Compare commits

..

37 Commits

Author SHA1 Message Date
pablodanswer
6ff78e077d nit 2024-12-06 12:57:43 -08:00
pablodanswer
c01512f846 fix slackbot 2024-12-06 12:56:46 -08:00
rkuo-danswer
7a3c06c2d2 first cut at slack oauth flow (#3323)
* first cut at slack oauth flow

* fix usage of hooks

* fix button spacing

* add additional error logging

* no dev redirect

* cleanup

* comment work in progress

* move some stuff to ee, add some playwright tests for the oauth callback edge cases

* fix ee, fix test name

* fix tests

* code review fixes
2024-12-06 19:55:21 +00:00
pablodanswer
7a0d823c89 Improved file handling (#3353)
* update props

* update documents

* nit

* update chat processing

* k

* k

* nit

* minor nit

* minor nits

* k

* nits
2024-12-06 19:16:54 +00:00
Yuhong Sun
db69e445d6 k (#3358) 2024-12-06 18:08:44 +00:00
Weves
18e63889b7 Change default log level back to info 2024-12-06 10:07:14 -08:00
Weves
738e60c8ed Increase vespa attempts on startup 2024-12-06 09:46:33 -08:00
hagen-danswer
8aec873e66 Merge pull request #3359 from danswer-ai/conf-logging-filter
Added filter to slim connector and logging for space permissions
2024-12-06 09:03:07 -08:00
hagen-danswer
7c57dde8ab fixed test 2024-12-06 08:33:12 -08:00
hagen-danswer
f30adab853 Merge remote-tracking branch 'origin/main' into conf-logging-filter 2024-12-06 08:30:07 -08:00
hagen-danswer
601687a522 Add test for Confluence permissions 2024-12-06 08:28:42 -08:00
hagen-danswer
350cf407c9 explicitly set page and attachment restrictions and space keys 2024-12-06 08:12:07 -08:00
hagen-danswer
32ec4efc7a tygod for tests 2024-12-06 08:03:34 -08:00
hagen-danswer
7c6981e052 Added filter to slim connector and logging for space permissions 2024-12-06 07:55:54 -08:00
Yuhong Sun
c50cd20156 Fix SlackBot Page Bugs (#3354) 2024-12-05 13:17:04 -08:00
hagen-danswer
14772dee71 Add persona stats (#3282)
* Added a chart to display persona message stats

* polish

* k

* hope this works

* cleanup
2024-12-05 17:15:56 +00:00
pablodanswer
c81e704c95 various niceties (#3348) 2024-12-05 17:12:52 +00:00
Chris Weaver
3266ef6321 Improve chat page performance (#3347)
* Simplify /manage/indexing-status

* Rename endpoint
2024-12-04 20:28:30 -08:00
pablodanswer
c89b98b4f2 update email invites (#3349) 2024-12-05 03:29:07 +00:00
rkuo-danswer
e70e0ab859 Merge pull request #3346 from danswer-ai/bugfix/chromatic-tests-2
Bugfix/chromatic tests 2
2024-12-04 19:44:05 -08:00
Richard Kuo (Danswer)
69b6e9321e Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/chromatic-tests-2
# Conflicts:
#	web/tests/e2e/home.spec.ts
2024-12-04 19:10:25 -08:00
Chris Weaver
7e53af18b6 Add b64 image support for image generation (#3342)
* Add b64 image support

* Fix

* enhance

* Fix mypy

* Fix imports
2024-12-05 02:24:54 +00:00
Richard Kuo (Danswer)
b9eb1ca2ba wait for whole placeholder string 2024-12-04 18:23:06 -08:00
rkuo-danswer
91d44c83d2 fixing chromatic tests (#3344)
* wait for the page to load

* fix up tests

* make sure "Initializing Danswer" is gone
2024-12-05 02:19:43 +00:00
Richard Kuo (Danswer)
4dbc6bb4d1 make sure "Initializing Danswer" is gone 2024-12-04 17:49:59 -08:00
Richard Kuo (Danswer)
4b6a4c6bbf fix up tests 2024-12-04 17:19:16 -08:00
pablodanswer
fd1999454a ensure we can order by doc id (#3343) 2024-12-05 01:10:37 +00:00
Richard Kuo (Danswer)
0a35422d1d wait for the page to load 2024-12-04 16:47:42 -08:00
pablodanswer
69b99056b2 Redirect to chat (#3341)
* k

* nit
2024-12-05 00:08:52 +00:00
Yuhong Sun
2a55696545 Move Answer (#3339) 2024-12-04 16:30:47 -08:00
hagen-danswer
ef9942b751 Related permission docs to cc_pair to prevent orphan docs (#3336)
* Related permission docs to cc_pair to prevent orphan docs

* added script

* group sync deduping

* logging
2024-12-04 21:00:54 +00:00
pablodanswer
993acec5e9 Update memoization + silence unnecessary errors (#3337)
* update memoization + silence unnecessary errors

* proper org
2024-12-04 20:08:15 +00:00
Weves
b01a1b509a Add basic loadtest script 2024-12-04 10:53:48 -08:00
pablodanswer
4f994124ef remove now unnecessary user loading indicatort log (#3333) 2024-12-04 00:09:22 +00:00
rkuo-danswer
14863bd457 try single threaded playwright testing (#3322) 2024-12-03 23:21:46 +00:00
Yuhong Sun
aa1c4c635a Combining Search and Chat Backend (#3273)
* k

* k

* fix slack issues

* rebase

* k
2024-12-03 22:37:14 +00:00
rkuo-danswer
13f6e8a6b4 disable thread local locking in callbacks (#3319) 2024-12-03 22:32:56 +00:00
179 changed files with 3381 additions and 2477 deletions

View File

@@ -0,0 +1,36 @@
"""Combine Search and Chat
Revision ID: 9f696734098f
Revises: a8c2065484e6
Create Date: 2024-11-27 15:32:19.694972
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9f696734098f"
down_revision = "a8c2065484e6"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("chat_session", "description", nullable=True)
op.drop_column("chat_session", "one_shot")
op.drop_column("slack_channel_config", "response_type")
def downgrade() -> None:
op.execute("UPDATE chat_session SET description = '' WHERE description IS NULL")
op.alter_column("chat_session", "description", nullable=False)
op.add_column(
"chat_session",
sa.Column("one_shot", sa.Boolean(), nullable=False, server_default=sa.false()),
)
op.add_column(
"slack_channel_config",
sa.Column(
"response_type", sa.String(), nullable=False, server_default="citations"
),
)

View File

@@ -0,0 +1,40 @@
"""non-nullbale slack bot id in channel config
Revision ID: f7a894b06d02
Revises: 9f696734098f
Create Date: 2024-12-06 12:55:42.845723
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f7a894b06d02"
down_revision = "9f696734098f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Delete all rows with null slack_bot_id
op.execute("DELETE FROM slack_channel_config WHERE slack_bot_id IS NULL")
# Make slack_bot_id non-nullable
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=False,
)
def downgrade() -> None:
# Make slack_bot_id nullable again
op.alter_column(
"slack_channel_config",
"slack_bot_id",
existing_type=sa.Integer(),
nullable=True,
)

View File

@@ -18,6 +18,11 @@ class ExternalAccess:
@dataclass(frozen=True)
class DocExternalAccess:
"""
This is just a class to wrap the external access and the document ID
together. It's used for syncing document permissions to Redis.
"""
external_access: ExternalAccess
# The document ID
doc_id: str

View File

@@ -58,7 +58,6 @@ from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import DISABLE_VERIFICATION
from danswer.configs.app_configs import EMAIL_FROM
from danswer.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from danswer.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
@@ -87,6 +86,7 @@ from danswer.db.models import AccessToken
from danswer.db.models import OAuthAccount
from danswer.db.models import User
from danswer.db.users import get_user_by_email
from danswer.server.utils import BasicAuthenticationError
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
from danswer.utils.telemetry import RecordType
@@ -99,11 +99,6 @@ from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
class BasicAuthenticationError(HTTPException):
def __init__(self, detail: str):
super().__init__(status_code=status.HTTP_403_FORBIDDEN, detail=detail)
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True
@@ -136,11 +131,12 @@ def get_display_email(email: str | None, space_less: bool = False) -> str:
def user_needs_to_be_verified() -> bool:
# all other auth types besides basic should require users to be
# verified
return not DISABLE_VERIFICATION and (
AUTH_TYPE != AuthType.BASIC or REQUIRE_EMAIL_VERIFICATION
)
if AUTH_TYPE == AuthType.BASIC:
return REQUIRE_EMAIL_VERIFICATION
# For other auth types, if the user is authenticated it's assumed that
# the user is already verified via the external IDP
return False
def verify_email_is_invited(email: str) -> None:

View File

@@ -39,7 +39,6 @@ from danswer.redis.redis_usergroup import RedisUserGroup
from danswer.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
logger = setup_logger()
celery_app = Celery(__name__)
@@ -117,9 +116,13 @@ def on_worker_init(sender: Any, **kwargs: Any) -> None:
# it is planned to use this lock to enforce singleton behavior on the primary
# worker, since the primary worker does redis cleanup on startup, but this isn't
# implemented yet.
# set thread_local=False since we don't control what thread the periodic task might
# reacquire the lock with
lock: RedisLock = r.lock(
DanswerRedisLocks.PRIMARY_WORKER,
timeout=CELERY_PRIMARY_WORKER_LOCK_TIMEOUT,
thread_local=False,
)
logger.info("Primary worker lock: Acquire starting.")

View File

@@ -22,6 +22,7 @@ from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.configs.constants import DocumentSource
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.document import upsert_document_by_connector_credential_pair
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import AccessType
from danswer.db.enums import ConnectorCredentialPairStatus
@@ -218,7 +219,7 @@ def connector_permission_sync_generator_task(
r = get_redis_client(tenant_id=tenant_id)
lock = r.lock(
lock: RedisLock = r.lock(
DanswerRedisLocks.CONNECTOR_DOC_PERMISSIONS_SYNC_LOCK_PREFIX
+ f"_{redis_connector.id}",
timeout=CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT,
@@ -262,7 +263,12 @@ def connector_permission_sync_generator_task(
f"RedisConnector.permissions.generate_tasks starting. cc_pair={cc_pair_id}"
)
tasks_generated = redis_connector.permissions.generate_tasks(
self.app, lock, document_external_accesses, source_type
celery_app=self.app,
lock=lock,
new_permissions=document_external_accesses,
source_string=source_type,
connector_id=cc_pair.connector.id,
credential_id=cc_pair.credential.id,
)
if tasks_generated is None:
return None
@@ -298,6 +304,8 @@ def update_external_document_permissions_task(
tenant_id: str | None,
serialized_doc_external_access: dict,
source_string: str,
connector_id: int,
credential_id: int,
) -> bool:
document_external_access = DocExternalAccess.from_dict(
serialized_doc_external_access
@@ -306,18 +314,28 @@ def update_external_document_permissions_task(
external_access = document_external_access.external_access
try:
with get_session_with_tenant(tenant_id) as db_session:
# Then we build the update requests to update vespa
# Add the users to the DB if they don't exist
batch_add_ext_perm_user_if_not_exists(
db_session=db_session,
emails=list(external_access.external_user_emails),
)
upsert_document_external_perms(
# Then we upsert the document's external permissions in postgres
created_new_doc = upsert_document_external_perms(
db_session=db_session,
doc_id=doc_id,
external_access=external_access,
source_type=DocumentSource(source_string),
)
if created_new_doc:
# If a new document was created, we associate it with the cc_pair
upsert_document_by_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
document_ids=[doc_id],
)
logger.debug(
f"Successfully synced postgres document permissions for {doc_id}"
)

View File

@@ -32,10 +32,14 @@ from danswer.redis.redis_connector_ext_group_sync import (
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
from ee.danswer.db.connector_credential_pair import get_all_auto_sync_cc_pairs
from ee.danswer.db.connector_credential_pair import get_cc_pairs_by_source
from ee.danswer.db.external_perm import ExternalUserGroup
from ee.danswer.db.external_perm import replace_user__ext_group_for_cc_pair
from ee.danswer.external_permissions.sync_params import EXTERNAL_GROUP_SYNC_PERIODS
from ee.danswer.external_permissions.sync_params import GROUP_PERMISSIONS_FUNC_MAP
from ee.danswer.external_permissions.sync_params import (
GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC,
)
logger = setup_logger()
@@ -107,6 +111,22 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
cc_pairs = get_all_auto_sync_cc_pairs(db_session)
# We only want to sync one cc_pair per source type in
# GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC
for source in GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC:
# These are ordered by cc_pair id so the first one is the one we want
cc_pairs_to_dedupe = get_cc_pairs_by_source(
db_session, source, only_sync=True
)
# We only want to sync one cc_pair per source type
# in GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC so we dedupe here
for cc_pair_to_remove in cc_pairs_to_dedupe[1:]:
cc_pairs = [
cc_pair
for cc_pair in cc_pairs
if cc_pair.id != cc_pair_to_remove.id
]
for cc_pair in cc_pairs:
if _is_external_group_sync_due(cc_pair):
cc_pair_ids_to_sync.append(cc_pair.id)

View File

@@ -789,9 +789,12 @@ def connector_indexing_task(
)
break
# set thread_local=False since we don't control what thread the indexing/pruning
# might run our callback with
lock: RedisLock = r.lock(
redis_connector_index.generator_lock_key,
timeout=CELERY_INDEXING_LOCK_TIMEOUT,
thread_local=False,
)
acquired = lock.acquire(blocking=False)

View File

@@ -8,6 +8,7 @@ from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from danswer.background.celery.apps.app_base import task_logger
@@ -239,9 +240,12 @@ def connector_pruning_generator_task(
r = get_redis_client(tenant_id=tenant_id)
lock = r.lock(
# set thread_local=False since we don't control what thread the indexing/pruning
# might run our callback with
lock: RedisLock = r.lock(
DanswerRedisLocks.PRUNING_LOCK_PREFIX + f"_{redis_connector.id}",
timeout=CELERY_PRUNING_LOCK_TIMEOUT,
thread_local=False,
)
acquired = lock.acquire(blocking=False)

View File

@@ -6,33 +6,27 @@ from langchain.schema.messages import BaseMessage
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import ToolCall
from danswer.chat.llm_response_handler import LLMResponseHandlerManager
from danswer.chat.models import AnswerQuestionPossibleReturn
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import LLMResponseHandlerManager
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.build import default_build_system_message
from danswer.llm.answering.prompts.build import default_build_user_message
from danswer.llm.answering.stream_processing.answer_response_handler import (
AnswerResponseHandler,
)
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import default_build_system_message
from danswer.chat.prompt_builder.build import default_build_user_message
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import (
CitationResponseHandler,
)
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.stream_processing.answer_response_handler import (
DummyAnswerResponseHandler,
)
from danswer.llm.answering.stream_processing.answer_response_handler import (
QuotesResponseHandler,
)
from danswer.llm.answering.stream_processing.utils import map_document_id_order
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
from danswer.chat.stream_processing.utils import map_document_id_order
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolResponse
@@ -214,18 +208,23 @@ class Answer:
search_result = SearchTool.get_search_result(current_llm_call) or []
answer_handler: AnswerResponseHandler
if self.answer_style_config.citation_config:
answer_handler = CitationResponseHandler(
context_docs=search_result,
doc_id_to_rank_map=map_document_id_order(search_result),
)
elif self.answer_style_config.quotes_config:
answer_handler = QuotesResponseHandler(
context_docs=search_result,
)
else:
raise ValueError("No answer style config provided")
# Quotes are no longer supported
# answer_handler: AnswerResponseHandler
# if self.answer_style_config.citation_config:
# answer_handler = CitationResponseHandler(
# context_docs=search_result,
# doc_id_to_rank_map=map_document_id_order(search_result),
# )
# elif self.answer_style_config.quotes_config:
# answer_handler = QuotesResponseHandler(
# context_docs=search_result,
# )
# else:
# raise ValueError("No answer style config provided")
answer_handler = CitationResponseHandler(
context_docs=search_result,
doc_id_to_rank_map=map_document_id_order(search_result),
)
response_handler_manager = LLMResponseHandlerManager(
tool_call_handler, answer_handler, self.is_cancelled

View File

@@ -2,20 +2,79 @@ import re
from typing import cast
from uuid import UUID
from fastapi import HTTPException
from fastapi.datastructures import Headers
from sqlalchemy.orm import Session
from danswer.auth.users import is_user_admin
from danswer.chat.models import CitationInfo
from danswer.chat.models import LlmDoc
from danswer.chat.models import PersonaOverrideConfig
from danswer.chat.models import ThreadMessage
from danswer.configs.constants import DEFAULT_PERSONA_ID
from danswer.configs.constants import MessageType
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.db.chat import create_chat_session
from danswer.db.chat import get_chat_messages_by_session
from danswer.db.llm import fetch_existing_doc_sets
from danswer.db.llm import fetch_existing_tools
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.db.models import Persona
from danswer.db.models import Prompt
from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.persona import get_prompts_by_ids
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.tools.tool_implementations.custom.custom_tool import (
build_custom_tools_from_openapi_schema_and_headers,
)
from danswer.utils.logger import setup_logger
logger = setup_logger()
def prepare_chat_message_request(
message_text: str,
user: User | None,
persona_id: int | None,
# Does the question need to have a persona override
persona_override_config: PersonaOverrideConfig | None,
prompt: Prompt | None,
message_ts_to_respond_to: str | None,
retrieval_details: RetrievalDetails | None,
rerank_settings: RerankingDetails | None,
db_session: Session,
) -> CreateChatMessageRequest:
# Typically used for one shot flows like SlackBot or non-chat API endpoint use cases
new_chat_session = create_chat_session(
db_session=db_session,
description=None,
user_id=user.id if user else None,
# If using an override, this id will be ignored later on
persona_id=persona_id or DEFAULT_PERSONA_ID,
danswerbot_flow=True,
slack_thread_id=message_ts_to_respond_to,
)
return CreateChatMessageRequest(
chat_session_id=new_chat_session.id,
parent_message_id=None, # It's a standalone chat session each time
message=message_text,
file_descriptors=[], # Currently SlackBot/answer api do not support files in the context
prompt_id=prompt.id if prompt else None,
# Can always override the persona for the single query, if it's a normal persona
# then it will be treated the same
persona_override_config=persona_override_config,
search_doc_ids=None,
retrieval_options=retrieval_details,
rerank_settings=rerank_settings,
)
def llm_doc_from_inference_section(inference_section: InferenceSection) -> LlmDoc:
return LlmDoc(
document_id=inference_section.center_chunk.document_id,
@@ -35,6 +94,45 @@ def llm_doc_from_inference_section(inference_section: InferenceSection) -> LlmDo
)
def combine_message_thread(
messages: list[ThreadMessage],
max_tokens: int | None,
llm_tokenizer: BaseTokenizer,
) -> str:
"""Used to create a single combined message context from threads"""
if not messages:
return ""
message_strs: list[str] = []
total_token_count = 0
for message in reversed(messages):
if message.role == MessageType.USER:
role_str = message.role.value.upper()
if message.sender:
role_str += " " + message.sender
else:
# Since other messages might have the user identifying information
# better to use Unknown for symmetry
role_str += " Unknown"
else:
role_str = message.role.value.upper()
msg_str = f"{role_str}:\n{message.message}"
message_token_count = len(llm_tokenizer.encode(msg_str))
if (
max_tokens is not None
and total_token_count + message_token_count > max_tokens
):
break
message_strs.insert(0, msg_str)
total_token_count += message_token_count
return "\n\n".join(message_strs)
def create_chat_chain(
chat_session_id: UUID,
db_session: Session,
@@ -197,3 +295,71 @@ def extract_headers(
if lowercase_key in headers:
extracted_headers[lowercase_key] = headers[lowercase_key]
return extracted_headers
def create_temporary_persona(
persona_config: PersonaOverrideConfig, db_session: Session, user: User | None = None
) -> Persona:
if not is_user_admin(user):
raise HTTPException(
status_code=403,
detail="User is not authorized to create a persona in one shot queries",
)
"""Create a temporary Persona object from the provided configuration."""
persona = Persona(
name=persona_config.name,
description=persona_config.description,
num_chunks=persona_config.num_chunks,
llm_relevance_filter=persona_config.llm_relevance_filter,
llm_filter_extraction=persona_config.llm_filter_extraction,
recency_bias=persona_config.recency_bias,
llm_model_provider_override=persona_config.llm_model_provider_override,
llm_model_version_override=persona_config.llm_model_version_override,
)
if persona_config.prompts:
persona.prompts = [
Prompt(
name=p.name,
description=p.description,
system_prompt=p.system_prompt,
task_prompt=p.task_prompt,
include_citations=p.include_citations,
datetime_aware=p.datetime_aware,
)
for p in persona_config.prompts
]
elif persona_config.prompt_ids:
persona.prompts = get_prompts_by_ids(
db_session=db_session, prompt_ids=persona_config.prompt_ids
)
persona.tools = []
if persona_config.custom_tools_openapi:
for schema in persona_config.custom_tools_openapi:
tools = cast(
list[Tool],
build_custom_tools_from_openapi_schema_and_headers(schema),
)
persona.tools.extend(tools)
if persona_config.tools:
tool_ids = [tool.id for tool in persona_config.tools]
persona.tools.extend(
fetch_existing_tools(db_session=db_session, tool_ids=tool_ids)
)
if persona_config.tool_ids:
persona.tools.extend(
fetch_existing_tools(
db_session=db_session, tool_ids=persona_config.tool_ids
)
)
fetched_docs = fetch_existing_doc_sets(
db_session=db_session, doc_ids=persona_config.document_set_ids
)
persona.document_sets = fetched_docs
return persona

View File

@@ -1,60 +1,22 @@
from collections.abc import Callable
from collections.abc import Generator
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain_core.messages import BaseMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import ResponsePart
from danswer.chat.models import StreamStopInfo
from danswer.chat.models import StreamStopReason
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.stream_processing.answer_response_handler import (
AnswerResponseHandler,
)
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| DanswerQuotes
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import AnswerResponseHandler
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
class LLMResponseHandlerManager:
def __init__(
self,
tool_handler: "ToolResponseHandler",
answer_handler: "AnswerResponseHandler",
tool_handler: ToolResponseHandler,
answer_handler: AnswerResponseHandler,
is_cancelled: Callable[[], bool],
):
self.tool_handler = tool_handler

View File

@@ -1,17 +1,30 @@
from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from typing import TYPE_CHECKING
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.context.search.models import RetrievalDocs
from danswer.context.search.models import SearchResponse
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
if TYPE_CHECKING:
from danswer.db.models import Prompt
class LlmDoc(BaseModel):
"""This contains the minimal set information for the LLM portion including citations"""
@@ -118,20 +131,6 @@ class StreamingError(BaseModel):
stack_trace: str | None = None
class DanswerQuote(BaseModel):
# This is during inference so everything is a string by this point
quote: str
document_id: str
link: str | None
source_type: str
semantic_identifier: str
blurb: str
class DanswerQuotes(BaseModel):
quotes: list[DanswerQuote]
class DanswerContext(BaseModel):
content: str
document_id: str
@@ -147,14 +146,20 @@ class DanswerAnswer(BaseModel):
answer: str | None
class QAResponse(SearchResponse, DanswerAnswer):
quotes: list[DanswerQuote] | None
contexts: list[DanswerContexts] | None
predicted_flow: QueryFlow
predicted_search: SearchType
eval_res_valid: bool | None = None
class ThreadMessage(BaseModel):
message: str
sender: str | None = None
role: MessageType = MessageType.USER
class ChatDanswerBotResponse(BaseModel):
answer: str | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
chat_message_id: int | None = None
answer_valid: bool = True # Reflexion result, default True if Reflexion not run
class FileChatDisplay(BaseModel):
@@ -166,9 +171,41 @@ class CustomToolResponse(BaseModel):
tool_name: str
class ToolConfig(BaseModel):
id: int
class PromptOverrideConfig(BaseModel):
name: str
description: str = ""
system_prompt: str
task_prompt: str = ""
include_citations: bool = True
datetime_aware: bool = True
class PersonaOverrideConfig(BaseModel):
name: str
description: str
search_type: SearchType = SearchType.SEMANTIC
num_chunks: float | None = None
llm_relevance_filter: bool = False
llm_filter_extraction: bool = False
recency_bias: RecencyBiasSetting = RecencyBiasSetting.AUTO
llm_model_provider_override: str | None = None
llm_model_version_override: str | None = None
prompts: list[PromptOverrideConfig] = Field(default_factory=list)
prompt_ids: list[int] = Field(default_factory=list)
document_set_ids: list[int] = Field(default_factory=list)
tools: list[ToolConfig] = Field(default_factory=list)
tool_ids: list[int] = Field(default_factory=list)
custom_tools_openapi: list[dict[str, Any]] = Field(default_factory=list)
AnswerQuestionPossibleReturn = (
DanswerAnswerPiece
| DanswerQuotes
| CitationInfo
| DanswerContexts
| FileChatDisplay
@@ -184,3 +221,109 @@ AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
class LLMMetricsContainer(BaseModel):
prompt_tokens: int
response_tokens: int
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)

View File

@@ -6,16 +6,24 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.answer import Answer
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import create_temporary_persona
from danswer.chat.models import AllCitations
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.models import CitationConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import FileChatDisplay
from danswer.chat.models import FinalUsedContextDocsResponse
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import MessageSpecificCitations
from danswer.chat.models import PromptConfig
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.chat.models import StreamStopInfo
@@ -54,16 +62,11 @@ from danswer.document_index.factory import get_default_document_index
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.file_store.utils import load_all_chat_files
from danswer.file_store.utils import save_files_from_urls
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.file_store.utils import save_files
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.server.query_and_chat.models import ChatMessageDetail
@@ -102,6 +105,7 @@ from danswer.tools.tool_implementations.internet_search.internet_search_tool imp
from danswer.tools.tool_implementations.search.search_tool import (
FINAL_CONTEXT_DOCUMENTS_ID,
)
from danswer.tools.tool_implementations.search.search_tool import SEARCH_DOC_CONTENT_ID
from danswer.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
@@ -113,7 +117,10 @@ from danswer.tools.tool_implementations.search.search_tool import (
from danswer.tools.tool_runner import ToolCallFinalResult
from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
from danswer.utils.timing import log_function_time
from danswer.utils.timing import log_generator_function_time
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
@@ -256,6 +263,7 @@ def _get_force_search_settings(
ChatPacket = (
StreamingError
| QADocsResponse
| DanswerContexts
| LLMRelevanceFilterResponse
| FinalUsedContextDocsResponse
| ChatMessageDetail
@@ -286,6 +294,8 @@ def stream_chat_message_objects(
custom_tool_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
enforce_chat_session_id_for_search_docs: bool = True,
bypass_acl: bool = False,
include_contexts: bool = False,
) -> ChatPacketStream:
"""Streams in order:
1. [conditional] Retrieved documents if a search needs to be run
@@ -293,6 +303,7 @@ def stream_chat_message_objects(
3. [always] A set of streamed LLM tokens or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
use_existing_user_message = new_msg_req.use_existing_user_message
existing_assistant_message_id = new_msg_req.existing_assistant_message_id
@@ -322,17 +333,31 @@ def stream_chat_message_objects(
metadata={"user_id": str(user_id), "chat_session_id": str(chat_session_id)}
)
# use alternate persona if alternative assistant id is passed in
if alternate_assistant_id is not None:
# Allows users to specify a temporary persona (assistant) in the chat session
# this takes highest priority since it's user specified
persona = get_persona_by_id(
alternate_assistant_id,
user=user,
db_session=db_session,
is_for_edit=False,
)
elif new_msg_req.persona_override_config:
# Certain endpoints allow users to specify arbitrary persona settings
# this should never conflict with the alternate_assistant_id
persona = persona = create_temporary_persona(
db_session=db_session,
persona_config=new_msg_req.persona_override_config,
user=user,
)
else:
persona = chat_session.persona
if not persona:
raise RuntimeError("No persona specified or found for chat session")
# If a prompt override is specified via the API, use that with highest priority
# but for saving it, we are just mapping it to an existing prompt
prompt_id = new_msg_req.prompt_id
if prompt_id is None and persona.prompts:
prompt_id = sorted(persona.prompts, key=lambda x: x.id)[-1].id
@@ -555,19 +580,34 @@ def stream_chat_message_objects(
reserved_message_id=reserved_message_id,
)
if not final_msg.prompt:
raise RuntimeError("No Prompt found")
prompt_config = (
PromptConfig.from_model(
final_msg.prompt,
prompt_override=(
new_msg_req.prompt_override or chat_session.prompt_override
),
prompt_override = new_msg_req.prompt_override or chat_session.prompt_override
if new_msg_req.persona_override_config:
prompt_config = PromptConfig(
system_prompt=new_msg_req.persona_override_config.prompts[
0
].system_prompt,
task_prompt=new_msg_req.persona_override_config.prompts[0].task_prompt,
datetime_aware=new_msg_req.persona_override_config.prompts[
0
].datetime_aware,
include_citations=new_msg_req.persona_override_config.prompts[
0
].include_citations,
)
if not persona
else PromptConfig.from_model(persona.prompts[0])
)
elif prompt_override:
if not final_msg.prompt:
raise ValueError(
"Prompt override cannot be applied, no base prompt found."
)
prompt_config = PromptConfig.from_model(
final_msg.prompt,
prompt_override=prompt_override,
)
elif final_msg.prompt:
prompt_config = PromptConfig.from_model(final_msg.prompt)
else:
prompt_config = PromptConfig.from_model(persona.prompts[0])
answer_style_config = AnswerStyleConfig(
citation_config=CitationConfig(
all_docs_useful=selected_db_search_docs is not None
@@ -587,11 +627,13 @@ def stream_chat_message_objects(
answer_style_config=answer_style_config,
document_pruning_config=document_pruning_config,
retrieval_options=retrieval_options or RetrievalDetails(),
rerank_settings=new_msg_req.rerank_settings,
selected_sections=selected_sections,
chunks_above=new_msg_req.chunks_above,
chunks_below=new_msg_req.chunks_below,
full_doc=new_msg_req.full_doc,
latest_query_files=latest_query_files,
bypass_acl=bypass_acl,
),
internet_search_tool_config=InternetSearchToolConfig(
answer_style_config=answer_style_config,
@@ -638,7 +680,8 @@ def stream_chat_message_objects(
reference_db_search_docs = None
qa_docs_response = None
ai_message_files = None # any files to associate with the AI message e.g. dall-e generated images
# any files to associate with the AI message e.g. dall-e generated images
ai_message_files = []
dropped_indices = None
tool_result = None
@@ -693,8 +736,14 @@ def stream_chat_message_objects(
list[ImageGenerationResponse], packet.response
)
file_ids = save_files_from_urls(
[img.url for img in img_generation_response]
file_ids = save_files(
urls=[img.url for img in img_generation_response if img.url],
base64_files=[
img.image_data
for img in img_generation_response
if img.image_data
],
tenant_id=tenant_id,
)
ai_message_files = [
FileDescriptor(id=str(file_id), type=ChatFileType.IMAGE)
@@ -720,15 +769,19 @@ def stream_chat_message_objects(
or custom_tool_response.response_type == "csv"
):
file_ids = custom_tool_response.tool_result.file_ids
ai_message_files = [
FileDescriptor(
id=str(file_id),
type=ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV,
)
for file_id in file_ids
]
ai_message_files.extend(
[
FileDescriptor(
id=str(file_id),
type=(
ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV
),
)
for file_id in file_ids
]
)
yield FileChatDisplay(
file_ids=[str(file_id) for file_id in file_ids]
)
@@ -737,6 +790,8 @@ def stream_chat_message_objects(
response=custom_tool_response.tool_result,
tool_name=custom_tool_response.tool_name,
)
elif packet.id == SEARCH_DOC_CONTENT_ID and include_contexts:
yield cast(DanswerContexts, packet.response)
elif isinstance(packet, StreamStopInfo):
pass
@@ -776,7 +831,8 @@ def stream_chat_message_objects(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
yield AllCitations(citations=answer.citations)
if not answer.is_cancelled():
yield AllCitations(citations=answer.citations)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id: dict[str, int] = {}
@@ -845,3 +901,30 @@ def stream_chat_message(
)
for obj in objects:
yield get_json_line(obj.model_dump())
@log_function_time()
def gather_stream_for_slack(
packets: ChatPacketStream,
) -> ChatDanswerBotResponse:
response = ChatDanswerBotResponse()
answer = ""
for packet in packets:
if isinstance(packet, DanswerAnswerPiece) and packet.answer_piece:
answer += packet.answer_piece
elif isinstance(packet, QADocsResponse):
response.docs = packet
elif isinstance(packet, StreamingError):
response.error_msg = packet.error
elif isinstance(packet, ChatMessageDetail):
response.chat_message_id = packet.message_id
elif isinstance(packet, LLMRelevanceFilterResponse):
response.llm_selected_doc_indices = packet.llm_selected_doc_indices
elif isinstance(packet, AllCitations):
response.citations = packet.citations
if answer:
response.answer = answer
return response

View File

@@ -4,20 +4,26 @@ from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import SystemMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prompt_builder.utils import translate_history_to_basemessages
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import check_message_tokens
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.llm.utils import translate_history_to_basemessages
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.prompts.chat_prompts import CHAT_USER_CONTEXT_FREE_PROMPT
from danswer.prompts.prompt_utils import add_date_time_to_prompt
from danswer.prompts.prompt_utils import drop_messages_history_overflow
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
def default_build_system_message(
@@ -139,3 +145,15 @@ class AnswerPromptBuilder:
return drop_messages_history_overflow(
final_messages_with_tokens, self.max_tokens
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True

View File

@@ -2,12 +2,12 @@ from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.model_configs import GEN_AI_SINGLE_USER_MESSAGE_EXPECTED_MAX_TOKENS
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Persona
from danswer.db.persona import get_default_prompt__read_only
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.interfaces import LLMConfig

View File

@@ -1,10 +1,10 @@
from langchain.schema.messages import HumanMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.context.search.models import InferenceChunk
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.prompts.direct_qa_prompts import CONTEXT_BLOCK
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK

View File

@@ -0,0 +1,62 @@
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from danswer.configs.constants import MessageType
from danswer.db.models import ChatMessage
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
def translate_danswer_msg_to_langchain(
msg: ChatMessage | PreviousMessage,
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts

View File

@@ -5,16 +5,16 @@ from typing import TypeVar
from pydantic import BaseModel
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import (
LlmDoc,
)
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_document_tokens
from danswer.configs.constants import IGNORE_FOR_QA
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
from danswer.context.search.models import InferenceChunk
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_document_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.natural_language_processing.utils import tokenizer_trim_content

View File

@@ -3,16 +3,11 @@ from collections.abc import Generator
from langchain_core.messages import BaseMessage
from danswer.chat.llm_response_handler import ResponsePart
from danswer.chat.models import CitationInfo
from danswer.chat.models import LlmDoc
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.llm.answering.stream_processing.citation_processing import (
CitationProcessor,
)
from danswer.llm.answering.stream_processing.quotes_processing import (
QuotesProcessor,
)
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.chat.stream_processing.citation_processing import CitationProcessor
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -70,28 +65,29 @@ class CitationResponseHandler(AnswerResponseHandler):
yield from self.citation_processor.process_token(content)
class QuotesResponseHandler(AnswerResponseHandler):
def __init__(
self,
context_docs: list[LlmDoc],
is_json_prompt: bool = True,
):
self.quotes_processor = QuotesProcessor(
context_docs=context_docs,
is_json_prompt=is_json_prompt,
)
# No longer in use, remove later
# class QuotesResponseHandler(AnswerResponseHandler):
# def __init__(
# self,
# context_docs: list[LlmDoc],
# is_json_prompt: bool = True,
# ):
# self.quotes_processor = QuotesProcessor(
# context_docs=context_docs,
# is_json_prompt=is_json_prompt,
# )
def handle_response_part(
self,
response_item: BaseMessage | None,
previous_response_items: list[BaseMessage],
) -> Generator[ResponsePart, None, None]:
if response_item is None:
yield from self.quotes_processor.process_token(None)
return
# def handle_response_part(
# self,
# response_item: BaseMessage | None,
# previous_response_items: list[BaseMessage],
# ) -> Generator[ResponsePart, None, None]:
# if response_item is None:
# yield from self.quotes_processor.process_token(None)
# return
content = (
response_item.content if isinstance(response_item.content, str) else ""
)
# content = (
# response_item.content if isinstance(response_item.content, str) else ""
# )
yield from self.quotes_processor.process_token(content)
# yield from self.quotes_processor.process_token(content)

View File

@@ -4,8 +4,8 @@ from collections.abc import Generator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import LlmDoc
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.configs.chat_configs import STOP_STREAM_PAT
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.prompts.constants import TRIPLE_BACKTICK
from danswer.utils.logger import setup_logger

View File

@@ -1,3 +1,4 @@
# THIS IS NO LONGER IN USE
import math
import re
from collections.abc import Generator
@@ -5,11 +6,10 @@ from json import JSONDecodeError
from typing import Optional
import regex
from pydantic import BaseModel
from danswer.chat.models import DanswerAnswer
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerQuote
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import LlmDoc
from danswer.configs.chat_configs import QUOTE_ALLOWED_ERROR_PERCENT
from danswer.context.search.models import InferenceChunk
@@ -26,6 +26,20 @@ logger = setup_logger()
answer_pattern = re.compile(r'{\s*"answer"\s*:\s*"', re.IGNORECASE)
class DanswerQuote(BaseModel):
# This is during inference so everything is a string by this point
quote: str
document_id: str
link: str | None
source_type: str
semantic_identifier: str
blurb: str
class DanswerQuotes(BaseModel):
quotes: list[DanswerQuote]
def _extract_answer_quotes_freeform(
answer_raw: str,
) -> tuple[Optional[str], Optional[list[str]]]:

View File

@@ -4,8 +4,8 @@ from langchain_core.messages import AIMessageChunk
from langchain_core.messages import BaseMessage
from langchain_core.messages import ToolCall
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.chat.models import ResponsePart
from danswer.chat.prompt_builder.build import LLMCall
from danswer.llm.interfaces import LLM
from danswer.tools.force import ForceUseTool
from danswer.tools.message import build_tool_message

View File

@@ -43,9 +43,6 @@ WEB_DOMAIN = os.environ.get("WEB_DOMAIN") or "http://localhost:3000"
AUTH_TYPE = AuthType((os.environ.get("AUTH_TYPE") or AuthType.DISABLED.value).lower())
DISABLE_AUTH = AUTH_TYPE == AuthType.DISABLED
# Necessary for cloud integration tests
DISABLE_VERIFICATION = os.environ.get("DISABLE_VERIFICATION", "").lower() == "true"
# Encryption key secret is used to encrypt connector credentials, api keys, and other sensitive
# information. This provides an extra layer of security on top of Postgres access controls
# and is available in Danswer EE
@@ -84,7 +81,14 @@ OAUTH_CLIENT_SECRET = (
or ""
)
# for future OAuth connector support
# OAUTH_CONFLUENCE_CLIENT_ID = os.environ.get("OAUTH_CONFLUENCE_CLIENT_ID", "")
# OAUTH_CONFLUENCE_CLIENT_SECRET = os.environ.get("OAUTH_CONFLUENCE_CLIENT_SECRET", "")
# OAUTH_JIRA_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLIENT_ID", "")
# OAUTH_JIRA_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLIENT_SECRET", "")
USER_AUTH_SECRET = os.environ.get("USER_AUTH_SECRET", "")
# for basic auth
REQUIRE_EMAIL_VERIFICATION = (
os.environ.get("REQUIRE_EMAIL_VERIFICATION", "").lower() == "true"
@@ -118,6 +122,8 @@ VESPA_HOST = os.environ.get("VESPA_HOST") or "localhost"
VESPA_CONFIG_SERVER_HOST = os.environ.get("VESPA_CONFIG_SERVER_HOST") or VESPA_HOST
VESPA_PORT = os.environ.get("VESPA_PORT") or "8081"
VESPA_TENANT_PORT = os.environ.get("VESPA_TENANT_PORT") or "19071"
# the number of times to try and connect to vespa on startup before giving up
VESPA_NUM_ATTEMPTS_ON_STARTUP = int(os.environ.get("NUM_RETRIES_ON_STARTUP") or 10)
VESPA_CLOUD_URL = os.environ.get("VESPA_CLOUD_URL", "")
@@ -522,3 +528,6 @@ API_KEY_HASH_ROUNDS = (
POD_NAME = os.environ.get("POD_NAME")
POD_NAMESPACE = os.environ.get("POD_NAMESPACE")
DEV_MODE = os.environ.get("DEV_MODE", "").lower() == "true"

View File

@@ -31,6 +31,8 @@ DISABLED_GEN_AI_MSG = (
"You can still use Danswer as a search engine."
)
DEFAULT_PERSONA_ID = 0
# Postgres connection constants for application_name
POSTGRES_WEB_APP_NAME = "web"
POSTGRES_INDEXER_APP_NAME = "indexer"

View File

@@ -4,11 +4,8 @@ import os
# Danswer Slack Bot Configs
#####
DANSWER_BOT_NUM_RETRIES = int(os.environ.get("DANSWER_BOT_NUM_RETRIES", "5"))
DANSWER_BOT_ANSWER_GENERATION_TIMEOUT = int(
os.environ.get("DANSWER_BOT_ANSWER_GENERATION_TIMEOUT", "90")
)
# How much of the available input context can be used for thread context
DANSWER_BOT_TARGET_CHUNK_PERCENTAGE = 512 * 2 / 3072
MAX_THREAD_CONTEXT_PERCENTAGE = 512 * 2 / 3072
# Number of docs to display in "Reference Documents"
DANSWER_BOT_NUM_DOCS_TO_DISPLAY = int(
os.environ.get("DANSWER_BOT_NUM_DOCS_TO_DISPLAY", "5")
@@ -47,17 +44,6 @@ DANSWER_BOT_DISPLAY_ERROR_MSGS = os.environ.get(
DANSWER_BOT_RESPOND_EVERY_CHANNEL = (
os.environ.get("DANSWER_BOT_RESPOND_EVERY_CHANNEL", "").lower() == "true"
)
# Add a second LLM call post Answer to verify if the Answer is valid
# Throws out answers that don't directly or fully answer the user query
# This is the default for all DanswerBot channels unless the channel is configured individually
# Set/unset by "Hide Non Answers"
ENABLE_DANSWERBOT_REFLEXION = (
os.environ.get("ENABLE_DANSWERBOT_REFLEXION", "").lower() == "true"
)
# Currently not support chain of thought, probably will add back later
DANSWER_BOT_DISABLE_COT = True
# if set, will default DanswerBot to use quotes and reference documents
DANSWER_BOT_USE_QUOTES = os.environ.get("DANSWER_BOT_USE_QUOTES", "").lower() == "true"
# Maximum Questions Per Minute, Default Uncapped
DANSWER_BOT_MAX_QPM = int(os.environ.get("DANSWER_BOT_MAX_QPM") or 0) or None

View File

@@ -2,6 +2,8 @@ import json
import os
IMAGE_GENERATION_OUTPUT_FORMAT = os.environ.get("IMAGE_GENERATION_OUTPUT_FORMAT", "url")
# if specified, will pass through request headers to the call to API calls made by custom tools
CUSTOM_TOOL_PASS_THROUGH_HEADERS: list[str] | None = None
_CUSTOM_TOOL_PASS_THROUGH_HEADERS_RAW = os.environ.get(

View File

@@ -15,6 +15,7 @@ from danswer.connectors.confluence.utils import attachment_to_content
from danswer.connectors.confluence.utils import build_confluence_document_id
from danswer.connectors.confluence.utils import datetime_from_string
from danswer.connectors.confluence.utils import extract_text_from_confluence_html
from danswer.connectors.confluence.utils import validate_attachment_filetype
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
from danswer.connectors.interfaces import LoadConnector
@@ -276,9 +277,11 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
):
# If the page has restrictions, add them to the perm_sync_data
# These will be used by doc_sync.py to sync permissions
perm_sync_data = {
"restrictions": page.get("restrictions", {}),
"space_key": page.get("space", {}).get("key"),
page_restrictions = page.get("restrictions")
page_space_key = page.get("space", {}).get("key")
page_perm_sync_data = {
"restrictions": page_restrictions or {},
"space_key": page_space_key,
}
doc_metadata_list.append(
@@ -288,7 +291,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
page["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=page_perm_sync_data,
)
)
attachment_cql = f"type=attachment and container='{page['id']}'"
@@ -298,6 +301,21 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
expand=restrictions_expand,
limit=_SLIM_DOC_BATCH_SIZE,
):
if not validate_attachment_filetype(attachment):
continue
attachment_restrictions = attachment.get("restrictions")
if not attachment_restrictions:
attachment_restrictions = page_restrictions
attachment_space_key = attachment.get("space", {}).get("key")
if not attachment_space_key:
attachment_space_key = page_space_key
attachment_perm_sync_data = {
"restrictions": attachment_restrictions or {},
"space_key": attachment_space_key,
}
doc_metadata_list.append(
SlimDocument(
id=build_confluence_document_id(
@@ -305,7 +323,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
attachment["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=attachment_perm_sync_data,
)
)
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:

View File

@@ -32,7 +32,11 @@ def get_user_email_from_username__server(
response = confluence_client.get_mobile_parameters(user_name)
email = response.get("email")
except Exception:
email = None
# For now, we'll just return a string that indicates failure
# We may want to revert to returning None in the future
# email = None
email = f"FAILED TO GET CONFLUENCE EMAIL FOR {user_name}"
logger.warning(f"failed to get confluence email for {user_name}")
_USER_EMAIL_CACHE[user_name] = email
return _USER_EMAIL_CACHE[user_name]
@@ -173,19 +177,23 @@ def extract_text_from_confluence_html(
return format_document_soup(soup)
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if attachment["metadata"]["mediaType"] in [
def validate_attachment_filetype(attachment: dict[str, Any]) -> bool:
return attachment["metadata"]["mediaType"] not in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
]
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if not validate_attachment_filetype(attachment):
return None
download_link = confluence_client.url + attachment["_links"]["download"]
@@ -241,7 +249,7 @@ def build_confluence_document_id(
return f"{base_url}{content_url}"
def extract_referenced_attachment_names(page_text: str) -> list[str]:
def _extract_referenced_attachment_names(page_text: str) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachments in use

View File

@@ -5,7 +5,11 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prune_and_merge import _merge_sections
from danswer.chat.prune_and_merge import ChunkRange
from danswer.chat.prune_and_merge import merge_chunk_intervals
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.enums import QueryFlow
@@ -27,10 +31,6 @@ from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import VespaChunkRequest
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prune_and_merge import _merge_sections
from danswer.llm.answering.prune_and_merge import ChunkRange
from danswer.llm.answering.prune_and_merge import merge_chunk_intervals
from danswer.llm.interfaces import LLM
from danswer.secondary_llm_flows.agentic_evaluation import evaluate_inference_section
from danswer.utils.logger import setup_logger

View File

@@ -16,7 +16,7 @@ from slack_sdk.models.blocks import SectionBlock
from slack_sdk.models.blocks.basic_components import MarkdownTextObject
from slack_sdk.models.blocks.block_elements import ImageElement
from danswer.chat.models import DanswerQuote
from danswer.chat.models import ChatDanswerBotResponse
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import DocumentSource
@@ -40,10 +40,7 @@ from danswer.danswerbot.slack.utils import translate_vespa_highlight_to_slack
from danswer.db.chat import get_chat_session_by_message_id
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import ChannelConfig
from danswer.db.models import Persona
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.utils.text_processing import decode_escapes
from danswer.utils.text_processing import replace_whitespaces_w_space
_MAX_BLURB_LEN = 45
@@ -327,7 +324,7 @@ def _build_sources_blocks(
def _priority_ordered_documents_blocks(
answer: OneShotQAResponse,
answer: ChatDanswerBotResponse,
) -> list[Block]:
docs_response = answer.docs if answer.docs else None
top_docs = docs_response.top_documents if docs_response else []
@@ -350,7 +347,7 @@ def _priority_ordered_documents_blocks(
def _build_citations_blocks(
answer: OneShotQAResponse,
answer: ChatDanswerBotResponse,
) -> list[Block]:
docs_response = answer.docs if answer.docs else None
top_docs = docs_response.top_documents if docs_response else []
@@ -369,51 +366,8 @@ def _build_citations_blocks(
return citations_block
def _build_quotes_block(
quotes: list[DanswerQuote],
) -> list[Block]:
quote_lines: list[str] = []
doc_to_quotes: dict[str, list[str]] = {}
doc_to_link: dict[str, str] = {}
doc_to_sem_id: dict[str, str] = {}
for q in quotes:
quote = q.quote
doc_id = q.document_id
doc_link = q.link
doc_name = q.semantic_identifier
if doc_link and doc_name and doc_id and quote:
if doc_id not in doc_to_quotes:
doc_to_quotes[doc_id] = [quote]
doc_to_link[doc_id] = doc_link
doc_to_sem_id[doc_id] = (
doc_name
if q.source_type != DocumentSource.SLACK.value
else "#" + doc_name
)
else:
doc_to_quotes[doc_id].append(quote)
for doc_id, quote_strs in doc_to_quotes.items():
quotes_str_clean = [
replace_whitespaces_w_space(q_str).strip() for q_str in quote_strs
]
longest_quotes = sorted(quotes_str_clean, key=len, reverse=True)[:5]
single_quote_str = "\n".join([f"```{q_str}```" for q_str in longest_quotes])
link = doc_to_link[doc_id]
sem_id = doc_to_sem_id[doc_id]
quote_lines.append(
f"<{link}|{sem_id}>:\n{remove_slack_text_interactions(single_quote_str)}"
)
if not doc_to_quotes:
return []
return [SectionBlock(text="*Relevant Snippets*\n" + "\n".join(quote_lines))]
def _build_qa_response_blocks(
answer: OneShotQAResponse,
skip_quotes: bool = False,
answer: ChatDanswerBotResponse,
process_message_for_citations: bool = False,
) -> list[Block]:
retrieval_info = answer.docs
@@ -422,13 +376,10 @@ def _build_qa_response_blocks(
raise RuntimeError("Failed to retrieve docs, cannot answer question.")
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
quotes = answer.quotes.quotes if answer.quotes else None
if DISABLE_GENERATIVE_AI:
return []
quotes_blocks: list[Block] = []
filter_block: Block | None = None
if (
retrieval_info.applied_time_cutoff
@@ -471,16 +422,6 @@ def _build_qa_response_blocks(
answer_blocks = [
SectionBlock(text=text) for text in _split_text(answer_processed)
]
if quotes:
quotes_blocks = _build_quotes_block(quotes)
# if no quotes OR `_build_quotes_block()` did not give back any blocks
if not quotes_blocks:
quotes_blocks = [
SectionBlock(
text="*Warning*: no sources were quoted for this answer, so it may be unreliable 😔"
)
]
response_blocks: list[Block] = []
@@ -489,9 +430,6 @@ def _build_qa_response_blocks(
response_blocks.extend(answer_blocks)
if not skip_quotes:
response_blocks.extend(quotes_blocks)
return response_blocks
@@ -567,10 +505,9 @@ def build_follow_up_resolved_blocks(
def build_slack_response_blocks(
answer: ChatDanswerBotResponse,
tenant_id: str | None,
message_info: SlackMessageInfo,
answer: OneShotQAResponse,
persona: Persona | None,
channel_conf: ChannelConfig | None,
use_citations: bool,
feedback_reminder_id: str | None,
@@ -587,7 +524,6 @@ def build_slack_response_blocks(
answer_blocks = _build_qa_response_blocks(
answer=answer,
skip_quotes=persona is not None or use_citations,
process_message_for_citations=use_citations,
)
@@ -617,8 +553,7 @@ def build_slack_response_blocks(
citations_blocks = []
document_blocks = []
if use_citations:
# if citations are enabled, only show cited documents
if use_citations and answer.citations:
citations_blocks = _build_citations_blocks(answer)
else:
document_blocks = _priority_ordered_documents_blocks(answer)
@@ -637,4 +572,5 @@ def build_slack_response_blocks(
+ web_follow_up_block
+ follow_up_block
)
return all_blocks

View File

@@ -1,7 +1,6 @@
import functools
from collections.abc import Callable
from typing import Any
from typing import cast
from typing import Optional
from typing import TypeVar
@@ -9,46 +8,36 @@ from retry import retry
from slack_sdk import WebClient
from slack_sdk.models.blocks import SectionBlock
from danswer.chat.chat_utils import prepare_chat_message_request
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.process_message import gather_stream_for_slack
from danswer.chat.process_message import stream_chat_message_objects
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.danswerbot_configs import DANSWER_BOT_ANSWER_GENERATION_TIMEOUT
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_COT
from danswer.configs.constants import DEFAULT_PERSONA_ID
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISPLAY_ERROR_MSGS
from danswer.configs.danswerbot_configs import DANSWER_BOT_NUM_RETRIES
from danswer.configs.danswerbot_configs import DANSWER_BOT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.danswerbot_configs import DANSWER_BOT_USE_QUOTES
from danswer.configs.danswerbot_configs import DANSWER_FOLLOWUP_EMOJI
from danswer.configs.danswerbot_configs import DANSWER_REACT_EMOJI
from danswer.configs.danswerbot_configs import ENABLE_DANSWERBOT_REFLEXION
from danswer.configs.danswerbot_configs import MAX_THREAD_CONTEXT_PERCENTAGE
from danswer.context.search.enums import OptionalSearchSetting
from danswer.context.search.models import BaseFilters
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.danswerbot.slack.blocks import build_slack_response_blocks
from danswer.danswerbot.slack.handlers.utils import send_team_member_message
from danswer.danswerbot.slack.handlers.utils import slackify_message_thread
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.danswerbot.slack.utils import SlackRateLimiter
from danswer.danswerbot.slack.utils import update_emote_react
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import Persona
from danswer.db.models import SlackBotResponseType
from danswer.db.models import SlackChannelConfig
from danswer.db.persona import fetch_persona_by_id
from danswer.db.search_settings import get_current_search_settings
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.db.users import get_user_by_email
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.utils import check_number_of_tokens
from danswer.llm.utils import get_max_input_tokens
from danswer.one_shot_answer.answer_question import get_search_answer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.utils.logger import DanswerLoggingAdapter
srl = SlackRateLimiter()
RT = TypeVar("RT") # return type
@@ -83,16 +72,14 @@ def handle_regular_answer(
feedback_reminder_id: str | None,
tenant_id: str | None,
num_retries: int = DANSWER_BOT_NUM_RETRIES,
answer_generation_timeout: int = DANSWER_BOT_ANSWER_GENERATION_TIMEOUT,
thread_context_percent: float = DANSWER_BOT_TARGET_CHUNK_PERCENTAGE,
thread_context_percent: float = MAX_THREAD_CONTEXT_PERCENTAGE,
should_respond_with_error_msgs: bool = DANSWER_BOT_DISPLAY_ERROR_MSGS,
disable_docs_only_answer: bool = DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER,
disable_cot: bool = DANSWER_BOT_DISABLE_COT,
reflexion: bool = ENABLE_DANSWERBOT_REFLEXION,
) -> bool:
channel_conf = slack_channel_config.channel_config if slack_channel_config else None
messages = message_info.thread_messages
message_ts_to_respond_to = message_info.msg_to_respond
is_bot_msg = message_info.is_bot_msg
user = None
@@ -102,9 +89,18 @@ def handle_regular_answer(
user = get_user_by_email(message_info.email, db_session)
document_set_names: list[str] | None = None
persona = slack_channel_config.persona if slack_channel_config else None
prompt = None
if persona:
# If no persona is specified, use the default search based persona
# This way slack flow always has a persona
persona = slack_channel_config.persona if slack_channel_config else None
if not persona:
with get_session_with_tenant(tenant_id) as db_session:
persona = get_persona_by_id(DEFAULT_PERSONA_ID, user, db_session)
document_set_names = [
document_set.name for document_set in persona.document_sets
]
prompt = persona.prompts[0] if persona.prompts else None
else:
document_set_names = [
document_set.name for document_set in persona.document_sets
]
@@ -112,6 +108,26 @@ def handle_regular_answer(
should_respond_even_with_no_docs = persona.num_chunks == 0 if persona else False
# TODO: Add in support for Slack to truncate messages based on max LLM context
# llm, _ = get_llms_for_persona(persona)
# llm_tokenizer = get_tokenizer(
# model_name=llm.config.model_name,
# provider_type=llm.config.model_provider,
# )
# # In cases of threads, split the available tokens between docs and thread context
# input_tokens = get_max_input_tokens(
# model_name=llm.config.model_name,
# model_provider=llm.config.model_provider,
# )
# max_history_tokens = int(input_tokens * thread_context_percent)
# combined_message = combine_message_thread(
# messages, max_tokens=max_history_tokens, llm_tokenizer=llm_tokenizer
# )
combined_message = slackify_message_thread(messages)
bypass_acl = False
if (
slack_channel_config
@@ -122,13 +138,6 @@ def handle_regular_answer(
# with non-public document sets
bypass_acl = True
# figure out if we want to use citations or quotes
use_citations = (
not DANSWER_BOT_USE_QUOTES
if slack_channel_config is None
else slack_channel_config.response_type == SlackBotResponseType.CITATIONS
)
if not message_ts_to_respond_to and not is_bot_msg:
# if the message is not "/danswer" command, then it should have a message ts to respond to
raise RuntimeError(
@@ -141,75 +150,23 @@ def handle_regular_answer(
backoff=2,
)
@rate_limits(client=client, channel=channel, thread_ts=message_ts_to_respond_to)
def _get_answer(new_message_request: DirectQARequest) -> OneShotQAResponse | None:
max_document_tokens: int | None = None
max_history_tokens: int | None = None
def _get_slack_answer(
new_message_request: CreateChatMessageRequest, danswer_user: User | None
) -> ChatDanswerBotResponse:
with get_session_with_tenant(tenant_id) as db_session:
if len(new_message_request.messages) > 1:
if new_message_request.persona_config:
raise RuntimeError("Slack bot does not support persona config")
elif new_message_request.persona_id is not None:
persona = cast(
Persona,
fetch_persona_by_id(
db_session,
new_message_request.persona_id,
user=None,
get_editable=False,
),
)
else:
raise RuntimeError(
"No persona id provided, this should never happen."
)
llm, _ = get_llms_for_persona(persona)
# In cases of threads, split the available tokens between docs and thread context
input_tokens = get_max_input_tokens(
model_name=llm.config.model_name,
model_provider=llm.config.model_provider,
)
max_history_tokens = int(input_tokens * thread_context_percent)
remaining_tokens = input_tokens - max_history_tokens
query_text = new_message_request.messages[0].message
if persona:
max_document_tokens = compute_max_document_tokens_for_persona(
persona=persona,
actual_user_input=query_text,
max_llm_token_override=remaining_tokens,
)
else:
max_document_tokens = (
remaining_tokens
- 512 # Needs to be more than any of the QA prompts
- check_number_of_tokens(query_text)
)
if DISABLE_GENERATIVE_AI:
return None
# This also handles creating the query event in postgres
answer = get_search_answer(
query_req=new_message_request,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
packets = stream_chat_message_objects(
new_msg_req=new_message_request,
user=danswer_user,
db_session=db_session,
answer_generation_timeout=answer_generation_timeout,
enable_reflexion=reflexion,
bypass_acl=bypass_acl,
use_citations=use_citations,
danswerbot_flow=True,
)
if not answer.error_msg:
return answer
else:
raise RuntimeError(answer.error_msg)
answer = gather_stream_for_slack(packets)
if answer.error_msg:
raise RuntimeError(answer.error_msg)
return answer
try:
# By leaving time_cutoff and favor_recent as None, and setting enable_auto_detect_filters
@@ -239,26 +196,24 @@ def handle_regular_answer(
enable_auto_detect_filters=auto_detect_filters,
)
# Always apply reranking settings if it exists, this is the non-streaming flow
with get_session_with_tenant(tenant_id) as db_session:
saved_search_settings = get_current_search_settings(db_session)
# This includes throwing out answer via reflexion
answer = _get_answer(
DirectQARequest(
messages=messages,
multilingual_query_expansion=saved_search_settings.multilingual_expansion
if saved_search_settings
else None,
prompt_id=prompt.id if prompt else None,
persona_id=persona.id if persona is not None else 0,
retrieval_options=retrieval_details,
chain_of_thought=not disable_cot,
rerank_settings=RerankingDetails.from_db_model(saved_search_settings)
if saved_search_settings
else None,
answer_request = prepare_chat_message_request(
message_text=combined_message,
user=user,
persona_id=persona.id,
# This is not used in the Slack flow, only in the answer API
persona_override_config=None,
prompt=prompt,
message_ts_to_respond_to=message_ts_to_respond_to,
retrieval_details=retrieval_details,
rerank_settings=None, # Rerank customization supported in Slack flow
db_session=db_session,
)
answer = _get_slack_answer(
new_message_request=answer_request, danswer_user=user
)
except Exception as e:
logger.exception(
f"Unable to process message - did not successfully answer "
@@ -359,7 +314,7 @@ def handle_regular_answer(
top_docs = retrieval_info.top_documents
if not top_docs and not should_respond_even_with_no_docs:
logger.error(
f"Unable to answer question: '{answer.rephrase}' - no documents found"
f"Unable to answer question: '{combined_message}' - no documents found"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
@@ -380,18 +335,18 @@ def handle_regular_answer(
)
return True
only_respond_with_citations_or_quotes = (
only_respond_if_citations = (
channel_conf
and "well_answered_postfilter" in channel_conf.get("answer_filters", [])
)
has_citations_or_quotes = bool(answer.citations or answer.quotes)
if (
only_respond_with_citations_or_quotes
and not has_citations_or_quotes
only_respond_if_citations
and not answer.citations
and not message_info.bypass_filters
):
logger.error(
f"Unable to find citations or quotes to answer: '{answer.rephrase}' - not answering!"
f"Unable to find citations to answer: '{answer.answer}' - not answering!"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
@@ -409,9 +364,8 @@ def handle_regular_answer(
tenant_id=tenant_id,
message_info=message_info,
answer=answer,
persona=persona,
channel_conf=channel_conf,
use_citations=use_citations,
use_citations=True, # No longer supporting quotes
feedback_reminder_id=feedback_reminder_id,
)

View File

@@ -1,8 +1,33 @@
from slack_sdk import WebClient
from danswer.chat.models import ThreadMessage
from danswer.configs.constants import MessageType
from danswer.danswerbot.slack.utils import respond_in_thread
def slackify_message_thread(messages: list[ThreadMessage]) -> str:
# Note: this does not handle extremely long threads, every message will be included
# with weaker LLMs, this could cause issues with exceeeding the token limit
if not messages:
return ""
message_strs: list[str] = []
for message in messages:
if message.role == MessageType.USER:
message_text = (
f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
)
elif message.role == MessageType.ASSISTANT:
message_text = f"AI said in Slack:\n{message.message}"
else:
message_text = (
f"{message.role.value.upper()} said in Slack:\n{message.message}"
)
message_strs.append(message_text)
return "\n\n".join(message_strs)
def send_team_member_message(
client: WebClient,
channel: str,

View File

@@ -19,6 +19,8 @@ from slack_sdk.socket_mode.request import SocketModeRequest
from slack_sdk.socket_mode.response import SocketModeResponse
from sqlalchemy.orm import Session
from danswer.chat.models import ThreadMessage
from danswer.configs.app_configs import DEV_MODE
from danswer.configs.app_configs import POD_NAME
from danswer.configs.app_configs import POD_NAMESPACE
from danswer.configs.constants import DanswerRedisLocks
@@ -74,7 +76,6 @@ from danswer.db.slack_bot import fetch_slack_bots
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.one_shot_answer.models import ThreadMessage
from danswer.redis.redis_pool import get_redis_client
from danswer.server.manage.models import SlackBotTokens
from danswer.utils.logger import setup_logger
@@ -250,7 +251,7 @@ class SlackbotHandler:
nx=True,
ex=TENANT_LOCK_EXPIRATION,
)
if not acquired:
if not acquired and not DEV_MODE:
logger.debug(f"Another pod holds the lock for tenant {tenant_id}")
continue

View File

@@ -1,6 +1,6 @@
from pydantic import BaseModel
from danswer.one_shot_answer.models import ThreadMessage
from danswer.chat.models import ThreadMessage
class SlackMessageInfo(BaseModel):

View File

@@ -30,13 +30,13 @@ from danswer.configs.danswerbot_configs import (
from danswer.connectors.slack.utils import make_slack_api_rate_limited
from danswer.connectors.slack.utils import SlackTextCleaner
from danswer.danswerbot.slack.constants import FeedbackVisibility
from danswer.danswerbot.slack.models import ThreadMessage
from danswer.db.engine import get_session_with_tenant
from danswer.db.users import get_user_by_email
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.one_shot_answer.models import ThreadMessage
from danswer.prompts.miscellaneous_prompts import SLACK_LANGUAGE_REPHRASE_PROMPT
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry

View File

@@ -145,16 +145,10 @@ def get_chat_sessions_by_user(
user_id: UUID | None,
deleted: bool | None,
db_session: Session,
only_one_shot: bool = False,
limit: int = 50,
) -> list[ChatSession]:
stmt = select(ChatSession).where(ChatSession.user_id == user_id)
if only_one_shot:
stmt = stmt.where(ChatSession.one_shot.is_(True))
else:
stmt = stmt.where(ChatSession.one_shot.is_(False))
stmt = stmt.order_by(desc(ChatSession.time_created))
if deleted is not None:
@@ -226,12 +220,11 @@ def delete_messages_and_files_from_chat_session(
def create_chat_session(
db_session: Session,
description: str,
description: str | None,
user_id: UUID | None,
persona_id: int | None, # Can be none if temporary persona is used
llm_override: LLMOverride | None = None,
prompt_override: PromptOverride | None = None,
one_shot: bool = False,
danswerbot_flow: bool = False,
slack_thread_id: str | None = None,
) -> ChatSession:
@@ -241,7 +234,6 @@ def create_chat_session(
description=description,
llm_override=llm_override,
prompt_override=prompt_override,
one_shot=one_shot,
danswerbot_flow=danswerbot_flow,
slack_thread_id=slack_thread_id,
)
@@ -287,8 +279,6 @@ def duplicate_chat_session_for_user_from_slack(
description="",
llm_override=chat_session.llm_override,
prompt_override=chat_session.prompt_override,
# Chat sessions from Slack should put people in the chat UI, not the search
one_shot=False,
# Chat is in UI now so this is false
danswerbot_flow=False,
# Maybe we want this in the future to track if it was created from Slack

View File

@@ -248,7 +248,6 @@ def create_credential(
)
db_session.commit()
return credential

View File

@@ -37,6 +37,7 @@ from danswer.configs.app_configs import POSTGRES_PORT
from danswer.configs.app_configs import POSTGRES_USER
from danswer.configs.app_configs import USER_AUTH_SECRET
from danswer.configs.constants import POSTGRES_UNKNOWN_APP_NAME
from danswer.server.utils import BasicAuthenticationError
from danswer.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
@@ -426,7 +427,9 @@ def get_session() -> Generator[Session, None, None]:
"""Generate a database session with the appropriate tenant schema set."""
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
if tenant_id == POSTGRES_DEFAULT_SCHEMA and MULTI_TENANT:
raise HTTPException(status_code=401, detail="User must authenticate")
raise BasicAuthenticationError(
detail="User must authenticate",
)
engine = get_sqlalchemy_engine()

View File

@@ -1,6 +1,5 @@
import datetime
import json
from enum import Enum as PyEnum
from typing import Any
from typing import Literal
from typing import NotRequired
@@ -964,9 +963,8 @@ class ChatSession(Base):
persona_id: Mapped[int | None] = mapped_column(
ForeignKey("persona.id"), nullable=True
)
description: Mapped[str] = mapped_column(Text)
# One-shot direct answering, currently the two types of chats are not mixed
one_shot: Mapped[bool] = mapped_column(Boolean, default=False)
description: Mapped[str | None] = mapped_column(Text, nullable=True)
# This chat created by DanswerBot
danswerbot_flow: Mapped[bool] = mapped_column(Boolean, default=False)
# Only ever set to True if system is set to not hard-delete chats
deleted: Mapped[bool] = mapped_column(Boolean, default=False)
@@ -1488,16 +1486,13 @@ class ChannelConfig(TypedDict):
show_continue_in_web_ui: NotRequired[bool] # defaults to False
class SlackBotResponseType(str, PyEnum):
QUOTES = "quotes"
CITATIONS = "citations"
class SlackChannelConfig(Base):
__tablename__ = "slack_channel_config"
id: Mapped[int] = mapped_column(primary_key=True)
slack_bot_id: Mapped[int] = mapped_column(ForeignKey("slack_bot.id"), nullable=True)
slack_bot_id: Mapped[int] = mapped_column(
ForeignKey("slack_bot.id"), nullable=False
)
persona_id: Mapped[int | None] = mapped_column(
ForeignKey("persona.id"), nullable=True
)
@@ -1505,9 +1500,6 @@ class SlackChannelConfig(Base):
channel_config: Mapped[ChannelConfig] = mapped_column(
postgresql.JSONB(), nullable=False
)
response_type: Mapped[SlackBotResponseType] = mapped_column(
Enum(SlackBotResponseType, native_enum=False), nullable=False
)
enable_auto_filters: Mapped[bool] = mapped_column(
Boolean, nullable=False, default=False

View File

@@ -10,7 +10,6 @@ from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
from danswer.db.models import ChannelConfig
from danswer.db.models import Persona
from danswer.db.models import Persona__DocumentSet
from danswer.db.models import SlackBotResponseType
from danswer.db.models import SlackChannelConfig
from danswer.db.models import User
from danswer.db.persona import get_default_prompt
@@ -83,7 +82,6 @@ def insert_slack_channel_config(
slack_bot_id: int,
persona_id: int | None,
channel_config: ChannelConfig,
response_type: SlackBotResponseType,
standard_answer_category_ids: list[int],
enable_auto_filters: bool,
) -> SlackChannelConfig:
@@ -115,7 +113,6 @@ def insert_slack_channel_config(
slack_bot_id=slack_bot_id,
persona_id=persona_id,
channel_config=channel_config,
response_type=response_type,
standard_answer_categories=existing_standard_answer_categories,
enable_auto_filters=enable_auto_filters,
)
@@ -130,7 +127,6 @@ def update_slack_channel_config(
slack_channel_config_id: int,
persona_id: int | None,
channel_config: ChannelConfig,
response_type: SlackBotResponseType,
standard_answer_category_ids: list[int],
enable_auto_filters: bool,
) -> SlackChannelConfig:
@@ -170,7 +166,6 @@ def update_slack_channel_config(
# will encounter `violates foreign key constraint` errors
slack_channel_config.persona_id = persona_id
slack_channel_config.channel_config = channel_config
slack_channel_config.response_type = response_type
slack_channel_config.standard_answer_categories = list(
existing_standard_answer_categories
)

View File

@@ -4,6 +4,8 @@ schema DANSWER_CHUNK_NAME {
# Not to be confused with the UUID generated for this chunk which is called documentid by default
field document_id type string {
indexing: summary | attribute
attribute: fast-search
rank: filter
}
field chunk_id type int {
indexing: summary | attribute

View File

@@ -6,6 +6,7 @@ import zipfile
from collections.abc import Callable
from collections.abc import Iterator
from email.parser import Parser as EmailParser
from io import BytesIO
from pathlib import Path
from typing import Any
from typing import Dict
@@ -15,13 +16,17 @@ import chardet
import docx # type: ignore
import openpyxl # type: ignore
import pptx # type: ignore
from docx import Document
from fastapi import UploadFile
from pypdf import PdfReader
from pypdf.errors import PdfStreamError
from danswer.configs.constants import DANSWER_METADATA_FILENAME
from danswer.configs.constants import FileOrigin
from danswer.file_processing.html_utils import parse_html_page_basic
from danswer.file_processing.unstructured import get_unstructured_api_key
from danswer.file_processing.unstructured import unstructured_to_text
from danswer.file_store.file_store import FileStore
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -375,3 +380,35 @@ def extract_file_text(
) from e
logger.warning(f"Failed to process file {file_name or 'Unknown'}: {str(e)}")
return ""
def convert_docx_to_txt(
file: UploadFile, file_store: FileStore, file_path: str
) -> None:
file.file.seek(0)
docx_content = file.file.read()
doc = Document(BytesIO(docx_content))
# Extract text from the document
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
# Join the extracted text
text_content = "\n".join(full_text)
txt_file_path = docx_to_txt_filename(file_path)
file_store.save_file(
file_name=txt_file_path,
content=BytesIO(text_content.encode("utf-8")),
display_name=file.filename,
file_origin=FileOrigin.CONNECTOR,
file_type="text/plain",
)
def docx_to_txt_filename(file_path: str) -> str:
"""
Convert a .docx file path to its corresponding .txt file path.
"""
return file_path.rsplit(".", 1)[0] + ".txt"

View File

@@ -1,6 +1,6 @@
import base64
from collections.abc import Callable
from io import BytesIO
from typing import Any
from typing import cast
from uuid import uuid4
@@ -13,8 +13,8 @@ from danswer.db.models import ChatMessage
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import FileDescriptor
from danswer.file_store.models import InMemoryChatFile
from danswer.utils.b64 import get_image_type
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
def load_chat_file(
@@ -75,11 +75,58 @@ def save_file_from_url(url: str, tenant_id: str) -> str:
return unique_id
def save_files_from_urls(urls: list[str]) -> list[str]:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
def save_file_from_base64(base64_string: str, tenant_id: str) -> str:
with get_session_with_tenant(tenant_id) as db_session:
unique_id = str(uuid4())
file_store = get_default_file_store(db_session)
file_store.save_file(
file_name=unique_id,
content=BytesIO(base64.b64decode(base64_string)),
display_name="GeneratedImage",
file_origin=FileOrigin.CHAT_IMAGE_GEN,
file_type=get_image_type(base64_string),
)
return unique_id
funcs: list[tuple[Callable[..., Any], tuple[Any, ...]]] = [
(save_file_from_url, (url, tenant_id)) for url in urls
def save_file(
tenant_id: str,
url: str | None = None,
base64_data: str | None = None,
) -> str:
"""Save a file from either a URL or base64 encoded string.
Args:
tenant_id: The tenant ID to save the file under
url: URL to download file from
base64_data: Base64 encoded file data
Returns:
The unique ID of the saved file
Raises:
ValueError: If neither url nor base64_data is provided, or if both are provided
"""
if url is not None and base64_data is not None:
raise ValueError("Cannot specify both url and base64_data")
if url is not None:
return save_file_from_url(url, tenant_id)
elif base64_data is not None:
return save_file_from_base64(base64_data, tenant_id)
else:
raise ValueError("Must specify either url or base64_data")
def save_files(urls: list[str], base64_files: list[str], tenant_id: str) -> list[str]:
# NOTE: be explicit about typing so that if we change things, we get notified
funcs: list[
tuple[
Callable[[str, str | None, str | None], str],
tuple[str, str | None, str | None],
]
] = [(save_file, (tenant_id, url, None)) for url in urls] + [
(save_file, (tenant_id, None, base64_file)) for base64_file in base64_files
]
# Must pass in tenant_id here, since this is called by multithreading
return run_functions_tuples_in_parallel(funcs)

View File

@@ -1,163 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import AnswerQuestionStreamReturn
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.override_models import PromptOverride
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
from danswer.db.models import Prompt
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)

View File

@@ -1,20 +0,0 @@
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()

View File

@@ -1,5 +1,6 @@
from typing import Any
from danswer.chat.models import PersonaOverrideConfig
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.chat_configs import QA_TIMEOUT
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
@@ -13,8 +14,11 @@ from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.interfaces import LLM
from danswer.llm.override_models import LLMOverride
from danswer.utils.headers import build_llm_extra_headers
from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
logger = setup_logger()
def _build_extra_model_kwargs(provider: str) -> dict[str, Any]:
"""Ollama requires us to specify the max context window.
@@ -32,11 +36,15 @@ def get_main_llm_from_tuple(
def get_llms_for_persona(
persona: Persona,
persona: Persona | PersonaOverrideConfig | None,
llm_override: LLMOverride | None = None,
additional_headers: dict[str, str] | None = None,
long_term_logger: LongTermLogger | None = None,
) -> tuple[LLM, LLM]:
if persona is None:
logger.warning("No persona provided, using default LLMs")
return get_default_llms()
model_provider_override = llm_override.model_provider if llm_override else None
model_version_override = llm_override.model_version if llm_override else None
temperature_override = llm_override.temperature if llm_override else None

View File

@@ -0,0 +1,59 @@
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)

View File

@@ -5,8 +5,6 @@ from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
from typing import cast
from typing import TYPE_CHECKING
from typing import Union
import litellm # type: ignore
import pandas as pd
@@ -36,17 +34,15 @@ from danswer.configs.constants import MessageType
from danswer.configs.model_configs import GEN_AI_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_NUM_RESERVED_OUTPUT_TOKENS
from danswer.db.models import ChatMessage
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.prompts.constants import CODE_BLOCK_PAT
from danswer.utils.b64 import get_image_type
from danswer.utils.b64 import get_image_type_from_bytes
from danswer.utils.logger import setup_logger
from shared_configs.configs import LOG_LEVEL
if TYPE_CHECKING:
from danswer.llm.answering.models import PreviousMessage
logger = setup_logger()
@@ -104,39 +100,6 @@ def litellm_exception_to_error_msg(
return error_msg
def translate_danswer_msg_to_langchain(
msg: Union[ChatMessage, "PreviousMessage"],
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts
# Processes CSV files to show the first 5 rows and max_columns (default 40) columns
def _process_csv_file(file: InMemoryChatFile, max_columns: int = 40) -> str:
df = pd.read_csv(io.StringIO(file.content.decode("utf-8")))
@@ -190,6 +153,7 @@ def build_content_with_imgs(
message: str,
files: list[InMemoryChatFile] | None = None,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
message_type: MessageType = MessageType.USER,
) -> str | list[str | dict[str, Any]]: # matching Langchain's BaseMessage content type
files = files or []
@@ -202,6 +166,7 @@ def build_content_with_imgs(
)
img_urls = img_urls or []
b64_imgs = b64_imgs or []
message_main_content = _build_content(message, files)
@@ -220,11 +185,22 @@ def build_content_with_imgs(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{file.to_base64()}",
"url": (
f"data:{get_image_type_from_bytes(file.content)};"
f"base64,{file.to_base64()}"
),
},
}
for file in files
if file.file_type == "image"
for file in img_files
]
+ [
{
"type": "image_url",
"image_url": {
"url": f"data:{get_image_type(b64_img)};base64,{b64_img}",
},
}
for b64_img in b64_imgs
]
+ [
{

View File

@@ -25,7 +25,6 @@ from danswer.auth.schemas import UserCreate
from danswer.auth.schemas import UserRead
from danswer.auth.schemas import UserUpdate
from danswer.auth.users import auth_backend
from danswer.auth.users import BasicAuthenticationError
from danswer.auth.users import create_danswer_oauth_router
from danswer.auth.users import fastapi_users
from danswer.configs.app_configs import APP_API_PREFIX
@@ -92,6 +91,7 @@ from danswer.server.settings.api import basic_router as settings_router
from danswer.server.token_rate_limits.api import (
router as token_rate_limit_settings_router,
)
from danswer.server.utils import BasicAuthenticationError
from danswer.setup import setup_danswer
from danswer.setup import setup_multitenant_danswer
from danswer.utils.logger import setup_logger
@@ -105,7 +105,6 @@ from shared_configs.configs import CORS_ALLOWED_ORIGIN
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import SENTRY_DSN
logger = setup_logger()
@@ -206,7 +205,7 @@ def log_http_error(_: Request, exc: Exception) -> JSONResponse:
if isinstance(exc, BasicAuthenticationError):
# For BasicAuthenticationError, just log a brief message without stack trace (almost always spam)
logger.error(f"Authentication failed: {str(exc)}")
logger.warning(f"Authentication failed: {str(exc)}")
elif status_code >= 400:
error_msg = f"{str(exc)}\n"

View File

@@ -1,456 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import reorganize_citations
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import DocumentRelevance
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import QADocsResponse
from danswer.chat.models import RelevanceAnalysis
from danswer.chat.models import StreamingError
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import QA_TIMEOUT
from danswer.configs.constants import MessageType
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.models import RerankMetricsContainer
from danswer.context.search.models import RetrievalMetricsContainer
from danswer.context.search.utils import chunks_or_sections_to_search_docs
from danswer.context.search.utils import dedupe_documents
from danswer.db.chat import create_chat_session
from danswer.db.chat import create_db_search_doc
from danswer.db.chat import create_new_chat_message
from danswer.db.chat import get_or_create_root_message
from danswer.db.chat import translate_db_message_to_chat_message_detail
from danswer.db.chat import translate_db_search_doc_to_server_search_doc
from danswer.db.chat import update_search_docs_table_with_relevance
from danswer.db.engine import get_session_context_manager
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.db.persona import get_prompt_by_id
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.models import QuotesConfig
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.one_shot_answer.models import QueryRephrase
from danswer.one_shot_answer.qa_utils import combine_message_thread
from danswer.one_shot_answer.qa_utils import slackify_message_thread
from danswer.secondary_llm_flows.answer_validation import get_answer_validity
from danswer.secondary_llm_flows.query_expansion import thread_based_query_rephrase
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.utils import get_json_line
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.search.search_tool import SEARCH_DOC_CONTENT_ID
from danswer.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from danswer.tools.tool_implementations.search.search_tool import SearchResponseSummary
from danswer.tools.tool_implementations.search.search_tool import SearchTool
from danswer.tools.tool_implementations.search.search_tool import (
SECTION_RELEVANCE_LIST_ID,
)
from danswer.tools.tool_runner import ToolCallKickoff
from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
from danswer.utils.timing import log_generator_function_time
from danswer.utils.variable_functionality import fetch_ee_implementation_or_noop
logger = setup_logger()
AnswerObjectIterator = Iterator[
QueryRephrase
| QADocsResponse
| LLMRelevanceFilterResponse
| DanswerAnswerPiece
| DanswerQuotes
| DanswerContexts
| StreamingError
| ChatMessageDetail
| CitationInfo
| ToolCallKickoff
| DocumentRelevance
]
def stream_answer_objects(
query_req: DirectQARequest,
user: User | None,
# These need to be passed in because in Web UI one shot flow,
# we can have much more document as there is no history.
# For Slack flow, we need to save more tokens for the thread context
max_document_tokens: int | None,
max_history_tokens: int | None,
db_session: Session,
# Needed to translate persona num_chunks to tokens to the LLM
default_num_chunks: float = MAX_CHUNKS_FED_TO_CHAT,
timeout: int = QA_TIMEOUT,
bypass_acl: bool = False,
use_citations: bool = False,
danswerbot_flow: bool = False,
retrieval_metrics_callback: (
Callable[[RetrievalMetricsContainer], None] | None
) = None,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> AnswerObjectIterator:
"""Streams in order:
1. [always] Retrieved documents, stops flow if nothing is found
2. [conditional] LLM selected chunk indices if LLM chunk filtering is turned on
3. [always] A set of streamed DanswerAnswerPiece and DanswerQuotes at the end
or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
user_id = user.id if user is not None else None
query_msg = query_req.messages[-1]
history = query_req.messages[:-1]
chat_session = create_chat_session(
db_session=db_session,
description="", # One shot queries don't need naming as it's never displayed
user_id=user_id,
persona_id=query_req.persona_id,
one_shot=True,
danswerbot_flow=danswerbot_flow,
)
# permanent "log" store, used primarily for debugging
long_term_logger = LongTermLogger(
metadata={"user_id": str(user_id), "chat_session_id": str(chat_session.id)}
)
temporary_persona: Persona | None = None
if query_req.persona_config is not None:
temporary_persona = fetch_ee_implementation_or_noop(
"danswer.server.query_and_chat.utils", "create_temporary_persona", None
)(db_session=db_session, persona_config=query_req.persona_config, user=user)
persona = temporary_persona if temporary_persona else chat_session.persona
try:
llm, fast_llm = get_llms_for_persona(
persona=persona, long_term_logger=long_term_logger
)
except ValueError as e:
logger.error(
f"Failed to initialize LLMs for persona '{persona.name}': {str(e)}"
)
if "No LLM provider" in str(e):
raise ValueError(
"Please configure a Generative AI model to use this feature."
) from e
raise ValueError(
"Failed to initialize the AI model. Please check your configuration and try again."
) from e
llm_tokenizer = get_tokenizer(
model_name=llm.config.model_name,
provider_type=llm.config.model_provider,
)
# Create a chat session which will just store the root message, the query, and the AI response
root_message = get_or_create_root_message(
chat_session_id=chat_session.id, db_session=db_session
)
history_str = combine_message_thread(
messages=history,
max_tokens=max_history_tokens,
llm_tokenizer=llm_tokenizer,
)
rephrased_query = query_req.query_override or thread_based_query_rephrase(
user_query=query_msg.message,
history_str=history_str,
)
# Given back ahead of the documents for latency reasons
# In chat flow it's given back along with the documents
yield QueryRephrase(rephrased_query=rephrased_query)
prompt = None
if query_req.prompt_id is not None:
# NOTE: let the user access any prompt as long as the Persona is shared
# with them
prompt = get_prompt_by_id(
prompt_id=query_req.prompt_id, user=None, db_session=db_session
)
if prompt is None:
if not persona.prompts:
raise RuntimeError(
"Persona does not have any prompts - this should never happen"
)
prompt = persona.prompts[0]
user_message_str = query_msg.message
# For this endpoint, we only save one user message to the chat session
# However, for slackbot, we want to include the history of the entire thread
if danswerbot_flow:
# Right now, we only support bringing over citations and search docs
# from the last message in the thread, not the entire thread
# in the future, we may want to retrieve the entire thread
user_message_str = slackify_message_thread(query_req.messages)
# Create the first User query message
new_user_message = create_new_chat_message(
chat_session_id=chat_session.id,
parent_message=root_message,
prompt_id=query_req.prompt_id,
message=user_message_str,
token_count=len(llm_tokenizer.encode(user_message_str)),
message_type=MessageType.USER,
db_session=db_session,
commit=True,
)
prompt_config = PromptConfig.from_model(prompt)
document_pruning_config = DocumentPruningConfig(
max_chunks=int(
persona.num_chunks if persona.num_chunks is not None else default_num_chunks
),
max_tokens=max_document_tokens,
)
answer_config = AnswerStyleConfig(
citation_config=CitationConfig() if use_citations else None,
quotes_config=QuotesConfig() if not use_citations else None,
document_pruning_config=document_pruning_config,
)
search_tool = SearchTool(
db_session=db_session,
user=user,
evaluation_type=(
LLMEvaluationType.SKIP
if DISABLE_LLM_DOC_RELEVANCE
else query_req.evaluation_type
),
persona=persona,
retrieval_options=query_req.retrieval_options,
prompt_config=prompt_config,
llm=llm,
fast_llm=fast_llm,
pruning_config=document_pruning_config,
answer_style_config=answer_config,
bypass_acl=bypass_acl,
chunks_above=query_req.chunks_above,
chunks_below=query_req.chunks_below,
full_doc=query_req.full_doc,
)
answer = Answer(
question=query_msg.message,
answer_style_config=answer_config,
prompt_config=PromptConfig.from_model(prompt),
llm=get_main_llm_from_tuple(
get_llms_for_persona(persona=persona, long_term_logger=long_term_logger)
),
single_message_history=history_str,
tools=[search_tool] if search_tool else [],
force_use_tool=(
ForceUseTool(
tool_name=search_tool.name,
args={"query": rephrased_query},
force_use=True,
)
),
# for now, don't use tool calling for this flow, as we haven't
# tested quotes with tool calling too much yet
skip_explicit_tool_calling=True,
return_contexts=query_req.return_contexts,
skip_gen_ai_answer_generation=query_req.skip_gen_ai_answer_generation,
)
# won't be any FileChatDisplay responses since that tool is never passed in
for packet in cast(AnswerObjectIterator, answer.processed_streamed_output):
# for one-shot flow, don't currently do anything with these
if isinstance(packet, ToolResponse):
# (likely fine that it comes after the initial creation of the search docs)
if packet.id == SEARCH_RESPONSE_SUMMARY_ID:
search_response_summary = cast(SearchResponseSummary, packet.response)
top_docs = chunks_or_sections_to_search_docs(
search_response_summary.top_sections
)
# Deduping happens at the last step to avoid harming quality by dropping content early on
deduped_docs = top_docs
if query_req.retrieval_options.dedupe_docs:
deduped_docs, dropped_inds = dedupe_documents(top_docs)
reference_db_search_docs = [
create_db_search_doc(server_search_doc=doc, db_session=db_session)
for doc in deduped_docs
]
response_docs = [
translate_db_search_doc_to_server_search_doc(db_search_doc)
for db_search_doc in reference_db_search_docs
]
initial_response = QADocsResponse(
rephrased_query=rephrased_query,
top_documents=response_docs,
predicted_flow=search_response_summary.predicted_flow,
predicted_search=search_response_summary.predicted_search,
applied_source_filters=search_response_summary.final_filters.source_type,
applied_time_cutoff=search_response_summary.final_filters.time_cutoff,
recency_bias_multiplier=search_response_summary.recency_bias_multiplier,
)
yield initial_response
elif packet.id == SEARCH_DOC_CONTENT_ID:
yield packet.response
elif packet.id == SECTION_RELEVANCE_LIST_ID:
document_based_response = {}
if packet.response is not None:
for evaluation in packet.response:
document_based_response[
evaluation.document_id
] = RelevanceAnalysis(
relevant=evaluation.relevant, content=evaluation.content
)
evaluation_response = DocumentRelevance(
relevance_summaries=document_based_response
)
if reference_db_search_docs is not None:
update_search_docs_table_with_relevance(
db_session=db_session,
reference_db_search_docs=reference_db_search_docs,
relevance_summary=evaluation_response,
)
yield evaluation_response
else:
yield packet
# Saving Gen AI answer and responding with message info
gen_ai_response_message = create_new_chat_message(
chat_session_id=chat_session.id,
parent_message=new_user_message,
prompt_id=query_req.prompt_id,
message=answer.llm_answer,
token_count=len(llm_tokenizer.encode(answer.llm_answer)),
message_type=MessageType.ASSISTANT,
error=None,
reference_docs=reference_db_search_docs,
db_session=db_session,
commit=True,
)
msg_detail_response = translate_db_message_to_chat_message_detail(
gen_ai_response_message
)
yield msg_detail_response
@log_generator_function_time()
def stream_search_answer(
query_req: DirectQARequest,
user: User | None,
max_document_tokens: int | None,
max_history_tokens: int | None,
) -> Iterator[str]:
with get_session_context_manager() as session:
objects = stream_answer_objects(
query_req=query_req,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=session,
)
for obj in objects:
yield get_json_line(obj.model_dump())
def get_search_answer(
query_req: DirectQARequest,
user: User | None,
max_document_tokens: int | None,
max_history_tokens: int | None,
db_session: Session,
answer_generation_timeout: int = QA_TIMEOUT,
enable_reflexion: bool = False,
bypass_acl: bool = False,
use_citations: bool = False,
danswerbot_flow: bool = False,
retrieval_metrics_callback: (
Callable[[RetrievalMetricsContainer], None] | None
) = None,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> OneShotQAResponse:
"""Collects the streamed one shot answer responses into a single object"""
qa_response = OneShotQAResponse()
results = stream_answer_objects(
query_req=query_req,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=db_session,
bypass_acl=bypass_acl,
use_citations=use_citations,
danswerbot_flow=danswerbot_flow,
timeout=answer_generation_timeout,
retrieval_metrics_callback=retrieval_metrics_callback,
rerank_metrics_callback=rerank_metrics_callback,
)
answer = ""
for packet in results:
if isinstance(packet, QueryRephrase):
qa_response.rephrase = packet.rephrased_query
if isinstance(packet, DanswerAnswerPiece) and packet.answer_piece:
answer += packet.answer_piece
elif isinstance(packet, QADocsResponse):
qa_response.docs = packet
elif isinstance(packet, LLMRelevanceFilterResponse):
qa_response.llm_selected_doc_indices = packet.llm_selected_doc_indices
elif isinstance(packet, DanswerQuotes):
qa_response.quotes = packet
elif isinstance(packet, CitationInfo):
if qa_response.citations:
qa_response.citations.append(packet)
else:
qa_response.citations = [packet]
elif isinstance(packet, DanswerContexts):
qa_response.contexts = packet
elif isinstance(packet, StreamingError):
qa_response.error_msg = packet.error
elif isinstance(packet, ChatMessageDetail):
qa_response.chat_message_id = packet.message_id
if answer:
qa_response.answer = answer
if enable_reflexion:
# Because follow up messages are explicitly tagged, we don't need to verify the answer
if len(query_req.messages) == 1:
first_query = query_req.messages[0].message
qa_response.answer_valid = get_answer_validity(first_query, answer)
else:
qa_response.answer_valid = True
if use_citations and qa_response.answer and qa_response.citations:
# Reorganize citation nums to be in the same order as the answer
qa_response.answer, qa_response.citations = reorganize_citations(
qa_response.answer, qa_response.citations
)
return qa_response

View File

@@ -1,114 +0,0 @@
from typing import Any
from pydantic import BaseModel
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DanswerQuotes
from danswer.chat.models import QADocsResponse
from danswer.configs.constants import MessageType
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.context.search.models import ChunkContext
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
class QueryRephrase(BaseModel):
rephrased_query: str
class ThreadMessage(BaseModel):
message: str
sender: str | None = None
role: MessageType = MessageType.USER
class PromptConfig(BaseModel):
name: str
description: str = ""
system_prompt: str
task_prompt: str = ""
include_citations: bool = True
datetime_aware: bool = True
class ToolConfig(BaseModel):
id: int
class PersonaConfig(BaseModel):
name: str
description: str
search_type: SearchType = SearchType.SEMANTIC
num_chunks: float | None = None
llm_relevance_filter: bool = False
llm_filter_extraction: bool = False
recency_bias: RecencyBiasSetting = RecencyBiasSetting.AUTO
llm_model_provider_override: str | None = None
llm_model_version_override: str | None = None
prompts: list[PromptConfig] = Field(default_factory=list)
prompt_ids: list[int] = Field(default_factory=list)
document_set_ids: list[int] = Field(default_factory=list)
tools: list[ToolConfig] = Field(default_factory=list)
tool_ids: list[int] = Field(default_factory=list)
custom_tools_openapi: list[dict[str, Any]] = Field(default_factory=list)
class DirectQARequest(ChunkContext):
persona_config: PersonaConfig | None = None
persona_id: int | None = None
messages: list[ThreadMessage]
prompt_id: int | None = None
multilingual_query_expansion: list[str] | None = None
retrieval_options: RetrievalDetails = Field(default_factory=RetrievalDetails)
rerank_settings: RerankingDetails | None = None
evaluation_type: LLMEvaluationType = LLMEvaluationType.UNSPECIFIED
chain_of_thought: bool = False
return_contexts: bool = False
# allows the caller to specify the exact search query they want to use
# can be used if the message sent to the LLM / query should not be the same
# will also disable Thread-based Rewording if specified
query_override: str | None = None
# If True, skips generative an AI response to the search query
skip_gen_ai_answer_generation: bool = False
@model_validator(mode="after")
def check_persona_fields(self) -> "DirectQARequest":
if (self.persona_config is None) == (self.persona_id is None):
raise ValueError("Exactly one of persona_config or persona_id must be set")
return self
@model_validator(mode="after")
def check_chain_of_thought_and_prompt_id(self) -> "DirectQARequest":
if self.chain_of_thought and self.prompt_id is not None:
raise ValueError(
"If chain_of_thought is True, prompt_id must be None"
"The chain of thought prompt is only for question "
"answering and does not accept customizing."
)
return self
class OneShotQAResponse(BaseModel):
# This is built piece by piece, any of these can be None as the flow could break
answer: str | None = None
rephrase: str | None = None
quotes: DanswerQuotes | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
answer_valid: bool = True # Reflexion result, default True if Reflexion not run
chat_message_id: int | None = None
contexts: DanswerContexts | None = None

View File

@@ -1,81 +0,0 @@
from collections.abc import Generator
from danswer.configs.constants import MessageType
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.one_shot_answer.models import ThreadMessage
from danswer.utils.logger import setup_logger
logger = setup_logger()
def simulate_streaming_response(model_out: str) -> Generator[str, None, None]:
"""Mock streaming by generating the passed in model output, character by character"""
for token in model_out:
yield token
def combine_message_thread(
messages: list[ThreadMessage],
max_tokens: int | None,
llm_tokenizer: BaseTokenizer,
) -> str:
"""Used to create a single combined message context from threads"""
if not messages:
return ""
message_strs: list[str] = []
total_token_count = 0
for message in reversed(messages):
if message.role == MessageType.USER:
role_str = message.role.value.upper()
if message.sender:
role_str += " " + message.sender
else:
# Since other messages might have the user identifying information
# better to use Unknown for symmetry
role_str += " Unknown"
else:
role_str = message.role.value.upper()
msg_str = f"{role_str}:\n{message.message}"
message_token_count = len(llm_tokenizer.encode(msg_str))
if (
max_tokens is not None
and total_token_count + message_token_count > max_tokens
):
break
message_strs.insert(0, msg_str)
total_token_count += message_token_count
return "\n\n".join(message_strs)
def slackify_message(message: ThreadMessage) -> str:
if message.role != MessageType.USER:
return message.message
return f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
def slackify_message_thread(messages: list[ThreadMessage]) -> str:
if not messages:
return ""
message_strs: list[str] = []
for message in messages:
if message.role == MessageType.USER:
message_text = (
f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
)
elif message.role == MessageType.ASSISTANT:
message_text = f"DanswerBot said in Slack:\n{message.message}"
else:
message_text = (
f"{message.role.value.upper()} said in Slack:\n{message.message}"
)
message_strs.append(message_text)
return "\n\n".join(message_strs)

View File

@@ -5,11 +5,11 @@ from typing import cast
from langchain_core.messages import BaseMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.configs.constants import DocumentSource
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Prompt
from danswer.llm.answering.models import PromptConfig
from danswer.prompts.chat_prompts import ADDITIONAL_INFO
from danswer.prompts.chat_prompts import CITATION_REMINDER
from danswer.prompts.constants import CODE_BLOCK_PAT

View File

@@ -133,6 +133,8 @@ class RedisConnectorPermissionSync:
lock: RedisLock | None,
new_permissions: list[DocExternalAccess],
source_string: str,
connector_id: int,
credential_id: int,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
@@ -155,6 +157,8 @@ class RedisConnectorPermissionSync:
tenant_id=self.tenant_id,
serialized_doc_external_access=doc_perm.to_dict(),
source_string=source_string,
connector_id=connector_id,
credential_id=credential_id,
),
queue=DanswerCeleryQueues.DOC_PERMISSIONS_UPSERT,
task_id=custom_task_id,

View File

@@ -3,14 +3,14 @@ from langchain.schema import HumanMessage
from langchain.schema import SystemMessage
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.utils import translate_danswer_msg_to_langchain
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.llm.utils import translate_danswer_msg_to_langchain
from danswer.prompts.chat_prompts import AGGRESSIVE_SEARCH_TEMPLATE
from danswer.prompts.chat_prompts import NO_SEARCH
from danswer.prompts.chat_prompts import REQUIRE_SEARCH_HINT

View File

@@ -4,10 +4,10 @@ from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.chat_configs import DISABLE_LLM_QUERY_REPHRASE
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import HISTORY_QUERY_REPHRASE

View File

@@ -86,6 +86,7 @@ from danswer.db.models import SearchSettings
from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.file_processing.extract_file_text import convert_docx_to_txt
from danswer.file_store.file_store import get_default_file_store
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.redis.redis_connector import RedisConnector
@@ -393,6 +394,12 @@ def upload_files(
file_origin=FileOrigin.CONNECTOR,
file_type=file.content_type or "text/plain",
)
if file.content_type and file.content_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
convert_docx_to_txt(file, file_store, file_path)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return FileUploadResponse(file_paths=deduped_file_paths)
@@ -1010,37 +1017,18 @@ def get_connector_by_id(
class BasicCCPairInfo(BaseModel):
docs_indexed: int
has_successful_run: bool
source: DocumentSource
@router.get("/indexing-status")
@router.get("/connector-status")
def get_basic_connector_indexing_status(
_: User = Depends(current_user),
db_session: Session = Depends(get_session),
) -> list[BasicCCPairInfo]:
cc_pairs = get_connector_credential_pairs(db_session)
cc_pair_identifiers = [
ConnectorCredentialPairIdentifier(
connector_id=cc_pair.connector_id, credential_id=cc_pair.credential_id
)
for cc_pair in cc_pairs
]
document_count_info = get_document_counts_for_cc_pairs(
db_session=db_session,
cc_pair_identifiers=cc_pair_identifiers,
)
cc_pair_to_document_cnt = {
(connector_id, credential_id): cnt
for connector_id, credential_id, cnt in document_count_info
}
return [
BasicCCPairInfo(
docs_indexed=cc_pair_to_document_cnt.get(
(cc_pair.connector_id, cc_pair.credential_id)
)
or 0,
has_successful_run=cc_pair.last_successful_index_time is not None,
source=cc_pair.connector.source,
)

View File

@@ -13,6 +13,7 @@ from danswer.auth.users import current_admin_user
from danswer.auth.users import current_curator_or_admin_user
from danswer.auth.users import current_limited_user
from danswer.auth.users import current_user
from danswer.chat.prompt_builder.utils import build_dummy_prompt
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import NotificationType
from danswer.db.engine import get_session
@@ -33,7 +34,6 @@ from danswer.db.persona import update_persona_shared_users
from danswer.db.persona import update_persona_visibility
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.llm.answering.prompts.utils import build_dummy_prompt
from danswer.server.features.persona.models import CreatePersonaRequest
from danswer.server.features.persona.models import ImageGenerationToolStatus
from danswer.server.features.persona.models import PersonaCategoryCreate

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from enum import Enum
from typing import TYPE_CHECKING
from pydantic import BaseModel
@@ -15,7 +16,6 @@ from danswer.danswerbot.slack.config import VALID_SLACK_FILTERS
from danswer.db.models import AllowedAnswerFilters
from danswer.db.models import ChannelConfig
from danswer.db.models import SlackBot as SlackAppModel
from danswer.db.models import SlackBotResponseType
from danswer.db.models import SlackChannelConfig as SlackChannelConfigModel
from danswer.db.models import User
from danswer.server.features.persona.models import PersonaSnapshot
@@ -148,6 +148,12 @@ class SlackBotTokens(BaseModel):
model_config = ConfigDict(frozen=True)
# TODO No longer in use, remove later
class SlackBotResponseType(str, Enum):
QUOTES = "quotes"
CITATIONS = "citations"
class SlackChannelConfigCreationRequest(BaseModel):
slack_bot_id: int
# currently, a persona is created for each Slack channel config
@@ -197,7 +203,6 @@ class SlackChannelConfig(BaseModel):
id: int
persona: PersonaSnapshot | None
channel_config: ChannelConfig
response_type: SlackBotResponseType
# XXX this is going away soon
standard_answer_categories: list[StandardAnswerCategory]
enable_auto_filters: bool
@@ -217,7 +222,6 @@ class SlackChannelConfig(BaseModel):
else None
),
channel_config=slack_channel_config_model.channel_config,
response_type=slack_channel_config_model.response_type,
# XXX this is going away soon
standard_answer_categories=[
StandardAnswerCategory.from_model(standard_answer_category_model)

View File

@@ -118,7 +118,6 @@ def create_slack_channel_config(
slack_bot_id=slack_channel_config_creation_request.slack_bot_id,
persona_id=persona_id,
channel_config=channel_config,
response_type=slack_channel_config_creation_request.response_type,
standard_answer_category_ids=slack_channel_config_creation_request.standard_answer_categories,
db_session=db_session,
enable_auto_filters=slack_channel_config_creation_request.enable_auto_filters,
@@ -182,7 +181,6 @@ def patch_slack_channel_config(
slack_channel_config_id=slack_channel_config_id,
persona_id=persona_id,
channel_config=channel_config,
response_type=slack_channel_config_creation_request.response_type,
standard_answer_category_ids=slack_channel_config_creation_request.standard_answer_categories,
enable_auto_filters=slack_channel_config_creation_request.enable_auto_filters,
)

View File

@@ -26,7 +26,6 @@ from danswer.auth.noauth_user import fetch_no_auth_user
from danswer.auth.noauth_user import set_no_auth_user_preferences
from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserStatus
from danswer.auth.users import BasicAuthenticationError
from danswer.auth.users import current_admin_user
from danswer.auth.users import current_curator_or_admin_user
from danswer.auth.users import current_user
@@ -60,6 +59,7 @@ from danswer.server.manage.models import UserRoleUpdateRequest
from danswer.server.models import FullUserSnapshot
from danswer.server.models import InvitedUserSnapshot
from danswer.server.models import MinimalUserSnapshot
from danswer.server.utils import BasicAuthenticationError
from danswer.server.utils import send_user_email_invite
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import fetch_ee_implementation_or_noop
@@ -194,11 +194,11 @@ def bulk_invite_users(
)
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
normalized_emails = []
new_invited_emails = []
try:
for email in emails:
email_info = validate_email(email)
normalized_emails.append(email_info.normalized) # type: ignore
new_invited_emails.append(email_info.normalized)
except (EmailUndeliverableError, EmailNotValidError) as e:
raise HTTPException(
@@ -210,7 +210,7 @@ def bulk_invite_users(
try:
fetch_ee_implementation_or_noop(
"danswer.server.tenants.provisioning", "add_users_to_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
except IntegrityError as e:
if isinstance(e.orig, UniqueViolation):
@@ -224,7 +224,7 @@ def bulk_invite_users(
initial_invited_users = get_invited_users()
all_emails = list(set(normalized_emails) | set(initial_invited_users))
all_emails = list(set(new_invited_emails) | set(initial_invited_users))
number_of_invited_users = write_invited_users(all_emails)
if not MULTI_TENANT:
@@ -236,7 +236,7 @@ def bulk_invite_users(
)(CURRENT_TENANT_ID_CONTEXTVAR.get(), get_total_users_count(db_session))
if ENABLE_EMAIL_INVITES:
try:
for email in all_emails:
for email in new_invited_emails:
send_user_email_invite(email, current_user)
except Exception as e:
logger.error(f"Error sending email invite to invited users: {e}")
@@ -250,7 +250,7 @@ def bulk_invite_users(
write_invited_users(initial_invited_users) # Reset to original state
fetch_ee_implementation_or_noop(
"danswer.server.tenants.user_mapping", "remove_users_from_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
raise e

View File

@@ -109,6 +109,7 @@ def process_run_in_background(
prompt_id=chat_session.persona.prompts[0].id,
search_doc_ids=None,
retrieval_options=search_tool_retrieval_details, # Adjust as needed
rerank_settings=None,
query_override=None,
regenerate=None,
llm_override=None,

View File

@@ -1,6 +1,7 @@
import asyncio
import io
import json
import os
import uuid
from collections.abc import Callable
from collections.abc import Generator
@@ -23,6 +24,9 @@ from danswer.auth.users import current_user
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import extract_headers
from danswer.chat.process_message import stream_chat_message
from danswer.chat.prompt_builder.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import MessageType
@@ -47,13 +51,11 @@ from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.file_processing.extract_file_text import docx_to_txt_filename
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.factory import get_llms_for_persona
@@ -718,6 +720,18 @@ def fetch_chat_file(
if not file_record:
raise HTTPException(status_code=404, detail="File not found")
original_file_name = file_record.display_name
if file_record.file_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
# Check if a converted text file exists for .docx files
txt_file_name = docx_to_txt_filename(original_file_name)
txt_file_id = os.path.join(os.path.dirname(file_id), txt_file_name)
txt_file_record = file_store.read_file_record(txt_file_id)
if txt_file_record:
file_record = txt_file_record
file_id = txt_file_id
media_type = file_record.file_type
file_io = file_store.read_file(file_id, mode="b")

View File

@@ -1,16 +1,19 @@
from datetime import datetime
from typing import Any
from typing import TYPE_CHECKING
from uuid import UUID
from pydantic import BaseModel
from pydantic import model_validator
from danswer.chat.models import PersonaOverrideConfig
from danswer.chat.models import RetrievalDocs
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
from danswer.configs.constants import SearchFeedbackType
from danswer.context.search.models import BaseFilters
from danswer.context.search.models import ChunkContext
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.context.search.models import SearchDoc
from danswer.context.search.models import Tag
@@ -20,6 +23,9 @@ from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
pass
class SourceTag(Tag):
source: DocumentSource
@@ -87,6 +93,8 @@ class CreateChatMessageRequest(ChunkContext):
# If search_doc_ids provided, then retrieval options are unused
search_doc_ids: list[int] | None
retrieval_options: RetrievalDetails | None
# Useable via the APIs but not recommended for most flows
rerank_settings: RerankingDetails | None = None
# allows the caller to specify the exact search query they want to use
# will disable Query Rewording if specified
query_override: str | None = None
@@ -102,6 +110,10 @@ class CreateChatMessageRequest(ChunkContext):
# allow user to specify an alternate assistnat
alternate_assistant_id: int | None = None
# This takes the priority over the prompt_override
# This won't be a type that's passed in directly from the API
persona_override_config: PersonaOverrideConfig | None = None
# used for seeded chats to kick off the generation of an AI answer
use_existing_user_message: bool = False
@@ -145,7 +157,7 @@ class RenameChatSessionResponse(BaseModel):
class ChatSessionDetails(BaseModel):
id: UUID
name: str
name: str | None
persona_id: int | None = None
time_created: str
shared_status: ChatSessionSharedStatus
@@ -198,14 +210,14 @@ class ChatMessageDetail(BaseModel):
class SearchSessionDetailResponse(BaseModel):
search_session_id: UUID
description: str
description: str | None
documents: list[SearchDoc]
messages: list[ChatMessageDetail]
class ChatSessionDetailResponse(BaseModel):
chat_session_id: UUID
description: str
description: str | None
persona_id: int | None = None
persona_name: str | None
messages: list[ChatMessageDetail]

View File

@@ -1,15 +1,11 @@
import json
from collections.abc import Generator
from uuid import UUID
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import StreamingResponse
from sqlalchemy.orm import Session
from danswer.auth.users import current_curator_or_admin_user
from danswer.auth.users import current_limited_user
from danswer.auth.users import current_user
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
@@ -32,8 +28,6 @@ from danswer.db.search_settings import get_current_search_settings
from danswer.db.tag import find_tags
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.vespa.index import VespaIndex
from danswer.one_shot_answer.answer_question import stream_search_answer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.server.query_and_chat.models import AdminSearchRequest
from danswer.server.query_and_chat.models import AdminSearchResponse
from danswer.server.query_and_chat.models import ChatSessionDetails
@@ -41,7 +35,6 @@ from danswer.server.query_and_chat.models import ChatSessionsResponse
from danswer.server.query_and_chat.models import SearchSessionDetailResponse
from danswer.server.query_and_chat.models import SourceTag
from danswer.server.query_and_chat.models import TagResponse
from danswer.server.query_and_chat.token_limit import check_token_rate_limits
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -140,7 +133,7 @@ def get_user_search_sessions(
try:
search_sessions = get_chat_sessions_by_user(
user_id=user_id, deleted=False, db_session=db_session, only_one_shot=True
user_id=user_id, deleted=False, db_session=db_session
)
except ValueError:
raise HTTPException(
@@ -229,29 +222,3 @@ def get_search_session(
],
)
return response
@basic_router.post("/stream-answer-with-quote")
def get_answer_with_quote(
query_request: DirectQARequest,
user: User = Depends(current_limited_user),
_: None = Depends(check_token_rate_limits),
) -> StreamingResponse:
query = query_request.messages[0].message
logger.notice(f"Received query for one shot answer with quotes: {query}")
def stream_generator() -> Generator[str, None, None]:
try:
for packet in stream_search_answer(
query_req=query_request,
user=user,
max_document_tokens=None,
max_history_tokens=0,
):
yield json.dumps(packet) if isinstance(packet, dict) else packet
except Exception as e:
logger.exception("Error in search answer streaming")
yield json.dumps({"error": str(e)})
return StreamingResponse(stream_generator(), media_type="application/json")

View File

@@ -6,6 +6,9 @@ from email.mime.text import MIMEText
from textwrap import dedent
from typing import Any
from fastapi import HTTPException
from fastapi import status
from danswer.configs.app_configs import SMTP_PASS
from danswer.configs.app_configs import SMTP_PORT
from danswer.configs.app_configs import SMTP_SERVER
@@ -14,6 +17,11 @@ from danswer.configs.app_configs import WEB_DOMAIN
from danswer.db.models import User
class BasicAuthenticationError(HTTPException):
def __init__(self, detail: str):
super().__init__(status_code=status.HTTP_403_FORBIDDEN, detail=detail)
class DateTimeEncoder(json.JSONEncoder):
"""Custom JSON encoder that converts datetime objects to ISO format strings."""

View File

@@ -4,6 +4,7 @@ from sqlalchemy.orm import Session
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import MANAGED_VESPA
from danswer.configs.app_configs import VESPA_NUM_ATTEMPTS_ON_STARTUP
from danswer.configs.constants import KV_REINDEX_KEY
from danswer.configs.constants import KV_SEARCH_SETTINGS
from danswer.configs.model_configs import FAST_GEN_AI_MODEL_VERSION
@@ -221,13 +222,13 @@ def setup_vespa(
document_index: DocumentIndex,
index_setting: IndexingSetting,
secondary_index_setting: IndexingSetting | None,
num_attempts: int = VESPA_NUM_ATTEMPTS_ON_STARTUP,
) -> bool:
# Vespa startup is a bit slow, so give it a few seconds
WAIT_SECONDS = 5
VESPA_ATTEMPTS = 5
for x in range(VESPA_ATTEMPTS):
for x in range(num_attempts):
try:
logger.notice(f"Setting up Vespa (attempt {x+1}/{VESPA_ATTEMPTS})...")
logger.notice(f"Setting up Vespa (attempt {x+1}/{num_attempts})...")
document_index.ensure_indices_exist(
index_embedding_dim=index_setting.model_dim,
secondary_index_embedding_dim=secondary_index_setting.model_dim
@@ -244,7 +245,7 @@ def setup_vespa(
time.sleep(WAIT_SECONDS)
logger.error(
f"Vespa setup did not succeed. Attempt limit reached. ({VESPA_ATTEMPTS})"
f"Vespa setup did not succeed. Attempt limit reached. ({num_attempts})"
)
return False

View File

@@ -7,7 +7,7 @@ from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.tool_implementations.custom.custom_tool import (
CustomToolCallSummary,
)

View File

@@ -3,13 +3,13 @@ from collections.abc import Generator
from typing import Any
from typing import TYPE_CHECKING
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.utils.special_types import JSON_ro
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse

View File

@@ -5,6 +5,10 @@ from pydantic import BaseModel
from pydantic import Field
from sqlalchemy.orm import Session
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationConfig
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import PromptConfig
from danswer.configs.app_configs import AZURE_DALLE_API_BASE
from danswer.configs.app_configs import AZURE_DALLE_API_KEY
from danswer.configs.app_configs import AZURE_DALLE_API_VERSION
@@ -13,15 +17,12 @@ from danswer.configs.chat_configs import BING_API_KEY
from danswer.configs.model_configs import GEN_AI_TEMPERATURE
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.db.llm import fetch_existing_llm_providers
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.interfaces import LLM
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer
@@ -102,11 +103,14 @@ class SearchToolConfig(BaseModel):
default_factory=DocumentPruningConfig
)
retrieval_options: RetrievalDetails = Field(default_factory=RetrievalDetails)
rerank_settings: RerankingDetails | None = None
selected_sections: list[InferenceSection] | None = None
chunks_above: int = 0
chunks_below: int = 0
full_doc: bool = False
latest_query_files: list[InMemoryChatFile] | None = None
# Use with care, should only be used for DanswerBot in channels with multiple users
bypass_acl: bool = False
class InternetSearchToolConfig(BaseModel):
@@ -170,6 +174,8 @@ def construct_tools(
if persona.llm_relevance_filter
else LLMEvaluationType.SKIP
),
rerank_settings=search_tool_config.rerank_settings,
bypass_acl=search_tool_config.bypass_acl,
)
tool_dict[db_tool_model.id] = [search_tool]

View File

@@ -15,14 +15,14 @@ from langchain_core.messages import SystemMessage
from pydantic import BaseModel
from requests import JSONDecodeError
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import FileOrigin
from danswer.db.engine import get_session_with_default_tenant
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.base_tool import BaseTool
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import CHAT_SESSION_ID_PLACEHOLDER

View File

@@ -4,14 +4,16 @@ from enum import Enum
from typing import Any
from typing import cast
import requests
from litellm import image_generation # type: ignore
from pydantic import BaseModel
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.configs.tool_configs import IMAGE_GENERATION_OUTPUT_FORMAT
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
@@ -56,9 +58,18 @@ Follow Up Input:
""".strip()
class ImageFormat(str, Enum):
URL = "url"
BASE64 = "b64_json"
_DEFAULT_OUTPUT_FORMAT = ImageFormat(IMAGE_GENERATION_OUTPUT_FORMAT)
class ImageGenerationResponse(BaseModel):
revised_prompt: str
url: str
url: str | None
image_data: str | None
class ImageShape(str, Enum):
@@ -80,6 +91,7 @@ class ImageGenerationTool(Tool):
model: str = "dall-e-3",
num_imgs: int = 2,
additional_headers: dict[str, str] | None = None,
output_format: ImageFormat = _DEFAULT_OUTPUT_FORMAT,
) -> None:
self.api_key = api_key
self.api_base = api_base
@@ -89,6 +101,7 @@ class ImageGenerationTool(Tool):
self.num_imgs = num_imgs
self.additional_headers = additional_headers
self.output_format = output_format
@property
def name(self) -> str:
@@ -168,7 +181,7 @@ class ImageGenerationTool(Tool):
)
return build_content_with_imgs(
json.dumps(
message=json.dumps(
[
{
"revised_prompt": image_generation.revised_prompt,
@@ -177,13 +190,10 @@ class ImageGenerationTool(Tool):
for image_generation in image_generations
]
),
# NOTE: we can't pass in the image URLs here, since OpenAI doesn't allow
# Tool messages to contain images
# img_urls=[image_generation.url for image_generation in image_generations],
)
def _generate_image(
self, prompt: str, shape: ImageShape
self, prompt: str, shape: ImageShape, format: ImageFormat
) -> ImageGenerationResponse:
if shape == ImageShape.LANDSCAPE:
size = "1792x1024"
@@ -197,20 +207,32 @@ class ImageGenerationTool(Tool):
prompt=prompt,
model=self.model,
api_key=self.api_key,
# need to pass in None rather than empty str
api_base=self.api_base or None,
api_version=self.api_version or None,
size=size,
n=1,
response_format=format,
extra_headers=build_llm_extra_headers(self.additional_headers),
)
if format == ImageFormat.URL:
url = response.data[0]["url"]
image_data = None
else:
url = None
image_data = response.data[0]["b64_json"]
return ImageGenerationResponse(
revised_prompt=response.data[0]["revised_prompt"],
url=response.data[0]["url"],
url=url,
image_data=image_data,
)
except requests.RequestException as e:
logger.error(f"Error fetching or converting image: {e}")
raise ValueError("Failed to fetch or convert the generated image")
except Exception as e:
logger.debug(f"Error occured during image generation: {e}")
logger.debug(f"Error occurred during image generation: {e}")
error_message = str(e)
if "OpenAIException" in str(type(e)):
@@ -235,9 +257,8 @@ class ImageGenerationTool(Tool):
def run(self, **kwargs: str) -> Generator[ToolResponse, None, None]:
prompt = cast(str, kwargs["prompt"])
shape = ImageShape(kwargs.get("shape", ImageShape.SQUARE))
format = self.output_format
# dalle3 only supports 1 image at a time, which is why we have to
# parallelize this via threading
results = cast(
list[ImageGenerationResponse],
run_functions_tuples_in_parallel(
@@ -247,6 +268,7 @@ class ImageGenerationTool(Tool):
(
prompt,
shape,
format,
),
)
for _ in range(self.num_imgs)
@@ -288,11 +310,17 @@ class ImageGenerationTool(Tool):
if img_generation_response is None:
raise ValueError("No image generation response found")
img_urls = [img.url for img in img_generation_response]
img_urls = [img.url for img in img_generation_response if img.url is not None]
b64_imgs = [
img.image_data
for img in img_generation_response
if img.image_data is not None
]
prompt_builder.update_user_prompt(
build_image_generation_user_prompt(
query=prompt_builder.get_user_message_content(),
img_urls=img_urls,
b64_imgs=b64_imgs,
)
)

View File

@@ -11,11 +11,14 @@ Can you please summarize them in a sentence or two? Do NOT include image urls or
def build_image_generation_user_prompt(
query: str, img_urls: list[str] | None = None
query: str,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
) -> HumanMessage:
return HumanMessage(
content=build_content_with_imgs(
message=IMG_GENERATION_SUMMARY_PROMPT.format(query=query).strip(),
b64_imgs=b64_imgs,
img_urls=img_urls,
)
)

View File

@@ -7,15 +7,15 @@ from typing import cast
import httpx
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import DocumentSource
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.context.search.models import SearchDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import INTERNET_SEARCH_QUERY_REPHRASE
from danswer.prompts.constants import GENERAL_SEP_PAT

View File

@@ -7,10 +7,19 @@ from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import llm_doc_from_inference_section
from danswer.chat.llm_response_handler import LLMCall
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import DanswerContext
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prune_and_merge import prune_and_merge_sections
from danswer.chat.prune_and_merge import prune_sections
from danswer.configs.chat_configs import CONTEXT_CHUNKS_ABOVE
from danswer.configs.chat_configs import CONTEXT_CHUNKS_BELOW
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
@@ -19,22 +28,14 @@ from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import SearchType
from danswer.context.search.models import IndexFilters
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.answering.prune_and_merge import prune_and_merge_sections
from danswer.llm.answering.prune_and_merge import prune_sections
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.secondary_llm_flows.choose_search import check_if_need_search
from danswer.secondary_llm_flows.query_expansion import history_based_query_rephrase
from danswer.tools.message import ToolCallSummary
@@ -103,6 +104,7 @@ class SearchTool(Tool):
chunks_below: int | None = None,
full_doc: bool = False,
bypass_acl: bool = False,
rerank_settings: RerankingDetails | None = None,
) -> None:
self.user = user
self.persona = persona
@@ -118,6 +120,9 @@ class SearchTool(Tool):
self.bypass_acl = bypass_acl
self.db_session = db_session
# Only used via API
self.rerank_settings = rerank_settings
self.chunks_above = (
chunks_above
if chunks_above is not None
@@ -292,6 +297,7 @@ class SearchTool(Tool):
self.retrieval_options.offset if self.retrieval_options else None
),
limit=self.retrieval_options.limit if self.retrieval_options else None,
rerank_settings=self.rerank_settings,
chunks_above=self.chunks_above,
chunks_below=self.chunks_below,
full_doc=self.full_doc,

View File

@@ -2,15 +2,15 @@ from typing import cast
from langchain_core.messages import HumanMessage
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import (
build_citations_system_message,
)
from danswer.llm.answering.prompts.citations_prompt import build_citations_user_message
from danswer.llm.answering.prompts.quotes_prompt import build_quotes_user_message
from danswer.chat.prompt_builder.citations_prompt import build_citations_user_message
from danswer.chat.prompt_builder.quotes_prompt import build_quotes_user_message
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse

View File

@@ -2,8 +2,8 @@ from collections.abc import Callable
from collections.abc import Generator
from typing import Any
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse

View File

@@ -3,8 +3,8 @@ from typing import Any
from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
from danswer.tools.tool import Tool

View File

@@ -0,0 +1,25 @@
import base64
def get_image_type_from_bytes(raw_b64_bytes: bytes) -> str:
magic_number = raw_b64_bytes[:4]
if magic_number.startswith(b"\x89PNG"):
mime_type = "image/png"
elif magic_number.startswith(b"\xFF\xD8"):
mime_type = "image/jpeg"
elif magic_number.startswith(b"GIF8"):
mime_type = "image/gif"
elif magic_number.startswith(b"RIFF") and raw_b64_bytes[8:12] == b"WEBP":
mime_type = "image/webp"
else:
raise ValueError(
"Unsupported image format - only PNG, JPEG, " "GIF, and WEBP are supported."
)
return mime_type
def get_image_type(raw_b64_string: str) -> str:
binary_data = base64.b64decode(raw_b64_string)
return get_image_type_from_bytes(binary_data)

View File

@@ -0,0 +1,41 @@
from danswer.chat.models import AllCitations
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.chat.process_message import ChatPacketStream
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.utils.timing import log_function_time
from ee.danswer.server.query_and_chat.models import OneShotQAResponse
@log_function_time()
def gather_stream_for_answer_api(
packets: ChatPacketStream,
) -> OneShotQAResponse:
response = OneShotQAResponse()
answer = ""
for packet in packets:
if isinstance(packet, DanswerAnswerPiece) and packet.answer_piece:
answer += packet.answer_piece
elif isinstance(packet, QADocsResponse):
response.docs = packet
# Extraneous, provided for backwards compatibility
response.rephrase = packet.rephrased_query
elif isinstance(packet, StreamingError):
response.error_msg = packet.error
elif isinstance(packet, ChatMessageDetail):
response.chat_message_id = packet.message_id
elif isinstance(packet, LLMRelevanceFilterResponse):
response.llm_selected_doc_indices = packet.llm_selected_doc_indices
elif isinstance(packet, AllCitations):
response.citations = packet.citations
elif isinstance(packet, DanswerContexts):
response.contexts = packet
if answer:
response.answer = answer
return response

View File

@@ -28,3 +28,6 @@ JWT_PUBLIC_KEY_URL: str | None = os.getenv("JWT_PUBLIC_KEY_URL", None)
# Super Users
SUPER_USERS = json.loads(os.environ.get("SUPER_USERS", '["pablo@danswer.ai"]'))
SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
OAUTH_SLACK_CLIENT_ID = os.environ.get("OAUTH_SLACK_CLIENT_ID", "")
OAUTH_SLACK_CLIENT_SECRET = os.environ.get("OAUTH_SLACK_CLIENT_SECRET", "")

View File

@@ -155,7 +155,6 @@ def _handle_standard_answers(
else 0,
danswerbot_flow=True,
slack_thread_id=slack_thread_id,
one_shot=True,
)
root_message = get_or_create_root_message(

View File

@@ -170,3 +170,67 @@ def fetch_danswerbot_analytics(
)
return results
def fetch_persona_message_analytics(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily message counts for a specific persona within the given time range."""
query = (
select(
func.count(ChatMessage.id),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]
def fetch_persona_unique_users(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily unique user counts for a specific persona within the given time range."""
query = (
select(
func.count(func.distinct(ChatSession.user_id)),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]

View File

@@ -37,10 +37,15 @@ def get_cc_pairs_by_source(
source_type: DocumentSource,
only_sync: bool,
) -> list[ConnectorCredentialPair]:
"""
Get all cc_pairs for a given source type (and optionally only sync)
result is sorted by cc_pair id
"""
query = (
db_session.query(ConnectorCredentialPair)
.join(ConnectorCredentialPair.connector)
.filter(Connector.source == source_type)
.order_by(ConnectorCredentialPair.id)
)
if only_sync:

View File

@@ -55,9 +55,10 @@ def upsert_document_external_perms(
doc_id: str,
external_access: ExternalAccess,
source_type: DocumentSource,
) -> None:
) -> bool:
"""
This sets the permissions for a document in postgres.
This sets the permissions for a document in postgres. Returns True if the
a new document was created, False otherwise.
NOTE: this will replace any existing external access, it will not do a union
"""
document = db_session.scalars(
@@ -85,7 +86,7 @@ def upsert_document_external_perms(
)
db_session.add(document)
db_session.commit()
return
return True
# If the document exists, we need to check if the external access has changed
if (
@@ -98,3 +99,5 @@ def upsert_document_external_perms(
document.is_public = external_access.is_public
document.last_modified = datetime.now(timezone.utc)
db_session.commit()
return False

View File

@@ -33,12 +33,7 @@ def get_empty_chat_messages_entries__paginated(
message_skeletons: list[ChatMessageSkeleton] = []
for chat_session in chat_sessions:
if chat_session.one_shot:
flow_type = FlowType.SEARCH
elif chat_session.danswerbot_flow:
flow_type = FlowType.SLACK
else:
flow_type = FlowType.CHAT
flow_type = FlowType.SLACK if chat_session.danswerbot_flow else FlowType.CHAT
for message in chat_session.messages:
# Only count user messages

View File

@@ -242,7 +242,9 @@ def _fetch_all_page_restrictions_for_space(
)
continue
logger.warning(f"No permissions found for document {slim_doc.id}")
logger.warning(
f"No permissions found for document {slim_doc.id} in space {space_key}"
)
logger.debug("Finished fetching all page restrictions for space")
return document_restrictions

View File

@@ -48,6 +48,11 @@ GROUP_PERMISSIONS_FUNC_MAP: dict[DocumentSource, GroupSyncFuncType] = {
}
GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC: set[DocumentSource] = {
DocumentSource.CONFLUENCE,
}
# If nothing is specified here, we run the doc_sync every time the celery beat runs
DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all doc permissions every 5 minutes
@@ -57,9 +62,9 @@ DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
# If nothing is specified here, we run the doc_sync every time the celery beat runs
EXTERNAL_GROUP_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all group permissions every 5 minutes
# Polling is not supported so we fetch all group permissions every 30 minutes
DocumentSource.GOOGLE_DRIVE: 5 * 60,
DocumentSource.CONFLUENCE: 5 * 60,
DocumentSource.CONFLUENCE: 30 * 60,
}

View File

@@ -26,6 +26,7 @@ from ee.danswer.server.enterprise_settings.api import (
)
from ee.danswer.server.manage.standard_answer import router as standard_answer_router
from ee.danswer.server.middleware.tenant_tracking import add_tenant_id_middleware
from ee.danswer.server.oauth import router as oauth_router
from ee.danswer.server.query_and_chat.chat_backend import (
router as chat_router,
)
@@ -119,6 +120,8 @@ def get_application() -> FastAPI:
include_router_with_global_prefix_prepended(application, query_router)
include_router_with_global_prefix_prepended(application, chat_router)
include_router_with_global_prefix_prepended(application, standard_answer_router)
include_router_with_global_prefix_prepended(application, oauth_router)
# Enterprise-only global settings
include_router_with_global_prefix_prepended(
application, enterprise_settings_admin_router

View File

@@ -11,11 +11,16 @@ from danswer.db.engine import get_session
from danswer.db.models import User
from ee.danswer.db.analytics import fetch_danswerbot_analytics
from ee.danswer.db.analytics import fetch_per_user_query_analytics
from ee.danswer.db.analytics import fetch_persona_message_analytics
from ee.danswer.db.analytics import fetch_persona_unique_users
from ee.danswer.db.analytics import fetch_query_analytics
router = APIRouter(prefix="/analytics")
_DEFAULT_LOOKBACK_DAYS = 30
class QueryAnalyticsResponse(BaseModel):
total_queries: int
total_likes: int
@@ -33,7 +38,7 @@ def get_query_analytics(
daily_query_usage_info = fetch_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -64,7 +69,7 @@ def get_user_analytics(
daily_query_usage_info_per_user = fetch_per_user_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -98,7 +103,7 @@ def get_danswerbot_analytics(
daily_danswerbot_info = fetch_danswerbot_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -115,3 +120,74 @@ def get_danswerbot_analytics(
]
return resolution_results
class PersonaMessageAnalyticsResponse(BaseModel):
total_messages: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/messages")
def get_persona_messages(
persona_id: int,
start: datetime.datetime | None = None,
end: datetime.datetime | None = None,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaMessageAnalyticsResponse]:
"""Fetch daily message counts for a single persona within the given time range."""
start = start or (
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
)
end = end or datetime.datetime.utcnow()
persona_message_counts = []
for count, date in fetch_persona_message_analytics(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
):
persona_message_counts.append(
PersonaMessageAnalyticsResponse(
total_messages=count,
date=date,
persona_id=persona_id,
)
)
return persona_message_counts
class PersonaUniqueUsersResponse(BaseModel):
unique_users: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/unique-users")
def get_persona_unique_users(
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaUniqueUsersResponse]:
"""Get unique users per day for a single persona."""
unique_user_counts = []
daily_counts = fetch_persona_unique_users(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
)
for count, date in daily_counts:
unique_user_counts.append(
PersonaUniqueUsersResponse(
unique_users=count,
date=date,
persona_id=persona_id,
)
)
return unique_user_counts

View File

@@ -0,0 +1,423 @@
import base64
import uuid
from typing import cast
import requests
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.auth.users import current_user
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import DocumentSource
from danswer.db.credentials import create_credential
from danswer.db.engine import get_current_tenant_id
from danswer.db.engine import get_session
from danswer.db.models import User
from danswer.redis.redis_pool import get_redis_client
from danswer.server.documents.models import CredentialBase
from danswer.utils.logger import setup_logger
from ee.danswer.configs.app_configs import OAUTH_SLACK_CLIENT_ID
from ee.danswer.configs.app_configs import OAUTH_SLACK_CLIENT_SECRET
logger = setup_logger()
router = APIRouter(prefix="/oauth")
class SlackOAuth:
# https://knock.app/blog/how-to-authenticate-users-in-slack-using-oauth
# Example: https://api.slack.com/authentication/oauth-v2#exchanging
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_SLACK_CLIENT_ID
CLIENT_SECRET = OAUTH_SLACK_CLIENT_SECRET
TOKEN_URL = "https://slack.com/api/oauth.v2.access"
# SCOPE is per https://docs.danswer.dev/connectors/slack
BOT_SCOPE = (
"channels:history,"
"channels:read,"
"groups:history,"
"groups:read,"
"channels:join,"
"im:history,"
"users:read,"
"users:read.email,"
"usergroups:read"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/slack/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={cls.REDIRECT_URI}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={cls.DEV_REDIRECT_URI}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = SlackOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
# Work in progress
# class ConfluenceCloudOAuth:
# """work in progress"""
# # https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/
# class OAuthSession(BaseModel):
# """Stored in redis to be looked up on callback"""
# email: str
# redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
# CLIENT_ID = OAUTH_CONFLUENCE_CLIENT_ID
# CLIENT_SECRET = OAUTH_CONFLUENCE_CLIENT_SECRET
# TOKEN_URL = "https://auth.atlassian.com/oauth/token"
# # All read scopes per https://developer.atlassian.com/cloud/confluence/scopes-for-oauth-2-3LO-and-forge-apps/
# CONFLUENCE_OAUTH_SCOPE = (
# "read:confluence-props%20"
# "read:confluence-content.all%20"
# "read:confluence-content.summary%20"
# "read:confluence-content.permission%20"
# "read:confluence-user%20"
# "read:confluence-groups%20"
# "readonly:content.attachment:confluence"
# )
# REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/callback"
# DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
# # eventually for Confluence Data Center
# # oauth_url = (
# # f"http://localhost:8090/rest/oauth/v2/authorize?client_id={CONFLUENCE_OAUTH_CLIENT_ID}"
# # f"&scope={CONFLUENCE_OAUTH_SCOPE_2}"
# # f"&redirect_uri={redirectme_uri}"
# # )
# @classmethod
# def generate_oauth_url(cls, state: str) -> str:
# return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
# @classmethod
# def generate_dev_oauth_url(cls, state: str) -> str:
# """dev mode workaround for localhost testing
# - https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
# """
# return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
# @classmethod
# def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# url = (
# "https://auth.atlassian.com/authorize"
# f"?audience=api.atlassian.com"
# f"&client_id={cls.CLIENT_ID}"
# f"&redirect_uri={redirect_uri}"
# f"&scope={cls.CONFLUENCE_OAUTH_SCOPE}"
# f"&state={state}"
# "&response_type=code"
# "&prompt=consent"
# )
# return url
# @classmethod
# def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
# """Temporary state to store in redis. to be looked up on auth response.
# Returns a json string.
# """
# session = ConfluenceCloudOAuth.OAuthSession(
# email=email, redirect_on_success=redirect_on_success
# )
# return session.model_dump_json()
# @classmethod
# def parse_session(cls, session_json: str) -> SlackOAuth.OAuthSession:
# session = SlackOAuth.OAuthSession.model_validate_json(session_json)
# return session
@router.post("/prepare-authorization-request")
def prepare_authorization_request(
connector: DocumentSource,
redirect_on_success: str | None,
user: User = Depends(current_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Used by the frontend to generate the url for the user's browser during auth request.
Example: https://www.oauth.com/oauth2-servers/authorization/the-authorization-request/
"""
oauth_uuid = uuid.uuid4()
oauth_uuid_str = str(oauth_uuid)
oauth_state = (
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
)
if connector == DocumentSource.SLACK:
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
session = SlackOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
# elif connector == DocumentSource.CONFLUENCE:
# oauth_url = ConfluenceCloudOAuth.generate_oauth_url(oauth_state)
# session = ConfluenceCloudOAuth.session_dump_json(
# email=user.email, redirect_on_success=redirect_on_success
# )
# elif connector == DocumentSource.JIRA:
# oauth_url = JiraCloudOAuth.generate_dev_oauth_url(oauth_state)
# elif connector == DocumentSource.GOOGLE_DRIVE:
# oauth_url = GoogleDriveOAuth.generate_dev_oauth_url(oauth_state)
else:
oauth_url = None
if not oauth_url:
raise HTTPException(
status_code=404,
detail=f"The document source type {connector} does not have OAuth implemented",
)
r = get_redis_client(tenant_id=tenant_id)
# 10 min is the max we want an oauth flow to be valid
r.set(f"da_oauth:{oauth_uuid_str}", session, ex=600)
return JSONResponse(content={"url": oauth_url})
@router.post("/connector/slack/callback")
def handle_slack_oauth_callback(
code: str,
state: str,
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not SlackOAuth.CLIENT_ID or not SlackOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Slack client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = SlackOAuth.parse_session(session_json)
# Exchange the authorization code for an access token
response = requests.post(
SlackOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": SlackOAuth.CLIENT_ID,
"client_secret": SlackOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": SlackOAuth.REDIRECT_URI,
},
)
response_data = response.json()
if not response_data.get("ok"):
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed: {response_data.get('error')}",
)
# Extract token and team information
access_token: str = response_data.get("access_token")
team_id: str = response_data.get("team", {}).get("id")
authed_user_id: str = response_data.get("authed_user", {}).get("id")
credential_info = CredentialBase(
credential_json={"slack_bot_token": access_token},
admin_public=True,
source=DocumentSource.SLACK,
name="Slack OAuth",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Slack OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Slack OAuth completed successfully.",
"team_id": team_id,
"authed_user_id": authed_user_id,
"redirect_on_success": session.redirect_on_success,
}
)
# Work in progress
# @router.post("/connector/confluence/callback")
# def handle_confluence_oauth_callback(
# code: str,
# state: str,
# user: User = Depends(current_user),
# db_session: Session = Depends(get_session),
# tenant_id: str | None = Depends(get_current_tenant_id),
# ) -> JSONResponse:
# if not ConfluenceCloudOAuth.CLIENT_ID or not ConfluenceCloudOAuth.CLIENT_SECRET:
# raise HTTPException(
# status_code=500,
# detail="Confluence client ID or client secret is not configured."
# )
# r = get_redis_client(tenant_id=tenant_id)
# # recover the state
# padded_state = state + '=' * (-len(state) % 4) # Add padding back (Base64 decoding requires padding)
# uuid_bytes = base64.urlsafe_b64decode(padded_state) # Decode the Base64 string back to bytes
# # Convert bytes back to a UUID
# oauth_uuid = uuid.UUID(bytes=uuid_bytes)
# oauth_uuid_str = str(oauth_uuid)
# r_key = f"da_oauth:{oauth_uuid_str}"
# result = r.get(r_key)
# if not result:
# raise HTTPException(
# status_code=400,
# detail=f"Confluence OAuth failed - OAuth state key not found: key={r_key}"
# )
# try:
# session = ConfluenceCloudOAuth.parse_session(result)
# # Exchange the authorization code for an access token
# response = requests.post(
# ConfluenceCloudOAuth.TOKEN_URL,
# headers={"Content-Type": "application/x-www-form-urlencoded"},
# data={
# "client_id": ConfluenceCloudOAuth.CLIENT_ID,
# "client_secret": ConfluenceCloudOAuth.CLIENT_SECRET,
# "code": code,
# "redirect_uri": ConfluenceCloudOAuth.DEV_REDIRECT_URI,
# },
# )
# response_data = response.json()
# if not response_data.get("ok"):
# raise HTTPException(
# status_code=400,
# detail=f"ConfluenceCloudOAuth OAuth failed: {response_data.get('error')}"
# )
# # Extract token and team information
# access_token: str = response_data.get("access_token")
# team_id: str = response_data.get("team", {}).get("id")
# authed_user_id: str = response_data.get("authed_user", {}).get("id")
# credential_info = CredentialBase(
# credential_json={"slack_bot_token": access_token},
# admin_public=True,
# source=DocumentSource.CONFLUENCE,
# name="Confluence OAuth",
# )
# logger.info(f"Slack access token: {access_token}")
# credential = create_credential(credential_info, user, db_session)
# logger.info(f"new_credential_id={credential.id}")
# except Exception as e:
# return JSONResponse(
# status_code=500,
# content={
# "success": False,
# "message": f"An error occurred during Slack OAuth: {str(e)}",
# },
# )
# finally:
# r.delete(r_key)
# # return the result
# return JSONResponse(
# content={
# "success": True,
# "message": "Slack OAuth completed successfully.",
# "team_id": team_id,
# "authed_user_id": authed_user_id,
# "redirect_on_success": session.redirect_on_success,
# }
# )

View File

@@ -6,6 +6,7 @@ from fastapi import HTTPException
from sqlalchemy.orm import Session
from danswer.auth.users import current_user
from danswer.chat.chat_utils import combine_message_thread
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.models import AllCitations
from danswer.chat.models import DanswerAnswerPiece
@@ -16,8 +17,8 @@ from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.chat.process_message import ChatPacketStream
from danswer.chat.process_message import stream_chat_message_objects
from danswer.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.constants import MessageType
from danswer.configs.danswerbot_configs import DANSWER_BOT_TARGET_CHUNK_PERCENTAGE
from danswer.context.search.models import OptionalSearchSetting
from danswer.context.search.models import RetrievalDetails
from danswer.context.search.models import SavedSearchDoc
@@ -29,7 +30,6 @@ from danswer.db.models import User
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.utils import get_max_input_tokens
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.one_shot_answer.qa_utils import combine_message_thread
from danswer.secondary_llm_flows.query_expansion import thread_based_query_rephrase
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.query_and_chat.models import CreateChatMessageRequest
@@ -171,6 +171,8 @@ def handle_simplified_chat_message(
prompt_id=None,
search_doc_ids=chat_message_req.search_doc_ids,
retrieval_options=retrieval_options,
# Simple API does not support reranking, hide complexity from user
rerank_settings=None,
query_override=chat_message_req.query_override,
# Currently only applies to search flow not chat
chunks_above=0,
@@ -232,7 +234,6 @@ def handle_send_message_simple_with_history(
description="handle_send_message_simple_with_history",
user_id=user_id,
persona_id=req.persona_id,
one_shot=False,
)
llm, _ = get_llms_for_persona(persona=chat_session.persona)
@@ -245,7 +246,7 @@ def handle_send_message_simple_with_history(
input_tokens = get_max_input_tokens(
model_name=llm.config.model_name, model_provider=llm.config.model_provider
)
max_history_tokens = int(input_tokens * DANSWER_BOT_TARGET_CHUNK_PERCENTAGE)
max_history_tokens = int(input_tokens * CHAT_TARGET_CHUNK_PERCENTAGE)
# Every chat Session begins with an empty root message
root_message = get_or_create_root_message(
@@ -293,6 +294,8 @@ def handle_send_message_simple_with_history(
prompt_id=req.prompt_id,
search_doc_ids=req.search_doc_ids,
retrieval_options=retrieval_options,
# Simple API does not support reranking, hide complexity from user
rerank_settings=None,
query_override=rephrased_query,
chunks_above=0,
chunks_below=0,

View File

@@ -2,7 +2,13 @@ from uuid import UUID
from pydantic import BaseModel
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerContexts
from danswer.chat.models import PersonaOverrideConfig
from danswer.chat.models import QADocsResponse
from danswer.chat.models import ThreadMessage
from danswer.configs.constants import DocumentSource
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.enums import SearchType
@@ -10,7 +16,6 @@ from danswer.context.search.models import ChunkContext
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.context.search.models import SavedSearchDoc
from danswer.one_shot_answer.models import ThreadMessage
from ee.danswer.server.manage.models import StandardAnswer
@@ -96,3 +101,48 @@ class ChatBasicResponse(BaseModel):
# TODO: deprecate both of these
simple_search_docs: list[SimpleDoc] | None = None
llm_chunks_indices: list[int] | None = None
class OneShotQARequest(ChunkContext):
# Supports simplier APIs that don't deal with chat histories or message edits
# Easier APIs to work with for developers
persona_override_config: PersonaOverrideConfig | None = None
persona_id: int | None = None
messages: list[ThreadMessage]
prompt_id: int | None = None
retrieval_options: RetrievalDetails = Field(default_factory=RetrievalDetails)
rerank_settings: RerankingDetails | None = None
return_contexts: bool = False
# allows the caller to specify the exact search query they want to use
# can be used if the message sent to the LLM / query should not be the same
# will also disable Thread-based Rewording if specified
query_override: str | None = None
# If True, skips generative an AI response to the search query
skip_gen_ai_answer_generation: bool = False
@model_validator(mode="after")
def check_persona_fields(self) -> "OneShotQARequest":
if self.persona_override_config is None and self.persona_id is None:
raise ValueError("Exactly one of persona_config or persona_id must be set")
elif self.persona_override_config is not None and (
self.persona_id is not None or self.prompt_id is not None
):
raise ValueError(
"If persona_override_config is set, persona_id and prompt_id cannot be set"
)
return self
class OneShotQAResponse(BaseModel):
# This is built piece by piece, any of these can be None as the flow could break
answer: str | None = None
rephrase: str | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
chat_message_id: int | None = None
contexts: DanswerContexts | None = None

View File

@@ -1,38 +1,47 @@
import json
from collections.abc import Generator
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.auth.users import current_user
from danswer.configs.danswerbot_configs import DANSWER_BOT_TARGET_CHUNK_PERCENTAGE
from danswer.chat.chat_utils import combine_message_thread
from danswer.chat.chat_utils import prepare_chat_message_request
from danswer.chat.models import PersonaOverrideConfig
from danswer.chat.process_message import ChatPacketStream
from danswer.chat.process_message import stream_chat_message_objects
from danswer.configs.danswerbot_configs import MAX_THREAD_CONTEXT_PERCENTAGE
from danswer.context.search.models import SavedSearchDocWithContent
from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
from danswer.context.search.utils import dedupe_documents
from danswer.context.search.utils import drop_llm_indices
from danswer.context.search.utils import relevant_sections_to_indices
from danswer.db.chat import get_prompt_by_id
from danswer.db.engine import get_session
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.factory import get_default_llms
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.utils import get_max_input_tokens
from danswer.one_shot_answer.answer_question import get_search_answer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.server.utils import get_json_line
from danswer.utils.logger import setup_logger
from ee.danswer.chat.process_message import gather_stream_for_answer_api
from ee.danswer.danswerbot.slack.handlers.handle_standard_answers import (
oneoff_standard_answers,
)
from ee.danswer.server.query_and_chat.models import DocumentSearchRequest
from ee.danswer.server.query_and_chat.models import OneShotQARequest
from ee.danswer.server.query_and_chat.models import OneShotQAResponse
from ee.danswer.server.query_and_chat.models import StandardAnswerRequest
from ee.danswer.server.query_and_chat.models import StandardAnswerResponse
from ee.danswer.server.query_and_chat.utils import create_temporary_persona
logger = setup_logger()
@@ -125,58 +134,115 @@ def handle_search_request(
return DocumentSearchResponse(top_documents=deduped_docs, llm_indices=llm_indices)
@basic_router.post("/answer-with-quote")
def get_answer_with_quote(
query_request: DirectQARequest,
def get_answer_stream(
query_request: OneShotQARequest,
user: User | None = Depends(current_user),
db_session: Session = Depends(get_session),
) -> OneShotQAResponse:
) -> ChatPacketStream:
query = query_request.messages[0].message
logger.notice(f"Received query for one shot answer API with quotes: {query}")
logger.notice(f"Received query for Answer API: {query}")
if query_request.persona_config is not None:
new_persona = create_temporary_persona(
db_session=db_session,
persona_config=query_request.persona_config,
if (
query_request.persona_override_config is None
and query_request.persona_id is None
):
raise KeyError("Must provide persona ID or Persona Config")
prompt = None
if query_request.prompt_id is not None:
prompt = get_prompt_by_id(
prompt_id=query_request.prompt_id,
user=user,
db_session=db_session,
)
persona = new_persona
persona_info: Persona | PersonaOverrideConfig | None = None
if query_request.persona_override_config is not None:
persona_info = query_request.persona_override_config
elif query_request.persona_id is not None:
persona = get_persona_by_id(
persona_info = get_persona_by_id(
persona_id=query_request.persona_id,
user=user,
db_session=db_session,
is_for_edit=False,
)
else:
raise KeyError("Must provide persona ID or Persona Config")
llm = get_main_llm_from_tuple(
get_default_llms() if not persona else get_llms_for_persona(persona)
llm = get_main_llm_from_tuple(get_llms_for_persona(persona_info))
llm_tokenizer = get_tokenizer(
model_name=llm.config.model_name,
provider_type=llm.config.model_provider,
)
input_tokens = get_max_input_tokens(
model_name=llm.config.model_name, model_provider=llm.config.model_provider
)
max_history_tokens = int(input_tokens * DANSWER_BOT_TARGET_CHUNK_PERCENTAGE)
max_history_tokens = int(input_tokens * MAX_THREAD_CONTEXT_PERCENTAGE)
remaining_tokens = input_tokens - max_history_tokens
max_document_tokens = compute_max_document_tokens_for_persona(
persona=persona,
actual_user_input=query,
max_llm_token_override=remaining_tokens,
combined_message = combine_message_thread(
messages=query_request.messages,
max_tokens=max_history_tokens,
llm_tokenizer=llm_tokenizer,
)
answer_details = get_search_answer(
query_req=query_request,
# Also creates a new chat session
request = prepare_chat_message_request(
message_text=combined_message,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
persona_id=query_request.persona_id,
persona_override_config=query_request.persona_override_config,
prompt=prompt,
message_ts_to_respond_to=None,
retrieval_details=query_request.retrieval_options,
rerank_settings=query_request.rerank_settings,
db_session=db_session,
)
return answer_details
packets = stream_chat_message_objects(
new_msg_req=request,
user=user,
db_session=db_session,
include_contexts=query_request.return_contexts,
)
return packets
@basic_router.post("/answer-with-citation")
def get_answer_with_citation(
request: OneShotQARequest,
db_session: Session = Depends(get_session),
user: User | None = Depends(current_user),
) -> OneShotQAResponse:
try:
packets = get_answer_stream(request, user, db_session)
answer = gather_stream_for_answer_api(packets)
if answer.error_msg:
raise RuntimeError(answer.error_msg)
return answer
except Exception as e:
logger.error(f"Error in get_answer_with_citation: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail="An internal server error occurred")
@basic_router.post("/stream-answer-with-citation")
def stream_answer_with_citation(
request: OneShotQARequest,
db_session: Session = Depends(get_session),
user: User | None = Depends(current_user),
) -> StreamingResponse:
def stream_generator() -> Generator[str, None, None]:
try:
for packet in get_answer_stream(request, user, db_session):
serialized = get_json_line(packet.model_dump())
yield serialized
except Exception as e:
logger.exception("Error in answer streaming")
yield json.dumps({"error": str(e)})
return StreamingResponse(stream_generator(), media_type="application/json")
@basic_router.get("/standard-answer")

View File

@@ -1,85 +0,0 @@
from typing import cast
from fastapi import HTTPException
from sqlalchemy.orm import Session
from danswer.auth.users import is_user_admin
from danswer.db.llm import fetch_existing_doc_sets
from danswer.db.llm import fetch_existing_tools
from danswer.db.models import Persona
from danswer.db.models import Prompt
from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.persona import get_prompts_by_ids
from danswer.one_shot_answer.models import PersonaConfig
from danswer.tools.tool_implementations.custom.custom_tool import (
build_custom_tools_from_openapi_schema_and_headers,
)
def create_temporary_persona(
persona_config: PersonaConfig, db_session: Session, user: User | None = None
) -> Persona:
if not is_user_admin(user):
raise HTTPException(
status_code=403,
detail="User is not authorized to create a persona in one shot queries",
)
"""Create a temporary Persona object from the provided configuration."""
persona = Persona(
name=persona_config.name,
description=persona_config.description,
num_chunks=persona_config.num_chunks,
llm_relevance_filter=persona_config.llm_relevance_filter,
llm_filter_extraction=persona_config.llm_filter_extraction,
recency_bias=persona_config.recency_bias,
llm_model_provider_override=persona_config.llm_model_provider_override,
llm_model_version_override=persona_config.llm_model_version_override,
)
if persona_config.prompts:
persona.prompts = [
Prompt(
name=p.name,
description=p.description,
system_prompt=p.system_prompt,
task_prompt=p.task_prompt,
include_citations=p.include_citations,
datetime_aware=p.datetime_aware,
)
for p in persona_config.prompts
]
elif persona_config.prompt_ids:
persona.prompts = get_prompts_by_ids(
db_session=db_session, prompt_ids=persona_config.prompt_ids
)
persona.tools = []
if persona_config.custom_tools_openapi:
for schema in persona_config.custom_tools_openapi:
tools = cast(
list[Tool],
build_custom_tools_from_openapi_schema_and_headers(schema),
)
persona.tools.extend(tools)
if persona_config.tools:
tool_ids = [tool.id for tool in persona_config.tools]
persona.tools.extend(
fetch_existing_tools(db_session=db_session, tool_ids=tool_ids)
)
if persona_config.tool_ids:
persona.tools.extend(
fetch_existing_tools(
db_session=db_session, tool_ids=persona_config.tool_ids
)
)
fetched_docs = fetch_existing_doc_sets(
db_session=db_session, doc_ids=persona_config.document_set_ids
)
persona.document_sets = fetched_docs
return persona

View File

@@ -179,13 +179,7 @@ class QuestionAnswerPairSnapshot(BaseModel):
def determine_flow_type(chat_session: ChatSession) -> SessionType:
return (
SessionType.SLACK
if chat_session.danswerbot_flow
else SessionType.SEARCH
if chat_session.one_shot
else SessionType.CHAT
)
return SessionType.SLACK if chat_session.danswerbot_flow else SessionType.CHAT
def fetch_and_process_chat_session_history_minimal(

View File

@@ -9,7 +9,6 @@ from danswer.auth.schemas import UserStatus
class FlowType(str, Enum):
CHAT = "chat"
SEARCH = "search"
SLACK = "slack"

Some files were not shown because too many files have changed in this diff Show More