcessingResult(
|
||||
text=None, file_name=None, error=f"Failed to process attachment: {e}"
|
||||
)
|
||||
|
||||
|
||||
def _process_image_attachment(
|
||||
confluence_client: "OnyxConfluence",
|
||||
attachment: dict[str, Any],
|
||||
page_context: str,
|
||||
llm: LLM,
|
||||
raw_bytes: bytes,
|
||||
media_type: str,
|
||||
) -> AttachmentProcessingResult:
|
||||
"""Process an image attachment by saving it and generating a summary."""
|
||||
try:
|
||||
# Use the standardized image storage and section creation
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
section, file_name = store_image_and_create_section(
|
||||
db_session=db_session,
|
||||
image_data=raw_bytes,
|
||||
file_name=Path(attachment["id"]).name,
|
||||
display_name=attachment["title"],
|
||||
media_type=media_type,
|
||||
llm=llm,
|
||||
file_origin=FileOrigin.CONNECTOR,
|
||||
)
|
||||
|
||||
return AttachmentProcessingResult(
|
||||
text=section.text, file_name=file_name, error=None
|
||||
)
|
||||
except Exception as e:
|
||||
msg = f"Image summarization failed for {attachment['title']}: {e}"
|
||||
logger.error(msg, exc_info=e)
|
||||
return AttachmentProcessingResult(text=None, file_name=None, error=msg)
|
||||
|
||||
|
||||
def _process_text_attachment(
|
||||
attachment: dict[str, Any],
|
||||
raw_bytes: bytes,
|
||||
media_type: str,
|
||||
) -> AttachmentProcessingResult:
|
||||
"""Process a text-based attachment by extracting its content."""
|
||||
try:
|
||||
extracted_text = extract_file_text(
|
||||
io.BytesIO(raw_bytes),
|
||||
file_name=attachment["title"],
|
||||
break_on_unprocessable=False,
|
||||
)
|
||||
except Exception as e:
|
||||
msg = f"Failed to extract text for '{attachment['title']}': {e}"
|
||||
logger.error(msg, exc_info=e)
|
||||
return AttachmentProcessingResult(text=None, file_name=None, error=msg)
|
||||
|
||||
# Check length constraints
|
||||
if extracted_text is None or len(extracted_text) == 0:
|
||||
msg = f"No text extracted for {attachment['title']}"
|
||||
logger.warning(msg)
|
||||
return AttachmentProcessingResult(text=None, file_name=None, error=msg)
|
||||
|
||||
if len(extracted_text) > CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD:
|
||||
msg = (
|
||||
f"Skipping attachment {attachment['title']} due to char count "
|
||||
f"({len(extracted_text)} > {CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD})"
|
||||
)
|
||||
logger.warning(msg)
|
||||
return AttachmentProcessingResult(text=None, file_name=None, error=msg)
|
||||
|
||||
# Save the attachment
|
||||
try:
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
saved_record = save_bytes_to_pgfilestore(
|
||||
db_session=db_session,
|
||||
raw_bytes=raw_bytes,
|
||||
media_type=media_type,
|
||||
identifier=attachment["id"],
|
||||
display_name=attachment["title"],
|
||||
)
|
||||
except Exception as e:
|
||||
msg = f"Failed to save attachment '{attachment['title']}' to PG: {e}"
|
||||
logger.error(msg, exc_info=e)
|
||||
return AttachmentProcessingResult(
|
||||
text=extracted_text, file_name=None, error=msg
|
||||
)
|
||||
|
||||
return AttachmentProcessingResult(
|
||||
text=extracted_text, file_name=saved_record.file_name, error=None
|
||||
)
|
||||
|
||||
|
||||
def convert_attachment_to_content(
|
||||
confluence_client: "OnyxConfluence",
|
||||
attachment: dict[str, Any],
|
||||
page_context: str,
|
||||
llm: LLM | None,
|
||||
) -> tuple[str | None, str | None] | None:
|
||||
"""
|
||||
Facade function which:
|
||||
1. Validates attachment type
|
||||
2. Extracts or summarizes content
|
||||
3. Returns (content_text, stored_file_name) or None if we should skip it
|
||||
"""
|
||||
media_type = attachment["metadata"]["mediaType"]
|
||||
# Quick check for unsupported types:
|
||||
if media_type.startswith("video/") or media_type == "application/gliffy+json":
|
||||
logger.warning(
|
||||
f"Skipping unsupported attachment type: '{media_type}' for {attachment['title']}"
|
||||
)
|
||||
return None
|
||||
|
||||
result = process_attachment(confluence_client, attachment, page_context, llm)
|
||||
if result.error is not None:
|
||||
logger.warning(
|
||||
f"Attachment {attachment['title']} encountered error: {result.error}"
|
||||
)
|
||||
return None
|
||||
|
||||
# Return the text and the file name
|
||||
return result.text, result.file_name
|
||||
def validate_attachment_filetype(attachment: dict[str, Any]) -> bool:
|
||||
return attachment["metadata"]["mediaType"] not in [
|
||||
"image/jpeg",
|
||||
"image/png",
|
||||
"image/gif",
|
||||
"image/svg+xml",
|
||||
"video/mp4",
|
||||
"video/quicktime",
|
||||
]
|
||||
|
||||
|
||||
def build_confluence_document_id(
|
||||
@@ -295,6 +64,23 @@ def build_confluence_document_id(
|
||||
return f"{base_url}{content_url}"
|
||||
|
||||
|
||||
def _extract_referenced_attachment_names(page_text: str) -> list[str]:
|
||||
"""Parse a Confluence html page to generate a list of current
|
||||
attachments in use
|
||||
|
||||
Args:
|
||||
text (str): The page content
|
||||
|
||||
Returns:
|
||||
list[str]: List of filenames currently in use by the page text
|
||||
"""
|
||||
referenced_attachment_filenames = []
|
||||
soup = bs4.BeautifulSoup(page_text, "html.parser")
|
||||
for attachment in soup.findAll("ri:attachment"):
|
||||
referenced_attachment_filenames.append(attachment.attrs["ri:filename"])
|
||||
return referenced_attachment_filenames
|
||||
|
||||
|
||||
def datetime_from_string(datetime_string: str) -> datetime:
|
||||
datetime_object = datetime.fromisoformat(datetime_string)
|
||||
|
||||
@@ -466,37 +252,3 @@ def update_param_in_path(path: str, param: str, value: str) -> str:
|
||||
+ "?"
|
||||
+ "&".join(f"{k}={quote(v[0])}" for k, v in query_params.items())
|
||||
)
|
||||
|
||||
|
||||
def attachment_to_file_record(
|
||||
confluence_client: "OnyxConfluence",
|
||||
attachment: dict[str, Any],
|
||||
db_session: Session,
|
||||
) -> tuple[PGFileStore, bytes]:
|
||||
"""Save an attachment to the file store and return the file record."""
|
||||
download_link = _attachment_to_download_link(confluence_client, attachment)
|
||||
image_data = confluence_client.get(
|
||||
download_link, absolute=True, not_json_response=True
|
||||
)
|
||||
|
||||
# Save image to file store
|
||||
file_name = f"confluence_attachment_{attachment['id']}"
|
||||
lobj_oid = create_populate_lobj(BytesIO(image_data), db_session)
|
||||
pgfilestore = upsert_pgfilestore(
|
||||
file_name=file_name,
|
||||
display_name=attachment["title"],
|
||||
file_origin=FileOrigin.OTHER,
|
||||
file_type=attachment["metadata"]["mediaType"],
|
||||
lobj_oid=lobj_oid,
|
||||
db_session=db_session,
|
||||
commit=True,
|
||||
)
|
||||
|
||||
return pgfilestore, image_data
|
||||
|
||||
|
||||
def _attachment_to_download_link(
|
||||
confluence_client: "OnyxConfluence", attachment: dict[str, Any]
|
||||
) -> str:
|
||||
"""Extracts the download link to images."""
|
||||
return confluence_client.url + attachment["_links"]["download"]
|
||||
|
||||
@@ -10,23 +10,22 @@ from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.configs.app_configs import INDEX_BATCH_SIZE
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import FileOrigin
|
||||
from onyx.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
|
||||
from onyx.connectors.interfaces import GenerateDocumentsOutput
|
||||
from onyx.connectors.interfaces import LoadConnector
|
||||
from onyx.connectors.models import BasicExpertInfo
|
||||
from onyx.connectors.models import Document
|
||||
from onyx.connectors.models import Section
|
||||
from onyx.connectors.vision_enabled_connector import VisionEnabledConnector
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.db.pg_file_store import get_pgfilestore_by_file_name
|
||||
from onyx.file_processing.extract_file_text import extract_text_and_images
|
||||
from onyx.file_processing.extract_file_text import detect_encoding
|
||||
from onyx.file_processing.extract_file_text import extract_file_text
|
||||
from onyx.file_processing.extract_file_text import get_file_ext
|
||||
from onyx.file_processing.extract_file_text import is_text_file_extension
|
||||
from onyx.file_processing.extract_file_text import is_valid_file_ext
|
||||
from onyx.file_processing.extract_file_text import load_files_from_zip
|
||||
from onyx.file_processing.image_utils import store_image_and_create_section
|
||||
from onyx.file_processing.extract_file_text import read_pdf_file
|
||||
from onyx.file_processing.extract_file_text import read_text_file
|
||||
from onyx.file_store.file_store import get_default_file_store
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -36,115 +35,81 @@ def _read_files_and_metadata(
|
||||
file_name: str,
|
||||
db_session: Session,
|
||||
) -> Iterator[tuple[str, IO, dict[str, Any]]]:
|
||||
"""
|
||||
Reads the file from Postgres. If the file is a .zip, yields subfiles.
|
||||
"""
|
||||
"""Reads the file into IO, in the case of a zip file, yields each individual
|
||||
file contained within, also includes the metadata dict if packaged in the zip"""
|
||||
extension = get_file_ext(file_name)
|
||||
metadata: dict[str, Any] = {}
|
||||
directory_path = os.path.dirname(file_name)
|
||||
|
||||
# Read file from Postgres store
|
||||
file_content = get_default_file_store(db_session).read_file(file_name, mode="b")
|
||||
|
||||
# If it's a zip, expand it
|
||||
if extension == ".zip":
|
||||
for file_info, subfile, metadata in load_files_from_zip(
|
||||
for file_info, file, metadata in load_files_from_zip(
|
||||
file_content, ignore_dirs=True
|
||||
):
|
||||
yield os.path.join(directory_path, file_info.filename), subfile, metadata
|
||||
yield os.path.join(directory_path, file_info.filename), file, metadata
|
||||
elif is_valid_file_ext(extension):
|
||||
yield file_name, file_content, metadata
|
||||
else:
|
||||
logger.warning(f"Skipping file '{file_name}' with extension '{extension}'")
|
||||
|
||||
|
||||
def _create_image_section(
|
||||
llm: LLM | None,
|
||||
image_data: bytes,
|
||||
db_session: Session,
|
||||
parent_file_name: str,
|
||||
display_name: str,
|
||||
idx: int = 0,
|
||||
) -> tuple[Section, str | None]:
|
||||
"""
|
||||
Create a Section object for a single image and store the image in PGFileStore.
|
||||
If summarization is enabled and we have an LLM, summarize the image.
|
||||
|
||||
Returns:
|
||||
tuple: (Section object, file_name in PGFileStore or None if storage failed)
|
||||
"""
|
||||
# Create a unique file name for the embedded image
|
||||
file_name = f"{parent_file_name}_embedded_{idx}"
|
||||
|
||||
# Use the standardized utility to store the image and create a section
|
||||
return store_image_and_create_section(
|
||||
db_session=db_session,
|
||||
image_data=image_data,
|
||||
file_name=file_name,
|
||||
display_name=display_name,
|
||||
llm=llm,
|
||||
file_origin=FileOrigin.OTHER,
|
||||
)
|
||||
|
||||
|
||||
def _process_file(
|
||||
file_name: str,
|
||||
file: IO[Any],
|
||||
metadata: dict[str, Any] | None,
|
||||
pdf_pass: str | None,
|
||||
db_session: Session,
|
||||
llm: LLM | None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
pdf_pass: str | None = None,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Processes a single file, returning a list of Documents (typically one).
|
||||
Also handles embedded images if 'EMBEDDED_IMAGE_EXTRACTION_ENABLED' is true.
|
||||
"""
|
||||
extension = get_file_ext(file_name)
|
||||
|
||||
# Fetch the DB record so we know the ID for internal URL
|
||||
pg_record = get_pgfilestore_by_file_name(file_name=file_name, db_session=db_session)
|
||||
if not pg_record:
|
||||
logger.warning(f"No file record found for '{file_name}' in PG; skipping.")
|
||||
return []
|
||||
|
||||
if not is_valid_file_ext(extension):
|
||||
logger.warning(
|
||||
f"Skipping file '{file_name}' with unrecognized extension '{extension}'"
|
||||
)
|
||||
logger.warning(f"Skipping file '{file_name}' with extension '{extension}'")
|
||||
return []
|
||||
|
||||
# Prepare doc metadata
|
||||
if metadata is None:
|
||||
metadata = {}
|
||||
file_display_name = metadata.get("file_display_name") or os.path.basename(file_name)
|
||||
file_metadata: dict[str, Any] = {}
|
||||
|
||||
# Timestamps
|
||||
current_datetime = datetime.now(timezone.utc)
|
||||
time_updated = metadata.get("time_updated", current_datetime)
|
||||
if is_text_file_extension(file_name):
|
||||
encoding = detect_encoding(file)
|
||||
file_content_raw, file_metadata = read_text_file(
|
||||
file, encoding=encoding, ignore_onyx_metadata=False
|
||||
)
|
||||
|
||||
# Using the PDF reader function directly to pass in password cleanly
|
||||
elif extension == ".pdf" and pdf_pass is not None:
|
||||
file_content_raw, file_metadata = read_pdf_file(file=file, pdf_pass=pdf_pass)
|
||||
|
||||
else:
|
||||
file_content_raw = extract_file_text(
|
||||
file=file,
|
||||
file_name=file_name,
|
||||
break_on_unprocessable=True,
|
||||
)
|
||||
|
||||
all_metadata = {**metadata, **file_metadata} if metadata else file_metadata
|
||||
|
||||
# add a prefix to avoid conflicts with other connectors
|
||||
doc_id = f"FILE_CONNECTOR__{file_name}"
|
||||
if metadata:
|
||||
doc_id = metadata.get("document_id") or doc_id
|
||||
|
||||
# If this is set, we will show this in the UI as the "name" of the file
|
||||
file_display_name = all_metadata.get("file_display_name") or os.path.basename(
|
||||
file_name
|
||||
)
|
||||
title = (
|
||||
all_metadata["title"] or "" if "title" in all_metadata else file_display_name
|
||||
)
|
||||
|
||||
time_updated = all_metadata.get("time_updated", datetime.now(timezone.utc))
|
||||
if isinstance(time_updated, str):
|
||||
time_updated = time_str_to_utc(time_updated)
|
||||
|
||||
dt_str = metadata.get("doc_updated_at")
|
||||
dt_str = all_metadata.get("doc_updated_at")
|
||||
final_time_updated = time_str_to_utc(dt_str) if dt_str else time_updated
|
||||
|
||||
# Collect owners
|
||||
p_owner_names = metadata.get("primary_owners")
|
||||
s_owner_names = metadata.get("secondary_owners")
|
||||
p_owners = (
|
||||
[BasicExpertInfo(display_name=name) for name in p_owner_names]
|
||||
if p_owner_names
|
||||
else None
|
||||
)
|
||||
s_owners = (
|
||||
[BasicExpertInfo(display_name=name) for name in s_owner_names]
|
||||
if s_owner_names
|
||||
else None
|
||||
)
|
||||
|
||||
# Additional tags we store as doc metadata
|
||||
# Metadata tags separate from the Onyx specific fields
|
||||
metadata_tags = {
|
||||
k: v
|
||||
for k, v in metadata.items()
|
||||
for k, v in all_metadata.items()
|
||||
if k
|
||||
not in [
|
||||
"document_id",
|
||||
@@ -157,142 +122,77 @@ def _process_file(
|
||||
"file_display_name",
|
||||
"title",
|
||||
"connector_type",
|
||||
"pdf_password",
|
||||
]
|
||||
}
|
||||
|
||||
source_type_str = metadata.get("connector_type")
|
||||
source_type = (
|
||||
DocumentSource(source_type_str) if source_type_str else DocumentSource.FILE
|
||||
source_type_str = all_metadata.get("connector_type")
|
||||
source_type = DocumentSource(source_type_str) if source_type_str else None
|
||||
|
||||
p_owner_names = all_metadata.get("primary_owners")
|
||||
s_owner_names = all_metadata.get("secondary_owners")
|
||||
p_owners = (
|
||||
[BasicExpertInfo(display_name=name) for name in p_owner_names]
|
||||
if p_owner_names
|
||||
else None
|
||||
)
|
||||
s_owners = (
|
||||
[BasicExpertInfo(display_name=name) for name in s_owner_names]
|
||||
if s_owner_names
|
||||
else None
|
||||
)
|
||||
|
||||
doc_id = metadata.get("document_id") or f"FILE_CONNECTOR__{file_name}"
|
||||
title = metadata.get("title") or file_display_name
|
||||
|
||||
# 1) If the file itself is an image, handle that scenario quickly
|
||||
IMAGE_EXTENSIONS = {".jpg", ".jpeg", ".png", ".webp"}
|
||||
if extension in IMAGE_EXTENSIONS:
|
||||
# Summarize or produce empty doc
|
||||
image_data = file.read()
|
||||
image_section, _ = _create_image_section(
|
||||
llm, image_data, db_session, pg_record.file_name, title
|
||||
)
|
||||
return [
|
||||
Document(
|
||||
id=doc_id,
|
||||
sections=[image_section],
|
||||
source=source_type,
|
||||
semantic_identifier=file_display_name,
|
||||
title=title,
|
||||
doc_updated_at=final_time_updated,
|
||||
primary_owners=p_owners,
|
||||
secondary_owners=s_owners,
|
||||
metadata=metadata_tags,
|
||||
)
|
||||
]
|
||||
|
||||
# 2) Otherwise: text-based approach. Possibly with embedded images if enabled.
|
||||
# (For example .docx with inline images).
|
||||
file.seek(0)
|
||||
text_content = ""
|
||||
embedded_images: list[tuple[bytes, str]] = []
|
||||
|
||||
text_content, embedded_images = extract_text_and_images(
|
||||
file=file,
|
||||
file_name=file_name,
|
||||
pdf_pass=pdf_pass,
|
||||
)
|
||||
|
||||
# Build sections: first the text as a single Section
|
||||
sections = []
|
||||
link_in_meta = metadata.get("link")
|
||||
if text_content.strip():
|
||||
sections.append(Section(link=link_in_meta, text=text_content.strip()))
|
||||
|
||||
# Then any extracted images from docx, etc.
|
||||
for idx, (img_data, img_name) in enumerate(embedded_images, start=1):
|
||||
# Store each embedded image as a separate file in PGFileStore
|
||||
# and create a section with the image summary
|
||||
image_section, _ = _create_image_section(
|
||||
llm,
|
||||
img_data,
|
||||
db_session,
|
||||
pg_record.file_name,
|
||||
f"{title} - image {idx}",
|
||||
idx,
|
||||
)
|
||||
sections.append(image_section)
|
||||
return [
|
||||
Document(
|
||||
id=doc_id,
|
||||
sections=sections,
|
||||
source=source_type,
|
||||
sections=[
|
||||
Section(link=all_metadata.get("link"), text=file_content_raw.strip())
|
||||
],
|
||||
source=source_type or DocumentSource.FILE,
|
||||
semantic_identifier=file_display_name,
|
||||
title=title,
|
||||
doc_updated_at=final_time_updated,
|
||||
primary_owners=p_owners,
|
||||
secondary_owners=s_owners,
|
||||
# currently metadata just houses tags, other stuff like owners / updated at have dedicated fields
|
||||
metadata=metadata_tags,
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
class LocalFileConnector(LoadConnector, VisionEnabledConnector):
|
||||
"""
|
||||
Connector that reads files from Postgres and yields Documents, including
|
||||
optional embedded image extraction.
|
||||
"""
|
||||
|
||||
class LocalFileConnector(LoadConnector):
|
||||
def __init__(
|
||||
self,
|
||||
file_locations: list[Path | str],
|
||||
batch_size: int = INDEX_BATCH_SIZE,
|
||||
) -> None:
|
||||
self.file_locations = [str(loc) for loc in file_locations]
|
||||
self.file_locations = [Path(file_location) for file_location in file_locations]
|
||||
self.batch_size = batch_size
|
||||
self.pdf_pass: str | None = None
|
||||
|
||||
# Initialize vision LLM using the mixin
|
||||
self.initialize_vision_llm()
|
||||
|
||||
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
|
||||
self.pdf_pass = credentials.get("pdf_password")
|
||||
|
||||
return None
|
||||
|
||||
def load_from_state(self) -> GenerateDocumentsOutput:
|
||||
"""
|
||||
Iterates over each file path, fetches from Postgres, tries to parse text
|
||||
or images, and yields Document batches.
|
||||
"""
|
||||
documents: list[Document] = []
|
||||
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
for file_path in self.file_locations:
|
||||
current_datetime = datetime.now(timezone.utc)
|
||||
|
||||
files_iter = _read_files_and_metadata(
|
||||
file_name=file_path,
|
||||
db_session=db_session,
|
||||
files = _read_files_and_metadata(
|
||||
file_name=str(file_path), db_session=db_session
|
||||
)
|
||||
|
||||
for actual_file_name, file, metadata in files_iter:
|
||||
for file_name, file, metadata in files:
|
||||
metadata["time_updated"] = metadata.get(
|
||||
"time_updated", current_datetime
|
||||
)
|
||||
new_docs = _process_file(
|
||||
file_name=actual_file_name,
|
||||
file=file,
|
||||
metadata=metadata,
|
||||
pdf_pass=self.pdf_pass,
|
||||
db_session=db_session,
|
||||
llm=self.image_analysis_llm,
|
||||
documents.extend(
|
||||
_process_file(file_name, file, metadata, self.pdf_pass)
|
||||
)
|
||||
documents.extend(new_docs)
|
||||
|
||||
if len(documents) >= self.batch_size:
|
||||
yield documents
|
||||
|
||||
documents = []
|
||||
|
||||
if documents:
|
||||
@@ -301,7 +201,7 @@ class LocalFileConnector(LoadConnector, VisionEnabledConnector):
|
||||
|
||||
if __name__ == "__main__":
|
||||
connector = LocalFileConnector(file_locations=[os.environ["TEST_FILE"]])
|
||||
connector.load_credentials({"pdf_password": os.environ.get("PDF_PASSWORD")})
|
||||
doc_batches = connector.load_from_state()
|
||||
for batch in doc_batches:
|
||||
print("BATCH:", batch)
|
||||
connector.load_credentials({"pdf_password": os.environ["PDF_PASSWORD"]})
|
||||
|
||||
document_batches = connector.load_from_state()
|
||||
print(next(document_batches))
|
||||
|
||||
@@ -124,14 +124,14 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
def __init__(
|
||||
self,
|
||||
repo_owner: str,
|
||||
repositories: str | None = None,
|
||||
repo_name: str | None = None,
|
||||
batch_size: int = INDEX_BATCH_SIZE,
|
||||
state_filter: str = "all",
|
||||
include_prs: bool = True,
|
||||
include_issues: bool = False,
|
||||
) -> None:
|
||||
self.repo_owner = repo_owner
|
||||
self.repositories = repositories
|
||||
self.repo_name = repo_name
|
||||
self.batch_size = batch_size
|
||||
self.state_filter = state_filter
|
||||
self.include_prs = include_prs
|
||||
@@ -157,42 +157,11 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
)
|
||||
|
||||
try:
|
||||
return github_client.get_repo(f"{self.repo_owner}/{self.repositories}")
|
||||
return github_client.get_repo(f"{self.repo_owner}/{self.repo_name}")
|
||||
except RateLimitExceededException:
|
||||
_sleep_after_rate_limit_exception(github_client)
|
||||
return self._get_github_repo(github_client, attempt_num + 1)
|
||||
|
||||
def _get_github_repos(
|
||||
self, github_client: Github, attempt_num: int = 0
|
||||
) -> list[Repository.Repository]:
|
||||
"""Get specific repositories based on comma-separated repo_name string."""
|
||||
if attempt_num > _MAX_NUM_RATE_LIMIT_RETRIES:
|
||||
raise RuntimeError(
|
||||
"Re-tried fetching repos too many times. Something is going wrong with fetching objects from Github"
|
||||
)
|
||||
|
||||
try:
|
||||
repos = []
|
||||
# Split repo_name by comma and strip whitespace
|
||||
repo_names = [
|
||||
name.strip() for name in (cast(str, self.repositories)).split(",")
|
||||
]
|
||||
|
||||
for repo_name in repo_names:
|
||||
if repo_name: # Skip empty strings
|
||||
try:
|
||||
repo = github_client.get_repo(f"{self.repo_owner}/{repo_name}")
|
||||
repos.append(repo)
|
||||
except GithubException as e:
|
||||
logger.warning(
|
||||
f"Could not fetch repo {self.repo_owner}/{repo_name}: {e}"
|
||||
)
|
||||
|
||||
return repos
|
||||
except RateLimitExceededException:
|
||||
_sleep_after_rate_limit_exception(github_client)
|
||||
return self._get_github_repos(github_client, attempt_num + 1)
|
||||
|
||||
def _get_all_repos(
|
||||
self, github_client: Github, attempt_num: int = 0
|
||||
) -> list[Repository.Repository]:
|
||||
@@ -220,17 +189,11 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
if self.github_client is None:
|
||||
raise ConnectorMissingCredentialError("GitHub")
|
||||
|
||||
repos = []
|
||||
if self.repositories:
|
||||
if "," in self.repositories:
|
||||
# Multiple repositories specified
|
||||
repos = self._get_github_repos(self.github_client)
|
||||
else:
|
||||
# Single repository (backward compatibility)
|
||||
repos = [self._get_github_repo(self.github_client)]
|
||||
else:
|
||||
# All repositories
|
||||
repos = self._get_all_repos(self.github_client)
|
||||
repos = (
|
||||
[self._get_github_repo(self.github_client)]
|
||||
if self.repo_name
|
||||
else self._get_all_repos(self.github_client)
|
||||
)
|
||||
|
||||
for repo in repos:
|
||||
if self.include_prs:
|
||||
@@ -305,48 +268,11 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
)
|
||||
|
||||
try:
|
||||
if self.repositories:
|
||||
if "," in self.repositories:
|
||||
# Multiple repositories specified
|
||||
repo_names = [name.strip() for name in self.repositories.split(",")]
|
||||
if not repo_names:
|
||||
raise ConnectorValidationError(
|
||||
"Invalid connector settings: No valid repository names provided."
|
||||
)
|
||||
|
||||
# Validate at least one repository exists and is accessible
|
||||
valid_repos = False
|
||||
validation_errors = []
|
||||
|
||||
for repo_name in repo_names:
|
||||
if not repo_name:
|
||||
continue
|
||||
|
||||
try:
|
||||
test_repo = self.github_client.get_repo(
|
||||
f"{self.repo_owner}/{repo_name}"
|
||||
)
|
||||
test_repo.get_contents("")
|
||||
valid_repos = True
|
||||
# If at least one repo is valid, we can proceed
|
||||
break
|
||||
except GithubException as e:
|
||||
validation_errors.append(
|
||||
f"Repository '{repo_name}': {e.data.get('message', str(e))}"
|
||||
)
|
||||
|
||||
if not valid_repos:
|
||||
error_msg = (
|
||||
"None of the specified repositories could be accessed: "
|
||||
)
|
||||
error_msg += ", ".join(validation_errors)
|
||||
raise ConnectorValidationError(error_msg)
|
||||
else:
|
||||
# Single repository (backward compatibility)
|
||||
test_repo = self.github_client.get_repo(
|
||||
f"{self.repo_owner}/{self.repositories}"
|
||||
)
|
||||
test_repo.get_contents("")
|
||||
if self.repo_name:
|
||||
test_repo = self.github_client.get_repo(
|
||||
f"{self.repo_owner}/{self.repo_name}"
|
||||
)
|
||||
test_repo.get_contents("")
|
||||
else:
|
||||
# Try to get organization first
|
||||
try:
|
||||
@@ -372,15 +298,10 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
"Your GitHub token does not have sufficient permissions for this repository (HTTP 403)."
|
||||
)
|
||||
elif e.status == 404:
|
||||
if self.repositories:
|
||||
if "," in self.repositories:
|
||||
raise ConnectorValidationError(
|
||||
f"None of the specified GitHub repositories could be found for owner: {self.repo_owner}"
|
||||
)
|
||||
else:
|
||||
raise ConnectorValidationError(
|
||||
f"GitHub repository not found with name: {self.repo_owner}/{self.repositories}"
|
||||
)
|
||||
if self.repo_name:
|
||||
raise ConnectorValidationError(
|
||||
f"GitHub repository not found with name: {self.repo_owner}/{self.repo_name}"
|
||||
)
|
||||
else:
|
||||
raise ConnectorValidationError(
|
||||
f"GitHub user or organization not found: {self.repo_owner}"
|
||||
@@ -389,7 +310,6 @@ class GithubConnector(LoadConnector, PollConnector):
|
||||
raise ConnectorValidationError(
|
||||
f"Unexpected GitHub error (status={e.status}): {e.data}"
|
||||
)
|
||||
|
||||
except Exception as exc:
|
||||
raise Exception(
|
||||
f"Unexpected error during GitHub settings validation: {exc}"
|
||||
@@ -401,7 +321,7 @@ if __name__ == "__main__":
|
||||
|
||||
connector = GithubConnector(
|
||||
repo_owner=os.environ["REPO_OWNER"],
|
||||
repositories=os.environ["REPOSITORIES"],
|
||||
repo_name=os.environ["REPO_NAME"],
|
||||
)
|
||||
connector.load_credentials(
|
||||
{"github_access_token": os.environ["GITHUB_ACCESS_TOKEN"]}
|
||||
|
||||
@@ -4,12 +4,14 @@ from concurrent.futures import as_completed
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
|
||||
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
|
||||
from googleapiclient.errors import HttpError # type: ignore
|
||||
|
||||
from onyx.configs.app_configs import INDEX_BATCH_SIZE
|
||||
from onyx.configs.app_configs import MAX_FILE_SIZE_BYTES
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.connectors.exceptions import ConnectorValidationError
|
||||
from onyx.connectors.exceptions import CredentialExpiredError
|
||||
@@ -34,6 +36,7 @@ from onyx.connectors.google_utils.shared_constants import (
|
||||
)
|
||||
from onyx.connectors.google_utils.shared_constants import MISSING_SCOPES_ERROR_STR
|
||||
from onyx.connectors.google_utils.shared_constants import ONYX_SCOPE_INSTRUCTIONS
|
||||
from onyx.connectors.google_utils.shared_constants import SCOPE_DOC_URL
|
||||
from onyx.connectors.google_utils.shared_constants import SLIM_BATCH_SIZE
|
||||
from onyx.connectors.google_utils.shared_constants import USER_FIELDS
|
||||
from onyx.connectors.interfaces import GenerateDocumentsOutput
|
||||
@@ -43,9 +46,7 @@ from onyx.connectors.interfaces import PollConnector
|
||||
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
|
||||
from onyx.connectors.interfaces import SlimConnector
|
||||
from onyx.connectors.models import ConnectorMissingCredentialError
|
||||
from onyx.connectors.vision_enabled_connector import VisionEnabledConnector
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.retry_wrapper import retry_builder
|
||||
|
||||
@@ -65,10 +66,7 @@ def _extract_ids_from_urls(urls: list[str]) -> list[str]:
|
||||
|
||||
|
||||
def _convert_single_file(
|
||||
creds: Any,
|
||||
primary_admin_email: str,
|
||||
file: dict[str, Any],
|
||||
image_analysis_llm: LLM | None,
|
||||
creds: Any, primary_admin_email: str, file: dict[str, Any]
|
||||
) -> Any:
|
||||
user_email = file.get("owners", [{}])[0].get("emailAddress") or primary_admin_email
|
||||
user_drive_service = get_drive_service(creds, user_email=user_email)
|
||||
@@ -77,14 +75,11 @@ def _convert_single_file(
|
||||
file=file,
|
||||
drive_service=user_drive_service,
|
||||
docs_service=docs_service,
|
||||
image_analysis_llm=image_analysis_llm, # pass the LLM so doc_conversion can summarize images
|
||||
)
|
||||
|
||||
|
||||
def _process_files_batch(
|
||||
files: list[GoogleDriveFileType],
|
||||
convert_func: Callable[[GoogleDriveFileType], Any],
|
||||
batch_size: int,
|
||||
files: list[GoogleDriveFileType], convert_func: Callable, batch_size: int
|
||||
) -> GenerateDocumentsOutput:
|
||||
doc_batch = []
|
||||
with ThreadPoolExecutor(max_workers=min(16, len(files))) as executor:
|
||||
@@ -116,9 +111,7 @@ def _clean_requested_drive_ids(
|
||||
return valid_requested_drive_ids, filtered_folder_ids
|
||||
|
||||
|
||||
class GoogleDriveConnector(
|
||||
LoadConnector, PollConnector, SlimConnector, VisionEnabledConnector
|
||||
):
|
||||
class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
def __init__(
|
||||
self,
|
||||
include_shared_drives: bool = False,
|
||||
@@ -136,23 +129,23 @@ class GoogleDriveConnector(
|
||||
continue_on_failure: bool | None = None,
|
||||
) -> None:
|
||||
# Check for old input parameters
|
||||
if folder_paths is not None:
|
||||
logger.warning(
|
||||
"The 'folder_paths' parameter is deprecated. Use 'shared_folder_urls' instead."
|
||||
if (
|
||||
folder_paths is not None
|
||||
or include_shared is not None
|
||||
or follow_shortcuts is not None
|
||||
or only_org_public is not None
|
||||
or continue_on_failure is not None
|
||||
):
|
||||
logger.exception(
|
||||
"Google Drive connector received old input parameters. "
|
||||
"Please visit the docs for help with the new setup: "
|
||||
f"{SCOPE_DOC_URL}"
|
||||
)
|
||||
if include_shared is not None:
|
||||
logger.warning(
|
||||
"The 'include_shared' parameter is deprecated. Use 'include_files_shared_with_me' instead."
|
||||
raise ConnectorValidationError(
|
||||
"Google Drive connector received old input parameters. "
|
||||
"Please visit the docs for help with the new setup: "
|
||||
f"{SCOPE_DOC_URL}"
|
||||
)
|
||||
if follow_shortcuts is not None:
|
||||
logger.warning("The 'follow_shortcuts' parameter is deprecated.")
|
||||
if only_org_public is not None:
|
||||
logger.warning("The 'only_org_public' parameter is deprecated.")
|
||||
if continue_on_failure is not None:
|
||||
logger.warning("The 'continue_on_failure' parameter is deprecated.")
|
||||
|
||||
# Initialize vision LLM using the mixin
|
||||
self.initialize_vision_llm()
|
||||
|
||||
if (
|
||||
not include_shared_drives
|
||||
@@ -244,7 +237,6 @@ class GoogleDriveConnector(
|
||||
credentials=credentials,
|
||||
source=DocumentSource.GOOGLE_DRIVE,
|
||||
)
|
||||
|
||||
return new_creds_dict
|
||||
|
||||
def _update_traversed_parent_ids(self, folder_id: str) -> None:
|
||||
@@ -316,9 +308,7 @@ class GoogleDriveConnector(
|
||||
# validate that the user has access to the drive APIs by performing a simple
|
||||
# request and checking for a 401
|
||||
try:
|
||||
# default is ~17mins of retries, don't do that here for cases so we don't
|
||||
# waste 17mins everytime we run into a user without access to drive APIs
|
||||
retry_builder(tries=3, delay=1)(get_root_folder_id)(drive_service)
|
||||
retry_builder()(get_root_folder_id)(drive_service)
|
||||
except HttpError as e:
|
||||
if e.status_code == 401:
|
||||
# fail gracefully, let the other impersonations continue
|
||||
@@ -533,53 +523,37 @@ class GoogleDriveConnector(
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
) -> GenerateDocumentsOutput:
|
||||
# Create a larger process pool for file conversion
|
||||
with ThreadPoolExecutor(max_workers=8) as executor:
|
||||
# Prepare a partial function with the credentials and admin email
|
||||
convert_func = partial(
|
||||
_convert_single_file,
|
||||
self.creds,
|
||||
self.primary_admin_email,
|
||||
image_analysis_llm=self.image_analysis_llm, # Use the mixin's LLM
|
||||
convert_func = partial(
|
||||
_convert_single_file, self.creds, self.primary_admin_email
|
||||
)
|
||||
|
||||
# Process files in larger batches
|
||||
LARGE_BATCH_SIZE = self.batch_size * 4
|
||||
files_to_process = []
|
||||
# Gather the files into batches to be processed in parallel
|
||||
for file in self._fetch_drive_items(is_slim=False, start=start, end=end):
|
||||
if (
|
||||
file.get("size")
|
||||
and int(cast(str, file.get("size"))) > MAX_FILE_SIZE_BYTES
|
||||
):
|
||||
logger.warning(
|
||||
f"Skipping file {file.get('name', 'Unknown')} as it is too large: {file.get('size')} bytes"
|
||||
)
|
||||
continue
|
||||
|
||||
files_to_process.append(file)
|
||||
if len(files_to_process) >= LARGE_BATCH_SIZE:
|
||||
yield from _process_files_batch(
|
||||
files_to_process, convert_func, self.batch_size
|
||||
)
|
||||
files_to_process = []
|
||||
|
||||
# Process any remaining files
|
||||
if files_to_process:
|
||||
yield from _process_files_batch(
|
||||
files_to_process, convert_func, self.batch_size
|
||||
)
|
||||
|
||||
# Fetch files in batches
|
||||
files_batch: list[GoogleDriveFileType] = []
|
||||
for file in self._fetch_drive_items(is_slim=False, start=start, end=end):
|
||||
files_batch.append(file)
|
||||
|
||||
if len(files_batch) >= self.batch_size:
|
||||
# Process the batch
|
||||
futures = [
|
||||
executor.submit(convert_func, file) for file in files_batch
|
||||
]
|
||||
documents = []
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
doc = future.result()
|
||||
if doc is not None:
|
||||
documents.append(doc)
|
||||
except Exception as e:
|
||||
logger.error(f"Error converting file: {e}")
|
||||
|
||||
if documents:
|
||||
yield documents
|
||||
files_batch = []
|
||||
|
||||
# Process any remaining files
|
||||
if files_batch:
|
||||
futures = [executor.submit(convert_func, file) for file in files_batch]
|
||||
documents = []
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
doc = future.result()
|
||||
if doc is not None:
|
||||
documents.append(doc)
|
||||
except Exception as e:
|
||||
logger.error(f"Error converting file: {e}")
|
||||
|
||||
if documents:
|
||||
yield documents
|
||||
|
||||
def load_from_state(self) -> GenerateDocumentsOutput:
|
||||
try:
|
||||
yield from self._extract_docs_from_google_drive()
|
||||
|
||||
@@ -9,7 +9,7 @@ from googleapiclient.errors import HttpError # type: ignore
|
||||
|
||||
from onyx.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import FileOrigin
|
||||
from onyx.configs.constants import IGNORE_FOR_QA
|
||||
from onyx.connectors.google_drive.constants import DRIVE_FOLDER_TYPE
|
||||
from onyx.connectors.google_drive.constants import DRIVE_SHORTCUT_TYPE
|
||||
from onyx.connectors.google_drive.constants import UNSUPPORTED_FILE_TYPE_CONTENT
|
||||
@@ -21,88 +21,32 @@ from onyx.connectors.google_utils.resources import GoogleDriveService
|
||||
from onyx.connectors.models import Document
|
||||
from onyx.connectors.models import Section
|
||||
from onyx.connectors.models import SlimDocument
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.file_processing.extract_file_text import docx_to_text_and_images
|
||||
from onyx.file_processing.extract_file_text import docx_to_text
|
||||
from onyx.file_processing.extract_file_text import pptx_to_text
|
||||
from onyx.file_processing.extract_file_text import read_pdf_file
|
||||
from onyx.file_processing.file_validation import is_valid_image_type
|
||||
from onyx.file_processing.image_summarization import summarize_image_with_error_handling
|
||||
from onyx.file_processing.image_utils import store_image_and_create_section
|
||||
from onyx.file_processing.unstructured import get_unstructured_api_key
|
||||
from onyx.file_processing.unstructured import unstructured_to_text
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def _summarize_drive_image(
|
||||
image_data: bytes, image_name: str, image_analysis_llm: LLM | None
|
||||
) -> str:
|
||||
"""
|
||||
Summarize the given image using the provided LLM.
|
||||
"""
|
||||
if not image_analysis_llm:
|
||||
return ""
|
||||
|
||||
return (
|
||||
summarize_image_with_error_handling(
|
||||
llm=image_analysis_llm,
|
||||
image_data=image_data,
|
||||
context_name=image_name,
|
||||
)
|
||||
or ""
|
||||
)
|
||||
|
||||
|
||||
def is_gdrive_image_mime_type(mime_type: str) -> bool:
|
||||
"""
|
||||
Return True if the mime_type is a common image type in GDrive.
|
||||
(e.g. 'image/png', 'image/jpeg')
|
||||
"""
|
||||
return is_valid_image_type(mime_type)
|
||||
# these errors don't represent a failure in the connector, but simply files
|
||||
# that can't / shouldn't be indexed
|
||||
ERRORS_TO_CONTINUE_ON = [
|
||||
"cannotExportFile",
|
||||
"exportSizeLimitExceeded",
|
||||
"cannotDownloadFile",
|
||||
]
|
||||
|
||||
|
||||
def _extract_sections_basic(
|
||||
file: dict[str, str],
|
||||
service: GoogleDriveService,
|
||||
image_analysis_llm: LLM | None = None,
|
||||
file: dict[str, str], service: GoogleDriveService
|
||||
) -> list[Section]:
|
||||
"""
|
||||
Extends the existing logic to handle either a docx with embedded images
|
||||
or standalone images (PNG, JPG, etc).
|
||||
"""
|
||||
mime_type = file["mimeType"]
|
||||
link = file["webViewLink"]
|
||||
file_name = file.get("name", file["id"])
|
||||
supported_file_types = set(item.value for item in GDriveMimeType)
|
||||
|
||||
# 1) If the file is an image, retrieve the raw bytes, optionally summarize
|
||||
if is_gdrive_image_mime_type(mime_type):
|
||||
try:
|
||||
response = service.files().get_media(fileId=file["id"]).execute()
|
||||
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
section, _ = store_image_and_create_section(
|
||||
db_session=db_session,
|
||||
image_data=response,
|
||||
file_name=file["id"],
|
||||
display_name=file_name,
|
||||
media_type=mime_type,
|
||||
llm=image_analysis_llm,
|
||||
file_origin=FileOrigin.CONNECTOR,
|
||||
)
|
||||
return [section]
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch or summarize image: {e}")
|
||||
return [
|
||||
Section(
|
||||
link=link,
|
||||
text="",
|
||||
image_file_name=link,
|
||||
)
|
||||
]
|
||||
|
||||
if mime_type not in supported_file_types:
|
||||
# Unsupported file types can still have a title, finding this way is still useful
|
||||
return [Section(link=link, text=UNSUPPORTED_FILE_TYPE_CONTENT)]
|
||||
@@ -241,63 +185,45 @@ def _extract_sections_basic(
|
||||
GDriveMimeType.PLAIN_TEXT.value,
|
||||
GDriveMimeType.MARKDOWN.value,
|
||||
]:
|
||||
text_data = (
|
||||
service.files().get_media(fileId=file["id"]).execute().decode("utf-8")
|
||||
)
|
||||
return [Section(link=link, text=text_data)]
|
||||
|
||||
return [
|
||||
Section(
|
||||
link=link,
|
||||
text=service.files()
|
||||
.get_media(fileId=file["id"])
|
||||
.execute()
|
||||
.decode("utf-8"),
|
||||
)
|
||||
]
|
||||
# ---------------------------
|
||||
# Word, PowerPoint, PDF files
|
||||
elif mime_type in [
|
||||
if mime_type in [
|
||||
GDriveMimeType.WORD_DOC.value,
|
||||
GDriveMimeType.POWERPOINT.value,
|
||||
GDriveMimeType.PDF.value,
|
||||
]:
|
||||
response_bytes = service.files().get_media(fileId=file["id"]).execute()
|
||||
|
||||
# Optionally use Unstructured
|
||||
response = service.files().get_media(fileId=file["id"]).execute()
|
||||
if get_unstructured_api_key():
|
||||
text = unstructured_to_text(
|
||||
file=io.BytesIO(response_bytes),
|
||||
file_name=file_name,
|
||||
)
|
||||
return [Section(link=link, text=text)]
|
||||
return [
|
||||
Section(
|
||||
link=link,
|
||||
text=unstructured_to_text(
|
||||
file=io.BytesIO(response),
|
||||
file_name=file.get("name", file["id"]),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
if mime_type == GDriveMimeType.WORD_DOC.value:
|
||||
# Use docx_to_text_and_images to get text plus embedded images
|
||||
text, embedded_images = docx_to_text_and_images(
|
||||
file=io.BytesIO(response_bytes),
|
||||
)
|
||||
sections = []
|
||||
if text.strip():
|
||||
sections.append(Section(link=link, text=text.strip()))
|
||||
|
||||
# Process each embedded image using the standardized function
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
for idx, (img_data, img_name) in enumerate(
|
||||
embedded_images, start=1
|
||||
):
|
||||
# Create a unique identifier for the embedded image
|
||||
embedded_id = f"{file['id']}_embedded_{idx}"
|
||||
|
||||
section, _ = store_image_and_create_section(
|
||||
db_session=db_session,
|
||||
image_data=img_data,
|
||||
file_name=embedded_id,
|
||||
display_name=img_name or f"{file_name} - image {idx}",
|
||||
llm=image_analysis_llm,
|
||||
file_origin=FileOrigin.CONNECTOR,
|
||||
)
|
||||
sections.append(section)
|
||||
return sections
|
||||
|
||||
return [
|
||||
Section(link=link, text=docx_to_text(file=io.BytesIO(response)))
|
||||
]
|
||||
elif mime_type == GDriveMimeType.PDF.value:
|
||||
text, _pdf_meta, images = read_pdf_file(io.BytesIO(response_bytes))
|
||||
text, _ = read_pdf_file(file=io.BytesIO(response))
|
||||
return [Section(link=link, text=text)]
|
||||
|
||||
elif mime_type == GDriveMimeType.POWERPOINT.value:
|
||||
text_data = pptx_to_text(io.BytesIO(response_bytes))
|
||||
return [Section(link=link, text=text_data)]
|
||||
return [
|
||||
Section(link=link, text=pptx_to_text(file=io.BytesIO(response)))
|
||||
]
|
||||
|
||||
# Catch-all case, should not happen since there should be specific handling
|
||||
# for each of the supported file types
|
||||
@@ -305,8 +231,7 @@ def _extract_sections_basic(
|
||||
logger.error(error_message)
|
||||
raise ValueError(error_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error extracting sections from file: {e}")
|
||||
except Exception:
|
||||
return [Section(link=link, text=UNSUPPORTED_FILE_TYPE_CONTENT)]
|
||||
|
||||
|
||||
@@ -314,62 +239,74 @@ def convert_drive_item_to_document(
|
||||
file: GoogleDriveFileType,
|
||||
drive_service: GoogleDriveService,
|
||||
docs_service: GoogleDocsService,
|
||||
image_analysis_llm: LLM | None,
|
||||
) -> Document | None:
|
||||
"""
|
||||
Main entry point for converting a Google Drive file => Document object.
|
||||
Now we accept an optional `llm` to pass to `_extract_sections_basic`.
|
||||
"""
|
||||
try:
|
||||
# skip shortcuts or folders
|
||||
if file.get("mimeType") in [DRIVE_SHORTCUT_TYPE, DRIVE_FOLDER_TYPE]:
|
||||
logger.info("Skipping shortcut/folder.")
|
||||
# Skip files that are shortcuts
|
||||
if file.get("mimeType") == DRIVE_SHORTCUT_TYPE:
|
||||
logger.info("Ignoring Drive Shortcut Filetype")
|
||||
return None
|
||||
# Skip files that are folders
|
||||
if file.get("mimeType") == DRIVE_FOLDER_TYPE:
|
||||
logger.info("Ignoring Drive Folder Filetype")
|
||||
return None
|
||||
|
||||
# If it's a Google Doc, we might do advanced parsing
|
||||
sections: list[Section] = []
|
||||
|
||||
# Special handling for Google Docs to preserve structure, link
|
||||
# to headers
|
||||
if file.get("mimeType") == GDriveMimeType.DOC.value:
|
||||
try:
|
||||
# get_document_sections is the advanced approach for Google Docs
|
||||
sections = get_document_sections(docs_service, file["id"])
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to pull google doc sections from '{file['name']}': {e}. "
|
||||
"Falling back to basic extraction."
|
||||
f"Ran into exception '{e}' when pulling sections from Google Doc '{file['name']}'."
|
||||
" Falling back to basic extraction."
|
||||
)
|
||||
|
||||
# If not a doc, or if we failed above, do our 'basic' approach
|
||||
# NOTE: this will run for either (1) the above failed or (2) the file is not a Google Doc
|
||||
if not sections:
|
||||
sections = _extract_sections_basic(file, drive_service, image_analysis_llm)
|
||||
try:
|
||||
# For all other file types just extract the text
|
||||
sections = _extract_sections_basic(file, drive_service)
|
||||
|
||||
except HttpError as e:
|
||||
reason = e.error_details[0]["reason"] if e.error_details else e.reason
|
||||
message = e.error_details[0]["message"] if e.error_details else e.reason
|
||||
if e.status_code == 403 and reason in ERRORS_TO_CONTINUE_ON:
|
||||
logger.warning(
|
||||
f"Could not export file '{file['name']}' due to '{message}', skipping..."
|
||||
)
|
||||
return None
|
||||
|
||||
raise
|
||||
if not sections:
|
||||
return None
|
||||
|
||||
doc_id = file["webViewLink"]
|
||||
updated_time = datetime.fromisoformat(file["modifiedTime"]).astimezone(
|
||||
timezone.utc
|
||||
)
|
||||
|
||||
return Document(
|
||||
id=doc_id,
|
||||
id=file["webViewLink"],
|
||||
sections=sections,
|
||||
source=DocumentSource.GOOGLE_DRIVE,
|
||||
semantic_identifier=file["name"],
|
||||
doc_updated_at=updated_time,
|
||||
metadata={}, # or any metadata from 'file'
|
||||
doc_updated_at=datetime.fromisoformat(file["modifiedTime"]).astimezone(
|
||||
timezone.utc
|
||||
),
|
||||
metadata={}
|
||||
if any(section.text for section in sections)
|
||||
else {IGNORE_FOR_QA: "True"},
|
||||
additional_info=file.get("id"),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error converting file '{file.get('name')}' to Document: {e}")
|
||||
if not CONTINUE_ON_CONNECTOR_FAILURE:
|
||||
raise
|
||||
raise e
|
||||
|
||||
logger.exception("Ran into exception when pulling a file from Google Drive")
|
||||
return None
|
||||
|
||||
|
||||
def build_slim_document(file: GoogleDriveFileType) -> SlimDocument | None:
|
||||
# Skip files that are folders or shortcuts
|
||||
if file.get("mimeType") in [DRIVE_FOLDER_TYPE, DRIVE_SHORTCUT_TYPE]:
|
||||
return None
|
||||
|
||||
return SlimDocument(
|
||||
id=file["webViewLink"],
|
||||
perm_sync_data={
|
||||
|
||||
@@ -28,8 +28,7 @@ class ConnectorMissingCredentialError(PermissionError):
|
||||
|
||||
class Section(BaseModel):
|
||||
text: str
|
||||
link: str | None = None
|
||||
image_file_name: str | None = None
|
||||
link: str | None
|
||||
|
||||
|
||||
class BasicExpertInfo(BaseModel):
|
||||
|
||||
@@ -1,45 +0,0 @@
|
||||
"""
|
||||
Mixin for connectors that need vision capabilities.
|
||||
"""
|
||||
from onyx.configs.llm_configs import get_image_extraction_and_analysis_enabled
|
||||
from onyx.llm.factory import get_default_llm_with_vision
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
class VisionEnabledConnector:
|
||||
"""
|
||||
Mixin for connectors that need vision capabilities.
|
||||
|
||||
This mixin provides a standard way to initialize a vision-capable LLM
|
||||
for image analysis during indexing.
|
||||
|
||||
Usage:
|
||||
class MyConnector(LoadConnector, VisionEnabledConnector):
|
||||
def __init__(self, ...):
|
||||
super().__init__(...)
|
||||
self.initialize_vision_llm()
|
||||
"""
|
||||
|
||||
def initialize_vision_llm(self) -> None:
|
||||
"""
|
||||
Initialize a vision-capable LLM if enabled by configuration.
|
||||
|
||||
Sets self.image_analysis_llm to the LLM instance or None if disabled.
|
||||
"""
|
||||
self.image_analysis_llm: LLM | None = None
|
||||
if get_image_extraction_and_analysis_enabled():
|
||||
try:
|
||||
self.image_analysis_llm = get_default_llm_with_vision()
|
||||
if self.image_analysis_llm is None:
|
||||
logger.warning(
|
||||
"No LLM with vision found; image summarization will be disabled"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to initialize vision LLM due to an error: {str(e)}. "
|
||||
"Image summarization will be disabled."
|
||||
)
|
||||
self.image_analysis_llm = None
|
||||
@@ -157,7 +157,6 @@ def get_internal_links(
|
||||
|
||||
def start_playwright() -> Tuple[Playwright, BrowserContext]:
|
||||
playwright = sync_playwright().start()
|
||||
|
||||
browser = playwright.chromium.launch(headless=True)
|
||||
|
||||
context = browser.new_context()
|
||||
@@ -333,7 +332,7 @@ class WebConnector(LoadConnector):
|
||||
if initial_url.split(".")[-1] == "pdf":
|
||||
# PDF files are not checked for links
|
||||
response = requests.get(initial_url)
|
||||
page_text, metadata, images = read_pdf_file(
|
||||
page_text, metadata = read_pdf_file(
|
||||
file=io.BytesIO(response.content)
|
||||
)
|
||||
last_modified = response.headers.get("Last-Modified")
|
||||
|
||||
@@ -16,7 +16,7 @@ from onyx.db.models import SearchSettings
|
||||
from onyx.indexing.models import BaseChunk
|
||||
from onyx.indexing.models import IndexingSetting
|
||||
from shared_configs.enums import RerankerProvider
|
||||
from shared_configs.model_server_models import Embedding
|
||||
|
||||
|
||||
MAX_METRICS_CONTENT = (
|
||||
200 # Just need enough characters to identify where in the doc the chunk is
|
||||
@@ -151,10 +151,6 @@ class SearchRequest(ChunkContext):
|
||||
evaluation_type: LLMEvaluationType = LLMEvaluationType.UNSPECIFIED
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
precomputed_query_embedding: Embedding | None = None
|
||||
precomputed_is_keyword: bool | None = None
|
||||
precomputed_keywords: list[str] | None = None
|
||||
|
||||
|
||||
class SearchQuery(ChunkContext):
|
||||
"Processed Request that is directly passed to the SearchPipeline"
|
||||
@@ -179,8 +175,6 @@ class SearchQuery(ChunkContext):
|
||||
offset: int = 0
|
||||
model_config = ConfigDict(frozen=True)
|
||||
|
||||
precomputed_query_embedding: Embedding | None = None
|
||||
|
||||
|
||||
class RetrievalDetails(ChunkContext):
|
||||
# Use LLM to determine whether to do a retrieval or only rely on existing history
|
||||
|
||||
@@ -331,14 +331,6 @@ class SearchPipeline:
|
||||
self._retrieved_sections = expanded_inference_sections
|
||||
return expanded_inference_sections
|
||||
|
||||
@property
|
||||
def retrieved_sections(self) -> list[InferenceSection]:
|
||||
if self._retrieved_sections is not None:
|
||||
return self._retrieved_sections
|
||||
|
||||
self._retrieved_sections = self._get_sections()
|
||||
return self._retrieved_sections
|
||||
|
||||
@property
|
||||
def reranked_sections(self) -> list[InferenceSection]:
|
||||
"""Reranking is always done at the chunk level since section merging could create arbitrarily
|
||||
@@ -351,7 +343,7 @@ class SearchPipeline:
|
||||
if self._reranked_sections is not None:
|
||||
return self._reranked_sections
|
||||
|
||||
retrieved_sections = self.retrieved_sections
|
||||
retrieved_sections = self._get_sections()
|
||||
if self.retrieved_sections_callback is not None:
|
||||
self.retrieved_sections_callback(retrieved_sections)
|
||||
|
||||
|
||||
@@ -1,17 +1,12 @@
|
||||
import base64
|
||||
from collections.abc import Callable
|
||||
from collections.abc import Iterator
|
||||
from typing import cast
|
||||
|
||||
import numpy
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import SystemMessage
|
||||
|
||||
from onyx.chat.models import SectionRelevancePiece
|
||||
from onyx.configs.app_configs import BLURB_SIZE
|
||||
from onyx.configs.constants import RETURN_SEPARATOR
|
||||
from onyx.configs.llm_configs import get_search_time_image_analysis_enabled
|
||||
from onyx.configs.model_configs import CROSS_ENCODER_RANGE_MAX
|
||||
from onyx.configs.model_configs import CROSS_ENCODER_RANGE_MIN
|
||||
from onyx.context.search.enums import LLMEvaluationType
|
||||
@@ -23,15 +18,11 @@ from onyx.context.search.models import MAX_METRICS_CONTENT
|
||||
from onyx.context.search.models import RerankingDetails
|
||||
from onyx.context.search.models import RerankMetricsContainer
|
||||
from onyx.context.search.models import SearchQuery
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.document_index.document_index_utils import (
|
||||
translate_boost_count_to_multiplier,
|
||||
)
|
||||
from onyx.file_store.file_store import get_default_file_store
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.llm.utils import message_to_string
|
||||
from onyx.natural_language_processing.search_nlp_models import RerankingModel
|
||||
from onyx.prompts.image_analysis import IMAGE_ANALYSIS_SYSTEM_PROMPT
|
||||
from onyx.secondary_llm_flows.chunk_usefulness import llm_batch_eval_sections
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.threadpool_concurrency import FunctionCall
|
||||
@@ -39,124 +30,6 @@ from onyx.utils.threadpool_concurrency import run_functions_in_parallel
|
||||
from onyx.utils.timing import log_function_time
|
||||
|
||||
|
||||
def update_image_sections_with_query(
|
||||
sections: list[InferenceSection],
|
||||
query: str,
|
||||
llm: LLM,
|
||||
) -> None:
|
||||
"""
|
||||
For each chunk in each section that has an image URL, call an LLM to produce
|
||||
a new 'content' string that directly addresses the user's query about that image.
|
||||
This implementation uses parallel processing for efficiency.
|
||||
"""
|
||||
logger = setup_logger()
|
||||
logger.debug(f"Starting image section update with query: {query}")
|
||||
|
||||
chunks_with_images = []
|
||||
for section in sections:
|
||||
for chunk in section.chunks:
|
||||
if chunk.image_file_name:
|
||||
chunks_with_images.append(chunk)
|
||||
|
||||
if not chunks_with_images:
|
||||
logger.debug("No images to process in the sections")
|
||||
return # No images to process
|
||||
|
||||
logger.info(f"Found {len(chunks_with_images)} chunks with images to process")
|
||||
|
||||
def process_image_chunk(chunk: InferenceChunk) -> tuple[str, str]:
|
||||
try:
|
||||
logger.debug(
|
||||
f"Processing image chunk with ID: {chunk.unique_id}, image: {chunk.image_file_name}"
|
||||
)
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
file_record = get_default_file_store(db_session).read_file(
|
||||
cast(str, chunk.image_file_name), mode="b"
|
||||
)
|
||||
if not file_record:
|
||||
logger.error(f"Image file not found: {chunk.image_file_name}")
|
||||
raise Exception("File not found")
|
||||
file_content = file_record.read()
|
||||
image_base64 = base64.b64encode(file_content).decode()
|
||||
logger.debug(
|
||||
f"Successfully loaded image data for {chunk.image_file_name}"
|
||||
)
|
||||
|
||||
messages: list[BaseMessage] = [
|
||||
SystemMessage(content=IMAGE_ANALYSIS_SYSTEM_PROMPT),
|
||||
HumanMessage(
|
||||
content=[
|
||||
{
|
||||
"type": "text",
|
||||
"text": (
|
||||
f"The user's question is: '{query}'. "
|
||||
"Please analyze the following image in that context:\n"
|
||||
),
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}",
|
||||
},
|
||||
},
|
||||
]
|
||||
),
|
||||
]
|
||||
|
||||
raw_response = llm.invoke(messages)
|
||||
|
||||
answer_text = message_to_string(raw_response).strip()
|
||||
return (
|
||||
chunk.unique_id,
|
||||
answer_text if answer_text else "No relevant info found.",
|
||||
)
|
||||
|
||||
except Exception:
|
||||
logger.exception(
|
||||
f"Error updating image section with query source image url: {chunk.image_file_name}"
|
||||
)
|
||||
return chunk.unique_id, "Error analyzing image."
|
||||
|
||||
image_processing_tasks = [
|
||||
FunctionCall(process_image_chunk, (chunk,)) for chunk in chunks_with_images
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"Starting parallel processing of {len(image_processing_tasks)} image tasks"
|
||||
)
|
||||
image_processing_results = run_functions_in_parallel(image_processing_tasks)
|
||||
logger.info(
|
||||
f"Completed parallel processing with {len(image_processing_results)} results"
|
||||
)
|
||||
|
||||
# Create a mapping of chunk IDs to their processed content
|
||||
chunk_id_to_content = {}
|
||||
success_count = 0
|
||||
for task_id, result in image_processing_results.items():
|
||||
if result:
|
||||
chunk_id, content = result
|
||||
chunk_id_to_content[chunk_id] = content
|
||||
success_count += 1
|
||||
else:
|
||||
logger.error(f"Task {task_id} failed to return a valid result")
|
||||
|
||||
logger.info(
|
||||
f"Successfully processed {success_count}/{len(image_processing_results)} images"
|
||||
)
|
||||
|
||||
# Update the chunks with the processed content
|
||||
updated_count = 0
|
||||
for section in sections:
|
||||
for chunk in section.chunks:
|
||||
if chunk.unique_id in chunk_id_to_content:
|
||||
chunk.content = chunk_id_to_content[chunk.unique_id]
|
||||
updated_count += 1
|
||||
|
||||
logger.info(
|
||||
f"Updated content for {updated_count} chunks with image analysis results"
|
||||
)
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
@@ -413,10 +286,6 @@ def search_postprocessing(
|
||||
# NOTE: if we don't rerank, we can return the chunks immediately
|
||||
# since we know this is the final order.
|
||||
# This way the user experience isn't delayed by the LLM step
|
||||
if get_search_time_image_analysis_enabled():
|
||||
update_image_sections_with_query(
|
||||
retrieved_sections, search_query.query, llm
|
||||
)
|
||||
_log_top_section_links(search_query.search_type.value, retrieved_sections)
|
||||
yield retrieved_sections
|
||||
sections_yielded = True
|
||||
@@ -454,13 +323,6 @@ def search_postprocessing(
|
||||
)
|
||||
else:
|
||||
_log_top_section_links(search_query.search_type.value, reranked_sections)
|
||||
|
||||
# Add the image processing step here
|
||||
if get_search_time_image_analysis_enabled():
|
||||
update_image_sections_with_query(
|
||||
reranked_sections, search_query.query, llm
|
||||
)
|
||||
|
||||
yield reranked_sections
|
||||
|
||||
llm_selected_section_ids = (
|
||||
|
||||
@@ -117,12 +117,8 @@ def retrieval_preprocessing(
|
||||
else None
|
||||
)
|
||||
|
||||
# Sometimes this is pre-computed in parallel with other heavy tasks to improve
|
||||
# latency, and in that case we don't need to run the model again
|
||||
run_query_analysis = (
|
||||
None
|
||||
if (skip_query_analysis or search_request.precomputed_is_keyword is not None)
|
||||
else FunctionCall(query_analysis, (query,), {})
|
||||
None if skip_query_analysis else FunctionCall(query_analysis, (query,), {})
|
||||
)
|
||||
|
||||
functions_to_run = [
|
||||
@@ -147,12 +143,11 @@ def retrieval_preprocessing(
|
||||
|
||||
# The extracted keywords right now are not very reliable, not using for now
|
||||
# Can maybe use for highlighting
|
||||
is_keyword, _extracted_keywords = False, None
|
||||
if search_request.precomputed_is_keyword is not None:
|
||||
is_keyword = search_request.precomputed_is_keyword
|
||||
_extracted_keywords = search_request.precomputed_keywords
|
||||
elif run_query_analysis:
|
||||
is_keyword, _extracted_keywords = parallel_results[run_query_analysis.result_id]
|
||||
is_keyword, extracted_keywords = (
|
||||
parallel_results[run_query_analysis.result_id]
|
||||
if run_query_analysis
|
||||
else (False, None)
|
||||
)
|
||||
|
||||
all_query_terms = query.split()
|
||||
processed_keywords = (
|
||||
@@ -252,5 +247,4 @@ def retrieval_preprocessing(
|
||||
chunks_above=chunks_above,
|
||||
chunks_below=chunks_below,
|
||||
full_doc=search_request.full_doc,
|
||||
precomputed_query_embedding=search_request.precomputed_query_embedding,
|
||||
)
|
||||
|
||||
@@ -31,7 +31,7 @@ from onyx.utils.timing import log_function_time
|
||||
from shared_configs.configs import MODEL_SERVER_HOST
|
||||
from shared_configs.configs import MODEL_SERVER_PORT
|
||||
from shared_configs.enums import EmbedTextType
|
||||
from shared_configs.model_server_models import Embedding
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -109,20 +109,6 @@ def combine_retrieval_results(
|
||||
return sorted_chunks
|
||||
|
||||
|
||||
def get_query_embedding(query: str, db_session: Session) -> Embedding:
|
||||
search_settings = get_current_search_settings(db_session)
|
||||
|
||||
model = EmbeddingModel.from_db_model(
|
||||
search_settings=search_settings,
|
||||
# The below are globally set, this flow always uses the indexing one
|
||||
server_host=MODEL_SERVER_HOST,
|
||||
server_port=MODEL_SERVER_PORT,
|
||||
)
|
||||
|
||||
query_embedding = model.encode([query], text_type=EmbedTextType.QUERY)[0]
|
||||
return query_embedding
|
||||
|
||||
|
||||
@log_function_time(print_only=True)
|
||||
def doc_index_retrieval(
|
||||
query: SearchQuery,
|
||||
@@ -135,10 +121,17 @@ def doc_index_retrieval(
|
||||
from the large chunks to the referenced chunks,
|
||||
dedupes the chunks, and cleans the chunks.
|
||||
"""
|
||||
query_embedding = query.precomputed_query_embedding or get_query_embedding(
|
||||
query.query, db_session
|
||||
search_settings = get_current_search_settings(db_session)
|
||||
|
||||
model = EmbeddingModel.from_db_model(
|
||||
search_settings=search_settings,
|
||||
# The below are globally set, this flow always uses the indexing one
|
||||
server_host=MODEL_SERVER_HOST,
|
||||
server_port=MODEL_SERVER_PORT,
|
||||
)
|
||||
|
||||
query_embedding = model.encode([query.query], text_type=EmbedTextType.QUERY)[0]
|
||||
|
||||
top_chunks = document_index.hybrid_retrieval(
|
||||
query=query.query,
|
||||
query_embedding=query_embedding,
|
||||
@@ -256,16 +249,7 @@ def retrieve_chunks(
|
||||
continue
|
||||
simplified_queries.add(simplified_rephrase)
|
||||
|
||||
q_copy = query.model_copy(
|
||||
update={
|
||||
"query": rephrase,
|
||||
# need to recompute for each rephrase
|
||||
# note that `SearchQuery` is a frozen model, so we can't update
|
||||
# it below
|
||||
"precomputed_query_embedding": None,
|
||||
},
|
||||
deep=True,
|
||||
)
|
||||
q_copy = query.copy(update={"query": rephrase}, deep=True)
|
||||
run_queries.append(
|
||||
(
|
||||
doc_index_retrieval,
|
||||
|
||||
@@ -148,28 +148,3 @@ def upsert_pgfilestore(
|
||||
db_session.commit()
|
||||
|
||||
return pgfilestore
|
||||
|
||||
|
||||
def save_bytes_to_pgfilestore(
|
||||
db_session: Session,
|
||||
raw_bytes: bytes,
|
||||
media_type: str,
|
||||
identifier: str,
|
||||
display_name: str,
|
||||
file_origin: FileOrigin = FileOrigin.OTHER,
|
||||
) -> PGFileStore:
|
||||
"""
|
||||
Saves raw bytes to PGFileStore and returns the resulting record.
|
||||
"""
|
||||
file_name = f"{file_origin.name.lower()}_{identifier}"
|
||||
lobj_oid = create_populate_lobj(BytesIO(raw_bytes), db_session)
|
||||
pgfilestore = upsert_pgfilestore(
|
||||
file_name=file_name,
|
||||
display_name=display_name,
|
||||
file_origin=file_origin,
|
||||
file_type=media_type,
|
||||
lobj_oid=lobj_oid,
|
||||
db_session=db_session,
|
||||
commit=True,
|
||||
)
|
||||
return pgfilestore
|
||||
|
||||
@@ -1,79 +0,0 @@
|
||||
import random
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from logging import getLogger
|
||||
|
||||
from onyx.configs.constants import MessageType
|
||||
from onyx.db.chat import create_chat_session
|
||||
from onyx.db.chat import create_new_chat_message
|
||||
from onyx.db.chat import get_or_create_root_message
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.db.models import ChatSession
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
def seed_chat_history(num_sessions: int, num_messages: int, days: int) -> None:
|
||||
"""Utility function to seed chat history for testing.
|
||||
|
||||
num_sessions: the number of sessions to seed
|
||||
num_messages: the number of messages to seed per sessions
|
||||
days: the number of days looking backwards from the current time over which to randomize
|
||||
the times.
|
||||
"""
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
logger.info(f"Seeding {num_sessions} sessions.")
|
||||
for y in range(0, num_sessions):
|
||||
create_chat_session(db_session, f"pytest_session_{y}", None, None)
|
||||
|
||||
# randomize all session times
|
||||
logger.info(f"Seeding {num_messages} messages per session.")
|
||||
rows = db_session.query(ChatSession).all()
|
||||
for x in range(0, len(rows)):
|
||||
if x % 1024 == 0:
|
||||
logger.info(f"Seeded messages for {x} sessions so far.")
|
||||
|
||||
row = rows[x]
|
||||
row.time_created = datetime.utcnow() - timedelta(
|
||||
days=random.randint(0, days)
|
||||
)
|
||||
row.time_updated = row.time_created + timedelta(
|
||||
minutes=random.randint(0, 10)
|
||||
)
|
||||
|
||||
root_message = get_or_create_root_message(row.id, db_session)
|
||||
|
||||
current_message_type = MessageType.USER
|
||||
parent_message = root_message
|
||||
for x in range(0, num_messages):
|
||||
if current_message_type == MessageType.USER:
|
||||
msg = f"pytest_message_user_{x}"
|
||||
else:
|
||||
msg = f"pytest_message_assistant_{x}"
|
||||
|
||||
chat_message = create_new_chat_message(
|
||||
row.id,
|
||||
parent_message,
|
||||
msg,
|
||||
None,
|
||||
0,
|
||||
current_message_type,
|
||||
db_session,
|
||||
)
|
||||
|
||||
chat_message.time_sent = row.time_created + timedelta(
|
||||
minutes=random.randint(0, 10)
|
||||
)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
current_message_type = (
|
||||
MessageType.ASSISTANT
|
||||
if current_message_type == MessageType.USER
|
||||
else MessageType.USER
|
||||
)
|
||||
parent_message = chat_message
|
||||
|
||||
db_session.commit()
|
||||
|
||||
logger.info(f"Seeded messages for {len(rows)} sessions. Finished.")
|
||||
@@ -55,9 +55,6 @@ schema DANSWER_CHUNK_NAME {
|
||||
field blurb type string {
|
||||
indexing: summary | attribute
|
||||
}
|
||||
field image_file_name type string {
|
||||
indexing: summary | attribute
|
||||
}
|
||||
# https://docs.vespa.ai/en/attributes.html potential enum store for speed, but probably not worth it
|
||||
field source_type type string {
|
||||
indexing: summary | attribute
|
||||
|
||||
@@ -31,7 +31,6 @@ from onyx.document_index.vespa_constants import DOC_UPDATED_AT
|
||||
from onyx.document_index.vespa_constants import DOCUMENT_ID
|
||||
from onyx.document_index.vespa_constants import DOCUMENT_ID_ENDPOINT
|
||||
from onyx.document_index.vespa_constants import HIDDEN
|
||||
from onyx.document_index.vespa_constants import IMAGE_FILE_NAME
|
||||
from onyx.document_index.vespa_constants import LARGE_CHUNK_REFERENCE_IDS
|
||||
from onyx.document_index.vespa_constants import MAX_ID_SEARCH_QUERY_SIZE
|
||||
from onyx.document_index.vespa_constants import MAX_OR_CONDITIONS
|
||||
@@ -131,7 +130,6 @@ def _vespa_hit_to_inference_chunk(
|
||||
section_continuation=fields[SECTION_CONTINUATION],
|
||||
document_id=fields[DOCUMENT_ID],
|
||||
source_type=fields[SOURCE_TYPE],
|
||||
image_file_name=fields.get(IMAGE_FILE_NAME),
|
||||
title=fields.get(TITLE),
|
||||
semantic_identifier=fields[SEMANTIC_IDENTIFIER],
|
||||
boost=fields.get(BOOST, 1),
|
||||
@@ -213,7 +211,6 @@ def _get_chunks_via_visit_api(
|
||||
|
||||
# Check if the response contains any documents
|
||||
response_data = response.json()
|
||||
|
||||
if "documents" in response_data:
|
||||
for document in response_data["documents"]:
|
||||
if filters.access_control_list:
|
||||
|
||||
@@ -32,7 +32,6 @@ from onyx.document_index.vespa_constants import DOCUMENT_ID
|
||||
from onyx.document_index.vespa_constants import DOCUMENT_ID_ENDPOINT
|
||||
from onyx.document_index.vespa_constants import DOCUMENT_SETS
|
||||
from onyx.document_index.vespa_constants import EMBEDDINGS
|
||||
from onyx.document_index.vespa_constants import IMAGE_FILE_NAME
|
||||
from onyx.document_index.vespa_constants import LARGE_CHUNK_REFERENCE_IDS
|
||||
from onyx.document_index.vespa_constants import METADATA
|
||||
from onyx.document_index.vespa_constants import METADATA_LIST
|
||||
@@ -199,13 +198,13 @@ def _index_vespa_chunk(
|
||||
# which only calls VespaIndex.update
|
||||
ACCESS_CONTROL_LIST: {acl_entry: 1 for acl_entry in chunk.access.to_acl()},
|
||||
DOCUMENT_SETS: {document_set: 1 for document_set in chunk.document_sets},
|
||||
IMAGE_FILE_NAME: chunk.image_file_name,
|
||||
BOOST: chunk.boost,
|
||||
}
|
||||
|
||||
if multitenant:
|
||||
if chunk.tenant_id:
|
||||
vespa_document_fields[TENANT_ID] = chunk.tenant_id
|
||||
|
||||
vespa_url = f"{DOCUMENT_ID_ENDPOINT.format(index_name=index_name)}/{vespa_chunk_id}"
|
||||
logger.debug(f'Indexing to URL "{vespa_url}"')
|
||||
res = http_client.post(
|
||||
|
||||
@@ -77,7 +77,6 @@ PRIMARY_OWNERS = "primary_owners"
|
||||
SECONDARY_OWNERS = "secondary_owners"
|
||||
RECENCY_BIAS = "recency_bias"
|
||||
HIDDEN = "hidden"
|
||||
IMAGE_FILE_NAME = "image_file_name"
|
||||
|
||||
# Specific to Vespa, needed for highlighting matching keywords / section
|
||||
CONTENT_SUMMARY = "content_summary"
|
||||
@@ -95,7 +94,6 @@ YQL_BASE = (
|
||||
f"{SEMANTIC_IDENTIFIER}, "
|
||||
f"{TITLE}, "
|
||||
f"{SECTION_CONTINUATION}, "
|
||||
f"{IMAGE_FILE_NAME}, "
|
||||
f"{BOOST}, "
|
||||
f"{HIDDEN}, "
|
||||
f"{DOC_UPDATED_AT}, "
|
||||
|
||||
@@ -9,17 +9,15 @@ from email.parser import Parser as EmailParser
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import Dict
|
||||
from typing import IO
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import chardet
|
||||
import docx # type: ignore
|
||||
import openpyxl # type: ignore
|
||||
import pptx # type: ignore
|
||||
from docx import Document as DocxDocument
|
||||
from docx import Document
|
||||
from fastapi import UploadFile
|
||||
from PIL import Image
|
||||
from pypdf import PdfReader
|
||||
from pypdf.errors import PdfStreamError
|
||||
|
||||
@@ -33,8 +31,10 @@ from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
TEXT_SECTION_SEPARATOR = "\n\n"
|
||||
|
||||
|
||||
PLAIN_TEXT_FILE_EXTENSIONS = [
|
||||
".txt",
|
||||
".md",
|
||||
@@ -49,6 +49,7 @@ PLAIN_TEXT_FILE_EXTENSIONS = [
|
||||
".yaml",
|
||||
]
|
||||
|
||||
|
||||
VALID_FILE_EXTENSIONS = PLAIN_TEXT_FILE_EXTENSIONS + [
|
||||
".pdf",
|
||||
".docx",
|
||||
@@ -57,16 +58,6 @@ VALID_FILE_EXTENSIONS = PLAIN_TEXT_FILE_EXTENSIONS + [
|
||||
".eml",
|
||||
".epub",
|
||||
".html",
|
||||
".png",
|
||||
".jpg",
|
||||
".jpeg",
|
||||
".webp",
|
||||
]
|
||||
|
||||
IMAGE_MEDIA_TYPES = [
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/webp",
|
||||
]
|
||||
|
||||
|
||||
@@ -76,13 +67,11 @@ def is_text_file_extension(file_name: str) -> bool:
|
||||
|
||||
def get_file_ext(file_path_or_name: str | Path) -> str:
|
||||
_, extension = os.path.splitext(file_path_or_name)
|
||||
# standardize all extensions to be lowercase so that checks against
|
||||
# VALID_FILE_EXTENSIONS and similar will work as intended
|
||||
return extension.lower()
|
||||
|
||||
|
||||
def is_valid_media_type(media_type: str) -> bool:
|
||||
return media_type in IMAGE_MEDIA_TYPES
|
||||
|
||||
|
||||
def is_valid_file_ext(ext: str) -> bool:
|
||||
return ext in VALID_FILE_EXTENSIONS
|
||||
|
||||
@@ -90,18 +79,17 @@ def is_valid_file_ext(ext: str) -> bool:
|
||||
def is_text_file(file: IO[bytes]) -> bool:
|
||||
"""
|
||||
checks if the first 1024 bytes only contain printable or whitespace characters
|
||||
if it does, then we say it's a plaintext file
|
||||
if it does, then we say its a plaintext file
|
||||
"""
|
||||
raw_data = file.read(1024)
|
||||
file.seek(0)
|
||||
text_chars = bytearray({7, 8, 9, 10, 12, 13, 27} | set(range(0x20, 0x100)) - {0x7F})
|
||||
return all(c in text_chars for c in raw_data)
|
||||
|
||||
|
||||
def detect_encoding(file: IO[bytes]) -> str:
|
||||
raw_data = file.read(50000)
|
||||
file.seek(0)
|
||||
encoding = chardet.detect(raw_data)["encoding"] or "utf-8"
|
||||
file.seek(0)
|
||||
return encoding
|
||||
|
||||
|
||||
@@ -111,14 +99,14 @@ def is_macos_resource_fork_file(file_name: str) -> bool:
|
||||
)
|
||||
|
||||
|
||||
# To include additional metadata in the search index, add a .onyx_metadata.json file
|
||||
# to the zip file. This file should contain a list of objects with the following format:
|
||||
# [{ "filename": "file1.txt", "link": "https://example.com/file1.txt" }]
|
||||
def load_files_from_zip(
|
||||
zip_file_io: IO,
|
||||
ignore_macos_resource_fork_files: bool = True,
|
||||
ignore_dirs: bool = True,
|
||||
) -> Iterator[tuple[zipfile.ZipInfo, IO[Any], dict[str, Any]]]:
|
||||
"""
|
||||
If there's a .onyx_metadata.json in the zip, attach those metadata to each subfile.
|
||||
"""
|
||||
with zipfile.ZipFile(zip_file_io, "r") as zip_file:
|
||||
zip_metadata = {}
|
||||
try:
|
||||
@@ -130,31 +118,24 @@ def load_files_from_zip(
|
||||
# convert list of dicts to dict of dicts
|
||||
zip_metadata = {d["filename"]: d for d in zip_metadata}
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"Unable to load {DANSWER_METADATA_FILENAME}")
|
||||
logger.warn(f"Unable to load {DANSWER_METADATA_FILENAME}")
|
||||
except KeyError:
|
||||
logger.info(f"No {DANSWER_METADATA_FILENAME} file")
|
||||
|
||||
for file_info in zip_file.infolist():
|
||||
if ignore_dirs and file_info.is_dir():
|
||||
continue
|
||||
with zip_file.open(file_info.filename, "r") as file:
|
||||
if ignore_dirs and file_info.is_dir():
|
||||
continue
|
||||
|
||||
if (
|
||||
ignore_macos_resource_fork_files
|
||||
and is_macos_resource_fork_file(file_info.filename)
|
||||
) or file_info.filename == DANSWER_METADATA_FILENAME:
|
||||
continue
|
||||
|
||||
with zip_file.open(file_info.filename, "r") as subfile:
|
||||
yield file_info, subfile, zip_metadata.get(file_info.filename, {})
|
||||
if (
|
||||
ignore_macos_resource_fork_files
|
||||
and is_macos_resource_fork_file(file_info.filename)
|
||||
) or file_info.filename == DANSWER_METADATA_FILENAME:
|
||||
continue
|
||||
yield file_info, file, zip_metadata.get(file_info.filename, {})
|
||||
|
||||
|
||||
def _extract_onyx_metadata(line: str) -> dict | None:
|
||||
"""
|
||||
Example: first line has:
|
||||
<!-- DANSWER_METADATA={"title": "..."} -->
|
||||
or
|
||||
#DANSWER_METADATA={"title":"..."}
|
||||
"""
|
||||
html_comment_pattern = r"<!--\s*DANSWER_METADATA=\{(.*?)\}\s*-->"
|
||||
hashtag_pattern = r"#DANSWER_METADATA=\{(.*?)\}"
|
||||
|
||||
@@ -180,13 +161,9 @@ def read_text_file(
|
||||
errors: str = "replace",
|
||||
ignore_onyx_metadata: bool = True,
|
||||
) -> tuple[str, dict]:
|
||||
"""
|
||||
For plain text files. Optionally extracts Onyx metadata from the first line.
|
||||
"""
|
||||
metadata = {}
|
||||
file_content_raw = ""
|
||||
for ind, line in enumerate(file):
|
||||
# decode
|
||||
try:
|
||||
line = line.decode(encoding) if isinstance(line, bytes) else line
|
||||
except UnicodeDecodeError:
|
||||
@@ -196,132 +173,131 @@ def read_text_file(
|
||||
else line
|
||||
)
|
||||
|
||||
# optionally parse metadata in the first line
|
||||
if ind == 0 and not ignore_onyx_metadata:
|
||||
potential_meta = _extract_onyx_metadata(line)
|
||||
if potential_meta is not None:
|
||||
metadata = potential_meta
|
||||
continue
|
||||
|
||||
file_content_raw += line
|
||||
if ind == 0:
|
||||
metadata_or_none = (
|
||||
None if ignore_onyx_metadata else _extract_onyx_metadata(line)
|
||||
)
|
||||
if metadata_or_none is not None:
|
||||
metadata = metadata_or_none
|
||||
else:
|
||||
file_content_raw += line
|
||||
else:
|
||||
file_content_raw += line
|
||||
|
||||
return file_content_raw, metadata
|
||||
|
||||
|
||||
def pdf_to_text(file: IO[Any], pdf_pass: str | None = None) -> str:
|
||||
"""
|
||||
Extract text from a PDF. For embedded images, a more complex approach is needed.
|
||||
This is a minimal approach returning text only.
|
||||
"""
|
||||
text, _, _ = read_pdf_file(file, pdf_pass)
|
||||
"""Extract text from a PDF file."""
|
||||
# Return only the extracted text from read_pdf_file
|
||||
text, _ = read_pdf_file(file, pdf_pass)
|
||||
return text
|
||||
|
||||
|
||||
def read_pdf_file(
|
||||
file: IO[Any], pdf_pass: str | None = None, extract_images: bool = False
|
||||
) -> tuple[str, dict, list[tuple[bytes, str]]]:
|
||||
"""
|
||||
Returns the text, basic PDF metadata, and optionally extracted images.
|
||||
"""
|
||||
metadata: dict[str, Any] = {}
|
||||
extracted_images: list[tuple[bytes, str]] = []
|
||||
file: IO[Any],
|
||||
pdf_pass: str | None = None,
|
||||
) -> tuple[str, dict]:
|
||||
metadata: Dict[str, Any] = {}
|
||||
try:
|
||||
pdf_reader = PdfReader(file)
|
||||
|
||||
# If marked as encrypted and a password is provided, try to decrypt
|
||||
if pdf_reader.is_encrypted and pdf_pass is not None:
|
||||
decrypt_success = False
|
||||
try:
|
||||
decrypt_success = pdf_reader.decrypt(pdf_pass) != 0
|
||||
except Exception:
|
||||
logger.error("Unable to decrypt pdf")
|
||||
if pdf_pass is not None:
|
||||
try:
|
||||
decrypt_success = pdf_reader.decrypt(pdf_pass) != 0
|
||||
except Exception:
|
||||
logger.error("Unable to decrypt pdf")
|
||||
|
||||
if not decrypt_success:
|
||||
return "", metadata, []
|
||||
# By user request, keep files that are unreadable just so they
|
||||
# can be discoverable by title.
|
||||
return "", metadata
|
||||
elif pdf_reader.is_encrypted:
|
||||
logger.warning("No Password for an encrypted PDF, returning empty text.")
|
||||
return "", metadata, []
|
||||
logger.warning("No Password available to decrypt pdf, returning empty")
|
||||
return "", metadata
|
||||
|
||||
# Basic PDF metadata
|
||||
# Extract metadata from the PDF, removing leading '/' from keys if present
|
||||
# This standardizes the metadata keys for consistency
|
||||
metadata = {}
|
||||
if pdf_reader.metadata is not None:
|
||||
for key, value in pdf_reader.metadata.items():
|
||||
clean_key = key.lstrip("/")
|
||||
if isinstance(value, str) and value.strip():
|
||||
metadata[clean_key] = value
|
||||
|
||||
elif isinstance(value, list) and all(
|
||||
isinstance(item, str) for item in value
|
||||
):
|
||||
metadata[clean_key] = ", ".join(value)
|
||||
|
||||
text = TEXT_SECTION_SEPARATOR.join(
|
||||
page.extract_text() for page in pdf_reader.pages
|
||||
return (
|
||||
TEXT_SECTION_SEPARATOR.join(
|
||||
page.extract_text() for page in pdf_reader.pages
|
||||
),
|
||||
metadata,
|
||||
)
|
||||
|
||||
if extract_images:
|
||||
for page_num, page in enumerate(pdf_reader.pages):
|
||||
for image_file_object in page.images:
|
||||
image = Image.open(io.BytesIO(image_file_object.data))
|
||||
img_byte_arr = io.BytesIO()
|
||||
image.save(img_byte_arr, format=image.format)
|
||||
img_bytes = img_byte_arr.getvalue()
|
||||
|
||||
image_name = (
|
||||
f"page_{page_num + 1}_image_{image_file_object.name}."
|
||||
f"{image.format.lower() if image.format else 'png'}"
|
||||
)
|
||||
extracted_images.append((img_bytes, image_name))
|
||||
|
||||
return text, metadata, extracted_images
|
||||
|
||||
except PdfStreamError:
|
||||
logger.exception("Invalid PDF file")
|
||||
logger.exception("PDF file is not a valid PDF")
|
||||
except Exception:
|
||||
logger.exception("Failed to read PDF")
|
||||
|
||||
return "", metadata, []
|
||||
# File is still discoverable by title
|
||||
# but the contents are not included as they cannot be parsed
|
||||
return "", metadata
|
||||
|
||||
|
||||
def docx_to_text_and_images(
|
||||
file: IO[Any],
|
||||
) -> Tuple[str, List[Tuple[bytes, str]]]:
|
||||
"""
|
||||
Extract text from a docx. If embed_images=True, also extract inline images.
|
||||
Return (text_content, list_of_images).
|
||||
"""
|
||||
def docx_to_text(file: IO[Any]) -> str:
|
||||
def is_simple_table(table: docx.table.Table) -> bool:
|
||||
for row in table.rows:
|
||||
# No omitted cells
|
||||
if row.grid_cols_before > 0 or row.grid_cols_after > 0:
|
||||
return False
|
||||
|
||||
# No nested tables
|
||||
if any(cell.tables for cell in row.cells):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def extract_cell_text(cell: docx.table._Cell) -> str:
|
||||
cell_paragraphs = [para.text.strip() for para in cell.paragraphs]
|
||||
return " ".join(p for p in cell_paragraphs if p) or "N/A"
|
||||
|
||||
paragraphs = []
|
||||
embedded_images: List[Tuple[bytes, str]] = []
|
||||
|
||||
doc = docx.Document(file)
|
||||
for item in doc.iter_inner_content():
|
||||
if isinstance(item, docx.text.paragraph.Paragraph):
|
||||
paragraphs.append(item.text)
|
||||
|
||||
# Grab text from paragraphs
|
||||
for paragraph in doc.paragraphs:
|
||||
paragraphs.append(paragraph.text)
|
||||
elif isinstance(item, docx.table.Table):
|
||||
if not item.rows or not is_simple_table(item):
|
||||
continue
|
||||
|
||||
# Reset position so we can re-load the doc (python-docx has read the stream)
|
||||
# Note: if python-docx has fully consumed the stream, you may need to open it again from memory.
|
||||
# For large docs, a more robust approach is needed.
|
||||
# This is a simplified example.
|
||||
# Every row is a new line, joined with a single newline
|
||||
table_content = "\n".join(
|
||||
[
|
||||
",\t".join(extract_cell_text(cell) for cell in row.cells)
|
||||
for row in item.rows
|
||||
]
|
||||
)
|
||||
paragraphs.append(table_content)
|
||||
|
||||
for rel_id, rel in doc.part.rels.items():
|
||||
if "image" in rel.reltype:
|
||||
# image is typically in rel.target_part.blob
|
||||
image_bytes = rel.target_part.blob
|
||||
image_name = rel.target_part.partname
|
||||
# store
|
||||
embedded_images.append((image_bytes, os.path.basename(str(image_name))))
|
||||
|
||||
text_content = "\n".join(paragraphs)
|
||||
return text_content, embedded_images
|
||||
# Docx already has good spacing between paragraphs
|
||||
return "\n".join(paragraphs)
|
||||
|
||||
|
||||
def pptx_to_text(file: IO[Any]) -> str:
|
||||
presentation = pptx.Presentation(file)
|
||||
text_content = []
|
||||
for slide_number, slide in enumerate(presentation.slides, start=1):
|
||||
slide_text = f"\nSlide {slide_number}:\n"
|
||||
extracted_text = f"\nSlide {slide_number}:\n"
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
slide_text += shape.text + "\n"
|
||||
text_content.append(slide_text)
|
||||
extracted_text += shape.text + "\n"
|
||||
text_content.append(extracted_text)
|
||||
return TEXT_SECTION_SEPARATOR.join(text_content)
|
||||
|
||||
|
||||
@@ -329,21 +305,18 @@ def xlsx_to_text(file: IO[Any]) -> str:
|
||||
workbook = openpyxl.load_workbook(file, read_only=True)
|
||||
text_content = []
|
||||
for sheet in workbook.worksheets:
|
||||
rows = []
|
||||
for row in sheet.iter_rows(min_row=1, values_only=True):
|
||||
row_str = ",".join(str(cell) if cell is not None else "" for cell in row)
|
||||
rows.append(row_str)
|
||||
sheet_str = "\n".join(rows)
|
||||
text_content.append(sheet_str)
|
||||
sheet_string = "\n".join(
|
||||
",".join(map(str, row))
|
||||
for row in sheet.iter_rows(min_row=1, values_only=True)
|
||||
)
|
||||
text_content.append(sheet_string)
|
||||
return TEXT_SECTION_SEPARATOR.join(text_content)
|
||||
|
||||
|
||||
def eml_to_text(file: IO[Any]) -> str:
|
||||
encoding = detect_encoding(file)
|
||||
text_file = io.TextIOWrapper(file, encoding=encoding)
|
||||
text_file = io.TextIOWrapper(file, encoding=detect_encoding(file))
|
||||
parser = EmailParser()
|
||||
message = parser.parse(text_file)
|
||||
|
||||
text_content = []
|
||||
for part in message.walk():
|
||||
if part.get_content_type().startswith("text/plain"):
|
||||
@@ -369,8 +342,8 @@ def epub_to_text(file: IO[Any]) -> str:
|
||||
|
||||
def file_io_to_text(file: IO[Any]) -> str:
|
||||
encoding = detect_encoding(file)
|
||||
file_content, _ = read_text_file(file, encoding=encoding)
|
||||
return file_content
|
||||
file_content_raw, _ = read_text_file(file, encoding=encoding)
|
||||
return file_content_raw
|
||||
|
||||
|
||||
def extract_file_text(
|
||||
@@ -379,13 +352,9 @@ def extract_file_text(
|
||||
break_on_unprocessable: bool = True,
|
||||
extension: str | None = None,
|
||||
) -> str:
|
||||
"""
|
||||
Legacy function that returns *only text*, ignoring embedded images.
|
||||
For backward-compatibility in code that only wants text.
|
||||
"""
|
||||
extension_to_function: dict[str, Callable[[IO[Any]], str]] = {
|
||||
".pdf": pdf_to_text,
|
||||
".docx": lambda f: docx_to_text_and_images(f)[0], # no images
|
||||
".docx": docx_to_text,
|
||||
".pptx": pptx_to_text,
|
||||
".xlsx": xlsx_to_text,
|
||||
".eml": eml_to_text,
|
||||
@@ -399,23 +368,24 @@ def extract_file_text(
|
||||
return unstructured_to_text(file, file_name)
|
||||
except Exception as unstructured_error:
|
||||
logger.error(
|
||||
f"Failed to process with Unstructured: {str(unstructured_error)}. "
|
||||
"Falling back to normal processing."
|
||||
f"Failed to process with Unstructured: {str(unstructured_error)}. Falling back to normal processing."
|
||||
)
|
||||
if extension is None:
|
||||
extension = get_file_ext(file_name)
|
||||
# Fall through to normal processing
|
||||
final_extension: str
|
||||
if file_name or extension:
|
||||
if extension is not None:
|
||||
final_extension = extension
|
||||
elif file_name is not None:
|
||||
final_extension = get_file_ext(file_name)
|
||||
|
||||
if is_valid_file_ext(extension):
|
||||
func = extension_to_function.get(extension, file_io_to_text)
|
||||
file.seek(0)
|
||||
return func(file)
|
||||
if is_valid_file_ext(final_extension):
|
||||
return extension_to_function.get(final_extension, file_io_to_text)(file)
|
||||
|
||||
# If unknown extension, maybe it's a text file
|
||||
file.seek(0)
|
||||
# Either the file somehow has no name or the extension is not one that we recognize
|
||||
if is_text_file(file):
|
||||
return file_io_to_text(file)
|
||||
|
||||
raise ValueError("Unknown file extension or not recognized as text data")
|
||||
raise ValueError("Unknown file extension and unknown text encoding")
|
||||
|
||||
except Exception as e:
|
||||
if break_on_unprocessable:
|
||||
@@ -426,93 +396,20 @@ def extract_file_text(
|
||||
return ""
|
||||
|
||||
|
||||
def extract_text_and_images(
|
||||
file: IO[Any],
|
||||
file_name: str,
|
||||
pdf_pass: str | None = None,
|
||||
) -> Tuple[str, List[Tuple[bytes, str]]]:
|
||||
"""
|
||||
Primary new function for the updated connector.
|
||||
Returns (text_content, [(embedded_img_bytes, embedded_img_name), ...]).
|
||||
"""
|
||||
|
||||
try:
|
||||
# Attempt unstructured if env var is set
|
||||
if get_unstructured_api_key():
|
||||
# If the user doesn't want embedded images, unstructured is fine
|
||||
file.seek(0)
|
||||
text_content = unstructured_to_text(file, file_name)
|
||||
return (text_content, [])
|
||||
|
||||
extension = get_file_ext(file_name)
|
||||
|
||||
# docx example for embedded images
|
||||
if extension == ".docx":
|
||||
file.seek(0)
|
||||
text_content, images = docx_to_text_and_images(file)
|
||||
return (text_content, images)
|
||||
|
||||
# PDF example: we do not show complicated PDF image extraction here
|
||||
# so we simply extract text for now and skip images.
|
||||
if extension == ".pdf":
|
||||
file.seek(0)
|
||||
text_content, _, images = read_pdf_file(file, pdf_pass, extract_images=True)
|
||||
return (text_content, images)
|
||||
|
||||
# For PPTX, XLSX, EML, etc., we do not show embedded image logic here.
|
||||
# You can do something similar to docx if needed.
|
||||
if extension == ".pptx":
|
||||
file.seek(0)
|
||||
return (pptx_to_text(file), [])
|
||||
|
||||
if extension == ".xlsx":
|
||||
file.seek(0)
|
||||
return (xlsx_to_text(file), [])
|
||||
|
||||
if extension == ".eml":
|
||||
file.seek(0)
|
||||
return (eml_to_text(file), [])
|
||||
|
||||
if extension == ".epub":
|
||||
file.seek(0)
|
||||
return (epub_to_text(file), [])
|
||||
|
||||
if extension == ".html":
|
||||
file.seek(0)
|
||||
return (parse_html_page_basic(file), [])
|
||||
|
||||
# If we reach here and it's a recognized text extension
|
||||
if is_text_file_extension(file_name):
|
||||
file.seek(0)
|
||||
encoding = detect_encoding(file)
|
||||
text_content_raw, _ = read_text_file(
|
||||
file, encoding=encoding, ignore_onyx_metadata=False
|
||||
)
|
||||
return (text_content_raw, [])
|
||||
|
||||
# If it's an image file or something else, we do not parse embedded images from them
|
||||
# just return empty text
|
||||
file.seek(0)
|
||||
return ("", [])
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Failed to extract text/images from {file_name}: {e}")
|
||||
return ("", [])
|
||||
|
||||
|
||||
def convert_docx_to_txt(
|
||||
file: UploadFile, file_store: FileStore, file_path: str
|
||||
) -> None:
|
||||
"""
|
||||
Helper to convert docx to a .txt file in the same filestore.
|
||||
"""
|
||||
file.file.seek(0)
|
||||
docx_content = file.file.read()
|
||||
doc = DocxDocument(BytesIO(docx_content))
|
||||
doc = Document(BytesIO(docx_content))
|
||||
|
||||
# Extract text from the document
|
||||
all_paras = [p.text for p in doc.paragraphs]
|
||||
text_content = "\n".join(all_paras)
|
||||
full_text = []
|
||||
for para in doc.paragraphs:
|
||||
full_text.append(para.text)
|
||||
|
||||
# Join the extracted text
|
||||
text_content = "\n".join(full_text)
|
||||
|
||||
txt_file_path = docx_to_txt_filename(file_path)
|
||||
file_store.save_file(
|
||||
@@ -525,4 +422,7 @@ def convert_docx_to_txt(
|
||||
|
||||
|
||||
def docx_to_txt_filename(file_path: str) -> str:
|
||||
"""
|
||||
Convert a .docx file path to its corresponding .txt file path.
|
||||
"""
|
||||
return file_path.rsplit(".", 1)[0] + ".txt"
|
||||
|
||||
@@ -1,46 +0,0 @@
|
||||
"""
|
||||
Centralized file type validation utilities.
|
||||
"""
|
||||
# Standard image MIME types supported by most vision LLMs
|
||||
IMAGE_MIME_TYPES = [
|
||||
"image/png",
|
||||
"image/jpeg",
|
||||
"image/jpg",
|
||||
"image/webp",
|
||||
]
|
||||
|
||||
# Image types that should be excluded from processing
|
||||
EXCLUDED_IMAGE_TYPES = [
|
||||
"image/bmp",
|
||||
"image/tiff",
|
||||
"image/gif",
|
||||
"image/svg+xml",
|
||||
]
|
||||
|
||||
|
||||
def is_valid_image_type(mime_type: str) -> bool:
|
||||
"""
|
||||
Check if mime_type is a valid image type.
|
||||
|
||||
Args:
|
||||
mime_type: The MIME type to check
|
||||
|
||||
Returns:
|
||||
True if the MIME type is a valid image type, False otherwise
|
||||
"""
|
||||
if not mime_type:
|
||||
return False
|
||||
return mime_type.startswith("image/") and mime_type not in EXCLUDED_IMAGE_TYPES
|
||||
|
||||
|
||||
def is_supported_by_vision_llm(mime_type: str) -> bool:
|
||||
"""
|
||||
Check if this image type can be processed by vision LLMs.
|
||||
|
||||
Args:
|
||||
mime_type: The MIME type to check
|
||||
|
||||
Returns:
|
||||
True if the MIME type is supported by vision LLMs, False otherwise
|
||||
"""
|
||||
return mime_type in IMAGE_MIME_TYPES
|
||||
@@ -1,129 +0,0 @@
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import SystemMessage
|
||||
from PIL import Image
|
||||
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.llm.utils import message_to_string
|
||||
from onyx.prompts.image_analysis import IMAGE_SUMMARIZATION_SYSTEM_PROMPT
|
||||
from onyx.prompts.image_analysis import IMAGE_SUMMARIZATION_USER_PROMPT
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def prepare_image_bytes(image_data: bytes) -> str:
|
||||
"""Prepare image bytes for summarization.
|
||||
Resizes image if it's larger than 20MB. Encodes image as a base64 string."""
|
||||
image_data = _resize_image_if_needed(image_data)
|
||||
|
||||
# encode image (base64)
|
||||
encoded_image = _encode_image_for_llm_prompt(image_data)
|
||||
|
||||
return encoded_image
|
||||
|
||||
|
||||
def summarize_image_pipeline(
|
||||
llm: LLM,
|
||||
image_data: bytes,
|
||||
query: str | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str:
|
||||
"""Pipeline to generate a summary of an image.
|
||||
Resizes images if it is bigger than 20MB. Encodes image as a base64 string.
|
||||
And finally uses the Default LLM to generate a textual summary of the image."""
|
||||
# resize image if it's bigger than 20MB
|
||||
encoded_image = prepare_image_bytes(image_data)
|
||||
|
||||
summary = _summarize_image(
|
||||
encoded_image,
|
||||
llm,
|
||||
query,
|
||||
system_prompt,
|
||||
)
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
def summarize_image_with_error_handling(
|
||||
llm: LLM | None,
|
||||
image_data: bytes,
|
||||
context_name: str,
|
||||
system_prompt: str = IMAGE_SUMMARIZATION_SYSTEM_PROMPT,
|
||||
user_prompt_template: str = IMAGE_SUMMARIZATION_USER_PROMPT,
|
||||
) -> str | None:
|
||||
"""Wrapper function that handles error cases and configuration consistently.
|
||||
|
||||
Args:
|
||||
llm: The LLM with vision capabilities to use for summarization
|
||||
image_data: The raw image bytes
|
||||
context_name: Name or title of the image for context
|
||||
system_prompt: System prompt to use for the LLM
|
||||
user_prompt_template: Template for the user prompt, should contain {title} placeholder
|
||||
|
||||
Returns:
|
||||
The image summary text, or None if summarization failed or is disabled
|
||||
"""
|
||||
if llm is None:
|
||||
return None
|
||||
|
||||
user_prompt = user_prompt_template.format(title=context_name)
|
||||
return summarize_image_pipeline(llm, image_data, user_prompt, system_prompt)
|
||||
|
||||
|
||||
def _summarize_image(
|
||||
encoded_image: str,
|
||||
llm: LLM,
|
||||
query: str | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str:
|
||||
"""Use default LLM (if it is multimodal) to generate a summary of an image."""
|
||||
|
||||
messages: list[BaseMessage] = []
|
||||
|
||||
if system_prompt:
|
||||
messages.append(SystemMessage(content=system_prompt))
|
||||
|
||||
messages.append(
|
||||
HumanMessage(
|
||||
content=[
|
||||
{"type": "text", "text": query},
|
||||
{"type": "image_url", "image_url": {"url": encoded_image}},
|
||||
],
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
return message_to_string(llm.invoke(messages))
|
||||
|
||||
except Exception as e:
|
||||
raise ValueError(f"Summarization failed. Messages: {messages}") from e
|
||||
|
||||
|
||||
def _encode_image_for_llm_prompt(image_data: bytes) -> str:
|
||||
"""Getting the base64 string."""
|
||||
base64_encoded_data = base64.b64encode(image_data).decode("utf-8")
|
||||
|
||||
return f"data:image/jpeg;base64,{base64_encoded_data}"
|
||||
|
||||
|
||||
def _resize_image_if_needed(image_data: bytes, max_size_mb: int = 20) -> bytes:
|
||||
"""Resize image if it's larger than the specified max size in MB."""
|
||||
max_size_bytes = max_size_mb * 1024 * 1024
|
||||
|
||||
if len(image_data) > max_size_bytes:
|
||||
with Image.open(BytesIO(image_data)) as img:
|
||||
# Reduce dimensions for better size reduction
|
||||
img.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
|
||||
output = BytesIO()
|
||||
|
||||
# Save with lower quality for compression
|
||||
img.save(output, format="JPEG", quality=85)
|
||||
resized_data = output.getvalue()
|
||||
|
||||
return resized_data
|
||||
|
||||
return image_data
|
||||
@@ -1,70 +0,0 @@
|
||||
from typing import Tuple
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
from onyx.configs.constants import FileOrigin
|
||||
from onyx.connectors.models import Section
|
||||
from onyx.db.pg_file_store import save_bytes_to_pgfilestore
|
||||
from onyx.file_processing.image_summarization import summarize_image_with_error_handling
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def store_image_and_create_section(
|
||||
db_session: Session,
|
||||
image_data: bytes,
|
||||
file_name: str,
|
||||
display_name: str,
|
||||
media_type: str = "image/unknown",
|
||||
llm: LLM | None = None,
|
||||
file_origin: FileOrigin = FileOrigin.OTHER,
|
||||
) -> Tuple[Section, str | None]:
|
||||
"""
|
||||
Stores an image in PGFileStore and creates a Section object with optional summarization.
|
||||
|
||||
Args:
|
||||
db_session: Database session
|
||||
image_data: Raw image bytes
|
||||
file_name: Base identifier for the file
|
||||
display_name: Human-readable name for the image
|
||||
media_type: MIME type of the image
|
||||
llm: Optional LLM with vision capabilities for summarization
|
||||
file_origin: Origin of the file (e.g., CONFLUENCE, GOOGLE_DRIVE, etc.)
|
||||
|
||||
Returns:
|
||||
Tuple containing:
|
||||
- Section object with image reference and optional summary text
|
||||
- The file_name in PGFileStore or None if storage failed
|
||||
"""
|
||||
# Storage logic
|
||||
stored_file_name = None
|
||||
try:
|
||||
pgfilestore = save_bytes_to_pgfilestore(
|
||||
db_session=db_session,
|
||||
raw_bytes=image_data,
|
||||
media_type=media_type,
|
||||
identifier=file_name,
|
||||
display_name=display_name,
|
||||
file_origin=file_origin,
|
||||
)
|
||||
stored_file_name = pgfilestore.file_name
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store image: {e}")
|
||||
if not CONTINUE_ON_CONNECTOR_FAILURE:
|
||||
raise
|
||||
return Section(text=""), None
|
||||
|
||||
# Summarization logic
|
||||
summary_text = ""
|
||||
if llm:
|
||||
summary_text = (
|
||||
summarize_image_with_error_handling(llm, image_data, display_name) or ""
|
||||
)
|
||||
|
||||
return (
|
||||
Section(text=summary_text, image_file_name=stored_file_name),
|
||||
stored_file_name,
|
||||
)
|
||||
@@ -23,9 +23,12 @@ from shared_configs.configs import STRICT_CHUNK_TOKEN_LIMIT
|
||||
CHUNK_OVERLAP = 0
|
||||
# Fairly arbitrary numbers but the general concept is we don't want the title/metadata to
|
||||
# overwhelm the actual contents of the chunk
|
||||
# For example in a rare case, this could be 128 tokens for the 512 chunk and title prefix
|
||||
# could be another 128 tokens leaving 256 for the actual contents
|
||||
MAX_METADATA_PERCENTAGE = 0.25
|
||||
CHUNK_MIN_CONTENT = 256
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
@@ -33,8 +36,16 @@ def _get_metadata_suffix_for_document_index(
|
||||
metadata: dict[str, str | list[str]], include_separator: bool = False
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Returns the metadata as a natural language string representation with all of the keys and values
|
||||
for the vector embedding and a string of all of the values for the keyword search.
|
||||
Returns the metadata as a natural language string representation with all of the keys and values for the vector embedding
|
||||
and a string of all of the values for the keyword search
|
||||
|
||||
For example, if we have the following metadata:
|
||||
{
|
||||
"author": "John Doe",
|
||||
"space": "Engineering"
|
||||
}
|
||||
The vector embedding string should include the relation between the key and value wheres as for keyword we only want John Doe
|
||||
and Engineering. The keys are repeat and much more noisy.
|
||||
"""
|
||||
if not metadata:
|
||||
return "", ""
|
||||
@@ -63,17 +74,12 @@ def _get_metadata_suffix_for_document_index(
|
||||
|
||||
|
||||
def _combine_chunks(chunks: list[DocAwareChunk], large_chunk_id: int) -> DocAwareChunk:
|
||||
"""
|
||||
Combines multiple DocAwareChunks into one large chunk (for “multipass” mode),
|
||||
appending the content and adjusting source_links accordingly.
|
||||
"""
|
||||
merged_chunk = DocAwareChunk(
|
||||
source_document=chunks[0].source_document,
|
||||
chunk_id=chunks[0].chunk_id,
|
||||
blurb=chunks[0].blurb,
|
||||
content=chunks[0].content,
|
||||
source_links=chunks[0].source_links or {},
|
||||
image_file_name=None,
|
||||
section_continuation=(chunks[0].chunk_id > 0),
|
||||
title_prefix=chunks[0].title_prefix,
|
||||
metadata_suffix_semantic=chunks[0].metadata_suffix_semantic,
|
||||
@@ -97,9 +103,6 @@ def _combine_chunks(chunks: list[DocAwareChunk], large_chunk_id: int) -> DocAwar
|
||||
|
||||
|
||||
def generate_large_chunks(chunks: list[DocAwareChunk]) -> list[DocAwareChunk]:
|
||||
"""
|
||||
Generates larger “grouped” chunks by combining sets of smaller chunks.
|
||||
"""
|
||||
large_chunks = []
|
||||
for idx, i in enumerate(range(0, len(chunks), LARGE_CHUNK_RATIO)):
|
||||
chunk_group = chunks[i : i + LARGE_CHUNK_RATIO]
|
||||
@@ -169,60 +172,23 @@ class Chunker:
|
||||
while start < total_tokens:
|
||||
end = min(start + content_token_limit, total_tokens)
|
||||
token_chunk = tokens[start:end]
|
||||
# Join the tokens to reconstruct the text
|
||||
chunk_text = " ".join(token_chunk)
|
||||
chunks.append(chunk_text)
|
||||
start = end
|
||||
return chunks
|
||||
|
||||
def _extract_blurb(self, text: str) -> str:
|
||||
"""
|
||||
Extract a short blurb from the text (first chunk of size `blurb_size`).
|
||||
"""
|
||||
texts = self.blurb_splitter.split_text(text)
|
||||
if not texts:
|
||||
return ""
|
||||
return texts[0]
|
||||
|
||||
def _get_mini_chunk_texts(self, chunk_text: str) -> list[str] | None:
|
||||
"""
|
||||
For “multipass” mode: additional sub-chunks (mini-chunks) for use in certain embeddings.
|
||||
"""
|
||||
if self.mini_chunk_splitter and chunk_text.strip():
|
||||
return self.mini_chunk_splitter.split_text(chunk_text)
|
||||
return None
|
||||
|
||||
# ADDED: extra param image_url to store in the chunk
|
||||
def _create_chunk(
|
||||
self,
|
||||
document: Document,
|
||||
chunks_list: list[DocAwareChunk],
|
||||
text: str,
|
||||
links: dict[int, str],
|
||||
is_continuation: bool = False,
|
||||
title_prefix: str = "",
|
||||
metadata_suffix_semantic: str = "",
|
||||
metadata_suffix_keyword: str = "",
|
||||
image_file_name: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Helper to create a new DocAwareChunk, append it to chunks_list.
|
||||
"""
|
||||
new_chunk = DocAwareChunk(
|
||||
source_document=document,
|
||||
chunk_id=len(chunks_list),
|
||||
blurb=self._extract_blurb(text),
|
||||
content=text,
|
||||
source_links=links or {0: ""},
|
||||
image_file_name=image_file_name,
|
||||
section_continuation=is_continuation,
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
mini_chunk_texts=self._get_mini_chunk_texts(text),
|
||||
large_chunk_id=None,
|
||||
)
|
||||
chunks_list.append(new_chunk)
|
||||
|
||||
def _chunk_document(
|
||||
self,
|
||||
document: Document,
|
||||
@@ -232,156 +198,122 @@ class Chunker:
|
||||
content_token_limit: int,
|
||||
) -> list[DocAwareChunk]:
|
||||
"""
|
||||
Loops through sections of the document, converting them into one or more chunks.
|
||||
If a section has an image_link, we treat it as a dedicated chunk.
|
||||
Loops through sections of the document, adds metadata and converts them into chunks.
|
||||
"""
|
||||
|
||||
chunks: list[DocAwareChunk] = []
|
||||
link_offsets: dict[int, str] = {}
|
||||
chunk_text = ""
|
||||
|
||||
def _create_chunk(
|
||||
text: str,
|
||||
links: dict[int, str],
|
||||
is_continuation: bool = False,
|
||||
) -> DocAwareChunk:
|
||||
return DocAwareChunk(
|
||||
source_document=document,
|
||||
chunk_id=len(chunks),
|
||||
blurb=self._extract_blurb(text),
|
||||
content=text,
|
||||
source_links=links or {0: ""},
|
||||
section_continuation=is_continuation,
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
mini_chunk_texts=self._get_mini_chunk_texts(text),
|
||||
large_chunk_id=None,
|
||||
)
|
||||
|
||||
section_link_text: str
|
||||
|
||||
for section_idx, section in enumerate(document.sections):
|
||||
section_text = clean_text(section.text)
|
||||
section_link_text = section.link or ""
|
||||
# ADDED: if the Section has an image link
|
||||
image_url = section.image_file_name
|
||||
|
||||
# If there is no useful content, skip
|
||||
# If there is no useful content, not even the title, just drop it
|
||||
if not section_text and (not document.title or section_idx > 0):
|
||||
# If a section is empty and the document has no title, we can just drop it. We return a list of
|
||||
# DocAwareChunks where each one contains the necessary information needed down the line for indexing.
|
||||
# There is no concern about dropping whole documents from this list, it should not cause any indexing failures.
|
||||
logger.warning(
|
||||
f"Skipping empty or irrelevant section in doc "
|
||||
f"{document.semantic_identifier}, link={section_link_text}"
|
||||
f"Skipping section {section.text} from document "
|
||||
f"{document.semantic_identifier} due to empty text after cleaning "
|
||||
f"with link {section_link_text}"
|
||||
)
|
||||
continue
|
||||
|
||||
# CASE 1: If this is an image section, force a separate chunk
|
||||
if image_url:
|
||||
# First, if we have any partially built text chunk, finalize it
|
||||
if chunk_text.strip():
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
chunk_text,
|
||||
link_offsets,
|
||||
is_continuation=False,
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
)
|
||||
chunk_text = ""
|
||||
link_offsets = {}
|
||||
|
||||
# Create a chunk specifically for this image
|
||||
# (If the section has text describing the image, use that as content)
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
section_text,
|
||||
links={0: section_link_text}
|
||||
if section_link_text
|
||||
else {}, # No text offsets needed for images
|
||||
image_file_name=image_url,
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
)
|
||||
# Continue to next section
|
||||
continue
|
||||
|
||||
# CASE 2: Normal text section
|
||||
section_token_count = len(self.tokenizer.tokenize(section_text))
|
||||
|
||||
# If the section is large on its own, split it separately
|
||||
# Large sections are considered self-contained/unique
|
||||
# Therefore, they start a new chunk and are not concatenated
|
||||
# at the end by other sections
|
||||
if section_token_count > content_token_limit:
|
||||
if chunk_text.strip():
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
chunk_text,
|
||||
link_offsets,
|
||||
False,
|
||||
title_prefix,
|
||||
metadata_suffix_semantic,
|
||||
metadata_suffix_keyword,
|
||||
)
|
||||
chunk_text = ""
|
||||
if chunk_text:
|
||||
chunks.append(_create_chunk(chunk_text, link_offsets))
|
||||
link_offsets = {}
|
||||
chunk_text = ""
|
||||
|
||||
split_texts = self.chunk_splitter.split_text(section_text)
|
||||
|
||||
for i, split_text in enumerate(split_texts):
|
||||
# If even the split_text is bigger than strict limit, further split
|
||||
if (
|
||||
STRICT_CHUNK_TOKEN_LIMIT
|
||||
and len(self.tokenizer.tokenize(split_text))
|
||||
> content_token_limit
|
||||
and
|
||||
# Tokenizer only runs if STRICT_CHUNK_TOKEN_LIMIT is true
|
||||
len(self.tokenizer.tokenize(split_text)) > content_token_limit
|
||||
):
|
||||
# If STRICT_CHUNK_TOKEN_LIMIT is true, manually check
|
||||
# the token count of each split text to ensure it is
|
||||
# not larger than the content_token_limit
|
||||
smaller_chunks = self._split_oversized_chunk(
|
||||
split_text, content_token_limit
|
||||
)
|
||||
for j, small_chunk in enumerate(smaller_chunks):
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
small_chunk,
|
||||
{0: section_link_text},
|
||||
is_continuation=(j != 0),
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
for i, small_chunk in enumerate(smaller_chunks):
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
text=small_chunk,
|
||||
links={0: section_link_text},
|
||||
is_continuation=(i != 0),
|
||||
)
|
||||
)
|
||||
else:
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
split_text,
|
||||
{0: section_link_text},
|
||||
is_continuation=(i != 0),
|
||||
title_prefix=title_prefix,
|
||||
metadata_suffix_semantic=metadata_suffix_semantic,
|
||||
metadata_suffix_keyword=metadata_suffix_keyword,
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
text=split_text,
|
||||
links={0: section_link_text},
|
||||
is_continuation=(i != 0),
|
||||
)
|
||||
)
|
||||
|
||||
continue
|
||||
|
||||
# If we can still fit this section into the current chunk, do so
|
||||
current_token_count = len(self.tokenizer.tokenize(chunk_text))
|
||||
current_offset = len(shared_precompare_cleanup(chunk_text))
|
||||
# In the case where the whole section is shorter than a chunk, either add
|
||||
# to chunk or start a new one
|
||||
next_section_tokens = (
|
||||
len(self.tokenizer.tokenize(SECTION_SEPARATOR)) + section_token_count
|
||||
)
|
||||
|
||||
if next_section_tokens + current_token_count <= content_token_limit:
|
||||
if chunk_text:
|
||||
chunk_text += SECTION_SEPARATOR
|
||||
chunk_text += section_text
|
||||
link_offsets[current_offset] = section_link_text
|
||||
else:
|
||||
# finalize the existing chunk
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
chunk_text,
|
||||
link_offsets,
|
||||
False,
|
||||
title_prefix,
|
||||
metadata_suffix_semantic,
|
||||
metadata_suffix_keyword,
|
||||
)
|
||||
# start a new chunk
|
||||
chunks.append(_create_chunk(chunk_text, link_offsets))
|
||||
link_offsets = {0: section_link_text}
|
||||
chunk_text = section_text
|
||||
|
||||
# finalize any leftover text chunk
|
||||
# Once we hit the end, if we're still in the process of building a chunk, add what we have.
|
||||
# If there is only whitespace left then don't include it. If there are no chunks at all
|
||||
# from the doc, we can just create a single chunk with the title.
|
||||
if chunk_text.strip() or not chunks:
|
||||
self._create_chunk(
|
||||
document,
|
||||
chunks,
|
||||
chunk_text,
|
||||
link_offsets or {0: ""}, # safe default
|
||||
False,
|
||||
title_prefix,
|
||||
metadata_suffix_semantic,
|
||||
metadata_suffix_keyword,
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
chunk_text,
|
||||
link_offsets or {0: section_link_text},
|
||||
)
|
||||
)
|
||||
|
||||
# If the chunk does not have any useable content, it will not be indexed
|
||||
return chunks
|
||||
|
||||
def _handle_single_document(self, document: Document) -> list[DocAwareChunk]:
|
||||
@@ -389,12 +321,10 @@ class Chunker:
|
||||
if document.source == DocumentSource.GMAIL:
|
||||
logger.debug(f"Chunking {document.semantic_identifier}")
|
||||
|
||||
# Title prep
|
||||
title = self._extract_blurb(document.get_title_for_document_index() or "")
|
||||
title_prefix = title + RETURN_SEPARATOR if title else ""
|
||||
title_tokens = len(self.tokenizer.tokenize(title_prefix))
|
||||
|
||||
# Metadata prep
|
||||
metadata_suffix_semantic = ""
|
||||
metadata_suffix_keyword = ""
|
||||
metadata_tokens = 0
|
||||
@@ -407,20 +337,19 @@ class Chunker:
|
||||
)
|
||||
metadata_tokens = len(self.tokenizer.tokenize(metadata_suffix_semantic))
|
||||
|
||||
# If metadata is too large, skip it in the semantic content
|
||||
if metadata_tokens >= self.chunk_token_limit * MAX_METADATA_PERCENTAGE:
|
||||
# Note: we can keep the keyword suffix even if the semantic suffix is too long to fit in the model
|
||||
# context, there is no limit for the keyword component
|
||||
metadata_suffix_semantic = ""
|
||||
metadata_tokens = 0
|
||||
|
||||
# Adjust content token limit to accommodate title + metadata
|
||||
content_token_limit = self.chunk_token_limit - title_tokens - metadata_tokens
|
||||
# If there is not enough context remaining then just index the chunk with no prefix/suffix
|
||||
if content_token_limit <= CHUNK_MIN_CONTENT:
|
||||
# Not enough space left, so revert to full chunk without the prefix
|
||||
content_token_limit = self.chunk_token_limit
|
||||
title_prefix = ""
|
||||
metadata_suffix_semantic = ""
|
||||
|
||||
# Chunk the document
|
||||
normal_chunks = self._chunk_document(
|
||||
document,
|
||||
title_prefix,
|
||||
@@ -429,7 +358,6 @@ class Chunker:
|
||||
content_token_limit,
|
||||
)
|
||||
|
||||
# Optional “multipass” large chunk creation
|
||||
if self.enable_multipass and self.enable_large_chunks:
|
||||
large_chunks = generate_large_chunks(normal_chunks)
|
||||
normal_chunks.extend(large_chunks)
|
||||
@@ -443,8 +371,9 @@ class Chunker:
|
||||
"""
|
||||
final_chunks: list[DocAwareChunk] = []
|
||||
for document in documents:
|
||||
if self.callback and self.callback.should_stop():
|
||||
raise RuntimeError("Chunker.chunk: Stop signal detected")
|
||||
if self.callback:
|
||||
if self.callback.should_stop():
|
||||
raise RuntimeError("Chunker.chunk: Stop signal detected")
|
||||
|
||||
chunks = self._handle_single_document(document)
|
||||
final_chunks.extend(chunks)
|
||||
|
||||
@@ -464,29 +464,12 @@ def index_doc_batch(
|
||||
),
|
||||
)
|
||||
|
||||
all_returned_doc_ids = (
|
||||
{record.document_id for record in insertion_records}
|
||||
.union(
|
||||
{
|
||||
record.failed_document.document_id
|
||||
for record in vector_db_write_failures
|
||||
if record.failed_document
|
||||
}
|
||||
)
|
||||
.union(
|
||||
{
|
||||
record.failed_document.document_id
|
||||
for record in embedding_failures
|
||||
if record.failed_document
|
||||
}
|
||||
)
|
||||
)
|
||||
if all_returned_doc_ids != set(updatable_ids):
|
||||
successful_doc_ids = {record.document_id for record in insertion_records}
|
||||
if successful_doc_ids != set(updatable_ids):
|
||||
raise RuntimeError(
|
||||
f"Some documents were not successfully indexed. "
|
||||
f"Updatable IDs: {updatable_ids}, "
|
||||
f"Returned IDs: {all_returned_doc_ids}. "
|
||||
"This should never happen."
|
||||
f"Successful IDs: {successful_doc_ids}"
|
||||
)
|
||||
|
||||
last_modified_ids = []
|
||||
|
||||
@@ -29,7 +29,6 @@ class BaseChunk(BaseModel):
|
||||
content: str
|
||||
# Holds the link and the offsets into the raw Chunk text
|
||||
source_links: dict[int, str] | None
|
||||
image_file_name: str | None
|
||||
# True if this Chunk's start is not at the start of a Section
|
||||
section_continuation: bool
|
||||
|
||||
|
||||
@@ -167,7 +167,7 @@ def _convert_delta_to_message_chunk(
|
||||
stop_reason: str | None = None,
|
||||
) -> BaseMessageChunk:
|
||||
"""Adapted from langchain_community.chat_models.litellm._convert_delta_to_message_chunk"""
|
||||
role = _dict.get("role") or (_base_msg_to_role(curr_msg) if curr_msg else "unknown")
|
||||
role = _dict.get("role") or (_base_msg_to_role(curr_msg) if curr_msg else None)
|
||||
content = _dict.get("content") or ""
|
||||
additional_kwargs = {}
|
||||
if _dict.get("function_call"):
|
||||
@@ -402,7 +402,6 @@ class DefaultMultiLLM(LLM):
|
||||
stream: bool,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> litellm.ModelResponse | litellm.CustomStreamWrapper:
|
||||
# litellm doesn't accept LangChain BaseMessage objects, so we need to convert them
|
||||
# to a dict representation
|
||||
@@ -430,7 +429,6 @@ class DefaultMultiLLM(LLM):
|
||||
# model params
|
||||
temperature=0,
|
||||
timeout=timeout_override or self._timeout,
|
||||
max_tokens=max_tokens,
|
||||
# For now, we don't support parallel tool calls
|
||||
# NOTE: we can't pass this in if tools are not specified
|
||||
# or else OpenAI throws an error
|
||||
@@ -486,7 +484,6 @@ class DefaultMultiLLM(LLM):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> BaseMessage:
|
||||
if LOG_DANSWER_MODEL_INTERACTIONS:
|
||||
self.log_model_configs()
|
||||
@@ -500,7 +497,6 @@ class DefaultMultiLLM(LLM):
|
||||
stream=False,
|
||||
structured_response_format=structured_response_format,
|
||||
timeout_override=timeout_override,
|
||||
max_tokens=max_tokens,
|
||||
),
|
||||
)
|
||||
choice = response.choices[0]
|
||||
@@ -519,7 +515,6 @@ class DefaultMultiLLM(LLM):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> Iterator[BaseMessage]:
|
||||
if LOG_DANSWER_MODEL_INTERACTIONS:
|
||||
self.log_model_configs()
|
||||
@@ -544,7 +539,6 @@ class DefaultMultiLLM(LLM):
|
||||
stream=True,
|
||||
structured_response_format=structured_response_format,
|
||||
timeout_override=timeout_override,
|
||||
max_tokens=max_tokens,
|
||||
),
|
||||
)
|
||||
try:
|
||||
|
||||
@@ -82,7 +82,6 @@ class CustomModelServer(LLM):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> BaseMessage:
|
||||
return self._execute(prompt)
|
||||
|
||||
@@ -93,6 +92,5 @@ class CustomModelServer(LLM):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> Iterator[BaseMessage]:
|
||||
yield self._execute(prompt)
|
||||
|
||||
@@ -6,14 +6,12 @@ from onyx.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
|
||||
from onyx.configs.model_configs import GEN_AI_TEMPERATURE
|
||||
from onyx.db.engine import get_session_context_manager
|
||||
from onyx.db.llm import fetch_default_provider
|
||||
from onyx.db.llm import fetch_existing_llm_providers
|
||||
from onyx.db.llm import fetch_provider
|
||||
from onyx.db.models import Persona
|
||||
from onyx.llm.chat_llm import DefaultMultiLLM
|
||||
from onyx.llm.exceptions import GenAIDisabledException
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.llm.override_models import LLMOverride
|
||||
from onyx.llm.utils import model_supports_image_input
|
||||
from onyx.utils.headers import build_llm_extra_headers
|
||||
from onyx.utils.logger import setup_logger
|
||||
from onyx.utils.long_term_log import LongTermLogger
|
||||
@@ -88,48 +86,6 @@ def get_llms_for_persona(
|
||||
return _create_llm(model), _create_llm(fast_model)
|
||||
|
||||
|
||||
def get_default_llm_with_vision(
|
||||
timeout: int | None = None,
|
||||
temperature: float | None = None,
|
||||
additional_headers: dict[str, str] | None = None,
|
||||
long_term_logger: LongTermLogger | None = None,
|
||||
) -> LLM | None:
|
||||
if DISABLE_GENERATIVE_AI:
|
||||
raise GenAIDisabledException()
|
||||
|
||||
with get_session_context_manager() as db_session:
|
||||
llm_providers = fetch_existing_llm_providers(db_session)
|
||||
|
||||
if not llm_providers:
|
||||
return None
|
||||
|
||||
for provider in llm_providers:
|
||||
model_name = provider.default_model_name
|
||||
fast_model_name = (
|
||||
provider.fast_default_model_name or provider.default_model_name
|
||||
)
|
||||
|
||||
if not model_name or not fast_model_name:
|
||||
continue
|
||||
|
||||
if model_supports_image_input(model_name, provider.provider):
|
||||
return get_llm(
|
||||
provider=provider.provider,
|
||||
model=model_name,
|
||||
deployment_name=provider.deployment_name,
|
||||
api_key=provider.api_key,
|
||||
api_base=provider.api_base,
|
||||
api_version=provider.api_version,
|
||||
custom_config=provider.custom_config,
|
||||
timeout=timeout,
|
||||
temperature=temperature,
|
||||
additional_headers=additional_headers,
|
||||
long_term_logger=long_term_logger,
|
||||
)
|
||||
|
||||
raise ValueError("No LLM provider found that supports image input")
|
||||
|
||||
|
||||
def get_default_llms(
|
||||
timeout: int | None = None,
|
||||
temperature: float | None = None,
|
||||
|
||||
@@ -91,18 +91,12 @@ class LLM(abc.ABC):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> BaseMessage:
|
||||
self._precall(prompt)
|
||||
# TODO add a postcall to log model outputs independent of concrete class
|
||||
# implementation
|
||||
return self._invoke_implementation(
|
||||
prompt,
|
||||
tools,
|
||||
tool_choice,
|
||||
structured_response_format,
|
||||
timeout_override,
|
||||
max_tokens,
|
||||
prompt, tools, tool_choice, structured_response_format, timeout_override
|
||||
)
|
||||
|
||||
@abc.abstractmethod
|
||||
@@ -113,7 +107,6 @@ class LLM(abc.ABC):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> BaseMessage:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -124,18 +117,12 @@ class LLM(abc.ABC):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> Iterator[BaseMessage]:
|
||||
self._precall(prompt)
|
||||
# TODO add a postcall to log model outputs independent of concrete class
|
||||
# implementation
|
||||
messages = self._stream_implementation(
|
||||
prompt,
|
||||
tools,
|
||||
tool_choice,
|
||||
structured_response_format,
|
||||
timeout_override,
|
||||
max_tokens,
|
||||
prompt, tools, tool_choice, structured_response_format, timeout_override
|
||||
)
|
||||
|
||||
tokens = []
|
||||
@@ -155,6 +142,5 @@ class LLM(abc.ABC):
|
||||
tool_choice: ToolChoiceOptions | None = None,
|
||||
structured_response_format: dict | None = None,
|
||||
timeout_override: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> Iterator[BaseMessage]:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -51,7 +51,6 @@ from onyx.server.documents.cc_pair import router as cc_pair_router
|
||||
from onyx.server.documents.connector import router as connector_router
|
||||
from onyx.server.documents.credential import router as credential_router
|
||||
from onyx.server.documents.document import router as document_router
|
||||
from onyx.server.documents.standard_oauth import router as standard_oauth_router
|
||||
from onyx.server.features.document_set.api import router as document_set_router
|
||||
from onyx.server.features.folder.api import router as folder_router
|
||||
from onyx.server.features.input_prompt.api import (
|
||||
@@ -323,7 +322,6 @@ def get_application() -> FastAPI:
|
||||
)
|
||||
include_router_with_global_prefix_prepended(application, long_term_logs_router)
|
||||
include_router_with_global_prefix_prepended(application, api_key_router)
|
||||
include_router_with_global_prefix_prepended(application, standard_oauth_router)
|
||||
|
||||
if AUTH_TYPE == AuthType.DISABLED:
|
||||
# Server logs this during auth setup verification step
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
# Used for creating embeddings of images for vector search
|
||||
IMAGE_SUMMARIZATION_SYSTEM_PROMPT = """
|
||||
You are an assistant for summarizing images for retrieval.
|
||||
Summarize the content of the following image and be as precise as possible.
|
||||
The summary will be embedded and used to retrieve the original image.
|
||||
Therefore, write a concise summary of the image that is optimized for retrieval.
|
||||
"""
|
||||
|
||||
# Prompt for generating image descriptions with filename context
|
||||
IMAGE_SUMMARIZATION_USER_PROMPT = """
|
||||
The image has the file name '{title}'.
|
||||
Describe precisely and concisely what the image shows.
|
||||
"""
|
||||
|
||||
|
||||
# Used for analyzing images in response to user queries at search time
|
||||
IMAGE_ANALYSIS_SYSTEM_PROMPT = (
|
||||
"You are an AI assistant specialized in describing images.\n"
|
||||
"You will receive a user question plus an image URL. Provide a concise textual answer.\n"
|
||||
"Focus on aspects of the image that are relevant to the user's question.\n"
|
||||
"Be specific and detailed about visual elements that directly address the query.\n"
|
||||
)
|
||||
@@ -55,11 +55,7 @@ def _create_indexable_chunks(
|
||||
# The section is not really used past this point since we have already done the other processing
|
||||
# for the chunking and embedding.
|
||||
sections=[
|
||||
Section(
|
||||
text=preprocessed_doc["content"],
|
||||
link=preprocessed_doc["url"],
|
||||
image_file_name=None,
|
||||
)
|
||||
Section(text=preprocessed_doc["content"], link=preprocessed_doc["url"])
|
||||
],
|
||||
source=DocumentSource.WEB,
|
||||
semantic_identifier=preprocessed_doc["title"],
|
||||
@@ -97,7 +93,6 @@ def _create_indexable_chunks(
|
||||
document_sets=set(),
|
||||
boost=DEFAULT_BOOST,
|
||||
large_chunk_id=None,
|
||||
image_file_name=None,
|
||||
)
|
||||
|
||||
chunks.append(chunk)
|
||||
|
||||
@@ -53,11 +53,6 @@ class Settings(BaseModel):
|
||||
auto_scroll: bool | None = False
|
||||
query_history_type: QueryHistoryType | None = None
|
||||
|
||||
# Image processing settings
|
||||
image_extraction_and_analysis_enabled: bool | None = False
|
||||
search_time_image_analysis_enabled: bool | None = False
|
||||
image_analysis_max_size_mb: int | None = 20
|
||||
|
||||
|
||||
class UserSettings(Settings):
|
||||
notifications: list[Notification]
|
||||
|
||||
@@ -47,7 +47,6 @@ def load_settings() -> Settings:
|
||||
|
||||
settings.anonymous_user_enabled = anonymous_user_enabled
|
||||
settings.query_history_type = ONYX_QUERY_HISTORY_TYPE
|
||||
|
||||
return settings
|
||||
|
||||
|
||||
|
||||
@@ -9,7 +9,6 @@ from sqlalchemy.orm import Session
|
||||
from onyx.context.search.enums import SearchType
|
||||
from onyx.context.search.models import IndexFilters
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from shared_configs.model_server_models import Embedding
|
||||
|
||||
|
||||
class ToolResponse(BaseModel):
|
||||
@@ -61,15 +60,11 @@ class SearchQueryInfo(BaseModel):
|
||||
recency_bias_multiplier: float
|
||||
|
||||
|
||||
# None indicates that the default value should be used
|
||||
class SearchToolOverrideKwargs(BaseModel):
|
||||
force_no_rerank: bool | None = None
|
||||
alternate_db_session: Session | None = None
|
||||
retrieved_sections_callback: Callable[[list[InferenceSection]], None] | None = None
|
||||
skip_query_analysis: bool | None = None
|
||||
precomputed_query_embedding: Embedding | None = None
|
||||
precomputed_is_keyword: bool | None = None
|
||||
precomputed_keywords: list[str] | None = None
|
||||
force_no_rerank: bool
|
||||
alternate_db_session: Session | None
|
||||
retrieved_sections_callback: Callable[[list[InferenceSection]], None] | None
|
||||
skip_query_analysis: bool
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@@ -3,7 +3,6 @@ from collections.abc import Callable
|
||||
from collections.abc import Generator
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
from typing import TypeVar
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
@@ -12,6 +11,7 @@ from onyx.chat.models import AnswerStyleConfig
|
||||
from onyx.chat.models import ContextualPruningConfig
|
||||
from onyx.chat.models import DocumentPruningConfig
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import OnyxContext
|
||||
from onyx.chat.models import OnyxContexts
|
||||
from onyx.chat.models import PromptConfig
|
||||
from onyx.chat.models import SectionRelevancePiece
|
||||
@@ -42,9 +42,6 @@ from onyx.tools.models import SearchQueryInfo
|
||||
from onyx.tools.models import SearchToolOverrideKwargs
|
||||
from onyx.tools.models import ToolResponse
|
||||
from onyx.tools.tool import Tool
|
||||
from onyx.tools.tool_implementations.search.search_utils import (
|
||||
context_from_inference_section,
|
||||
)
|
||||
from onyx.tools.tool_implementations.search.search_utils import llm_doc_to_dict
|
||||
from onyx.tools.tool_implementations.search_like_tool_utils import (
|
||||
build_next_prompt_for_search_like_tool,
|
||||
@@ -284,23 +281,16 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
|
||||
self, override_kwargs: SearchToolOverrideKwargs | None = None, **llm_kwargs: Any
|
||||
) -> Generator[ToolResponse, None, None]:
|
||||
query = cast(str, llm_kwargs[QUERY_FIELD])
|
||||
precomputed_query_embedding = None
|
||||
precomputed_is_keyword = None
|
||||
precomputed_keywords = None
|
||||
force_no_rerank = False
|
||||
alternate_db_session = None
|
||||
retrieved_sections_callback = None
|
||||
skip_query_analysis = False
|
||||
if override_kwargs:
|
||||
force_no_rerank = use_alt_not_None(override_kwargs.force_no_rerank, False)
|
||||
force_no_rerank = override_kwargs.force_no_rerank
|
||||
alternate_db_session = override_kwargs.alternate_db_session
|
||||
retrieved_sections_callback = override_kwargs.retrieved_sections_callback
|
||||
skip_query_analysis = use_alt_not_None(
|
||||
override_kwargs.skip_query_analysis, False
|
||||
)
|
||||
precomputed_query_embedding = override_kwargs.precomputed_query_embedding
|
||||
precomputed_is_keyword = override_kwargs.precomputed_is_keyword
|
||||
precomputed_keywords = override_kwargs.precomputed_keywords
|
||||
skip_query_analysis = override_kwargs.skip_query_analysis
|
||||
|
||||
if self.selected_sections:
|
||||
yield from self._build_response_for_specified_sections(query)
|
||||
return
|
||||
@@ -337,9 +327,6 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
|
||||
if self.retrieval_options
|
||||
else None
|
||||
),
|
||||
precomputed_query_embedding=precomputed_query_embedding,
|
||||
precomputed_is_keyword=precomputed_is_keyword,
|
||||
precomputed_keywords=precomputed_keywords,
|
||||
),
|
||||
user=self.user,
|
||||
llm=self.llm,
|
||||
@@ -358,9 +345,8 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
|
||||
)
|
||||
yield from yield_search_responses(
|
||||
query,
|
||||
lambda: search_pipeline.retrieved_sections,
|
||||
lambda: search_pipeline.reranked_sections,
|
||||
lambda: search_pipeline.final_context_sections,
|
||||
search_pipeline.reranked_sections,
|
||||
search_pipeline.final_context_sections,
|
||||
search_query_info,
|
||||
lambda: search_pipeline.section_relevance,
|
||||
self,
|
||||
@@ -397,16 +383,10 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
|
||||
# SearchTool passed in to allow for access to SearchTool properties.
|
||||
# We can't just call SearchTool methods in the graph because we're operating on
|
||||
# the retrieved docs (reranking, deduping, etc.) after the SearchTool has run.
|
||||
#
|
||||
# The various inference sections are passed in as functions to allow for lazy
|
||||
# evaluation. The SearchPipeline object properties that they correspond to are
|
||||
# actually functions defined with @property decorators, and passing them into
|
||||
# this function causes them to get evaluated immediately which is undesirable.
|
||||
def yield_search_responses(
|
||||
query: str,
|
||||
get_retrieved_sections: Callable[[], list[InferenceSection]],
|
||||
get_reranked_sections: Callable[[], list[InferenceSection]],
|
||||
get_final_context_sections: Callable[[], list[InferenceSection]],
|
||||
reranked_sections: list[InferenceSection],
|
||||
final_context_sections: list[InferenceSection],
|
||||
search_query_info: SearchQueryInfo,
|
||||
get_section_relevance: Callable[[], list[SectionRelevancePiece] | None],
|
||||
search_tool: SearchTool,
|
||||
@@ -415,7 +395,7 @@ def yield_search_responses(
|
||||
id=SEARCH_RESPONSE_SUMMARY_ID,
|
||||
response=SearchResponseSummary(
|
||||
rephrased_query=query,
|
||||
top_sections=get_retrieved_sections(),
|
||||
top_sections=final_context_sections,
|
||||
predicted_flow=QueryFlow.QUESTION_ANSWER,
|
||||
predicted_search=search_query_info.predicted_search,
|
||||
final_filters=search_query_info.final_filters,
|
||||
@@ -427,8 +407,13 @@ def yield_search_responses(
|
||||
id=SEARCH_DOC_CONTENT_ID,
|
||||
response=OnyxContexts(
|
||||
contexts=[
|
||||
context_from_inference_section(section)
|
||||
for section in get_reranked_sections()
|
||||
OnyxContext(
|
||||
content=section.combined_content,
|
||||
document_id=section.center_chunk.document_id,
|
||||
semantic_identifier=section.center_chunk.semantic_identifier,
|
||||
blurb=section.center_chunk.blurb,
|
||||
)
|
||||
for section in reranked_sections
|
||||
]
|
||||
),
|
||||
)
|
||||
@@ -439,7 +424,6 @@ def yield_search_responses(
|
||||
response=section_relevance,
|
||||
)
|
||||
|
||||
final_context_sections = get_final_context_sections()
|
||||
pruned_sections = prune_sections(
|
||||
sections=final_context_sections,
|
||||
section_relevance_list=section_relevance_list_impl(
|
||||
@@ -454,10 +438,3 @@ def yield_search_responses(
|
||||
llm_docs = [llm_doc_from_inference_section(section) for section in pruned_sections]
|
||||
|
||||
yield ToolResponse(id=FINAL_CONTEXT_DOCUMENTS_ID, response=llm_docs)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def use_alt_not_None(value: T | None, alt: T) -> T:
|
||||
return value if value is not None else alt
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import OnyxContext
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.prompts.prompt_utils import clean_up_source
|
||||
|
||||
@@ -30,12 +29,3 @@ def section_to_dict(section: InferenceSection, section_num: int) -> dict:
|
||||
"%B %d, %Y %H:%M"
|
||||
)
|
||||
return doc_dict
|
||||
|
||||
|
||||
def context_from_inference_section(section: InferenceSection) -> OnyxContext:
|
||||
return OnyxContext(
|
||||
content=section.combined_content,
|
||||
document_id=section.center_chunk.document_id,
|
||||
semantic_identifier=section.center_chunk.semantic_identifier,
|
||||
blurb=section.center_chunk.blurb,
|
||||
)
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
from collections.abc import Callable
|
||||
from collections.abc import Generator
|
||||
from typing import Any
|
||||
from typing import Generic
|
||||
from typing import TypeVar
|
||||
|
||||
from onyx.llm.interfaces import LLM
|
||||
from onyx.llm.models import PreviousMessage
|
||||
@@ -13,16 +11,10 @@ from onyx.tools.tool import Tool
|
||||
from onyx.utils.threadpool_concurrency import run_functions_tuples_in_parallel
|
||||
|
||||
|
||||
R = TypeVar("R")
|
||||
|
||||
|
||||
class ToolRunner(Generic[R]):
|
||||
def __init__(
|
||||
self, tool: Tool[R], args: dict[str, Any], override_kwargs: R | None = None
|
||||
):
|
||||
class ToolRunner:
|
||||
def __init__(self, tool: Tool, args: dict[str, Any]):
|
||||
self.tool = tool
|
||||
self.args = args
|
||||
self.override_kwargs = override_kwargs
|
||||
|
||||
self._tool_responses: list[ToolResponse] | None = None
|
||||
|
||||
@@ -35,9 +27,7 @@ class ToolRunner(Generic[R]):
|
||||
return
|
||||
|
||||
tool_responses: list[ToolResponse] = []
|
||||
for tool_response in self.tool.run(
|
||||
override_kwargs=self.override_kwargs, **self.args
|
||||
):
|
||||
for tool_response in self.tool.run(**self.args):
|
||||
yield tool_response
|
||||
tool_responses.append(tool_response)
|
||||
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
"""
|
||||
Standardized error handling utilities.
|
||||
"""
|
||||
from onyx.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def handle_connector_error(e: Exception, context: str) -> None:
|
||||
"""
|
||||
Standard error handling for connectors.
|
||||
|
||||
Args:
|
||||
e: The exception that was raised
|
||||
context: A description of where the error occurred
|
||||
|
||||
Raises:
|
||||
The original exception if CONTINUE_ON_CONNECTOR_FAILURE is False
|
||||
"""
|
||||
logger.error(f"Error in {context}: {e}", exc_info=e)
|
||||
if not CONTINUE_ON_CONNECTOR_FAILURE:
|
||||
raise
|
||||
@@ -118,7 +118,7 @@ def run_functions_in_parallel(
|
||||
return results
|
||||
|
||||
|
||||
class TimeoutThread(threading.Thread, Generic[R]):
|
||||
class TimeoutThread(threading.Thread):
|
||||
def __init__(
|
||||
self, timeout: float, func: Callable[..., R], *args: Any, **kwargs: Any
|
||||
):
|
||||
@@ -159,34 +159,3 @@ def run_with_timeout(
|
||||
task.end()
|
||||
|
||||
return task.result
|
||||
|
||||
|
||||
# NOTE: this function should really only be used when run_functions_tuples_in_parallel is
|
||||
# difficult to use. It's up to the programmer to call wait_on_background on the thread after
|
||||
# the code you want to run in parallel is finished. As with all python thread parallelism,
|
||||
# this is only useful for I/O bound tasks.
|
||||
def run_in_background(
|
||||
func: Callable[..., R], *args: Any, **kwargs: Any
|
||||
) -> TimeoutThread[R]:
|
||||
"""
|
||||
Runs a function in a background thread. Returns a TimeoutThread object that can be used
|
||||
to wait for the function to finish with wait_on_background.
|
||||
"""
|
||||
context = contextvars.copy_context()
|
||||
# Timeout not used in the non-blocking case
|
||||
task = TimeoutThread(-1, context.run, func, *args, **kwargs)
|
||||
task.start()
|
||||
return task
|
||||
|
||||
|
||||
def wait_on_background(task: TimeoutThread[R]) -> R:
|
||||
"""
|
||||
Used in conjunction with run_in_background. blocks until the task is finished,
|
||||
then returns the result of the task.
|
||||
"""
|
||||
task.join()
|
||||
|
||||
if task.exception is not None:
|
||||
raise task.exception
|
||||
|
||||
return task.result
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
aioboto3==14.0.0
|
||||
aiohttp==3.10.2
|
||||
alembic==1.10.4
|
||||
asyncpg==0.27.0
|
||||
atlassian-python-api==3.41.16
|
||||
beautifulsoup4==4.12.3
|
||||
boto3==1.36.23
|
||||
boto3==1.34.84
|
||||
celery==5.5.0b4
|
||||
chardet==5.2.0
|
||||
dask==2023.8.1
|
||||
|
||||
@@ -13,5 +13,4 @@ transformers==4.39.2
|
||||
uvicorn==0.21.1
|
||||
voyageai==0.2.3
|
||||
litellm==1.61.16
|
||||
sentry-sdk[fastapi,celery,starlette]==2.14.0
|
||||
aioboto3==13.4.0
|
||||
sentry-sdk[fastapi,celery,starlette]==2.14.0
|
||||
@@ -1,45 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
from logging import getLogger
|
||||
|
||||
from onyx.db.seeding.chat_history_seeding import seed_chat_history
|
||||
|
||||
# Configure the logger
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, # Set the log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
||||
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", # Log format
|
||||
handlers=[logging.StreamHandler()], # Output logs to console
|
||||
)
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
def go_main(num_sessions: int, num_messages: int, num_days: int) -> None:
|
||||
seed_chat_history(num_sessions, num_messages, num_days)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Seed chat history")
|
||||
parser.add_argument(
|
||||
"--sessions",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of chat sessions to seed",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--messages",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of chat messages to seed per session",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--days",
|
||||
type=int,
|
||||
default=90,
|
||||
help="Number of days looking backwards over which to seed the timestamps with",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
go_main(args.sessions, args.messages, args.days)
|
||||
@@ -207,7 +207,7 @@ def query_vespa(
|
||||
yql: str, tenant_id: Optional[str] = None, limit: int = 10
|
||||
) -> List[Dict[str, Any]]:
|
||||
# Perform a Vespa query using YQL syntax.
|
||||
filters = IndexFilters(tenant_id=None, access_control_list=[])
|
||||
filters = IndexFilters(tenant_id=tenant_id, access_control_list=[])
|
||||
filter_string = build_vespa_filters(filters, remove_trailing_and=True)
|
||||
full_yql = yql.strip()
|
||||
if filter_string:
|
||||
@@ -472,7 +472,9 @@ def get_document_acls(
|
||||
print("-" * 80)
|
||||
|
||||
|
||||
def get_current_chunk_count(document_id: str) -> int | None:
|
||||
def get_current_chunk_count(
|
||||
document_id: str, index_name: str, tenant_id: str
|
||||
) -> int | None:
|
||||
with get_session_with_current_tenant() as session:
|
||||
return (
|
||||
session.query(Document.chunk_count)
|
||||
@@ -484,7 +486,7 @@ def get_current_chunk_count(document_id: str) -> int | None:
|
||||
def get_number_of_chunks_we_think_exist(
|
||||
document_id: str, index_name: str, tenant_id: str
|
||||
) -> int:
|
||||
current_chunk_count = get_current_chunk_count(document_id)
|
||||
current_chunk_count = get_current_chunk_count(document_id, index_name, tenant_id)
|
||||
print(f"Current chunk count: {current_chunk_count}")
|
||||
|
||||
doc_info = VespaIndex.enrich_basic_chunk_info(
|
||||
@@ -634,7 +636,6 @@ def delete_where(
|
||||
Removes visited documents in `cluster` where the given selection
|
||||
is true, using Vespa's 'delete where' endpoint.
|
||||
|
||||
|
||||
:param index_name: Typically <namespace>/<document-type> from your schema
|
||||
:param selection: The selection string, e.g., "true" or "foo contains 'bar'"
|
||||
:param cluster: The name of the cluster where documents reside
|
||||
@@ -798,7 +799,7 @@ def main() -> None:
|
||||
args = parser.parse_args()
|
||||
vespa_debug = VespaDebugging(args.tenant_id)
|
||||
|
||||
CURRENT_TENANT_ID_CONTEXTVAR.set(args.tenant_id or "public")
|
||||
CURRENT_TENANT_ID_CONTEXTVAR.set(args.tenant_id)
|
||||
if args.action == "delete-all-documents":
|
||||
if not args.tenant_id:
|
||||
parser.error("--tenant-id is required for delete-all-documents action")
|
||||
|
||||
@@ -71,7 +71,6 @@ def generate_dummy_chunk(
|
||||
title_embedding=generate_random_embedding(embedding_dim),
|
||||
large_chunk_id=None,
|
||||
large_chunk_reference_ids=[],
|
||||
image_file_name=None,
|
||||
)
|
||||
|
||||
document_set_names = []
|
||||
|
||||
@@ -68,12 +68,6 @@ LOG_LEVEL = os.environ.get("LOG_LEVEL", "info")
|
||||
# allow us to specify a custom timeout
|
||||
API_BASED_EMBEDDING_TIMEOUT = int(os.environ.get("API_BASED_EMBEDDING_TIMEOUT", "600"))
|
||||
|
||||
# Local batch size for VertexAI embedding models currently calibrated for item size of 512 tokens
|
||||
# NOTE: increasing this value may lead to API errors due to token limit exhaustion per call.
|
||||
VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE = int(
|
||||
os.environ.get("VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE", "25")
|
||||
)
|
||||
|
||||
# Only used for OpenAI
|
||||
OPENAI_EMBEDDING_TIMEOUT = int(
|
||||
os.environ.get("OPENAI_EMBEDDING_TIMEOUT", API_BASED_EMBEDDING_TIMEOUT)
|
||||
@@ -206,12 +200,12 @@ SUPPORTED_EMBEDDING_MODELS = [
|
||||
index_name="danswer_chunk_text_embedding_3_small",
|
||||
),
|
||||
SupportedEmbeddingModel(
|
||||
name="google/text-embedding-005",
|
||||
name="google/text-embedding-004",
|
||||
dim=768,
|
||||
index_name="danswer_chunk_google_text_embedding_004",
|
||||
),
|
||||
SupportedEmbeddingModel(
|
||||
name="google/text-embedding-005",
|
||||
name="google/text-embedding-004",
|
||||
dim=768,
|
||||
index_name="danswer_chunk_text_embedding_004",
|
||||
),
|
||||
|
||||
@@ -13,7 +13,6 @@ class EmbeddingProvider(str, Enum):
|
||||
class RerankerProvider(str, Enum):
|
||||
COHERE = "cohere"
|
||||
LITELLM = "litellm"
|
||||
BEDROCK = "bedrock"
|
||||
|
||||
|
||||
class EmbedTextType(str, Enum):
|
||||
|
||||
@@ -108,7 +108,6 @@ command=tail -qF
|
||||
/var/log/celery_worker_light.log
|
||||
/var/log/celery_worker_heavy.log
|
||||
/var/log/celery_worker_indexing.log
|
||||
/var/log/celery_worker_monitoring.log
|
||||
/var/log/slack_bot.log
|
||||
stdout_logfile=/dev/stdout
|
||||
stdout_logfile_maxbytes = 0 # must be set to 0 when stdout_logfile=/dev/stdout
|
||||
|
||||
@@ -45,7 +45,7 @@ def test_confluence_connector_basic(
|
||||
with pytest.raises(StopIteration):
|
||||
next(doc_batch_generator)
|
||||
|
||||
assert len(doc_batch) == 2
|
||||
assert len(doc_batch) == 3
|
||||
|
||||
page_within_a_page_doc: Document | None = None
|
||||
page_doc: Document | None = None
|
||||
|
||||
@@ -41,10 +41,5 @@ def test_confluence_connector_permissions(
|
||||
for slim_doc_batch in confluence_connector.retrieve_all_slim_documents():
|
||||
all_slim_doc_ids.update([doc.id for doc in slim_doc_batch])
|
||||
|
||||
# Find IDs that are in full but not in slim
|
||||
difference = all_full_doc_ids - all_slim_doc_ids
|
||||
|
||||
# The set of full doc IDs should be always be a subset of the slim doc IDs
|
||||
assert all_full_doc_ids.issubset(
|
||||
all_slim_doc_ids
|
||||
), f"Full doc IDs are not a subset of slim doc IDs. Found {len(difference)} IDs in full docs but not in slim docs."
|
||||
assert all_full_doc_ids.issubset(all_slim_doc_ids)
|
||||
|
||||
@@ -25,7 +25,7 @@ from onyx.indexing.models import IndexingSetting
|
||||
from onyx.setup import setup_postgres
|
||||
from onyx.setup import setup_vespa
|
||||
from onyx.utils.logger import setup_logger
|
||||
from tests.integration.common_utils.timeout import run_with_timeout_multiproc
|
||||
from tests.integration.common_utils.timeout import run_with_timeout
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -161,7 +161,7 @@ def reset_postgres(
|
||||
for _ in range(NUM_TRIES):
|
||||
logger.info(f"Downgrading Postgres... ({_ + 1}/{NUM_TRIES})")
|
||||
try:
|
||||
run_with_timeout_multiproc(
|
||||
run_with_timeout(
|
||||
downgrade_postgres,
|
||||
TIMEOUT,
|
||||
kwargs={
|
||||
|
||||
@@ -6,9 +6,7 @@ from typing import TypeVar
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def run_with_timeout_multiproc(
|
||||
task: Callable[..., T], timeout: int, kwargs: dict[str, Any]
|
||||
) -> T:
|
||||
def run_with_timeout(task: Callable[..., T], timeout: int, kwargs: dict[str, Any]) -> T:
|
||||
# Use multiprocessing to prevent a thread from blocking the main thread
|
||||
with multiprocessing.Pool(processes=1) as pool:
|
||||
async_result = pool.apply_async(task, kwds=kwargs)
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from datetime import timezone
|
||||
|
||||
from ee.onyx.db.usage_export import get_all_empty_chat_message_entries
|
||||
from onyx.db.engine import get_session_with_current_tenant
|
||||
from onyx.db.seeding.chat_history_seeding import seed_chat_history
|
||||
|
||||
|
||||
def test_usage_reports(reset: None) -> None:
|
||||
EXPECTED_SESSIONS = 2048
|
||||
MESSAGES_PER_SESSION = 4
|
||||
|
||||
# divide by 2 because only messages of type USER are returned
|
||||
EXPECTED_MESSAGES = EXPECTED_SESSIONS * MESSAGES_PER_SESSION / 2
|
||||
|
||||
seed_chat_history(EXPECTED_SESSIONS, MESSAGES_PER_SESSION, 90)
|
||||
|
||||
with get_session_with_current_tenant() as db_session:
|
||||
# count of all entries should be exact
|
||||
period = (
|
||||
datetime.fromtimestamp(0, tz=timezone.utc),
|
||||
datetime.now(tz=timezone.utc),
|
||||
)
|
||||
|
||||
count = 0
|
||||
for entry_batch in get_all_empty_chat_message_entries(db_session, period):
|
||||
for entry in entry_batch:
|
||||
count += 1
|
||||
|
||||
assert count == EXPECTED_MESSAGES
|
||||
|
||||
# count in a one month time range should be within a certain range statistically
|
||||
# this can be improved if we seed the chat history data deterministically
|
||||
period = (
|
||||
datetime.now(tz=timezone.utc) - timedelta(days=30),
|
||||
datetime.now(tz=timezone.utc),
|
||||
)
|
||||
|
||||
count = 0
|
||||
for entry_batch in get_all_empty_chat_message_entries(db_session, period):
|
||||
for entry in entry_batch:
|
||||
count += 1
|
||||
|
||||
lower = EXPECTED_MESSAGES // 3 - (EXPECTED_MESSAGES // (3 * 3))
|
||||
upper = EXPECTED_MESSAGES // 3 + (EXPECTED_MESSAGES // (3 * 3))
|
||||
assert count > lower
|
||||
assert count < upper
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user