Compare commits

..

31 Commits

Author SHA1 Message Date
pablodanswer
48998a5204 k 2025-02-15 11:22:37 -08:00
pablonyx
697f8bc1c6 Reduce background errors (#4004) 2025-02-14 17:35:26 -08:00
evan-danswer
3ba65214b8 bump version and fix related issues (#3996) 2025-02-14 19:57:12 +00:00
joachim-danswer
6687d5d499 major Agent Search Updates (#3994) 2025-02-14 19:40:21 +00:00
pablonyx
ec78f78f3c k (#3999) 2025-02-14 02:33:42 +00:00
rkuo-danswer
ed253e469a add nano and vim to base image (#3995)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-14 02:27:24 +00:00
pablodanswer
e3aafd95af k 2025-02-13 18:34:05 -08:00
Weves
3a704f1950 Add new vars to github action 2025-02-13 18:33:17 -08:00
Weves
2bf8a7aee5 Misc improvements 2025-02-13 18:33:17 -08:00
Weves
c2f3302aa0 Fix mypy 2025-02-13 18:33:17 -08:00
neo773
7f4d1f27a0 Gitbook connector (#3991)
* add parser

* add tests
2025-02-13 17:58:05 -08:00
pablonyx
b70db15622 Bugfix Vespa Deletion Script (#3998) 2025-02-13 17:26:04 -08:00
pablonyx
e9492ce9ec minor read replica fix (#3997) 2025-02-13 17:11:45 -08:00
pablodanswer
35574369ed update cloud build to use public stripe key 2025-02-13 16:55:56 -08:00
pablonyx
eff433bdc5 Reduce errors in workers (#3962) 2025-02-13 15:59:44 -08:00
pablonyx
3260d793d1 Billing fixes (#3976) 2025-02-13 15:59:10 -08:00
Yuhong Sun
1a7aca06b9 Fix Agent Slowness (#3979) 2025-02-13 15:54:34 -08:00
pablonyx
c6434db7eb Add delete all for tenants in Vespa (#3970) 2025-02-13 14:33:49 -08:00
joachim-danswer
667b9e04c5 updated rerank function arguments (#3988) 2025-02-13 14:13:14 -08:00
rkuo-danswer
29c84d7707 xfail this test (#3992)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 14:09:15 -08:00
pablonyx
17c915b11b Improved email formatting (#3985)
* prettier emails

* k

* remove mislieading comment

* minor typing
2025-02-13 21:11:57 +00:00
rkuo-danswer
95ca592d6d fix title check (#3993)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 13:14:55 -08:00
Yuhong Sun
e39a27fd6b Hope this actually skips the model server builds now (#3987) 2025-02-13 11:48:25 -08:00
rkuo-danswer
26d3c952c6 Bugfix/jira connector test 2 (#3986)
* fix jira connector test

* typo fix

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 10:21:54 -08:00
rkuo-danswer
53683e2f3c fix jira connector test (#3983)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 09:41:45 -08:00
rkuo-danswer
0c0113a481 ignore result when using send_task on lightweight tasks (#3978)
* ignore result when using send_task on lightweight tasks

* fix ignore_result

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-13 03:22:13 -08:00
Chris Weaver
c0f381e471 Add background errors ability (#3982) 2025-02-13 00:44:55 -08:00
rkuo-danswer
5ed83f1148 no thread local locks in callbacks and raise permission sync timeout … (#3977)
* no thread local locks in callbacks and raise permission sync timeout by a lot based on empirical log observations

* more fixes

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-12 22:31:01 -08:00
pablonyx
9db7b67a6c Minor misc ux improvements (#3966)
* minor misc ux

* nit

* k

* quick nit

* k
2025-02-13 04:43:11 +00:00
Yuhong Sun
2850048c6b Jira add key to semantic id (#3981) 2025-02-12 20:04:47 -08:00
rkuo-danswer
61058e5fcd merge monitoring with kickoff tasks (#3953)
* move indexing

* all monitor work moved

* reacquire lock more

* remove monitor task completely

* fix import

* fix pruning finalization

* no multiplier on system/cloud tasks

* monitor queues every 30 seconds in the cloud

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 02:35:41 +00:00
140 changed files with 4670 additions and 1504 deletions

View File

@@ -65,6 +65,7 @@ jobs:
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY=${{ secrets.STRIPE_PUBLISHABLE_KEY }}
NEXT_PUBLIC_GTM_ENABLED=true
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK=true

View File

@@ -4,9 +4,6 @@ on:
push:
tags:
- "*"
paths:
- 'backend/model_server/**'
- 'backend/Dockerfile.model_server'
env:
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-model-server-cloud' || 'onyxdotapp/onyx-model-server' }}
@@ -15,7 +12,32 @@ env:
BUILDKIT_PROGRESS: plain
jobs:
# 1) Preliminary job to check if the changed files are relevant
check_model_server_changes:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.check.outputs.changed }}
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check if relevant files changed
id: check
run: |
# Default to "false"
echo "changed=false" >> $GITHUB_OUTPUT
# Compare the previous commit (github.event.before) to the current one (github.sha)
# If any file in backend/model_server/** or backend/Dockerfile.model_server is changed,
# set changed=true
if git diff --name-only ${{ github.event.before }} ${{ github.sha }} \
| grep -E '^backend/model_server/|^backend/Dockerfile.model_server'; then
echo "changed=true" >> $GITHUB_OUTPUT
fi
build-amd64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
steps:
@@ -55,6 +77,8 @@ jobs:
provenance: false
build-arm64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
steps:
@@ -94,7 +118,8 @@ jobs:
provenance: false
merge-and-scan:
needs: [build-amd64, build-arm64]
needs: [build-amd64, build-arm64, check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on: ubuntu-latest
steps:
- name: Login to Docker Hub

View File

@@ -44,6 +44,9 @@ env:
SHAREPOINT_CLIENT_SECRET: ${{ secrets.SHAREPOINT_CLIENT_SECRET }}
SHAREPOINT_CLIENT_DIRECTORY_ID: ${{ secrets.SHAREPOINT_CLIENT_DIRECTORY_ID }}
SHAREPOINT_SITE: ${{ secrets.SHAREPOINT_SITE }}
# Gitbook
GITBOOK_SPACE_ID: ${{ secrets.GITBOOK_SPACE_ID }}
GITBOOK_API_KEY: ${{ secrets.GITBOOK_API_KEY }}
jobs:
connectors-check:

View File

@@ -35,7 +35,9 @@ RUN apt-get update && \
libuuid1=2.38.1-5+deb12u1 \
libxmlsec1-dev \
pkg-config \
gcc && \
gcc \
nano \
vim && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean

View File

@@ -0,0 +1,40 @@
"""Add background errors table
Revision ID: f39c5794c10a
Revises: 2cdeff6d8c93
Create Date: 2025-02-12 17:11:14.527876
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f39c5794c10a"
down_revision = "2cdeff6d8c93"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"background_error",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("message", sa.String(), nullable=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("cc_pair_id", sa.Integer(), nullable=True),
sa.PrimaryKeyConstraint("id"),
sa.ForeignKeyConstraint(
["cc_pair_id"],
["connector_credential_pair.id"],
ondelete="CASCADE",
),
)
def downgrade() -> None:
op.drop_table("background_error")

View File

@@ -1,10 +1,10 @@
from datetime import timedelta
from typing import Any
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
from onyx.background.celery.tasks.beat_schedule import (
beat_system_tasks as base_beat_system_tasks,
beat_cloud_tasks as base_beat_system_tasks,
)
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
from onyx.background.celery.tasks.beat_schedule import (
beat_task_templates as base_beat_task_templates,
)

View File

@@ -77,3 +77,5 @@ POSTHOG_HOST = os.environ.get("POSTHOG_HOST") or "https://us.i.posthog.com"
HUBSPOT_TRACKING_URL = os.environ.get("HUBSPOT_TRACKING_URL")
ANONYMOUS_USER_COOKIE_NAME = "onyx_anonymous_user"
GATED_TENANTS_KEY = "gated_tenants"

View File

@@ -1,5 +1,6 @@
from ee.onyx.db.external_perm import ExternalUserGroup
from ee.onyx.external_permissions.confluence.constants import ALL_CONF_EMAILS_GROUP_NAME
from onyx.background.error_logging import emit_background_error
from onyx.connectors.confluence.onyx_confluence import build_confluence_client
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
from onyx.connectors.confluence.utils import get_user_email_from_username__server
@@ -10,7 +11,7 @@ logger = setup_logger()
def _build_group_member_email_map(
confluence_client: OnyxConfluence,
confluence_client: OnyxConfluence, cc_pair_id: int
) -> dict[str, set[str]]:
group_member_emails: dict[str, set[str]] = {}
for user_result in confluence_client.paginated_cql_user_retrieval():
@@ -18,8 +19,11 @@ def _build_group_member_email_map(
user = user_result.get("user", {})
if not user:
logger.warning(f"user result missing user field: {user_result}")
msg = f"user result missing user field: {user_result}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
continue
email = user.get("email")
if not email:
# This field is only present in Confluence Server
@@ -32,7 +36,12 @@ def _build_group_member_email_map(
)
if not email:
# If we still don't have an email, skip this user
logger.warning(f"user result missing email field: {user_result}")
msg = f"user result missing email field: {user_result}"
if user.get("type") == "app":
logger.warning(msg)
else:
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
continue
all_users_groups: set[str] = set()
@@ -42,11 +51,18 @@ def _build_group_member_email_map(
group_member_emails.setdefault(group_id, set()).add(email)
all_users_groups.add(group_id)
if not group_member_emails:
logger.warning(f"No groups found for user with email: {email}")
if not all_users_groups:
msg = f"No groups found for user with email: {email}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
else:
logger.debug(f"Found groups {all_users_groups} for user with email {email}")
if not group_member_emails:
msg = "No groups found for any users."
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
return group_member_emails
@@ -61,6 +77,7 @@ def confluence_group_sync(
group_member_email_map = _build_group_member_email_map(
confluence_client=confluence_client,
cc_pair_id=cc_pair.id,
)
onyx_groups: list[ExternalUserGroup] = []
all_found_emails = set()

View File

@@ -83,6 +83,7 @@ def handle_search_request(
user=user,
llm=llm,
fast_llm=fast_llm,
skip_query_analysis=False,
db_session=db_session,
bypass_acl=False,
)

View File

@@ -18,11 +18,16 @@ from ee.onyx.server.tenants.anonymous_user_path import (
from ee.onyx.server.tenants.anonymous_user_path import modify_anonymous_user_path
from ee.onyx.server.tenants.anonymous_user_path import validate_anonymous_user_path
from ee.onyx.server.tenants.billing import fetch_billing_information
from ee.onyx.server.tenants.billing import fetch_stripe_checkout_session
from ee.onyx.server.tenants.billing import fetch_tenant_stripe_information
from ee.onyx.server.tenants.models import AnonymousUserPath
from ee.onyx.server.tenants.models import BillingInformation
from ee.onyx.server.tenants.models import ImpersonateRequest
from ee.onyx.server.tenants.models import ProductGatingRequest
from ee.onyx.server.tenants.models import ProductGatingResponse
from ee.onyx.server.tenants.models import SubscriptionSessionResponse
from ee.onyx.server.tenants.models import SubscriptionStatusResponse
from ee.onyx.server.tenants.product_gating import store_product_gating
from ee.onyx.server.tenants.provisioning import delete_user_from_control_plane
from ee.onyx.server.tenants.user_mapping import get_tenant_id_for_email
from ee.onyx.server.tenants.user_mapping import remove_all_users_from_tenant
@@ -39,12 +44,9 @@ from onyx.db.auth import get_user_count
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.engine import get_session_with_tenant
from onyx.db.notification import create_notification
from onyx.db.users import delete_user_from_db
from onyx.db.users import get_user_by_email
from onyx.server.manage.models import UserByEmail
from onyx.server.settings.store import load_settings
from onyx.server.settings.store import store_settings
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
@@ -126,37 +128,29 @@ async def login_as_anonymous_user(
@router.post("/product-gating")
def gate_product(
product_gating_request: ProductGatingRequest, _: None = Depends(control_plane_dep)
) -> None:
) -> ProductGatingResponse:
"""
Gating the product means that the product is not available to the tenant.
They will be directed to the billing page.
We gate the product when
1) User has ended free trial without adding payment method
2) User's card has declined
We gate the product when their subscription has ended.
"""
tenant_id = product_gating_request.tenant_id
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
try:
store_product_gating(
product_gating_request.tenant_id, product_gating_request.application_status
)
return ProductGatingResponse(updated=True, error=None)
settings = load_settings()
settings.product_gating = product_gating_request.product_gating
store_settings(settings)
if product_gating_request.notification:
with get_session_with_tenant(tenant_id) as db_session:
create_notification(None, product_gating_request.notification, db_session)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
except Exception as e:
logger.exception("Failed to gate product")
return ProductGatingResponse(updated=False, error=str(e))
@router.get("/billing-information", response_model=BillingInformation)
@router.get("/billing-information")
async def billing_information(
_: User = Depends(current_admin_user),
) -> BillingInformation:
) -> BillingInformation | SubscriptionStatusResponse:
logger.info("Fetching billing information")
return BillingInformation(
**fetch_billing_information(CURRENT_TENANT_ID_CONTEXTVAR.get())
)
return fetch_billing_information(CURRENT_TENANT_ID_CONTEXTVAR.get())
@router.post("/create-customer-portal-session")
@@ -169,9 +163,10 @@ async def create_customer_portal_session(_: User = Depends(current_admin_user))
if not stripe_customer_id:
raise HTTPException(status_code=400, detail="Stripe customer ID not found")
logger.info(stripe_customer_id)
portal_session = stripe.billing_portal.Session.create(
customer=stripe_customer_id,
return_url=f"{WEB_DOMAIN}/admin/cloud-settings",
return_url=f"{WEB_DOMAIN}/admin/billing",
)
logger.info(portal_session)
return {"url": portal_session.url}
@@ -180,6 +175,20 @@ async def create_customer_portal_session(_: User = Depends(current_admin_user))
raise HTTPException(status_code=500, detail=str(e))
@router.post("/create-subscription-session")
async def create_subscription_session(
_: User = Depends(current_admin_user),
) -> SubscriptionSessionResponse:
try:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
session_id = fetch_stripe_checkout_session(tenant_id)
return SubscriptionSessionResponse(sessionId=session_id)
except Exception as e:
logger.exception("Failed to create resubscription session")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/impersonate")
async def impersonate_user(
impersonate_request: ImpersonateRequest,

View File

@@ -6,6 +6,7 @@ import stripe
from ee.onyx.configs.app_configs import STRIPE_PRICE_ID
from ee.onyx.configs.app_configs import STRIPE_SECRET_KEY
from ee.onyx.server.tenants.access import generate_data_plane_token
from ee.onyx.server.tenants.models import BillingInformation
from onyx.configs.app_configs import CONTROL_PLANE_API_BASE_URL
from onyx.utils.logger import setup_logger
@@ -14,6 +15,19 @@ stripe.api_key = STRIPE_SECRET_KEY
logger = setup_logger()
def fetch_stripe_checkout_session(tenant_id: str) -> str:
token = generate_data_plane_token()
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
}
url = f"{CONTROL_PLANE_API_BASE_URL}/create-checkout-session"
params = {"tenant_id": tenant_id}
response = requests.post(url, headers=headers, params=params)
response.raise_for_status()
return response.json()["sessionId"]
def fetch_tenant_stripe_information(tenant_id: str) -> dict:
token = generate_data_plane_token()
headers = {
@@ -27,7 +41,7 @@ def fetch_tenant_stripe_information(tenant_id: str) -> dict:
return response.json()
def fetch_billing_information(tenant_id: str) -> dict:
def fetch_billing_information(tenant_id: str) -> BillingInformation:
logger.info("Fetching billing information")
token = generate_data_plane_token()
headers = {
@@ -38,7 +52,7 @@ def fetch_billing_information(tenant_id: str) -> dict:
params = {"tenant_id": tenant_id}
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
billing_info = response.json()
billing_info = BillingInformation(**response.json())
return billing_info

View File

@@ -1,7 +1,8 @@
from datetime import datetime
from pydantic import BaseModel
from onyx.configs.constants import NotificationType
from onyx.server.settings.models import GatingType
from onyx.server.settings.models import ApplicationStatus
class CheckoutSessionCreationRequest(BaseModel):
@@ -15,15 +16,24 @@ class CreateTenantRequest(BaseModel):
class ProductGatingRequest(BaseModel):
tenant_id: str
product_gating: GatingType
notification: NotificationType | None = None
application_status: ApplicationStatus
class SubscriptionStatusResponse(BaseModel):
subscribed: bool
class BillingInformation(BaseModel):
stripe_subscription_id: str
status: str
current_period_start: datetime
current_period_end: datetime
number_of_seats: int
cancel_at_period_end: bool
canceled_at: datetime | None
trial_start: datetime | None
trial_end: datetime | None
seats: int
subscription_status: str
billing_start: str
billing_end: str
payment_method_enabled: bool
@@ -48,3 +58,12 @@ class TenantDeletionPayload(BaseModel):
class AnonymousUserPath(BaseModel):
anonymous_user_path: str | None
class ProductGatingResponse(BaseModel):
updated: bool
error: str | None
class SubscriptionSessionResponse(BaseModel):
sessionId: str

View File

@@ -0,0 +1,51 @@
from typing import cast
from ee.onyx.configs.app_configs import GATED_TENANTS_KEY
from onyx.configs.constants import ONYX_CLOUD_TENANT_ID
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.server.settings.models import ApplicationStatus
from onyx.server.settings.store import load_settings
from onyx.server.settings.store import store_settings
from onyx.setup import setup_logger
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
def update_tenant_gating(tenant_id: str, status: ApplicationStatus) -> None:
redis_client = get_redis_client(tenant_id=ONYX_CLOUD_TENANT_ID)
# Store the full status
status_key = f"tenant:{tenant_id}:status"
redis_client.set(status_key, status.value)
# Maintain the GATED_ACCESS set
if status == ApplicationStatus.GATED_ACCESS:
redis_client.sadd(GATED_TENANTS_KEY, tenant_id)
else:
redis_client.srem(GATED_TENANTS_KEY, tenant_id)
def store_product_gating(tenant_id: str, application_status: ApplicationStatus) -> None:
try:
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
settings = load_settings()
settings.application_status = application_status
store_settings(settings)
# Store gated tenant information in Redis
update_tenant_gating(tenant_id, application_status)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
except Exception:
logger.exception("Failed to gate product")
raise
def get_gated_tenants() -> set[str]:
redis_client = get_redis_replica_client(tenant_id=ONYX_CLOUD_TENANT_ID)
return cast(set[str], redis_client.smembers(GATED_TENANTS_KEY))

View File

@@ -85,7 +85,7 @@ if __name__ == "__main__":
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(_unused=True)
input = BasicInput(unused=True)
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
config, _ = get_test_config(

View File

@@ -17,7 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
class BasicInput(BaseModel):
# Langgraph needs a nonempty input, but we pass in all static
# data through a RunnableConfig.
_unused: bool = True
unused: bool = True
## Graph Output State

View File

@@ -9,7 +9,6 @@ class CoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
@@ -18,4 +17,4 @@ class SubgraphCoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add]
log_messages: Annotated[list[str], add] = []

View File

@@ -1,8 +1,8 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
@@ -12,14 +12,43 @@ from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer
SubQuestionAnswerCheckUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def check_sub_answer(
state: AnswerQuestionState, config: RunnableConfig
) -> SubQuestionAnswerCheckUpdate:
@@ -53,14 +82,40 @@ def check_sub_answer(
graph_config = cast(GraphConfig, config["metadata"]["config"])
fast_llm = graph_config.tooling.fast_llm
response = list(
fast_llm.stream(
agent_error: AgentErrorLog | None = None
response: BaseMessage | None = None
try:
response = fast_llm.invoke(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK,
)
)
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
answer_quality = "yes" in quality_str.lower()
quality_str: str = cast(str, response.content)
answer_quality = binary_string_test(
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
)
log_result = f"Answer quality: {quality_str}"
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Timeout Error - check sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Rate Limit Error - check sub answer")
return SubQuestionAnswerCheckUpdate(
answer_quality=answer_quality,
@@ -69,7 +124,7 @@ def check_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="check sub answer",
node_start_time=node_start_time,
result=f"Answer quality: {quality_str}",
result=log_result,
)
],
)

View File

@@ -16,6 +16,23 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
dedup_sort_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
LLM_ANSWER_ERROR_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -30,12 +47,23 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
)
@log_function_time(print_only=True)
def generate_sub_answer(
state: AnswerQuestionState,
config: RunnableConfig,
@@ -51,12 +79,17 @@ def generate_sub_answer(
state.verified_reranked_documents
level, question_num = parse_question_id(state.question_id)
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
context_docs = dedup_sort_inference_section_list(context_docs)
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
graph_config.inputs.search_request.persona
).contextualized_prompt
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
cited_documents: list = []
log_results = "No documents retrieved"
write_custom_event(
"sub_answers",
AgentAnswerPiece(
@@ -79,41 +112,67 @@ def generate_sub_answer(
response: list[str | list[str | dict[str, Any]]] = []
dispatch_timings: list[float] = []
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
agent_error: AgentErrorLog | None = None
try:
for message in fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
logger.debug(
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
)
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate sub answer")
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
if agent_error:
answer_str = LLM_ANSWER_ERROR_MESSAGE
cited_documents = []
log_results = (
agent_error.error_result
or "Sub-answer generation failed due to LLM error"
)
else:
answer_str = merge_message_runs(response, chunk_separator="")[0].content
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
log_results = None
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -131,7 +190,7 @@ def generate_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="generate sub answer",
node_start_time=node_start_time,
result="",
result=log_results or "",
)
],
)

View File

@@ -42,10 +42,8 @@ class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
class SubQuestionAnsweringInput(SubgraphCoreState):
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
question: str
question_id: str
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.

View File

@@ -26,14 +26,31 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
dedup_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -42,12 +59,16 @@ from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_ci
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.context.search.models import InferenceSection
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
@@ -56,8 +77,16 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.timing import log_function_time
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The initial answer could not be generated.",
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
general_error="General LLM Error. The initial answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_initial_answer(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -73,15 +102,19 @@ def generate_initial_answer(
question = graph_config.inputs.search_request.query
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
sub_questions_cited_documents = state.cited_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
orig_question_retrieval_documents = state.orig_question_retrieved_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
orig_question_retrieval_documents
):
if original_doc_number not in sub_questions_cited_documents:
if original_doc_number not in structured_subquestion_docs.cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
@@ -90,15 +123,18 @@ def generate_initial_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
sub_questions: list[str] = []
streamed_documents = (
relevant_docs
if len(relevant_docs) > 0
else state.orig_question_retrieved_documents[:15]
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=orig_question_retrieval_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER,
)
# Use the query info from the base document retrieval
@@ -108,11 +144,13 @@ def generate_initial_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
relevance_list = relevance_from_docs(relevant_docs)
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
for tool_response in yield_search_responses(
query=question,
reranked_sections=streamed_documents,
final_context_sections=streamed_documents,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -128,7 +166,7 @@ def generate_initial_answer(
writer,
)
if len(relevant_docs) == 0:
if len(answer_generation_documents.context_documents) == 0:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
@@ -194,7 +232,7 @@ def generate_initial_answer(
model = graph_config.tooling.fast_llm
doc_context = format_docs(relevant_docs)
doc_context = format_docs(answer_generation_documents.context_documents)
doc_context = trim_prompt_piece(
config=model.config,
prompt_piece=doc_context,
@@ -224,30 +262,82 @@ def generate_initial_answer(
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
agent_error: AgentErrorLog | None = None
try:
for message in model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate initial answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate initial answer")
if agent_error:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
return InitialAnswerUpdate(
initial_answer=None,
answer_error=AgentErrorLog(
error_message=agent_error.error_message or "An LLM error occurred",
error_type=agent_error.error_type,
error_result=agent_error.error_result,
),
initial_agent_stats=None,
generated_sub_questions=sub_questions,
agent_base_end_time=None,
agent_base_metrics=None,
log_messages=[
get_langgraph_node_log_string(
graph_component="initial - generate initial answer",
node_name="generate initial answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"

View File

@@ -10,8 +10,10 @@ from onyx.agents.agent_search.deep_search.main.states import (
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def validate_initial_answer(
state: SubQuestionRetrievalState,
) -> InitialAnswerQualityUpdate:
@@ -25,7 +27,7 @@ def validate_initial_answer(
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True
verdict = True # not actually required as already streamed out. Refinement will do similar
return InitialAnswerQualityUpdate(
initial_answer_quality_eval=verdict,

View File

@@ -23,6 +23,8 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -33,17 +35,30 @@ from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT,
)
from onyx.prompts.agent_search import (
INITIAL_QUESTION_DECOMPOSITION_PROMPT,
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. Sub-questions could not be generated.",
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
general_error="General LLM Error. Sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def decompose_orig_question(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -85,15 +100,15 @@ def decompose_orig_question(
]
)
decomposition_prompt = (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
else:
decomposition_prompt = INITIAL_QUESTION_DECOMPOSITION_PROMPT.format(
question=question, history=history
decomposition_prompt = (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT.format(
question=question, history=history
)
)
# Start decomposition
@@ -112,32 +127,42 @@ def decompose_orig_question(
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
streamed_tokens: list[BaseMessage_Content] = []
deomposition_response = merge_content(*streamed_tokens)
try:
streamed_tokens = dispatch_separated(
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION,
),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
decomposition_response = merge_content(*streamed_tokens)
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
list_of_subqs = cast(str, decomposition_response).split("\n")
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
except LLMTimeoutError as e:
logger.error("LLM Timeout Error - decompose orig question")
raise e # fail loudly on this critical step
except LLMRateLimitError as e:
logger.error("LLM Rate Limit Error - decompose orig question")
raise e
return InitialQuestionDecompositionUpdate(
initial_sub_questions=decomp_list,
initial_sub_questions=initial_sub_questions,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
@@ -151,7 +176,7 @@ def decompose_orig_question(
graph_component="initial - generate sub answers",
node_name="decompose original question",
node_start_time=node_start_time,
result=f"decomposed original question into {len(decomp_list)} subquestions",
result=log_result,
)
],
)

View File

@@ -26,8 +26,8 @@ from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need impo
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
extract_entities_terms,
)
from onyx.agents.agent_search.deep_search.main.nodes.generate_refined_answer import (
generate_refined_answer,
from onyx.agents.agent_search.deep_search.main.nodes.generate_validate_refined_answer import (
generate_validate_refined_answer,
)
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
ingest_refined_sub_answers,
@@ -126,8 +126,8 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Node to generate the refined answer
graph.add_node(
node="generate_refined_answer",
action=generate_refined_answer,
node="generate_validate_refined_answer",
action=generate_validate_refined_answer,
)
# Early node to extract the entities and terms from the initial answer,
@@ -215,11 +215,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_edge(
start_key="ingest_refined_sub_answers",
end_key="generate_refined_answer",
end_key="generate_validate_refined_answer",
)
graph.add_edge(
start_key="generate_refined_answer",
start_key="generate_validate_refined_answer",
end_key="compare_answers",
)
graph.add_edge(
@@ -252,9 +252,7 @@ if __name__ == "__main__":
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(
base_question=graph_config.inputs.search_request.query, log_messages=[]
)
inputs = MainInput(log_messages=[])
for thing in compiled_graph.stream(
input=inputs,

View File

@@ -1,6 +1,7 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from langgraph.types import StreamWriter
@@ -10,16 +11,51 @@ from onyx.agents.agent_search.deep_search.main.states import (
)
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import RefinedAnswerImprovement
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out, and the answers could not be compared.",
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
general_error="The LLM encountered an error, and the answers could not be compared.",
)
_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE = (
"Answer quality is not sufficient, so stay with the initial answer."
)
@log_function_time(print_only=True)
def compare_answers(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> InitialRefinedAnswerComparisonUpdate:
@@ -34,21 +70,75 @@ def compare_answers(
initial_answer = state.initial_answer
refined_answer = state.refined_answer
# if answer quality is not sufficient, then stay with the initial answer
if not state.refined_answer_quality:
write_custom_event(
"refined_answer_improvement",
RefinedAnswerImprovement(
refined_answer_improvement=False,
),
writer,
)
return InitialRefinedAnswerComparisonUpdate(
refined_answer_improvement_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE,
)
],
)
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
question=question, initial_answer=initial_answer, refined_answer=refined_answer
)
msg = [HumanMessage(content=compare_answers_prompt)]
agent_error: AgentErrorLog | None = None
# Get the rewritten queries in a defined format
model = graph_config.tooling.fast_llm
resp: BaseMessage | None = None
refined_answer_improvement: bool | None = None
# no need to stream this
resp = model.invoke(msg)
try:
resp = model.invoke(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
)
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - compare answers")
# continue as True in this support step
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - compare answers")
# continue as True in this support step
if agent_error or resp is None:
refined_answer_improvement = True
if agent_error:
log_result = agent_error.error_result
else:
log_result = "An answer could not be generated."
else:
refined_answer_improvement = binary_string_test(
text=cast(str, resp.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
)
log_result = f"Answer comparison: {refined_answer_improvement}"
write_custom_event(
"refined_answer_improvement",
@@ -65,7 +155,7 @@ def compare_answers(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=f"Answer comparison: {refined_answer_improvement}",
result=log_result,
)
],
)

View File

@@ -21,6 +21,18 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
format_entity_term_extraction,
@@ -30,12 +42,31 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
)
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS,
)
from onyx.tools.models import ToolCallKickoff
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_ANSWERED_SUBQUESTIONS_DIVIDER = "\n\n---\n\n"
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The sub-questions could not be generated.",
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
general_error="The LLM encountered an error. The sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def create_refined_sub_questions(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedQuestionDecompositionUpdate:
@@ -72,8 +103,10 @@ def create_refined_sub_questions(
initial_question_answers = state.sub_question_results
addressed_question_list = [
x.question for x in initial_question_answers if x.verified_high_quality
addressed_subquestions_with_answers = [
f"Subquestion: {x.question}\nSubanswer:\n{x.answer}"
for x in initial_question_answers
if x.verified_high_quality and x.answer
]
failed_question_list = [
@@ -82,12 +115,14 @@ def create_refined_sub_questions(
msg = [
HumanMessage(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT.format(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS.format(
question=question,
history=history,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_sub_questions="\n - ".join(addressed_question_list),
answered_subquestions_with_answers=_ANSWERED_SUBQUESTIONS_DIVIDER.join(
addressed_subquestions_with_answers
),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
@@ -96,29 +131,65 @@ def create_refined_sub_questions(
# Grader
model = graph_config.tooling.fast_llm
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
response = merge_content(*streamed_tokens)
agent_error: AgentErrorLog | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = dispatch_separated(
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION,
),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - create refined sub questions")
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - create refined sub questions")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
if agent_error:
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
log_result = agent_error.error_result
write_custom_event(
"refined_sub_question_creation_error",
StreamingError(
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
),
writer,
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
else:
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
return RefinedQuestionDecompositionUpdate(
refined_sub_questions=refined_sub_question_dict,
@@ -128,7 +199,7 @@ def create_refined_sub_questions(
graph_component="main",
node_name="create refined sub questions",
node_start_time=node_start_time,
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
result=log_result,
)
],
)

View File

@@ -11,8 +11,10 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def decide_refinement_need(
state: MainState, config: RunnableConfig
) -> RequireRefinemenEvalUpdate:
@@ -26,6 +28,19 @@ def decide_refinement_need(
decision = True # TODO: just for current testing purposes
if state.answer_error:
return RequireRefinemenEvalUpdate(
require_refined_answer_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="decide refinement need",
node_start_time=node_start_time,
result="Timeout Error",
)
],
)
log_messages = [
get_langgraph_node_log_string(
graph_component="main",

View File

@@ -21,11 +21,16 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def extract_entities_terms(
state: MainState, config: RunnableConfig
) -> EntityTermExtractionUpdate:
@@ -81,6 +86,7 @@ def extract_entities_terms(
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION,
)
cleaned_response = (

View File

@@ -11,27 +11,49 @@ from onyx.agents.agent_search.deep_search.main.models import (
AgentRefinedMetrics,
)
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
from onyx.agents.agent_search.deep_search.main.operations import logger
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.main.states import (
RefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test_after_answer_separator,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
get_prompt_enrichment_components,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AGENT_ANSWER_SEPARATOR
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
dedup_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -43,26 +65,50 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_VALIDATION_PROMPT,
)
from onyx.prompts.agent_search import (
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The refined answer could not be generated.",
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
general_error="The LLM encountered an error. The refined answer could not be generated.",
)
def generate_refined_answer(
@log_function_time(print_only=True)
def generate_validate_refined_answer(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedAnswerUpdate:
"""
LangGraph node to generate the refined answer.
LangGraph node to generate the refined answer and validate it.
"""
node_start_time = datetime.now()
@@ -76,19 +122,24 @@ def generate_refined_answer(
)
verified_reranked_documents = state.verified_reranked_documents
sub_questions_cited_documents = state.cited_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
original_question_verified_documents = (
state.orig_question_verified_reranked_documents
)
original_question_retrieved_documents = state.orig_question_retrieved_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
original_question_verified_documents
):
if original_doc_number not in sub_questions_cited_documents:
if original_doc_number not in structured_subquestion_docs.cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs)
@@ -99,14 +150,16 @@ def generate_refined_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
streaming_docs = (
relevant_docs
if len(relevant_docs) > 0
else original_question_retrieved_documents[:15]
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=original_question_retrieved_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER,
)
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
@@ -114,11 +167,13 @@ def generate_refined_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
# stream refined answer docs, or original question docs if no relevant docs are found
relevance_list = relevance_from_docs(relevant_docs)
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
for tool_response in yield_search_responses(
query=question,
reranked_sections=streaming_docs,
final_context_sections=streaming_docs,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -199,7 +254,7 @@ def generate_refined_answer(
)
model = graph_config.tooling.fast_llm
relevant_docs_str = format_docs(relevant_docs)
relevant_docs_str = format_docs(answer_generation_documents.context_documents)
relevant_docs_str = trim_prompt_piece(
model.config,
relevant_docs_str,
@@ -231,28 +286,80 @@ def generate_refined_answer(
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
agent_error: AgentErrorLog | None = None
start_stream_token = datetime.now()
try:
for message in model.stream(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate refined answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate refined answer")
if agent_error:
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
streamed_tokens.append(content)
return RefinedAnswerUpdate(
refined_answer=None,
refined_answer_quality=False, # TODO: replace this with the actual check value
refined_agent_stats=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=0.0,
refined_question_boost_factor=0.0,
duration_s=None,
),
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="generate refined answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
logger.debug(
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
@@ -261,54 +368,43 @@ def generate_refined_answer(
response = merge_content(*streamed_tokens)
answer = cast(str, response)
# run a validation step for the refined answer only
msg = [
HumanMessage(
content=REFINED_ANSWER_VALIDATION_PROMPT.format(
question=question,
history=prompt_enrichment_components.history,
answered_sub_questions=sub_question_answer_str,
relevant_docs=relevant_docs_str,
proposed_answer=answer,
persona_specification=persona_contextualized_prompt,
)
)
]
try:
validation_response = model.invoke(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION
)
refined_answer_quality = binary_string_test_after_answer_separator(
text=cast(str, validation_response.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
separator=AGENT_ANSWER_SEPARATOR,
)
except LLMTimeoutError:
refined_answer_quality = True
logger.error("LLM Timeout Error - validate refined answer")
except LLMRateLimitError:
refined_answer_quality = True
logger.error("LLM Rate Limit Error - validate refined answer")
refined_agent_stats = RefinedAgentStats(
revision_doc_efficiency=refined_doc_effectiveness,
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (
@@ -325,7 +421,7 @@ def generate_refined_answer(
return RefinedAnswerUpdate(
refined_answer=answer,
refined_answer_quality=True, # TODO: replace this with the actual check value
refined_answer_quality=refined_answer_quality,
refined_agent_stats=refined_agent_stats,
agent_refined_end_time=agent_refined_end_time,
agent_refined_metrics=agent_refined_metrics,

View File

@@ -17,6 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -76,6 +77,7 @@ class InitialAnswerUpdate(LoggerUpdate):
"""
initial_answer: str | None = None
answer_error: AgentErrorLog | None = None
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
@@ -88,6 +90,7 @@ class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
"""
refined_answer: str | None = None
answer_error: AgentErrorLog | None = None
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False

View File

@@ -16,16 +16,44 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
QUERY_REWRITING_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
general_error="Query rewriting failed due to LLM error - the original question will be used.",
)
@log_function_time(print_only=True)
def expand_queries(
state: ExpandedRetrievalInput,
config: RunnableConfig,
@@ -54,13 +82,43 @@ def expand_queries(
)
]
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_num, writer)
)
agent_error: AgentErrorLog | None = None
llm_response_list: list[BaseMessage_Content] = []
llm_response = ""
rewritten_queries = []
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
try:
llm_response_list = dispatch_separated(
llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION,
),
dispatch_subquery(level, question_num, writer),
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
0
].content
rewritten_queries = llm_response.split("\n")
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
rewritten_queries = llm_response.split("\n")
except LLMTimeoutError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - expand queries")
log_result = agent_error.error_result
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - expand queries")
log_result = agent_error.error_result
# use subquestion as query if query generation fails
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
@@ -69,7 +127,7 @@ def expand_queries(
graph_component="shared - expanded retrieval",
node_name="expand queries",
node_start_time=node_start_time,
result=f"Number of expanded queries: {len(rewritten_queries)}",
result=log_result,
)
],
)

View File

@@ -21,12 +21,15 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.configs.agent_configs import AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS
from onyx.configs.agent_configs import AGENT_RERANKING_STATS
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import SearchRequest
from onyx.context.search.pipeline import retrieval_preprocessing
from onyx.context.search.models import RerankingDetails
from onyx.context.search.postprocessing.postprocessing import rerank_sections
from onyx.context.search.postprocessing.postprocessing import should_rerank
from onyx.db.engine import get_session_context_manager
from onyx.db.search_settings import get_current_search_settings
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def rerank_documents(
state: ExpandedRetrievalState, config: RunnableConfig
) -> DocRerankingUpdate:
@@ -39,6 +42,8 @@ def rerank_documents(
# Rerank post retrieval and verification. First, create a search query
# then create the list of reranked sections
# If no question defined/question is None in the state, use the original
# question from the search request as query
graph_config = cast(GraphConfig, config["metadata"]["config"])
question = (
@@ -47,39 +52,28 @@ def rerank_documents(
assert (
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
with get_session_context_manager() as db_session:
# we ignore some of the user specified fields since this search is
# internal to agentic search, but we still want to pass through
# persona (for stuff like document sets) and rerank settings
# (to not make an unnecessary db call).
search_request = SearchRequest(
query=question,
persona=graph_config.inputs.search_request.persona,
rerank_settings=graph_config.inputs.search_request.rerank_settings,
)
_search_query = retrieval_preprocessing(
search_request=search_request,
user=graph_config.tooling.search_tool.user, # bit of a hack
llm=graph_config.tooling.fast_llm,
db_session=db_session,
)
# skip section filtering
# Note that these are passed in values from the API and are overrides which are typically None
rerank_settings = graph_config.inputs.search_request.rerank_settings
if (
_search_query.rerank_settings
and _search_query.rerank_settings.rerank_model_name
and _search_query.rerank_settings.num_rerank > 0
and len(verified_documents) > 0
):
if rerank_settings is None:
with get_session_context_manager() as db_session:
search_settings = get_current_search_settings(db_session)
if not search_settings.disable_rerank_for_streaming:
rerank_settings = RerankingDetails.from_db_model(search_settings)
if should_rerank(rerank_settings) and len(verified_documents) > 0:
if len(verified_documents) > 1:
reranked_documents = rerank_sections(
_search_query,
verified_documents,
query_str=question,
# if runnable, then rerank_settings is not None
rerank_settings=cast(RerankingDetails, rerank_settings),
sections_to_rerank=verified_documents,
)
else:
num = "No" if len(verified_documents) == 0 else "One"
logger.warning(f"{num} verified document(s) found, skipping reranking")
logger.warning(
f"{len(verified_documents)} verified document(s) found, skipping reranking"
)
reranked_documents = verified_documents
else:
logger.warning("No reranking settings found, using unranked documents")

View File

@@ -23,12 +23,15 @@ from onyx.configs.agent_configs import AGENT_RETRIEVAL_STATS
from onyx.context.search.models import InferenceSection
from onyx.db.engine import get_session_context_manager
from onyx.tools.models import SearchQueryInfo
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def retrieve_documents(
state: RetrievalInput, config: RunnableConfig
) -> DocRetrievalUpdate:
@@ -67,9 +70,12 @@ def retrieve_documents(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=query_to_retrieve,
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
skip_query_analysis=not state.base_search,
),
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:

View File

@@ -1,5 +1,7 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
@@ -10,14 +12,38 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
DOCUMENT_VERIFICATION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def verify_documents(
state: DocVerificationInput, config: RunnableConfig
) -> DocVerificationUpdate:
@@ -26,12 +52,14 @@ def verify_documents(
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing ProSearchConfig
config (RunnableConfig): Configuration containing AgentSearchConfig
Updates:
verified_documents: list[InferenceSection]
"""
node_start_time = datetime.now()
question = state.question
retrieved_document_to_verify = state.retrieved_document_to_verify
document_content = retrieved_document_to_verify.combined_content
@@ -51,12 +79,40 @@ def verify_documents(
)
]
response = fast_llm.invoke(msg)
response: BaseMessage | None = None
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(retrieved_document_to_verify)
verified_documents = [
retrieved_document_to_verify
] # default is to treat document as relevant
try:
response = fast_llm.invoke(
msg, timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
)
assert isinstance(response.content, str)
if not binary_string_test(
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
):
verified_documents = []
except LLMTimeoutError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Timeout Error - verify documents")
except LLMRateLimitError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Rate Limit Error - verify documents")
return DocVerificationUpdate(
verified_documents=verified_documents,
log_messages=[
get_langgraph_node_log_string(
graph_component="shared - expanded retrieval",
node_name="verify documents",
node_start_time=node_start_time,
)
],
)

View File

@@ -21,9 +21,13 @@ from onyx.context.search.models import InferenceSection
class ExpandedRetrievalInput(SubgraphCoreState):
question: str = ""
base_search: bool = False
# exception from 'no default value'for LangGraph input states
# Here, sub_question_id default None implies usage for the
# original question. This is sometimes needed for nested sub-graphs
sub_question_id: str | None = None
question: str
base_search: bool
## Update/Return States
@@ -34,7 +38,7 @@ class QueryExpansionUpdate(LoggerUpdate, BaseModel):
log_messages: list[str] = []
class DocVerificationUpdate(BaseModel):
class DocVerificationUpdate(LoggerUpdate, BaseModel):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
@@ -88,4 +92,4 @@ class DocVerificationInput(ExpandedRetrievalInput):
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str = ""
query_to_retrieve: str

View File

@@ -12,7 +12,7 @@ from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput_a,
MainInput as MainInput,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
@@ -21,6 +21,7 @@ from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamingError
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
@@ -33,6 +34,7 @@ from onyx.llm.factory import get_default_llms
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
@@ -72,13 +74,15 @@ def _parse_agent_event(
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
elif event["name"] == "refined_sub_question_creation_error":
return cast(StreamingError, event["data"])
return None
def manage_sync_streaming(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
graph_input: BasicInput | MainInput_a,
graph_input: BasicInput | MainInput,
) -> Iterable[StreamEvent]:
message_id = config.persistence.message_id if config.persistence else None
for event in compiled_graph.stream(
@@ -92,7 +96,7 @@ def manage_sync_streaming(
def run_graph(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
input: BasicInput | MainInput_a,
input: BasicInput | MainInput,
) -> AnswerStream:
config.behavior.perform_initial_search_decomposition = (
INITIAL_SEARCH_DECOMPOSITION_ENABLED
@@ -123,9 +127,7 @@ def run_main_graph(
) -> AnswerStream:
compiled_graph = load_compiled_graph()
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
@@ -140,7 +142,7 @@ def run_basic_graph(
) -> AnswerStream:
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput()
input = BasicInput(unused=True)
return run_graph(compiled_graph, config, input)
@@ -172,9 +174,7 @@ if __name__ == "__main__":
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):

View File

@@ -7,6 +7,7 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.models import (
AgentPromptEnrichmentComponents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_persona_agent_prompt_expressions,
)
@@ -40,13 +41,7 @@ def build_sub_question_answer_prompt(
date_str = build_date_time_string()
# TODO: This should include document metadata and title
docs_format_list = [
f"Document Number: [D{doc_num + 1}]\nContent: {doc.combined_content}\n\n"
for doc_num, doc in enumerate(docs)
]
docs_str = "\n\n".join(docs_format_list)
docs_str = format_docs(docs)
docs_str = trim_prompt_piece(
config,
@@ -150,3 +145,38 @@ def get_prompt_enrichment_components(
history=history,
date_str=date_str,
)
def binary_string_test(text: str, positive_value: str = "yes") -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
return positive_value.lower() in text.lower()
def binary_string_test_after_answer_separator(
text: str, positive_value: str = "yes", separator: str = "Answer:"
) -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
if separator not in text:
return False
relevant_text = text.split(f"{separator}")[-1]
return binary_string_test(relevant_text, positive_value)

View File

@@ -1,7 +1,11 @@
import numpy as np
from onyx.agents.agent_search.shared_graph_utils.models import AnswerGenerationDocuments
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitScoreMetrics
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import SectionRelevancePiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
@@ -96,3 +100,106 @@ def get_fit_scores(
)
return fit_eval
def get_answer_generation_documents(
relevant_docs: list[InferenceSection],
context_documents: list[InferenceSection],
original_question_docs: list[InferenceSection],
max_docs: int,
) -> AnswerGenerationDocuments:
"""
Create a deduplicated list of documents to stream, prioritizing relevant docs.
Args:
relevant_docs: Primary documents to include
context_documents: Additional context documents to append
original_question_docs: Original question documents to append
max_docs: Maximum number of documents to return
Returns:
List of deduplicated documents, limited to max_docs
"""
# get relevant_doc ids
relevant_doc_ids = [doc.center_chunk.document_id for doc in relevant_docs]
# Start with relevant docs or fallback to original question docs
streaming_documents = relevant_docs.copy()
# Use a set for O(1) lookups of document IDs
seen_doc_ids = {doc.center_chunk.document_id for doc in streaming_documents}
# Combine additional documents to check in one iteration
additional_docs = context_documents + original_question_docs
for doc_idx, doc in enumerate(additional_docs):
doc_id = doc.center_chunk.document_id
if doc_id not in seen_doc_ids:
streaming_documents.append(doc)
seen_doc_ids.add(doc_id)
streaming_documents = dedup_inference_section_list(streaming_documents)
relevant_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id in relevant_doc_ids
]
relevant_streaming_docs = dedup_sort_inference_section_list(relevant_streaming_docs)
additional_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id not in relevant_doc_ids
]
additional_streaming_docs = dedup_sort_inference_section_list(
additional_streaming_docs
)
for doc in additional_streaming_docs:
if doc.center_chunk.score:
doc.center_chunk.score += -2.0
else:
doc.center_chunk.score = -2.0
sorted_streaming_documents = relevant_streaming_docs + additional_streaming_docs
return AnswerGenerationDocuments(
streaming_documents=sorted_streaming_documents[:max_docs],
context_documents=relevant_streaming_docs[:max_docs],
)
def dedup_sort_inference_section_list(
sections: list[InferenceSection],
) -> list[InferenceSection]:
"""Deduplicates InferenceSections by document_id and sorts by score.
Args:
sections: List of InferenceSections to deduplicate and sort
Returns:
Deduplicated list of InferenceSections sorted by score in descending order
"""
# dedupe/merge with existing framework
sections = dedup_inference_section_list(sections)
# Use dict to deduplicate by document_id, keeping highest scored version
unique_sections: dict[str, InferenceSection] = {}
for section in sections:
doc_id = section.center_chunk.document_id
if doc_id not in unique_sections:
unique_sections[doc_id] = section
continue
# Keep version with higher score
existing_score = unique_sections[doc_id].center_chunk.score or 0
new_score = section.center_chunk.score or 0
if new_score > existing_score:
unique_sections[doc_id] = section
# Sort by score in descending order, handling None scores
sorted_sections = sorted(
unique_sections.values(), key=lambda x: x.center_chunk.score or 0, reverse=True
)
return sorted_sections

View File

@@ -0,0 +1,19 @@
from enum import Enum
AGENT_LLM_TIMEOUT_MESSAGE = "The agent timed out. Please try again."
AGENT_LLM_ERROR_MESSAGE = "The agent encountered an error. Please try again."
AGENT_LLM_RATELIMIT_MESSAGE = (
"The agent encountered a rate limit error. Please try again."
)
LLM_ANSWER_ERROR_MESSAGE = "The question was not answered due to an LLM error."
AGENT_POSITIVE_VALUE_STR = "yes"
AGENT_NEGATIVE_VALUE_STR = "no"
AGENT_ANSWER_SEPARATOR = "Answer:"
class AgentLLMErrorType(str, Enum):
TIMEOUT = "timeout"
RATE_LIMIT = "rate_limit"
GENERAL_ERROR = "general_error"

View File

@@ -1,3 +1,5 @@
from typing import Any
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search.main.models import (
@@ -56,6 +58,12 @@ class InitialAgentResultStats(BaseModel):
agent_effectiveness: dict[str, float | int | None]
class AgentErrorLog(BaseModel):
error_message: str
error_type: str
error_result: str
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
@@ -110,6 +118,11 @@ class SubQuestionAnswerResults(BaseModel):
sub_question_retrieval_stats: AgentChunkRetrievalStats
class StructuredSubquestionDocuments(BaseModel):
cited_documents: list[InferenceSection]
context_documents: list[InferenceSection]
class CombinedAgentMetrics(BaseModel):
timings: AgentTimings
base_metrics: AgentBaseMetrics | None
@@ -126,3 +139,17 @@ class AgentPromptEnrichmentComponents(BaseModel):
persona_prompts: PersonaPromptExpressions
history: str
date_str: str
class LLMNodeErrorStrings(BaseModel):
timeout: str = "LLM Timeout Error"
rate_limit: str = "LLM Rate Limit Error"
general_error: str = "General LLM Error"
class AnswerGenerationDocuments(BaseModel):
streaming_documents: list[InferenceSection]
context_documents: list[InferenceSection]
BaseMessage_Content = str | list[str | dict[str, Any]]

View File

@@ -12,6 +12,13 @@ def dedup_inference_sections(
return deduped
def dedup_inference_section_list(
list: list[InferenceSection],
) -> list[InferenceSection]:
deduped = _merge_sections(list)
return deduped
def dedup_question_answer_results(
question_answer_results_1: list[SubQuestionAnswerResults],
question_answer_results_2: list[SubQuestionAnswerResults],

View File

@@ -20,10 +20,18 @@ from onyx.agents.agent_search.models import GraphInputs
from onyx.agents.agent_search.models import GraphPersistence
from onyx.agents.agent_search.models import GraphSearchConfig
from onyx.agents.agent_search.models import GraphTooling
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import PersonaPromptExpressions
from onyx.agents.agent_search.shared_graph_utils.models import (
StructuredSubquestionDocuments,
)
from onyx.agents.agent_search.shared_graph_utils.models import SubQuestionAnswerResults
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStyleConfig
from onyx.chat.models import CitationConfig
@@ -34,6 +42,9 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION,
)
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
@@ -46,6 +57,8 @@ from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.llm.interfaces import LLM
from onyx.prompts.agent_search import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
@@ -58,6 +71,7 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.prompt_utils import handle_onyx_date_awareness
from onyx.tools.force import ForceUseTool
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
@@ -65,8 +79,9 @@ from onyx.tools.tool_implementations.search.search_tool import (
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.logger import setup_logger
BaseMessage_Content = str | list[str | dict[str, Any]]
logger = setup_logger()
# Post-processing
@@ -218,7 +233,10 @@ def get_test_config(
using_tool_calling_llm=using_tool_calling_llm,
)
chat_session_id = os.environ.get("ONYX_AS_CHAT_SESSION_ID")
chat_session_id = (
os.environ.get("ONYX_AS_CHAT_SESSION_ID")
or "00000000-0000-0000-0000-000000000000"
)
assert (
chat_session_id is not None
), "ONYX_AS_CHAT_SESSION_ID must be set for backend tests"
@@ -341,8 +359,12 @@ def retrieve_search_docs(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=question,
force_no_rerank=True,
alternate_db_session=db_session,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=None,
skip_query_analysis=False,
),
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
@@ -372,8 +394,24 @@ def summarize_history(
)
)
history_response = llm.invoke(history_context_prompt)
try:
history_response = llm.invoke(
history_context_prompt,
timeout_override=AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION,
)
except LLMTimeoutError:
logger.error("LLM Timeout Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
assert isinstance(history_response.content, str)
return history_response.content
@@ -439,3 +477,27 @@ def remove_document_citations(text: str) -> str:
# \d+ - one or more digits
# \] - literal ] character
return re.sub(r"\[(?:D|Q)?\d+\]", "", text)
def get_deduplicated_structured_subquestion_documents(
sub_question_results: list[SubQuestionAnswerResults],
) -> StructuredSubquestionDocuments:
"""
Extract and deduplicate all cited documents from sub-question results.
Args:
sub_question_results: List of sub-question results containing cited documents
Returns:
Deduplicated list of cited documents
"""
cited_docs = [
doc for result in sub_question_results for doc in result.cited_documents
]
context_docs = [
doc for result in sub_question_results for doc in result.context_documents
]
return StructuredSubquestionDocuments(
cited_documents=dedup_inference_section_list(cited_docs),
context_documents=dedup_inference_section_list(context_docs),
)

View File

@@ -1,7 +1,7 @@
import smtplib
from datetime import datetime
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from textwrap import dedent
from onyx.configs.app_configs import EMAIL_CONFIGURED
from onyx.configs.app_configs import EMAIL_FROM
@@ -13,23 +13,150 @@ from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import TENANT_ID_COOKIE_NAME
from onyx.db.models import User
HTML_EMAIL_TEMPLATE = """\
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width" />
<title>{title}</title>
<style>
body, table, td, a {{
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
text-size-adjust: 100%;
margin: 0;
padding: 0;
-webkit-font-smoothing: antialiased;
-webkit-text-size-adjust: none;
}}
body {{
background-color: #f7f7f7;
color: #333;
}}
.body-content {{
color: #333;
}}
.email-container {{
width: 100%;
max-width: 600px;
margin: 0 auto;
background-color: #ffffff;
border-radius: 6px;
overflow: hidden;
border: 1px solid #eaeaea;
}}
.header {{
background-color: #000000;
padding: 20px;
text-align: center;
}}
.header img {{
max-width: 140px;
}}
.body-content {{
padding: 20px 30px;
}}
.title {{
font-size: 20px;
font-weight: bold;
margin: 0 0 10px;
}}
.message {{
font-size: 16px;
line-height: 1.5;
margin: 0 0 20px;
}}
.cta-button {{
display: inline-block;
padding: 12px 20px;
background-color: #000000;
color: #ffffff !important;
text-decoration: none;
border-radius: 4px;
font-weight: 500;
}}
.footer {{
font-size: 13px;
color: #6A7280;
text-align: center;
padding: 20px;
}}
.footer a {{
color: #6b7280;
text-decoration: underline;
}}
</style>
</head>
<body>
<table role="presentation" class="email-container" cellpadding="0" cellspacing="0">
<tr>
<td class="header">
<img
style="background-color: #ffffff; border-radius: 8px;"
src="https://www.onyx.app/logos/customer/onyx.png"
alt="Onyx Logo"
>
</td>
</tr>
<tr>
<td class="body-content">
<h1 class="title">{heading}</h1>
<div class="message">
{message}
</div>
{cta_block}
</td>
</tr>
<tr>
<td class="footer">
© {year} Onyx. All rights reserved.
<br>
Have questions? Join our Slack community <a href="https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA">here</a>.
</td>
</tr>
</table>
</body>
</html>
"""
def build_html_email(
heading: str, message: str, cta_text: str | None = None, cta_link: str | None = None
) -> str:
if cta_text and cta_link:
cta_block = f'<a class="cta-button" href="{cta_link}">{cta_text}</a>'
else:
cta_block = ""
return HTML_EMAIL_TEMPLATE.format(
title=heading,
heading=heading,
message=message,
cta_block=cta_block,
year=datetime.now().year,
)
def send_email(
user_email: str,
subject: str,
body: str,
html_body: str,
text_body: str,
mail_from: str = EMAIL_FROM,
) -> None:
if not EMAIL_CONFIGURED:
raise ValueError("Email is not configured.")
msg = MIMEMultipart()
msg = MIMEMultipart("alternative")
msg["Subject"] = subject
msg["To"] = user_email
if mail_from:
msg["From"] = mail_from
msg.attach(MIMEText(body))
part_text = MIMEText(text_body, "plain")
part_html = MIMEText(html_body, "html")
msg.attach(part_text)
msg.attach(part_html)
try:
with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as s:
@@ -40,26 +167,44 @@ def send_email(
raise e
def send_subscription_cancellation_email(user_email: str) -> None:
# Example usage of the reusable HTML
subject = "Your Onyx Subscription Has Been Canceled"
heading = "Subscription Canceled"
message = (
"<p>Were sorry to see you go.</p>"
"<p>Your subscription has been canceled and will end on your next billing date.</p>"
"<p>If you change your mind, you can always come back!</p>"
)
cta_text = "Renew Subscription"
cta_link = "https://www.onyx.app/pricing"
html_content = build_html_email(heading, message, cta_text, cta_link)
text_content = (
"We're sorry to see you go.\n"
"Your subscription has been canceled and will end on your next billing date.\n"
"If you change your mind, visit https://www.onyx.app/pricing"
)
send_email(user_email, subject, html_content, text_content)
def send_user_email_invite(user_email: str, current_user: User) -> None:
subject = "Invitation to Join Onyx Organization"
body = dedent(
f"""\
Hello,
You have been invited to join an organization on Onyx.
To join the organization, please visit the following link:
{WEB_DOMAIN}/auth/signup?email={user_email}
You'll be asked to set a password or login with Google to complete your registration.
Best regards,
The Onyx Team
"""
heading = "You've Been Invited!"
message = (
f"<p>You have been invited by {current_user.email} to join an organization on Onyx.</p>"
"<p>To join the organization, please click the button below to set a password "
"or login with Google and complete your registration.</p>"
)
send_email(user_email, subject, body, current_user.email)
cta_text = "Join Organization"
cta_link = f"{WEB_DOMAIN}/auth/signup?email={user_email}"
html_content = build_html_email(heading, message, cta_text, cta_link)
text_content = (
f"You have been invited by {current_user.email} to join an organization on Onyx.\n"
"To join the organization, please visit the following link:\n"
f"{WEB_DOMAIN}/auth/signup?email={user_email}\n"
"You'll be asked to set a password or login with Google to complete your registration."
)
send_email(user_email, subject, html_content, text_content)
def send_forgot_password_email(
@@ -68,13 +213,15 @@ def send_forgot_password_email(
mail_from: str = EMAIL_FROM,
tenant_id: str | None = None,
) -> None:
# Builds a forgot password email with or without fancy HTML
subject = "Onyx Forgot Password"
link = f"{WEB_DOMAIN}/auth/reset-password?token={token}"
if tenant_id:
link += f"&{TENANT_ID_COOKIE_NAME}={tenant_id}"
# Keep search param same name as cookie for simplicity
body = f"Click the following link to reset your password: {link}"
send_email(user_email, subject, body, mail_from)
message = f"<p>Click the following link to reset your password:</p><p>{link}</p>"
html_content = build_html_email("Reset Your Password", message)
text_content = f"Click the following link to reset your password: {link}"
send_email(user_email, subject, html_content, text_content, mail_from)
def send_user_verification_email(
@@ -82,7 +229,12 @@ def send_user_verification_email(
token: str,
mail_from: str = EMAIL_FROM,
) -> None:
# Builds a verification email
subject = "Onyx Email Verification"
link = f"{WEB_DOMAIN}/auth/verify-email?token={token}"
body = f"Click the following link to verify your email address: {link}"
send_email(user_email, subject, body, mail_from)
message = (
f"<p>Click the following link to verify your email address:</p><p>{link}</p>"
)
html_content = build_html_email("Verify Your Email", message)
text_content = f"Click the following link to verify your email address: {link}"
send_email(user_email, subject, html_content, text_content, mail_from)

View File

@@ -144,7 +144,6 @@ def on_worker_init(sender: Worker, **kwargs: Any) -> None:
# As currently designed, when this worker starts as "primary", we reinitialize redis
# to a clean state (for our purposes, anyway)
r.delete(OnyxRedisLocks.CHECK_VESPA_SYNC_BEAT_LOCK)
r.delete(OnyxRedisLocks.MONITOR_VESPA_SYNC_BEAT_LOCK)
r.delete(OnyxRedisConstants.ACTIVE_FENCES)

View File

@@ -19,6 +19,7 @@ BEAT_EXPIRES_DEFAULT = 15 * 60 # 15 minutes (in seconds)
# hack to slow down task dispatch in the cloud until
# we have a better implementation (backpressure, etc)
# Note that DynamicTenantScheduler can adjust the runtime value for this via Redis
CLOUD_BEAT_MULTIPLIER_DEFAULT = 8.0
# tasks that run in either self-hosted on cloud
@@ -56,16 +57,7 @@ beat_task_templates.extend(
{
"name": "check-for-pruning",
"task": OnyxCeleryTask.CHECK_FOR_PRUNING,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "monitor-vespa-sync",
"task": OnyxCeleryTask.MONITOR_VESPA_SYNC,
"schedule": timedelta(seconds=5),
"schedule": timedelta(seconds=20),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
@@ -141,14 +133,14 @@ def make_cloud_generator_task(task: dict[str, Any]) -> dict[str, Any]:
return cloud_task
# tasks that only run in the cloud
# tasks that only run in the cloud and are system wide
# the name attribute must start with ONYX_CLOUD_CELERY_TASK_PREFIX = "cloud" to be seen
# by the DynamicTenantScheduler as system wide task and not a per tenant task
beat_system_tasks: list[dict] = [
beat_cloud_tasks: list[dict] = [
# cloud specific tasks
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-alembic",
"task": OnyxCeleryTask.CLOUD_CHECK_ALEMBIC,
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor-alembic",
"task": OnyxCeleryTask.CLOUD_MONITOR_ALEMBIC,
"schedule": timedelta(hours=1),
"options": {
"queue": OnyxCeleryQueues.MONITORING,
@@ -156,11 +148,37 @@ beat_system_tasks: list[dict] = [
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor-celery-queues",
"task": OnyxCeleryTask.CLOUD_MONITOR_CELERY_QUEUES,
"schedule": timedelta(seconds=30),
"options": {
"queue": OnyxCeleryQueues.MONITORING,
"priority": OnyxCeleryPriority.HIGH,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
]
# tasks that only run self hosted
tasks_to_schedule: list[dict] = []
if not MULTI_TENANT:
tasks_to_schedule = beat_task_templates
tasks_to_schedule.extend(
[
{
"name": "monitor-celery-queues",
"task": OnyxCeleryTask.MONITOR_CELERY_QUEUES,
"schedule": timedelta(seconds=10),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
"queue": OnyxCeleryQueues.MONITORING,
},
},
]
)
tasks_to_schedule.extend(beat_task_templates)
def generate_cloud_tasks(
@@ -180,23 +198,24 @@ def generate_cloud_tasks(
if beat_multiplier <= 0:
raise ValueError("beat_multiplier must be positive!")
# start with the incoming beat tasks
cloud_tasks: list[dict] = copy.deepcopy(beat_tasks)
cloud_tasks: list[dict] = []
# generate our cloud tasks from the templates
# generate our tenant aware cloud tasks from the templates
for beat_template in beat_templates:
cloud_task = make_cloud_generator_task(beat_template)
cloud_tasks.append(cloud_task)
# factor in the cloud multiplier
# factor in the cloud multiplier for the above
for cloud_task in cloud_tasks:
cloud_task["schedule"] = cloud_task["schedule"] * beat_multiplier
# add the fixed cloud/system beat tasks. No multiplier for these.
cloud_tasks.extend(copy.deepcopy(beat_tasks))
return cloud_tasks
def get_cloud_tasks_to_schedule(beat_multiplier: float) -> list[dict[str, Any]]:
return generate_cloud_tasks(beat_system_tasks, beat_task_templates, beat_multiplier)
return generate_cloud_tasks(beat_cloud_tasks, beat_task_templates, beat_multiplier)
def get_tasks_to_schedule() -> list[dict[str, Any]]:

View File

@@ -1,10 +1,14 @@
import traceback
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import cast
from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
@@ -12,18 +16,35 @@ from onyx.background.celery.apps.app_base import task_logger
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
from onyx.db.connector import fetch_connector_by_id
from onyx.db.connector_credential_pair import add_deletion_failure_message
from onyx.db.connector_credential_pair import (
delete_connector_credential_pair__no_commit,
)
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.connector_credential_pair import get_connector_credential_pairs
from onyx.db.document import get_document_ids_for_connector_credential_pair
from onyx.db.document_set import delete_document_set_cc_pair_relationship__no_commit
from onyx.db.engine import get_session_with_tenant
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.enums import SyncStatus
from onyx.db.enums import SyncType
from onyx.db.index_attempt import delete_index_attempts
from onyx.db.search_settings import get_all_search_settings
from onyx.db.sync_record import cleanup_sync_records
from onyx.db.sync_record import insert_sync_record
from onyx.db.sync_record import update_sync_record_status
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_connector_delete import RedisConnectorDelete
from onyx.redis.redis_connector_delete import RedisConnectorDeletePayload
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.utils.variable_functionality import (
fetch_versioned_implementation_with_fallback,
)
from onyx.utils.variable_functionality import noop_fallback
class TaskDependencyError(RuntimeError):
@@ -42,6 +63,7 @@ def check_for_connector_deletion_task(
self: Task, *, tenant_id: str | None
) -> bool | None:
r = get_redis_client(tenant_id=tenant_id)
r_replica = get_redis_replica_client(tenant_id=tenant_id)
lock_beat: RedisLock = r.lock(
OnyxRedisLocks.CHECK_CONNECTOR_DELETION_BEAT_LOCK,
@@ -77,6 +99,18 @@ def check_for_connector_deletion_task(
# clear the stop signal if it exists ... no longer needed
redis_connector.stop.set_fence(False)
lock_beat.reacquire()
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
if not r.exists(key_bytes):
r.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str.startswith(RedisConnectorDelete.FENCE_PREFIX):
monitor_connector_deletion_taskset(tenant_id, key_bytes, r)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -212,3 +246,158 @@ def try_generate_document_cc_pair_cleanup_tasks(
redis_connector.delete.set_fence(fence_payload)
return tasks_generated
def monitor_connector_deletion_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis
) -> None:
fence_key = key_bytes.decode("utf-8")
cc_pair_id_str = RedisConnector.get_id_from_fence_key(fence_key)
if cc_pair_id_str is None:
task_logger.warning(f"could not parse cc_pair_id from {fence_key}")
return
cc_pair_id = int(cc_pair_id_str)
redis_connector = RedisConnector(tenant_id, cc_pair_id)
fence_data = redis_connector.delete.payload
if not fence_data:
task_logger.warning(
f"Connector deletion - fence payload invalid: cc_pair={cc_pair_id}"
)
return
if fence_data.num_tasks is None:
# the fence is setting up but isn't ready yet
return
remaining = redis_connector.delete.get_remaining()
task_logger.info(
f"Connector deletion progress: cc_pair={cc_pair_id} remaining={remaining} initial={fence_data.num_tasks}"
)
if remaining > 0:
with get_session_with_tenant(tenant_id) as db_session:
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
sync_status=SyncStatus.IN_PROGRESS,
num_docs_synced=remaining,
)
return
with get_session_with_tenant(tenant_id) as db_session:
cc_pair = get_connector_credential_pair_from_id(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
if not cc_pair:
task_logger.warning(
f"Connector deletion - cc_pair not found: cc_pair={cc_pair_id}"
)
return
try:
doc_ids = get_document_ids_for_connector_credential_pair(
db_session, cc_pair.connector_id, cc_pair.credential_id
)
if len(doc_ids) > 0:
# NOTE(rkuo): if this happens, documents somehow got added while
# deletion was in progress. Likely a bug gating off pruning and indexing
# work before deletion starts.
task_logger.warning(
"Connector deletion - documents still found after taskset completion. "
"Clearing the current deletion attempt and allowing deletion to restart: "
f"cc_pair={cc_pair_id} "
f"docs_deleted={fence_data.num_tasks} "
f"docs_remaining={len(doc_ids)}"
)
# We don't want to waive off why we get into this state, but resetting
# our attempt and letting the deletion restart is a good way to recover
redis_connector.delete.reset()
raise RuntimeError(
"Connector deletion - documents still found after taskset completion"
)
# clean up the rest of the related Postgres entities
# index attempts
delete_index_attempts(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
# document sets
delete_document_set_cc_pair_relationship__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# user groups
cleanup_user_groups = fetch_versioned_implementation_with_fallback(
"onyx.db.user_group",
"delete_user_group_cc_pair_relationship__no_commit",
noop_fallback,
)
cleanup_user_groups(
cc_pair_id=cc_pair_id,
db_session=db_session,
)
# finally, delete the cc-pair
delete_connector_credential_pair__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# if there are no credentials left, delete the connector
connector = fetch_connector_by_id(
db_session=db_session,
connector_id=cc_pair.connector_id,
)
if not connector or not len(connector.credentials):
task_logger.info(
"Connector deletion - Found no credentials left for connector, deleting connector"
)
db_session.delete(connector)
db_session.commit()
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
sync_status=SyncStatus.SUCCESS,
num_docs_synced=fence_data.num_tasks,
)
except Exception as e:
db_session.rollback()
stack_trace = traceback.format_exc()
error_message = f"Error: {str(e)}\n\nStack Trace:\n{stack_trace}"
add_deletion_failure_message(db_session, cc_pair_id, error_message)
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
sync_status=SyncStatus.FAILED,
num_docs_synced=fence_data.num_tasks,
)
task_logger.exception(
f"Connector deletion exceptioned: "
f"cc_pair={cc_pair_id} connector={cc_pair.connector_id} credential={cc_pair.credential_id}"
)
raise e
task_logger.info(
f"Connector deletion succeeded: "
f"cc_pair={cc_pair_id} "
f"connector={cc_pair.connector_id} "
f"credential={cc_pair.credential_id} "
f"docs_deleted={fence_data.num_tasks}"
)
redis_connector.delete.reset()

View File

@@ -175,6 +175,24 @@ def check_for_doc_permissions_sync(self: Task, *, tenant_id: str | None) -> bool
)
r.set(OnyxRedisSignals.BLOCK_VALIDATE_PERMISSION_SYNC_FENCES, 1, ex=300)
# use a lookup table to find active fences. We still have to verify the fence
# exists since it is an optimization and not the source of truth.
lock_beat.reacquire()
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
if not r.exists(key_bytes):
r.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str.startswith(RedisConnectorPermissionSync.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_permissions_taskset(
tenant_id, key_bytes, r, db_session
)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -349,6 +367,7 @@ def connector_permission_sync_generator_task(
OnyxRedisLocks.CONNECTOR_DOC_PERMISSIONS_SYNC_LOCK_PREFIX
+ f"_{redis_connector.id}",
timeout=CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT,
thread_local=False,
)
acquired = lock.acquire(blocking=False)
@@ -756,7 +775,7 @@ class PermissionSyncCallback(IndexingHeartbeatInterface):
raise
"""Monitoring CCPair permissions utils, called in monitor_vespa_sync"""
"""Monitoring CCPair permissions utils"""
def monitor_ccpair_permissions_taskset(

View File

@@ -26,11 +26,11 @@ from ee.onyx.external_permissions.sync_params import (
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.celery_redis import celery_find_task
from onyx.background.celery.celery_redis import celery_get_unacked_task_ids
from onyx.background.error_logging import emit_background_error
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.configs.constants import CELERY_EXTERNAL_GROUP_SYNC_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT
from onyx.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
@@ -72,18 +72,26 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
"""Returns boolean indicating if external group sync is due."""
if cc_pair.access_type != AccessType.SYNC:
return False
# skip external group sync if not active
if cc_pair.status != ConnectorCredentialPairStatus.ACTIVE:
task_logger.error(
f"Recieved non-sync CC Pair {cc_pair.id} for external "
f"group sync. Actual access type: {cc_pair.access_type}"
)
return False
if cc_pair.status == ConnectorCredentialPairStatus.DELETING:
task_logger.debug(
f"Skipping group sync for CC Pair {cc_pair.id} - "
f"CC Pair is being deleted"
)
return False
# If there is not group sync function for the connector, we don't run the sync
# This is fine because all sources dont necessarily have a concept of groups
if not GROUP_PERMISSIONS_FUNC_MAP.get(cc_pair.connector.source):
task_logger.debug(
f"Skipping group sync for CC Pair {cc_pair.id} - "
f"no group sync function for {cc_pair.connector.source}"
)
return False
# If the last sync is None, it has never been run so we run the sync
@@ -125,6 +133,9 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> bool
# these tasks should never overlap
if not lock_beat.acquire(blocking=False):
task_logger.warning(
f"Failed to acquire beat lock for external group sync: {tenant_id}"
)
return None
try:
@@ -205,20 +216,12 @@ def try_creating_external_group_sync_task(
redis_connector = RedisConnector(tenant_id, cc_pair_id)
LOCK_TIMEOUT = 30
lock: RedisLock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_generate_external_group_sync_tasks",
timeout=LOCK_TIMEOUT,
)
acquired = lock.acquire(blocking_timeout=LOCK_TIMEOUT / 2)
if not acquired:
return None
try:
# Dont kick off a new sync if the previous one is still running
if redis_connector.external_group_sync.fenced:
logger.warning(
f"Skipping external group sync for CC Pair {cc_pair_id} - already running."
)
return None
redis_connector.external_group_sync.generator_clear()
@@ -269,9 +272,6 @@ def try_creating_external_group_sync_task(
f"Unexpected exception while trying to create external group sync task: cc_pair={cc_pair_id}"
)
return None
finally:
if lock.owned():
lock.release()
return payload_id
@@ -304,22 +304,26 @@ def connector_external_group_sync_generator_task(
start = time.monotonic()
while True:
if time.monotonic() - start > CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT:
raise ValueError(
msg = (
f"connector_external_group_sync_generator_task - timed out waiting for fence to be ready: "
f"fence={redis_connector.external_group_sync.fence_key}"
)
emit_background_error(msg, cc_pair_id=cc_pair_id)
raise ValueError(msg)
if not redis_connector.external_group_sync.fenced: # The fence must exist
raise ValueError(
msg = (
f"connector_external_group_sync_generator_task - fence not found: "
f"fence={redis_connector.external_group_sync.fence_key}"
)
emit_background_error(msg, cc_pair_id=cc_pair_id)
raise ValueError(msg)
payload = redis_connector.external_group_sync.payload # The payload must exist
if not payload:
raise ValueError(
"connector_external_group_sync_generator_task: payload invalid or not found"
)
msg = "connector_external_group_sync_generator_task: payload invalid or not found"
emit_background_error(msg, cc_pair_id=cc_pair_id)
raise ValueError(msg)
if payload.celery_task_id is None:
logger.info(
@@ -344,9 +348,9 @@ def connector_external_group_sync_generator_task(
acquired = lock.acquire(blocking=False)
if not acquired:
task_logger.warning(
f"External group sync task already running, exiting...: cc_pair={cc_pair_id}"
)
msg = f"External group sync task already running, exiting...: cc_pair={cc_pair_id}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
task_logger.error(msg)
return None
try:
@@ -367,9 +371,9 @@ def connector_external_group_sync_generator_task(
ext_group_sync_func = GROUP_PERMISSIONS_FUNC_MAP.get(source_type)
if ext_group_sync_func is None:
raise ValueError(
f"No external group sync func found for {source_type} for cc_pair: {cc_pair_id}"
)
msg = f"No external group sync func found for {source_type} for cc_pair: {cc_pair_id}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
raise ValueError(msg)
logger.info(
f"Syncing external groups for {source_type} for cc_pair: {cc_pair_id}"
@@ -400,9 +404,9 @@ def connector_external_group_sync_generator_task(
sync_status=SyncStatus.SUCCESS,
)
except Exception as e:
task_logger.exception(
f"External group sync exceptioned: cc_pair={cc_pair_id} payload_id={payload.id}"
)
msg = f"External group sync exceptioned: cc_pair={cc_pair_id} payload_id={payload.id}"
task_logger.exception(msg)
emit_background_error(msg + f"\n\n{e}", cc_pair_id=cc_pair_id)
with get_session_with_tenant(tenant_id) as db_session:
update_sync_record_status(
@@ -492,9 +496,11 @@ def validate_external_group_sync_fence(
fence_key = key_bytes.decode("utf-8")
cc_pair_id_str = RedisConnector.get_id_from_fence_key(fence_key)
if cc_pair_id_str is None:
task_logger.warning(
msg = (
f"validate_external_group_sync_fence - could not parse id from {fence_key}"
)
emit_background_error(msg)
task_logger.error(msg)
return
cc_pair_id = int(cc_pair_id_str)
@@ -509,12 +515,14 @@ def validate_external_group_sync_fence(
try:
payload = redis_connector.external_group_sync.payload
except ValidationError:
task_logger.exception(
msg = (
"validate_external_group_sync_fence - "
"Resetting fence because fence schema is out of date: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key}"
)
task_logger.exception(msg)
emit_background_error(msg, cc_pair_id=cc_pair_id)
redis_connector.external_group_sync.reset()
return
@@ -551,12 +559,15 @@ def validate_external_group_sync_fence(
# return
# celery tasks don't exist and the active signal has expired, possibly due to a crash. Clean it up.
logger.warning(
"validate_external_group_sync_fence - "
"Resetting fence because no associated celery tasks were found: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key} "
f"payload_id={payload.id}"
emit_background_error(
message=(
"validate_external_group_sync_fence - "
"Resetting fence because no associated celery tasks were found: "
f"cc_pair={cc_pair_id} "
f"fence={fence_key} "
f"payload_id={payload.id}"
),
cc_pair_id=cc_pair_id,
)
redis_connector.external_group_sync.reset()

View File

@@ -6,13 +6,18 @@ from datetime import datetime
from datetime import timezone
from http import HTTPStatus
from time import sleep
from typing import Any
from typing import cast
import sentry_sdk
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from celery.result import AsyncResult
from celery.states import READY_STATES
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.celery_utils import httpx_init_vespa_pool
@@ -30,6 +35,7 @@ from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_INDEXING_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
from onyx.configs.constants import OnyxRedisSignals
from onyx.db.connector import mark_ccpair_with_indexing_trigger
@@ -37,6 +43,7 @@ from onyx.db.connector_credential_pair import fetch_connector_credential_pairs
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.engine import get_session_with_tenant
from onyx.db.enums import IndexingMode
from onyx.db.enums import IndexingStatus
from onyx.db.index_attempt import get_index_attempt
from onyx.db.index_attempt import get_last_attempt_for_cc_pair
from onyx.db.index_attempt import mark_attempt_canceled
@@ -47,9 +54,12 @@ from onyx.db.swap_index import check_index_swap
from onyx.natural_language_processing.search_nlp_models import EmbeddingModel
from onyx.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_connector_index import RedisConnectorIndex
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.redis.redis_pool import redis_lock_dump
from onyx.redis.redis_pool import SCAN_ITER_COUNT_DEFAULT
from onyx.redis.redis_utils import is_fence
from onyx.utils.logger import setup_logger
from onyx.utils.variable_functionality import global_version
from shared_configs.configs import INDEXING_MODEL_SERVER_HOST
@@ -60,6 +70,150 @@ from shared_configs.configs import SENTRY_DSN
logger = setup_logger()
def monitor_ccpair_indexing_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis, db_session: Session
) -> None:
# if the fence doesn't exist, there's nothing to do
fence_key = key_bytes.decode("utf-8")
composite_id = RedisConnector.get_id_from_fence_key(fence_key)
if composite_id is None:
task_logger.warning(
f"Connector indexing: could not parse composite_id from {fence_key}"
)
return
# parse out metadata and initialize the helper class with it
parts = composite_id.split("/")
if len(parts) != 2:
return
cc_pair_id = int(parts[0])
search_settings_id = int(parts[1])
redis_connector = RedisConnector(tenant_id, cc_pair_id)
redis_connector_index = redis_connector.new_index(search_settings_id)
if not redis_connector_index.fenced:
return
payload = redis_connector_index.payload
if not payload:
return
elapsed_started_str = None
if payload.started:
elapsed_started = datetime.now(timezone.utc) - payload.started
elapsed_started_str = f"{elapsed_started.total_seconds():.2f}"
elapsed_submitted = datetime.now(timezone.utc) - payload.submitted
progress = redis_connector_index.get_progress()
if progress is not None:
task_logger.info(
f"Connector indexing progress: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
if payload.index_attempt_id is None or payload.celery_task_id is None:
# the task is still setting up
return
# never use any blocking methods on the result from inside a task!
result: AsyncResult = AsyncResult(payload.celery_task_id)
# inner/outer/inner double check pattern to avoid race conditions when checking for
# bad state
# Verify: if the generator isn't complete, the task must not be in READY state
# inner = get_completion / generator_complete not signaled
# outer = result.state in READY state
status_int = redis_connector_index.get_completion()
if status_int is None: # inner signal not set ... possible error
task_state = result.state
if (
task_state in READY_STATES
): # outer signal in terminal state ... possible error
# Now double check!
if redis_connector_index.get_completion() is None:
# inner signal still not set (and cannot change when outer result_state is READY)
# Task is finished but generator complete isn't set.
# We have a problem! Worker may have crashed.
task_result = str(result.result)
task_traceback = str(result.traceback)
msg = (
f"Connector indexing aborted or exceptioned: "
f"attempt={payload.index_attempt_id} "
f"celery_task={payload.celery_task_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"result.state={task_state} "
f"result.result={task_result} "
f"result.traceback={task_traceback}"
)
task_logger.warning(msg)
try:
index_attempt = get_index_attempt(
db_session, payload.index_attempt_id
)
if index_attempt:
if (
index_attempt.status != IndexingStatus.CANCELED
and index_attempt.status != IndexingStatus.FAILED
):
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
except Exception:
task_logger.exception(
"Connector indexing - Transient exception marking index attempt as failed: "
f"attempt={payload.index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
redis_connector_index.reset()
return
if redis_connector_index.watchdog_signaled():
# if the generator is complete, don't clean up until the watchdog has exited
task_logger.info(
f"Connector indexing - Delaying finalization until watchdog has exited: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
return
status_enum = HTTPStatus(status_int)
task_logger.info(
f"Connector indexing finished: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"status={status_enum.name} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
redis_connector_index.reset()
@shared_task(
name=OnyxCeleryTask.CHECK_FOR_INDEXING,
soft_time_limit=300,
@@ -91,6 +245,25 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
try:
locked = True
# SPECIAL 0/3: sync lookup table for active fences
# we want to run this less frequently than the overall task
if not redis_client.exists(OnyxRedisSignals.BLOCK_BUILD_FENCE_LOOKUP_TABLE):
# build a lookup table of existing fences
# this is just a migration concern and should be unnecessary once
# lookup tables are rolled out
for key_bytes in redis_client_replica.scan_iter(
count=SCAN_ITER_COUNT_DEFAULT
):
if is_fence(key_bytes) and not redis_client.sismember(
OnyxRedisConstants.ACTIVE_FENCES, key_bytes
):
logger.warning(f"Adding {key_bytes} to the lookup table.")
redis_client.sadd(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
redis_client.set(OnyxRedisSignals.BLOCK_BUILD_FENCE_LOOKUP_TABLE, 1, ex=300)
# 1/3: KICKOFF
# check for search settings swap
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
old_search_settings = check_index_swap(db_session=db_session)
@@ -197,6 +370,8 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
lock_beat.reacquire()
# 2/3: VALIDATE
# Fail any index attempts in the DB that don't have fences
# This shouldn't ever happen!
with get_session_with_tenant(tenant_id) as db_session:
@@ -236,6 +411,26 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
task_logger.exception("Exception while validating indexing fences")
redis_client.set(OnyxRedisSignals.BLOCK_VALIDATE_INDEXING_FENCES, 1, ex=60)
# 3/3: FINALIZE
lock_beat.reacquire()
keys = cast(
set[Any], redis_client_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES)
)
for key in keys:
key_bytes = cast(bytes, key)
if not redis_client.exists(key_bytes):
redis_client.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str.startswith(RedisConnectorIndex.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_indexing_taskset(
tenant_id, key_bytes, redis_client_replica, db_session
)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."

View File

@@ -17,7 +17,8 @@ from sqlalchemy import text
from sqlalchemy.orm import Session
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.tasks.vespa.tasks import celery_get_queue_length
from onyx.background.celery.celery_redis import celery_get_queue_length
from onyx.background.celery.celery_redis import celery_get_unacked_task_ids
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import ONYX_CLOUD_TENANT_ID
from onyx.configs.constants import OnyxCeleryQueues
@@ -189,9 +190,9 @@ def _build_connector_start_latency_metric(
desired_start_time = cc_pair.connector.time_created
else:
if not cc_pair.connector.refresh_freq:
task_logger.error(
"Found non-initial index attempt for connector "
"without refresh_freq. This should never happen."
task_logger.debug(
"Connector has no refresh_freq and this is a non-initial index attempt. "
"Assuming user manually triggered indexing, so we'll skip start latency metric."
)
return None
@@ -722,7 +723,7 @@ def monitor_background_processes(self: Task, *, tenant_id: str | None) -> None:
@shared_task(
name=OnyxCeleryTask.CLOUD_CHECK_ALEMBIC,
name=OnyxCeleryTask.CLOUD_MONITOR_ALEMBIC,
)
def cloud_check_alembic() -> bool | None:
"""A task to verify that all tenants are on the same alembic revision.
@@ -852,3 +853,55 @@ def cloud_check_alembic() -> bool | None:
f"cloud_check_alembic finished: num_tenants={len(tenant_ids)} elapsed={time_elapsed:.2f}"
)
return True
@shared_task(
name=OnyxCeleryTask.CLOUD_MONITOR_CELERY_QUEUES, ignore_result=True, bind=True
)
def cloud_monitor_celery_queues(
self: Task,
) -> None:
return monitor_celery_queues_helper(self)
@shared_task(name=OnyxCeleryTask.MONITOR_CELERY_QUEUES, ignore_result=True, bind=True)
def monitor_celery_queues(self: Task, *, tenant_id: str | None) -> None:
return monitor_celery_queues_helper(self)
def monitor_celery_queues_helper(
task: Task,
) -> None:
"""A task to monitor all celery queue lengths."""
r_celery = task.app.broker_connection().channel().client # type: ignore
n_celery = celery_get_queue_length("celery", r_celery)
n_indexing = celery_get_queue_length(OnyxCeleryQueues.CONNECTOR_INDEXING, r_celery)
n_sync = celery_get_queue_length(OnyxCeleryQueues.VESPA_METADATA_SYNC, r_celery)
n_deletion = celery_get_queue_length(OnyxCeleryQueues.CONNECTOR_DELETION, r_celery)
n_pruning = celery_get_queue_length(OnyxCeleryQueues.CONNECTOR_PRUNING, r_celery)
n_permissions_sync = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_DOC_PERMISSIONS_SYNC, r_celery
)
n_external_group_sync = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_EXTERNAL_GROUP_SYNC, r_celery
)
n_permissions_upsert = celery_get_queue_length(
OnyxCeleryQueues.DOC_PERMISSIONS_UPSERT, r_celery
)
n_indexing_prefetched = celery_get_unacked_task_ids(
OnyxCeleryQueues.CONNECTOR_INDEXING, r_celery
)
task_logger.info(
f"Queue lengths: celery={n_celery} "
f"indexing={n_indexing} "
f"indexing_prefetched={len(n_indexing_prefetched)} "
f"sync={n_sync} "
f"deletion={n_deletion} "
f"pruning={n_pruning} "
f"permissions_sync={n_permissions_sync} "
f"external_group_sync={n_external_group_sync} "
f"permissions_upsert={n_permissions_upsert} "
)

View File

@@ -122,34 +122,39 @@ def check_for_pruning(self: Task, *, tenant_id: str | None) -> bool | None:
return None
try:
cc_pair_ids: list[int] = []
with get_session_with_tenant(tenant_id) as db_session:
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair_entry in cc_pairs:
cc_pair_ids.append(cc_pair_entry.id)
# the entire task needs to run frequently in order to finalize pruning
for cc_pair_id in cc_pair_ids:
lock_beat.reacquire()
# but pruning only kicks off once per hour
if not r.exists(OnyxRedisSignals.BLOCK_PRUNING):
cc_pair_ids: list[int] = []
with get_session_with_tenant(tenant_id) as db_session:
cc_pair = get_connector_credential_pair_from_id(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
if not cc_pair:
continue
cc_pairs = get_connector_credential_pairs(db_session)
for cc_pair_entry in cc_pairs:
cc_pair_ids.append(cc_pair_entry.id)
if not _is_pruning_due(cc_pair):
continue
for cc_pair_id in cc_pair_ids:
lock_beat.reacquire()
with get_session_with_tenant(tenant_id) as db_session:
cc_pair = get_connector_credential_pair_from_id(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
if not cc_pair:
continue
payload_id = try_creating_prune_generator_task(
self.app, cc_pair, db_session, r, tenant_id
)
if not payload_id:
continue
if not _is_pruning_due(cc_pair):
continue
task_logger.info(
f"Pruning queued: cc_pair={cc_pair.id} id={payload_id}"
)
payload_id = try_creating_prune_generator_task(
self.app, cc_pair, db_session, r, tenant_id
)
if not payload_id:
continue
task_logger.info(
f"Pruning queued: cc_pair={cc_pair.id} id={payload_id}"
)
r.set(OnyxRedisSignals.BLOCK_PRUNING, 1, ex=3600)
# we want to run this less frequently than the overall task
lock_beat.reacquire()
@@ -163,6 +168,22 @@ def check_for_pruning(self: Task, *, tenant_id: str | None) -> bool | None:
task_logger.exception("Exception while validating pruning fences")
r.set(OnyxRedisSignals.BLOCK_VALIDATE_PRUNING_FENCES, 1, ex=300)
# use a lookup table to find active fences. We still have to verify the fence
# exists since it is an optimization and not the source of truth.
lock_beat.reacquire()
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
if not r.exists(key_bytes):
r.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str.startswith(RedisConnectorPrune.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_pruning_taskset(tenant_id, key_bytes, r, db_session)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -481,7 +502,7 @@ def connector_pruning_generator_task(
)
"""Monitoring pruning utils, called in monitor_vespa_sync"""
"""Monitoring pruning utils"""
def monitor_ccpair_pruning_taskset(

View File

@@ -8,6 +8,7 @@ from celery.exceptions import SoftTimeLimitExceeded
from redis.lock import Lock as RedisLock
from tenacity import RetryError
from ee.onyx.server.tenants.product_gating import get_gated_tenants
from onyx.access.access import get_access_for_document
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
@@ -252,7 +253,11 @@ def cloud_beat_task_generator(
try:
tenant_ids = get_all_tenant_ids()
gated_tenants = get_gated_tenants()
for tenant_id in tenant_ids:
if tenant_id in gated_tenants:
continue
current_time = time.monotonic()
if current_time - last_lock_time >= (CELERY_GENERIC_BEAT_LOCK_TIMEOUT / 4):
lock_beat.reacquire()
@@ -270,6 +275,7 @@ def cloud_beat_task_generator(
queue=queue,
priority=priority,
expires=expires,
ignore_result=True,
)
except SoftTimeLimitExceeded:
task_logger.info(

View File

@@ -1,9 +1,5 @@
import random
import time
import traceback
from collections.abc import Callable
from datetime import datetime
from datetime import timezone
from http import HTTPStatus
from typing import Any
from typing import cast
@@ -13,8 +9,6 @@ from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from celery.result import AsyncResult
from celery.states import READY_STATES
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
@@ -22,47 +16,27 @@ from tenacity import RetryError
from onyx.access.access import get_access_for_document
from onyx.background.celery.apps.app_base import task_logger
from onyx.background.celery.celery_redis import celery_get_queue_length
from onyx.background.celery.celery_redis import celery_get_unacked_task_ids
from onyx.background.celery.tasks.doc_permission_syncing.tasks import (
monitor_ccpair_permissions_taskset,
)
from onyx.background.celery.tasks.pruning.tasks import monitor_ccpair_pruning_taskset
from onyx.background.celery.tasks.shared.RetryDocumentIndex import RetryDocumentIndex
from onyx.background.celery.tasks.shared.tasks import LIGHT_SOFT_TIME_LIMIT
from onyx.background.celery.tasks.shared.tasks import LIGHT_TIME_LIMIT
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.configs.app_configs import VESPA_SYNC_MAX_TASKS
from onyx.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
from onyx.configs.constants import OnyxRedisSignals
from onyx.db.connector import fetch_connector_by_id
from onyx.db.connector_credential_pair import add_deletion_failure_message
from onyx.db.connector_credential_pair import (
delete_connector_credential_pair__no_commit,
)
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
from onyx.db.connector_credential_pair import get_connector_credential_pairs
from onyx.db.document import count_documents_by_needs_sync
from onyx.db.document import get_document
from onyx.db.document import get_document_ids_for_connector_credential_pair
from onyx.db.document import mark_document_as_synced
from onyx.db.document_set import delete_document_set
from onyx.db.document_set import delete_document_set_cc_pair_relationship__no_commit
from onyx.db.document_set import fetch_document_sets
from onyx.db.document_set import fetch_document_sets_for_document
from onyx.db.document_set import get_document_set_by_id
from onyx.db.document_set import mark_document_set_as_synced
from onyx.db.engine import get_session_with_tenant
from onyx.db.enums import IndexingStatus
from onyx.db.enums import SyncStatus
from onyx.db.enums import SyncType
from onyx.db.index_attempt import delete_index_attempts
from onyx.db.index_attempt import get_index_attempt
from onyx.db.index_attempt import mark_attempt_failed
from onyx.db.models import DocumentSet
from onyx.db.models import UserGroup
from onyx.db.search_settings import get_active_search_settings
@@ -72,20 +46,14 @@ from onyx.db.sync_record import update_sync_record_status
from onyx.document_index.factory import get_default_document_index
from onyx.document_index.interfaces import VespaDocumentFields
from onyx.httpx.httpx_pool import HttpxPool
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_connector_credential_pair import RedisConnectorCredentialPair
from onyx.redis.redis_connector_credential_pair import (
RedisGlobalConnectorCredentialPair,
)
from onyx.redis.redis_connector_delete import RedisConnectorDelete
from onyx.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
from onyx.redis.redis_connector_index import RedisConnectorIndex
from onyx.redis.redis_connector_prune import RedisConnectorPrune
from onyx.redis.redis_document_set import RedisDocumentSet
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.redis.redis_pool import redis_lock_dump
from onyx.redis.redis_pool import SCAN_ITER_COUNT_DEFAULT
from onyx.redis.redis_usergroup import RedisUserGroup
from onyx.utils.logger import setup_logger
from onyx.utils.variable_functionality import fetch_versioned_implementation
@@ -94,7 +62,6 @@ from onyx.utils.variable_functionality import (
)
from onyx.utils.variable_functionality import global_version
from onyx.utils.variable_functionality import noop_fallback
from shared_configs.configs import MULTI_TENANT
logger = setup_logger()
@@ -111,9 +78,14 @@ logger = setup_logger()
def check_for_vespa_sync_task(self: Task, *, tenant_id: str | None) -> bool | None:
"""Runs periodically to check if any document needs syncing.
Generates sets of tasks for Celery if syncing is needed."""
# Useful for debugging timing issues with reacquisitions. TODO: remove once more generalized logging is in place
task_logger.info("check_for_vespa_sync_task started")
time_start = time.monotonic()
r = get_redis_client(tenant_id=tenant_id)
r_replica = get_redis_replica_client(tenant_id=tenant_id)
lock_beat: RedisLock = r.lock(
OnyxRedisLocks.CHECK_VESPA_SYNC_BEAT_LOCK,
@@ -125,6 +97,7 @@ def check_for_vespa_sync_task(self: Task, *, tenant_id: str | None) -> bool | No
return None
try:
# 1/3: KICKOFF
with get_session_with_tenant(tenant_id) as db_session:
try_generate_stale_document_sync_tasks(
self.app, VESPA_SYNC_MAX_TASKS, db_session, r, lock_beat, tenant_id
@@ -151,9 +124,8 @@ def check_for_vespa_sync_task(self: Task, *, tenant_id: str | None) -> bool | No
# endregion
# check if any user groups are not synced
lock_beat.reacquire()
if global_version.is_ee_version():
lock_beat.reacquire()
try:
fetch_user_groups = fetch_versioned_implementation(
"onyx.db.user_group", "fetch_user_groups"
@@ -179,6 +151,35 @@ def check_for_vespa_sync_task(self: Task, *, tenant_id: str | None) -> bool | No
self.app, usergroup_id, db_session, r, lock_beat, tenant_id
)
# 2/3: VALIDATE: TODO
# 3/3: FINALIZE
lock_beat.reacquire()
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
if not r.exists(key_bytes):
r.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str == RedisGlobalConnectorCredentialPair.FENCE_KEY:
monitor_connector_taskset(r)
elif key_str.startswith(RedisDocumentSet.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_document_set_taskset(tenant_id, key_bytes, r, db_session)
elif key_str.startswith(RedisUserGroup.FENCE_PREFIX):
monitor_usergroup_taskset = (
fetch_versioned_implementation_with_fallback(
"onyx.background.celery.tasks.vespa.tasks",
"monitor_usergroup_taskset",
noop_fallback,
)
)
with get_session_with_tenant(tenant_id) as db_session:
monitor_usergroup_taskset(tenant_id, key_bytes, r, db_session)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -495,484 +496,23 @@ def monitor_document_set_taskset(
task_logger.info(
f"Successfully synced document set: document_set={document_set_id}"
)
update_sync_record_status(
db_session=db_session,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
sync_status=SyncStatus.SUCCESS,
num_docs_synced=initial_count,
)
rds.reset()
def monitor_connector_deletion_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis
) -> None:
fence_key = key_bytes.decode("utf-8")
cc_pair_id_str = RedisConnector.get_id_from_fence_key(fence_key)
if cc_pair_id_str is None:
task_logger.warning(f"could not parse cc_pair_id from {fence_key}")
return
cc_pair_id = int(cc_pair_id_str)
redis_connector = RedisConnector(tenant_id, cc_pair_id)
fence_data = redis_connector.delete.payload
if not fence_data:
task_logger.warning(
f"Connector deletion - fence payload invalid: cc_pair={cc_pair_id}"
)
return
if fence_data.num_tasks is None:
# the fence is setting up but isn't ready yet
return
remaining = redis_connector.delete.get_remaining()
task_logger.info(
f"Connector deletion progress: cc_pair={cc_pair_id} remaining={remaining} initial={fence_data.num_tasks}"
)
if remaining > 0:
with get_session_with_tenant(tenant_id) as db_session:
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
sync_status=SyncStatus.IN_PROGRESS,
num_docs_synced=remaining,
)
return
with get_session_with_tenant(tenant_id) as db_session:
cc_pair = get_connector_credential_pair_from_id(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
if not cc_pair:
task_logger.warning(
f"Connector deletion - cc_pair not found: cc_pair={cc_pair_id}"
)
return
try:
doc_ids = get_document_ids_for_connector_credential_pair(
db_session, cc_pair.connector_id, cc_pair.credential_id
)
if len(doc_ids) > 0:
# NOTE(rkuo): if this happens, documents somehow got added while
# deletion was in progress. Likely a bug gating off pruning and indexing
# work before deletion starts.
task_logger.warning(
"Connector deletion - documents still found after taskset completion. "
"Clearing the current deletion attempt and allowing deletion to restart: "
f"cc_pair={cc_pair_id} "
f"docs_deleted={fence_data.num_tasks} "
f"docs_remaining={len(doc_ids)}"
)
# We don't want to waive off why we get into this state, but resetting
# our attempt and letting the deletion restart is a good way to recover
redis_connector.delete.reset()
raise RuntimeError(
"Connector deletion - documents still found after taskset completion"
)
# clean up the rest of the related Postgres entities
# index attempts
delete_index_attempts(
db_session=db_session,
cc_pair_id=cc_pair_id,
)
# document sets
delete_document_set_cc_pair_relationship__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# user groups
cleanup_user_groups = fetch_versioned_implementation_with_fallback(
"onyx.db.user_group",
"delete_user_group_cc_pair_relationship__no_commit",
noop_fallback,
)
cleanup_user_groups(
cc_pair_id=cc_pair_id,
db_session=db_session,
)
# finally, delete the cc-pair
delete_connector_credential_pair__no_commit(
db_session=db_session,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
)
# if there are no credentials left, delete the connector
connector = fetch_connector_by_id(
db_session=db_session,
connector_id=cc_pair.connector_id,
)
if not connector or not len(connector.credentials):
task_logger.info(
"Connector deletion - Found no credentials left for connector, deleting connector"
)
db_session.delete(connector)
db_session.commit()
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
sync_status=SyncStatus.SUCCESS,
num_docs_synced=fence_data.num_tasks,
num_docs_synced=initial_count,
)
except Exception as e:
db_session.rollback()
stack_trace = traceback.format_exc()
error_message = f"Error: {str(e)}\n\nStack Trace:\n{stack_trace}"
add_deletion_failure_message(db_session, cc_pair_id, error_message)
update_sync_record_status(
db_session=db_session,
entity_id=cc_pair_id,
sync_type=SyncType.CONNECTOR_DELETION,
sync_status=SyncStatus.FAILED,
num_docs_synced=fence_data.num_tasks,
)
except Exception:
task_logger.exception(
f"Connector deletion exceptioned: "
f"cc_pair={cc_pair_id} connector={cc_pair.connector_id} credential={cc_pair.credential_id}"
)
raise e
task_logger.info(
f"Connector deletion succeeded: "
f"cc_pair={cc_pair_id} "
f"connector={cc_pair.connector_id} "
f"credential={cc_pair.credential_id} "
f"docs_deleted={fence_data.num_tasks}"
)
redis_connector.delete.reset()
def monitor_ccpair_indexing_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis, db_session: Session
) -> None:
# if the fence doesn't exist, there's nothing to do
fence_key = key_bytes.decode("utf-8")
composite_id = RedisConnector.get_id_from_fence_key(fence_key)
if composite_id is None:
task_logger.warning(
f"Connector indexing: could not parse composite_id from {fence_key}"
)
return
# parse out metadata and initialize the helper class with it
parts = composite_id.split("/")
if len(parts) != 2:
return
cc_pair_id = int(parts[0])
search_settings_id = int(parts[1])
redis_connector = RedisConnector(tenant_id, cc_pair_id)
redis_connector_index = redis_connector.new_index(search_settings_id)
if not redis_connector_index.fenced:
return
payload = redis_connector_index.payload
if not payload:
return
elapsed_started_str = None
if payload.started:
elapsed_started = datetime.now(timezone.utc) - payload.started
elapsed_started_str = f"{elapsed_started.total_seconds():.2f}"
elapsed_submitted = datetime.now(timezone.utc) - payload.submitted
progress = redis_connector_index.get_progress()
if progress is not None:
task_logger.info(
f"Connector indexing progress: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
if payload.index_attempt_id is None or payload.celery_task_id is None:
# the task is still setting up
return
# never use any blocking methods on the result from inside a task!
result: AsyncResult = AsyncResult(payload.celery_task_id)
# inner/outer/inner double check pattern to avoid race conditions when checking for
# bad state
# Verify: if the generator isn't complete, the task must not be in READY state
# inner = get_completion / generator_complete not signaled
# outer = result.state in READY state
status_int = redis_connector_index.get_completion()
if status_int is None: # inner signal not set ... possible error
task_state = result.state
if (
task_state in READY_STATES
): # outer signal in terminal state ... possible error
# Now double check!
if redis_connector_index.get_completion() is None:
# inner signal still not set (and cannot change when outer result_state is READY)
# Task is finished but generator complete isn't set.
# We have a problem! Worker may have crashed.
task_result = str(result.result)
task_traceback = str(result.traceback)
msg = (
f"Connector indexing aborted or exceptioned: "
f"attempt={payload.index_attempt_id} "
f"celery_task={payload.celery_task_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"result.state={task_state} "
f"result.result={task_result} "
f"result.traceback={task_traceback}"
)
task_logger.warning(msg)
try:
index_attempt = get_index_attempt(
db_session, payload.index_attempt_id
)
if index_attempt:
if (
index_attempt.status != IndexingStatus.CANCELED
and index_attempt.status != IndexingStatus.FAILED
):
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
except Exception:
task_logger.exception(
"Connector indexing - Transient exception marking index attempt as failed: "
f"attempt={payload.index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
redis_connector_index.reset()
return
if redis_connector_index.watchdog_signaled():
# if the generator is complete, don't clean up until the watchdog has exited
task_logger.info(
f"Connector indexing - Delaying finalization until watchdog has exited: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
return
status_enum = HTTPStatus(status_int)
task_logger.info(
f"Connector indexing finished: "
f"attempt={payload.index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"status={status_enum.name} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"elapsed_started={elapsed_started_str}"
)
redis_connector_index.reset()
@shared_task(
name=OnyxCeleryTask.MONITOR_VESPA_SYNC,
ignore_result=True,
soft_time_limit=300,
bind=True,
)
def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool | None:
"""This is a celery beat task that monitors and finalizes various long running tasks.
The name monitor_vespa_sync is a bit of a misnomer since it checks many different tasks
now. Should change that at some point.
It scans for fence values and then gets the counts of any associated tasksets.
For many tasks, the count is 0, that means all tasks finished and we should clean up.
This task lock timeout is CELERY_METADATA_SYNC_BEAT_LOCK_TIMEOUT seconds, so don't
do anything too expensive in this function!
Returns True if the task actually did work, False if it exited early to prevent overlap
"""
task_logger.info(f"monitor_vespa_sync starting: tenant={tenant_id}")
time_start = time.monotonic()
r = get_redis_client(tenant_id=tenant_id)
# Replica usage notes
#
# False negatives are OK. (aka fail to to see a key that exists on the master).
# We simply skip the monitoring work and it will be caught on the next pass.
#
# False positives are not OK, and are possible if we clear a fence on the master and
# then read from the replica. In this case, monitoring work could be done on a fence
# that no longer exists. To avoid this, we scan from the replica, but double check
# the result on the master.
r_replica = get_redis_replica_client(tenant_id=tenant_id)
lock_beat: RedisLock = r.lock(
OnyxRedisLocks.MONITOR_VESPA_SYNC_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
# prevent overlapping tasks
if not lock_beat.acquire(blocking=False):
return None
try:
# print current queue lengths
time.monotonic()
# we don't need every tenant polling redis for this info.
if not MULTI_TENANT or random.randint(1, 10) == 10:
r_celery = self.app.broker_connection().channel().client # type: ignore
n_celery = celery_get_queue_length("celery", r_celery)
n_indexing = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_INDEXING, r_celery
)
n_sync = celery_get_queue_length(
OnyxCeleryQueues.VESPA_METADATA_SYNC, r_celery
)
n_deletion = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_DELETION, r_celery
)
n_pruning = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_PRUNING, r_celery
)
n_permissions_sync = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_DOC_PERMISSIONS_SYNC, r_celery
)
n_external_group_sync = celery_get_queue_length(
OnyxCeleryQueues.CONNECTOR_EXTERNAL_GROUP_SYNC, r_celery
)
n_permissions_upsert = celery_get_queue_length(
OnyxCeleryQueues.DOC_PERMISSIONS_UPSERT, r_celery
"update_sync_record_status exceptioned. "
f"document_set_id={document_set_id} "
"Resetting document set regardless."
)
prefetched = celery_get_unacked_task_ids(
OnyxCeleryQueues.CONNECTOR_INDEXING, r_celery
)
task_logger.info(
f"Queue lengths: celery={n_celery} "
f"indexing={n_indexing} "
f"indexing_prefetched={len(prefetched)} "
f"sync={n_sync} "
f"deletion={n_deletion} "
f"pruning={n_pruning} "
f"permissions_sync={n_permissions_sync} "
f"external_group_sync={n_external_group_sync} "
f"permissions_upsert={n_permissions_upsert} "
)
# we want to run this less frequently than the overall task
if not r.exists(OnyxRedisSignals.BLOCK_BUILD_FENCE_LOOKUP_TABLE):
# build a lookup table of existing fences
# this is just a migration concern and should be unnecessary once
# lookup tables are rolled out
for key_bytes in r_replica.scan_iter(count=SCAN_ITER_COUNT_DEFAULT):
if is_fence(key_bytes) and not r.sismember(
OnyxRedisConstants.ACTIVE_FENCES, key_bytes
):
logger.warning(f"Adding {key_bytes} to the lookup table.")
r.sadd(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
r.set(OnyxRedisSignals.BLOCK_BUILD_FENCE_LOOKUP_TABLE, 1, ex=300)
# use a lookup table to find active fences. We still have to verify the fence
# exists since it is an optimization and not the source of truth.
keys = cast(set[Any], r_replica.smembers(OnyxRedisConstants.ACTIVE_FENCES))
for key in keys:
key_bytes = cast(bytes, key)
if not r.exists(key_bytes):
r.srem(OnyxRedisConstants.ACTIVE_FENCES, key_bytes)
continue
key_str = key_bytes.decode("utf-8")
if key_str == RedisGlobalConnectorCredentialPair.FENCE_KEY:
monitor_connector_taskset(r)
elif key_str.startswith(RedisDocumentSet.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_document_set_taskset(tenant_id, key_bytes, r, db_session)
elif key_str.startswith(RedisUserGroup.FENCE_PREFIX):
monitor_usergroup_taskset = (
fetch_versioned_implementation_with_fallback(
"onyx.background.celery.tasks.vespa.tasks",
"monitor_usergroup_taskset",
noop_fallback,
)
)
with get_session_with_tenant(tenant_id) as db_session:
monitor_usergroup_taskset(tenant_id, key_bytes, r, db_session)
elif key_str.startswith(RedisConnectorDelete.FENCE_PREFIX):
monitor_connector_deletion_taskset(tenant_id, key_bytes, r)
elif key_str.startswith(RedisConnectorPrune.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_pruning_taskset(tenant_id, key_bytes, r, db_session)
elif key_str.startswith(RedisConnectorIndex.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_indexing_taskset(tenant_id, key_bytes, r, db_session)
elif key_str.startswith(RedisConnectorPermissionSync.FENCE_PREFIX):
with get_session_with_tenant(tenant_id) as db_session:
monitor_ccpair_permissions_taskset(
tenant_id, key_bytes, r, db_session
)
else:
pass
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
)
return False
except Exception:
task_logger.exception("monitor_vespa_sync exceptioned.")
return False
finally:
if lock_beat.owned():
lock_beat.release()
else:
task_logger.error(
"monitor_vespa_sync - Lock not owned on completion: "
f"tenant={tenant_id}"
# f"timings={timings}"
)
redis_lock_dump(lock_beat, r)
time_elapsed = time.monotonic() - time_start
task_logger.info(f"monitor_vespa_sync finished: elapsed={time_elapsed:.2f}")
return True
rds.reset()
@shared_task(
@@ -1072,23 +612,3 @@ def vespa_metadata_sync_task(
self.retry(exc=e, countdown=countdown)
return True
def is_fence(key_bytes: bytes) -> bool:
key_str = key_bytes.decode("utf-8")
if key_str == RedisGlobalConnectorCredentialPair.FENCE_KEY:
return True
if key_str.startswith(RedisDocumentSet.FENCE_PREFIX):
return True
if key_str.startswith(RedisUserGroup.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorDelete.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorPrune.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorIndex.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorPermissionSync.FENCE_PREFIX):
return True
return False

View File

@@ -0,0 +1,13 @@
from onyx.db.background_error import create_background_error
from onyx.db.engine import get_session_with_tenant
def emit_background_error(
message: str,
cc_pair_id: int | None = None,
) -> None:
"""Currently just saves a row in the background_errors table.
In the future, could create notifications based on the severity."""
with get_session_with_tenant() as db_session:
create_background_error(db_session, message, cc_pair_id)

View File

@@ -3,6 +3,24 @@ import os
INITIAL_SEARCH_DECOMPOSITION_ENABLED = True
ALLOW_REFINEMENT = True
AGENT_DEFAULT_RETRIEVAL_HITS = 15
AGENT_DEFAULT_RERANKING_HITS = 10
AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS = 8
AGENT_DEFAULT_NUM_DOCS_FOR_INITIAL_DECOMPOSITION = 3
AGENT_DEFAULT_NUM_DOCS_FOR_REFINED_DECOMPOSITION = 5
AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER = 25
AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER = 35
AGENT_DEFAULT_EXPLORATORY_SEARCH_RESULTS = 5
AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS = 3
AGENT_DEFAULT_MAX_ANSWER_CONTEXT_DOCS = 10
AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH = 2000
INITIAL_SEARCH_DECOMPOSITION_ENABLED = True
ALLOW_REFINEMENT = True
AGENT_DEFAULT_RETRIEVAL_HITS = 15
AGENT_DEFAULT_RERANKING_HITS = 10
AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS = 8
@@ -13,9 +31,21 @@ AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS = 3
AGENT_DEFAULT_MAX_ANSWER_CONTEXT_DOCS = 10
AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH = 2000
#####
# Agent Configs
#####
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION = 30 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION = 10 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION = 4 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION = 1 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION = 3 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION = 12 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK = 8 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION = 6 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION = 25 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION = 8 # in seconds
AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS = 8 # in seconds
AGENT_RETRIEVAL_STATS = (
@@ -77,4 +107,151 @@ AGENT_MAX_STATIC_HISTORY_WORD_LENGTH = int(
or AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH
) # 2000
AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER = int(
os.environ.get("AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER")
or AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
) # 25
AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER = int(
os.environ.get("AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER")
or AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
) # 35
AGENT_RETRIEVAL_STATS = (
not os.environ.get("AGENT_RETRIEVAL_STATS") == "False"
) or True # default True
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
# Reranking agent configs
# Reranking stats - no influence on flow outside of stats collection
AGENT_RERANKING_STATS = (
not os.environ.get("AGENT_RERANKING_STATS") == "True"
) or False # default False
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS")
or AGENT_DEFAULT_RERANKING_HITS
) # 10
AGENT_NUM_DOCS_FOR_DECOMPOSITION = int(
os.environ.get("AGENT_NUM_DOCS_FOR_DECOMPOSITION")
or AGENT_DEFAULT_NUM_DOCS_FOR_INITIAL_DECOMPOSITION
) # 3
AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION = int(
os.environ.get("AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION")
or AGENT_DEFAULT_NUM_DOCS_FOR_REFINED_DECOMPOSITION
) # 5
AGENT_EXPLORATORY_SEARCH_RESULTS = int(
os.environ.get("AGENT_EXPLORATORY_SEARCH_RESULTS")
or AGENT_DEFAULT_EXPLORATORY_SEARCH_RESULTS
) # 5
AGENT_MIN_ORIG_QUESTION_DOCS = int(
os.environ.get("AGENT_MIN_ORIG_QUESTION_DOCS")
or AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS
) # 3
AGENT_MAX_ANSWER_CONTEXT_DOCS = int(
os.environ.get("AGENT_MAX_ANSWER_CONTEXT_DOCS")
or AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS
) # 8
AGENT_MAX_STATIC_HISTORY_WORD_LENGTH = int(
os.environ.get("AGENT_MAX_STATIC_HISTORY_WORD_LENGTH")
or AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH
) # 2000
AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_ENTITY_TERM_EXTRACTION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_DOCUMENT_VERIFICATION
) # 3
AGENT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_GENERAL_GENERATION
) # 30
AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBQUESTION_GENERATION
) # 8
AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_GENERATION
) # 12
AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_INITIAL_ANSWER_GENERATION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_GENERATION
) # 25
AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_SUBANSWER_CHECK
) # 8
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_SUBQUESTION_GENERATION
) # 6
AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_QUERY_REWRITING_GENERATION
) # 1
AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_HISTORY_SUMMARY_GENERATION
) # 4
AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_COMPARE_ANSWERS
) # 8
AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION = int(
os.environ.get("AGENT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION")
or AGENT_DEFAULT_TIMEOUT_OVERRIDE_LLM_REFINED_ANSWER_VALIDATION
) # 8
GRAPH_VERSION_NAME: str = "a"

View File

@@ -107,9 +107,9 @@ CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT = 5 * 60 # 5 min
# needs to be long enough to cover the maximum time it takes to download an object
# if we can get callbacks as object bytes download, we could lower this a lot.
CELERY_PRUNING_LOCK_TIMEOUT = 300 # 5 min
CELERY_PRUNING_LOCK_TIMEOUT = 3600 # 1 hour (in seconds)
CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT = 300 # 5 min
CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT = 3600 # 1 hour (in seconds)
CELERY_EXTERNAL_GROUP_SYNC_LOCK_TIMEOUT = 300 # 5 min
@@ -125,6 +125,7 @@ class DocumentSource(str, Enum):
GMAIL = "gmail"
REQUESTTRACKER = "requesttracker"
GITHUB = "github"
GITBOOK = "gitbook"
GITLAB = "gitlab"
GURU = "guru"
BOOKSTACK = "bookstack"
@@ -298,7 +299,6 @@ class OnyxRedisLocks:
CHECK_CONNECTOR_EXTERNAL_GROUP_SYNC_BEAT_LOCK = (
"da_lock:check_connector_external_group_sync_beat"
)
MONITOR_VESPA_SYNC_BEAT_LOCK = "da_lock:monitor_vespa_sync_beat"
MONITOR_BACKGROUND_PROCESSES_LOCK = "da_lock:monitor_background_processes"
CONNECTOR_DOC_PERMISSIONS_SYNC_LOCK_PREFIX = (
@@ -324,6 +324,7 @@ class OnyxRedisSignals:
BLOCK_VALIDATE_PERMISSION_SYNC_FENCES = (
"signal:block_validate_permission_sync_fences"
)
BLOCK_PRUNING = "signal:block_pruning"
BLOCK_VALIDATE_PRUNING_FENCES = "signal:block_validate_pruning_fences"
BLOCK_BUILD_FENCE_LOOKUP_TABLE = "signal:block_build_fence_lookup_table"
@@ -354,7 +355,10 @@ class OnyxCeleryTask:
DEFAULT = "celery"
CLOUD_BEAT_TASK_GENERATOR = f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_generate_beat_tasks"
CLOUD_CHECK_ALEMBIC = f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check_alembic"
CLOUD_MONITOR_ALEMBIC = f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor_alembic"
CLOUD_MONITOR_CELERY_QUEUES = (
f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_monitor_celery_queues"
)
CHECK_FOR_CONNECTOR_DELETION = "check_for_connector_deletion_task"
CHECK_FOR_VESPA_SYNC_TASK = "check_for_vespa_sync_task"
@@ -364,8 +368,8 @@ class OnyxCeleryTask:
CHECK_FOR_EXTERNAL_GROUP_SYNC = "check_for_external_group_sync"
CHECK_FOR_LLM_MODEL_UPDATE = "check_for_llm_model_update"
MONITOR_VESPA_SYNC = "monitor_vespa_sync"
MONITOR_BACKGROUND_PROCESSES = "monitor_background_processes"
MONITOR_CELERY_QUEUES = "monitor_celery_queues"
KOMBU_MESSAGE_CLEANUP_TASK = "kombu_message_cleanup_task"
CONNECTOR_PERMISSION_SYNC_GENERATOR_TASK = (

View File

@@ -61,6 +61,7 @@ class BookstackConnector(LoadConnector, PollConnector):
)
batch = bookstack_client.get(endpoint, params=params).get("data", [])
doc_batch = [transformer(bookstack_client, item) for item in batch]
return doc_batch, len(batch)
@@ -197,20 +198,31 @@ class BookstackConnector(LoadConnector, PollConnector):
for endpoint, transform in transform_by_endpoint.items():
start_ind = 0
while True:
doc_batch, num_results = self._get_doc_batch(
batch_size=self.batch_size,
bookstack_client=self.bookstack_client,
endpoint=endpoint,
transformer=transform,
start_ind=start_ind,
start=start,
end=end,
)
start_ind += num_results
if doc_batch:
yield doc_batch
try:
doc_batch, num_results = self._get_doc_batch(
batch_size=self.batch_size,
bookstack_client=self.bookstack_client,
endpoint=endpoint,
transformer=transform,
start_ind=start_ind,
start=start,
end=end,
)
start_ind += num_results
if doc_batch:
yield doc_batch
if num_results < self.batch_size:
if num_results < self.batch_size:
break
else:
time.sleep(0.2)
except Exception as e:
# Handle case where user hasn't properly set up permissions for the API key and we
# fail on a specific resource (e.g. /books, /chapters, etc.)
if (
"BookStack Client request failed with status 403: Forbidden"
in str(e)
):
raise
break
else:
time.sleep(0.2)

View File

@@ -20,6 +20,7 @@ from onyx.connectors.egnyte.connector import EgnyteConnector
from onyx.connectors.file.connector import LocalFileConnector
from onyx.connectors.fireflies.connector import FirefliesConnector
from onyx.connectors.freshdesk.connector import FreshdeskConnector
from onyx.connectors.gitbook.connector import GitbookConnector
from onyx.connectors.github.connector import GithubConnector
from onyx.connectors.gitlab.connector import GitlabConnector
from onyx.connectors.gmail.connector import GmailConnector
@@ -71,6 +72,7 @@ def identify_connector_class(
DocumentSource.GITHUB: GithubConnector,
DocumentSource.GMAIL: GmailConnector,
DocumentSource.GITLAB: GitlabConnector,
DocumentSource.GITBOOK: GitbookConnector,
DocumentSource.GOOGLE_DRIVE: GoogleDriveConnector,
DocumentSource.BOOKSTACK: BookstackConnector,
DocumentSource.CONFLUENCE: ConfluenceConnector,

View File

@@ -0,0 +1,279 @@
from datetime import datetime
from datetime import timezone
from typing import Any
from urllib.parse import urljoin
import requests
from onyx.configs.app_configs import INDEX_BATCH_SIZE
from onyx.configs.constants import DocumentSource
from onyx.connectors.interfaces import GenerateDocumentsOutput
from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.utils.logger import setup_logger
logger = setup_logger()
GITBOOK_API_BASE = "https://api.gitbook.com/v1/"
class GitbookApiClient:
def __init__(self, access_token: str) -> None:
self.access_token = access_token
def get(self, endpoint: str, params: dict[str, Any] | None = None) -> Any:
headers = {
"Authorization": f"Bearer {self.access_token}",
"Content-Type": "application/json",
}
url = urljoin(GITBOOK_API_BASE, endpoint.lstrip("/"))
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
return response.json()
def get_page_content(self, space_id: str, page_id: str) -> dict[str, Any]:
return self.get(f"/spaces/{space_id}/content/page/{page_id}")
def _extract_text_from_document(document: dict[str, Any]) -> str:
"""Extract text content from GitBook document structure by parsing the document nodes
into markdown format."""
def parse_leaf(leaf: dict[str, Any]) -> str:
text = leaf.get("text", "")
leaf.get("marks", [])
return text
def parse_text_node(node: dict[str, Any]) -> str:
text = ""
for leaf in node.get("leaves", []):
text += parse_leaf(leaf)
return text
def parse_block_node(node: dict[str, Any]) -> str:
block_type = node.get("type", "")
result = ""
if block_type == "heading-1":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"# {text}\n\n"
elif block_type == "heading-2":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"## {text}\n\n"
elif block_type == "heading-3":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"### {text}\n\n"
elif block_type == "heading-4":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"#### {text}\n\n"
elif block_type == "heading-5":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"##### {text}\n\n"
elif block_type == "heading-6":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"###### {text}\n\n"
elif block_type == "list-unordered":
for list_item in node.get("nodes", []):
paragraph = list_item.get("nodes", [])[0]
text = "".join(parse_text_node(n) for n in paragraph.get("nodes", []))
result += f"* {text}\n"
result += "\n"
elif block_type == "paragraph":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"{text}\n\n"
elif block_type == "list-tasks":
for task_item in node.get("nodes", []):
checked = task_item.get("data", {}).get("checked", False)
paragraph = task_item.get("nodes", [])[0]
text = "".join(parse_text_node(n) for n in paragraph.get("nodes", []))
checkbox = "[x]" if checked else "[ ]"
result += f"- {checkbox} {text}\n"
result += "\n"
elif block_type == "code":
for code_line in node.get("nodes", []):
if code_line.get("type") == "code-line":
text = "".join(
parse_text_node(n) for n in code_line.get("nodes", [])
)
result += f"{text}\n"
result += "\n"
elif block_type == "blockquote":
for quote_node in node.get("nodes", []):
if quote_node.get("type") == "paragraph":
text = "".join(
parse_text_node(n) for n in quote_node.get("nodes", [])
)
result += f"> {text}\n"
result += "\n"
elif block_type == "table":
records = node.get("data", {}).get("records", {})
definition = node.get("data", {}).get("definition", {})
view = node.get("data", {}).get("view", {})
columns = view.get("columns", [])
header_cells = []
for col_id in columns:
col_def = definition.get(col_id, {})
header_cells.append(col_def.get("title", ""))
result = "| " + " | ".join(header_cells) + " |\n"
result += "|" + "---|" * len(header_cells) + "\n"
sorted_records = sorted(
records.items(), key=lambda x: x[1].get("orderIndex", "")
)
for record_id, record_data in sorted_records:
values = record_data.get("values", {})
row_cells = []
for col_id in columns:
fragment_id = values.get(col_id, "")
fragment_text = ""
for fragment in node.get("fragments", []):
if fragment.get("fragment") == fragment_id:
for frag_node in fragment.get("nodes", []):
if frag_node.get("type") == "paragraph":
fragment_text = "".join(
parse_text_node(n)
for n in frag_node.get("nodes", [])
)
break
row_cells.append(fragment_text)
result += "| " + " | ".join(row_cells) + " |\n"
result += "\n"
return result
if not document or "document" not in document:
return ""
markdown = ""
nodes = document["document"].get("nodes", [])
for node in nodes:
markdown += parse_block_node(node)
return markdown
def _convert_page_to_document(
client: GitbookApiClient, space_id: str, page: dict[str, Any]
) -> Document:
page_id = page["id"]
page_content = client.get_page_content(space_id, page_id)
return Document(
id=f"gitbook-{space_id}-{page_id}",
sections=[
Section(
link=page.get("urls", {}).get("app", ""),
text=_extract_text_from_document(page_content),
)
],
source=DocumentSource.GITBOOK,
semantic_identifier=page.get("title", ""),
doc_updated_at=datetime.fromisoformat(page["updatedAt"]).replace(
tzinfo=timezone.utc
),
metadata={
"path": page.get("path", ""),
"type": page.get("type", ""),
"kind": page.get("kind", ""),
},
)
class GitbookConnector(LoadConnector, PollConnector):
def __init__(
self,
space_id: str,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.space_id = space_id
self.batch_size = batch_size
self.access_token: str | None = None
self.client: GitbookApiClient | None = None
def load_credentials(self, credentials: dict[str, Any]) -> None:
access_token = credentials.get("gitbook_api_key")
if not access_token:
raise ConnectorMissingCredentialError("GitBook access token")
self.access_token = access_token
self.client = GitbookApiClient(access_token)
def _fetch_all_pages(
self,
start: datetime | None = None,
end: datetime | None = None,
) -> GenerateDocumentsOutput:
if not self.client:
raise ConnectorMissingCredentialError("GitBook")
try:
content = self.client.get(f"/spaces/{self.space_id}/content")
pages = content.get("pages", [])
current_batch: list[Document] = []
for page in pages:
updated_at = datetime.fromisoformat(page["updatedAt"])
if start and updated_at < start:
if current_batch:
yield current_batch
return
if end and updated_at > end:
continue
current_batch.append(
_convert_page_to_document(self.client, self.space_id, page)
)
if len(current_batch) >= self.batch_size:
yield current_batch
current_batch = []
if current_batch:
yield current_batch
except requests.RequestException as e:
logger.error(f"Error fetching GitBook content: {str(e)}")
raise
def load_from_state(self) -> GenerateDocumentsOutput:
return self._fetch_all_pages()
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)
return self._fetch_all_pages(start_datetime, end_datetime)
if __name__ == "__main__":
import os
connector = GitbookConnector(
space_id=os.environ["GITBOOK_SPACE_ID"],
)
connector.load_credentials({"gitbook_api_key": os.environ["GITBOOK_API_KEY"]})
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -302,7 +302,7 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
if e.status_code == 401:
# fail gracefully, let the other impersonations continue
# one user without access shouldn't block the entire connector
logger.exception(
logger.warning(
f"User '{user_email}' does not have access to the drive APIs."
)
return

View File

@@ -145,7 +145,8 @@ def fetch_jira_issues_batch(
id=page_url,
sections=[Section(link=page_url, text=ticket_content)],
source=DocumentSource.JIRA,
semantic_identifier=issue.fields.summary,
semantic_identifier=f"{issue.key}: {issue.fields.summary}",
title=f"{issue.key} {issue.fields.summary}",
doc_updated_at=time_str_to_utc(issue.fields.updated),
primary_owners=list(people) or None,
# TODO add secondary_owners (commenters) if needed

View File

@@ -51,6 +51,7 @@ class SearchPipeline:
user: User | None,
llm: LLM,
fast_llm: LLM,
skip_query_analysis: bool,
db_session: Session,
bypass_acl: bool = False, # NOTE: VERY DANGEROUS, USE WITH CAUTION
retrieval_metrics_callback: (
@@ -61,10 +62,13 @@ class SearchPipeline:
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
prompt_config: PromptConfig | None = None,
):
# NOTE: The Search Request contains a lot of fields that are overrides, many of them can be None
# and typically are None. The preprocessing will fetch default values to replace these empty overrides.
self.search_request = search_request
self.user = user
self.llm = llm
self.fast_llm = fast_llm
self.skip_query_analysis = skip_query_analysis
self.db_session = db_session
self.bypass_acl = bypass_acl
self.retrieval_metrics_callback = retrieval_metrics_callback
@@ -106,6 +110,7 @@ class SearchPipeline:
search_request=self.search_request,
user=self.user,
llm=self.llm,
skip_query_analysis=self.skip_query_analysis,
db_session=self.db_session,
bypass_acl=self.bypass_acl,
)
@@ -160,6 +165,12 @@ class SearchPipeline:
that have a corresponding chunk.
This step should be fast for any document index implementation.
Current implementation timing is approximately broken down in timing as:
- 200 ms to get the embedding of the query
- 15 ms to get chunks from the document index
- possibly more to get additional surrounding chunks
- possibly more for query expansion (multilingual)
"""
if self._retrieved_sections is not None:
return self._retrieved_sections

View File

@@ -15,6 +15,7 @@ from onyx.context.search.models import InferenceChunk
from onyx.context.search.models import InferenceChunkUncleaned
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import MAX_METRICS_CONTENT
from onyx.context.search.models import RerankingDetails
from onyx.context.search.models import RerankMetricsContainer
from onyx.context.search.models import SearchQuery
from onyx.document_index.document_index_utils import (
@@ -77,7 +78,8 @@ def cleanup_chunks(chunks: list[InferenceChunkUncleaned]) -> list[InferenceChunk
@log_function_time(print_only=True)
def semantic_reranking(
query: SearchQuery,
query_str: str,
rerank_settings: RerankingDetails,
chunks: list[InferenceChunk],
model_min: int = CROSS_ENCODER_RANGE_MIN,
model_max: int = CROSS_ENCODER_RANGE_MAX,
@@ -88,11 +90,9 @@ def semantic_reranking(
Note: this updates the chunks in place, it updates the chunk scores which came from retrieval
"""
rerank_settings = query.rerank_settings
if not rerank_settings or not rerank_settings.rerank_model_name:
# Should never reach this part of the flow without reranking settings
raise RuntimeError("Reranking flow should not be running")
assert (
rerank_settings.rerank_model_name
), "Reranking flow cannot run without a specific model"
chunks_to_rerank = chunks[: rerank_settings.num_rerank]
@@ -107,7 +107,7 @@ def semantic_reranking(
f"{chunk.semantic_identifier or chunk.title or ''}\n{chunk.content}"
for chunk in chunks_to_rerank
]
sim_scores_floats = cross_encoder.predict(query=query.query, passages=passages)
sim_scores_floats = cross_encoder.predict(query=query_str, passages=passages)
# Old logic to handle multiple cross-encoders preserved but not used
sim_scores = [numpy.array(sim_scores_floats)]
@@ -165,8 +165,20 @@ def semantic_reranking(
return list(ranked_chunks), list(ranked_indices)
def should_rerank(rerank_settings: RerankingDetails | None) -> bool:
"""Based on the RerankingDetails model, only run rerank if the following conditions are met:
- rerank_model_name is not None
- num_rerank is greater than 0
"""
if not rerank_settings:
return False
return bool(rerank_settings.rerank_model_name and rerank_settings.num_rerank > 0)
def rerank_sections(
query: SearchQuery,
query_str: str,
rerank_settings: RerankingDetails,
sections_to_rerank: list[InferenceSection],
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> list[InferenceSection]:
@@ -181,16 +193,13 @@ def rerank_sections(
"""
chunks_to_rerank = [section.center_chunk for section in sections_to_rerank]
if not query.rerank_settings:
# Should never reach this part of the flow without reranking settings
raise RuntimeError("Reranking settings not found")
ranked_chunks, _ = semantic_reranking(
query=query,
query_str=query_str,
rerank_settings=rerank_settings,
chunks=chunks_to_rerank,
rerank_metrics_callback=rerank_metrics_callback,
)
lower_chunks = chunks_to_rerank[query.rerank_settings.num_rerank :]
lower_chunks = chunks_to_rerank[rerank_settings.num_rerank :]
# Scores from rerank cannot be meaningfully combined with scores without rerank
# However the ordering is still important
@@ -260,16 +269,13 @@ def search_postprocessing(
rerank_task_id = None
sections_yielded = False
if (
search_query.rerank_settings
and search_query.rerank_settings.rerank_model_name
and search_query.rerank_settings.num_rerank > 0
):
if should_rerank(search_query.rerank_settings):
post_processing_tasks.append(
FunctionCall(
rerank_sections,
(
search_query,
search_query.query,
search_query.rerank_settings, # Cannot be None here
retrieved_sections,
rerank_metrics_callback,
),

View File

@@ -50,11 +50,11 @@ def retrieval_preprocessing(
search_request: SearchRequest,
user: User | None,
llm: LLM,
skip_query_analysis: bool,
db_session: Session,
bypass_acl: bool = False,
skip_query_analysis: bool = False,
base_recency_decay: float = BASE_RECENCY_DECAY,
favor_recent_decay_multiplier: float = FAVOR_RECENT_DECAY_MULTIPLIER,
base_recency_decay: float = BASE_RECENCY_DECAY,
bypass_acl: bool = False,
) -> SearchQuery:
"""Logic is as follows:
Any global disables apply first
@@ -146,7 +146,7 @@ def retrieval_preprocessing(
is_keyword, extracted_keywords = (
parallel_results[run_query_analysis.result_id]
if run_query_analysis
else (None, None)
else (False, None)
)
all_query_terms = query.split()

View File

@@ -0,0 +1,10 @@
from sqlalchemy.orm import Session
from onyx.db.models import BackgroundError
def create_background_error(
db_session: Session, message: str, cc_pair_id: int | None
) -> None:
db_session.add(BackgroundError(message=message, cc_pair_id=cc_pair_id))
db_session.commit()

View File

@@ -350,13 +350,14 @@ def delete_chat_session(
user_id: UUID | None,
chat_session_id: UUID,
db_session: Session,
include_deleted: bool = False,
hard_delete: bool = HARD_DELETE_CHATS,
) -> None:
chat_session = get_chat_session_by_id(
chat_session_id=chat_session_id, user_id=user_id, db_session=db_session
)
if chat_session.deleted:
if chat_session.deleted and not include_deleted:
raise ValueError("Cannot delete an already deleted chat session")
if hard_delete:
@@ -380,7 +381,15 @@ def delete_chat_sessions_older_than(days_old: int, db_session: Session) -> None:
).fetchall()
for user_id, session_id in old_sessions:
delete_chat_session(user_id, session_id, db_session, hard_delete=True)
try:
delete_chat_session(
user_id, session_id, db_session, include_deleted=True, hard_delete=True
)
except Exception:
logger.exception(
"delete_chat_session exceptioned. "
f"user_id={user_id} session_id={session_id}"
)
def get_chat_message(
@@ -893,14 +902,18 @@ def translate_db_sub_questions_to_server_objects(
question=sub_question.sub_question,
answer=sub_question.sub_answer,
sub_queries=sub_queries,
context_docs=get_retrieval_docs_from_search_docs(verified_docs),
context_docs=get_retrieval_docs_from_search_docs(
verified_docs, sort_by_score=False
),
)
)
return sub_questions
def get_retrieval_docs_from_search_docs(
search_docs: list[SearchDoc], remove_doc_content: bool = False
search_docs: list[SearchDoc],
remove_doc_content: bool = False,
sort_by_score: bool = True,
) -> RetrievalDocs:
top_documents = [
translate_db_search_doc_to_server_search_doc(
@@ -908,7 +921,8 @@ def get_retrieval_docs_from_search_docs(
)
for db_doc in search_docs
]
top_documents = sorted(top_documents, key=lambda doc: doc.score, reverse=True) # type: ignore
if sort_by_score:
top_documents = sorted(top_documents, key=lambda doc: doc.score, reverse=True) # type: ignore
return RetrievalDocs(top_documents=top_documents)
@@ -1018,7 +1032,7 @@ def log_agent_sub_question_results(
sub_question = sub_question_answer_result.question
sub_answer = sub_question_answer_result.answer
sub_document_results = _create_citation_format_list(
sub_question_answer_result.verified_reranked_documents
sub_question_answer_result.context_documents
)
sub_question_object = AgentSubQuestion(

View File

@@ -483,6 +483,10 @@ class ConnectorCredentialPair(Base):
primaryjoin="foreign(ConnectorCredentialPair.creator_id) == remote(User.id)",
)
background_errors: Mapped[list["BackgroundError"]] = relationship(
"BackgroundError", back_populates="cc_pair", cascade="all, delete-orphan"
)
class Document(Base):
__tablename__ = "document"
@@ -2115,6 +2119,31 @@ class StandardAnswer(Base):
)
class BackgroundError(Base):
"""Important background errors. Serves to:
1. Ensure that important logs are kept around and not lost on rotation/container restarts
2. A trail for high-signal events so that the debugger doesn't need to remember/know every
possible relevant log line.
"""
__tablename__ = "background_error"
id: Mapped[int] = mapped_column(primary_key=True)
message: Mapped[str] = mapped_column(String)
time_created: Mapped[datetime.datetime] = mapped_column(
DateTime(timezone=True), server_default=func.now()
)
# option to link the error to a specific CC Pair
cc_pair_id: Mapped[int | None] = mapped_column(
ForeignKey("connector_credential_pair.id", ondelete="CASCADE"), nullable=True
)
cc_pair: Mapped["ConnectorCredentialPair | None"] = relationship(
"ConnectorCredentialPair", back_populates="background_errors"
)
"""Tables related to Permission Sync"""

View File

@@ -52,6 +52,18 @@ litellm.telemetry = False
_LLM_PROMPT_LONG_TERM_LOG_CATEGORY = "llm_prompt"
class LLMTimeoutError(Exception):
"""
Exception raised when an LLM call times out.
"""
class LLMRateLimitError(Exception):
"""
Exception raised when an LLM call is rate limited.
"""
def _base_msg_to_role(msg: BaseMessage) -> str:
if isinstance(msg, HumanMessage) or isinstance(msg, HumanMessageChunk):
return "user"
@@ -389,6 +401,7 @@ class DefaultMultiLLM(LLM):
tool_choice: ToolChoiceOptions | None,
stream: bool,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> litellm.ModelResponse | litellm.CustomStreamWrapper:
# litellm doesn't accept LangChain BaseMessage objects, so we need to convert them
# to a dict representation
@@ -396,9 +409,14 @@ class DefaultMultiLLM(LLM):
self._record_call(processed_prompt)
try:
print(
"model is",
f"{self.config.model_provider}/{self.config.deployment_name or self.config.model_name}",
)
return litellm.completion(
mock_response=MOCK_LLM_RESPONSE,
# model choice
# model="openai/gpt-4",
model=f"{self.config.model_provider}/{self.config.deployment_name or self.config.model_name}",
# NOTE: have to pass in None instead of empty string for these
# otherwise litellm can have some issues with bedrock
@@ -414,7 +432,7 @@ class DefaultMultiLLM(LLM):
stream=stream,
# model params
temperature=0,
timeout=self._timeout,
timeout=timeout_override or self._timeout,
# For now, we don't support parallel tool calls
# NOTE: we can't pass this in if tools are not specified
# or else OpenAI throws an error
@@ -433,6 +451,12 @@ class DefaultMultiLLM(LLM):
except Exception as e:
self._record_error(processed_prompt, e)
# for break pointing
if isinstance(e, litellm.Timeout):
raise LLMTimeoutError(e)
elif isinstance(e, litellm.RateLimitError):
raise LLMRateLimitError(e)
raise e
@property
@@ -453,6 +477,7 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
@@ -460,7 +485,12 @@ class DefaultMultiLLM(LLM):
response = cast(
litellm.ModelResponse,
self._completion(
prompt, tools, tool_choice, False, structured_response_format
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=False,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
),
)
choice = response.choices[0]
@@ -478,19 +508,31 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
if DISABLE_LITELLM_STREAMING:
yield self.invoke(prompt, tools, tool_choice, structured_response_format)
yield self.invoke(
prompt,
tools,
tool_choice,
structured_response_format,
timeout_override,
)
return
output = None
response = cast(
litellm.CustomStreamWrapper,
self._completion(
prompt, tools, tool_choice, True, structured_response_format
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=True,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
),
)
try:

View File

@@ -81,6 +81,7 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
return self._execute(prompt)
@@ -90,5 +91,6 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
yield self._execute(prompt)

View File

@@ -90,12 +90,13 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
return self._invoke_implementation(
prompt, tools, tool_choice, structured_response_format
prompt, tools, tool_choice, structured_response_format, timeout_override
)
@abc.abstractmethod
@@ -105,6 +106,7 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
raise NotImplementedError
@@ -114,12 +116,13 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
messages = self._stream_implementation(
prompt, tools, tool_choice, structured_response_format
prompt, tools, tool_choice, structured_response_format, timeout_override
)
tokens = []
@@ -138,5 +141,6 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
raise NotImplementedError

View File

@@ -238,12 +238,17 @@ async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
await close_auth_limiter()
def log_http_error(_: Request, exc: Exception) -> JSONResponse:
def log_http_error(request: Request, exc: Exception) -> JSONResponse:
status_code = getattr(exc, "status_code", 500)
if isinstance(exc, BasicAuthenticationError):
# For BasicAuthenticationError, just log a brief message without stack trace (almost always spam)
logger.warning(f"Authentication failed: {str(exc)}")
# For BasicAuthenticationError, just log a brief message without stack trace
# (almost always spammy)
logger.debug(f"Authentication failed: {str(exc)}")
elif status_code == 404 and request.url.path == "/metrics":
# Log 404 errors for the /metrics endpoint with debug level
logger.debug(f"404 error for /metrics endpoint: {str(exc)}")
elif status_code >= 400:
error_msg = f"{str(exc)}\n"

View File

@@ -99,7 +99,7 @@ def _check_tokenizer_cache(
if not tokenizer:
logger.info(
f"Falling back to default embedding model: {DOCUMENT_ENCODER_MODEL}"
f"Falling back to default embedding model tokenizer: {DOCUMENT_ENCODER_MODEL}"
)
tokenizer = HuggingFaceTokenizer(DOCUMENT_ENCODER_MODEL)

View File

@@ -1,3 +1,7 @@
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_ANSWER_SEPARATOR,
)
# Standards
SEPARATOR_LINE = "-------"
SEPARATOR_LINE_LONG = "---------------"
@@ -5,8 +9,6 @@ UNKNOWN_ANSWER = "I do not have enough information to answer this question."
NO_RECOVERED_DOCS = "No relevant information recovered"
YES = "yes"
NO = "no"
# Framing/Support/Template Prompts
HISTORY_FRAMING_PROMPT = f"""
For more context, here is the history of the conversation so far that preceded this question:
@@ -16,6 +18,43 @@ For more context, here is the history of the conversation so far that preceded t
""".strip()
COMMON_RAG_RULES = f"""
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
- When constructing/considering categories, focus less on the question and more on the context actually provided! \
Example: if the question is about the products of company A, and the content provided lists a number of products, \
do automatically NOT ASSUME that those belong to company A! So you cannot list those as products of company A, despite \
the fact that the question is about company A's products. What you should say instead is maybe something like \
"Here are a number of products, but I cannot say whether some or all of them belong to company A: \
<proceed with listing the products>". It is ABSOLUTELY ESSENTIAL that the answer constructed reflects \
actual knowledge. For that matter, also consider the title of the document and other information that may be \
provided. If that does not make it clear that - in the example above - the products belong to company A, \
then do not list them as products of company A, just maybe as "A list products that may not necessarily \
belong to company A". THIS IS IMPORTANT!
- Related, if the context provides a list of items with associated data or other information that seems \
to align with the categories in the question, but does not specify whether the items or the information is \
specific to the exact requested category, then present the information with a disclaimer. Use a title such as \
"I am not sure whether these items (or the information provided) is specific to [relevant category] or whether \
these are all [specific group], but I found this information may be helpful:" \
followed by the list of items and associated data/or information discovered.
- Do not group together items amongst one headline where not all items belong to the category of the headline! \
(Example: "Products used by Company A" where some products listed are not built by Company A, but other companies,
or it is not clear that the products are built by Company A). Only state what you know for sure!
- Do NOT perform any calculations in the answer! Just report on facts.
- If appropriate, organizing your answer in bullet points is often useful.
""".strip()
ASSISTANT_SYSTEM_PROMPT_DEFAULT = "You are an assistant for question-answering tasks."
ASSISTANT_SYSTEM_PROMPT_PERSONA = f"""
@@ -129,20 +168,44 @@ History summary:
# Sub-question
# Intentionally left a copy in case we want to modify this one differently
INITIAL_QUESTION_DECOMPOSITION_PROMPT = f"""
Decompose the initial user question into no more than 3 appropriate sub-questions that help to answer the \
original question. The purpose for this decomposition may be to:
1) isolate individual entities (i.e., 'compare sales of company A and company B' -> \
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarify or disambiguate ambiguous terms (i.e., 'what is our success with company A' -> \
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various components of an entity and you \
are generally familiar with the entity, then you can decompose the question into sub-questions that are more \
specific to components (i.e., 'what do we do to improve scalability of product X', 'what do we to to improve \
scalability of product X', 'what do we do to improve stability of product X', ...])
4) research an area that could really help to answer the question.
Here is the initial question to decompose:
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
And here is the initial question to create sub-questions for, so that you have the full context:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
@@ -150,7 +213,79 @@ Here is the initial question to decompose:
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!
Please formulate your answer as a newline-separated list of questions like so:
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
...
Answer:
""".strip()
# INITIAL PHASE - AWARE OF REFINEMENT
# Sub-question
# Suggest augmenting question generation as well, that a future refinement phase could use
# to generate new questions
# Intentionally left a copy in case we want to modify this one differently
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
5) if meaningful, find relevant facts that may inform another set of sub-questions generate after the set you \
create now are answered. Example: 'which products have we implemented at company A, and is this different to \
its competitors?' could potentially create sub-questions 'what products have we implemented at company A', \
and 'who are the competitors of company A'. The additional round of sub-question generation which sees the \
answers for this initial round of sub-question creation could then use the answer to the second sub-question \
(which could be 'company B and C are competitors of company A') to then ask 'which products have we implemented \
at company B', 'which products have we implemented at company C'...
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
And here is the initial question to create sub-questions for:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
@@ -162,23 +297,47 @@ Answer:
# TODO: combine shared pieces with INITIAL_QUESTION_DECOMPOSITION_PROMPT
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH = f"""
Decompose the initial user question into no more than 3 appropriate sub-questions that help to answer the \
original question. The purpose for this decomposition may be to:
1) isolate individual entities (i.e., 'compare sales of company A and company B' -> \
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarify or disambiguate ambiguous terms (i.e., 'what is our success with company A' -> \
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various components of an entity and you \
are generally familiar with the entity, then you can decompose the question into sub-questions that are more \
specific to components (i.e., 'what do we do to improve scalability of product X', 'what do we to to improve \
scalability of product X', 'what do we do to improve stability of product X', ...])
4) research an area that could really help to answer the question.
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
To give you some context, you will see below also some documents that may relate to the question. Please only \
use this information to learn what the question is approximately asking about, but do not focus on the details \
to construct the sub-questions! Also, some of the entities, relationships and terms that are in the dataset may \
not be in these few documents, so DO NOT focussed too much on the documents when constructing the sub-questions! \
not be in these few documents, so DO NOT focus too much on the documents when constructing the sub-questions! \
Decomposition and disambiguations are most important!
Here are the sample docs to give you some context:
@@ -186,7 +345,7 @@ Here are the sample docs to give you some context:
{{sample_doc_str}}
{SEPARATOR_LINE}
And here is the initial question to decompose:
And here is the initial question to create sub-questions for, so that you have the full context:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
@@ -194,7 +353,9 @@ And here is the initial question to decompose:
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!\
Please formulate your answer as a newline-separated list of questions like so:
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
@@ -203,6 +364,84 @@ Please formulate your answer as a newline-separated list of questions like so:
Answer:
""".strip()
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
5) if applicable and useful, consider using sub-questions to gather relevant information that can inform a \
subsequent set of sub-questions. The answers to your initial sub-questions will be available when generating \
the next set.
For example, if you start with the question, "Which products have we implemented at Company A, and how does \
this compare to its competitors?" you might first create sub-questions like "What products have we implemented \
at Company A?" and "Who are the competitors of Company A?"
The answer to the second sub-question, such as "Company B and C are competitors of Company A," can then be used \
to generate more specific sub-questions in the next round, like "Which products have we implemented at Company B?" \
and "Which products have we implemented at Company C?"
You'll be the judge!
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
To give you some context, you will see below also some documents that may relate to the question. Please only \
use this information to learn what the question is approximately asking about, but do not focus on the details \
to construct the sub-questions! Also, some of the entities, relationships and terms that are in the dataset may \
not be in these few documents, so DO NOT focus too much on the documents when constructing the sub-questions! \
Decomposition and disambiguations are most important!
Here are the sample docs to give you some context:
{SEPARATOR_LINE}
{{sample_doc_str}}
{SEPARATOR_LINE}
And here is the initial question to create sub-questions for, so that you have the full context:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!\
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
...
Answer:
""".strip()
# Retrieval
QUERY_REWRITING_PROMPT = f"""
@@ -257,23 +496,35 @@ Answer:
""".strip()
# Sub-Question Anser Generation
# Sub-Question Answer Generation
SUB_QUESTION_RAG_PROMPT = f"""
Use the context provided below - and only the provided context - to answer the given question. \
(Note that the answer is in service of answering a broader question, given below as 'motivation').
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the \
question based on the context, say "{UNKNOWN_ANSWER}". It is a matter of life and death that you do NOT \
use your internal knowledge, just the provided information!
Make sure that you keep all relevant information, specifically as it concerns to the ultimate goal. \
Make sure that you keep all relevant information, specifically as it concerns the ultimate goal. \
(But keep other details as well.)
It is critical that you provide inline citations in the format [D1], [D2], [D3], etc! \
{COMMON_RAG_RULES}
- Make sure that you only state what you actually can positively learn from the provided context! Particularly \
don't make assumptions! Example: if i) a question you should answer is asking for products of companies that \
are competitors of company A, and ii) the context mentions products of companies A, B, C, D, E, etc., do NOT assume \
that B, C, D, E, etc. are competitors of A! All you know is that these are products of a number of companies, and you \
would have to rely on another question - that you do not have access to - to learn which companies are competitors of A.
Correspondingly, you should not say that these are the products of competitors of A, but rather something like \
"Here are some products of various companies".
It is critical that you provide inline citations in the format [D1], [D2], [D3], etc! Please use format [D1][D2] and NOT \
[D1, D2] format if you cite two or more documents together! \
It is important that the citation is close to the information it supports. \
Proper citations are very important to the user!
For your general information, here is the ultimate motivation:
Here is the document context for you to consider:
{SEPARATOR_LINE}
{{context}}
{SEPARATOR_LINE}
For your general information, here is the ultimate motivation for the question you need to answer:
{SEPARATOR_LINE}
{{original_question}}
{SEPARATOR_LINE}
@@ -283,12 +534,8 @@ And here is the actual question I want you to answer based on the context above
{{question}}
{SEPARATOR_LINE}
Here is the context:
{SEPARATOR_LINE}
{{context}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents \
for sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Answer:
""".strip()
@@ -321,22 +568,18 @@ Use the information provided below - and only the provided information - to answ
The information provided below consists of:
1) a number of answered sub-questions - these are very important to help you organize your thoughts and your answer
2) a number of documents that deemed relevant for the question.
2) a number of documents that are deemed relevant for the question.
{{history}}
It is critical that you provide prover inline citations to documents in the format [D1], [D2], [D3], etc.! \
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc.! \
It is important that the citation is close to the information it supports. If you have multiple citations that support \
a fact, please cite for example as [D1][D3], or [D2][D4], etc. \
Feel free to also cite sub-questions in addition to documents, but make sure that you have documents cited with the \
sub-question citation. If you want to cite both a document and a sub-question, please use [D1][Q3], or [D2][D7][Q4], etc. \
Again, please NEVER cite sub-questions without a document citation! Proper citations are very important for the user!
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, specify that the information is not conclusive and say why.
{COMMON_RAG_RULES}
Again, you should be sure that the answer is supported by the information provided!
@@ -361,7 +604,9 @@ And here is the question I want you to answer based on the information above:
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer! Use the answered \
sub-questions as well, but be cautious and reconsider the docments again for validation.)
Answer:
""".strip()
@@ -376,11 +621,7 @@ The information provided below consists of a number of documents that were deeme
{{history}}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, specify that the information is not conclusive and say why.
{COMMON_RAG_RULES}
Again, you should be sure that the answer is supported by the information provided!
@@ -399,7 +640,8 @@ And here is the question I want you to answer based on the context above:
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents \
for sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Answer:
""".strip()
@@ -439,6 +681,12 @@ independently without the original question available
- For each sub-question, please also provide a search term that can be used to retrieve relevant documents from a document store.
- Consider specifically the sub-questions that were suggested but not answered. This is a sign that they are not answerable \
with the available context, and you should not ask similar questions.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
Here is the initial question:
{SEPARATOR_LINE}
@@ -474,7 +722,111 @@ objects/relationships/terms you can ask about! Do not ask about entities, terms
Again, please find questions that are NOT overlapping too much with the already answered sub-questions or those that \
already were suggested and failed. In other words - what can we try in addition to what has been tried so far?
Generate the list of questions separated by one new line like this:
Generate the list of questions separated by one new line like this (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question 1>
<sub-question 2>
<sub-question 3>
...""".strip()
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS = f"""
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite good enough. \
Also, some sub-questions had been answered and this information has been used to provide the initial answer. \
Some other subquestions may have been suggested based on little knowledge, but they were not directly answerable. \
Also, some entities, relationships and terms are given to you so that you have an idea of how the available data looks like.
Your role is to generate 2-4 new sub-questions that would help to answer the initial question, considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered AND their answers
4) The sub-questions that were suggested but not answered (and that you should not repeat!)
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system. So a good idea would be to use the sub-questions to \
resolve ambiguities and/or to separate the question for different entities that may be involved in the original question, \
but in a way that does not duplicate questions that were already tried.
Additional Guidelines:
- The new sub-questions should be specific to the question and provide richer context for the question, resolve ambiguities, \
or address shortcoming of the initial answer
- Each new sub-question - when answered - should be relevant for the answer to the original question
- The new sub-questions should be free from comparisons, ambiguities,judgements, aggregations, or any other complications that \
may require extra context
- The new sub-questions MUST have the full context of the original question so that it can be executed by a RAG system \
independently without the original question available
Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each new sub-question, please also provide a search term that can be used to retrieve relevant documents \
from a document store.
- Consider specifically the sub-questions that were suggested but not answered. This is a sign that they are not answerable \
with the available context, and you should not ask similar questions.
- Pay attention to the answers of previous sub-question to make your sub-questions more specific! \
Often the initial sub-questions were set up to give you critical information that you should use to generate new sub-questions.\
For example, if the answer to a an earlier sub-question is \
'Company B and C are competitors of Company A', you should not ask now a new sub-question involving the term 'competitors', \
as you already have the information to create a more precise question - you should instead explicitly reference \
'Company B' and 'Company C' in your new sub-questions, as these are the competitors based on the previously answered question.
- Be precise(!) and don't make inferences you cannot be sure about! For example, in the previous example \
where Company B and Company C were identified as competitors of Company A, and then you also get information on \
companies D and E, do not make the inference that these are also competitors of Company A! Stick to the information you have!
(Also, don't assume that companies B and C arethe only competitors of A, unless stated!)
- Do not(!) create sub-questions that are clarifying question *to the person who asked the question*, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
Here is the initial question:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Here is the initial sub-optimal answer:
{SEPARATOR_LINE}
{{base_answer}}
{SEPARATOR_LINE}
Here are the sub-questions that were answered:
{SEPARATOR_LINE}
{{answered_subquestions_with_answers}}
{SEPARATOR_LINE}
Here are the sub-questions that were suggested but not answered:
{SEPARATOR_LINE}
{{failed_sub_questions}}
{SEPARATOR_LINE}
And here are the entities, relationships and terms extracted from the context:
{SEPARATOR_LINE}
{{entity_term_extraction_str}}
{SEPARATOR_LINE}
Please generate the list of good, fully contextualized sub-questions that would help to address the main question. \
Specifically pay attention also to the entities, relationships and terms extracted, as these indicate what type of \
objects/relationships/terms you can ask about! Do not ask about entities, terms or relationships that are not mentioned \
in the 'entities, relationships and terms' section.
Again, please find questions that are NOT overlapping too much with the already answered sub-questions or those that \
already were suggested and failed. In other words - what can we try in addition to what has been tried so far?
Generate the list of questions separated by one new line like this (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question 1>
<sub-question 2>
<sub-question 3>
@@ -489,7 +841,7 @@ Your task is to improve on a given answer to a question, as the initial answer w
Use the information provided below - and only the provided information - to write your new and improved answer.
The information provided below consists of:
1) an initial answer that was given but found to be lacking in some way.
1) an initial answer that was given but likely found to be lacking in some way.
2) a number of answered sub-questions - these are very important(!) and definitely should help you to answer the main \
question. Note that the sub-questions have a type, 'initial' and 'refined'. The 'initial' ones were available for the \
creation of the initial answer, but the 'refined' were not, they are new. So please use the 'refined' sub-questions in \
@@ -499,6 +851,7 @@ particular to update/extend/correct/enrich the initial answer and to add more de
the relevant document for a fact!
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc! \
Please use format [D1][D2] and NOT [D1, D2] format if you cite two or more documents together! \
It is important that the citation is close to the information it supports. \
DO NOT just list all of the citations at the very end. \
Feel free to also cite sub-questions in addition to documents, \
@@ -509,14 +862,7 @@ Proper citations are very important for the user!
{{history}}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
- Ignore any existing citations within the answered sub-questions, like [D1]... and [Q2]! The citations you will need to \
use will need to refer to the documents (and sub-questions) that you are explicitly presented with below!
{COMMON_RAG_RULES}
Again, you should be sure that the answer is supported by the information provided!
@@ -545,7 +891,9 @@ Lastly, here is the main question I want you to answer based on the information
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer! Use the answered \
sub-questions as well, but be cautious and reconsider the docments again for validation.)
Answer:
""".strip()
@@ -561,18 +909,13 @@ The information provided below consists of:
2) a number of documents that were also deemed relevant for the question.
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc! \
Please use format [D1][D2] and NOT [D1, D2] format if you cite two or more documents together! \
It is important that the citation is close to the information it supports. \
DO NOT just list all of the citations at the very end of your response. Citations are very important for the user!
{{history}}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
{COMMON_RAG_RULES}
Again, you should be sure that the answer is supported by the information provided!
Try to keep your answer concise. But also highlight uncertainties you may have should there be substantial ones, \
@@ -597,11 +940,103 @@ Lastly, here is the question I want you to answer based on the information above
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Answer:
""".strip()
REFINED_ANSWER_VALIDATION_PROMPT = f"""
{{persona_specification}}
Your task is to verify whether a given answer is truthful and accurate, and supported by the facts that you \
will be provided with.
The information provided below consists of:
1) a question that needed to be answered
2) a proposed answer to the question, whose accuracy you should assess
3) potentially, a brief summary of the history of the conversation thus far, as it may give more context \
to the question. Note that the statements in the history are NOT considered as facts, ONLY but serve to to \
give context to the question.
4) a number of answered sub-questions - you can take the answers as facts for these purposes.
5) a number of relevant documents that should support the answer and that you should use as fact, \
i.e., if a statement in the document backs up a statement in the answer, then that statement in the answer \
should be considered as true.
IMPORTANT RULES AND CONSIDERATIONS:
- Please consider the statements made in the proposed answer and assess whether they are truthful and accurate, based \
on the provided sub-answered and the documents. (Again, the history is NOT considered as facts!)
- Look in particular for:
* material statements that are not supported by the sub-answered or the documents
* assignments and groupings that are not supported, like company A is competitor of company B, but this is not \
explicitly supported by documents or sub-answers, guesses or interpretations unless explicitly asked for
- look also at the citations in the proposed answer and assess whether they are appropriate given the statements \
made in the proposed answer that cites the document.
- Are items grouped together amongst one headline where not all items belong to the category of the headline? \
(Example: "Products used by Company A" where some products listed are not used by Company A)
- Does the proposed answer address the question in full?
- Is the answer specific to the question? Example: if the question asks for the prices for products by Company A, \
but the answer lists the prices for products by Company A and Company B, or products it cannot be sure are by \
Company A, then this is not quite specific enough to the question and the answer should be rejected.
- Similarly, if the question asks for properties of a certain class but the proposed answer lists or includes entities \
that are not of that class without very explicitly saying so, then the answer should be considered inaccurate.
- If there are any calculations in the proposed answer that are not supported by the documents, they need to be tested. \
If any calculation is wrong, the proposed answer should be considered as not trustworthy.
Here is the information:
{SEPARATOR_LINE_LONG}
QUESTION:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
PROPOSED ANSWER:
{SEPARATOR_LINE}
{{proposed_answer}}
{SEPARATOR_LINE}
Here is the additional contextual information:
{SEPARATOR_LINE_LONG}
{{history}}
Sub-questions and their answers (to be considered as facts):
{SEPARATOR_LINE}
{{answered_sub_questions}}
{SEPARATOR_LINE}
And here are the relevant documents that support the sub-question answers, and that are relevant for the actual question:
{SEPARATOR_LINE}
{{relevant_docs}}
{SEPARATOR_LINE}
Please think through this step by step. Format your response just as a string in the following format:
Analysis: <think through your reasoning as outlined in the 'IMPORTANT RULES AND CONSIDERATIONS' section above, \
but keep it short. Come to a conclusion whether the proposed answer can be trusted>
Comments: <state your condensed comments you would give to a user reading the proposed answer, regarding the accuracy and \
specificity.>
{AGENT_ANSWER_SEPARATOR} <answer here only with yes or no, whether the proposed answer can be trusted. Base this on your \
analysis, but only say 'yes' (trustworthy) or 'no' (not trustworthy)>
""".strip()
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT = f"""
For the given question, please compare the initial answer and the refined answer and determine if the refined answer is \

View File

@@ -120,6 +120,7 @@ class RedisConnectorCredentialPair(RedisObjectHelper):
queue=OnyxCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=OnyxCeleryPriority.MEDIUM,
ignore_result=True,
)
num_tasks_sent += 1

View File

@@ -132,6 +132,7 @@ class RedisConnectorDelete:
queue=OnyxCeleryQueues.CONNECTOR_DELETION,
task_id=custom_task_id,
priority=OnyxCeleryPriority.MEDIUM,
ignore_result=True,
)
async_results.append(result)

View File

@@ -11,6 +11,7 @@ from redis.lock import Lock as RedisLock
from onyx.access.models import DocExternalAccess
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
@@ -49,7 +50,7 @@ class RedisConnectorPermissionSync:
# it's impossible to get the exact state of the system at a single point in time
# so we need a signal with a TTL to bridge gaps in our checks
ACTIVE_PREFIX = PREFIX + "_active"
ACTIVE_TTL = 3600
ACTIVE_TTL = CELERY_PERMISSIONS_SYNC_LOCK_TIMEOUT * 2
def __init__(self, tenant_id: str | None, id: int, redis: redis.Redis) -> None:
self.tenant_id: str | None = tenant_id
@@ -195,6 +196,7 @@ class RedisConnectorPermissionSync:
queue=OnyxCeleryQueues.DOC_PERMISSIONS_UPSERT,
task_id=custom_task_id,
priority=OnyxCeleryPriority.HIGH,
ignore_result=True,
)
async_results.append(result)

View File

@@ -10,6 +10,7 @@ from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_PRUNING_LOCK_TIMEOUT
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
@@ -49,7 +50,7 @@ class RedisConnectorPrune:
# it's impossible to get the exact state of the system at a single point in time
# so we need a signal with a TTL to bridge gaps in our checks
ACTIVE_PREFIX = PREFIX + "_active"
ACTIVE_TTL = 3600
ACTIVE_TTL = CELERY_PRUNING_LOCK_TIMEOUT * 2
def __init__(self, tenant_id: str | None, id: int, redis: redis.Redis) -> None:
self.tenant_id: str | None = tenant_id
@@ -201,6 +202,7 @@ class RedisConnectorPrune:
queue=OnyxCeleryQueues.CONNECTOR_DELETION,
task_id=custom_task_id,
priority=OnyxCeleryPriority.MEDIUM,
ignore_result=True,
)
async_results.append(result)

View File

@@ -0,0 +1,29 @@
from onyx.redis.redis_connector_credential_pair import (
RedisGlobalConnectorCredentialPair,
)
from onyx.redis.redis_connector_delete import RedisConnectorDelete
from onyx.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
from onyx.redis.redis_connector_index import RedisConnectorIndex
from onyx.redis.redis_connector_prune import RedisConnectorPrune
from onyx.redis.redis_document_set import RedisDocumentSet
from onyx.redis.redis_usergroup import RedisUserGroup
def is_fence(key_bytes: bytes) -> bool:
key_str = key_bytes.decode("utf-8")
if key_str == RedisGlobalConnectorCredentialPair.FENCE_KEY:
return True
if key_str.startswith(RedisDocumentSet.FENCE_PREFIX):
return True
if key_str.startswith(RedisUserGroup.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorDelete.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorPrune.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorIndex.FENCE_PREFIX):
return True
if key_str.startswith(RedisConnectorPermissionSync.FENCE_PREFIX):
return True
return False

View File

@@ -162,6 +162,11 @@ def load_personas_from_yaml(
else persona.get("is_visible")
),
db_session=db_session,
is_default_persona=(
existing_persona.is_default_persona
if existing_persona is not None
else persona.get("is_default_persona", False)
),
)

View File

@@ -41,6 +41,7 @@ personas:
icon_color: "#6FB1FF"
display_priority: 0
is_visible: true
is_default_persona: true
starter_messages:
- name: "Give me an overview of what's here"
message: "Sample some documents and tell me what you find."
@@ -66,6 +67,7 @@ personas:
icon_color: "#FF6F6F"
display_priority: 1
is_visible: true
is_default_persona: true
starter_messages:
- name: "Summarize a document"
message: "If I have provided a document please summarize it for me. If not, please ask me to upload a document either by dragging it into the input bar or clicking the +file icon."
@@ -91,6 +93,7 @@ personas:
icon_color: "#6FFF8D"
display_priority: 2
is_visible: false
is_default_persona: true
starter_messages:
- name: "Document Search"
message: "Hi! Could you help me find information about our team structure and reporting lines from our internal documents?"
@@ -117,6 +120,7 @@ personas:
image_generation: true
display_priority: 3
is_visible: true
is_default_persona: true
starter_messages:
- name: "Create visuals for a presentation"
message: "Generate someone presenting a graph which clearly demonstrates an upwards trajectory."

View File

@@ -76,6 +76,7 @@ def gpt_search(
user=None,
llm=llm,
fast_llm=fast_llm,
skip_query_analysis=True,
db_session=db_session,
).reranked_sections

View File

@@ -12,10 +12,10 @@ class PageType(str, Enum):
SEARCH = "search"
class GatingType(str, Enum):
FULL = "full" # Complete restriction of access to the product or service
PARTIAL = "partial" # Full access but warning (no credit card on file)
NONE = "none" # No restrictions, full access to all features
class ApplicationStatus(str, Enum):
PAYMENT_REMINDER = "payment_reminder"
GATED_ACCESS = "gated_access"
ACTIVE = "active"
class Notification(BaseModel):
@@ -43,7 +43,7 @@ class Settings(BaseModel):
maximum_chat_retention_days: int | None = None
gpu_enabled: bool | None = None
product_gating: GatingType = GatingType.NONE
application_status: ApplicationStatus = ApplicationStatus.ACTIVE
anonymous_user_enabled: bool | None = None
pro_search_disabled: bool | None = None
auto_scroll: bool | None = None

View File

@@ -1,6 +1,7 @@
from onyx.configs.constants import KV_SETTINGS_KEY
from onyx.configs.constants import OnyxRedisLocks
from onyx.key_value_store.factory import get_kv_store
from onyx.key_value_store.interface import KvKeyNotFoundError
from onyx.redis.redis_pool import get_redis_client
from onyx.server.settings.models import Settings
from onyx.utils.logger import setup_logger
@@ -17,6 +18,9 @@ def load_settings() -> Settings:
settings = (
Settings.model_validate(stored_settings) if stored_settings else Settings()
)
except KvKeyNotFoundError:
logger.error(f"No settings found in KV store for key: {KV_SETTINGS_KEY}")
settings = Settings()
except Exception as e:
logger.error(f"Error loading settings from KV store: {str(e)}")
settings = Settings()

View File

@@ -34,7 +34,7 @@ Now respond to the following:
""".strip()
class BaseTool(Tool):
class BaseTool(Tool[None]):
def build_next_prompt(
self,
prompt_builder: "AnswerPromptBuilder",

View File

@@ -1,11 +1,14 @@
from collections.abc import Callable
from typing import Any
from uuid import UUID
from pydantic import BaseModel
from pydantic import model_validator
from sqlalchemy.orm import Session
from onyx.context.search.enums import SearchType
from onyx.context.search.models import IndexFilters
from onyx.context.search.models import InferenceSection
class ToolResponse(BaseModel):
@@ -57,5 +60,15 @@ class SearchQueryInfo(BaseModel):
recency_bias_multiplier: float
class SearchToolOverrideKwargs(BaseModel):
force_no_rerank: bool
alternate_db_session: Session | None
retrieved_sections_callback: Callable[[list[InferenceSection]], None] | None
skip_query_analysis: bool
class Config:
arbitrary_types_allowed = True
CHAT_SESSION_ID_PLACEHOLDER = "CHAT_SESSION_ID"
MESSAGE_ID_PLACEHOLDER = "MESSAGE_ID"

View File

@@ -1,7 +1,9 @@
import abc
from collections.abc import Generator
from typing import Any
from typing import Generic
from typing import TYPE_CHECKING
from typing import TypeVar
from onyx.llm.interfaces import LLM
from onyx.llm.models import PreviousMessage
@@ -14,7 +16,10 @@ if TYPE_CHECKING:
from onyx.tools.models import ToolResponse
class Tool(abc.ABC):
OVERRIDE_T = TypeVar("OVERRIDE_T")
class Tool(abc.ABC, Generic[OVERRIDE_T]):
@property
@abc.abstractmethod
def name(self) -> str:
@@ -57,7 +62,9 @@ class Tool(abc.ABC):
"""Actual execution of the tool"""
@abc.abstractmethod
def run(self, **kwargs: Any) -> Generator["ToolResponse", None, None]:
def run(
self, override_kwargs: OVERRIDE_T | None = None, **llm_kwargs: Any
) -> Generator["ToolResponse", None, None]:
raise NotImplementedError
@abc.abstractmethod

View File

@@ -74,6 +74,7 @@ class CustomToolCallSummary(BaseModel):
tool_result: Any # The response data
# override_kwargs is not supported for custom tools
class CustomTool(BaseTool):
def __init__(
self,
@@ -235,7 +236,9 @@ class CustomTool(BaseTool):
"""Actual execution of the tool"""
def run(self, **kwargs: Any) -> Generator[ToolResponse, None, None]:
def run(
self, override_kwargs: dict[str, Any] | None = None, **kwargs: Any
) -> Generator[ToolResponse, None, None]:
request_body = kwargs.get(REQUEST_BODY)
path_params = {}

View File

@@ -79,7 +79,8 @@ class ImageShape(str, Enum):
LANDSCAPE = "landscape"
class ImageGenerationTool(Tool):
# override_kwargs is not supported for image generation tools
class ImageGenerationTool(Tool[None]):
_NAME = "run_image_generation"
_DESCRIPTION = "Generate an image from a prompt."
_DISPLAY_NAME = "Image Generation"
@@ -255,7 +256,9 @@ class ImageGenerationTool(Tool):
"An error occurred during image generation. Please try again later."
)
def run(self, **kwargs: str) -> Generator[ToolResponse, None, None]:
def run(
self, override_kwargs: None = None, **kwargs: str
) -> Generator[ToolResponse, None, None]:
prompt = cast(str, kwargs["prompt"])
shape = ImageShape(kwargs.get("shape", ImageShape.SQUARE))
format = self.output_format

View File

@@ -106,7 +106,8 @@ def internet_search_response_to_search_docs(
]
class InternetSearchTool(Tool):
# override_kwargs is not supported for internet search tools
class InternetSearchTool(Tool[None]):
_NAME = "run_internet_search"
_DISPLAY_NAME = "Internet Search"
_DESCRIPTION = "Perform an internet search for up-to-date information."
@@ -242,7 +243,9 @@ class InternetSearchTool(Tool):
],
)
def run(self, **kwargs: str) -> Generator[ToolResponse, None, None]:
def run(
self, override_kwargs: None = None, **kwargs: str
) -> Generator[ToolResponse, None, None]:
query = cast(str, kwargs["internet_search_query"])
results = self._perform_search(query)

View File

@@ -39,6 +39,7 @@ from onyx.secondary_llm_flows.choose_search import check_if_need_search
from onyx.secondary_llm_flows.query_expansion import history_based_query_rephrase
from onyx.tools.message import ToolCallSummary
from onyx.tools.models import SearchQueryInfo
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.models import ToolResponse
from onyx.tools.tool import Tool
from onyx.tools.tool_implementations.search.search_utils import llm_doc_to_dict
@@ -77,7 +78,7 @@ HINT: if you are unfamiliar with the user input OR think the user input is a typ
"""
class SearchTool(Tool):
class SearchTool(Tool[SearchToolOverrideKwargs]):
_NAME = "run_search"
_DISPLAY_NAME = "Search Tool"
_DESCRIPTION = SEARCH_TOOL_DESCRIPTION
@@ -275,14 +276,19 @@ class SearchTool(Tool):
yield ToolResponse(id=FINAL_CONTEXT_DOCUMENTS_ID, response=llm_docs)
def run(self, **kwargs: Any) -> Generator[ToolResponse, None, None]:
query = cast(str, kwargs["query"])
force_no_rerank = cast(bool, kwargs.get("force_no_rerank", False))
alternate_db_session = cast(Session, kwargs.get("alternate_db_session", None))
retrieved_sections_callback = cast(
Callable[[list[InferenceSection]], None],
kwargs.get("retrieved_sections_callback"),
)
def run(
self, override_kwargs: SearchToolOverrideKwargs | None = None, **llm_kwargs: Any
) -> Generator[ToolResponse, None, None]:
query = cast(str, llm_kwargs["query"])
force_no_rerank = False
alternate_db_session = None
retrieved_sections_callback = None
skip_query_analysis = False
if override_kwargs:
force_no_rerank = override_kwargs.force_no_rerank
alternate_db_session = override_kwargs.alternate_db_session
retrieved_sections_callback = override_kwargs.retrieved_sections_callback
skip_query_analysis = override_kwargs.skip_query_analysis
if self.selected_sections:
yield from self._build_response_for_specified_sections(query)
@@ -324,6 +330,7 @@ class SearchTool(Tool):
user=self.user,
llm=self.llm,
fast_llm=self.fast_llm,
skip_query_analysis=skip_query_analysis,
bypass_acl=self.bypass_acl,
db_session=alternate_db_session or self.db_session,
prompt_config=self.prompt_config,

View File

@@ -34,8 +34,8 @@ langchain-core==0.3.24
langchain-openai==0.2.9
langchain-text-splitters==0.3.2
langchainhub==0.1.21
langgraph==0.2.59
langgraph-checkpoint==2.0.5
langgraph==0.2.72
langgraph-checkpoint==2.0.13
langgraph-sdk==0.1.44
litellm==1.60.2
lxml==5.3.0

View File

@@ -256,16 +256,28 @@ def get_documents_for_tenant_connector(
def search_for_document(
index_name: str, document_id: str, max_hits: int | None = 10
index_name: str,
document_id: str | None = None,
tenant_id: str | None = None,
max_hits: int | None = 10,
) -> List[Dict[str, Any]]:
yql_query = (
f'select * from sources {index_name} where document_id contains "{document_id}"'
)
yql_query = f"select * from sources {index_name}"
conditions = []
if document_id is not None:
conditions.append(f'document_id contains "{document_id}"')
if tenant_id is not None:
conditions.append(f'tenant_id contains "{tenant_id}"')
if conditions:
yql_query += " where " + " and ".join(conditions)
params: dict[str, Any] = {"yql": yql_query}
if max_hits is not None:
params["hits"] = max_hits
with get_vespa_http_client() as client:
response = client.get(f"{SEARCH_ENDPOINT}/search/", params=params)
response = client.get(f"{SEARCH_ENDPOINT}search/", params=params)
response.raise_for_status()
result = response.json()
documents = result.get("root", {}).get("children", [])
@@ -582,8 +594,15 @@ class VespaDebugging:
) -> None:
update_document(self.tenant_id, connector_id, doc_id, fields)
def search_for_document(self, document_id: str) -> List[Dict[str, Any]]:
return search_for_document(self.index_name, document_id)
def delete_documents_for_tenant(self, count: int | None = None) -> None:
if not self.tenant_id:
raise Exception("Tenant ID is not set")
delete_documents_for_tenant(self.index_name, self.tenant_id, count=count)
def search_for_document(
self, document_id: str | None = None, tenant_id: str | None = None
) -> List[Dict[str, Any]]:
return search_for_document(self.index_name, document_id, tenant_id)
def delete_document(self, connector_id: int, doc_id: str) -> None:
# Delete a document.
@@ -600,6 +619,147 @@ class VespaDebugging:
get_document_acls(self.tenant_id, cc_pair_id, n)
def delete_where(
index_name: str,
selection: str,
cluster: str = "default",
bucket_space: str | None = None,
continuation: str | None = None,
time_chunk: str | None = None,
timeout: str | None = None,
tracelevel: int | None = None,
) -> None:
"""
Removes visited documents in `cluster` where the given selection
is true, using Vespa's 'delete where' endpoint.
:param index_name: Typically <namespace>/<document-type> from your schema
:param selection: The selection string, e.g., "true" or "foo contains 'bar'"
:param cluster: The name of the cluster where documents reside
:param bucket_space: e.g. 'global' or 'default'
:param continuation: For chunked visits
:param time_chunk: If you want to chunk the visit by time
:param timeout: e.g. '10s'
:param tracelevel: Increase for verbose logs
"""
# Using index_name of form <namespace>/<document-type>, e.g. "nomic_ai_nomic_embed_text_v1"
# This route ends with "/docid/" since the actual ID is not specified — we rely on "selection".
path = f"/document/v1/{index_name}/docid/"
params = {
"cluster": cluster,
"selection": selection,
}
# Optional parameters
if bucket_space is not None:
params["bucketSpace"] = bucket_space
if continuation is not None:
params["continuation"] = continuation
if time_chunk is not None:
params["timeChunk"] = time_chunk
if timeout is not None:
params["timeout"] = timeout
if tracelevel is not None:
params["tracelevel"] = tracelevel # type: ignore
with get_vespa_http_client() as client:
url = f"{VESPA_APPLICATION_ENDPOINT}{path}"
logger.info(f"Performing 'delete where' on {url} with selection={selection}...")
response = client.delete(url, params=params)
# (Optionally, you can keep fetching `continuation` from the JSON response
# if you have more documents to delete in chunks.)
response.raise_for_status() # will raise HTTPError if not 2xx
logger.info(f"Delete where completed with status: {response.status_code}")
print(f"Delete where completed with status: {response.status_code}")
def delete_documents_for_tenant(
index_name: str,
tenant_id: str,
route: str | None = None,
condition: str | None = None,
timeout: str | None = None,
tracelevel: int | None = None,
count: int | None = None,
) -> None:
"""
For the given tenant_id and index_name (often in the form <namespace>/<document-type>),
find documents via search_for_document, then delete them one at a time using Vespa's
/document/v1/<namespace>/<document-type>/docid/<document-id> endpoint.
:param index_name: Typically <namespace>/<document-type> from your schema
:param tenant_id: The tenant to match in your Vespa search
:param route: Optional route parameter for delete
:param condition: Optional conditional remove
:param timeout: e.g. '10s'
:param tracelevel: Increase for verbose logs
"""
deleted_count = 0
while True:
# Search for documents with the given tenant_id
docs = search_for_document(
index_name=index_name,
document_id=None,
tenant_id=tenant_id,
max_hits=100, # Fetch in batches of 100
)
if not docs:
logger.info("No more documents found to delete.")
break
with get_vespa_http_client() as client:
for doc in docs:
if count is not None and deleted_count >= count:
logger.info(f"Reached maximum delete limit of {count} documents.")
return
fields = doc.get("fields", {})
doc_id_value = fields.get("document_id") or fields.get("documentid")
tenant_id = fields.get("tenant_id")
if tenant_id != tenant_id:
raise Exception("Tenant ID mismatch")
if not doc_id_value:
logger.warning(
"Skipping a document that has no document_id in 'fields'."
)
continue
url = f"{DOCUMENT_ID_ENDPOINT.format(index_name=index_name)}/{doc_id_value}"
params = {}
if condition:
params["condition"] = condition
if route:
params["route"] = route
if timeout:
params["timeout"] = timeout
if tracelevel is not None:
params["tracelevel"] = str(tracelevel)
response = client.delete(url, params=params)
if response.status_code == 200:
logger.info(f"Successfully deleted doc_id={doc_id_value}")
deleted_count += 1
else:
logger.error(
f"Failed to delete doc_id={doc_id_value}, "
f"status={response.status_code}, response={response.text}"
)
print(
f"Could not delete doc_id={doc_id_value}. "
f"Status={response.status_code}, response={response.text}"
)
raise Exception(
f"Could not delete doc_id={doc_id_value}. "
f"Status={response.status_code}, response={response.text}"
)
logger.info(f"Deleted {deleted_count} documents in total.")
def main() -> None:
parser = argparse.ArgumentParser(description="Vespa debugging tool")
parser.add_argument(
@@ -612,6 +772,7 @@ def main() -> None:
"update",
"delete",
"get_acls",
"delete-all-documents",
],
required=True,
help="Action to perform",
@@ -626,11 +787,20 @@ def main() -> None:
parser.add_argument(
"--fields", help="Fields to update, in JSON format (for update)"
)
parser.add_argument(
"--count",
type=int,
help="Maximum number of documents to delete (for delete-all-documents)",
)
args = parser.parse_args()
vespa_debug = VespaDebugging(args.tenant_id)
if args.action == "config":
if args.action == "delete-all-documents":
if not args.tenant_id:
parser.error("--tenant-id is required for delete-all-documents action")
vespa_debug.delete_documents_for_tenant(count=args.count)
elif args.action == "config":
vespa_debug.print_config()
elif args.action == "connect":
vespa_debug.check_connectivity()

View File

@@ -0,0 +1,81 @@
import os
import time
import pytest
from onyx.configs.constants import DocumentSource
from onyx.connectors.gitbook.connector import GitbookConnector
@pytest.fixture
def gitbook_connector() -> GitbookConnector:
connector = GitbookConnector(
space_id=os.environ["GITBOOK_SPACE_ID"],
)
connector.load_credentials(
{
"gitbook_api_key": os.environ["GITBOOK_API_KEY"],
}
)
return connector
def test_gitbook_connector_basic(gitbook_connector: GitbookConnector) -> None:
doc_batch_generator = gitbook_connector.load_from_state()
# Get first batch of documents
doc_batch = next(doc_batch_generator)
assert len(doc_batch) > 0
# Verify first document structure
doc = doc_batch[0]
# Basic document properties
assert doc.id.startswith("gitbook-")
assert doc.semantic_identifier == "Acme Corp Internal Handbook"
assert doc.source == DocumentSource.GITBOOK
# Metadata checks
assert "path" in doc.metadata
assert "type" in doc.metadata
assert "kind" in doc.metadata
# Section checks
assert len(doc.sections) == 1
section = doc.sections[0]
# Content specific checks
content = section.text
# Check for specific content elements
assert "* Fruit Shopping List:" in content
assert "> test quote it doesn't mean anything" in content
# Check headings
assert "# Heading 1" in content
assert "## Heading 2" in content
assert "### Heading 3" in content
# Check task list
assert "- [ ] Uncompleted Task" in content
assert "- [x] Completed Task" in content
# Check table content
assert "| ethereum | 10 | 3000 |" in content
assert "| bitcoin | 2 | 98000 |" in content
# Check paragraph content
assert "New York City comprises 5 boroughs" in content
assert "Empire State Building" in content
# Check code block (just verify presence of some unique code elements)
assert "function fizzBuzz(n)" in content
assert 'res.push("FizzBuzz")' in content
assert section.link # Should have a URL
# Time-based polling test
current_time = time.time()
poll_docs = gitbook_connector.poll_source(0, current_time)
poll_batch = next(poll_docs)
assert len(poll_batch) > 0

View File

@@ -34,11 +34,11 @@ def test_jira_connector_basic(jira_connector: JiraConnector) -> None:
doc = doc_batch[0]
assert doc.id == "https://danswerai.atlassian.net/browse/AS-2"
assert doc.semantic_identifier == "test123small"
assert doc.semantic_identifier == "AS-2: test123small"
assert doc.source == DocumentSource.JIRA
assert doc.metadata == {"priority": "Medium", "status": "Backlog"}
assert doc.secondary_owners is None
assert doc.title is None
assert doc.title == "AS-2 test123small"
assert doc.from_ingestion_api is False
assert doc.additional_info is None

View File

@@ -23,6 +23,9 @@ def bedrock_provider() -> WellKnownLLMProviderDescriptor:
return provider
@pytest.mark.xfail(
reason="Credentials not yet available due to compliance work needed",
)
def test_bedrock_llm_configuration(
client: TestClient, bedrock_provider: WellKnownLLMProviderDescriptor
) -> None:

View File

@@ -1,18 +1,39 @@
import csv
import datetime
import json
import os
from collections import defaultdict
from datetime import datetime
from datetime import timedelta
from typing import Any
import yaml
from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder,
)
from onyx.agents.agent_search.deep_search.main.states import MainInput
from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput_a,
)
from onyx.agents.agent_search.run_graph import run_basic_graph
from onyx.agents.agent_search.run_graph import run_main_graph
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import OnyxAnswerPiece
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.llm.factory import get_default_llms
from onyx.tools.force import ForceUseTool
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.utils.logger import setup_logger
logger = setup_logger()
cwd = os.getcwd()
@@ -35,95 +56,183 @@ input_file_object = open(
)
output_file = f"{OUTPUT_DIR}/agent_test_output.csv"
csv_output_data: list[list[str]] = []
test_data = json.load(input_file_object)
example_data = test_data["examples"]
example_ids = test_data["example_ids"]
failed_example_ids: list[int] = []
with get_session_context_manager() as db_session:
output_data = []
output_data: dict[str, Any] = {}
primary_llm, fast_llm = get_default_llms()
for example in example_data:
example_id = example["id"]
query_start_time: datetime = datetime.now()
example_id: int = int(example.get("id"))
example_question: str = example.get("question")
if not example_question or not example_id:
continue
if len(example_ids) > 0 and example_id not in example_ids:
continue
example_question = example["question"]
target_sub_questions = example.get("target_sub_questions", [])
num_target_sub_questions = len(target_sub_questions)
search_request = SearchRequest(query=example_question)
logger.info(f"{query_start_time} -- Processing example {example_id}")
config, search_tool = get_test_config(
db_session=db_session,
primary_llm=primary_llm,
fast_llm=fast_llm,
search_request=search_request,
)
try:
example_question = example["question"]
target_sub_questions = example.get("target_sub_questions", [])
num_target_sub_questions = len(target_sub_questions)
search_request = SearchRequest(query=example_question)
inputs = MainInput()
initial_answer_duration: timedelta | None = None
refined_answer_duration: timedelta | None = None
base_answer_duration: timedelta | None = None
start_time = datetime.datetime.now()
logger.debug("\n\nTEST QUERY START\n\n")
question_result = compiled_graph.invoke(
input=inputs, config={"metadata": {"config": config}}
)
end_time = datetime.datetime.now()
graph = main_graph_builder_a()
compiled_graph = graph.compile()
query_end_time = datetime.now()
duration = end_time - start_time
if num_target_sub_questions > 0:
chunk_expansion_ratio = (
question_result["initial_agent_stats"]
.get("agent_effectiveness", {})
.get("utilized_chunk_ratio", None)
search_request = SearchRequest(
# query="what can you do with gitlab?",
# query="What are the guiding principles behind the development of cockroachDB",
# query="What are the temperatures in Munich, Hawaii, and New York?",
# query="When was Washington born?",
# query="What is Onyx?",
# query="What is the difference between astronomy and astrology?",
query=example_question,
)
support_effectiveness_ratio = (
question_result["initial_agent_stats"]
.get("agent_effectiveness", {})
.get("support_ratio", None)
)
else:
chunk_expansion_ratio = None
support_effectiveness_ratio = None
generated_sub_questions = question_result.get("generated_sub_questions", [])
num_generated_sub_questions = len(generated_sub_questions)
base_answer = question_result["initial_base_answer"].split("==")[-1]
agent_answer = question_result["initial_answer"].split("==")[-1]
answer_tokens: dict[str, list[str]] = defaultdict(list)
output_point = {
"example_id": example_id,
"question": example_question,
"duration": duration,
"target_sub_questions": target_sub_questions,
"generated_sub_questions": generated_sub_questions,
"num_target_sub_questions": num_target_sub_questions,
"num_generated_sub_questions": num_generated_sub_questions,
"chunk_expansion_ratio": chunk_expansion_ratio,
"support_effectiveness_ratio": support_effectiveness_ratio,
"base_answer": base_answer,
"agent_answer": agent_answer,
}
with get_session_context_manager() as db_session:
config = get_test_config(
db_session, primary_llm, fast_llm, search_request
)
assert (
config.persistence is not None
), "set a chat session id to run this test"
output_data.append(output_point)
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput_a()
# Base Flow
base_flow_start_time: datetime = datetime.now()
for output in run_basic_graph(config):
if isinstance(output, OnyxAnswerPiece):
answer_tokens["base_answer"].append(output.answer_piece or "")
output_data["base_answer"] = "".join(answer_tokens["base_answer"])
output_data["base_answer_duration"] = (
datetime.now() - base_flow_start_time
)
# Agent Flow
agent_flow_start_time: datetime = datetime.now()
config = get_test_config(
db_session,
primary_llm,
fast_llm,
search_request,
use_agentic_search=True,
)
config.tooling.force_use_tool = ForceUseTool(
force_use=True, tool_name=SearchTool._NAME
)
tool_responses: list = []
sub_question_dict_tokens: dict[int, dict[int, str]] = defaultdict(
lambda: defaultdict(str)
)
for output in run_main_graph(config):
if isinstance(output, AgentAnswerPiece):
if output.level == 0 and output.level_question_num == 0:
answer_tokens["initial"].append(output.answer_piece)
elif output.level == 1 and output.level_question_num == 0:
answer_tokens["refined"].append(output.answer_piece)
elif isinstance(output, SubQuestionPiece):
if (
output.level is not None
and output.level_question_num is not None
):
sub_question_dict_tokens[output.level][
output.level_question_num
] += output.sub_question
elif isinstance(output, StreamStopInfo):
if (
output.stream_type == StreamType.MAIN_ANSWER
and output.level == 0
):
initial_answer_duration = (
datetime.now() - agent_flow_start_time
)
elif isinstance(output, RefinedAnswerImprovement):
output_data["refined_answer_improves_on_initial_answer"] = str(
output.refined_answer_improvement
)
refined_answer_duration = datetime.now() - agent_flow_start_time
output_data["example_id"] = example_id
output_data["question"] = example_question
output_data["initial_answer"] = "".join(answer_tokens["initial"])
output_data["refined_answer"] = "".join(answer_tokens["refined"])
output_data["initial_answer_duration"] = initial_answer_duration or ""
output_data["refined_answer_duration"] = refined_answer_duration
output_data["initial_sub_questions"] = "\n---\n".join(
[x for x in sub_question_dict_tokens[0].values()]
)
output_data["refined_sub_questions"] = "\n---\n".join(
[x for x in sub_question_dict_tokens[1].values()]
)
csv_output_data.append(
[
str(example_id),
example_question,
output_data["base_answer"],
output_data["base_answer_duration"],
output_data["initial_sub_questions"],
output_data["initial_answer"],
output_data["initial_answer_duration"],
output_data["refined_sub_questions"],
output_data["refined_answer"],
output_data["refined_answer_duration"],
output_data["refined_answer_improves_on_initial_answer"],
]
)
except Exception as e:
logger.error(f"Error processing example {example_id}: {e}")
failed_example_ids.append(example_id)
continue
with open(output_file, "w", newline="") as csvfile:
fieldnames = [
"example_id",
"question",
"duration",
"target_sub_questions",
"generated_sub_questions",
"num_target_sub_questions",
"num_generated_sub_questions",
"chunk_expansion_ratio",
"support_effectiveness_ratio",
"base_answer",
"agent_answer",
]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames, delimiter="\t")
writer.writeheader()
writer.writerows(output_data)
writer = csv.writer(csvfile, delimiter="\t")
writer.writerow(
[
"example_id",
"question",
"base_answer",
"base_answer_duration",
"initial_sub_questions",
"initial_answer",
"initial_answer_duration",
"refined_sub_questions",
"refined_answer",
"refined_answer_duration",
"refined_answer_improves_on_initial_answer",
]
)
writer.writerows(csv_output_data)
print("DONE")

View File

@@ -84,6 +84,9 @@ ENV NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=${NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED}
ARG NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK
ENV NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK=${NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK}
ARG NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY
ENV NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY=${NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY}
# Use NODE_OPTIONS in the build command
RUN NODE_OPTIONS="${NODE_OPTIONS}" npx next build
@@ -145,7 +148,6 @@ ENV NEXT_PUBLIC_DISABLE_LOGOUT=${NEXT_PUBLIC_DISABLE_LOGOUT}
ARG NEXT_PUBLIC_CUSTOM_REFRESH_URL
ENV NEXT_PUBLIC_CUSTOM_REFRESH_URL=${NEXT_PUBLIC_CUSTOM_REFRESH_URL}
ARG NEXT_PUBLIC_POSTHOG_KEY
ARG NEXT_PUBLIC_POSTHOG_HOST
ENV NEXT_PUBLIC_POSTHOG_KEY=${NEXT_PUBLIC_POSTHOG_KEY}
@@ -166,6 +168,9 @@ ENV NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=${NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED}
ARG NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK
ENV NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK=${NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK}
ARG NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY
ENV NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY=${NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY}
# Note: Don't expose ports here, Compose will handle that for us if necessary.
# If you want to run this without compose, specify the ports to
# expose via cli

BIN
web/public/GitBookDark.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 KiB

BIN
web/public/GitBookLight.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

View File

@@ -502,9 +502,10 @@ export default function AddConnector({
{oauthSupportedSources.includes(connector) &&
(NEXT_PUBLIC_CLOUD_ENABLED ||
NEXT_PUBLIC_TEST_ENV) && (
<button
<Button
variant="navigate"
onClick={handleAuthorize}
className="mt-6 text-sm bg-blue-500 px-2 py-1.5 flex text-text-200 flex-none rounded"
className="mt-6 "
disabled={isAuthorizing}
hidden={!isAuthorizeVisible}
>
@@ -513,7 +514,7 @@ export default function AddConnector({
: `Authorize with ${getSourceDisplayName(
connector
)}`}
</button>
</Button>
)}
</div>
)}

Some files were not shown because too many files have changed in this diff Show More