mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-17 07:45:47 +00:00
Compare commits
184 Commits
initial-im
...
update_pas
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dc093679ab | ||
|
|
91f574f107 | ||
|
|
9b7aa6008c | ||
|
|
4936936254 | ||
|
|
a05eff34a9 | ||
|
|
23ecf654ed | ||
|
|
ddc6a6d2b3 | ||
|
|
571c8ece32 | ||
|
|
884bdb4b01 | ||
|
|
b3ecf0d59f | ||
|
|
8db6d49fe5 | ||
|
|
28598694b1 | ||
|
|
b5d0df90b9 | ||
|
|
48be6338ec | ||
|
|
ed9014f03d | ||
|
|
2dd51230ed | ||
|
|
8b249cbe63 | ||
|
|
6b50f86cd2 | ||
|
|
bd2805b6df | ||
|
|
2847ab003e | ||
|
|
1df6a506ec | ||
|
|
f1541d1fbe | ||
|
|
dd0c4b64df | ||
|
|
788b3015bc | ||
|
|
cbbf10f450 | ||
|
|
d954914a0a | ||
|
|
bee74ac360 | ||
|
|
29ef64272a | ||
|
|
01bf6ee4b7 | ||
|
|
0502417cbe | ||
|
|
d0483dd269 | ||
|
|
eefa872d60 | ||
|
|
3f3d4da611 | ||
|
|
469068052e | ||
|
|
9032b05606 | ||
|
|
334bc6be8c | ||
|
|
814f97c2c7 | ||
|
|
4f5a2b47c4 | ||
|
|
f545508268 | ||
|
|
590986ec65 | ||
|
|
531bab5409 | ||
|
|
29c44007c4 | ||
|
|
d388643a04 | ||
|
|
8a422683e3 | ||
|
|
ddc0230d68 | ||
|
|
6711e91dbf | ||
|
|
cff2346db5 | ||
|
|
8d3fad1f12 | ||
|
|
0c3dab8e8d | ||
|
|
47735e2044 | ||
|
|
1eeab8c773 | ||
|
|
e9b41bddc9 | ||
|
|
73a86b9019 | ||
|
|
12c426c87b | ||
|
|
06aeab6d59 | ||
|
|
9b7e67004c | ||
|
|
626ce74aa3 | ||
|
|
cec63465eb | ||
|
|
5f4b31d322 | ||
|
|
ab5e515a5a | ||
|
|
699a02902a | ||
|
|
c85157f734 | ||
|
|
824844bf84 | ||
|
|
a6ab8a8da4 | ||
|
|
40719eb542 | ||
|
|
e8c72f9e82 | ||
|
|
0ba77963c4 | ||
|
|
86f2892349 | ||
|
|
64f0ad8b26 | ||
|
|
616e997dad | ||
|
|
614bd378bb | ||
|
|
7064c3d06f | ||
|
|
3bb9e4bff6 | ||
|
|
3fec7a6a30 | ||
|
|
a01a9b9a99 | ||
|
|
21ec5ed795 | ||
|
|
54dcbfa288 | ||
|
|
c69b7fc941 | ||
|
|
6722e88a7b | ||
|
|
5b5e1eb7c7 | ||
|
|
87d97d13d5 | ||
|
|
4ae3b48938 | ||
|
|
dee1a0ecd7 | ||
|
|
ca172f3306 | ||
|
|
e5d0587efa | ||
|
|
a9516202fe | ||
|
|
d23fca96c4 | ||
|
|
a45724c899 | ||
|
|
34e250407a | ||
|
|
046c0fbe3e | ||
|
|
76595facef | ||
|
|
af2d548766 | ||
|
|
7c29b1e028 | ||
|
|
a52c821e78 | ||
|
|
0770a587f1 | ||
|
|
748b79b0ef | ||
|
|
9cacb373ef | ||
|
|
21967d4b6f | ||
|
|
f5d638161b | ||
|
|
0b5013b47d | ||
|
|
1b846fbf06 | ||
|
|
cae8a131a2 | ||
|
|
72b4e8e9fe | ||
|
|
c04e2f14d9 | ||
|
|
b40a12d5d7 | ||
|
|
5e7d454ebe | ||
|
|
238509c536 | ||
|
|
d7f8cf8f18 | ||
|
|
5d810d373e | ||
|
|
9455576078 | ||
|
|
71421bb782 | ||
|
|
b88cb388b7 | ||
|
|
639986001f | ||
|
|
e7a7e78969 | ||
|
|
e255ff7d23 | ||
|
|
1be2502112 | ||
|
|
f2bedb8fdd | ||
|
|
637404f482 | ||
|
|
daae146920 | ||
|
|
d95959fb41 | ||
|
|
c667d28e7a | ||
|
|
9e0b482f47 | ||
|
|
fa84eb657f | ||
|
|
264df3441b | ||
|
|
b9bad8b7a0 | ||
|
|
600ebb6432 | ||
|
|
09fe8ea868 | ||
|
|
ad6be03b4d | ||
|
|
65d2511216 | ||
|
|
113bf19c65 | ||
|
|
6026536110 | ||
|
|
056b671cd4 | ||
|
|
8d83ae2ee8 | ||
|
|
ca988f5c5f | ||
|
|
4e4214b82c | ||
|
|
fe83f676df | ||
|
|
6d6e12119b | ||
|
|
1f2b7cb9c8 | ||
|
|
878a189011 | ||
|
|
48c10271c2 | ||
|
|
c6a79d847e | ||
|
|
1bc3f8b96f | ||
|
|
7f6a6944d6 | ||
|
|
06f4146597 | ||
|
|
7ea73d5a5a | ||
|
|
30dfe6dcb4 | ||
|
|
dc5d5dfe05 | ||
|
|
0746e0be5b | ||
|
|
970320bd49 | ||
|
|
4a7bd5578e | ||
|
|
874b098a4b | ||
|
|
ce18b63eea | ||
|
|
7a919c3589 | ||
|
|
631bac4432 | ||
|
|
53428f6e9c | ||
|
|
53b3dcbace | ||
|
|
7a3c06c2d2 | ||
|
|
7a0d823c89 | ||
|
|
db69e445d6 | ||
|
|
18e63889b7 | ||
|
|
738e60c8ed | ||
|
|
8aec873e66 | ||
|
|
7c57dde8ab | ||
|
|
f30adab853 | ||
|
|
601687a522 | ||
|
|
350cf407c9 | ||
|
|
32ec4efc7a | ||
|
|
7c6981e052 | ||
|
|
c50cd20156 | ||
|
|
14772dee71 | ||
|
|
c81e704c95 | ||
|
|
3266ef6321 | ||
|
|
c89b98b4f2 | ||
|
|
e70e0ab859 | ||
|
|
69b6e9321e | ||
|
|
7e53af18b6 | ||
|
|
b9eb1ca2ba | ||
|
|
91d44c83d2 | ||
|
|
4dbc6bb4d1 | ||
|
|
4b6a4c6bbf | ||
|
|
fd1999454a | ||
|
|
0a35422d1d | ||
|
|
69b99056b2 | ||
|
|
2a55696545 |
@@ -6,7 +6,7 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'danswer/danswer-backend-cloud' || 'danswer/danswer-backend' }}
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-backend-cloud' || 'onyxdotapp/onyx-backend' }}
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
jobs:
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
# To run locally: trivy image --severity HIGH,CRITICAL danswer/danswer-backend
|
||||
# To run locally: trivy image --severity HIGH,CRITICAL onyxdotapp/onyx-backend
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
severity: "CRITICAL,HIGH"
|
||||
trivyignores: ./backend/.trivyignore
|
||||
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: danswer/danswer-web-server-cloud
|
||||
REGISTRY_IMAGE: onyxdotapp/onyx-web-server-cloud
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
jobs:
|
||||
@@ -60,7 +60,7 @@ jobs:
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
NEXT_PUBLIC_CLOUD_ENABLED=true
|
||||
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
|
||||
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
|
||||
|
||||
@@ -6,20 +6,31 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'danswer/danswer-model-server-cloud' || 'danswer/danswer-model-server' }}
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-model-server-cloud' || 'onyxdotapp/onyx-model-server' }}
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
DOCKER_BUILDKIT: 1
|
||||
BUILDKIT_PROGRESS: plain
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
|
||||
build-amd64:
|
||||
runs-on:
|
||||
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: System Info
|
||||
run: |
|
||||
df -h
|
||||
free -h
|
||||
docker system prune -af --volumes
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
driver-opts: |
|
||||
image=moby/buildkit:latest
|
||||
network=host
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
@@ -27,29 +38,86 @@ jobs:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Model Server Image Docker Build and Push
|
||||
- name: Build and Push AMD64
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: linux/amd64
|
||||
push: true
|
||||
tags: |
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
outputs: type=registry
|
||||
provenance: false
|
||||
|
||||
build-arm64:
|
||||
runs-on:
|
||||
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: System Info
|
||||
run: |
|
||||
df -h
|
||||
free -h
|
||||
docker system prune -af --volumes
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
driver-opts: |
|
||||
image=moby/buildkit:latest
|
||||
network=host
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Build and Push ARM64
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/arm64
|
||||
push: true
|
||||
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
outputs: type=registry
|
||||
provenance: false
|
||||
|
||||
merge-and-scan:
|
||||
needs: [build-amd64, build-arm64]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Create and Push Multi-arch Manifest
|
||||
run: |
|
||||
docker buildx create --use
|
||||
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }} \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
if [[ "${{ env.LATEST_TAG }}" == "true" ]]; then
|
||||
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:latest \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
fi
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
- name: Run Trivy vulnerability scanner
|
||||
uses: aquasecurity/trivy-action@master
|
||||
env:
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
image-ref: docker.io/danswer/danswer-model-server:${{ github.ref_name }}
|
||||
image-ref: docker.io/onyxdotapp/onyx-model-server:${{ github.ref_name }}
|
||||
severity: "CRITICAL,HIGH"
|
||||
timeout: "10m"
|
||||
|
||||
@@ -3,12 +3,12 @@ name: Build and Push Web Image on Tag
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: danswer/danswer-web-server
|
||||
REGISTRY_IMAGE: onyxdotapp/onyx-web-server
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on:
|
||||
@@ -27,11 +27,11 @@ jobs:
|
||||
- name: Prepare
|
||||
run: |
|
||||
platform=${{ matrix.platform }}
|
||||
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
|
||||
|
||||
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
@@ -40,16 +40,16 @@ jobs:
|
||||
tags: |
|
||||
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
type=raw,value=${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
|
||||
- name: Build and push by digest
|
||||
id: build
|
||||
uses: docker/build-push-action@v5
|
||||
@@ -59,18 +59,18 @@ jobs:
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
outputs: type=image,name=${{ env.REGISTRY_IMAGE }},push-by-digest=true,name-canonical=true,push=true
|
||||
|
||||
|
||||
- name: Export digest
|
||||
run: |
|
||||
mkdir -p /tmp/digests
|
||||
digest="${{ steps.build.outputs.digest }}"
|
||||
touch "/tmp/digests/${digest#sha256:}"
|
||||
|
||||
touch "/tmp/digests/${digest#sha256:}"
|
||||
|
||||
- name: Upload digest
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
@@ -90,42 +90,42 @@ jobs:
|
||||
path: /tmp/digests
|
||||
pattern: digests-*
|
||||
merge-multiple: true
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY_IMAGE }}
|
||||
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
|
||||
- name: Create manifest list and push
|
||||
working-directory: /tmp/digests
|
||||
run: |
|
||||
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
|
||||
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
|
||||
|
||||
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
|
||||
|
||||
- name: Inspect image
|
||||
run: |
|
||||
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
- name: Run Trivy vulnerability scanner
|
||||
uses: aquasecurity/trivy-action@master
|
||||
env:
|
||||
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
|
||||
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
severity: 'CRITICAL,HIGH'
|
||||
severity: "CRITICAL,HIGH"
|
||||
|
||||
34
.github/workflows/docker-tag-latest.yml
vendored
34
.github/workflows/docker-tag-latest.yml
vendored
@@ -7,31 +7,31 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
version:
|
||||
description: 'The version (ie v0.0.1) to tag as latest'
|
||||
description: "The version (ie v0.0.1) to tag as latest"
|
||||
required: true
|
||||
|
||||
jobs:
|
||||
tag:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
# use a lower powered instance since this just does i/o to docker hub
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Enable Docker CLI experimental features
|
||||
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
|
||||
- name: Enable Docker CLI experimental features
|
||||
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
|
||||
|
||||
- name: Pull, Tag and Push Web Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t danswer/danswer-web-server:latest danswer/danswer-web-server:${{ github.event.inputs.version }}
|
||||
- name: Pull, Tag and Push Web Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:${{ github.event.inputs.version }}
|
||||
|
||||
- name: Pull, Tag and Push API Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t danswer/danswer-backend:latest danswer/danswer-backend:${{ github.event.inputs.version }}
|
||||
- name: Pull, Tag and Push API Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t onyxdotapp/onyx-backend:latest onyxdotapp/onyx-backend:${{ github.event.inputs.version }}
|
||||
|
||||
27
.github/workflows/hotfix-release-branches.yml
vendored
27
.github/workflows/hotfix-release-branches.yml
vendored
@@ -8,43 +8,42 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
hotfix_commit:
|
||||
description: 'Hotfix commit hash'
|
||||
description: "Hotfix commit hash"
|
||||
required: true
|
||||
hotfix_suffix:
|
||||
description: 'Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})'
|
||||
description: "Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})"
|
||||
required: true
|
||||
release_branch_pattern:
|
||||
description: 'Release branch pattern (regex)'
|
||||
description: "Release branch pattern (regex)"
|
||||
required: true
|
||||
default: 'release/.*'
|
||||
default: "release/.*"
|
||||
auto_merge:
|
||||
description: 'Automatically merge the hotfix PRs'
|
||||
description: "Automatically merge the hotfix PRs"
|
||||
required: true
|
||||
type: choice
|
||||
default: 'true'
|
||||
default: "true"
|
||||
options:
|
||||
- true
|
||||
- false
|
||||
|
||||
|
||||
jobs:
|
||||
hotfix_release_branches:
|
||||
permissions: write-all
|
||||
# See https://runs-on.com/runners/linux/
|
||||
# use a lower powered instance since this just does i/o to docker hub
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
|
||||
# needs RKUO_DEPLOY_KEY for write access to merge PR's
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
|
||||
- name: Fetch All Branches
|
||||
run: |
|
||||
@@ -62,10 +61,10 @@ jobs:
|
||||
echo "No release branches found matching pattern '${{ github.event.inputs.release_branch_pattern }}'."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
echo "Found release branches:"
|
||||
echo "$BRANCHES"
|
||||
|
||||
|
||||
# Join the branches into a single line separated by commas
|
||||
BRANCHES_JOINED=$(echo "$BRANCHES" | tr '\n' ',' | sed 's/,$//')
|
||||
|
||||
@@ -169,4 +168,4 @@ jobs:
|
||||
echo "Failed to merge pull request #$PR_NUMBER."
|
||||
fi
|
||||
fi
|
||||
done
|
||||
done
|
||||
|
||||
20
.github/workflows/pr-backport-autotrigger.yml
vendored
20
.github/workflows/pr-backport-autotrigger.yml
vendored
@@ -4,7 +4,7 @@ name: Backport on Merge
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [closed] # Later we check for merge so only PRs that go in can get backported
|
||||
types: [closed] # Later we check for merge so only PRs that go in can get backported
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -26,9 +26,9 @@ jobs:
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
git fetch --prune
|
||||
|
||||
|
||||
- name: Check for Backport Checkbox
|
||||
id: checkbox-check
|
||||
run: |
|
||||
@@ -51,14 +51,14 @@ jobs:
|
||||
# Fetch latest tags for beta and stable
|
||||
LATEST_BETA_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*-beta.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+-beta\.[0-9]+$" | grep -v -- "-cloud" | sort -Vr | head -n 1)
|
||||
LATEST_STABLE_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+$" | sort -Vr | head -n 1)
|
||||
|
||||
|
||||
# Handle case where no beta tags exist
|
||||
if [[ -z "$LATEST_BETA_TAG" ]]; then
|
||||
NEW_BETA_TAG="v1.0.0-beta.1"
|
||||
else
|
||||
NEW_BETA_TAG=$(echo $LATEST_BETA_TAG | awk -F '[.-]' '{print $1 "." $2 "." $3 "-beta." ($NF+1)}')
|
||||
fi
|
||||
|
||||
|
||||
# Increment latest stable tag
|
||||
NEW_STABLE_TAG=$(echo $LATEST_STABLE_TAG | awk -F '.' '{print $1 "." $2 "." ($3+1)}')
|
||||
echo "latest_beta_tag=$LATEST_BETA_TAG" >> $GITHUB_OUTPUT
|
||||
@@ -80,10 +80,10 @@ jobs:
|
||||
run: |
|
||||
set -e
|
||||
echo "Backporting to beta ${{ steps.list-branches.outputs.beta }} and stable ${{ steps.list-branches.outputs.stable }}"
|
||||
|
||||
|
||||
# Echo the merge commit SHA
|
||||
echo "Merge commit SHA: ${{ github.event.pull_request.merge_commit_sha }}"
|
||||
|
||||
|
||||
# Fetch all history for all branches and tags
|
||||
git fetch --prune
|
||||
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
echo "Cherry-pick to beta failed due to conflicts."
|
||||
exit 1
|
||||
}
|
||||
|
||||
|
||||
# Create new beta branch/tag
|
||||
git tag ${{ steps.list-branches.outputs.new_beta_tag }}
|
||||
# Push the changes and tag to the beta branch using PAT
|
||||
@@ -110,13 +110,13 @@ jobs:
|
||||
echo "Last 5 commits on stable branch:"
|
||||
git log -n 5 --pretty=format:"%H"
|
||||
echo "" # Newline for formatting
|
||||
|
||||
|
||||
# Cherry-pick the merge commit from the merged PR
|
||||
git cherry-pick -m 1 ${{ github.event.pull_request.merge_commit_sha }} || {
|
||||
echo "Cherry-pick to stable failed due to conflicts."
|
||||
exit 1
|
||||
}
|
||||
|
||||
|
||||
# Create new stable branch/tag
|
||||
git tag ${{ steps.list-branches.outputs.new_stable_tag }}
|
||||
# Push the changes and tag to the stable branch using PAT
|
||||
|
||||
59
.github/workflows/pr-chromatic-tests.yml
vendored
59
.github/workflows/pr-chromatic-tests.yml
vendored
@@ -14,18 +14,24 @@ jobs:
|
||||
name: Playwright Tests
|
||||
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on:
|
||||
[
|
||||
runs-on,
|
||||
runner=32cpu-linux-x64,
|
||||
disk=large,
|
||||
"run-id=${{ github.run_id }}",
|
||||
]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
cache: 'pip'
|
||||
python-version: "3.11"
|
||||
cache: "pip"
|
||||
cache-dependency-path: |
|
||||
backend/requirements/default.txt
|
||||
backend/requirements/dev.txt
|
||||
@@ -35,7 +41,7 @@ jobs:
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
|
||||
|
||||
|
||||
- name: Setup node
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
@@ -48,7 +54,7 @@ jobs:
|
||||
- name: Install playwright browsers
|
||||
working-directory: ./web
|
||||
run: npx playwright install --with-deps
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
@@ -60,13 +66,13 @@ jobs:
|
||||
|
||||
# tag every docker image with "test" so that we can spin up the correct set
|
||||
# of images during testing
|
||||
|
||||
|
||||
# we use the runs-on cache for docker builds
|
||||
# in conjunction with runs-on runners, it has better speed and unlimited caching
|
||||
# https://runs-on.com/caching/s3-cache-for-github-actions/
|
||||
# https://runs-on.com/caching/docker/
|
||||
# https://github.com/moby/buildkit#s3-cache-experimental
|
||||
|
||||
|
||||
# images are built and run locally for testing purposes. Not pushed.
|
||||
|
||||
- name: Build Web Docker image
|
||||
@@ -75,7 +81,7 @@ jobs:
|
||||
context: ./web
|
||||
file: ./web/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-web-server:test
|
||||
tags: onyxdotapp/onyx-web-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/web-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -87,7 +93,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-backend:test
|
||||
tags: onyxdotapp/onyx-backend:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -99,7 +105,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-model-server:test
|
||||
tags: onyxdotapp/onyx-model-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -110,6 +116,7 @@ jobs:
|
||||
cd deployment/docker_compose
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
|
||||
AUTH_TYPE=basic \
|
||||
GEN_AI_API_KEY=${{ secrets.OPENAI_API_KEY }} \
|
||||
REQUIRE_EMAIL_VERIFICATION=false \
|
||||
DISABLE_TELEMETRY=true \
|
||||
IMAGE_TAG=test \
|
||||
@@ -119,12 +126,12 @@ jobs:
|
||||
- name: Wait for service to be ready
|
||||
run: |
|
||||
echo "Starting wait-for-service script..."
|
||||
|
||||
|
||||
docker logs -f danswer-stack-api_server-1 &
|
||||
|
||||
start_time=$(date +%s)
|
||||
timeout=300 # 5 minutes in seconds
|
||||
|
||||
|
||||
while true; do
|
||||
current_time=$(date +%s)
|
||||
elapsed_time=$((current_time - start_time))
|
||||
@@ -152,7 +159,7 @@ jobs:
|
||||
|
||||
- name: Run pytest playwright test init
|
||||
working-directory: ./backend
|
||||
env:
|
||||
env:
|
||||
PYTEST_IGNORE_SKIP: true
|
||||
run: pytest -s tests/integration/tests/playwright/test_playwright.py
|
||||
|
||||
@@ -168,7 +175,7 @@ jobs:
|
||||
name: test-results
|
||||
path: ./web/test-results
|
||||
retention-days: 30
|
||||
|
||||
|
||||
# save before stopping the containers so the logs can be captured
|
||||
- name: Save Docker logs
|
||||
if: success() || failure()
|
||||
@@ -176,7 +183,7 @@ jobs:
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack logs > docker-compose.log
|
||||
mv docker-compose.log ${{ github.workspace }}/docker-compose.log
|
||||
|
||||
|
||||
- name: Upload logs
|
||||
if: success() || failure()
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -191,35 +198,41 @@ jobs:
|
||||
|
||||
chromatic-tests:
|
||||
name: Chromatic Tests
|
||||
|
||||
|
||||
needs: playwright-tests
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on:
|
||||
[
|
||||
runs-on,
|
||||
runner=32cpu-linux-x64,
|
||||
disk=large,
|
||||
"run-id=${{ github.run_id }}",
|
||||
]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Setup node
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 22
|
||||
|
||||
|
||||
- name: Install node dependencies
|
||||
working-directory: ./web
|
||||
run: npm ci
|
||||
|
||||
|
||||
- name: Download Playwright test results
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: test-results
|
||||
path: ./web/test-results
|
||||
|
||||
|
||||
- name: Run Chromatic
|
||||
uses: chromaui/action@latest
|
||||
with:
|
||||
playwright: true
|
||||
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
|
||||
workingDir: ./web
|
||||
env:
|
||||
env:
|
||||
CHROMATIC_ARCHIVE_LOCATION: ./test-results
|
||||
|
||||
39
.github/workflows/pr-integration-tests.yml
vendored
39
.github/workflows/pr-integration-tests.yml
vendored
@@ -8,7 +8,7 @@ on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- 'release/**'
|
||||
- "release/**"
|
||||
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -16,11 +16,11 @@ env:
|
||||
CONFLUENCE_TEST_SPACE_URL: ${{ secrets.CONFLUENCE_TEST_SPACE_URL }}
|
||||
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
|
||||
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
|
||||
|
||||
|
||||
jobs:
|
||||
integration-tests:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=32cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
@@ -36,21 +36,21 @@ jobs:
|
||||
|
||||
# tag every docker image with "test" so that we can spin up the correct set
|
||||
# of images during testing
|
||||
|
||||
|
||||
# We don't need to build the Web Docker image since it's not yet used
|
||||
# in the integration tests. We have a separate action to verify that it builds
|
||||
# in the integration tests. We have a separate action to verify that it builds
|
||||
# successfully.
|
||||
- name: Pull Web Docker image
|
||||
run: |
|
||||
docker pull danswer/danswer-web-server:latest
|
||||
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:test
|
||||
docker pull onyxdotapp/onyx-web-server:latest
|
||||
docker tag onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:test
|
||||
|
||||
# we use the runs-on cache for docker builds
|
||||
# in conjunction with runs-on runners, it has better speed and unlimited caching
|
||||
# https://runs-on.com/caching/s3-cache-for-github-actions/
|
||||
# https://runs-on.com/caching/docker/
|
||||
# https://github.com/moby/buildkit#s3-cache-experimental
|
||||
|
||||
|
||||
# images are built and run locally for testing purposes. Not pushed.
|
||||
- name: Build Backend Docker image
|
||||
uses: ./.github/actions/custom-build-and-push
|
||||
@@ -58,7 +58,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-backend:test
|
||||
tags: onyxdotapp/onyx-backend:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -70,19 +70,19 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-model-server:test
|
||||
tags: onyxdotapp/onyx-model-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
|
||||
|
||||
|
||||
- name: Build integration test Docker image
|
||||
uses: ./.github/actions/custom-build-and-push
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/tests/integration/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-integration:test
|
||||
tags: onyxdotapp/onyx-integration:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/integration/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -119,7 +119,7 @@ jobs:
|
||||
-e TEST_WEB_HOSTNAME=test-runner \
|
||||
-e AUTH_TYPE=cloud \
|
||||
-e MULTI_TENANT=true \
|
||||
danswer/danswer-integration:test \
|
||||
onyxdotapp/onyx-integration:test \
|
||||
/app/tests/integration/multitenant_tests
|
||||
continue-on-error: true
|
||||
id: run_multitenant_tests
|
||||
@@ -131,15 +131,14 @@ jobs:
|
||||
exit 1
|
||||
else
|
||||
echo "All integration tests passed successfully."
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Stop multi-tenant Docker containers
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
|
||||
|
||||
|
||||
- name: Start Docker containers
|
||||
- name: Start Docker containers
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
|
||||
@@ -153,12 +152,12 @@ jobs:
|
||||
- name: Wait for service to be ready
|
||||
run: |
|
||||
echo "Starting wait-for-service script..."
|
||||
|
||||
|
||||
docker logs -f danswer-stack-api_server-1 &
|
||||
|
||||
start_time=$(date +%s)
|
||||
timeout=300 # 5 minutes in seconds
|
||||
|
||||
|
||||
while true; do
|
||||
current_time=$(date +%s)
|
||||
elapsed_time=$((current_time - start_time))
|
||||
@@ -202,7 +201,7 @@ jobs:
|
||||
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
|
||||
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
|
||||
-e TEST_WEB_HOSTNAME=test-runner \
|
||||
danswer/danswer-integration:test \
|
||||
onyxdotapp/onyx-integration:test \
|
||||
/app/tests/integration/tests \
|
||||
/app/tests/integration/connector_job_tests
|
||||
continue-on-error: true
|
||||
@@ -229,7 +228,7 @@ jobs:
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
|
||||
|
||||
|
||||
- name: Upload logs
|
||||
if: success() || failure()
|
||||
uses: actions/upload-artifact@v4
|
||||
|
||||
79
.github/workflows/tag-nightly.yml
vendored
79
.github/workflows/tag-nightly.yml
vendored
@@ -2,53 +2,52 @@ name: Nightly Tag Push
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '0 10 * * *' # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
|
||||
- cron: "0 10 * * *" # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
|
||||
|
||||
permissions:
|
||||
contents: write # Allows pushing tags to the repository
|
||||
contents: write # Allows pushing tags to the repository
|
||||
|
||||
jobs:
|
||||
create-and-push-tag:
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
|
||||
steps:
|
||||
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
|
||||
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
|
||||
# implement here which needs an actual user's deploy key
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
|
||||
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
|
||||
# implement here which needs an actual user's deploy key
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
|
||||
- name: Check for existing nightly tag
|
||||
id: check_tag
|
||||
run: |
|
||||
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
|
||||
echo "A tag starting with 'nightly-latest' already exists on HEAD."
|
||||
echo "tag_exists=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "No tag starting with 'nightly-latest' exists on HEAD."
|
||||
echo "tag_exists=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
# don't tag again if HEAD already has a nightly-latest tag on it
|
||||
- name: Create Nightly Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
env:
|
||||
DATE: ${{ github.run_id }}
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
echo "Creating tag: $TAG_NAME"
|
||||
git tag $TAG_NAME
|
||||
- name: Check for existing nightly tag
|
||||
id: check_tag
|
||||
run: |
|
||||
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
|
||||
echo "A tag starting with 'nightly-latest' already exists on HEAD."
|
||||
echo "tag_exists=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "No tag starting with 'nightly-latest' exists on HEAD."
|
||||
echo "tag_exists=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Push Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
git push origin $TAG_NAME
|
||||
|
||||
# don't tag again if HEAD already has a nightly-latest tag on it
|
||||
- name: Create Nightly Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
env:
|
||||
DATE: ${{ github.run_id }}
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
echo "Creating tag: $TAG_NAME"
|
||||
git tag $TAG_NAME
|
||||
|
||||
- name: Push Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
git push origin $TAG_NAME
|
||||
|
||||
18
.vscode/launch.template.jsonc
vendored
18
.vscode/launch.template.jsonc
vendored
@@ -17,7 +17,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Run All Danswer Services",
|
||||
"name": "Run All Onyx Services",
|
||||
"configurations": [
|
||||
"Web Server",
|
||||
"Model Server",
|
||||
@@ -122,7 +122,7 @@
|
||||
"PYTHONUNBUFFERED": "1"
|
||||
},
|
||||
"args": [
|
||||
"danswer.main:app",
|
||||
"onyx.main:app",
|
||||
"--reload",
|
||||
"--port",
|
||||
"8080"
|
||||
@@ -139,7 +139,7 @@
|
||||
"consoleName": "Slack Bot",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "danswer/danswerbot/slack/listener.py",
|
||||
"program": "onyx/onyxbot/slack/listener.py",
|
||||
"cwd": "${workspaceFolder}/backend",
|
||||
"envFile": "${workspaceFolder}/.vscode/.env",
|
||||
"env": {
|
||||
@@ -166,7 +166,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.primary",
|
||||
"onyx.background.celery.versioned_apps.primary",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=4",
|
||||
@@ -195,7 +195,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.light",
|
||||
"onyx.background.celery.versioned_apps.light",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=64",
|
||||
@@ -224,7 +224,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.heavy",
|
||||
"onyx.background.celery.versioned_apps.heavy",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=4",
|
||||
@@ -254,7 +254,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.indexing",
|
||||
"onyx.background.celery.versioned_apps.indexing",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=1",
|
||||
@@ -283,7 +283,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.beat",
|
||||
"onyx.background.celery.versioned_apps.beat",
|
||||
"beat",
|
||||
"--loglevel=INFO",
|
||||
],
|
||||
@@ -308,7 +308,7 @@
|
||||
"args": [
|
||||
"-v"
|
||||
// Specify a sepcific module/test to run or provide nothing to run all tests
|
||||
//"tests/unit/danswer/llm/answering/test_prune_and_merge.py"
|
||||
//"tests/unit/onyx/llm/answering/test_prune_and_merge.py"
|
||||
],
|
||||
"presentation": {
|
||||
"group": "2",
|
||||
|
||||
137
CONTRIBUTING.md
137
CONTRIBUTING.md
@@ -1,32 +1,34 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md"} -->
|
||||
|
||||
# Contributing to Danswer
|
||||
Hey there! We are so excited that you're interested in Danswer.
|
||||
# Contributing to Onyx
|
||||
|
||||
Hey there! We are so excited that you're interested in Onyx.
|
||||
|
||||
As an open source project in a rapidly changing space, we welcome all contributions.
|
||||
|
||||
|
||||
## 💃 Guidelines
|
||||
|
||||
### Contribution Opportunities
|
||||
The [GitHub Issues](https://github.com/danswer-ai/danswer/issues) page is a great place to start for contribution ideas.
|
||||
|
||||
The [GitHub Issues](https://github.com/onyx-dot-app/onyx/issues) page is a great place to start for contribution ideas.
|
||||
|
||||
Issues that have been explicitly approved by the maintainers (aligned with the direction of the project)
|
||||
will be marked with the `approved by maintainers` label.
|
||||
Issues marked `good first issue` are an especially great place to start.
|
||||
|
||||
**Connectors** to other tools are another great place to contribute. For details on how, refer to this
|
||||
[README.md](https://github.com/danswer-ai/danswer/blob/main/backend/danswer/connectors/README.md).
|
||||
[README.md](https://github.com/onyx-dot-app/onyx/blob/main/backend/onyx/connectors/README.md).
|
||||
|
||||
If you have a new/different contribution in mind, we'd love to hear about it!
|
||||
Your input is vital to making sure that Danswer moves in the right direction.
|
||||
Your input is vital to making sure that Onyx moves in the right direction.
|
||||
Before starting on implementation, please raise a GitHub issue.
|
||||
|
||||
And always feel free to message us (Chris Weaver / Yuhong Sun) on
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ) /
|
||||
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
|
||||
|
||||
And always feel free to message us (Chris Weaver / Yuhong Sun) on
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ) /
|
||||
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
|
||||
|
||||
### Contributing Code
|
||||
|
||||
To contribute to this project, please follow the
|
||||
["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
When opening a pull request, mention related issues and feel free to tag relevant maintainers.
|
||||
@@ -34,72 +36,78 @@ When opening a pull request, mention related issues and feel free to tag relevan
|
||||
Before creating a pull request please make sure that the new changes conform to the formatting and linting requirements.
|
||||
See the [Formatting and Linting](#formatting-and-linting) section for how to run these checks locally.
|
||||
|
||||
|
||||
### Getting Help 🙋
|
||||
|
||||
Our goal is to make contributing as easy as possible. If you run into any issues please don't hesitate to reach out.
|
||||
That way we can help future contributors and users can avoid the same issue.
|
||||
|
||||
We also have support channels and generally interesting discussions on our
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2afut44lv-Rw3kSWu6_OmdAXRpCv80DQ)
|
||||
and
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ)
|
||||
and
|
||||
[Discord](https://discord.gg/TDJ59cGV2X).
|
||||
|
||||
We would love to see you there!
|
||||
|
||||
|
||||
## Get Started 🚀
|
||||
Danswer being a fully functional app, relies on some external software, specifically:
|
||||
|
||||
Onyx being a fully functional app, relies on some external software, specifically:
|
||||
|
||||
- [Postgres](https://www.postgresql.org/) (Relational DB)
|
||||
- [Vespa](https://vespa.ai/) (Vector DB/Search Engine)
|
||||
- [Redis](https://redis.io/) (Cache)
|
||||
- [Nginx](https://nginx.org/) (Not needed for development flows generally)
|
||||
|
||||
|
||||
> **Note:**
|
||||
> This guide provides instructions to build and run Danswer locally from source with Docker containers providing the above external software. We believe this combination is easier for
|
||||
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Danswer stack within Docker below.
|
||||
|
||||
> This guide provides instructions to build and run Onyx locally from source with Docker containers providing the above external software. We believe this combination is easier for
|
||||
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Onyx stack within Docker below.
|
||||
|
||||
### Local Set Up
|
||||
|
||||
Be sure to use Python version 3.11. For instructions on installing Python 3.11 on macOS, refer to the [CONTRIBUTING_MACOS.md](./CONTRIBUTING_MACOS.md) readme.
|
||||
|
||||
If using a lower version, modifications will have to be made to the code.
|
||||
If using a higher version, sometimes some libraries will not be available (i.e. we had problems with Tensorflow in the past with higher versions of python).
|
||||
|
||||
|
||||
#### Backend: Python requirements
|
||||
|
||||
Currently, we use pip and recommend creating a virtual environment.
|
||||
|
||||
For convenience here's a command for it:
|
||||
|
||||
```bash
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
> This virtual environment MUST NOT be set up WITHIN the danswer directory if you plan on using mypy within certain IDEs.
|
||||
> For simplicity, we recommend setting up the virtual environment outside of the danswer directory.
|
||||
> This virtual environment MUST NOT be set up WITHIN the onyx directory if you plan on using mypy within certain IDEs.
|
||||
> For simplicity, we recommend setting up the virtual environment outside of the onyx directory.
|
||||
|
||||
_For Windows, activate the virtual environment using Command Prompt:_
|
||||
|
||||
```bash
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
If using PowerShell, the command slightly differs:
|
||||
|
||||
```powershell
|
||||
.venv\Scripts\Activate.ps1
|
||||
```
|
||||
|
||||
Install the required python dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r danswer/backend/requirements/default.txt
|
||||
pip install -r danswer/backend/requirements/dev.txt
|
||||
pip install -r danswer/backend/requirements/ee.txt
|
||||
pip install -r danswer/backend/requirements/model_server.txt
|
||||
pip install -r onyx/backend/requirements/default.txt
|
||||
pip install -r onyx/backend/requirements/dev.txt
|
||||
pip install -r onyx/backend/requirements/ee.txt
|
||||
pip install -r onyx/backend/requirements/model_server.txt
|
||||
```
|
||||
|
||||
Install Playwright for Python (headless browser required by the Web Connector)
|
||||
|
||||
In the activated Python virtualenv, install Playwright for Python by running:
|
||||
|
||||
```bash
|
||||
playwright install
|
||||
```
|
||||
@@ -109,42 +117,50 @@ You may have to deactivate and reactivate your virtualenv for `playwright` to ap
|
||||
#### Frontend: Node dependencies
|
||||
|
||||
Install [Node.js and npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) for the frontend.
|
||||
Once the above is done, navigate to `danswer/web` run:
|
||||
Once the above is done, navigate to `onyx/web` run:
|
||||
|
||||
```bash
|
||||
npm i
|
||||
```
|
||||
|
||||
#### Docker containers for external software
|
||||
|
||||
You will need Docker installed to run these containers.
|
||||
|
||||
First navigate to `danswer/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
|
||||
First navigate to `onyx/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d index relational_db cache
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d index relational_db cache
|
||||
```
|
||||
|
||||
(index refers to Vespa, relational_db refers to Postgres, and cache refers to Redis)
|
||||
|
||||
#### Running Onyx locally
|
||||
|
||||
To start the frontend, navigate to `onyx/web` and run:
|
||||
|
||||
#### Running Danswer locally
|
||||
To start the frontend, navigate to `danswer/web` and run:
|
||||
```bash
|
||||
npm run dev
|
||||
```
|
||||
|
||||
Next, start the model server which runs the local NLP models.
|
||||
Navigate to `danswer/backend` and run:
|
||||
Navigate to `onyx/backend` and run:
|
||||
|
||||
```bash
|
||||
uvicorn model_server.main:app --reload --port 9000
|
||||
```
|
||||
|
||||
_For Windows (for compatibility with both PowerShell and Command Prompt):_
|
||||
|
||||
```bash
|
||||
powershell -Command "uvicorn model_server.main:app --reload --port 9000"
|
||||
```
|
||||
|
||||
The first time running Danswer, you will need to run the DB migrations for Postgres.
|
||||
The first time running Onyx, you will need to run the DB migrations for Postgres.
|
||||
After the first time, this is no longer required unless the DB models change.
|
||||
|
||||
Navigate to `danswer/backend` and with the venv active, run:
|
||||
Navigate to `onyx/backend` and with the venv active, run:
|
||||
|
||||
```bash
|
||||
alembic upgrade head
|
||||
```
|
||||
@@ -152,21 +168,24 @@ alembic upgrade head
|
||||
Next, start the task queue which orchestrates the background jobs.
|
||||
Jobs that take more time are run async from the API server.
|
||||
|
||||
Still in `danswer/backend`, run:
|
||||
Still in `onyx/backend`, run:
|
||||
|
||||
```bash
|
||||
python ./scripts/dev_run_background_jobs.py
|
||||
```
|
||||
|
||||
To run the backend API server, navigate back to `danswer/backend` and run:
|
||||
To run the backend API server, navigate back to `onyx/backend` and run:
|
||||
|
||||
```bash
|
||||
AUTH_TYPE=disabled uvicorn danswer.main:app --reload --port 8080
|
||||
AUTH_TYPE=disabled uvicorn onyx.main:app --reload --port 8080
|
||||
```
|
||||
|
||||
_For Windows (for compatibility with both PowerShell and Command Prompt):_
|
||||
|
||||
```bash
|
||||
powershell -Command "
|
||||
$env:AUTH_TYPE='disabled'
|
||||
uvicorn danswer.main:app --reload --port 8080
|
||||
uvicorn onyx.main:app --reload --port 8080
|
||||
"
|
||||
```
|
||||
|
||||
@@ -182,57 +201,61 @@ You should now have 4 servers running:
|
||||
- Model server
|
||||
- Background jobs
|
||||
|
||||
Now, visit `http://localhost:3000` in your browser. You should see the Danswer onboarding wizard where you can connect your external LLM provider to Danswer.
|
||||
Now, visit `http://localhost:3000` in your browser. You should see the Onyx onboarding wizard where you can connect your external LLM provider to Onyx.
|
||||
|
||||
You've successfully set up a local Danswer instance! 🏁
|
||||
You've successfully set up a local Onyx instance! 🏁
|
||||
|
||||
#### Running the Danswer application in a container
|
||||
#### Running the Onyx application in a container
|
||||
|
||||
You can run the full Danswer application stack from pre-built images including all external software dependencies.
|
||||
You can run the full Onyx application stack from pre-built images including all external software dependencies.
|
||||
|
||||
Navigate to `danswer/deployment/docker_compose` and run:
|
||||
Navigate to `onyx/deployment/docker_compose` and run:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
|
||||
```
|
||||
|
||||
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Danswer.
|
||||
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Onyx.
|
||||
|
||||
If you want to make changes to Danswer and run those changes in Docker, you can also build a local version of the Danswer container images that incorporates your changes like so:
|
||||
If you want to make changes to Onyx and run those changes in Docker, you can also build a local version of the Onyx container images that incorporates your changes like so:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d --build
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d --build
|
||||
```
|
||||
|
||||
### Formatting and Linting
|
||||
|
||||
#### Backend
|
||||
|
||||
For the backend, you'll need to setup pre-commit hooks (black / reorder-python-imports).
|
||||
First, install pre-commit (if you don't have it already) following the instructions
|
||||
[here](https://pre-commit.com/#installation).
|
||||
|
||||
With the virtual environment active, install the pre-commit library with:
|
||||
|
||||
```bash
|
||||
pip install pre-commit
|
||||
```
|
||||
|
||||
Then, from the `danswer/backend` directory, run:
|
||||
Then, from the `onyx/backend` directory, run:
|
||||
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
Additionally, we use `mypy` for static type checking.
|
||||
Danswer is fully type-annotated, and we want to keep it that way!
|
||||
To run the mypy checks manually, run `python -m mypy .` from the `danswer/backend` directory.
|
||||
|
||||
Onyx is fully type-annotated, and we want to keep it that way!
|
||||
To run the mypy checks manually, run `python -m mypy .` from the `onyx/backend` directory.
|
||||
|
||||
#### Web
|
||||
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `danswer/web` directory.
|
||||
To run the formatter, use `npx prettier --write .` from the `danswer/web` directory.
|
||||
|
||||
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `onyx/web` directory.
|
||||
To run the formatter, use `npx prettier --write .` from the `onyx/web` directory.
|
||||
Please double check that prettier passes before creating a pull request.
|
||||
|
||||
|
||||
### Release Process
|
||||
Danswer loosely follows the SemVer versioning standard.
|
||||
|
||||
Onyx loosely follows the SemVer versioning standard.
|
||||
Major changes are released with a "minor" version bump. Currently we use patch release versions to indicate small feature changes.
|
||||
A set of Docker containers will be pushed automatically to DockerHub with every tag.
|
||||
You can see the containers [here](https://hub.docker.com/search?q=danswer%2F).
|
||||
You can see the containers [here](https://hub.docker.com/search?q=onyx%2F).
|
||||
|
||||
@@ -1,15 +1,19 @@
|
||||
## Some additional notes for Mac Users
|
||||
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md).
|
||||
|
||||
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md).
|
||||
|
||||
### Setting up Python
|
||||
|
||||
Ensure [Homebrew](https://brew.sh/) is already set up.
|
||||
|
||||
Then install python 3.11.
|
||||
|
||||
```bash
|
||||
brew install python@3.11
|
||||
```
|
||||
|
||||
Add python 3.11 to your path: add the following line to ~/.zshrc
|
||||
|
||||
```
|
||||
export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
|
||||
```
|
||||
@@ -17,15 +21,16 @@ export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
|
||||
> **Note:**
|
||||
> You will need to open a new terminal for the path change above to take effect.
|
||||
|
||||
|
||||
### Setting up Docker
|
||||
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
|
||||
|
||||
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
|
||||
ensure it is running before continuing with the docker commands.
|
||||
|
||||
|
||||
### Formatting and Linting
|
||||
|
||||
MacOS will likely require you to remove some quarantine attributes on some of the hooks for them to execute properly.
|
||||
After installing pre-commit, run the following command:
|
||||
|
||||
```bash
|
||||
sudo xattr -r -d com.apple.quarantine ~/.cache/pre-commit
|
||||
```
|
||||
```
|
||||
|
||||
6
LICENSE
6
LICENSE
@@ -2,9 +2,9 @@ Copyright (c) 2023-present DanswerAI, Inc.
|
||||
|
||||
Portions of this software are licensed as follows:
|
||||
|
||||
* All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
|
||||
* All third party components incorporated into the Danswer Software are licensed under the original license provided by the owner of the applicable component.
|
||||
* Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
|
||||
- All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
|
||||
- All third party components incorporated into the Onyx Software are licensed under the original license provided by the owner of the applicable component.
|
||||
- Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
161
README.md
161
README.md
@@ -1,142 +1,143 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/README.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/README.md"} -->
|
||||
|
||||
<a name="readme-top"></a>
|
||||
|
||||
<h2 align="center">
|
||||
<a href="https://www.danswer.ai/"> <img width="50%" src="https://github.com/danswer-owners/danswer/blob/1fabd9372d66cd54238847197c33f091a724803b/DanswerWithName.png?raw=true)" /></a>
|
||||
<a href="https://www.onyx.app/"> <img width="50%" src="https://github.com/onyx-dot-app/onyx/blob/logo/LogoOnyx.png?raw=true)" /></a>
|
||||
</h2>
|
||||
|
||||
<p align="center">
|
||||
<p align="center">Open Source Gen-AI Chat + Unified Search.</p>
|
||||
<p align="center">Open Source Gen-AI + Enterprise Search.</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://docs.danswer.dev/" target="_blank">
|
||||
<a href="https://docs.onyx.app/" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docs-view-blue" alt="Documentation">
|
||||
</a>
|
||||
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA" target="_blank">
|
||||
<a href="https://join.slack.com/t/danswer/shared_invite/zt-1w76msxmd-HJHLe3KNFIAIzk_0dSOKaQ" target="_blank">
|
||||
<img src="https://img.shields.io/badge/slack-join-blue.svg?logo=slack" alt="Slack">
|
||||
</a>
|
||||
<a href="https://discord.gg/TDJ59cGV2X" target="_blank">
|
||||
<img src="https://img.shields.io/badge/discord-join-blue.svg?logo=discord&logoColor=white" alt="Discord">
|
||||
</a>
|
||||
<a href="https://github.com/danswer-ai/danswer/blob/main/README.md" target="_blank">
|
||||
<a href="https://github.com/onyx-dot-app/onyx/blob/main/README.md" target="_blank">
|
||||
<img src="https://img.shields.io/static/v1?label=license&message=MIT&color=blue" alt="License">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<strong>[Danswer](https://www.danswer.ai/)</strong> is the AI Assistant connected to your company's docs, apps, and people.
|
||||
Danswer provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any
|
||||
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
|
||||
own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready
|
||||
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
|
||||
configuring Personas (AI Assistants) and their Prompts.
|
||||
<strong>[Onyx](https://www.onyx.app/)</strong> (Formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
|
||||
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
|
||||
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
|
||||
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
|
||||
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
|
||||
configuring AI Assistants.
|
||||
|
||||
Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
|
||||
By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if
|
||||
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
|
||||
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
|
||||
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
|
||||
supported?" or "Where's the pull request for feature Y?"
|
||||
|
||||
<h3>Usage</h3>
|
||||
|
||||
Danswer Web App:
|
||||
Onyx Web App:
|
||||
|
||||
https://github.com/danswer-ai/danswer/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
|
||||
https://github.com/onyx-dot-app/onyx/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
|
||||
|
||||
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
|
||||
|
||||
Or, plug Danswer into your existing Slack workflows (more integrations to come 😁):
|
||||
https://github.com/onyx-dot-app/onyx/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
|
||||
|
||||
https://github.com/danswer-ai/danswer/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
|
||||
|
||||
|
||||
For more details on the Admin UI to manage connectors and users, check out our
|
||||
For more details on the Admin UI to manage connectors and users, check out our
|
||||
<strong><a href="https://www.youtube.com/watch?v=geNzY1nbCnU">Full Video Demo</a></strong>!
|
||||
|
||||
## Deployment
|
||||
|
||||
Danswer can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
|
||||
`docker compose` command. Checkout our [docs](https://docs.danswer.dev/quickstart) to learn more.
|
||||
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
|
||||
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
|
||||
|
||||
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/danswer-ai/danswer/tree/main/deployment/kubernetes).
|
||||
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
|
||||
|
||||
## 💃 Main Features
|
||||
|
||||
## 💃 Main Features
|
||||
* Chat UI with the ability to select documents to chat with.
|
||||
* Create custom AI Assistants with different prompts and backing knowledge sets.
|
||||
* Connect Danswer with LLM of your choice (self-host for a fully airgapped solution).
|
||||
* Document Search + AI Answers for natural language queries.
|
||||
* Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
|
||||
* Slack integration to get answers and search results directly in Slack.
|
||||
|
||||
- Chat UI with the ability to select documents to chat with.
|
||||
- Create custom AI Assistants with different prompts and backing knowledge sets.
|
||||
- Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
|
||||
- Document Search + AI Answers for natural language queries.
|
||||
- Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
|
||||
- Slack integration to get answers and search results directly in Slack.
|
||||
|
||||
## 🚧 Roadmap
|
||||
* Chat/Prompt sharing with specific teammates and user groups.
|
||||
* Multimodal model support, chat with images, video etc.
|
||||
* Choosing between LLMs and parameters during chat session.
|
||||
* Tool calling and agent configurations options.
|
||||
* Organizational understanding and ability to locate and suggest experts from your team.
|
||||
|
||||
- Chat/Prompt sharing with specific teammates and user groups.
|
||||
- Multimodal model support, chat with images, video etc.
|
||||
- Choosing between LLMs and parameters during chat session.
|
||||
- Tool calling and agent configurations options.
|
||||
- Organizational understanding and ability to locate and suggest experts from your team.
|
||||
|
||||
## Other Notable Benefits of Danswer
|
||||
* User Authentication with document level access management.
|
||||
* Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
|
||||
* Admin Dashboard to configure connectors, document-sets, access, etc.
|
||||
* Custom deep learning models + learn from user feedback.
|
||||
* Easy deployment and ability to host Danswer anywhere of your choosing.
|
||||
## Other Notable Benefits of Onyx
|
||||
|
||||
- User Authentication with document level access management.
|
||||
- Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
|
||||
- Admin Dashboard to configure connectors, document-sets, access, etc.
|
||||
- Custom deep learning models + learn from user feedback.
|
||||
- Easy deployment and ability to host Onyx anywhere of your choosing.
|
||||
|
||||
## 🔌 Connectors
|
||||
|
||||
Efficiently pulls the latest changes from:
|
||||
* Slack
|
||||
* GitHub
|
||||
* Google Drive
|
||||
* Confluence
|
||||
* Jira
|
||||
* Zendesk
|
||||
* Gmail
|
||||
* Notion
|
||||
* Gong
|
||||
* Slab
|
||||
* Linear
|
||||
* Productboard
|
||||
* Guru
|
||||
* Bookstack
|
||||
* Document360
|
||||
* Sharepoint
|
||||
* Hubspot
|
||||
* Local Files
|
||||
* Websites
|
||||
* And more ...
|
||||
|
||||
- Slack
|
||||
- GitHub
|
||||
- Google Drive
|
||||
- Confluence
|
||||
- Jira
|
||||
- Zendesk
|
||||
- Gmail
|
||||
- Notion
|
||||
- Gong
|
||||
- Slab
|
||||
- Linear
|
||||
- Productboard
|
||||
- Guru
|
||||
- Bookstack
|
||||
- Document360
|
||||
- Sharepoint
|
||||
- Hubspot
|
||||
- Local Files
|
||||
- Websites
|
||||
- And more ...
|
||||
|
||||
## 📚 Editions
|
||||
|
||||
There are two editions of Danswer:
|
||||
There are two editions of Onyx:
|
||||
|
||||
* Danswer Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Danswer you will get if you follow the Deployment guide above.
|
||||
* Danswer Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
|
||||
* Single Sign-On (SSO), with support for both SAML and OIDC
|
||||
* Role-based access control
|
||||
* Document permission inheritance from connected sources
|
||||
* Usage analytics and query history accessible to admins
|
||||
* Whitelabeling
|
||||
* API key authentication
|
||||
* Encryption of secrets
|
||||
* Any many more! Checkout [our website](https://www.danswer.ai/) for the latest.
|
||||
- Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
|
||||
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
|
||||
- Single Sign-On (SSO), with support for both SAML and OIDC
|
||||
- Role-based access control
|
||||
- Document permission inheritance from connected sources
|
||||
- Usage analytics and query history accessible to admins
|
||||
- Whitelabeling
|
||||
- API key authentication
|
||||
- Encryption of secrets
|
||||
- Any many more! Checkout [our website](https://www.onyx.app/) for the latest.
|
||||
|
||||
To try the Danswer Enterprise Edition:
|
||||
To try the Onyx Enterprise Edition:
|
||||
|
||||
1. Checkout our [Cloud product](https://app.danswer.ai/signup).
|
||||
2. For self-hosting, contact us at [founders@danswer.ai](mailto:founders@danswer.ai) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
|
||||
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
|
||||
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
|
||||
|
||||
## 💡 Contributing
|
||||
|
||||
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
|
||||
|
||||
## ⭐Star History
|
||||
|
||||
[](https://star-history.com/#danswer-ai/danswer&Date)
|
||||
[](https://star-history.com/#onyx-dot-app/onyx&Date)
|
||||
|
||||
## ✨Contributors
|
||||
|
||||
<a href="https://github.com/danswer-ai/danswer/graphs/contributors">
|
||||
<img alt="contributors" src="https://contrib.rocks/image?repo=danswer-ai/danswer"/>
|
||||
<a href="https://github.com/onyx-dot-app/onyx/graphs/contributors">
|
||||
<img alt="contributors" src="https://contrib.rocks/image?repo=onyx-dot-app/onyx"/>
|
||||
</a>
|
||||
|
||||
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
||||
|
||||
@@ -1,19 +1,19 @@
|
||||
FROM python:3.11.7-slim-bookworm
|
||||
|
||||
LABEL com.danswer.maintainer="founders@danswer.ai"
|
||||
LABEL com.danswer.description="This image is the web/frontend container of Danswer which \
|
||||
contains code for both the Community and Enterprise editions of Danswer. If you do not \
|
||||
LABEL com.danswer.maintainer="founders@onyx.app"
|
||||
LABEL com.danswer.description="This image is the web/frontend container of Onyx which \
|
||||
contains code for both the Community and Enterprise editions of Onyx. If you do not \
|
||||
have a contract or agreement with DanswerAI, you are not permitted to use the Enterprise \
|
||||
Edition features outside of personal development or testing purposes. Please reach out to \
|
||||
founders@danswer.ai for more information. Please visit https://github.com/danswer-ai/danswer"
|
||||
founders@onyx.app for more information. Please visit https://github.com/onyx-dot-app/onyx"
|
||||
|
||||
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG DANSWER_VERSION=0.8-dev
|
||||
ENV DANSWER_VERSION=${DANSWER_VERSION} \
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.8-dev
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
|
||||
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
# Install system dependencies
|
||||
# cmake needed for psycopg (postgres)
|
||||
# libpq-dev needed for psycopg (postgres)
|
||||
@@ -56,7 +56,7 @@ RUN pip install --no-cache-dir --upgrade \
|
||||
# Cleanup for CVEs and size reduction
|
||||
# https://github.com/tornadoweb/tornado/issues/3107
|
||||
# xserver-common and xvfb included by playwright installation but not needed after
|
||||
# perl-base is part of the base Python Debian image but not needed for Danswer functionality
|
||||
# perl-base is part of the base Python Debian image but not needed for Onyx functionality
|
||||
# perl-base could only be removed with --allow-remove-essential
|
||||
RUN apt-get update && \
|
||||
apt-get remove -y --allow-remove-essential \
|
||||
@@ -92,7 +92,7 @@ COPY ./ee /app/ee
|
||||
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
|
||||
|
||||
# Set up application files
|
||||
COPY ./danswer /app/danswer
|
||||
COPY ./onyx /app/onyx
|
||||
COPY ./shared_configs /app/shared_configs
|
||||
COPY ./alembic /app/alembic
|
||||
COPY ./alembic_tenants /app/alembic_tenants
|
||||
|
||||
@@ -1,18 +1,18 @@
|
||||
FROM python:3.11.7-slim-bookworm
|
||||
|
||||
LABEL com.danswer.maintainer="founders@danswer.ai"
|
||||
LABEL com.danswer.description="This image is for the Danswer model server which runs all of the \
|
||||
AI models for Danswer. This container and all the code is MIT Licensed and free for all to use. \
|
||||
You can find it at https://hub.docker.com/r/danswer/danswer-model-server. For more details, \
|
||||
visit https://github.com/danswer-ai/danswer."
|
||||
LABEL com.danswer.maintainer="founders@onyx.app"
|
||||
LABEL com.danswer.description="This image is for the Onyx model server which runs all of the \
|
||||
AI models for Onyx. This container and all the code is MIT Licensed and free for all to use. \
|
||||
You can find it at https://hub.docker.com/r/onyx/onyx-model-server. For more details, \
|
||||
visit https://github.com/onyx-dot-app/onyx."
|
||||
|
||||
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG DANSWER_VERSION=0.8-dev
|
||||
ENV DANSWER_VERSION=${DANSWER_VERSION} \
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.8-dev
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
|
||||
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
|
||||
COPY ./requirements/model_server.txt /tmp/requirements.txt
|
||||
RUN pip install --no-cache-dir --upgrade \
|
||||
@@ -20,11 +20,11 @@ RUN pip install --no-cache-dir --upgrade \
|
||||
--timeout 30 \
|
||||
-r /tmp/requirements.txt
|
||||
|
||||
RUN apt-get remove -y --allow-remove-essential perl-base && \
|
||||
RUN apt-get remove -y --allow-remove-essential perl-base && \
|
||||
apt-get autoremove -y
|
||||
|
||||
# Pre-downloading models for setups with limited egress
|
||||
# Download tokenizers, distilbert for the Danswer model
|
||||
# Download tokenizers, distilbert for the Onyx model
|
||||
# Download model weights
|
||||
# Run Nomic to pull in the custom architecture and have it cached locally
|
||||
RUN python -c "from transformers import AutoTokenizer; \
|
||||
@@ -38,18 +38,18 @@ from sentence_transformers import SentenceTransformer; \
|
||||
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True);"
|
||||
|
||||
# In case the user has volumes mounted to /root/.cache/huggingface that they've downloaded while
|
||||
# running Danswer, don't overwrite it with the built in cache folder
|
||||
# running Onyx, don't overwrite it with the built in cache folder
|
||||
RUN mv /root/.cache/huggingface /root/.cache/temp_huggingface
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Utils used by model server
|
||||
COPY ./danswer/utils/logger.py /app/danswer/utils/logger.py
|
||||
COPY ./onyx/utils/logger.py /app/onyx/utils/logger.py
|
||||
|
||||
# Place to fetch version information
|
||||
COPY ./danswer/__init__.py /app/danswer/__init__.py
|
||||
COPY ./onyx/__init__.py /app/onyx/__init__.py
|
||||
|
||||
# Shared between Danswer Backend and Model Server
|
||||
# Shared between Onyx Backend and Model Server
|
||||
COPY ./shared_configs /app/shared_configs
|
||||
|
||||
# Model Server main code
|
||||
|
||||
@@ -1,19 +1,22 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/backend/alembic/README.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/backend/alembic/README.md"} -->
|
||||
|
||||
# Alembic DB Migrations
|
||||
These files are for creating/updating the tables in the Relational DB (Postgres).
|
||||
Danswer migrations use a generic single-database configuration with an async dbapi.
|
||||
|
||||
## To generate new migrations:
|
||||
run from danswer/backend:
|
||||
These files are for creating/updating the tables in the Relational DB (Postgres).
|
||||
Onyx migrations use a generic single-database configuration with an async dbapi.
|
||||
|
||||
## To generate new migrations:
|
||||
|
||||
run from onyx/backend:
|
||||
`alembic revision --autogenerate -m <DESCRIPTION_OF_MIGRATION>`
|
||||
|
||||
More info can be found here: https://alembic.sqlalchemy.org/en/latest/autogenerate.html
|
||||
|
||||
## Running migrations
|
||||
|
||||
To run all un-applied migrations:
|
||||
`alembic upgrade head`
|
||||
|
||||
To undo migrations:
|
||||
`alembic downgrade -X`
|
||||
`alembic downgrade -X`
|
||||
where X is the number of migrations you want to undo from the current state
|
||||
|
||||
@@ -1,39 +1,49 @@
|
||||
from typing import Any, Literal
|
||||
from onyx.db.engine import get_iam_auth_token
|
||||
from onyx.configs.app_configs import USE_IAM_AUTH
|
||||
from onyx.configs.app_configs import POSTGRES_HOST
|
||||
from onyx.configs.app_configs import POSTGRES_PORT
|
||||
from onyx.configs.app_configs import POSTGRES_USER
|
||||
from onyx.configs.app_configs import AWS_REGION
|
||||
from onyx.db.engine import build_connection_string
|
||||
from onyx.db.engine import get_all_tenant_ids
|
||||
from sqlalchemy import event
|
||||
from sqlalchemy import pool
|
||||
from sqlalchemy import text
|
||||
from sqlalchemy.engine.base import Connection
|
||||
from typing import Literal
|
||||
import os
|
||||
import ssl
|
||||
import asyncio
|
||||
from logging.config import fileConfig
|
||||
import logging
|
||||
from logging.config import fileConfig
|
||||
|
||||
from alembic import context
|
||||
from sqlalchemy import pool
|
||||
from sqlalchemy.ext.asyncio import create_async_engine
|
||||
from sqlalchemy.sql import text
|
||||
from sqlalchemy.sql.schema import SchemaItem
|
||||
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
from danswer.db.engine import build_connection_string
|
||||
from danswer.db.models import Base
|
||||
from onyx.configs.constants import SSL_CERT_FILE
|
||||
from shared_configs.configs import MULTI_TENANT, POSTGRES_DEFAULT_SCHEMA
|
||||
from onyx.db.models import Base
|
||||
from celery.backends.database.session import ResultModelBase # type: ignore
|
||||
from danswer.db.engine import get_all_tenant_ids
|
||||
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
|
||||
|
||||
# Alembic Config object
|
||||
config = context.config
|
||||
|
||||
# Interpret the config file for Python logging.
|
||||
if config.config_file_name is not None and config.attributes.get(
|
||||
"configure_logger", True
|
||||
):
|
||||
fileConfig(config.config_file_name)
|
||||
|
||||
# Add your model's MetaData object here for 'autogenerate' support
|
||||
target_metadata = [Base.metadata, ResultModelBase.metadata]
|
||||
|
||||
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
|
||||
|
||||
# Set up logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ssl_context: ssl.SSLContext | None = None
|
||||
if USE_IAM_AUTH:
|
||||
if not os.path.exists(SSL_CERT_FILE):
|
||||
raise FileNotFoundError(f"Expected {SSL_CERT_FILE} when USE_IAM_AUTH is true.")
|
||||
ssl_context = ssl.create_default_context(cafile=SSL_CERT_FILE)
|
||||
|
||||
|
||||
def include_object(
|
||||
object: SchemaItem,
|
||||
@@ -49,20 +59,12 @@ def include_object(
|
||||
reflected: bool,
|
||||
compare_to: SchemaItem | None,
|
||||
) -> bool:
|
||||
"""
|
||||
Determines whether a database object should be included in migrations.
|
||||
Excludes specified tables from migrations.
|
||||
"""
|
||||
if type_ == "table" and name in EXCLUDE_TABLES:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_schema_options() -> tuple[str, bool, bool]:
|
||||
"""
|
||||
Parses command-line options passed via '-x' in Alembic commands.
|
||||
Recognizes 'schema', 'create_schema', and 'upgrade_all_tenants' options.
|
||||
"""
|
||||
x_args_raw = context.get_x_argument()
|
||||
x_args = {}
|
||||
for arg in x_args_raw:
|
||||
@@ -90,16 +92,12 @@ def get_schema_options() -> tuple[str, bool, bool]:
|
||||
def do_run_migrations(
|
||||
connection: Connection, schema_name: str, create_schema: bool
|
||||
) -> None:
|
||||
"""
|
||||
Executes migrations in the specified schema.
|
||||
"""
|
||||
logger.info(f"About to migrate schema: {schema_name}")
|
||||
|
||||
if create_schema:
|
||||
connection.execute(text(f'CREATE SCHEMA IF NOT EXISTS "{schema_name}"'))
|
||||
connection.execute(text("COMMIT"))
|
||||
|
||||
# Set search_path to the target schema
|
||||
connection.execute(text(f'SET search_path TO "{schema_name}"'))
|
||||
|
||||
context.configure(
|
||||
@@ -117,11 +115,25 @@ def do_run_migrations(
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
def provide_iam_token_for_alembic(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
if USE_IAM_AUTH:
|
||||
# Database connection settings
|
||||
region = AWS_REGION
|
||||
host = POSTGRES_HOST
|
||||
port = POSTGRES_PORT
|
||||
user = POSTGRES_USER
|
||||
|
||||
# Get IAM authentication token
|
||||
token = get_iam_auth_token(host, port, user, region)
|
||||
|
||||
# For Alembic / SQLAlchemy in this context, set SSL and password
|
||||
cparams["password"] = token
|
||||
cparams["ssl"] = ssl_context
|
||||
|
||||
|
||||
async def run_async_migrations() -> None:
|
||||
"""
|
||||
Determines whether to run migrations for a single schema or all schemas,
|
||||
and executes migrations accordingly.
|
||||
"""
|
||||
schema_name, create_schema, upgrade_all_tenants = get_schema_options()
|
||||
|
||||
engine = create_async_engine(
|
||||
@@ -129,10 +141,16 @@ async def run_async_migrations() -> None:
|
||||
poolclass=pool.NullPool,
|
||||
)
|
||||
|
||||
if upgrade_all_tenants:
|
||||
# Run migrations for all tenant schemas sequentially
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
if USE_IAM_AUTH:
|
||||
|
||||
@event.listens_for(engine.sync_engine, "do_connect")
|
||||
def event_provide_iam_token_for_alembic(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
|
||||
|
||||
if upgrade_all_tenants:
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
for schema in tenant_schemas:
|
||||
try:
|
||||
logger.info(f"Migrating schema: {schema}")
|
||||
@@ -162,15 +180,20 @@ async def run_async_migrations() -> None:
|
||||
|
||||
|
||||
def run_migrations_offline() -> None:
|
||||
"""
|
||||
Run migrations in 'offline' mode.
|
||||
"""
|
||||
schema_name, _, upgrade_all_tenants = get_schema_options()
|
||||
url = build_connection_string()
|
||||
|
||||
if upgrade_all_tenants:
|
||||
# Run offline migrations for all tenant schemas
|
||||
engine = create_async_engine(url)
|
||||
|
||||
if USE_IAM_AUTH:
|
||||
|
||||
@event.listens_for(engine.sync_engine, "do_connect")
|
||||
def event_provide_iam_token_for_alembic_offline(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
|
||||
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
engine.sync_engine.dispose()
|
||||
|
||||
@@ -207,9 +230,6 @@ def run_migrations_offline() -> None:
|
||||
|
||||
|
||||
def run_migrations_online() -> None:
|
||||
"""
|
||||
Runs migrations in 'online' mode using an asynchronous engine.
|
||||
"""
|
||||
asyncio.run(run_async_migrations())
|
||||
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from sqlalchemy.sql import table
|
||||
from sqlalchemy.dialects import postgresql
|
||||
import json
|
||||
|
||||
from danswer.utils.encryption import encrypt_string_to_bytes
|
||||
from onyx.utils.encryption import encrypt_string_to_bytes
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "0a98909f2757"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Introduce Danswer APIs
|
||||
"""Introduce Onyx APIs
|
||||
|
||||
Revision ID: 15326fcec57e
|
||||
Revises: 77d07dffae64
|
||||
@@ -8,7 +8,7 @@ Create Date: 2023-11-11 20:51:24.228999
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "15326fcec57e"
|
||||
@@ -10,7 +10,7 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from danswer.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
|
||||
from onyx.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "1f60f60c3401"
|
||||
|
||||
121
backend/alembic/versions/35e518e0ddf4_properly_cascade.py
Normal file
121
backend/alembic/versions/35e518e0ddf4_properly_cascade.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""properly_cascade
|
||||
|
||||
Revision ID: 35e518e0ddf4
|
||||
Revises: 91a0a4d62b14
|
||||
Create Date: 2024-09-20 21:24:04.891018
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "35e518e0ddf4"
|
||||
down_revision = "91a0a4d62b14"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Update chat_message foreign key constraint
|
||||
op.drop_constraint(
|
||||
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message_chat_session_id_fkey",
|
||||
"chat_message",
|
||||
"chat_session",
|
||||
["chat_session_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# Update chat_message__search_doc foreign key constraints
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"chat_message",
|
||||
["chat_message_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"search_doc",
|
||||
["search_doc_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# Add CASCADE delete for tool_call foreign key
|
||||
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
|
||||
op.create_foreign_key(
|
||||
"tool_call_message_id_fkey",
|
||||
"tool_call",
|
||||
"chat_message",
|
||||
["message_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Revert chat_message foreign key constraint
|
||||
op.drop_constraint(
|
||||
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message_chat_session_id_fkey",
|
||||
"chat_message",
|
||||
"chat_session",
|
||||
["chat_session_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Revert chat_message__search_doc foreign key constraints
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"chat_message",
|
||||
["chat_message_id"],
|
||||
["id"],
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"search_doc",
|
||||
["search_doc_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Revert tool_call foreign key constraint
|
||||
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
|
||||
op.create_foreign_key(
|
||||
"tool_call_message_id_fkey",
|
||||
"tool_call",
|
||||
"chat_message",
|
||||
["message_id"],
|
||||
["id"],
|
||||
)
|
||||
@@ -17,7 +17,7 @@ depends_on: None = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# At this point, we directly changed some previous migrations,
|
||||
# https://github.com/danswer-ai/danswer/pull/637
|
||||
# https://github.com/onyx-dot-app/onyx/pull/637
|
||||
# Due to using Postgres native Enums, it caused some complications for first time users.
|
||||
# To remove those complications, all Enums are only handled application side moving forward.
|
||||
# This migration exists to ensure that existing users don't run into upgrade issues.
|
||||
|
||||
@@ -10,8 +10,8 @@ from typing import cast
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.orm import Session
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from danswer.db.models import SlackBot
|
||||
from onyx.key_value_store.factory import get_kv_store
|
||||
from onyx.db.models import SlackBot
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
|
||||
23
backend/alembic/versions/54a74a0417fc_danswerbot_onyxbot.py
Normal file
23
backend/alembic/versions/54a74a0417fc_danswerbot_onyxbot.py
Normal file
@@ -0,0 +1,23 @@
|
||||
"""danswerbot -> onyxbot
|
||||
|
||||
Revision ID: 54a74a0417fc
|
||||
Revises: 94dc3d0236f8
|
||||
Create Date: 2024-12-11 18:05:05.490737
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "54a74a0417fc"
|
||||
down_revision = "94dc3d0236f8"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.alter_column("chat_session", "danswerbot_flow", new_column_name="onyxbot_flow")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.alter_column("chat_session", "onyxbot_flow", new_column_name="danswerbot_flow")
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Track Danswerbot Explicitly
|
||||
"""Track Onyxbot Explicitly
|
||||
|
||||
Revision ID: 570282d33c49
|
||||
Revises: 7547d982db8f
|
||||
@@ -9,7 +9,7 @@ import json
|
||||
from typing import cast
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from onyx.key_value_store.factory import get_kv_store
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "703313b75876"
|
||||
|
||||
@@ -8,9 +8,9 @@ Create Date: 2024-03-22 21:34:27.629444
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
from onyx.db.models import IndexModelStatus
|
||||
from onyx.context.search.enums import RecencyBiasSetting
|
||||
from onyx.context.search.enums import SearchType
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "776b3bbe9092"
|
||||
|
||||
@@ -18,7 +18,7 @@ depends_on: None = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# In a PR:
|
||||
# https://github.com/danswer-ai/danswer/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
|
||||
# https://github.com/onyx-dot-app/onyx/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
|
||||
# we directly changed some previous migrations. This caused some users to have native enums
|
||||
# while others wouldn't. This has caused some issues when adding new fields to these enums.
|
||||
# This migration manually changes the enum types to ensure that nobody uses native enums.
|
||||
|
||||
45
backend/alembic/versions/91a0a4d62b14_milestone.py
Normal file
45
backend/alembic/versions/91a0a4d62b14_milestone.py
Normal file
@@ -0,0 +1,45 @@
|
||||
"""Milestone
|
||||
|
||||
Revision ID: 91a0a4d62b14
|
||||
Revises: dab04867cd88
|
||||
Create Date: 2024-12-13 19:03:30.947551
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "91a0a4d62b14"
|
||||
down_revision = "dab04867cd88"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"milestone",
|
||||
sa.Column("id", sa.UUID(), nullable=False),
|
||||
sa.Column("tenant_id", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("event_type", sa.String(), nullable=False),
|
||||
sa.Column(
|
||||
"time_created",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("event_tracker", postgresql.JSONB(), nullable=True),
|
||||
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("event_type", name="uq_milestone_event_type"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("milestone")
|
||||
@@ -7,7 +7,7 @@ Create Date: 2024-03-21 12:05:23.956734
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "91fd3b470d1a"
|
||||
|
||||
@@ -10,7 +10,7 @@ from sqlalchemy.orm import Session
|
||||
from sqlalchemy import text
|
||||
|
||||
# Import your models and constants
|
||||
from danswer.db.models import (
|
||||
from onyx.db.models import (
|
||||
Connector,
|
||||
ConnectorCredentialPair,
|
||||
Credential,
|
||||
|
||||
@@ -0,0 +1,30 @@
|
||||
"""make document set description optional
|
||||
|
||||
Revision ID: 94dc3d0236f8
|
||||
Revises: bf7a81109301
|
||||
Create Date: 2024-12-11 11:26:10.616722
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "94dc3d0236f8"
|
||||
down_revision = "bf7a81109301"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Make document_set.description column nullable
|
||||
op.alter_column(
|
||||
"document_set", "description", existing_type=sa.String(), nullable=True
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Revert document_set.description column to non-nullable
|
||||
op.alter_column(
|
||||
"document_set", "description", existing_type=sa.String(), nullable=False
|
||||
)
|
||||
@@ -10,7 +10,7 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.dialects.postgresql import ENUM
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "b156fa702355"
|
||||
|
||||
@@ -0,0 +1,57 @@
|
||||
"""delete_input_prompts
|
||||
|
||||
Revision ID: bf7a81109301
|
||||
Revises: f7a894b06d02
|
||||
Create Date: 2024-12-09 12:00:49.884228
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "bf7a81109301"
|
||||
down_revision = "f7a894b06d02"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.drop_table("inputprompt__user")
|
||||
op.drop_table("inputprompt")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.create_table(
|
||||
"inputprompt",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column("prompt", sa.String(), nullable=False),
|
||||
sa.Column("content", sa.String(), nullable=False),
|
||||
sa.Column("active", sa.Boolean(), nullable=False),
|
||||
sa.Column("is_public", sa.Boolean(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
op.create_table(
|
||||
"inputprompt__user",
|
||||
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
|
||||
sa.Column("user_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["input_prompt_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
|
||||
)
|
||||
87
backend/alembic/versions/c0aab6edb6dd_delete_workspace.py
Normal file
87
backend/alembic/versions/c0aab6edb6dd_delete_workspace.py
Normal file
@@ -0,0 +1,87 @@
|
||||
"""delete workspace
|
||||
|
||||
Revision ID: c0aab6edb6dd
|
||||
Revises: 35e518e0ddf4
|
||||
Create Date: 2024-12-17 14:37:07.660631
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c0aab6edb6dd"
|
||||
down_revision = "35e518e0ddf4"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE connector
|
||||
SET connector_specific_config = connector_specific_config - 'workspace'
|
||||
WHERE source = 'SLACK'
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
import json
|
||||
from sqlalchemy import text
|
||||
from slack_sdk import WebClient
|
||||
|
||||
conn = op.get_bind()
|
||||
|
||||
# Fetch all Slack credentials
|
||||
creds_result = conn.execute(
|
||||
text("SELECT id, credential_json FROM credential WHERE source = 'SLACK'")
|
||||
)
|
||||
all_slack_creds = creds_result.fetchall()
|
||||
if not all_slack_creds:
|
||||
return
|
||||
|
||||
for cred_row in all_slack_creds:
|
||||
credential_id, credential_json = cred_row
|
||||
|
||||
credential_json = (
|
||||
credential_json.tobytes().decode("utf-8")
|
||||
if isinstance(credential_json, memoryview)
|
||||
else credential_json.decode("utf-8")
|
||||
)
|
||||
credential_data = json.loads(credential_json)
|
||||
slack_bot_token = credential_data.get("slack_bot_token")
|
||||
if not slack_bot_token:
|
||||
print(
|
||||
f"No slack_bot_token found for credential {credential_id}. "
|
||||
"Your Slack connector will not function until you upgrade and provide a valid token."
|
||||
)
|
||||
continue
|
||||
|
||||
client = WebClient(token=slack_bot_token)
|
||||
try:
|
||||
auth_response = client.auth_test()
|
||||
workspace = auth_response["url"].split("//")[1].split(".")[0]
|
||||
|
||||
# Update only the connectors linked to this credential
|
||||
# (and which are Slack connectors).
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE connector AS c
|
||||
SET connector_specific_config = jsonb_set(
|
||||
connector_specific_config,
|
||||
'{{workspace}}',
|
||||
to_jsonb('{workspace}'::text)
|
||||
)
|
||||
FROM connector_credential_pair AS ccp
|
||||
WHERE ccp.connector_id = c.id
|
||||
AND c.source = 'SLACK'
|
||||
AND ccp.credential_id = {credential_id}
|
||||
"""
|
||||
)
|
||||
except Exception:
|
||||
print(
|
||||
f"We were unable to get the workspace url for your Slack Connector with id {credential_id}."
|
||||
)
|
||||
print("This connector will no longer work until you upgrade.")
|
||||
continue
|
||||
@@ -0,0 +1,32 @@
|
||||
"""Add composite index to document_by_connector_credential_pair
|
||||
|
||||
Revision ID: dab04867cd88
|
||||
Revises: 54a74a0417fc
|
||||
Create Date: 2024-12-13 22:43:20.119990
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "dab04867cd88"
|
||||
down_revision = "54a74a0417fc"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Composite index on (connector_id, credential_id)
|
||||
op.create_index(
|
||||
"idx_document_cc_pair_connector_credential",
|
||||
"document_by_connector_credential_pair",
|
||||
["connector_id", "credential_id"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(
|
||||
"idx_document_cc_pair_connector_credential",
|
||||
table_name="document_by_connector_credential_pair",
|
||||
)
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Danswer Custom Tool Flow
|
||||
"""Onyx Custom Tool Flow
|
||||
|
||||
Revision ID: dba7f71618f5
|
||||
Revises: d5645c915d0e
|
||||
@@ -9,12 +9,12 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import table, column, String, Integer, Boolean
|
||||
|
||||
from danswer.db.search_settings import (
|
||||
from onyx.db.search_settings import (
|
||||
get_new_default_embedding_model,
|
||||
get_old_default_embedding_model,
|
||||
user_has_overridden_embedding_model,
|
||||
)
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from onyx.db.models import IndexModelStatus
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "dbaa756c2ccf"
|
||||
|
||||
@@ -8,7 +8,7 @@ Create Date: 2024-03-14 18:06:08.523106
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "e50154680a5c"
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
"""non-nullbale slack bot id in channel config
|
||||
|
||||
Revision ID: f7a894b06d02
|
||||
Revises: 9f696734098f
|
||||
Create Date: 2024-12-06 12:55:42.845723
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "f7a894b06d02"
|
||||
down_revision = "9f696734098f"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Delete all rows with null slack_bot_id
|
||||
op.execute("DELETE FROM slack_channel_config WHERE slack_bot_id IS NULL")
|
||||
|
||||
# Make slack_bot_id non-nullable
|
||||
op.alter_column(
|
||||
"slack_channel_config",
|
||||
"slack_bot_id",
|
||||
existing_type=sa.Integer(),
|
||||
nullable=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Make slack_bot_id nullable again
|
||||
op.alter_column(
|
||||
"slack_channel_config",
|
||||
"slack_bot_id",
|
||||
existing_type=sa.Integer(),
|
||||
nullable=True,
|
||||
)
|
||||
@@ -1,3 +1,3 @@
|
||||
These files are for public table migrations when operating with multi tenancy.
|
||||
|
||||
If you are not a Danswer developer, you can ignore this directory entirely.
|
||||
If you are not a Onyx developer, you can ignore this directory entirely.
|
||||
|
||||
@@ -8,8 +8,8 @@ from sqlalchemy.ext.asyncio import create_async_engine
|
||||
from sqlalchemy.schema import SchemaItem
|
||||
|
||||
from alembic import context
|
||||
from danswer.db.engine import build_connection_string
|
||||
from danswer.db.models import PublicBase
|
||||
from onyx.db.engine import build_connection_string
|
||||
from onyx.db.models import PublicBase
|
||||
|
||||
# this is the Alembic Config object, which provides
|
||||
# access to the values within the .ini file in use.
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
import os
|
||||
|
||||
__version__ = os.environ.get("DANSWER_VERSION", "") or "Development"
|
||||
@@ -1,100 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.answer_query.nodes.answer_check import answer_check
|
||||
from danswer.agent_search.answer_query.nodes.answer_generation import answer_generation
|
||||
from danswer.agent_search.answer_query.nodes.format_answer import format_answer
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryInput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryOutput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
|
||||
|
||||
def answer_query_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=AnswerQueryState,
|
||||
input=AnswerQueryInput,
|
||||
output=AnswerQueryOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="expanded_retrieval_for_initial_decomp",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
graph.add_node(
|
||||
node="answer_check",
|
||||
action=answer_check,
|
||||
)
|
||||
graph.add_node(
|
||||
node="answer_generation",
|
||||
action=answer_generation,
|
||||
)
|
||||
graph.add_node(
|
||||
node="format_answer",
|
||||
action=format_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="expanded_retrieval_for_initial_decomp",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="expanded_retrieval_for_initial_decomp",
|
||||
end_key="answer_generation",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_generation",
|
||||
end_key="answer_check",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_check",
|
||||
end_key="format_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = answer_query_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="Who made Excel and what other products did they make?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = AnswerQueryInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
query_to_answer="Who made Excel?",
|
||||
)
|
||||
output = compiled_graph.invoke(
|
||||
input=inputs,
|
||||
# debug=True,
|
||||
# subgraphs=True,
|
||||
)
|
||||
print(output)
|
||||
# for namespace, chunk in compiled_graph.stream(
|
||||
# input=inputs,
|
||||
# # debug=True,
|
||||
# subgraphs=True,
|
||||
# ):
|
||||
# print(namespace)
|
||||
# print(chunk)
|
||||
@@ -1,30 +0,0 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import QACheckOutput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
|
||||
|
||||
|
||||
def answer_check(state: AnswerQueryState) -> QACheckOutput:
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_CHECK_PROMPT.format(
|
||||
question=state["search_request"].query,
|
||||
base_answer=state["answer"],
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
response_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
|
||||
return QACheckOutput(
|
||||
answer_quality=response_str,
|
||||
)
|
||||
@@ -1,32 +0,0 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import QAGenerationOutput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def answer_generation(state: AnswerQueryState) -> QAGenerationOutput:
|
||||
query = state["query_to_answer"]
|
||||
docs = state["reordered_documents"]
|
||||
|
||||
print(f"Number of verified retrieval docs: {len(docs)}")
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_RAG_PROMPT.format(question=query, context=format_docs(docs))
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
answer_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
return QAGenerationOutput(
|
||||
answer=answer_str,
|
||||
)
|
||||
@@ -1,16 +0,0 @@
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryOutput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import SearchAnswerResults
|
||||
|
||||
|
||||
def format_answer(state: AnswerQueryState) -> AnswerQueryOutput:
|
||||
return AnswerQueryOutput(
|
||||
decomp_answer_results=[
|
||||
SearchAnswerResults(
|
||||
query=state["query_to_answer"],
|
||||
quality=state["answer_quality"],
|
||||
answer=state["answer"],
|
||||
documents=state["reordered_documents"],
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,45 +0,0 @@
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class SearchAnswerResults(BaseModel):
|
||||
query: str
|
||||
answer: str
|
||||
quality: str
|
||||
documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class QACheckOutput(TypedDict, total=False):
|
||||
answer_quality: str
|
||||
|
||||
|
||||
class QAGenerationOutput(TypedDict, total=False):
|
||||
answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalOutput(TypedDict):
|
||||
reordered_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class AnswerQueryState(
|
||||
PrimaryState,
|
||||
QACheckOutput,
|
||||
QAGenerationOutput,
|
||||
ExpandedRetrievalOutput,
|
||||
total=True,
|
||||
):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class AnswerQueryInput(PrimaryState, total=True):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class AnswerQueryOutput(TypedDict):
|
||||
decomp_answer_results: list[SearchAnswerResults]
|
||||
@@ -1,15 +0,0 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
class PrimaryState(TypedDict, total=False):
|
||||
search_request: SearchRequest
|
||||
primary_llm: LLM
|
||||
fast_llm: LLM
|
||||
# a single session for the entire agent search
|
||||
# is fine if we are only reading
|
||||
db_session: Session
|
||||
@@ -1,114 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import COMBINED_CONTEXT
|
||||
from danswer.agent_search.shared_graph_utils.prompts import MODIFIED_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import normalize_whitespace
|
||||
|
||||
|
||||
# aggregate sub questions and answers
|
||||
def deep_answer_generation(state: MainState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---DEEP GENERATE---")
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
deep_answer_context = state["core_answer_dynamic_context"]
|
||||
|
||||
print(f"Number of verified retrieval docs - deep: {len(docs)}")
|
||||
|
||||
combined_context = normalize_whitespace(
|
||||
COMBINED_CONTEXT.format(
|
||||
deep_answer_context=deep_answer_context, formated_docs=format_docs(docs)
|
||||
)
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=MODIFIED_RAG_PROMPT.format(
|
||||
question=question, combined_context=combined_context
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
return {
|
||||
"deep_answer": response.content,
|
||||
}
|
||||
|
||||
|
||||
def final_stuff(state: MainState) -> dict[str, Any]:
|
||||
"""
|
||||
Invokes the agent model to generate a response based on the current state. Given
|
||||
the question, it will decide to retrieve using the retriever tool, or simply end.
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with the agent response appended to messages
|
||||
"""
|
||||
print("---FINAL---")
|
||||
|
||||
messages = state["log_messages"]
|
||||
time_ordered_messages = [x.pretty_repr() for x in messages]
|
||||
time_ordered_messages.sort()
|
||||
|
||||
print("Message Log:")
|
||||
print("\n".join(time_ordered_messages))
|
||||
|
||||
initial_sub_qas = state["initial_sub_qas"]
|
||||
initial_sub_qa_list = []
|
||||
for initial_sub_qa in initial_sub_qas:
|
||||
if initial_sub_qa["sub_answer_check"] == "yes":
|
||||
initial_sub_qa_list.append(
|
||||
f' Question:\n {initial_sub_qa["sub_question"]}\n --\n Answer:\n {initial_sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
initial_sub_qa_context = "\n".join(initial_sub_qa_list)
|
||||
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Initial Answered Sub Questions:\n{initial_sub_qa_context}")
|
||||
print("--------------------------------")
|
||||
|
||||
if not state.get("deep_answer"):
|
||||
print("No Deep Answer was required")
|
||||
return {}
|
||||
|
||||
deep_answer = state["deep_answer"]
|
||||
sub_qas = state["sub_qas"]
|
||||
sub_qa_list = []
|
||||
for sub_qa in sub_qas:
|
||||
if sub_qa["sub_answer_check"] == "yes":
|
||||
sub_qa_list.append(
|
||||
f' Question:\n {sub_qa["sub_question"]}\n --\n Answer:\n {sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
sub_qa_context = "\n".join(sub_qa_list)
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Final Deep Answer:\n{deep_answer}")
|
||||
print("--------------------------------")
|
||||
print("Sub Questions and Answers:")
|
||||
print(sub_qa_context)
|
||||
|
||||
return {}
|
||||
@@ -1,78 +0,0 @@
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_entity_term_extraction
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def decompose(state: MainState) -> dict[str, Any]:
|
||||
""" """
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
# get the entity term extraction dict and properly format it
|
||||
entity_term_extraction_dict = state["retrieved_entities_relationships"][
|
||||
"retrieved_entities_relationships"
|
||||
]
|
||||
|
||||
entity_term_extraction_str = format_entity_term_extraction(
|
||||
entity_term_extraction_dict
|
||||
)
|
||||
|
||||
initial_question_answers = state["initial_sub_qas"]
|
||||
|
||||
addressed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "yes"
|
||||
]
|
||||
failed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "no"
|
||||
]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=DEEP_DECOMPOSE_PROMPT.format(
|
||||
question=question,
|
||||
entity_term_extraction_str=entity_term_extraction_str,
|
||||
base_answer=base_answer,
|
||||
answered_sub_questions="\n - ".join(addressed_question_list),
|
||||
failed_sub_questions="\n - ".join(failed_question_list),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", response.pretty_repr())
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
sub_questions_dict = {}
|
||||
for sub_question_nr, sub_question_dict in enumerate(
|
||||
parsed_response["sub_questions"]
|
||||
):
|
||||
sub_question_dict["answered"] = False
|
||||
sub_question_dict["verified"] = False
|
||||
sub_questions_dict[sub_question_nr] = sub_question_dict
|
||||
|
||||
return {
|
||||
"decomposed_sub_questions_dict": sub_questions_dict,
|
||||
"log_messages": generate_log_message(
|
||||
message="deep - decompose",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,40 +0,0 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import ENTITY_TERM_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def entity_term_extraction(state: MainState) -> dict[str, Any]:
|
||||
"""Extract entities and terms from the question and context"""
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
doc_context = format_docs(docs)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
|
||||
)
|
||||
]
|
||||
fast_llm = state["fast_llm"]
|
||||
# Grader
|
||||
llm_response_list = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", llm_response)
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
return {
|
||||
"retrieved_entities_relationships": parsed_response,
|
||||
}
|
||||
@@ -1,30 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
# aggregate sub questions and answers
|
||||
def sub_qa_level_aggregator(state: MainState) -> dict[str, Any]:
|
||||
sub_qas = state["sub_qas"]
|
||||
|
||||
dynamic_context_list = [
|
||||
"Below you will find useful information to answer the original question:"
|
||||
]
|
||||
checked_sub_qas = []
|
||||
|
||||
for core_answer_sub_qa in sub_qas:
|
||||
question = core_answer_sub_qa["sub_question"]
|
||||
answer = core_answer_sub_qa["sub_answer"]
|
||||
verified = core_answer_sub_qa["sub_answer_check"]
|
||||
|
||||
if verified == "yes":
|
||||
dynamic_context_list.append(
|
||||
f"Question:\n{question}\n\nAnswer:\n{answer}\n\n---\n\n"
|
||||
)
|
||||
checked_sub_qas.append({"sub_question": question, "sub_answer": answer})
|
||||
dynamic_context = "\n".join(dynamic_context_list)
|
||||
|
||||
return {
|
||||
"core_answer_dynamic_context": dynamic_context,
|
||||
"checked_sub_qas": checked_sub_qas,
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def sub_qa_manager(state: MainState) -> dict[str, Any]:
|
||||
""" """
|
||||
|
||||
sub_questions_dict = state["decomposed_sub_questions_dict"]
|
||||
|
||||
sub_questions = {}
|
||||
|
||||
for sub_question_nr, sub_question_dict in sub_questions_dict.items():
|
||||
sub_questions[sub_question_nr] = sub_question_dict["sub_question"]
|
||||
|
||||
return {
|
||||
"sub_questions": sub_questions,
|
||||
"num_new_question_iterations": 0,
|
||||
}
|
||||
@@ -1,44 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import RetrieveInput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import REWRITE_PROMPT_MULTI
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
def parallel_retrieval_edge(state: ExpandedRetrievalInput) -> list[Send | Hashable]:
|
||||
print(f"parallel_retrieval_edge state: {state.keys()}")
|
||||
|
||||
# This should be better...
|
||||
question = state.get("query_to_answer") or state["search_request"].query
|
||||
llm: LLM = state["fast_llm"]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REWRITE_PROMPT_MULTI.format(question=question),
|
||||
)
|
||||
]
|
||||
llm_response_list = list(
|
||||
llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
print(f"llm_response: {llm_response}")
|
||||
|
||||
rewritten_queries = llm_response.split("\n")
|
||||
|
||||
print(f"rewritten_queries: {rewritten_queries}")
|
||||
|
||||
return [
|
||||
Send(
|
||||
"doc_retrieval",
|
||||
RetrieveInput(query_to_retrieve=query, **state),
|
||||
)
|
||||
for query in rewritten_queries
|
||||
]
|
||||
@@ -1,88 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.edges import parallel_retrieval_edge
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_reranking import doc_reranking
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import doc_retrieval
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
|
||||
doc_verification,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.nodes.verification_kickoff import (
|
||||
verification_kickoff,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def expanded_retrieval_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=ExpandedRetrievalState,
|
||||
input=ExpandedRetrievalInput,
|
||||
output=ExpandedRetrievalOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="doc_retrieval",
|
||||
action=doc_retrieval,
|
||||
)
|
||||
graph.add_node(
|
||||
node="verification_kickoff",
|
||||
action=verification_kickoff,
|
||||
)
|
||||
graph.add_node(
|
||||
node="doc_verification",
|
||||
action=doc_verification,
|
||||
)
|
||||
graph.add_node(
|
||||
node="doc_reranking",
|
||||
action=doc_reranking,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source=START,
|
||||
path=parallel_retrieval_edge,
|
||||
path_map=["doc_retrieval"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_retrieval",
|
||||
end_key="verification_kickoff",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_verification",
|
||||
end_key="doc_reranking",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_reranking",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = expanded_retrieval_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="Who made Excel and what other products did they make?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = ExpandedRetrievalInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
query_to_answer="Who made Excel?",
|
||||
)
|
||||
for thing in compiled_graph.stream(inputs, debug=True):
|
||||
print(thing)
|
||||
@@ -1,11 +0,0 @@
|
||||
from danswer.agent_search.expanded_retrieval.states import DocRerankingOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def doc_reranking(state: ExpandedRetrievalState) -> DocRerankingOutput:
|
||||
print(f"doc_reranking state: {state.keys()}")
|
||||
|
||||
verified_documents = state["verified_documents"]
|
||||
reranked_documents = verified_documents
|
||||
|
||||
return DocRerankingOutput(reranked_documents=reranked_documents)
|
||||
@@ -1,47 +0,0 @@
|
||||
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.pipeline import SearchPipeline
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
|
||||
|
||||
class RetrieveInput(ExpandedRetrievalState):
|
||||
query_to_retrieve: str
|
||||
|
||||
|
||||
def doc_retrieval(state: RetrieveInput) -> DocRetrievalOutput:
|
||||
# def doc_retrieval(state: RetrieveInput) -> Command[Literal["doc_verification"]]:
|
||||
"""
|
||||
Retrieve documents
|
||||
|
||||
Args:
|
||||
state (dict): The current graph state
|
||||
|
||||
Returns:
|
||||
state (dict): New key added to state, documents, that contains retrieved documents
|
||||
"""
|
||||
print(f"doc_retrieval state: {state.keys()}")
|
||||
|
||||
state["query_to_retrieve"]
|
||||
|
||||
documents: list[InferenceSection] = []
|
||||
llm = state["primary_llm"]
|
||||
fast_llm = state["fast_llm"]
|
||||
# db_session = state["db_session"]
|
||||
query_to_retrieve = state["search_request"].query
|
||||
with get_session_context_manager() as db_session1:
|
||||
documents = SearchPipeline(
|
||||
search_request=SearchRequest(
|
||||
query=query_to_retrieve,
|
||||
),
|
||||
user=None,
|
||||
llm=llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session1,
|
||||
).reranked_sections
|
||||
|
||||
print(f"retrieved documents: {len(documents)}")
|
||||
return DocRetrievalOutput(
|
||||
retrieved_documents=documents,
|
||||
)
|
||||
@@ -1,60 +0,0 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.states import DocVerificationOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
|
||||
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class DocVerificationInput(ExpandedRetrievalState, total=True):
|
||||
doc_to_verify: InferenceSection
|
||||
|
||||
|
||||
def doc_verification(state: DocVerificationInput) -> DocVerificationOutput:
|
||||
"""
|
||||
Check whether the document is relevant for the original user question
|
||||
|
||||
Args:
|
||||
state (VerifierState): The current state
|
||||
|
||||
Returns:
|
||||
dict: ict: The updated state with the final decision
|
||||
"""
|
||||
|
||||
print(f"doc_verification state: {state.keys()}")
|
||||
|
||||
original_query = state["search_request"].query
|
||||
doc_to_verify = state["doc_to_verify"]
|
||||
document_content = doc_to_verify.combined_content
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=VERIFIER_PROMPT.format(
|
||||
question=original_query, document_content=document_content
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
response_string = merge_message_runs(response, chunk_separator="")[0].content
|
||||
# Convert string response to proper dictionary format
|
||||
decision_dict = {"decision": response_string.lower()}
|
||||
formatted_response = BinaryDecision.model_validate(decision_dict)
|
||||
|
||||
print(f"Verdict: {formatted_response.decision}")
|
||||
|
||||
verified_documents = []
|
||||
if formatted_response.decision == "yes":
|
||||
verified_documents.append(doc_to_verify)
|
||||
|
||||
return DocVerificationOutput(
|
||||
verified_documents=verified_documents,
|
||||
)
|
||||
@@ -1,27 +0,0 @@
|
||||
from typing import Literal
|
||||
|
||||
from langgraph.types import Command
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
|
||||
DocVerificationInput,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def verification_kickoff(
|
||||
state: ExpandedRetrievalState,
|
||||
) -> Command[Literal["doc_verification"]]:
|
||||
print(f"verification_kickoff state: {state.keys()}")
|
||||
|
||||
documents = state["retrieved_documents"]
|
||||
return Command(
|
||||
update={},
|
||||
goto=[
|
||||
Send(
|
||||
node="doc_verification",
|
||||
arg=DocVerificationInput(doc_to_verify=doc, **state),
|
||||
)
|
||||
for doc in documents
|
||||
],
|
||||
)
|
||||
@@ -1,36 +0,0 @@
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class DocRetrievalOutput(TypedDict, total=False):
|
||||
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class DocVerificationOutput(TypedDict, total=False):
|
||||
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class DocRerankingOutput(TypedDict, total=False):
|
||||
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class ExpandedRetrievalState(
|
||||
PrimaryState,
|
||||
DocRetrievalOutput,
|
||||
DocVerificationOutput,
|
||||
DocRerankingOutput,
|
||||
total=True,
|
||||
):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalInput(PrimaryState, total=True):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalOutput(TypedDict):
|
||||
reordered_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
@@ -1,61 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryInput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def parallelize_decompozed_answer_queries(state: MainState) -> list[Send | Hashable]:
|
||||
return [
|
||||
Send(
|
||||
"answer_query",
|
||||
AnswerQueryInput(
|
||||
**state,
|
||||
query_to_answer=query,
|
||||
),
|
||||
)
|
||||
for query in state["initial_decomp_queries"]
|
||||
]
|
||||
|
||||
|
||||
# def continue_to_answer_sub_questions(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
# # Routes re-written queries to the (parallel) retrieval steps
|
||||
# # Notice the 'Send()' API that takes care of the parallelization
|
||||
# return [
|
||||
# Send(
|
||||
# "sub_answers_graph",
|
||||
# ResearchQAState(
|
||||
# sub_question=sub_question["sub_question_str"],
|
||||
# sub_question_nr=sub_question["sub_question_nr"],
|
||||
# graph_start_time=state["graph_start_time"],
|
||||
# primary_llm=state["primary_llm"],
|
||||
# fast_llm=state["fast_llm"],
|
||||
# ),
|
||||
# )
|
||||
# for sub_question in state["sub_questions"]
|
||||
# ]
|
||||
|
||||
|
||||
# def continue_to_deep_answer(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
# print("---GO TO DEEP ANSWER OR END---")
|
||||
|
||||
# base_answer = state["base_answer"]
|
||||
|
||||
# question = state["original_question"]
|
||||
|
||||
# BASE_CHECK_MESSAGE = [
|
||||
# HumanMessage(
|
||||
# content=BASE_CHECK_PROMPT.format(question=question, base_answer=base_answer)
|
||||
# )
|
||||
# ]
|
||||
|
||||
# model = state["fast_llm"]
|
||||
# response = model.invoke(BASE_CHECK_MESSAGE)
|
||||
|
||||
# print(f"CAN WE CONTINUE W/O GENERATING A DEEP ANSWER? - {response.pretty_repr()}")
|
||||
|
||||
# if response.pretty_repr() == "no":
|
||||
# return "decompose"
|
||||
# else:
|
||||
# return "end"
|
||||
@@ -1,98 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.answer_query.graph_builder import answer_query_graph_builder
|
||||
from danswer.agent_search.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
from danswer.agent_search.main.edges import parallelize_decompozed_answer_queries
|
||||
from danswer.agent_search.main.nodes.base_decomp import main_decomp_base
|
||||
from danswer.agent_search.main.nodes.generate_initial_answer import (
|
||||
generate_initial_answer,
|
||||
)
|
||||
from danswer.agent_search.main.states import MainInput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def main_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=MainState,
|
||||
input=MainInput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="base_decomp",
|
||||
action=main_decomp_base,
|
||||
)
|
||||
answer_query_subgraph = answer_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_query",
|
||||
action=answer_query_subgraph,
|
||||
)
|
||||
expanded_retrieval_subgraph = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="expanded_retrieval",
|
||||
action=expanded_retrieval_subgraph,
|
||||
)
|
||||
graph.add_node(
|
||||
node="generate_initial_answer",
|
||||
action=generate_initial_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="expanded_retrieval",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="base_decomp",
|
||||
)
|
||||
graph.add_conditional_edges(
|
||||
source="base_decomp",
|
||||
path=parallelize_decompozed_answer_queries,
|
||||
path_map=["answer_query"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key=["answer_query", "expanded_retrieval"],
|
||||
end_key="generate_initial_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="generate_initial_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = main_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="If i am familiar with the function that I need, how can I type it into a cell?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = MainInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
# stream_mode="debug",
|
||||
# debug=True,
|
||||
subgraphs=True,
|
||||
):
|
||||
# print(thing)
|
||||
print()
|
||||
print()
|
||||
@@ -1,31 +0,0 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import BaseDecompOutput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_DECOMPOSITION_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import clean_and_parse_list_string
|
||||
|
||||
|
||||
def main_decomp_base(state: MainState) -> BaseDecompOutput:
|
||||
question = state["search_request"].query
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=INITIAL_DECOMPOSITION_PROMPT.format(question=question),
|
||||
)
|
||||
]
|
||||
|
||||
# Get the rewritten queries in a defined format
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
content = response.pretty_repr()
|
||||
list_of_subquestions = clean_and_parse_list_string(content)
|
||||
|
||||
decomp_list: list[str] = [
|
||||
sub_question["sub_question"].strip() for sub_question in list_of_subquestions
|
||||
]
|
||||
|
||||
return BaseDecompOutput(
|
||||
initial_decomp_queries=decomp_list,
|
||||
)
|
||||
@@ -1,53 +0,0 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import InitialAnswerOutput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def generate_initial_answer(state: MainState) -> InitialAnswerOutput:
|
||||
print("---GENERATE INITIAL---")
|
||||
|
||||
question = state["search_request"].query
|
||||
docs = state["documents"]
|
||||
|
||||
decomp_answer_results = state["decomp_answer_results"]
|
||||
|
||||
good_qa_list: list[str] = []
|
||||
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE = """
|
||||
Sub-Question:\n - {sub_question}\n --\nAnswer:\n - {sub_answer}\n\n
|
||||
"""
|
||||
for decomp_answer_result in decomp_answer_results:
|
||||
if (
|
||||
decomp_answer_result.quality.lower() == "yes"
|
||||
and len(decomp_answer_result.answer) > 0
|
||||
and decomp_answer_result.answer != "I don't know"
|
||||
):
|
||||
good_qa_list.append(
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE.format(
|
||||
sub_question=decomp_answer_result.query,
|
||||
sub_answer=decomp_answer_result.answer,
|
||||
)
|
||||
)
|
||||
|
||||
sub_question_answer_str = "\n\n------\n\n".join(good_qa_list)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=INITIAL_RAG_PROMPT.format(
|
||||
question=question,
|
||||
context=format_docs(docs),
|
||||
answered_sub_questions=sub_question_answer_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
answer = response.pretty_repr()
|
||||
|
||||
print(answer)
|
||||
return InitialAnswerOutput(initial_answer=answer)
|
||||
@@ -1,37 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from danswer.agent_search.answer_query.states import SearchAnswerResults
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class BaseDecompOutput(TypedDict, total=False):
|
||||
initial_decomp_queries: list[str]
|
||||
|
||||
|
||||
class InitialAnswerOutput(TypedDict, total=False):
|
||||
initial_answer: str
|
||||
|
||||
|
||||
class MainState(
|
||||
PrimaryState,
|
||||
BaseDecompOutput,
|
||||
InitialAnswerOutput,
|
||||
total=True,
|
||||
):
|
||||
documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
decomp_answer_results: Annotated[list[SearchAnswerResults], add]
|
||||
|
||||
|
||||
class MainInput(PrimaryState, total=True):
|
||||
pass
|
||||
|
||||
|
||||
class MainOutput(TypedDict):
|
||||
"""
|
||||
This is not used because defining the output only matters for filtering the output of
|
||||
a .invoke() call but we are streaming so we just yield the entire state.
|
||||
"""
|
||||
@@ -1,27 +0,0 @@
|
||||
from danswer.agent_search.primary_graph.graph_builder import build_core_graph
|
||||
from danswer.llm.answering.answer import AnswerStream
|
||||
from danswer.llm.interfaces import LLM
|
||||
from danswer.tools.tool import Tool
|
||||
|
||||
|
||||
def run_graph(
|
||||
query: str,
|
||||
llm: LLM,
|
||||
tools: list[Tool],
|
||||
) -> AnswerStream:
|
||||
graph = build_core_graph()
|
||||
|
||||
inputs = {
|
||||
"original_query": query,
|
||||
"messages": [],
|
||||
"tools": tools,
|
||||
"llm": llm,
|
||||
}
|
||||
compiled_graph = graph.compile()
|
||||
output = compiled_graph.invoke(input=inputs)
|
||||
yield from output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
# run_graph("What is the capital of France?", llm, [])
|
||||
@@ -1,12 +0,0 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Pydantic models for structured outputs
|
||||
class RewrittenQueries(BaseModel):
|
||||
rewritten_queries: list[str]
|
||||
|
||||
|
||||
class BinaryDecision(BaseModel):
|
||||
decision: Literal["yes", "no"]
|
||||
@@ -1,9 +0,0 @@
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.llm.answering.prune_and_merge import _merge_sections
|
||||
|
||||
|
||||
def dedup_inference_sections(
|
||||
list1: list[InferenceSection], list2: list[InferenceSection]
|
||||
) -> list[InferenceSection]:
|
||||
deduped = _merge_sections(list1 + list2)
|
||||
return deduped
|
||||
@@ -1,427 +0,0 @@
|
||||
REWRITE_PROMPT_MULTI_ORIGINAL = """ \n
|
||||
Please convert an initial user question into a 2-3 more appropriate short and pointed search queries for retrievel from a
|
||||
document store. Particularly, try to think about resolving ambiguities and make the search queries more specific,
|
||||
enabling the system to search more broadly.
|
||||
Also, try to make the search queries not redundant, i.e. not too similar! \n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Formulate the queries separated by '--' (Do not say 'Query 1: ...', just write the querytext): """
|
||||
|
||||
REWRITE_PROMPT_MULTI = """ \n
|
||||
Please create a list of 2-3 sample documents that could answer an original question. Each document
|
||||
should be about as long as the original question. \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Formulate the sample documents separated by '--' (Do not say 'Document 1: ...', just write the text): """
|
||||
|
||||
BASE_RAG_PROMPT = """ \n
|
||||
You are an assistant for question-answering tasks. Use the context provided below - and only the
|
||||
provided context - to answer the question. If you don't know the answer or if the provided context is
|
||||
empty, just say "I don't know". Do not use your internal knowledge!
|
||||
|
||||
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
|
||||
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
|
||||
use your internal knowledge, just the provided information!
|
||||
|
||||
Use three sentences maximum and keep the answer concise.
|
||||
answer concise.\nQuestion:\n {question} \nContext:\n {context} \n\n
|
||||
\n\n
|
||||
Answer:"""
|
||||
|
||||
BASE_CHECK_PROMPT = """ \n
|
||||
Please check whether 1) the suggested answer seems to fully address the original question AND 2)the
|
||||
original question requests a simple, factual answer, and there are no ambiguities, judgements,
|
||||
aggregations, or any other complications that may require extra context. (I.e., if the question is
|
||||
somewhat addressed, but the answer would benefit from more context, then answer with 'no'.)
|
||||
|
||||
Please only answer with 'yes' or 'no' \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Here is the proposed answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
Please answer with yes or no:"""
|
||||
|
||||
VERIFIER_PROMPT = """ \n
|
||||
Please check whether the document seems to be relevant for the answer of the question. Please
|
||||
only answer with 'yes' or 'no' \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Here is the document text:
|
||||
\n ------- \n
|
||||
{document_content}
|
||||
\n ------- \n
|
||||
Please answer with yes or no:"""
|
||||
|
||||
INITIAL_DECOMPOSITION_PROMPT_BASIC = """ \n
|
||||
Please decompose an initial user question into not more than 4 appropriate sub-questions that help to
|
||||
answer the original question. The purpose for this decomposition is to isolate individulal entities
|
||||
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
|
||||
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
|
||||
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
|
||||
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
|
||||
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Please formulate your answer as a list of subquestions:
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
REWRITE_PROMPT_SINGLE = """ \n
|
||||
Please convert an initial user question into a more appropriate search query for retrievel from a
|
||||
document store. \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Formulate the query: """
|
||||
|
||||
MODIFIED_RAG_PROMPT = """You are an assistant for question-answering tasks. Use the context provided below
|
||||
- and only this context - to answer the question. If you don't know the answer, just say "I don't know".
|
||||
Use three sentences maximum and keep the answer concise.
|
||||
Pay also particular attention to the sub-questions and their answers, at least it may enrich the answer.
|
||||
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
|
||||
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
|
||||
use your internal knowledge, just the provided information!
|
||||
|
||||
\nQuestion: {question}
|
||||
\nContext: {combined_context} \n
|
||||
|
||||
Answer:"""
|
||||
|
||||
ORIG_DEEP_DECOMPOSE_PROMPT = """ \n
|
||||
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
|
||||
good enough. Also, some sub-questions had been answered and this information has been used to provide
|
||||
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
|
||||
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
|
||||
you have an idea of how the avaiolable data looks like.
|
||||
|
||||
Your role is to generate 3-5 new sub-questions that would help to answer the initial question,
|
||||
considering:
|
||||
|
||||
1) The initial question
|
||||
2) The initial answer that was found to be unsatisfactory
|
||||
3) The sub-questions that were answered
|
||||
4) The sub-questions that were suggested but not answered
|
||||
5) The entities, relationships and terms that were extracted from the context
|
||||
|
||||
The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question, but in a way that does
|
||||
not duplicate questions that were already tried.
|
||||
|
||||
Additional Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
resolve ambiguities, or address shortcoming of the initial answer
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
|
||||
generate a list of dictionaries with the following format:
|
||||
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
|
||||
sub-question using as a search phrase for the document store>}}, ...]
|
||||
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Here is the initial sub-optimal answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were answered:
|
||||
\n ------- \n
|
||||
{answered_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were suggested but not answered:
|
||||
\n ------- \n
|
||||
{failed_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Again, please find questions that are NOT overlapping too much with the already answered
|
||||
sub-questions or those that already were suggested and failed.
|
||||
In other words - what can we try in addition to what has been tried so far?
|
||||
|
||||
Please think through it step by step and then generate the list of json dictionaries with the following
|
||||
format:
|
||||
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"explanation": <explanation>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
DEEP_DECOMPOSE_PROMPT = """ \n
|
||||
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
|
||||
good enough. Also, some sub-questions had been answered and this information has been used to provide
|
||||
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
|
||||
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
|
||||
you have an idea of how the avaiolable data looks like.
|
||||
|
||||
Your role is to generate 4-6 new sub-questions that would help to answer the initial question,
|
||||
considering:
|
||||
|
||||
1) The initial question
|
||||
2) The initial answer that was found to be unsatisfactory
|
||||
3) The sub-questions that were answered
|
||||
4) The sub-questions that were suggested but not answered
|
||||
5) The entities, relationships and terms that were extracted from the context
|
||||
|
||||
The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question, but in a way that does
|
||||
not duplicate questions that were already tried.
|
||||
|
||||
Additional Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
resolve ambiguities, or address shortcoming of the initial answer
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please also provide a search term that can be used to retrieve relevant
|
||||
documents from a document store.
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Here is the initial sub-optimal answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were answered:
|
||||
\n ------- \n
|
||||
{answered_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were suggested but not answered:
|
||||
\n ------- \n
|
||||
{failed_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Again, please find questions that are NOT overlapping too much with the already answered
|
||||
sub-questions or those that already were suggested and failed.
|
||||
In other words - what can we try in addition to what has been tried so far?
|
||||
|
||||
Generate the list of json dictionaries with the following format:
|
||||
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
DECOMPOSE_PROMPT = """ \n
|
||||
For an initial user question, please generate at 5-10 individual sub-questions whose answers would help
|
||||
\n to answer the initial question. The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to \n use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question.
|
||||
|
||||
In order to arrive at meaningful sub-questions, please also consider the context retrieved from the
|
||||
document store, expressed as entities, relationships and terms. You can also think about the types
|
||||
mentioned in brackets
|
||||
|
||||
Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
and or resolve ambiguities
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
|
||||
generate a list of dictionaries with the following format:
|
||||
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
|
||||
sub-question using as a search phrase for the document store>}}, ...]
|
||||
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Don't be too specific unless the original question is specific.
|
||||
Please think through it step by step and then generate the list of json dictionaries with the following
|
||||
format:
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"explanation": <explanation>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
#### Consolidations
|
||||
COMBINED_CONTEXT = """-------
|
||||
Below you will find useful information to answer the original question. First, you see a number of
|
||||
sub-questions with their answers. This information should be considered to be more focussed and
|
||||
somewhat more specific to the original question as it tries to contextualized facts.
|
||||
After that will see the documents that were considered to be relevant to answer the original question.
|
||||
|
||||
Here are the sub-questions and their answers:
|
||||
\n\n {deep_answer_context} \n\n
|
||||
\n\n Here are the documents that were considered to be relevant to answer the original question:
|
||||
\n\n {formated_docs} \n\n
|
||||
----------------
|
||||
"""
|
||||
|
||||
SUB_QUESTION_EXPLANATION_RANKER_PROMPT = """-------
|
||||
Below you will find a question that we ultimately want to answer (the original question) and a list of
|
||||
motivations in arbitrary order for generated sub-questions that are supposed to help us answering the
|
||||
original question. The motivations are formatted as <motivation number>: <motivation explanation>.
|
||||
(Again, the numbering is arbitrary and does not necessarily mean that 1 is the most relevant
|
||||
motivation and 2 is less relevant.)
|
||||
|
||||
Please rank the motivations in order of relevance for answering the original question. Also, try to
|
||||
ensure that the top questions do not duplicate too much, i.e. that they are not too similar.
|
||||
Ultimately, create a list with the motivation numbers where the number of the most relevant
|
||||
motivations comes first.
|
||||
|
||||
Here is the original question:
|
||||
\n\n {original_question} \n\n
|
||||
\n\n Here is the list of sub-question motivations:
|
||||
\n\n {sub_question_explanations} \n\n
|
||||
----------------
|
||||
|
||||
Please think step by step and then generate the ranked list of motivations.
|
||||
|
||||
Please format your answer as a json object in the following format:
|
||||
{{"reasonning": <explain your reasoning for the ranking>,
|
||||
"ranked_motivations": <ranked list of motivation numbers>}}
|
||||
"""
|
||||
|
||||
|
||||
INITIAL_DECOMPOSITION_PROMPT = """ \n
|
||||
Please decompose an initial user question into 2 or 3 appropriate sub-questions that help to
|
||||
answer the original question. The purpose for this decomposition is to isolate individulal entities
|
||||
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
|
||||
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
|
||||
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
|
||||
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
|
||||
|
||||
For each sub-question, please also create one search term that can be used to retrieve relevant
|
||||
documents from a document store.
|
||||
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Please formulate your answer as a list of json objects with the following format:
|
||||
|
||||
[{{"sub_question": <sub-question>, "search_term": <search term>}}, ...]
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
INITIAL_RAG_PROMPT = """ \n
|
||||
You are an assistant for question-answering tasks. Use the information provided below - and only the
|
||||
provided information - to answer the provided question.
|
||||
|
||||
The information provided below consists of:
|
||||
1) a number of answered sub-questions - these are very important(!) and definitely should be
|
||||
considered to answer the question.
|
||||
2) a number of documents that were also deemed relevant for the question.
|
||||
|
||||
If you don't know the answer or if the provided information is empty or insufficient, just say
|
||||
"I don't know". Do not use your internal knowledge!
|
||||
|
||||
Again, only use the provided informationand do not use your internal knowledge! It is a matter of life
|
||||
and death that you do NOT use your internal knowledge, just the provided information!
|
||||
|
||||
Try to keep your answer concise.
|
||||
|
||||
And here is the question and the provided information:
|
||||
\n
|
||||
\nQuestion:\n {question}
|
||||
|
||||
\nAnswered Sub-questions:\n {answered_sub_questions}
|
||||
|
||||
\nContext:\n {context} \n\n
|
||||
\n\n
|
||||
|
||||
Answer:"""
|
||||
|
||||
ENTITY_TERM_PROMPT = """ \n
|
||||
Based on the original question and the context retieved from a dataset, please generate a list of
|
||||
entities (e.g. companies, organizations, industries, products, locations, etc.), terms and concepts
|
||||
(e.g. sales, revenue, etc.) that are relevant for the question, plus their relations to each other.
|
||||
|
||||
\n\n
|
||||
Here is the original question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
And here is the context retrieved:
|
||||
\n ------- \n
|
||||
{context}
|
||||
\n ------- \n
|
||||
|
||||
Please format your answer as a json object in the following format:
|
||||
|
||||
{{"retrieved_entities_relationships": {{
|
||||
"entities": [{{
|
||||
"entity_name": <assign a name for the entity>,
|
||||
"entity_type": <specify a short type name for the entity, such as 'company', 'location',...>
|
||||
}}],
|
||||
"relationships": [{{
|
||||
"name": <assign a name for the relationship>,
|
||||
"type": <specify a short type name for the relationship, such as 'sales_to', 'is_location_of',...>,
|
||||
"entities": [<related entity name 1>, <related entity name 2>]
|
||||
}}],
|
||||
"terms": [{{
|
||||
"term_name": <assign a name for the term>,
|
||||
"term_type": <specify a short type name for the term, such as 'revenue', 'market_share',...>,
|
||||
"similar_to": <list terms that are similar to this term>
|
||||
}}]
|
||||
}}
|
||||
}}
|
||||
"""
|
||||
@@ -1,101 +0,0 @@
|
||||
import ast
|
||||
import json
|
||||
import re
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from typing import Any
|
||||
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def normalize_whitespace(text: str) -> str:
|
||||
"""Normalize whitespace in text to single spaces and strip leading/trailing whitespace."""
|
||||
import re
|
||||
|
||||
return re.sub(r"\s+", " ", text.strip())
|
||||
|
||||
|
||||
# Post-processing
|
||||
def format_docs(docs: Sequence[InferenceSection]) -> str:
|
||||
return "\n\n".join(doc.combined_content for doc in docs)
|
||||
|
||||
|
||||
def clean_and_parse_list_string(json_string: str) -> list[dict]:
|
||||
# Remove any prefixes/labels before the actual JSON content
|
||||
json_string = re.sub(r"^.*?(?=\[)", "", json_string, flags=re.DOTALL)
|
||||
|
||||
# Remove markdown code block markers and any newline prefixes
|
||||
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
|
||||
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
|
||||
cleaned_string = " ".join(cleaned_string.split())
|
||||
|
||||
# Try parsing with json.loads first, fall back to ast.literal_eval
|
||||
try:
|
||||
return json.loads(cleaned_string)
|
||||
except json.JSONDecodeError:
|
||||
try:
|
||||
return ast.literal_eval(cleaned_string)
|
||||
except (ValueError, SyntaxError) as e:
|
||||
raise ValueError(f"Failed to parse JSON string: {cleaned_string}") from e
|
||||
|
||||
|
||||
def clean_and_parse_json_string(json_string: str) -> dict[str, Any]:
|
||||
# Remove markdown code block markers and any newline prefixes
|
||||
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
|
||||
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
|
||||
cleaned_string = " ".join(cleaned_string.split())
|
||||
# Parse the cleaned string into a Python dictionary
|
||||
return json.loads(cleaned_string)
|
||||
|
||||
|
||||
def format_entity_term_extraction(entity_term_extraction_dict: dict[str, Any]) -> str:
|
||||
entities = entity_term_extraction_dict["entities"]
|
||||
terms = entity_term_extraction_dict["terms"]
|
||||
relationships = entity_term_extraction_dict["relationships"]
|
||||
|
||||
entity_strs = ["\nEntities:\n"]
|
||||
for entity in entities:
|
||||
entity_str = f"{entity['entity_name']} ({entity['entity_type']})"
|
||||
entity_strs.append(entity_str)
|
||||
|
||||
entity_str = "\n - ".join(entity_strs)
|
||||
|
||||
relationship_strs = ["\n\nRelationships:\n"]
|
||||
for relationship in relationships:
|
||||
relationship_str = f"{relationship['name']} ({relationship['type']}): {relationship['entities']}"
|
||||
relationship_strs.append(relationship_str)
|
||||
|
||||
relationship_str = "\n - ".join(relationship_strs)
|
||||
|
||||
term_strs = ["\n\nTerms:\n"]
|
||||
for term in terms:
|
||||
term_str = f"{term['term_name']} ({term['term_type']}): similar to {term['similar_to']}"
|
||||
term_strs.append(term_str)
|
||||
|
||||
term_str = "\n - ".join(term_strs)
|
||||
|
||||
return "\n".join(entity_strs + relationship_strs + term_strs)
|
||||
|
||||
|
||||
def _format_time_delta(time: timedelta) -> str:
|
||||
seconds_from_start = f"{((time).seconds):03d}"
|
||||
microseconds_from_start = f"{((time).microseconds):06d}"
|
||||
return f"{seconds_from_start}.{microseconds_from_start}"
|
||||
|
||||
|
||||
def generate_log_message(
|
||||
message: str,
|
||||
node_start_time: datetime,
|
||||
graph_start_time: datetime | None = None,
|
||||
) -> str:
|
||||
current_time = datetime.now()
|
||||
|
||||
if graph_start_time is not None:
|
||||
graph_time_str = _format_time_delta(current_time - graph_start_time)
|
||||
else:
|
||||
graph_time_str = "N/A"
|
||||
|
||||
node_time_str = _format_time_delta(current_time - node_start_time)
|
||||
|
||||
return f"{graph_time_str} ({node_time_str} s): {message}"
|
||||
@@ -1,25 +0,0 @@
|
||||
# These are helper objects for tracking the keys we need to write in redis
|
||||
from typing import cast
|
||||
|
||||
from redis import Redis
|
||||
|
||||
from danswer.background.celery.configs.base import CELERY_SEPARATOR
|
||||
from danswer.configs.constants import DanswerCeleryPriority
|
||||
|
||||
|
||||
def celery_get_queue_length(queue: str, r: Redis) -> int:
|
||||
"""This is a redis specific way to get the length of a celery queue.
|
||||
It is priority aware and knows how to count across the multiple redis lists
|
||||
used to implement task prioritization.
|
||||
This operation is not atomic."""
|
||||
total_length = 0
|
||||
for i in range(len(DanswerCeleryPriority)):
|
||||
queue_name = queue
|
||||
if i > 0:
|
||||
queue_name += CELERY_SEPARATOR
|
||||
queue_name += str(i)
|
||||
|
||||
length = r.llen(queue_name)
|
||||
total_length += cast(int, length)
|
||||
|
||||
return total_length
|
||||
@@ -1,61 +0,0 @@
|
||||
from datetime import timedelta
|
||||
from typing import Any
|
||||
|
||||
from danswer.configs.constants import DanswerCeleryPriority
|
||||
from danswer.configs.constants import DanswerCeleryTask
|
||||
|
||||
|
||||
tasks_to_schedule = [
|
||||
{
|
||||
"name": "check-for-vespa-sync",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
|
||||
"schedule": timedelta(seconds=20),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "check-for-connector-deletion",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
|
||||
"schedule": timedelta(seconds=20),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "check-for-indexing",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_INDEXING,
|
||||
"schedule": timedelta(seconds=15),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "check-for-prune",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_PRUNING,
|
||||
"schedule": timedelta(seconds=15),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "kombu-message-cleanup",
|
||||
"task": DanswerCeleryTask.KOMBU_MESSAGE_CLEANUP_TASK,
|
||||
"schedule": timedelta(seconds=3600),
|
||||
"options": {"priority": DanswerCeleryPriority.LOWEST},
|
||||
},
|
||||
{
|
||||
"name": "monitor-vespa-sync",
|
||||
"task": DanswerCeleryTask.MONITOR_VESPA_SYNC,
|
||||
"schedule": timedelta(seconds=5),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "check-for-doc-permissions-sync",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
|
||||
"schedule": timedelta(seconds=30),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
{
|
||||
"name": "check-for-external-group-sync",
|
||||
"task": DanswerCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
|
||||
"schedule": timedelta(seconds=20),
|
||||
"options": {"priority": DanswerCeleryPriority.HIGH},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def get_tasks_to_schedule() -> list[dict[str, Any]]:
|
||||
return tasks_to_schedule
|
||||
@@ -1,10 +0,0 @@
|
||||
"""Factory stub for running celery worker / celery beat."""
|
||||
from celery import Celery
|
||||
|
||||
from danswer.utils.variable_functionality import fetch_versioned_implementation
|
||||
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
|
||||
|
||||
set_is_ee_based_on_env_variable()
|
||||
app: Celery = fetch_versioned_implementation(
|
||||
"danswer.background.celery.apps.primary", "celery_app"
|
||||
)
|
||||
@@ -1,107 +0,0 @@
|
||||
import json
|
||||
from typing import cast
|
||||
|
||||
from google.auth.transport.requests import Request # type: ignore
|
||||
from google.oauth2.credentials import Credentials as OAuthCredentials # type: ignore
|
||||
from google.oauth2.service_account import Credentials as ServiceAccountCredentials # type: ignore
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.connectors.google_utils.shared_constants import (
|
||||
DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY,
|
||||
)
|
||||
from danswer.connectors.google_utils.shared_constants import (
|
||||
DB_CREDENTIALS_DICT_TOKEN_KEY,
|
||||
)
|
||||
from danswer.connectors.google_utils.shared_constants import (
|
||||
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
|
||||
)
|
||||
from danswer.connectors.google_utils.shared_constants import (
|
||||
GOOGLE_SCOPES,
|
||||
)
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def get_google_oauth_creds(
|
||||
token_json_str: str, source: DocumentSource
|
||||
) -> OAuthCredentials | None:
|
||||
creds_json = json.loads(token_json_str)
|
||||
creds = OAuthCredentials.from_authorized_user_info(
|
||||
info=creds_json,
|
||||
scopes=GOOGLE_SCOPES[source],
|
||||
)
|
||||
if creds.valid:
|
||||
return creds
|
||||
|
||||
if creds.expired and creds.refresh_token:
|
||||
try:
|
||||
creds.refresh(Request())
|
||||
if creds.valid:
|
||||
logger.notice("Refreshed Google Drive tokens.")
|
||||
return creds
|
||||
except Exception:
|
||||
logger.exception("Failed to refresh google drive access token due to:")
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_google_creds(
|
||||
credentials: dict[str, str],
|
||||
source: DocumentSource,
|
||||
) -> tuple[ServiceAccountCredentials | OAuthCredentials, dict[str, str] | None]:
|
||||
"""Checks for two different types of credentials.
|
||||
(1) A credential which holds a token acquired via a user going thorough
|
||||
the Google OAuth flow.
|
||||
(2) A credential which holds a service account key JSON file, which
|
||||
can then be used to impersonate any user in the workspace.
|
||||
"""
|
||||
oauth_creds = None
|
||||
service_creds = None
|
||||
new_creds_dict = None
|
||||
if DB_CREDENTIALS_DICT_TOKEN_KEY in credentials:
|
||||
# OAUTH
|
||||
access_token_json_str = cast(str, credentials[DB_CREDENTIALS_DICT_TOKEN_KEY])
|
||||
oauth_creds = get_google_oauth_creds(
|
||||
token_json_str=access_token_json_str, source=source
|
||||
)
|
||||
|
||||
# tell caller to update token stored in DB if it has changed
|
||||
# (e.g. the token has been refreshed)
|
||||
new_creds_json_str = oauth_creds.to_json() if oauth_creds else ""
|
||||
if new_creds_json_str != access_token_json_str:
|
||||
new_creds_dict = {
|
||||
DB_CREDENTIALS_DICT_TOKEN_KEY: new_creds_json_str,
|
||||
DB_CREDENTIALS_PRIMARY_ADMIN_KEY: credentials[
|
||||
DB_CREDENTIALS_PRIMARY_ADMIN_KEY
|
||||
],
|
||||
}
|
||||
elif DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY in credentials:
|
||||
# SERVICE ACCOUNT
|
||||
service_account_key_json_str = credentials[
|
||||
DB_CREDENTIALS_DICT_SERVICE_ACCOUNT_KEY
|
||||
]
|
||||
service_account_key = json.loads(service_account_key_json_str)
|
||||
|
||||
service_creds = ServiceAccountCredentials.from_service_account_info(
|
||||
service_account_key, scopes=GOOGLE_SCOPES[source]
|
||||
)
|
||||
|
||||
if not service_creds.valid or not service_creds.expired:
|
||||
service_creds.refresh(Request())
|
||||
|
||||
if not service_creds.valid:
|
||||
raise PermissionError(
|
||||
f"Unable to access {source} - service account credentials are invalid."
|
||||
)
|
||||
|
||||
creds: ServiceAccountCredentials | OAuthCredentials | None = (
|
||||
oauth_creds or service_creds
|
||||
)
|
||||
if creds is None:
|
||||
raise PermissionError(
|
||||
f"Unable to access {source} - unknown credential structure."
|
||||
)
|
||||
|
||||
return creds, new_creds_dict
|
||||
@@ -1,140 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from datetime import datetime
|
||||
from datetime import timezone
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from danswer.configs.app_configs import INDEX_BATCH_SIZE
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.connectors.interfaces import GenerateDocumentsOutput
|
||||
from danswer.connectors.interfaces import LoadConnector
|
||||
from danswer.connectors.models import Document
|
||||
from danswer.connectors.models import Section
|
||||
from danswer.connectors.slack.connector import filter_channels
|
||||
from danswer.connectors.slack.utils import get_message_link
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def get_event_time(event: dict[str, Any]) -> datetime | None:
|
||||
ts = event.get("ts")
|
||||
if not ts:
|
||||
return None
|
||||
return datetime.fromtimestamp(float(ts), tz=timezone.utc)
|
||||
|
||||
|
||||
class SlackLoadConnector(LoadConnector):
|
||||
# WARNING: DEPRECATED, DO NOT USE
|
||||
def __init__(
|
||||
self,
|
||||
workspace: str,
|
||||
export_path_str: str,
|
||||
channels: list[str] | None = None,
|
||||
# if specified, will treat the specified channel strings as
|
||||
# regexes, and will only index channels that fully match the regexes
|
||||
channel_regex_enabled: bool = False,
|
||||
batch_size: int = INDEX_BATCH_SIZE,
|
||||
) -> None:
|
||||
self.workspace = workspace
|
||||
self.channels = channels
|
||||
self.channel_regex_enabled = channel_regex_enabled
|
||||
self.export_path_str = export_path_str
|
||||
self.batch_size = batch_size
|
||||
|
||||
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
|
||||
if credentials:
|
||||
logger.warning("Unexpected credentials provided for Slack Load Connector")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def _process_batch_event(
|
||||
slack_event: dict[str, Any],
|
||||
channel: dict[str, Any],
|
||||
matching_doc: Document | None,
|
||||
workspace: str,
|
||||
) -> Document | None:
|
||||
if (
|
||||
slack_event["type"] == "message"
|
||||
and slack_event.get("subtype") != "channel_join"
|
||||
):
|
||||
if matching_doc:
|
||||
return Document(
|
||||
id=matching_doc.id,
|
||||
sections=matching_doc.sections
|
||||
+ [
|
||||
Section(
|
||||
link=get_message_link(
|
||||
event=slack_event,
|
||||
workspace=workspace,
|
||||
channel_id=channel["id"],
|
||||
),
|
||||
text=slack_event["text"],
|
||||
)
|
||||
],
|
||||
source=matching_doc.source,
|
||||
semantic_identifier=matching_doc.semantic_identifier,
|
||||
title="", # slack docs don't really have a "title"
|
||||
doc_updated_at=get_event_time(slack_event),
|
||||
metadata=matching_doc.metadata,
|
||||
)
|
||||
|
||||
return Document(
|
||||
id=slack_event["ts"],
|
||||
sections=[
|
||||
Section(
|
||||
link=get_message_link(
|
||||
event=slack_event,
|
||||
workspace=workspace,
|
||||
channel_id=channel["id"],
|
||||
),
|
||||
text=slack_event["text"],
|
||||
)
|
||||
],
|
||||
source=DocumentSource.SLACK,
|
||||
semantic_identifier=channel["name"],
|
||||
title="", # slack docs don't really have a "title"
|
||||
doc_updated_at=get_event_time(slack_event),
|
||||
metadata={},
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
def load_from_state(self) -> GenerateDocumentsOutput:
|
||||
export_path = Path(self.export_path_str)
|
||||
|
||||
with open(export_path / "channels.json") as f:
|
||||
all_channels = json.load(f)
|
||||
|
||||
filtered_channels = filter_channels(
|
||||
all_channels, self.channels, self.channel_regex_enabled
|
||||
)
|
||||
|
||||
document_batch: dict[str, Document] = {}
|
||||
for channel_info in filtered_channels:
|
||||
channel_dir_path = export_path / cast(str, channel_info["name"])
|
||||
channel_file_paths = [
|
||||
channel_dir_path / file_name
|
||||
for file_name in os.listdir(channel_dir_path)
|
||||
]
|
||||
for path in channel_file_paths:
|
||||
with open(path) as f:
|
||||
events = cast(list[dict[str, Any]], json.load(f))
|
||||
for slack_event in events:
|
||||
doc = self._process_batch_event(
|
||||
slack_event=slack_event,
|
||||
channel=channel_info,
|
||||
matching_doc=document_batch.get(
|
||||
slack_event.get("thread_ts", "")
|
||||
),
|
||||
workspace=self.workspace,
|
||||
)
|
||||
if doc:
|
||||
document_batch[doc.id] = doc
|
||||
if len(document_batch) >= self.batch_size:
|
||||
yield list(document_batch.values())
|
||||
|
||||
yield list(document_batch.values())
|
||||
@@ -1,58 +0,0 @@
|
||||
from danswer.configs.constants import DocumentSource
|
||||
|
||||
|
||||
def source_to_github_img_link(source: DocumentSource) -> str | None:
|
||||
# TODO: store these images somewhere better
|
||||
if source == DocumentSource.WEB.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Web.png"
|
||||
if source == DocumentSource.FILE.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
|
||||
if source == DocumentSource.GOOGLE_SITES.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/GoogleSites.png"
|
||||
if source == DocumentSource.SLACK.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Slack.png"
|
||||
if source == DocumentSource.GMAIL.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gmail.png"
|
||||
if source == DocumentSource.GOOGLE_DRIVE.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/GoogleDrive.png"
|
||||
if source == DocumentSource.GITHUB.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Github.png"
|
||||
if source == DocumentSource.GITLAB.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gitlab.png"
|
||||
if source == DocumentSource.CONFLUENCE.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Confluence.png"
|
||||
if source == DocumentSource.JIRA.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Jira.png"
|
||||
if source == DocumentSource.NOTION.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Notion.png"
|
||||
if source == DocumentSource.ZENDESK.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Zendesk.png"
|
||||
if source == DocumentSource.GONG.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Gong.png"
|
||||
if source == DocumentSource.LINEAR.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Linear.png"
|
||||
if source == DocumentSource.PRODUCTBOARD.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Productboard.webp"
|
||||
if source == DocumentSource.SLAB.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/SlabLogo.png"
|
||||
if source == DocumentSource.ZULIP.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Zulip.png"
|
||||
if source == DocumentSource.GURU.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/Guru.png"
|
||||
if source == DocumentSource.HUBSPOT.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/HubSpot.png"
|
||||
if source == DocumentSource.DOCUMENT360.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Document360.png"
|
||||
if source == DocumentSource.BOOKSTACK.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Bookstack.png"
|
||||
if source == DocumentSource.LOOPIO.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Loopio.png"
|
||||
if source == DocumentSource.SHAREPOINT.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/web/public/Sharepoint.png"
|
||||
if source == DocumentSource.REQUESTTRACKER.value:
|
||||
# just use file icon for now
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
|
||||
if source == DocumentSource.INGESTION_API.value:
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
|
||||
|
||||
return "https://raw.githubusercontent.com/danswer-ai/danswer/main/backend/slackbot_images/File.png"
|
||||
@@ -1,202 +0,0 @@
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import HTTPException
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.db.models import InputPrompt
|
||||
from danswer.db.models import User
|
||||
from danswer.server.features.input_prompt.models import InputPromptSnapshot
|
||||
from danswer.server.manage.models import UserInfo
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def insert_input_prompt_if_not_exists(
|
||||
user: User | None,
|
||||
input_prompt_id: int | None,
|
||||
prompt: str,
|
||||
content: str,
|
||||
active: bool,
|
||||
is_public: bool,
|
||||
db_session: Session,
|
||||
commit: bool = True,
|
||||
) -> InputPrompt:
|
||||
if input_prompt_id is not None:
|
||||
input_prompt = (
|
||||
db_session.query(InputPrompt).filter_by(id=input_prompt_id).first()
|
||||
)
|
||||
else:
|
||||
query = db_session.query(InputPrompt).filter(InputPrompt.prompt == prompt)
|
||||
if user:
|
||||
query = query.filter(InputPrompt.user_id == user.id)
|
||||
else:
|
||||
query = query.filter(InputPrompt.user_id.is_(None))
|
||||
input_prompt = query.first()
|
||||
|
||||
if input_prompt is None:
|
||||
input_prompt = InputPrompt(
|
||||
id=input_prompt_id,
|
||||
prompt=prompt,
|
||||
content=content,
|
||||
active=active,
|
||||
is_public=is_public or user is None,
|
||||
user_id=user.id if user else None,
|
||||
)
|
||||
db_session.add(input_prompt)
|
||||
|
||||
if commit:
|
||||
db_session.commit()
|
||||
|
||||
return input_prompt
|
||||
|
||||
|
||||
def insert_input_prompt(
|
||||
prompt: str,
|
||||
content: str,
|
||||
is_public: bool,
|
||||
user: User | None,
|
||||
db_session: Session,
|
||||
) -> InputPrompt:
|
||||
input_prompt = InputPrompt(
|
||||
prompt=prompt,
|
||||
content=content,
|
||||
active=True,
|
||||
is_public=is_public or user is None,
|
||||
user_id=user.id if user is not None else None,
|
||||
)
|
||||
db_session.add(input_prompt)
|
||||
db_session.commit()
|
||||
|
||||
return input_prompt
|
||||
|
||||
|
||||
def update_input_prompt(
|
||||
user: User | None,
|
||||
input_prompt_id: int,
|
||||
prompt: str,
|
||||
content: str,
|
||||
active: bool,
|
||||
db_session: Session,
|
||||
) -> InputPrompt:
|
||||
input_prompt = db_session.scalar(
|
||||
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
|
||||
)
|
||||
if input_prompt is None:
|
||||
raise ValueError(f"No input prompt with id {input_prompt_id}")
|
||||
|
||||
if not validate_user_prompt_authorization(user, input_prompt):
|
||||
raise HTTPException(status_code=401, detail="You don't own this prompt")
|
||||
|
||||
input_prompt.prompt = prompt
|
||||
input_prompt.content = content
|
||||
input_prompt.active = active
|
||||
|
||||
db_session.commit()
|
||||
return input_prompt
|
||||
|
||||
|
||||
def validate_user_prompt_authorization(
|
||||
user: User | None, input_prompt: InputPrompt
|
||||
) -> bool:
|
||||
prompt = InputPromptSnapshot.from_model(input_prompt=input_prompt)
|
||||
|
||||
if prompt.user_id is not None:
|
||||
if user is None:
|
||||
return False
|
||||
|
||||
user_details = UserInfo.from_model(user)
|
||||
if str(user_details.id) != str(prompt.user_id):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def remove_public_input_prompt(input_prompt_id: int, db_session: Session) -> None:
|
||||
input_prompt = db_session.scalar(
|
||||
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
|
||||
)
|
||||
|
||||
if input_prompt is None:
|
||||
raise ValueError(f"No input prompt with id {input_prompt_id}")
|
||||
|
||||
if not input_prompt.is_public:
|
||||
raise HTTPException(status_code=400, detail="This prompt is not public")
|
||||
|
||||
db_session.delete(input_prompt)
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def remove_input_prompt(
|
||||
user: User | None, input_prompt_id: int, db_session: Session
|
||||
) -> None:
|
||||
input_prompt = db_session.scalar(
|
||||
select(InputPrompt).where(InputPrompt.id == input_prompt_id)
|
||||
)
|
||||
if input_prompt is None:
|
||||
raise ValueError(f"No input prompt with id {input_prompt_id}")
|
||||
|
||||
if input_prompt.is_public:
|
||||
raise HTTPException(
|
||||
status_code=400, detail="Cannot delete public prompts with this method"
|
||||
)
|
||||
|
||||
if not validate_user_prompt_authorization(user, input_prompt):
|
||||
raise HTTPException(status_code=401, detail="You do not own this prompt")
|
||||
|
||||
db_session.delete(input_prompt)
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def fetch_input_prompt_by_id(
|
||||
id: int, user_id: UUID | None, db_session: Session
|
||||
) -> InputPrompt:
|
||||
query = select(InputPrompt).where(InputPrompt.id == id)
|
||||
|
||||
if user_id:
|
||||
query = query.where(
|
||||
(InputPrompt.user_id == user_id) | (InputPrompt.user_id is None)
|
||||
)
|
||||
else:
|
||||
# If no user_id is provided, only fetch prompts without a user_id (aka public)
|
||||
query = query.where(InputPrompt.user_id == None) # noqa
|
||||
|
||||
result = db_session.scalar(query)
|
||||
|
||||
if result is None:
|
||||
raise HTTPException(422, "No input prompt found")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def fetch_public_input_prompts(
|
||||
db_session: Session,
|
||||
) -> list[InputPrompt]:
|
||||
query = select(InputPrompt).where(InputPrompt.is_public)
|
||||
return list(db_session.scalars(query).all())
|
||||
|
||||
|
||||
def fetch_input_prompts_by_user(
|
||||
db_session: Session,
|
||||
user_id: UUID | None,
|
||||
active: bool | None = None,
|
||||
include_public: bool = False,
|
||||
) -> list[InputPrompt]:
|
||||
query = select(InputPrompt)
|
||||
|
||||
if user_id is not None:
|
||||
if include_public:
|
||||
query = query.where(
|
||||
(InputPrompt.user_id == user_id) | InputPrompt.is_public
|
||||
)
|
||||
else:
|
||||
query = query.where(InputPrompt.user_id == user_id)
|
||||
|
||||
elif include_public:
|
||||
query = query.where(InputPrompt.is_public)
|
||||
|
||||
if active is not None:
|
||||
query = query.where(InputPrompt.active == active)
|
||||
|
||||
return list(db_session.scalars(query).all())
|
||||
@@ -1,85 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
from io import BytesIO
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
from uuid import uuid4
|
||||
|
||||
import requests
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.configs.constants import FileOrigin
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.models import ChatMessage
|
||||
from danswer.file_store.file_store import get_default_file_store
|
||||
from danswer.file_store.models import FileDescriptor
|
||||
from danswer.file_store.models import InMemoryChatFile
|
||||
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
|
||||
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
|
||||
|
||||
|
||||
def load_chat_file(
|
||||
file_descriptor: FileDescriptor, db_session: Session
|
||||
) -> InMemoryChatFile:
|
||||
file_io = get_default_file_store(db_session).read_file(
|
||||
file_descriptor["id"], mode="b"
|
||||
)
|
||||
return InMemoryChatFile(
|
||||
file_id=file_descriptor["id"],
|
||||
content=file_io.read(),
|
||||
file_type=file_descriptor["type"],
|
||||
filename=file_descriptor.get("name"),
|
||||
)
|
||||
|
||||
|
||||
def load_all_chat_files(
|
||||
chat_messages: list[ChatMessage],
|
||||
file_descriptors: list[FileDescriptor],
|
||||
db_session: Session,
|
||||
) -> list[InMemoryChatFile]:
|
||||
file_descriptors_for_history: list[FileDescriptor] = []
|
||||
for chat_message in chat_messages:
|
||||
if chat_message.files:
|
||||
file_descriptors_for_history.extend(chat_message.files)
|
||||
|
||||
files = cast(
|
||||
list[InMemoryChatFile],
|
||||
run_functions_tuples_in_parallel(
|
||||
[
|
||||
(load_chat_file, (file, db_session))
|
||||
for file in file_descriptors + file_descriptors_for_history
|
||||
]
|
||||
),
|
||||
)
|
||||
return files
|
||||
|
||||
|
||||
def save_file_from_url(url: str, tenant_id: str) -> str:
|
||||
"""NOTE: using multiple sessions here, since this is often called
|
||||
using multithreading. In practice, sharing a session has resulted in
|
||||
weird errors."""
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
response = requests.get(url)
|
||||
response.raise_for_status()
|
||||
|
||||
unique_id = str(uuid4())
|
||||
|
||||
file_io = BytesIO(response.content)
|
||||
file_store = get_default_file_store(db_session)
|
||||
file_store.save_file(
|
||||
file_name=unique_id,
|
||||
content=file_io,
|
||||
display_name="GeneratedImage",
|
||||
file_origin=FileOrigin.CHAT_IMAGE_GEN,
|
||||
file_type="image/png;base64",
|
||||
)
|
||||
return unique_id
|
||||
|
||||
|
||||
def save_files_from_urls(urls: list[str]) -> list[str]:
|
||||
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
|
||||
|
||||
funcs: list[tuple[Callable[..., Any], tuple[Any, ...]]] = [
|
||||
(save_file_from_url, (url, tenant_id)) for url in urls
|
||||
]
|
||||
# Must pass in tenant_id here, since this is called by multithreading
|
||||
return run_functions_tuples_in_parallel(funcs)
|
||||
@@ -1,163 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
from collections.abc import Iterator
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from langchain.schema.messages import AIMessage
|
||||
from langchain.schema.messages import BaseMessage
|
||||
from langchain.schema.messages import HumanMessage
|
||||
from langchain.schema.messages import SystemMessage
|
||||
from pydantic import BaseModel
|
||||
from pydantic import ConfigDict
|
||||
from pydantic import Field
|
||||
from pydantic import model_validator
|
||||
|
||||
from danswer.chat.models import AnswerQuestionStreamReturn
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.file_store.models import InMemoryChatFile
|
||||
from danswer.llm.override_models import PromptOverride
|
||||
from danswer.llm.utils import build_content_with_imgs
|
||||
from danswer.tools.models import ToolCallFinalResult
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from danswer.db.models import ChatMessage
|
||||
from danswer.db.models import Prompt
|
||||
|
||||
|
||||
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
|
||||
|
||||
|
||||
class PreviousMessage(BaseModel):
|
||||
"""Simplified version of `ChatMessage`"""
|
||||
|
||||
message: str
|
||||
token_count: int
|
||||
message_type: MessageType
|
||||
files: list[InMemoryChatFile]
|
||||
tool_call: ToolCallFinalResult | None
|
||||
|
||||
@classmethod
|
||||
def from_chat_message(
|
||||
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
|
||||
) -> "PreviousMessage":
|
||||
message_file_ids = (
|
||||
[file["id"] for file in chat_message.files] if chat_message.files else []
|
||||
)
|
||||
return cls(
|
||||
message=chat_message.message,
|
||||
token_count=chat_message.token_count,
|
||||
message_type=chat_message.message_type,
|
||||
files=[
|
||||
file
|
||||
for file in available_files
|
||||
if str(file.file_id) in message_file_ids
|
||||
],
|
||||
tool_call=ToolCallFinalResult(
|
||||
tool_name=chat_message.tool_call.tool_name,
|
||||
tool_args=chat_message.tool_call.tool_arguments,
|
||||
tool_result=chat_message.tool_call.tool_result,
|
||||
)
|
||||
if chat_message.tool_call
|
||||
else None,
|
||||
)
|
||||
|
||||
def to_langchain_msg(self) -> BaseMessage:
|
||||
content = build_content_with_imgs(self.message, self.files)
|
||||
if self.message_type == MessageType.USER:
|
||||
return HumanMessage(content=content)
|
||||
elif self.message_type == MessageType.ASSISTANT:
|
||||
return AIMessage(content=content)
|
||||
else:
|
||||
return SystemMessage(content=content)
|
||||
|
||||
|
||||
class DocumentPruningConfig(BaseModel):
|
||||
max_chunks: int | None = None
|
||||
max_window_percentage: float | None = None
|
||||
max_tokens: int | None = None
|
||||
# different pruning behavior is expected when the
|
||||
# user manually selects documents they want to chat with
|
||||
# e.g. we don't want to truncate each document to be no more
|
||||
# than one chunk long
|
||||
is_manually_selected_docs: bool = False
|
||||
# If user specifies to include additional context Chunks for each match, then different pruning
|
||||
# is used. As many Sections as possible are included, and the last Section is truncated
|
||||
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
|
||||
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
|
||||
use_sections: bool = True
|
||||
# If using tools, then we need to consider the tool length
|
||||
tool_num_tokens: int = 0
|
||||
# If using a tool message to represent the docs, then we have to JSON serialize
|
||||
# the document content, which adds to the token count.
|
||||
using_tool_message: bool = False
|
||||
|
||||
|
||||
class ContextualPruningConfig(DocumentPruningConfig):
|
||||
num_chunk_multiple: int
|
||||
|
||||
@classmethod
|
||||
def from_doc_pruning_config(
|
||||
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
|
||||
) -> "ContextualPruningConfig":
|
||||
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
|
||||
|
||||
|
||||
class CitationConfig(BaseModel):
|
||||
all_docs_useful: bool = False
|
||||
|
||||
|
||||
class QuotesConfig(BaseModel):
|
||||
pass
|
||||
|
||||
|
||||
class AnswerStyleConfig(BaseModel):
|
||||
citation_config: CitationConfig | None = None
|
||||
quotes_config: QuotesConfig | None = None
|
||||
document_pruning_config: DocumentPruningConfig = Field(
|
||||
default_factory=DocumentPruningConfig
|
||||
)
|
||||
# forces the LLM to return a structured response, see
|
||||
# https://platform.openai.com/docs/guides/structured-outputs/introduction
|
||||
# right now, only used by the simple chat API
|
||||
structured_response_format: dict | None = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
|
||||
if self.citation_config is None and self.quotes_config is None:
|
||||
raise ValueError(
|
||||
"One of `citation_config` or `quotes_config` must be provided"
|
||||
)
|
||||
|
||||
if self.citation_config is not None and self.quotes_config is not None:
|
||||
raise ValueError(
|
||||
"Only one of `citation_config` or `quotes_config` must be provided"
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
|
||||
class PromptConfig(BaseModel):
|
||||
"""Final representation of the Prompt configuration passed
|
||||
into the `Answer` object."""
|
||||
|
||||
system_prompt: str
|
||||
task_prompt: str
|
||||
datetime_aware: bool
|
||||
include_citations: bool
|
||||
|
||||
@classmethod
|
||||
def from_model(
|
||||
cls, model: "Prompt", prompt_override: PromptOverride | None = None
|
||||
) -> "PromptConfig":
|
||||
override_system_prompt = (
|
||||
prompt_override.system_prompt if prompt_override else None
|
||||
)
|
||||
override_task_prompt = prompt_override.task_prompt if prompt_override else None
|
||||
|
||||
return cls(
|
||||
system_prompt=override_system_prompt or model.system_prompt,
|
||||
task_prompt=override_task_prompt or model.task_prompt,
|
||||
datetime_aware=model.datetime_aware,
|
||||
include_citations=model.include_citations,
|
||||
)
|
||||
|
||||
model_config = ConfigDict(frozen=True)
|
||||
@@ -1,20 +0,0 @@
|
||||
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
|
||||
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
|
||||
|
||||
|
||||
def build_dummy_prompt(
|
||||
system_prompt: str, task_prompt: str, retrieval_disabled: bool
|
||||
) -> str:
|
||||
if retrieval_disabled:
|
||||
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
|
||||
user_query="<USER_QUERY>",
|
||||
system_prompt=system_prompt,
|
||||
task_prompt=task_prompt,
|
||||
).strip()
|
||||
|
||||
return PARAMATERIZED_PROMPT.format(
|
||||
context_docs_str="<CONTEXT_DOCS>",
|
||||
user_query="<USER_QUERY>",
|
||||
system_prompt=system_prompt,
|
||||
task_prompt=task_prompt,
|
||||
).strip()
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,44 +0,0 @@
|
||||
[
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/overview",
|
||||
"title": "Use Cases Overview",
|
||||
"content": "How to leverage Danswer in your organization\n\nDanswer Overview\nDanswer is the AI Assistant connected to your organization's docs, apps, and people. Danswer makes Generative AI more versatile for work by enabling new types of questions like \"What is the most common feature request we've heard from customers this month\". Whereas other AI systems have no context of your team and are generally unhelpful with work related questions, Danswer makes it possible to ask these questions in natural language and get back answers in seconds.\n\nDanswer can connect to +30 different tools and the use cases are not limited to the ones in the following pages. The highlighted use cases are for inspiration and come from feedback gathered from our users and customers.\n\n\nCommon Getting Started Questions:\n\nWhy are these docs connected in my Danswer deployment?\nAnswer: This is just an example of how connectors work in Danswer. You can connect up your own team's knowledge and you will be able to ask questions unique to your organization. Danswer will keep all of the knowledge up to date and in sync with your connected applications.\n\nIs my data being sent anywhere when I connect it up to Danswer?\nAnswer: No! Danswer is built with data security as our highest priority. We open sourced it so our users can know exactly what is going on with their data. By default all of the document processing happens within Danswer. The only time it is sent outward is for the GenAI call to generate answers.\n\nWhere is the feature for auto sync-ing document level access permissions from all connected sources?\nAnswer: This falls under the Enterprise Edition set of Danswer features built on top of the MIT/community edition. If you are on Danswer Cloud, you have access to them by default. If you're running it yourself, reach out to the Danswer team to receive access.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/enterprise_search",
|
||||
"title": "Enterprise Search",
|
||||
"content": "Value of Enterprise Search with Danswer\n\nWhat is Enterprise Search and why is it Important?\nAn Enterprise Search system gives team members a single place to access all of the disparate knowledge of an organization. Critical information is saved across a host of channels like call transcripts with prospects, engineering design docs, IT runbooks, customer support email exchanges, project management tickets, and more. As fast moving teams scale up, information gets spread out and more disorganized.\n\nSince it quickly becomes infeasible to check across every source, decisions get made on incomplete information, employee satisfaction decreases, and the most valuable members of your team are tied up with constant distractions as junior teammates are unable to unblock themselves. Danswer solves this problem by letting anyone on the team access all of the knowledge across your organization in a permissioned and secure way. Users can ask questions in natural language and get back answers and documents across all of the connected sources instantly.\n\nWhat's the real cost?\nA typical knowledge worker spends over 2 hours a week on search, but more than that, the cost of incomplete or incorrect information can be extremely high. Customer support/success that isn't able to find the reference to similar cases could cause hours or even days of delay leading to lower customer satisfaction or in the worst case - churn. An account exec not realizing that a prospect had previously mentioned a specific need could lead to lost deals. An engineer not realizing a similar feature had previously been built could result in weeks of wasted development time and tech debt with duplicate implementation. With a lack of knowledge, your whole organization is navigating in the dark - inefficient and mistake prone.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/enterprise_search",
|
||||
"title": "Enterprise Search",
|
||||
"content": "More than Search\nWhen analyzing the entire corpus of knowledge within your company is as easy as asking a question in a search bar, your entire team can stay informed and up to date. Danswer also makes it trivial to identify where knowledge is well documented and where it is lacking. Team members who are centers of knowledge can begin to effectively document their expertise since it is no longer being thrown into a black hole. All of this allows the organization to achieve higher efficiency and drive business outcomes.\n\nWith Generative AI, the entire user experience has evolved as well. For example, instead of just finding similar cases for your customer support team to reference, Danswer breaks down the issue and explains it so that even the most junior members can understand it. This in turn lets them give the most holistic and technically accurate response possible to your customers. On the other end, even the super stars of your sales team will not be able to review 10 hours of transcripts before hopping on that critical call, but Danswer can easily parse through it in mere seconds and give crucial context to help your team close.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/ai_platform",
|
||||
"title": "AI Platform",
|
||||
"content": "Build AI Agents powered by the knowledge and workflows specific to your organization.\n\nBeyond Answers\nAgents enabled by generative AI and reasoning capable models are helping teams to automate their work. Danswer is helping teams make it happen. Danswer provides out of the box user chat sessions, attaching custom tools, handling LLM reasoning, code execution, data analysis, referencing internal knowledge, and much more.\n\nDanswer as a platform is not a no-code agent builder. We are made by developers for developers and this gives your team the full flexibility and power to create agents not constrained by blocks and simple logic paths.\n\nFlexibility and Extensibility\nDanswer is open source and completely whitebox. This not only gives transparency to what happens within the system but also means that your team can directly modify the source code to suit your unique needs.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/customer_support",
|
||||
"title": "Customer Support",
|
||||
"content": "Help your customer support team instantly answer any question across your entire product.\n\nAI Enabled Support\nCustomer support agents have one of the highest breadth jobs. They field requests that cover the entire surface area of the product and need to help your users find success on extremely short timelines. Because they're not the same people who designed or built the system, they often lack the depth of understanding needed - resulting in delays and escalations to other teams. Modern teams are leveraging AI to help their CS team optimize the speed and quality of these critical customer-facing interactions.\n\nThe Importance of Context\nThere are two critical components of AI copilots for customer support. The first is that the AI system needs to be connected with as much information as possible (not just support tools like Zendesk or Intercom) and that the knowledge needs to be as fresh as possible. Sometimes a fix might even be in places rarely checked by CS such as pull requests in a code repository. The second critical component is the ability of the AI system to break down difficult concepts and convoluted processes into more digestible descriptions and for your team members to be able to chat back and forth with the system to build a better understanding.\n\nDanswer takes care of both of these. The system connects up to over 30+ different applications and the knowledge is pulled in constantly so that the information access is always up to date.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/sales",
|
||||
"title": "Sales",
|
||||
"content": "Keep your team up to date on every conversation and update so they can close.\n\nRecall Every Detail\nBeing able to instantly revisit every detail of any call without reading transcripts is helping Sales teams provide more tailored pitches, build stronger relationships, and close more deals. Instead of searching and reading through hours of transcripts in preparation for a call, your team can now ask Danswer \"What specific features was ACME interested in seeing for the demo\". Since your team doesn't have time to read every transcript prior to a call, Danswer provides a more thorough summary because it can instantly parse hundreds of pages and distill out the relevant information. Even for fast lookups it becomes much more convenient - for example to brush up on connection building topics by asking \"What rapport building topic did we chat about in the last call with ACME\".\n\nKnow Every Product Update\nIt is impossible for Sales teams to keep up with every product update. Because of this, when a prospect has a question that the Sales team does not know, they have no choice but to rely on the Product and Engineering orgs to get an authoritative answer. Not only is this distracting to the other teams, it also slows down the time to respond to the prospect (and as we know, time is the biggest killer of deals). With Danswer, it is even possible to get answers live on call because of how fast accessing information becomes. A question like \"Have we shipped the Microsoft AD integration yet?\" can now be answered in seconds meaning that prospects can get answers while on the call instead of asynchronously and sales cycles are reduced as a result.",
|
||||
"chunk_ind": 0
|
||||
},
|
||||
{
|
||||
"url": "https://docs.danswer.dev/more/use_cases/operations",
|
||||
"title": "Operations",
|
||||
"content": "Double the productivity of your Ops teams like IT, HR, etc.\n\nAutomatically Resolve Tickets\nModern teams are leveraging AI to auto-resolve up to 50% of tickets. Whether it is an employee asking about benefits details or how to set up the VPN for remote work, Danswer can help your team help themselves. This frees up your team to do the real impactful work of landing star candidates or improving your internal processes.\n\nAI Aided Onboarding\nOne of the periods where your team needs the most help is when they're just ramping up. Instead of feeling lost in dozens of new tools, Danswer gives them a single place where they can ask about anything in natural language. Whether it's how to set up their work environment or what their onboarding goals are, Danswer can walk them through every step with the help of Generative AI. This lets your team feel more empowered and gives time back to the more seasoned members of your team to focus on moving the needle.",
|
||||
"chunk_ind": 0
|
||||
}
|
||||
]
|
||||
@@ -1,24 +0,0 @@
|
||||
input_prompts:
|
||||
- id: -5
|
||||
prompt: "Elaborate"
|
||||
content: "Elaborate on the above, give me a more in depth explanation."
|
||||
active: true
|
||||
is_public: true
|
||||
|
||||
- id: -4
|
||||
prompt: "Reword"
|
||||
content: "Help me rewrite the following politely and concisely for professional communication:\n"
|
||||
active: true
|
||||
is_public: true
|
||||
|
||||
- id: -3
|
||||
prompt: "Email"
|
||||
content: "Write a professional email for me including a subject line, signature, etc. Template the parts that need editing with [ ]. The email should cover the following points:\n"
|
||||
active: true
|
||||
is_public: true
|
||||
|
||||
- id: -2
|
||||
prompt: "Debug"
|
||||
content: "Provide step-by-step troubleshooting instructions for the following issue:\n"
|
||||
active: true
|
||||
is_public: true
|
||||
@@ -1,134 +0,0 @@
|
||||
from fastapi import APIRouter
|
||||
from fastapi import Depends
|
||||
from fastapi import HTTPException
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.auth.users import current_admin_user
|
||||
from danswer.auth.users import current_user
|
||||
from danswer.db.engine import get_session
|
||||
from danswer.db.input_prompt import fetch_input_prompt_by_id
|
||||
from danswer.db.input_prompt import fetch_input_prompts_by_user
|
||||
from danswer.db.input_prompt import fetch_public_input_prompts
|
||||
from danswer.db.input_prompt import insert_input_prompt
|
||||
from danswer.db.input_prompt import remove_input_prompt
|
||||
from danswer.db.input_prompt import remove_public_input_prompt
|
||||
from danswer.db.input_prompt import update_input_prompt
|
||||
from danswer.db.models import User
|
||||
from danswer.server.features.input_prompt.models import CreateInputPromptRequest
|
||||
from danswer.server.features.input_prompt.models import InputPromptSnapshot
|
||||
from danswer.server.features.input_prompt.models import UpdateInputPromptRequest
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
basic_router = APIRouter(prefix="/input_prompt")
|
||||
admin_router = APIRouter(prefix="/admin/input_prompt")
|
||||
|
||||
|
||||
@basic_router.get("")
|
||||
def list_input_prompts(
|
||||
user: User | None = Depends(current_user),
|
||||
include_public: bool = False,
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> list[InputPromptSnapshot]:
|
||||
user_prompts = fetch_input_prompts_by_user(
|
||||
user_id=user.id if user is not None else None,
|
||||
db_session=db_session,
|
||||
include_public=include_public,
|
||||
)
|
||||
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]
|
||||
|
||||
|
||||
@basic_router.get("/{input_prompt_id}")
|
||||
def get_input_prompt(
|
||||
input_prompt_id: int,
|
||||
user: User | None = Depends(current_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> InputPromptSnapshot:
|
||||
input_prompt = fetch_input_prompt_by_id(
|
||||
id=input_prompt_id,
|
||||
user_id=user.id if user is not None else None,
|
||||
db_session=db_session,
|
||||
)
|
||||
return InputPromptSnapshot.from_model(input_prompt=input_prompt)
|
||||
|
||||
|
||||
@basic_router.post("")
|
||||
def create_input_prompt(
|
||||
create_input_prompt_request: CreateInputPromptRequest,
|
||||
user: User | None = Depends(current_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> InputPromptSnapshot:
|
||||
input_prompt = insert_input_prompt(
|
||||
prompt=create_input_prompt_request.prompt,
|
||||
content=create_input_prompt_request.content,
|
||||
is_public=create_input_prompt_request.is_public,
|
||||
user=user,
|
||||
db_session=db_session,
|
||||
)
|
||||
return InputPromptSnapshot.from_model(input_prompt)
|
||||
|
||||
|
||||
@basic_router.patch("/{input_prompt_id}")
|
||||
def patch_input_prompt(
|
||||
input_prompt_id: int,
|
||||
update_input_prompt_request: UpdateInputPromptRequest,
|
||||
user: User | None = Depends(current_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> InputPromptSnapshot:
|
||||
try:
|
||||
updated_input_prompt = update_input_prompt(
|
||||
user=user,
|
||||
input_prompt_id=input_prompt_id,
|
||||
prompt=update_input_prompt_request.prompt,
|
||||
content=update_input_prompt_request.content,
|
||||
active=update_input_prompt_request.active,
|
||||
db_session=db_session,
|
||||
)
|
||||
except ValueError as e:
|
||||
error_msg = "Error occurred while updated input prompt"
|
||||
logger.warn(f"{error_msg}. Stack trace: {e}")
|
||||
raise HTTPException(status_code=404, detail=error_msg)
|
||||
|
||||
return InputPromptSnapshot.from_model(updated_input_prompt)
|
||||
|
||||
|
||||
@basic_router.delete("/{input_prompt_id}")
|
||||
def delete_input_prompt(
|
||||
input_prompt_id: int,
|
||||
user: User | None = Depends(current_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> None:
|
||||
try:
|
||||
remove_input_prompt(user, input_prompt_id, db_session)
|
||||
|
||||
except ValueError as e:
|
||||
error_msg = "Error occurred while deleting input prompt"
|
||||
logger.warn(f"{error_msg}. Stack trace: {e}")
|
||||
raise HTTPException(status_code=404, detail=error_msg)
|
||||
|
||||
|
||||
@admin_router.delete("/{input_prompt_id}")
|
||||
def delete_public_input_prompt(
|
||||
input_prompt_id: int,
|
||||
_: User | None = Depends(current_admin_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> None:
|
||||
try:
|
||||
remove_public_input_prompt(input_prompt_id, db_session)
|
||||
|
||||
except ValueError as e:
|
||||
error_msg = "Error occurred while deleting input prompt"
|
||||
logger.warn(f"{error_msg}. Stack trace: {e}")
|
||||
raise HTTPException(status_code=404, detail=error_msg)
|
||||
|
||||
|
||||
@admin_router.get("")
|
||||
def list_public_input_prompts(
|
||||
_: User | None = Depends(current_admin_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> list[InputPromptSnapshot]:
|
||||
user_prompts = fetch_public_input_prompts(
|
||||
db_session=db_session,
|
||||
)
|
||||
return [InputPromptSnapshot.from_model(prompt) for prompt in user_prompts]
|
||||
@@ -1,47 +0,0 @@
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.db.models import InputPrompt
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
class CreateInputPromptRequest(BaseModel):
|
||||
prompt: str
|
||||
content: str
|
||||
is_public: bool
|
||||
|
||||
|
||||
class UpdateInputPromptRequest(BaseModel):
|
||||
prompt: str
|
||||
content: str
|
||||
active: bool
|
||||
|
||||
|
||||
class InputPromptResponse(BaseModel):
|
||||
id: int
|
||||
prompt: str
|
||||
content: str
|
||||
active: bool
|
||||
|
||||
|
||||
class InputPromptSnapshot(BaseModel):
|
||||
id: int
|
||||
prompt: str
|
||||
content: str
|
||||
active: bool
|
||||
user_id: UUID | None
|
||||
is_public: bool
|
||||
|
||||
@classmethod
|
||||
def from_model(cls, input_prompt: InputPrompt) -> "InputPromptSnapshot":
|
||||
return InputPromptSnapshot(
|
||||
id=input_prompt.id,
|
||||
prompt=input_prompt.prompt,
|
||||
content=input_prompt.content,
|
||||
active=input_prompt.active,
|
||||
user_id=input_prompt.user_id,
|
||||
is_public=input_prompt.is_public,
|
||||
)
|
||||
@@ -1,20 +1,20 @@
|
||||
The DanswerAI Enterprise license (the “Enterprise License”)
|
||||
Copyright (c) 2023-present DanswerAI, Inc.
|
||||
|
||||
With regard to the Danswer Software:
|
||||
With regard to the Onyx Software:
|
||||
|
||||
This software and associated documentation files (the "Software") may only be
|
||||
used in production, if you (and any entity that you represent) have agreed to,
|
||||
and are in compliance with, the DanswerAI Subscription Terms of Service, available
|
||||
at https://danswer.ai/terms (the “Enterprise Terms”), or other
|
||||
at https://onyx.app/terms (the “Enterprise Terms”), or other
|
||||
agreement governing the use of the Software, as agreed by you and DanswerAI,
|
||||
and otherwise have a valid Danswer Enterprise license for the
|
||||
and otherwise have a valid Onyx Enterprise license for the
|
||||
correct number of user seats. Subject to the foregoing sentence, you are free to
|
||||
modify this Software and publish patches to the Software. You agree that DanswerAI
|
||||
and/or its licensors (as applicable) retain all right, title and interest in and
|
||||
to all such modifications and/or patches, and all such modifications and/or
|
||||
patches may only be used, copied, modified, displayed, distributed, or otherwise
|
||||
exploited with a valid Danswer Enterprise license for the correct
|
||||
exploited with a valid Onyx Enterprise license for the correct
|
||||
number of user seats. Notwithstanding the foregoing, you may copy and modify
|
||||
the Software for development and testing purposes, without requiring a
|
||||
subscription. You agree that DanswerAI and/or its licensors (as applicable) retain
|
||||
@@ -31,6 +31,6 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
For all third party components incorporated into the Danswer Software, those
|
||||
For all third party components incorporated into the Onyx Software, those
|
||||
components are licensed under the original license provided by the owner of the
|
||||
applicable component.
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
# Applicable for OIDC Auth
|
||||
OPENID_CONFIG_URL = os.environ.get("OPENID_CONFIG_URL", "")
|
||||
|
||||
# Applicable for SAML Auth
|
||||
SAML_CONF_DIR = os.environ.get("SAML_CONF_DIR") or "/app/ee/danswer/configs/saml_config"
|
||||
|
||||
|
||||
#####
|
||||
# Auto Permission Sync
|
||||
#####
|
||||
NUM_PERMISSION_WORKERS = int(os.environ.get("NUM_PERMISSION_WORKERS") or 2)
|
||||
|
||||
|
||||
STRIPE_SECRET_KEY = os.environ.get("STRIPE_SECRET_KEY")
|
||||
STRIPE_PRICE_ID = os.environ.get("STRIPE_PRICE")
|
||||
|
||||
OPENAI_DEFAULT_API_KEY = os.environ.get("OPENAI_DEFAULT_API_KEY")
|
||||
ANTHROPIC_DEFAULT_API_KEY = os.environ.get("ANTHROPIC_DEFAULT_API_KEY")
|
||||
COHERE_DEFAULT_API_KEY = os.environ.get("COHERE_DEFAULT_API_KEY")
|
||||
|
||||
# JWT Public Key URL
|
||||
JWT_PUBLIC_KEY_URL: str | None = os.getenv("JWT_PUBLIC_KEY_URL", None)
|
||||
|
||||
|
||||
# Super Users
|
||||
SUPER_USERS = json.loads(os.environ.get("SUPER_USERS", '["pablo@danswer.ai"]'))
|
||||
SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
|
||||
@@ -1,17 +1,17 @@
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.access.access import (
|
||||
from ee.onyx.db.external_perm import fetch_external_groups_for_user
|
||||
from ee.onyx.db.user_group import fetch_user_groups_for_documents
|
||||
from ee.onyx.db.user_group import fetch_user_groups_for_user
|
||||
from onyx.access.access import (
|
||||
_get_access_for_documents as get_access_for_documents_without_groups,
|
||||
)
|
||||
from danswer.access.access import _get_acl_for_user as get_acl_for_user_without_groups
|
||||
from danswer.access.models import DocumentAccess
|
||||
from danswer.access.utils import prefix_external_group
|
||||
from danswer.access.utils import prefix_user_group
|
||||
from danswer.db.document import get_documents_by_ids
|
||||
from danswer.db.models import User
|
||||
from ee.danswer.db.external_perm import fetch_external_groups_for_user
|
||||
from ee.danswer.db.user_group import fetch_user_groups_for_documents
|
||||
from ee.danswer.db.user_group import fetch_user_groups_for_user
|
||||
from onyx.access.access import _get_acl_for_user as get_acl_for_user_without_groups
|
||||
from onyx.access.models import DocumentAccess
|
||||
from onyx.access.utils import prefix_external_group
|
||||
from onyx.access.utils import prefix_user_group
|
||||
from onyx.db.document import get_documents_by_ids
|
||||
from onyx.db.models import User
|
||||
|
||||
|
||||
def _get_access_for_document(
|
||||
@@ -69,7 +69,7 @@ def _get_access_for_documents(
|
||||
)
|
||||
|
||||
# If the document is determined to be "public" externally (through a SYNC connector)
|
||||
# then it's given the same access level as if it were marked public within Danswer
|
||||
# then it's given the same access level as if it were marked public within Onyx
|
||||
is_public_anywhere = document.is_public or non_ee_access.is_public
|
||||
|
||||
# To avoid collisions of group namings between connectors, they need to be prefixed
|
||||
@@ -89,7 +89,7 @@ def _get_acl_for_user(user: User | None, db_session: Session) -> set[str]:
|
||||
user should have access to a document if at least one entry in the document's ACL
|
||||
matches one entry in the returned set.
|
||||
|
||||
NOTE: is imported in danswer.access.access by `fetch_versioned_implementation`
|
||||
NOTE: is imported in onyx.access.access by `fetch_versioned_implementation`
|
||||
DO NOT REMOVE."""
|
||||
db_user_groups = fetch_user_groups_for_user(db_session, user.id) if user else []
|
||||
prefixed_user_groups = [
|
||||
@@ -12,17 +12,17 @@ from sqlalchemy import func
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from danswer.auth.users import current_admin_user
|
||||
from danswer.configs.app_configs import AUTH_TYPE
|
||||
from danswer.configs.constants import AuthType
|
||||
from danswer.db.models import User
|
||||
from danswer.utils.logger import setup_logger
|
||||
from ee.danswer.configs.app_configs import JWT_PUBLIC_KEY_URL
|
||||
from ee.danswer.configs.app_configs import SUPER_CLOUD_API_KEY
|
||||
from ee.danswer.configs.app_configs import SUPER_USERS
|
||||
from ee.danswer.db.saml import get_saml_account
|
||||
from ee.danswer.server.seeding import get_seed_config
|
||||
from ee.danswer.utils.secrets import extract_hashed_cookie
|
||||
from ee.onyx.configs.app_configs import JWT_PUBLIC_KEY_URL
|
||||
from ee.onyx.configs.app_configs import SUPER_CLOUD_API_KEY
|
||||
from ee.onyx.configs.app_configs import SUPER_USERS
|
||||
from ee.onyx.db.saml import get_saml_account
|
||||
from ee.onyx.server.seeding import get_seed_config
|
||||
from ee.onyx.utils.secrets import extract_hashed_cookie
|
||||
from onyx.auth.users import current_admin_user
|
||||
from onyx.configs.app_configs import AUTH_TYPE
|
||||
from onyx.configs.constants import AuthType
|
||||
from onyx.db.models import User
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -1,13 +1,13 @@
|
||||
from danswer.background.celery.apps.primary import celery_app
|
||||
from danswer.background.task_utils import build_celery_task_wrapper
|
||||
from danswer.configs.app_configs import JOB_TIMEOUT
|
||||
from danswer.db.chat import delete_chat_sessions_older_than
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.server.settings.store import load_settings
|
||||
from danswer.utils.logger import setup_logger
|
||||
from ee.danswer.background.celery_utils import should_perform_chat_ttl_check
|
||||
from ee.danswer.background.task_name_builders import name_chat_ttl_task
|
||||
from ee.danswer.server.reporting.usage_export_generation import create_new_usage_report
|
||||
from ee.onyx.background.celery_utils import should_perform_chat_ttl_check
|
||||
from ee.onyx.background.task_name_builders import name_chat_ttl_task
|
||||
from ee.onyx.server.reporting.usage_export_generation import create_new_usage_report
|
||||
from onyx.background.celery.apps.primary import celery_app
|
||||
from onyx.background.task_utils import build_celery_task_wrapper
|
||||
from onyx.configs.app_configs import JOB_TIMEOUT
|
||||
from onyx.db.chat import delete_chat_sessions_older_than
|
||||
from onyx.db.engine import get_session_with_tenant
|
||||
from onyx.server.settings.store import load_settings
|
||||
from onyx.utils.logger import setup_logger
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
|
||||
|
||||
@@ -1,20 +1,20 @@
|
||||
from datetime import timedelta
|
||||
from typing import Any
|
||||
|
||||
from danswer.background.celery.tasks.beat_schedule import (
|
||||
from onyx.background.celery.tasks.beat_schedule import (
|
||||
tasks_to_schedule as base_tasks_to_schedule,
|
||||
)
|
||||
from danswer.configs.constants import DanswerCeleryTask
|
||||
from onyx.configs.constants import OnyxCeleryTask
|
||||
|
||||
ee_tasks_to_schedule = [
|
||||
{
|
||||
"name": "autogenerate_usage_report",
|
||||
"task": DanswerCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
|
||||
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
|
||||
"schedule": timedelta(days=30), # TODO: change this to config flag
|
||||
},
|
||||
{
|
||||
"name": "check-ttl-management",
|
||||
"task": DanswerCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
|
||||
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
|
||||
"schedule": timedelta(hours=1),
|
||||
},
|
||||
]
|
||||
@@ -3,12 +3,12 @@ from typing import cast
|
||||
from redis import Redis
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
from danswer.redis.redis_usergroup import RedisUserGroup
|
||||
from danswer.utils.logger import setup_logger
|
||||
from ee.danswer.db.user_group import delete_user_group
|
||||
from ee.danswer.db.user_group import fetch_user_group
|
||||
from ee.danswer.db.user_group import mark_user_group_as_synced
|
||||
from ee.onyx.db.user_group import delete_user_group
|
||||
from ee.onyx.db.user_group import fetch_user_group
|
||||
from ee.onyx.db.user_group import mark_user_group_as_synced
|
||||
from onyx.background.celery.apps.app_base import task_logger
|
||||
from onyx.redis.redis_usergroup import RedisUserGroup
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.db.tasks import check_task_is_live_and_not_timed_out
|
||||
from danswer.db.tasks import get_latest_task
|
||||
from danswer.utils.logger import setup_logger
|
||||
from ee.danswer.background.task_name_builders import name_chat_ttl_task
|
||||
from ee.onyx.background.task_name_builders import name_chat_ttl_task
|
||||
from onyx.db.tasks import check_task_is_live_and_not_timed_out
|
||||
from onyx.db.tasks import get_latest_task
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user