Compare commits

..

1 Commits

Author SHA1 Message Date
pablodanswer
1ac3ec7575 nit 2025-02-13 17:20:46 -08:00
164 changed files with 1996 additions and 7186 deletions

View File

@@ -1,6 +1,6 @@
name: Run Playwright Tests
name: Run Chromatic Tests
concurrency:
group: Run-Playwright-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
group: Run-Chromatic-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on: push
@@ -198,47 +198,43 @@ jobs:
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
# NOTE: Chromatic UI diff testing is currently disabled.
# We are using Playwright for local and CI testing without visual regression checks.
# Chromatic may be reintroduced in the future for UI diff testing if needed.
chromatic-tests:
name: Chromatic Tests
# chromatic-tests:
# name: Chromatic Tests
needs: playwright-tests
runs-on:
[
runs-on,
runner=32cpu-linux-x64,
disk=large,
"run-id=${{ github.run_id }}",
]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
# needs: playwright-tests
# runs-on:
# [
# runs-on,
# runner=32cpu-linux-x64,
# disk=large,
# "run-id=${{ github.run_id }}",
# ]
# steps:
# - name: Checkout code
# uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 22
# - name: Setup node
# uses: actions/setup-node@v4
# with:
# node-version: 22
- name: Install node dependencies
working-directory: ./web
run: npm ci
# - name: Install node dependencies
# working-directory: ./web
# run: npm ci
- name: Download Playwright test results
uses: actions/download-artifact@v4
with:
name: test-results
path: ./web/test-results
# - name: Download Playwright test results
# uses: actions/download-artifact@v4
# with:
# name: test-results
# path: ./web/test-results
# - name: Run Chromatic
# uses: chromaui/action@latest
# with:
# playwright: true
# projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
# workingDir: ./web
# env:
# CHROMATIC_ARCHIVE_LOCATION: ./test-results
- name: Run Chromatic
uses: chromaui/action@latest
with:
playwright: true
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
workingDir: ./web
env:
CHROMATIC_ARCHIVE_LOCATION: ./test-results

View File

@@ -99,7 +99,7 @@ jobs:
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
DEV_MODE=true \
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack up -d
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack up -d
id: start_docker_multi_tenant
# In practice, `cloud` Auth type would require OAUTH credentials to be set.
@@ -108,13 +108,12 @@ jobs:
echo "Waiting for 3 minutes to ensure API server is ready..."
sleep 180
echo "Running integration tests..."
docker run --rm --network onyx-stack_default \
docker run --rm --network danswer-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
@@ -144,27 +143,24 @@ jobs:
- name: Stop multi-tenant Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack down -v
# NOTE: Use pre-ping/null pool to reduce flakiness due to dropped connections
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack down -v
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
POSTGRES_POOL_PRE_PING=true \
POSTGRES_USE_NULL_POOL=true \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f onyx-stack-api_server-1 &
docker logs -f danswer-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
@@ -194,24 +190,15 @@ jobs:
done
echo "Finished waiting for service."
- name: Start Mock Services
run: |
cd backend/tests/integration/mock_services
docker compose -f docker-compose.mock-it-services.yml \
-p mock-it-services-stack up -d
# NOTE: Use pre-ping/null to reduce flakiness due to dropped connections
- name: Run Standard Integration Tests
run: |
echo "Running integration tests..."
docker run --rm --network onyx-stack_default \
docker run --rm --network danswer-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_POOL_PRE_PING=true \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
@@ -221,8 +208,6 @@ jobs:
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
-e TEST_WEB_HOSTNAME=test-runner \
-e MOCK_CONNECTOR_SERVER_HOST=mock_connector_server \
-e MOCK_CONNECTOR_SERVER_PORT=8001 \
onyxdotapp/onyx-integration:test \
/app/tests/integration/tests \
/app/tests/integration/connector_job_tests
@@ -244,13 +229,13 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
- name: Dump all-container logs (optional)
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
- name: Upload logs
if: always()
@@ -264,4 +249,4 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack down -v
docker compose -f docker-compose.dev.yml -p danswer-stack down -v

View File

@@ -44,9 +44,6 @@ env:
SHAREPOINT_CLIENT_SECRET: ${{ secrets.SHAREPOINT_CLIENT_SECRET }}
SHAREPOINT_CLIENT_DIRECTORY_ID: ${{ secrets.SHAREPOINT_CLIENT_DIRECTORY_ID }}
SHAREPOINT_SITE: ${{ secrets.SHAREPOINT_SITE }}
# Gitbook
GITBOOK_SPACE_ID: ${{ secrets.GITBOOK_SPACE_ID }}
GITBOOK_API_KEY: ${{ secrets.GITBOOK_API_KEY }}
jobs:
connectors-check:

View File

@@ -205,7 +205,7 @@
"--loglevel=INFO",
"--hostname=light@%n",
"-Q",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert,checkpoint_cleanup",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert",
],
"presentation": {
"group": "2",

View File

@@ -28,16 +28,14 @@ RUN apt-get update && \
curl \
zip \
ca-certificates \
libgnutls30 \
libblkid1 \
libmount1 \
libsmartcols1 \
libuuid1 \
libgnutls30=3.7.9-2+deb12u3 \
libblkid1=2.38.1-5+deb12u1 \
libmount1=2.38.1-5+deb12u1 \
libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 \
libxmlsec1-dev \
pkg-config \
gcc \
nano \
vim && \
gcc && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean

View File

@@ -1,124 +0,0 @@
"""Add checkpointing/failure handling
Revision ID: b7a7eee5aa15
Revises: f39c5794c10a
Create Date: 2025-01-24 15:17:36.763172
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "b7a7eee5aa15"
down_revision = "f39c5794c10a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"index_attempt",
sa.Column("checkpoint_pointer", sa.String(), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_start", sa.DateTime(timezone=True), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_end", sa.DateTime(timezone=True), nullable=True),
)
op.create_index(
"ix_index_attempt_cc_pair_settings_poll",
"index_attempt",
[
"connector_credential_pair_id",
"search_settings_id",
"status",
sa.text("time_updated DESC"),
],
)
# Drop the old IndexAttemptError table
op.drop_index("index_attempt_id", table_name="index_attempt_errors")
op.drop_table("index_attempt_errors")
# Create the new version of the table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=False),
sa.Column("connector_credential_pair_id", sa.Integer(), nullable=False),
sa.Column("document_id", sa.String(), nullable=True),
sa.Column("document_link", sa.String(), nullable=True),
sa.Column("entity_id", sa.String(), nullable=True),
sa.Column("failed_time_range_start", sa.DateTime(timezone=True), nullable=True),
sa.Column("failed_time_range_end", sa.DateTime(timezone=True), nullable=True),
sa.Column("failure_message", sa.Text(), nullable=False),
sa.Column("is_resolved", sa.Boolean(), nullable=False, default=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
sa.ForeignKeyConstraint(
["connector_credential_pair_id"],
["connector_credential_pair.id"],
),
)
def downgrade() -> None:
op.execute("SET lock_timeout = '5s'")
# try a few times to drop the table, this has been observed to fail due to other locks
# blocking the drop
NUM_TRIES = 10
for i in range(NUM_TRIES):
try:
op.drop_table("index_attempt_errors")
break
except Exception as e:
if i == NUM_TRIES - 1:
raise e
print(f"Error dropping table: {e}. Retrying...")
op.execute("SET lock_timeout = DEFAULT")
# Recreate the old IndexAttemptError table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=True),
sa.Column("batch", sa.Integer(), nullable=True),
sa.Column("doc_summaries", postgresql.JSONB(), nullable=False),
sa.Column("error_msg", sa.Text(), nullable=True),
sa.Column("traceback", sa.Text(), nullable=True),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
)
op.create_index(
"index_attempt_id",
"index_attempt_errors",
["time_created"],
)
op.drop_index("ix_index_attempt_cc_pair_settings_poll")
op.drop_column("index_attempt", "checkpoint_pointer")
op.drop_column("index_attempt", "poll_range_start")
op.drop_column("index_attempt", "poll_range_end")

View File

@@ -5,7 +5,7 @@ from onyx.access.models import DocExternalAccess
from onyx.access.models import ExternalAccess
from onyx.connectors.slack.connector import get_channels
from onyx.connectors.slack.connector import make_paginated_slack_api_call_w_retries
from onyx.connectors.slack.connector import SlackConnector
from onyx.connectors.slack.connector import SlackPollConnector
from onyx.db.models import ConnectorCredentialPair
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -17,7 +17,7 @@ logger = setup_logger()
def _get_slack_document_ids_and_channels(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> dict[str, list[str]]:
slack_connector = SlackConnector(**cc_pair.connector.connector_specific_config)
slack_connector = SlackPollConnector(**cc_pair.connector.connector_specific_config)
slack_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = slack_connector.retrieve_all_slim_documents(callback=callback)

View File

@@ -5,14 +5,14 @@ from langgraph.graph import StateGraph
from onyx.agents.agent_search.basic.states import BasicInput
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -33,13 +33,13 @@ def basic_graph_builder() -> StateGraph:
)
graph.add_node(
node="choose_tool",
action=choose_tool,
node="llm_tool_choice",
action=llm_tool_choice,
)
graph.add_node(
node="call_tool",
action=call_tool,
node="tool_call",
action=tool_call,
)
graph.add_node(
@@ -51,12 +51,12 @@ def basic_graph_builder() -> StateGraph:
graph.add_edge(start_key=START, end_key="prepare_tool_input")
graph.add_edge(start_key="prepare_tool_input", end_key="choose_tool")
graph.add_edge(start_key="prepare_tool_input", end_key="llm_tool_choice")
graph.add_conditional_edges("choose_tool", should_continue, ["call_tool", END])
graph.add_conditional_edges("llm_tool_choice", should_continue, ["tool_call", END])
graph.add_edge(
start_key="call_tool",
start_key="tool_call",
end_key="basic_use_tool_response",
)
@@ -73,7 +73,7 @@ def should_continue(state: BasicState) -> str:
# If there are no tool calls, basic graph already streamed the answer
END
if state.tool_choice is None
else "call_tool"
else "tool_call"
)
@@ -85,7 +85,7 @@ if __name__ == "__main__":
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(unused=True)
input = BasicInput(_unused=True)
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
config, _ = get_test_config(

View File

@@ -17,7 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
class BasicInput(BaseModel):
# Langgraph needs a nonempty input, but we pass in all static
# data through a RunnableConfig.
unused: bool = True
_unused: bool = True
## Graph Output State

View File

@@ -9,6 +9,7 @@ class CoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
@@ -17,4 +18,4 @@ class SubgraphCoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add] = []
log_messages: Annotated[list[str], add]

View File

@@ -1,8 +1,8 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
@@ -12,45 +12,14 @@ from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer
SubQuestionAnswerCheckUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_CHECK
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def check_sub_answer(
state: AnswerQuestionState, config: RunnableConfig
) -> SubQuestionAnswerCheckUpdate:
@@ -84,42 +53,14 @@ def check_sub_answer(
graph_config = cast(GraphConfig, config["metadata"]["config"])
fast_llm = graph_config.tooling.fast_llm
agent_error: AgentErrorLog | None = None
response: BaseMessage | None = None
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_CHECK,
fast_llm.invoke,
response = list(
fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK,
)
)
quality_str: str = cast(str, response.content)
answer_quality = binary_string_test(
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
)
log_result = f"Answer quality: {quality_str}"
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Timeout Error - check sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Rate Limit Error - check sub answer")
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
answer_quality = "yes" in quality_str.lower()
return SubQuestionAnswerCheckUpdate(
answer_quality=answer_quality,
@@ -128,7 +69,7 @@ def check_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="check sub answer",
node_start_time=node_start_time,
result=log_result,
result=f"Answer quality: {quality_str}",
)
],
)

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import merge_message_runs
@@ -15,23 +16,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
dedup_sort_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
LLM_ANSWER_ERROR_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -46,25 +30,12 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
)
@log_function_time(print_only=True)
def generate_sub_answer(
state: AnswerQuestionState,
config: RunnableConfig,
@@ -80,17 +51,12 @@ def generate_sub_answer(
state.verified_reranked_documents
level, question_num = parse_question_id(state.question_id)
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
context_docs = dedup_sort_inference_section_list(context_docs)
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
graph_config.inputs.search_request.persona
).contextualized_prompt
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
cited_documents: list = []
log_results = "No documents retrieved"
write_custom_event(
"sub_answers",
AgentAnswerPiece(
@@ -111,75 +77,43 @@ def generate_sub_answer(
config=fast_llm.config,
)
response: list[str | list[str | dict[str, Any]]] = []
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
response: list[str] = []
def stream_sub_answer() -> list[str]:
for message in fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION,
stream_sub_answer,
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
logger.error("LLM Timeout Error - generate sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate sub answer")
response.append(content)
if agent_error:
answer_str = LLM_ANSWER_ERROR_MESSAGE
cited_documents = []
log_results = (
agent_error.error_result
or "Sub-answer generation failed due to LLM error"
)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
logger.debug(
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
)
else:
answer_str = merge_message_runs(response, chunk_separator="")[0].content
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
log_results = None
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -197,7 +131,7 @@ def generate_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="generate sub answer",
node_start_time=node_start_time,
result=log_results or "",
result="",
)
],
)

View File

@@ -42,8 +42,10 @@ class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
class SubQuestionAnsweringInput(SubgraphCoreState):
question: str
question_id: str
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -25,31 +26,14 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -58,20 +42,12 @@ from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_ci
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
from onyx.context.search.models import InferenceSection
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
@@ -80,17 +56,8 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The initial answer could not be generated.",
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
general_error="General LLM Error. The initial answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_initial_answer(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -106,19 +73,15 @@ def generate_initial_answer(
question = graph_config.inputs.search_request.query
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
sub_questions_cited_documents = state.cited_documents
orig_question_retrieval_documents = state.orig_question_retrieved_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
orig_question_retrieval_documents
):
if original_doc_number not in structured_subquestion_docs.cited_documents:
if original_doc_number not in sub_questions_cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
@@ -127,18 +90,15 @@ def generate_initial_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
sub_questions: list[str] = []
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=orig_question_retrieval_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER,
streamed_documents = (
relevant_docs
if len(relevant_docs) > 0
else state.orig_question_retrieved_documents[:15]
)
# Use the query info from the base document retrieval
@@ -148,13 +108,11 @@ def generate_initial_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
relevance_list = relevance_from_docs(relevant_docs)
for tool_response in yield_search_responses(
query=question,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
reranked_sections=streamed_documents,
final_context_sections=streamed_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -170,7 +128,7 @@ def generate_initial_answer(
writer,
)
if len(answer_generation_documents.context_documents) == 0:
if len(relevant_docs) == 0:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
@@ -234,13 +192,9 @@ def generate_initial_answer(
sub_questions = all_sub_questions # Replace the original assignment
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
model = graph_config.tooling.fast_llm
doc_context = format_docs(answer_generation_documents.context_documents)
doc_context = format_docs(relevant_docs)
doc_context = trim_prompt_piece(
config=model.config,
prompt_piece=doc_context,
@@ -268,92 +222,32 @@ def generate_initial_answer(
)
]
streamed_tokens: list[str] = [""]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
def stream_initial_answer() -> list[str]:
response: list[str] = []
for message in model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
start_stream_token = datetime.now()
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
stream_initial_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate initial answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate initial answer")
if agent_error:
write_custom_event(
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
return InitialAnswerUpdate(
initial_answer=None,
answer_error=AgentErrorLog(
error_message=agent_error.error_message or "An LLM error occurred",
error_type=agent_error.error_type,
error_result=agent_error.error_result,
),
initial_agent_stats=None,
generated_sub_questions=sub_questions,
agent_base_end_time=None,
agent_base_metrics=None,
log_messages=[
get_langgraph_node_log_string(
graph_component="initial - generate initial answer",
node_name="generate initial answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"

View File

@@ -10,10 +10,8 @@ from onyx.agents.agent_search.deep_search.main.states import (
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def validate_initial_answer(
state: SubQuestionRetrievalState,
) -> InitialAnswerQualityUpdate:
@@ -27,7 +25,7 @@ def validate_initial_answer(
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True # not actually required as already streamed out. Refinement will do similar
verdict = True
return InitialAnswerQualityUpdate(
initial_answer_quality_eval=verdict,

View File

@@ -23,8 +23,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -35,34 +33,17 @@ from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT,
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
)
from onyx.prompts.agent_search import (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT,
INITIAL_QUESTION_DECOMPOSITION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. Sub-questions could not be generated.",
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
general_error="General LLM Error. Sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def decompose_orig_question(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -104,15 +85,15 @@ def decompose_orig_question(
]
)
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT.format(
question=question, sample_doc_str=sample_doc_str, history=history
decomposition_prompt = (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
)
else:
decomposition_prompt = (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT.format(
question=question, history=history
)
decomposition_prompt = INITIAL_QUESTION_DECOMPOSITION_PROMPT.format(
question=question, history=history
)
# Start decomposition
@@ -131,44 +112,32 @@ def decompose_orig_question(
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
streamed_tokens: list[BaseMessage_Content] = []
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
deomposition_response = merge_content(*streamed_tokens)
decomposition_response = merge_content(*streamed_tokens)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
list_of_subqs = cast(str, decomposition_response).split("\n")
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
except (LLMTimeoutError, TimeoutError) as e:
logger.error("LLM Timeout Error - decompose orig question")
raise e # fail loudly on this critical step
except LLMRateLimitError as e:
logger.error("LLM Rate Limit Error - decompose orig question")
raise e
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
return InitialQuestionDecompositionUpdate(
initial_sub_questions=initial_sub_questions,
initial_sub_questions=decomp_list,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
@@ -182,7 +151,7 @@ def decompose_orig_question(
graph_component="initial - generate sub answers",
node_name="decompose original question",
node_start_time=node_start_time,
result=log_result,
result=f"decomposed original question into {len(decomp_list)} subquestions",
)
],
)

View File

@@ -25,7 +25,7 @@ logger = setup_logger()
def route_initial_tool_choice(
state: MainState, config: RunnableConfig
) -> Literal["call_tool", "start_agent_search", "logging_node"]:
) -> Literal["tool_call", "start_agent_search", "logging_node"]:
"""
LangGraph edge to route to agent search.
"""
@@ -38,7 +38,7 @@ def route_initial_tool_choice(
):
return "start_agent_search"
else:
return "call_tool"
return "tool_call"
else:
return "logging_node"

View File

@@ -26,8 +26,8 @@ from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need impo
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
extract_entities_terms,
)
from onyx.agents.agent_search.deep_search.main.nodes.generate_validate_refined_answer import (
generate_validate_refined_answer,
from onyx.agents.agent_search.deep_search.main.nodes.generate_refined_answer import (
generate_refined_answer,
)
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
ingest_refined_sub_answers,
@@ -43,14 +43,14 @@ from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.graph_builder import (
answer_refined_query_graph_builder,
)
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
@@ -77,13 +77,13 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Choose the initial tool
graph.add_node(
node="initial_tool_choice",
action=choose_tool,
action=llm_tool_choice,
)
# Call the tool, if required
graph.add_node(
node="call_tool",
action=call_tool,
node="tool_call",
action=tool_call,
)
# Use the tool response
@@ -126,8 +126,8 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Node to generate the refined answer
graph.add_node(
node="generate_validate_refined_answer",
action=generate_validate_refined_answer,
node="generate_refined_answer",
action=generate_refined_answer,
)
# Early node to extract the entities and terms from the initial answer,
@@ -168,11 +168,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_conditional_edges(
"initial_tool_choice",
route_initial_tool_choice,
["call_tool", "start_agent_search", "logging_node"],
["tool_call", "start_agent_search", "logging_node"],
)
graph.add_edge(
start_key="call_tool",
start_key="tool_call",
end_key="basic_use_tool_response",
)
graph.add_edge(
@@ -215,11 +215,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_edge(
start_key="ingest_refined_sub_answers",
end_key="generate_validate_refined_answer",
end_key="generate_refined_answer",
)
graph.add_edge(
start_key="generate_validate_refined_answer",
start_key="generate_refined_answer",
end_key="compare_answers",
)
graph.add_edge(
@@ -252,7 +252,9 @@ if __name__ == "__main__":
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(log_messages=[])
inputs = MainInput(
base_question=graph_config.inputs.search_request.query, log_messages=[]
)
for thing in compiled_graph.stream(
input=inputs,

View File

@@ -1,7 +1,6 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from langgraph.types import StreamWriter
@@ -11,53 +10,16 @@ from onyx.agents.agent_search.deep_search.main.states import (
)
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import RefinedAnswerImprovement
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_COMPARE_ANSWERS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out, and the answers could not be compared.",
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
general_error="The LLM encountered an error, and the answers could not be compared.",
)
_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE = (
"Answer quality is not sufficient, so stay with the initial answer."
)
@log_function_time(print_only=True)
def compare_answers(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> InitialRefinedAnswerComparisonUpdate:
@@ -72,78 +34,21 @@ def compare_answers(
initial_answer = state.initial_answer
refined_answer = state.refined_answer
# if answer quality is not sufficient, then stay with the initial answer
if not state.refined_answer_quality:
write_custom_event(
"refined_answer_improvement",
RefinedAnswerImprovement(
refined_answer_improvement=False,
),
writer,
)
return InitialRefinedAnswerComparisonUpdate(
refined_answer_improvement_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE,
)
],
)
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
question=question, initial_answer=initial_answer, refined_answer=refined_answer
)
msg = [HumanMessage(content=compare_answers_prompt)]
agent_error: AgentErrorLog | None = None
# Get the rewritten queries in a defined format
model = graph_config.tooling.fast_llm
resp: BaseMessage | None = None
refined_answer_improvement: bool | None = None
# no need to stream this
try:
resp = run_with_timeout(
AGENT_TIMEOUT_LLM_COMPARE_ANSWERS,
model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS,
)
resp = model.invoke(msg)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - compare answers")
# continue as True in this support step
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - compare answers")
# continue as True in this support step
if agent_error or resp is None:
refined_answer_improvement = True
if agent_error:
log_result = agent_error.error_result
else:
log_result = "An answer could not be generated."
else:
refined_answer_improvement = binary_string_test(
text=cast(str, resp.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
)
log_result = f"Answer comparison: {refined_answer_improvement}"
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
write_custom_event(
"refined_answer_improvement",
@@ -160,7 +65,7 @@ def compare_answers(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=log_result,
result=f"Answer comparison: {refined_answer_improvement}",
)
],
)

View File

@@ -21,18 +21,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
format_entity_term_extraction,
@@ -42,35 +30,12 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
)
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS,
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
)
from onyx.tools.models import ToolCallKickoff
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_ANSWERED_SUBQUESTIONS_DIVIDER = "\n\n---\n\n"
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The sub-questions could not be generated.",
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
general_error="The LLM encountered an error. The sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def create_refined_sub_questions(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedQuestionDecompositionUpdate:
@@ -107,10 +72,8 @@ def create_refined_sub_questions(
initial_question_answers = state.sub_question_results
addressed_subquestions_with_answers = [
f"Subquestion: {x.question}\nSubanswer:\n{x.answer}"
for x in initial_question_answers
if x.verified_high_quality and x.answer
addressed_question_list = [
x.question for x in initial_question_answers if x.verified_high_quality
]
failed_question_list = [
@@ -119,14 +82,12 @@ def create_refined_sub_questions(
msg = [
HumanMessage(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS.format(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT.format(
question=question,
history=history,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_subquestions_with_answers=_ANSWERED_SUBQUESTIONS_DIVIDER.join(
addressed_subquestions_with_answers
),
answered_sub_questions="\n - ".join(addressed_question_list),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
@@ -135,67 +96,29 @@ def create_refined_sub_questions(
# Grader
model = graph_config.tooling.fast_llm
agent_error: AgentErrorLog | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - create refined sub questions")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - create refined sub questions")
if agent_error:
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
log_result = agent_error.error_result
write_custom_event(
"refined_sub_question_creation_error",
StreamingError(
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
),
writer,
)
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
response = merge_content(*streamed_tokens)
raise ValueError("LLM response is not a string")
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
return RefinedQuestionDecompositionUpdate(
refined_sub_questions=refined_sub_question_dict,
@@ -205,7 +128,7 @@ def create_refined_sub_questions(
graph_component="main",
node_name="create refined sub questions",
node_start_time=node_start_time,
result=log_result,
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
)
],
)

View File

@@ -11,10 +11,8 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def decide_refinement_need(
state: MainState, config: RunnableConfig
) -> RequireRefinemenEvalUpdate:
@@ -28,19 +26,6 @@ def decide_refinement_need(
decision = True # TODO: just for current testing purposes
if state.answer_error:
return RequireRefinemenEvalUpdate(
require_refined_answer_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="decide refinement need",
node_start_time=node_start_time,
result="Timeout Error",
)
],
)
log_messages = [
get_langgraph_node_log_string(
graph_component="main",

View File

@@ -21,22 +21,11 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def extract_entities_terms(
state: MainState, config: RunnableConfig
) -> EntityTermExtractionUpdate:
@@ -90,42 +79,29 @@ def extract_entities_terms(
]
fast_llm = graph_config.tooling.fast_llm
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
)
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
llm_response = run_with_timeout(
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
)
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
)
except ValueError:
logger.error(
"Failed to parse LLM response as JSON in Entity-Term Extraction"
)
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - extract entities terms")
except ValueError:
logger.error("Failed to parse LLM response as JSON in Entity-Term Extraction")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - extract entities terms")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
retrieved_entities_relationships=EntityRelationshipTermExtraction(
entities=[],
relationships=[],
terms=[],
),
)
return EntityTermExtractionUpdate(

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -10,49 +11,27 @@ from onyx.agents.agent_search.deep_search.main.models import (
AgentRefinedMetrics,
)
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
from onyx.agents.agent_search.deep_search.main.operations import logger
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.main.states import (
RefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test_after_answer_separator,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
get_prompt_enrichment_components,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AGENT_ANSWER_SEPARATOR
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -64,58 +43,26 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_VALIDATION_PROMPT,
)
from onyx.prompts.agent_search import (
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The refined answer could not be generated.",
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
general_error="The LLM encountered an error. The refined answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_validate_refined_answer(
def generate_refined_answer(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedAnswerUpdate:
"""
LangGraph node to generate the refined answer and validate it.
LangGraph node to generate the refined answer.
"""
node_start_time = datetime.now()
@@ -129,24 +76,19 @@ def generate_validate_refined_answer(
)
verified_reranked_documents = state.verified_reranked_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
sub_questions_cited_documents = state.cited_documents
original_question_verified_documents = (
state.orig_question_verified_reranked_documents
)
original_question_retrieved_documents = state.orig_question_retrieved_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
original_question_verified_documents
):
if original_doc_number not in structured_subquestion_docs.cited_documents:
if original_doc_number not in sub_questions_cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs)
@@ -157,16 +99,14 @@ def generate_validate_refined_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=original_question_retrieved_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER,
streaming_docs = (
relevant_docs
if len(relevant_docs) > 0
else original_question_retrieved_documents[:15]
)
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
@@ -174,13 +114,11 @@ def generate_validate_refined_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
# stream refined answer docs, or original question docs if no relevant docs are found
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
relevance_list = relevance_from_docs(relevant_docs)
for tool_response in yield_search_responses(
query=question,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
reranked_sections=streaming_docs,
final_context_sections=streaming_docs,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -260,13 +198,8 @@ def generate_validate_refined_answer(
else REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS
)
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
relevant_docs_str = format_docs(answer_generation_documents.context_documents)
model = graph_config.tooling.fast_llm
relevant_docs_str = format_docs(relevant_docs)
relevant_docs_str = trim_prompt_piece(
model.config,
relevant_docs_str,
@@ -296,89 +229,30 @@ def generate_validate_refined_answer(
)
]
streamed_tokens: list[str] = [""]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
def stream_refined_answer() -> list[str]:
for message in model.stream(
msg, timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
return streamed_tokens
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
stream_refined_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate refined answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate refined answer")
if agent_error:
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
return RefinedAnswerUpdate(
refined_answer=None,
refined_answer_quality=False, # TODO: replace this with the actual check value
refined_agent_stats=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=0.0,
refined_question_boost_factor=0.0,
duration_s=None,
),
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="generate refined answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
end_stream_token = datetime.now()
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
@@ -387,47 +261,54 @@ def generate_validate_refined_answer(
response = merge_content(*streamed_tokens)
answer = cast(str, response)
# run a validation step for the refined answer only
msg = [
HumanMessage(
content=REFINED_ANSWER_VALIDATION_PROMPT.format(
question=question,
history=prompt_enrichment_components.history,
answered_sub_questions=sub_question_answer_str,
relevant_docs=relevant_docs_str,
proposed_answer=answer,
persona_specification=persona_contextualized_prompt,
)
)
]
validation_model = graph_config.tooling.fast_llm
try:
validation_response = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
validation_model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
refined_answer_quality = binary_string_test_after_answer_separator(
text=cast(str, validation_response.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
separator=AGENT_ANSWER_SEPARATOR,
)
except (LLMTimeoutError, TimeoutError):
refined_answer_quality = True
logger.error("LLM Timeout Error - validate refined answer")
except LLMRateLimitError:
refined_answer_quality = True
logger.error("LLM Rate Limit Error - validate refined answer")
refined_agent_stats = RefinedAgentStats(
revision_doc_efficiency=refined_doc_effectiveness,
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (
@@ -444,7 +325,7 @@ def generate_validate_refined_answer(
return RefinedAnswerUpdate(
refined_answer=answer,
refined_answer_quality=refined_answer_quality,
refined_answer_quality=True, # TODO: replace this with the actual check value
refined_agent_stats=refined_agent_stats,
agent_refined_end_time=agent_refined_end_time,
agent_refined_metrics=agent_refined_metrics,

View File

@@ -17,7 +17,6 @@ from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -77,7 +76,6 @@ class InitialAnswerUpdate(LoggerUpdate):
"""
initial_answer: str | None = None
answer_error: AgentErrorLog | None = None
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
@@ -90,7 +88,6 @@ class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
"""
refined_answer: str | None = None
answer_error: AgentErrorLog | None = None
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False

View File

@@ -16,46 +16,16 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
QUERY_REWRITING_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
general_error="Query rewriting failed due to LLM error - the original question will be used.",
)
@log_function_time(print_only=True)
def expand_queries(
state: ExpandedRetrievalInput,
config: RunnableConfig,
@@ -71,7 +41,7 @@ def expand_queries(
node_start_time = datetime.now()
question = state.question
model = graph_config.tooling.fast_llm
llm = graph_config.tooling.fast_llm
sub_question_id = state.sub_question_id
if sub_question_id is None:
level, question_num = 0, 0
@@ -84,45 +54,13 @@ def expand_queries(
)
]
agent_error: AgentErrorLog | None = None
llm_response_list: list[BaseMessage_Content] = []
llm_response = ""
rewritten_queries = []
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_num, writer)
)
try:
llm_response_list = run_with_timeout(
AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION,
dispatch_separated,
model.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
),
dispatch_subquery(level, question_num, writer),
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
0
].content
rewritten_queries = llm_response.split("\n")
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - expand queries")
log_result = agent_error.error_result
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - expand queries")
log_result = agent_error.error_result
# use subquestion as query if query generation fails
rewritten_queries = llm_response.split("\n")
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
@@ -131,7 +69,7 @@ def expand_queries(
graph_component="shared - expanded retrieval",
node_name="expand queries",
node_start_time=node_start_time,
result=log_result,
result=f"Number of expanded queries: {len(rewritten_queries)}",
)
],
)

View File

@@ -26,10 +26,8 @@ from onyx.context.search.postprocessing.postprocessing import rerank_sections
from onyx.context.search.postprocessing.postprocessing import should_rerank
from onyx.db.engine import get_session_context_manager
from onyx.db.search_settings import get_current_search_settings
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def rerank_documents(
state: ExpandedRetrievalState, config: RunnableConfig
) -> DocRerankingUpdate:
@@ -55,7 +53,6 @@ def rerank_documents(
# Note that these are passed in values from the API and are overrides which are typically None
rerank_settings = graph_config.inputs.search_request.rerank_settings
allow_agent_reranking = graph_config.behavior.allow_agent_reranking
if rerank_settings is None:
with get_session_context_manager() as db_session:
@@ -63,31 +60,23 @@ def rerank_documents(
if not search_settings.disable_rerank_for_streaming:
rerank_settings = RerankingDetails.from_db_model(search_settings)
# Initial default: no reranking. Will be overwritten below if reranking is warranted
reranked_documents = verified_documents
if should_rerank(rerank_settings) and len(verified_documents) > 0:
if len(verified_documents) > 1:
if not allow_agent_reranking:
logger.info("Use of local rerank model without GPU, skipping reranking")
# No reranking, stay with verified_documents as default
else:
# Reranking is warranted, use the rerank_sections functon
reranked_documents = rerank_sections(
query_str=question,
# if runnable, then rerank_settings is not None
rerank_settings=cast(RerankingDetails, rerank_settings),
sections_to_rerank=verified_documents,
)
reranked_documents = rerank_sections(
query_str=question,
# if runnable, then rerank_settings is not None
rerank_settings=cast(RerankingDetails, rerank_settings),
sections_to_rerank=verified_documents,
)
else:
logger.warning(
f"{len(verified_documents)} verified document(s) found, skipping reranking"
)
# No reranking, stay with verified_documents as default
reranked_documents = verified_documents
else:
logger.warning("No reranking settings found, using unranked documents")
# No reranking, stay with verified_documents as default
reranked_documents = verified_documents
if AGENT_RERANKING_STATS:
fit_scores = get_fit_scores(verified_documents, reranked_documents)
else:

View File

@@ -28,10 +28,8 @@ from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def retrieve_documents(
state: RetrievalInput, config: RunnableConfig
) -> DocRetrievalUpdate:

View File

@@ -1,7 +1,5 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
@@ -12,40 +10,14 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
DOCUMENT_VERIFICATION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def verify_documents(
state: DocVerificationInput, config: RunnableConfig
) -> DocVerificationUpdate:
@@ -54,14 +26,12 @@ def verify_documents(
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing AgentSearchConfig
config (RunnableConfig): Configuration containing ProSearchConfig
Updates:
verified_documents: list[InferenceSection]
"""
node_start_time = datetime.now()
question = state.question
retrieved_document_to_verify = state.retrieved_document_to_verify
document_content = retrieved_document_to_verify.combined_content
@@ -81,43 +51,12 @@ def verify_documents(
)
]
response: BaseMessage | None = None
response = fast_llm.invoke(msg)
verified_documents = [
retrieved_document_to_verify
] # default is to treat document as relevant
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION,
)
assert isinstance(response.content, str)
if not binary_string_test(
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
):
verified_documents = []
except (LLMTimeoutError, TimeoutError):
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Timeout Error - verify documents")
except LLMRateLimitError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Rate Limit Error - verify documents")
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(retrieved_document_to_verify)
return DocVerificationUpdate(
verified_documents=verified_documents,
log_messages=[
get_langgraph_node_log_string(
graph_component="shared - expanded retrieval",
node_name="verify documents",
node_start_time=node_start_time,
)
],
)

View File

@@ -21,13 +21,9 @@ from onyx.context.search.models import InferenceSection
class ExpandedRetrievalInput(SubgraphCoreState):
# exception from 'no default value'for LangGraph input states
# Here, sub_question_id default None implies usage for the
# original question. This is sometimes needed for nested sub-graphs
question: str = ""
base_search: bool = False
sub_question_id: str | None = None
question: str
base_search: bool
## Update/Return States
@@ -38,7 +34,7 @@ class QueryExpansionUpdate(LoggerUpdate, BaseModel):
log_messages: list[str] = []
class DocVerificationUpdate(LoggerUpdate, BaseModel):
class DocVerificationUpdate(BaseModel):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
@@ -92,4 +88,4 @@ class DocVerificationInput(ExpandedRetrievalInput):
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str
query_to_retrieve: str = ""

View File

@@ -67,7 +67,6 @@ class GraphSearchConfig(BaseModel):
# Whether to allow creation of refinement questions (and entity extraction, etc.)
allow_refinement: bool = True
skip_gen_ai_answer_generation: bool = False
allow_agent_reranking: bool = False
class GraphConfig(BaseModel):

View File

@@ -25,7 +25,7 @@ logger = setup_logger()
# and a function that handles extracting the necessary fields
# from the state and config
# TODO: fan-out to multiple tool call nodes? Make this configurable?
def choose_tool(
def llm_tool_choice(
state: ToolChoiceState,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,

View File

@@ -28,7 +28,7 @@ def emit_packet(packet: AnswerPacket, writer: StreamWriter) -> None:
write_custom_event("basic_response", packet, writer)
def call_tool(
def tool_call(
state: ToolChoiceUpdate,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,

View File

@@ -12,7 +12,7 @@ from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput,
MainInput as MainInput_a,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
@@ -21,7 +21,6 @@ from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamingError
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
@@ -34,7 +33,6 @@ from onyx.llm.factory import get_default_llms
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
@@ -74,15 +72,13 @@ def _parse_agent_event(
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
elif event["name"] == "refined_sub_question_creation_error":
return cast(StreamingError, event["data"])
return None
def manage_sync_streaming(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
graph_input: BasicInput | MainInput,
graph_input: BasicInput | MainInput_a,
) -> Iterable[StreamEvent]:
message_id = config.persistence.message_id if config.persistence else None
for event in compiled_graph.stream(
@@ -96,7 +92,7 @@ def manage_sync_streaming(
def run_graph(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
input: BasicInput | MainInput,
input: BasicInput | MainInput_a,
) -> AnswerStream:
config.behavior.perform_initial_search_decomposition = (
INITIAL_SEARCH_DECOMPOSITION_ENABLED
@@ -127,7 +123,9 @@ def run_main_graph(
) -> AnswerStream:
compiled_graph = load_compiled_graph()
input = MainInput(log_messages=[])
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
@@ -142,7 +140,7 @@ def run_basic_graph(
) -> AnswerStream:
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(unused=True)
input = BasicInput()
return run_graph(compiled_graph, config, input)
@@ -174,7 +172,9 @@ if __name__ == "__main__":
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput(log_messages=[])
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):

View File

@@ -7,7 +7,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.models import (
AgentPromptEnrichmentComponents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_persona_agent_prompt_expressions,
)
@@ -41,7 +40,13 @@ def build_sub_question_answer_prompt(
date_str = build_date_time_string()
docs_str = format_docs(docs)
# TODO: This should include document metadata and title
docs_format_list = [
f"Document Number: [D{doc_num + 1}]\nContent: {doc.combined_content}\n\n"
for doc_num, doc in enumerate(docs)
]
docs_str = "\n\n".join(docs_format_list)
docs_str = trim_prompt_piece(
config,
@@ -145,38 +150,3 @@ def get_prompt_enrichment_components(
history=history,
date_str=date_str,
)
def binary_string_test(text: str, positive_value: str = "yes") -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
return positive_value.lower() in text.lower()
def binary_string_test_after_answer_separator(
text: str, positive_value: str = "yes", separator: str = "Answer:"
) -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
if separator not in text:
return False
relevant_text = text.split(f"{separator}")[-1]
return binary_string_test(relevant_text, positive_value)

View File

@@ -1,11 +1,7 @@
import numpy as np
from onyx.agents.agent_search.shared_graph_utils.models import AnswerGenerationDocuments
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitScoreMetrics
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import SectionRelevancePiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
@@ -100,106 +96,3 @@ def get_fit_scores(
)
return fit_eval
def get_answer_generation_documents(
relevant_docs: list[InferenceSection],
context_documents: list[InferenceSection],
original_question_docs: list[InferenceSection],
max_docs: int,
) -> AnswerGenerationDocuments:
"""
Create a deduplicated list of documents to stream, prioritizing relevant docs.
Args:
relevant_docs: Primary documents to include
context_documents: Additional context documents to append
original_question_docs: Original question documents to append
max_docs: Maximum number of documents to return
Returns:
List of deduplicated documents, limited to max_docs
"""
# get relevant_doc ids
relevant_doc_ids = [doc.center_chunk.document_id for doc in relevant_docs]
# Start with relevant docs or fallback to original question docs
streaming_documents = relevant_docs.copy()
# Use a set for O(1) lookups of document IDs
seen_doc_ids = {doc.center_chunk.document_id for doc in streaming_documents}
# Combine additional documents to check in one iteration
additional_docs = context_documents + original_question_docs
for doc_idx, doc in enumerate(additional_docs):
doc_id = doc.center_chunk.document_id
if doc_id not in seen_doc_ids:
streaming_documents.append(doc)
seen_doc_ids.add(doc_id)
streaming_documents = dedup_inference_section_list(streaming_documents)
relevant_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id in relevant_doc_ids
]
relevant_streaming_docs = dedup_sort_inference_section_list(relevant_streaming_docs)
additional_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id not in relevant_doc_ids
]
additional_streaming_docs = dedup_sort_inference_section_list(
additional_streaming_docs
)
for doc in additional_streaming_docs:
if doc.center_chunk.score:
doc.center_chunk.score += -2.0
else:
doc.center_chunk.score = -2.0
sorted_streaming_documents = relevant_streaming_docs + additional_streaming_docs
return AnswerGenerationDocuments(
streaming_documents=sorted_streaming_documents[:max_docs],
context_documents=relevant_streaming_docs[:max_docs],
)
def dedup_sort_inference_section_list(
sections: list[InferenceSection],
) -> list[InferenceSection]:
"""Deduplicates InferenceSections by document_id and sorts by score.
Args:
sections: List of InferenceSections to deduplicate and sort
Returns:
Deduplicated list of InferenceSections sorted by score in descending order
"""
# dedupe/merge with existing framework
sections = dedup_inference_section_list(sections)
# Use dict to deduplicate by document_id, keeping highest scored version
unique_sections: dict[str, InferenceSection] = {}
for section in sections:
doc_id = section.center_chunk.document_id
if doc_id not in unique_sections:
unique_sections[doc_id] = section
continue
# Keep version with higher score
existing_score = unique_sections[doc_id].center_chunk.score or 0
new_score = section.center_chunk.score or 0
if new_score > existing_score:
unique_sections[doc_id] = section
# Sort by score in descending order, handling None scores
sorted_sections = sorted(
unique_sections.values(), key=lambda x: x.center_chunk.score or 0, reverse=True
)
return sorted_sections

View File

@@ -1,19 +0,0 @@
from enum import Enum
AGENT_LLM_TIMEOUT_MESSAGE = "The agent timed out. Please try again."
AGENT_LLM_ERROR_MESSAGE = "The agent encountered an error. Please try again."
AGENT_LLM_RATELIMIT_MESSAGE = (
"The agent encountered a rate limit error. Please try again."
)
LLM_ANSWER_ERROR_MESSAGE = "The question was not answered due to an LLM error."
AGENT_POSITIVE_VALUE_STR = "yes"
AGENT_NEGATIVE_VALUE_STR = "no"
AGENT_ANSWER_SEPARATOR = "Answer:"
class AgentLLMErrorType(str, Enum):
TIMEOUT = "timeout"
RATE_LIMIT = "rate_limit"
GENERAL_ERROR = "general_error"

View File

@@ -1,5 +1,3 @@
from typing import Any
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search.main.models import (
@@ -58,12 +56,6 @@ class InitialAgentResultStats(BaseModel):
agent_effectiveness: dict[str, float | int | None]
class AgentErrorLog(BaseModel):
error_message: str
error_type: str
error_result: str
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
@@ -118,11 +110,6 @@ class SubQuestionAnswerResults(BaseModel):
sub_question_retrieval_stats: AgentChunkRetrievalStats
class StructuredSubquestionDocuments(BaseModel):
cited_documents: list[InferenceSection]
context_documents: list[InferenceSection]
class CombinedAgentMetrics(BaseModel):
timings: AgentTimings
base_metrics: AgentBaseMetrics | None
@@ -139,17 +126,3 @@ class AgentPromptEnrichmentComponents(BaseModel):
persona_prompts: PersonaPromptExpressions
history: str
date_str: str
class LLMNodeErrorStrings(BaseModel):
timeout: str = "LLM Timeout Error"
rate_limit: str = "LLM Rate Limit Error"
general_error: str = "General LLM Error"
class AnswerGenerationDocuments(BaseModel):
streaming_documents: list[InferenceSection]
context_documents: list[InferenceSection]
BaseMessage_Content = str | list[str | dict[str, Any]]

View File

@@ -12,13 +12,6 @@ def dedup_inference_sections(
return deduped
def dedup_inference_section_list(
list: list[InferenceSection],
) -> list[InferenceSection]:
deduped = _merge_sections(list)
return deduped
def dedup_question_answer_results(
question_answer_results_1: list[SubQuestionAnswerResults],
question_answer_results_2: list[SubQuestionAnswerResults],

View File

@@ -20,18 +20,10 @@ from onyx.agents.agent_search.models import GraphInputs
from onyx.agents.agent_search.models import GraphPersistence
from onyx.agents.agent_search.models import GraphSearchConfig
from onyx.agents.agent_search.models import GraphTooling
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import PersonaPromptExpressions
from onyx.agents.agent_search.shared_graph_utils.models import (
StructuredSubquestionDocuments,
)
from onyx.agents.agent_search.shared_graph_utils.models import SubQuestionAnswerResults
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStyleConfig
from onyx.chat.models import CitationConfig
@@ -42,10 +34,6 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
@@ -58,8 +46,6 @@ from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.llm.interfaces import LLM
from onyx.prompts.agent_search import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
@@ -80,10 +66,8 @@ from onyx.tools.tool_implementations.search.search_tool import (
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
logger = setup_logger()
BaseMessage_Content = str | list[str | dict[str, Any]]
# Post-processing
@@ -396,26 +380,8 @@ def summarize_history(
)
)
try:
history_response = run_with_timeout(
AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION,
llm.invoke,
history_context_prompt,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
history_response = llm.invoke(history_context_prompt)
assert isinstance(history_response.content, str)
return history_response.content
@@ -481,27 +447,3 @@ def remove_document_citations(text: str) -> str:
# \d+ - one or more digits
# \] - literal ] character
return re.sub(r"\[(?:D|Q)?\d+\]", "", text)
def get_deduplicated_structured_subquestion_documents(
sub_question_results: list[SubQuestionAnswerResults],
) -> StructuredSubquestionDocuments:
"""
Extract and deduplicate all cited documents from sub-question results.
Args:
sub_question_results: List of sub-question results containing cited documents
Returns:
Deduplicated list of cited documents
"""
cited_docs = [
doc for result in sub_question_results for doc in result.cited_documents
]
context_docs = [
doc for result in sub_question_results for doc in result.context_documents
]
return StructuredSubquestionDocuments(
cited_documents=dedup_inference_section_list(cited_docs),
context_documents=dedup_inference_section_list(context_docs),
)

View File

@@ -94,7 +94,6 @@ from onyx.db.models import User
from onyx.db.users import get_user_by_email
from onyx.redis.redis_pool import get_async_redis_connection
from onyx.redis.redis_pool import get_redis_client
from onyx.server.utils import BasicAuthenticationError
from onyx.utils.logger import setup_logger
from onyx.utils.telemetry import create_milestone_and_report
from onyx.utils.telemetry import optional_telemetry
@@ -108,6 +107,11 @@ from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
class BasicAuthenticationError(HTTPException):
def __init__(self, detail: str):
super().__init__(status_code=status.HTTP_403_FORBIDDEN, detail=detail)
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True

View File

@@ -36,15 +36,6 @@ beat_task_templates.extend(
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-checkpoint-cleanup",
"task": OnyxCeleryTask.CHECK_FOR_CHECKPOINT_CLEANUP,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.LOW,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-for-connector-deletion",
"task": OnyxCeleryTask.CHECK_FOR_CONNECTOR_DELETION,

View File

@@ -1,10 +1,9 @@
import multiprocessing
import os
import sys
import time
import traceback
from datetime import datetime
from datetime import timezone
from enum import Enum
from http import HTTPStatus
from time import sleep
from typing import Any
@@ -16,7 +15,6 @@ from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from celery.result import AsyncResult
from celery.states import READY_STATES
from pydantic import BaseModel
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
@@ -28,13 +26,7 @@ from onyx.background.celery.tasks.indexing.utils import get_unfenced_index_attem
from onyx.background.celery.tasks.indexing.utils import IndexingCallback
from onyx.background.celery.tasks.indexing.utils import try_creating_indexing_task
from onyx.background.celery.tasks.indexing.utils import validate_indexing_fences
from onyx.background.indexing.checkpointing_utils import cleanup_checkpoint
from onyx.background.indexing.checkpointing_utils import (
get_index_attempts_with_old_checkpoints,
)
from onyx.background.indexing.job_client import SimpleJob
from onyx.background.indexing.job_client import SimpleJobClient
from onyx.background.indexing.job_client import SimpleJobException
from onyx.background.indexing.run_indexing import run_indexing_entrypoint
from onyx.configs.app_configs import MANAGED_VESPA
from onyx.configs.app_configs import VESPA_CLOUD_CERT_PATH
@@ -42,7 +34,6 @@ from onyx.configs.app_configs import VESPA_CLOUD_KEY_PATH
from onyx.configs.constants import CELERY_GENERIC_BEAT_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_INDEXING_LOCK_TIMEOUT
from onyx.configs.constants import CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT
from onyx.configs.constants import OnyxCeleryQueues
from onyx.configs.constants import OnyxCeleryTask
from onyx.configs.constants import OnyxRedisConstants
from onyx.configs.constants import OnyxRedisLocks
@@ -79,123 +70,6 @@ from shared_configs.configs import SENTRY_DSN
logger = setup_logger()
class IndexingWatchdogTerminalStatus(str, Enum):
"""The different statuses the watchdog can finish with.
TODO: create broader success/failure/abort categories
"""
UNDEFINED = "undefined"
SUCCEEDED = "succeeded"
SPAWN_FAILED = "spawn_failed" # connector spawn failed
BLOCKED_BY_DELETION = "blocked_by_deletion"
BLOCKED_BY_STOP_SIGNAL = "blocked_by_stop_signal"
FENCE_NOT_FOUND = "fence_not_found" # fence does not exist
FENCE_READINESS_TIMEOUT = (
"fence_readiness_timeout" # fence exists but wasn't ready within the timeout
)
FENCE_MISMATCH = "fence_mismatch" # task and fence metadata mismatch
TASK_ALREADY_RUNNING = "task_already_running" # task appears to be running already
INDEX_ATTEMPT_MISMATCH = (
"index_attempt_mismatch" # expected index attempt metadata not found in db
)
CONNECTOR_EXCEPTIONED = "connector_exceptioned" # the connector itself exceptioned
WATCHDOG_EXCEPTIONED = "watchdog_exceptioned" # the watchdog exceptioned
# the watchdog received a termination signal
TERMINATED_BY_SIGNAL = "terminated_by_signal"
# the watchdog terminated the task due to no activity
TERMINATED_BY_ACTIVITY_TIMEOUT = "terminated_by_activity_timeout"
OUT_OF_MEMORY = "out_of_memory"
PROCESS_SIGNAL_SIGKILL = "process_signal_sigkill"
@property
def code(self) -> int:
_ENUM_TO_CODE: dict[IndexingWatchdogTerminalStatus, int] = {
IndexingWatchdogTerminalStatus.PROCESS_SIGNAL_SIGKILL: -9,
IndexingWatchdogTerminalStatus.OUT_OF_MEMORY: 137,
IndexingWatchdogTerminalStatus.BLOCKED_BY_DELETION: 248,
IndexingWatchdogTerminalStatus.BLOCKED_BY_STOP_SIGNAL: 249,
IndexingWatchdogTerminalStatus.FENCE_NOT_FOUND: 250,
IndexingWatchdogTerminalStatus.FENCE_READINESS_TIMEOUT: 251,
IndexingWatchdogTerminalStatus.FENCE_MISMATCH: 252,
IndexingWatchdogTerminalStatus.TASK_ALREADY_RUNNING: 253,
IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH: 254,
IndexingWatchdogTerminalStatus.CONNECTOR_EXCEPTIONED: 255,
}
return _ENUM_TO_CODE[self]
@classmethod
def from_code(cls, code: int) -> "IndexingWatchdogTerminalStatus":
_CODE_TO_ENUM: dict[int, IndexingWatchdogTerminalStatus] = {
-9: IndexingWatchdogTerminalStatus.PROCESS_SIGNAL_SIGKILL,
248: IndexingWatchdogTerminalStatus.BLOCKED_BY_DELETION,
249: IndexingWatchdogTerminalStatus.BLOCKED_BY_STOP_SIGNAL,
250: IndexingWatchdogTerminalStatus.FENCE_NOT_FOUND,
251: IndexingWatchdogTerminalStatus.FENCE_READINESS_TIMEOUT,
252: IndexingWatchdogTerminalStatus.FENCE_MISMATCH,
253: IndexingWatchdogTerminalStatus.TASK_ALREADY_RUNNING,
254: IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH,
255: IndexingWatchdogTerminalStatus.CONNECTOR_EXCEPTIONED,
}
if code in _CODE_TO_ENUM:
return _CODE_TO_ENUM[code]
return IndexingWatchdogTerminalStatus.UNDEFINED
class SimpleJobResult:
"""The data we want to have when the watchdog finishes"""
def __init__(self) -> None:
self.status = IndexingWatchdogTerminalStatus.UNDEFINED
self.connector_source = None
self.exit_code = None
self.exception_str = None
status: IndexingWatchdogTerminalStatus
connector_source: str | None
exit_code: int | None
exception_str: str | None
class ConnectorIndexingContext(BaseModel):
tenant_id: str | None
cc_pair_id: int
search_settings_id: int
index_attempt_id: int
class ConnectorIndexingLogBuilder:
def __init__(self, ctx: ConnectorIndexingContext):
self.ctx = ctx
def build(self, msg: str, **kwargs: Any) -> str:
msg_final = (
f"{msg}: "
f"tenant_id={self.ctx.tenant_id} "
f"attempt={self.ctx.index_attempt_id} "
f"cc_pair={self.ctx.cc_pair_id} "
f"search_settings={self.ctx.search_settings_id}"
)
# Append extra keyword arguments in logfmt style
if kwargs:
extra_logfmt = " ".join(f"{key}={value}" for key, value in kwargs.items())
msg_final = f"{msg_final} {extra_logfmt}"
return msg_final
def monitor_ccpair_indexing_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis, db_session: Session
) -> None:
@@ -622,6 +496,7 @@ def connector_indexing_task(
f"search_settings={search_settings_id}"
)
attempt_found = False
n_final_progress: int | None = None
# 20 is the documented default for httpx max_keepalive_connections
@@ -638,21 +513,19 @@ def connector_indexing_task(
r = get_redis_client(tenant_id=tenant_id)
if redis_connector.delete.fenced:
raise SimpleJobException(
raise RuntimeError(
f"Indexing will not start because connector deletion is in progress: "
f"attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.delete.fence_key}",
code=IndexingWatchdogTerminalStatus.BLOCKED_BY_DELETION.code,
f"fence={redis_connector.delete.fence_key}"
)
if redis_connector.stop.fenced:
raise SimpleJobException(
raise RuntimeError(
f"Indexing will not start because a connector stop signal was detected: "
f"attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.stop.fence_key}",
code=IndexingWatchdogTerminalStatus.BLOCKED_BY_STOP_SIGNAL.code,
f"fence={redis_connector.stop.fence_key}"
)
# this wait is needed to avoid a race condition where
@@ -661,24 +534,19 @@ def connector_indexing_task(
start = time.monotonic()
while True:
if time.monotonic() - start > CELERY_TASK_WAIT_FOR_FENCE_TIMEOUT:
raise SimpleJobException(
raise ValueError(
f"connector_indexing_task - timed out waiting for fence to be ready: "
f"fence={redis_connector.permissions.fence_key}",
code=IndexingWatchdogTerminalStatus.FENCE_READINESS_TIMEOUT.code,
f"fence={redis_connector.permissions.fence_key}"
)
if not redis_connector_index.fenced: # The fence must exist
raise SimpleJobException(
f"connector_indexing_task - fence not found: fence={redis_connector_index.fence_key}",
code=IndexingWatchdogTerminalStatus.FENCE_NOT_FOUND.code,
raise ValueError(
f"connector_indexing_task - fence not found: fence={redis_connector_index.fence_key}"
)
payload = redis_connector_index.payload # The payload must exist
if not payload:
raise SimpleJobException(
"connector_indexing_task: payload invalid or not found",
code=IndexingWatchdogTerminalStatus.FENCE_NOT_FOUND.code,
)
raise ValueError("connector_indexing_task: payload invalid or not found")
if payload.index_attempt_id is None or payload.celery_task_id is None:
logger.info(
@@ -688,11 +556,10 @@ def connector_indexing_task(
continue
if payload.index_attempt_id != index_attempt_id:
raise SimpleJobException(
raise ValueError(
f"connector_indexing_task - id mismatch. Task may be left over from previous run.: "
f"task_index_attempt={index_attempt_id} "
f"payload_index_attempt={payload.index_attempt_id}",
code=IndexingWatchdogTerminalStatus.FENCE_MISMATCH.code,
f"payload_index_attempt={payload.index_attempt_id}"
)
logger.info(
@@ -716,14 +583,7 @@ def connector_indexing_task(
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
raise SimpleJobException(
f"Indexing task already running, exiting...: "
f"index_attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}",
code=IndexingWatchdogTerminalStatus.TASK_ALREADY_RUNNING.code,
)
return None
payload.started = datetime.now(timezone.utc)
redis_connector_index.set_fence(payload)
@@ -732,10 +592,10 @@ def connector_indexing_task(
with get_session_with_tenant(tenant_id) as db_session:
attempt = get_index_attempt(db_session, index_attempt_id)
if not attempt:
raise SimpleJobException(
f"Index attempt not found: index_attempt={index_attempt_id}",
code=IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH.code,
raise ValueError(
f"Index attempt not found: index_attempt={index_attempt_id}"
)
attempt_found = True
cc_pair = get_connector_credential_pair_from_id(
db_session=db_session,
@@ -743,21 +603,16 @@ def connector_indexing_task(
)
if not cc_pair:
raise SimpleJobException(
f"cc_pair not found: cc_pair={cc_pair_id}",
code=IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH.code,
)
raise ValueError(f"cc_pair not found: cc_pair={cc_pair_id}")
if not cc_pair.connector:
raise SimpleJobException(
f"Connector not found: cc_pair={cc_pair_id} connector={cc_pair.connector_id}",
code=IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH.code,
raise ValueError(
f"Connector not found: cc_pair={cc_pair_id} connector={cc_pair.connector_id}"
)
if not cc_pair.credential:
raise SimpleJobException(
f"Credential not found: cc_pair={cc_pair_id} credential={cc_pair.credential_id}",
code=IndexingWatchdogTerminalStatus.INDEX_ATTEMPT_MISMATCH.code,
raise ValueError(
f"Credential not found: cc_pair={cc_pair_id} credential={cc_pair.credential_id}"
)
# define a callback class
@@ -795,6 +650,20 @@ def connector_indexing_task(
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
if attempt_found:
try:
with get_session_with_tenant(tenant_id) as db_session:
mark_attempt_failed(
index_attempt_id, db_session, failure_reason=str(e)
)
except Exception:
logger.exception(
"Indexing watchdog - transient exception looking up index attempt: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
raise e
finally:
@@ -809,49 +678,41 @@ def connector_indexing_task(
return n_final_progress
def process_job_result(
job: SimpleJob,
connector_source: str | None,
redis_connector_index: RedisConnectorIndex,
log_builder: ConnectorIndexingLogBuilder,
) -> SimpleJobResult:
result = SimpleJobResult()
result.connector_source = connector_source
def connector_indexing_task_wrapper(
index_attempt_id: int,
cc_pair_id: int,
search_settings_id: int,
tenant_id: str | None,
is_ee: bool,
) -> int | None:
"""Just wraps connector_indexing_task so we can log any exceptions before
re-raising it."""
result: int | None = None
if job.process:
result.exit_code = job.process.exitcode
if job.status != "error":
result.status = IndexingWatchdogTerminalStatus.SUCCEEDED
return result
ignore_exitcode = False
# In EKS, there is an edge case where successful tasks return exit
# code 1 in the cloud due to the set_spawn_method not sticking.
# We've since worked around this, but the following is a safe way to
# work around this issue. Basically, we ignore the job error state
# if the completion signal is OK.
status_int = redis_connector_index.get_completion()
if status_int:
status_enum = HTTPStatus(status_int)
if status_enum == HTTPStatus.OK:
ignore_exitcode = True
if ignore_exitcode:
result.status = IndexingWatchdogTerminalStatus.SUCCEEDED
task_logger.warning(
log_builder.build(
"Indexing watchdog - spawned task has non-zero exit code "
"but completion signal is OK. Continuing...",
exit_code=str(result.exit_code),
)
try:
result = connector_indexing_task(
index_attempt_id,
cc_pair_id,
search_settings_id,
tenant_id,
is_ee,
)
except Exception:
logger.exception(
f"connector_indexing_task exceptioned: "
f"tenant={tenant_id} "
f"index_attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
else:
if result.exit_code is not None:
result.status = IndexingWatchdogTerminalStatus.from_code(result.exit_code)
result.exception_str = job.exception()
# There is a cloud related bug outside of our code
# where spawned tasks return with an exit code of 1.
# Unfortunately, exceptions also return with an exit code of 1,
# so just raising an exception isn't informative
# Exiting with 255 makes it possible to distinguish between normal exits
# and exceptions.
sys.exit(255)
return result
@@ -869,32 +730,12 @@ def connector_indexing_proxy_task(
search_settings_id: int,
tenant_id: str | None,
) -> None:
"""celery out of process task execution strategy is pool=prefork, but it uses fork,
and forking is inherently unstable.
To work around this, we use pool=threads and proxy our work to a spawned task.
TODO(rkuo): refactor this so that there is a single return path where we canonically
log the result of running this function.
"""
start = time.monotonic()
result = SimpleJobResult()
ctx = ConnectorIndexingContext(
tenant_id=tenant_id,
cc_pair_id=cc_pair_id,
search_settings_id=search_settings_id,
index_attempt_id=index_attempt_id,
)
log_builder = ConnectorIndexingLogBuilder(ctx)
"""celery tasks are forked, but forking is unstable. This proxies work to a spawned task."""
task_logger.info(
log_builder.build(
"Indexing watchdog - starting",
mp_start_method=str(multiprocessing.get_start_method()),
)
f"Indexing watchdog - starting: attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"mp_start_method={multiprocessing.get_start_method()}"
)
if not self.request.id:
@@ -903,7 +744,7 @@ def connector_indexing_proxy_task(
client = SimpleJobClient()
job = client.submit(
connector_indexing_task,
connector_indexing_task_wrapper,
index_attempt_id,
cc_pair_id,
search_settings_id,
@@ -913,223 +754,139 @@ def connector_indexing_proxy_task(
)
if not job:
result.status = IndexingWatchdogTerminalStatus.SPAWN_FAILED
task_logger.info(
log_builder.build(
"Indexing watchdog - finished",
status=str(result.status.value),
exit_code=str(result.exit_code),
)
f"Indexing watchdog - spawn failed: attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
return
task_logger.info(log_builder.build("Indexing watchdog - spawn succeeded"))
task_logger.info(
f"Indexing watchdog - spawn succeeded: attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
redis_connector = RedisConnector(tenant_id, cc_pair_id)
redis_connector_index = redis_connector.new_index(search_settings_id)
try:
with get_session_with_tenant(tenant_id) as db_session:
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
)
if not index_attempt:
raise RuntimeError("Index attempt not found")
while True:
sleep(5)
result.connector_source = (
index_attempt.connector_credential_pair.connector.source.value
)
# renew watchdog signal (this has a shorter timeout than set_active)
redis_connector_index.set_watchdog(True)
while True:
sleep(5)
# renew active signal
redis_connector_index.set_active()
# renew watchdog signal (this has a shorter timeout than set_active)
redis_connector_index.set_watchdog(True)
# if the job is done, clean up and break
if job.done():
exit_code: int | None
try:
if job.status == "error":
ignore_exitcode = False
# renew active signal
redis_connector_index.set_active()
exit_code = None
if job.process:
exit_code = job.process.exitcode
# if the job is done, clean up and break
if job.done():
try:
result = process_job_result(
job, result.connector_source, redis_connector_index, log_builder
# seeing odd behavior where spawned tasks usually return exit code 1 in the cloud,
# even though logging clearly indicates successful completion
# to work around this, we ignore the job error state if the completion signal is OK
status_int = redis_connector_index.get_completion()
if status_int:
status_enum = HTTPStatus(status_int)
if status_enum == HTTPStatus.OK:
ignore_exitcode = True
if not ignore_exitcode:
raise RuntimeError("Spawned task exceptioned.")
task_logger.warning(
"Indexing watchdog - spawned task has non-zero exit code "
"but completion signal is OK. Continuing...: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"exit_code={exit_code}"
)
except Exception:
task_logger.exception(
log_builder.build(
"Indexing watchdog - spawned task exceptioned"
)
)
finally:
job.release()
break
# if a termination signal is detected, clean up and break
if self.request.id and redis_connector_index.terminating(self.request.id):
task_logger.warning(
log_builder.build("Indexing watchdog - termination signal detected")
except Exception:
task_logger.error(
"Indexing watchdog - spawned task exceptioned: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"exit_code={exit_code} "
f"error={job.exception()}"
)
result.status = IndexingWatchdogTerminalStatus.TERMINATED_BY_SIGNAL
break
raise
finally:
job.release()
break
# if a termination signal is detected, clean up and break
if self.request.id and redis_connector_index.terminating(self.request.id):
task_logger.warning(
"Indexing watchdog - termination signal detected: "
f"attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
# if the spawned task is still running, restart the check once again
# if the index attempt is not in a finished status
try:
with get_session_with_tenant(tenant_id) as db_session:
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
mark_attempt_canceled(
index_attempt_id,
db_session,
"Connector termination signal detected",
)
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
except Exception:
# if the DB exceptioned, just restart the check.
# polling the index attempt status doesn't need to be strongly consistent
task_logger.exception(
log_builder.build(
"Indexing watchdog - transient exception looking up index attempt"
)
# if the DB exceptions, we'll just get an unfriendly failure message
# in the UI instead of the cancellation message
logger.exception(
"Indexing watchdog - transient exception marking index attempt as canceled: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
continue
except Exception:
result.status = IndexingWatchdogTerminalStatus.WATCHDOG_EXCEPTIONED
result.exception_str = traceback.format_exc()
# handle exit and reporting
elapsed = time.monotonic() - start
if result.exception_str is not None:
# print with exception
job.cancel()
break
# if the spawned task is still running, restart the check once again
# if the index attempt is not in a finished status
try:
with get_session_with_tenant(tenant_id) as db_session:
failure_reason = (
f"Spawned task exceptioned: exit_code={result.exit_code}"
)
mark_attempt_failed(
ctx.index_attempt_id,
db_session,
failure_reason=failure_reason,
full_exception_trace=result.exception_str,
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
)
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
except Exception:
task_logger.exception(
log_builder.build(
"Indexing watchdog - transient exception marking index attempt as failed"
)
# if the DB exceptioned, just restart the check.
# polling the index attempt status doesn't need to be strongly consistent
logger.exception(
"Indexing watchdog - transient exception looking up index attempt: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
normalized_exception_str = "None"
if result.exception_str:
normalized_exception_str = result.exception_str.replace(
"\n", "\\n"
).replace('"', '\\"')
task_logger.warning(
log_builder.build(
"Indexing watchdog - finished",
source=result.connector_source,
status=result.status.value,
exit_code=str(result.exit_code),
exception=f'"{normalized_exception_str}"',
elapsed=f"{elapsed:.2f}s",
)
)
redis_connector_index.set_watchdog(False)
raise RuntimeError(f"Exception encountered: traceback={result.exception_str}")
# print without exception
if result.status == IndexingWatchdogTerminalStatus.TERMINATED_BY_SIGNAL:
try:
with get_session_with_tenant(tenant_id) as db_session:
mark_attempt_canceled(
index_attempt_id,
db_session,
"Connector termination signal detected",
)
except Exception:
# if the DB exceptions, we'll just get an unfriendly failure message
# in the UI instead of the cancellation message
task_logger.exception(
log_builder.build(
"Indexing watchdog - transient exception marking index attempt as canceled"
)
)
job.cancel()
task_logger.info(
log_builder.build(
"Indexing watchdog - finished",
source=result.connector_source,
status=str(result.status.value),
exit_code=str(result.exit_code),
elapsed=f"{elapsed:.2f}s",
)
)
continue
redis_connector_index.set_watchdog(False)
return
@shared_task(
name=OnyxCeleryTask.CHECK_FOR_CHECKPOINT_CLEANUP,
soft_time_limit=300,
)
def check_for_checkpoint_cleanup(*, tenant_id: str | None) -> None:
"""Clean up old checkpoints that are older than 7 days."""
locked = False
redis_client = get_redis_client(tenant_id=tenant_id)
lock: RedisLock = redis_client.lock(
OnyxRedisLocks.CHECK_CHECKPOINT_CLEANUP_BEAT_LOCK,
timeout=CELERY_GENERIC_BEAT_LOCK_TIMEOUT,
task_logger.info(
f"Indexing watchdog - finished: attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
# these tasks should never overlap
if not lock.acquire(blocking=False):
return None
try:
locked = True
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
old_attempts = get_index_attempts_with_old_checkpoints(db_session)
for attempt in old_attempts:
task_logger.info(
f"Cleaning up checkpoint for index attempt {attempt.id}"
)
cleanup_checkpoint_task.apply_async(
kwargs={
"index_attempt_id": attempt.id,
"tenant_id": tenant_id,
},
queue=OnyxCeleryQueues.CHECKPOINT_CLEANUP,
)
except Exception:
task_logger.exception("Unexpected exception during checkpoint cleanup")
return None
finally:
if locked:
if lock.owned():
lock.release()
else:
task_logger.error(
"check_for_checkpoint_cleanup - Lock not owned on completion: "
f"tenant={tenant_id}"
)
@shared_task(
name=OnyxCeleryTask.CLEANUP_CHECKPOINT,
bind=True,
)
def cleanup_checkpoint_task(
self: Task, *, index_attempt_id: int, tenant_id: str | None
) -> None:
"""Clean up a checkpoint for a given index attempt"""
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
cleanup_checkpoint(db_session, index_attempt_id)
return

View File

@@ -240,8 +240,7 @@ def validate_indexing_fence(
# it would be odd to get here as there isn't that much that can go wrong during
# initial fence setup, but it's still worth making sure we can recover
logger.info(
f"validate_indexing_fence - "
f"Resetting fence in basic state without any activity: fence={fence_key}"
f"validate_indexing_fence - Resetting fence in basic state without any activity: fence={fence_key}"
)
redis_connector_index.reset()
return

View File

@@ -190,9 +190,9 @@ def _build_connector_start_latency_metric(
desired_start_time = cc_pair.connector.time_created
else:
if not cc_pair.connector.refresh_freq:
task_logger.debug(
"Connector has no refresh_freq and this is a non-initial index attempt. "
"Assuming user manually triggered indexing, so we'll skip start latency metric."
task_logger.error(
"Found non-initial index attempt for connector "
"without refresh_freq. This should never happen."
)
return None

View File

@@ -105,7 +105,6 @@ def document_by_cc_pair_cleanup_task(
tenant_id=tenant_id,
chunk_count=chunk_count,
)
delete_documents_complete__no_commit(
db_session=db_session,
document_ids=[document_id],

View File

@@ -78,10 +78,6 @@ logger = setup_logger()
def check_for_vespa_sync_task(self: Task, *, tenant_id: str | None) -> bool | None:
"""Runs periodically to check if any document needs syncing.
Generates sets of tasks for Celery if syncing is needed."""
# Useful for debugging timing issues with reacquisitions. TODO: remove once more generalized logging is in place
task_logger.info("check_for_vespa_sync_task started")
time_start = time.monotonic()
r = get_redis_client(tenant_id=tenant_id)
@@ -496,21 +492,13 @@ def monitor_document_set_taskset(
task_logger.info(
f"Successfully synced document set: document_set={document_set_id}"
)
try:
update_sync_record_status(
db_session=db_session,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
sync_status=SyncStatus.SUCCESS,
num_docs_synced=initial_count,
)
except Exception:
task_logger.exception(
"update_sync_record_status exceptioned. "
f"document_set_id={document_set_id} "
"Resetting document set regardless."
)
update_sync_record_status(
db_session=db_session,
entity_id=document_set_id,
sync_type=SyncType.DOCUMENT_SET,
sync_status=SyncStatus.SUCCESS,
num_docs_synced=initial_count,
)
rds.reset()

View File

@@ -0,0 +1,80 @@
"""Experimental functionality related to splitting up indexing
into a series of checkpoints to better handle intermittent failures
/ jobs being killed by cloud providers."""
import datetime
from onyx.configs.app_configs import EXPERIMENTAL_CHECKPOINTING_ENABLED
from onyx.configs.constants import DocumentSource
from onyx.connectors.cross_connector_utils.miscellaneous_utils import datetime_to_utc
def _2010_dt() -> datetime.datetime:
return datetime.datetime(year=2010, month=1, day=1, tzinfo=datetime.timezone.utc)
def _2020_dt() -> datetime.datetime:
return datetime.datetime(year=2020, month=1, day=1, tzinfo=datetime.timezone.utc)
def _default_end_time(
last_successful_run: datetime.datetime | None,
) -> datetime.datetime:
"""If year is before 2010, go to the beginning of 2010.
If year is 2010-2020, go in 5 year increments.
If year > 2020, then go in 180 day increments.
For connectors that don't support a `filter_by` and instead rely on `sort_by`
for polling, then this will cause a massive duplication of fetches. For these
connectors, you may want to override this function to return a more reasonable
plan (e.g. extending the 2020+ windows to 6 months, 1 year, or higher)."""
last_successful_run = (
datetime_to_utc(last_successful_run) if last_successful_run else None
)
if last_successful_run is None or last_successful_run < _2010_dt():
return _2010_dt()
if last_successful_run < _2020_dt():
return min(last_successful_run + datetime.timedelta(days=365 * 5), _2020_dt())
return last_successful_run + datetime.timedelta(days=180)
def find_end_time_for_indexing_attempt(
last_successful_run: datetime.datetime | None,
# source_type can be used to override the default for certain connectors, currently unused
source_type: DocumentSource,
) -> datetime.datetime | None:
"""Is the current time unless the connector is run over a large period, in which case it is
split up into large time segments that become smaller as it approaches the present
"""
# NOTE: source_type can be used to override the default for certain connectors
end_of_window = _default_end_time(last_successful_run)
now = datetime.datetime.now(tz=datetime.timezone.utc)
if end_of_window < now:
return end_of_window
# None signals that we should index up to current time
return None
def get_time_windows_for_index_attempt(
last_successful_run: datetime.datetime, source_type: DocumentSource
) -> list[tuple[datetime.datetime, datetime.datetime]]:
if not EXPERIMENTAL_CHECKPOINTING_ENABLED:
return [(last_successful_run, datetime.datetime.now(tz=datetime.timezone.utc))]
time_windows: list[tuple[datetime.datetime, datetime.datetime]] = []
start_of_window: datetime.datetime | None = last_successful_run
while start_of_window:
end_of_window = find_end_time_for_indexing_attempt(
last_successful_run=start_of_window, source_type=source_type
)
time_windows.append(
(
start_of_window,
end_of_window or datetime.datetime.now(tz=datetime.timezone.utc),
)
)
start_of_window = end_of_window
return time_windows

View File

@@ -1,200 +0,0 @@
from datetime import datetime
from datetime import timedelta
from io import BytesIO
from sqlalchemy import and_
from sqlalchemy.orm import Session
from onyx.configs.constants import FileOrigin
from onyx.connectors.models import ConnectorCheckpoint
from onyx.db.engine import get_db_current_time
from onyx.db.index_attempt import get_index_attempt
from onyx.db.index_attempt import get_recent_completed_attempts_for_cc_pair
from onyx.db.models import IndexAttempt
from onyx.db.models import IndexingStatus
from onyx.file_store.file_store import get_default_file_store
from onyx.utils.logger import setup_logger
from onyx.utils.object_size_check import deep_getsizeof
logger = setup_logger()
_NUM_RECENT_ATTEMPTS_TO_CONSIDER = 20
_NUM_DOCS_INDEXED_TO_BE_VALID_CHECKPOINT = 100
def _build_checkpoint_pointer(index_attempt_id: int) -> str:
return f"checkpoint_{index_attempt_id}.json"
def save_checkpoint(
db_session: Session, index_attempt_id: int, checkpoint: ConnectorCheckpoint
) -> str:
"""Save a checkpoint for a given index attempt to the file store"""
checkpoint_pointer = _build_checkpoint_pointer(index_attempt_id)
file_store = get_default_file_store(db_session)
file_store.save_file(
file_name=checkpoint_pointer,
content=BytesIO(checkpoint.model_dump_json().encode()),
display_name=checkpoint_pointer,
file_origin=FileOrigin.INDEXING_CHECKPOINT,
file_type="application/json",
)
index_attempt = get_index_attempt(db_session, index_attempt_id)
if not index_attempt:
raise RuntimeError(f"Index attempt {index_attempt_id} not found in DB.")
index_attempt.checkpoint_pointer = checkpoint_pointer
db_session.add(index_attempt)
db_session.commit()
return checkpoint_pointer
def load_checkpoint(
db_session: Session, index_attempt_id: int
) -> ConnectorCheckpoint | None:
"""Load a checkpoint for a given index attempt from the file store"""
checkpoint_pointer = _build_checkpoint_pointer(index_attempt_id)
file_store = get_default_file_store(db_session)
try:
checkpoint_io = file_store.read_file(checkpoint_pointer, mode="rb")
checkpoint_data = checkpoint_io.read().decode("utf-8")
return ConnectorCheckpoint.model_validate_json(checkpoint_data)
except RuntimeError:
return None
def get_latest_valid_checkpoint(
db_session: Session,
cc_pair_id: int,
search_settings_id: int,
window_start: datetime,
window_end: datetime,
) -> ConnectorCheckpoint:
"""Get the latest valid checkpoint for a given connector credential pair"""
checkpoint_candidates = get_recent_completed_attempts_for_cc_pair(
cc_pair_id=cc_pair_id,
search_settings_id=search_settings_id,
db_session=db_session,
limit=_NUM_RECENT_ATTEMPTS_TO_CONSIDER,
)
checkpoint_candidates = [
candidate
for candidate in checkpoint_candidates
if (
candidate.poll_range_start == window_start
and candidate.poll_range_end == window_end
and candidate.status == IndexingStatus.FAILED
and candidate.checkpoint_pointer is not None
# we want to make sure that the checkpoint is actually useful
# if it's only gone through a few docs, it's probably not worth
# using. This also avoids weird cases where a connector is basically
# non-functional but still "makes progress" by slowly moving the
# checkpoint forward run after run
and candidate.total_docs_indexed
and candidate.total_docs_indexed > _NUM_DOCS_INDEXED_TO_BE_VALID_CHECKPOINT
)
]
# don't keep using checkpoints if we've had a bunch of failed attempts in a row
# for now, capped at 10
if len(checkpoint_candidates) == _NUM_RECENT_ATTEMPTS_TO_CONSIDER:
logger.warning(
f"{_NUM_RECENT_ATTEMPTS_TO_CONSIDER} consecutive failed attempts found "
f"for cc_pair={cc_pair_id}. Ignoring checkpoint to let the run start "
"from scratch."
)
return ConnectorCheckpoint.build_dummy_checkpoint()
# assumes latest checkpoint is the furthest along. This only isn't true
# if something else has gone wrong.
latest_valid_checkpoint_candidate = (
checkpoint_candidates[0] if checkpoint_candidates else None
)
checkpoint = ConnectorCheckpoint.build_dummy_checkpoint()
if latest_valid_checkpoint_candidate:
try:
previous_checkpoint = load_checkpoint(
db_session=db_session,
index_attempt_id=latest_valid_checkpoint_candidate.id,
)
except Exception:
logger.exception(
f"Failed to load checkpoint from previous failed attempt with ID "
f"{latest_valid_checkpoint_candidate.id}."
)
previous_checkpoint = None
if previous_checkpoint is not None:
logger.info(
f"Using checkpoint from previous failed attempt with ID "
f"{latest_valid_checkpoint_candidate.id}. Previous checkpoint: "
f"{previous_checkpoint}"
)
save_checkpoint(
db_session=db_session,
index_attempt_id=latest_valid_checkpoint_candidate.id,
checkpoint=previous_checkpoint,
)
checkpoint = previous_checkpoint
return checkpoint
def get_index_attempts_with_old_checkpoints(
db_session: Session, days_to_keep: int = 7
) -> list[IndexAttempt]:
"""Get all index attempts with checkpoints older than the specified number of days.
Args:
db_session: The database session
days_to_keep: Number of days to keep checkpoints for (default: 7)
Returns:
Number of checkpoints deleted
"""
cutoff_date = get_db_current_time(db_session) - timedelta(days=days_to_keep)
# Find all index attempts with checkpoints older than cutoff_date
old_attempts = (
db_session.query(IndexAttempt)
.filter(
and_(
IndexAttempt.checkpoint_pointer.isnot(None),
IndexAttempt.time_created < cutoff_date,
)
)
.all()
)
return old_attempts
def cleanup_checkpoint(db_session: Session, index_attempt_id: int) -> None:
"""Clean up a checkpoint for a given index attempt"""
index_attempt = get_index_attempt(db_session, index_attempt_id)
if not index_attempt:
raise RuntimeError(f"Index attempt {index_attempt_id} not found in DB.")
if not index_attempt.checkpoint_pointer:
return None
file_store = get_default_file_store(db_session)
file_store.delete_file(index_attempt.checkpoint_pointer)
index_attempt.checkpoint_pointer = None
db_session.add(index_attempt)
db_session.commit()
return None
def check_checkpoint_size(checkpoint: ConnectorCheckpoint) -> None:
"""Check if the checkpoint content size exceeds the limit (200MB)"""
content_size = deep_getsizeof(checkpoint.checkpoint_content)
if content_size > 200_000_000: # 200MB in bytes
raise ValueError(
f"Checkpoint content size ({content_size} bytes) exceeds 200MB limit"
)

View File

@@ -5,8 +5,6 @@ not follow the expected behavior, etc.
NOTE: cannot use Celery directly due to
https://github.com/celery/celery/issues/7007#issuecomment-1740139367"""
import multiprocessing as mp
import sys
import traceback
from collections.abc import Callable
from dataclasses import dataclass
from multiprocessing.context import SpawnProcess
@@ -20,16 +18,6 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
class SimpleJobException(Exception):
"""lets us raise an exception that will return a specific error code"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
code: int | None = kwargs.pop("code", None)
self.code = code
super().__init__(*args, **kwargs)
JobStatusType = (
Literal["error"]
| Literal["finished"]
@@ -40,10 +28,7 @@ JobStatusType = (
def _initializer(
func: Callable,
queue: mp.Queue,
args: list | tuple,
kwargs: dict[str, Any] | None = None,
func: Callable, args: list | tuple, kwargs: dict[str, Any] | None = None
) -> Any:
"""Initialize the child process with a fresh SQLAlchemy Engine.
@@ -67,29 +52,13 @@ def _initializer(
)
# Proceed with executing the target function
try:
return func(*args, **kwargs)
except SimpleJobException as e:
logger.exception("SimpleJob raised a SimpleJobException")
error_msg = traceback.format_exc()
queue.put(error_msg) # Send the exception to the parent process
sys.exit(e.code) # use the given exit code
except Exception:
logger.exception("SimpleJob raised an exception")
error_msg = traceback.format_exc()
queue.put(error_msg) # Send the exception to the parent process
sys.exit(255) # use 255 to indicate a generic exception
return func(*args, **kwargs)
def _run_in_process(
func: Callable,
queue: mp.Queue,
args: list | tuple,
kwargs: dict[str, Any] | None = None,
func: Callable, args: list | tuple, kwargs: dict[str, Any] | None = None
) -> None:
_initializer(func, queue, args, kwargs)
_initializer(func, args, kwargs)
@dataclass
@@ -98,8 +67,6 @@ class SimpleJob:
id: int
process: Optional["SpawnProcess"] = None
queue: Optional[mp.Queue] = None
_exception: Optional[str] = None
def cancel(self) -> bool:
return self.release()
@@ -133,15 +100,9 @@ class SimpleJob:
def exception(self) -> str:
"""Needed to match the Dask API, but not implemented since we don't currently
have a way to get back the exception information from the child process."""
"""Retrieve exception from the multiprocessing queue if available."""
if self._exception is None and self.queue and not self.queue.empty():
self._exception = self.queue.get() # Get exception from queue
if self._exception:
return self._exception
return f"Job with ID '{self.id}' did not report an exception."
return (
f"Job with ID '{self.id}' was killed or encountered an unhandled exception."
)
class SimpleJobClient:
@@ -176,11 +137,8 @@ class SimpleJobClient:
# this approach allows us to always "spawn" a new process regardless of
# get_start_method's current setting
ctx = mp.get_context("spawn")
queue = ctx.Queue()
process = ctx.Process(
target=_run_in_process, args=(func, queue, args), daemon=True
)
job = SimpleJob(id=job_id, process=process, queue=queue)
process = ctx.Process(target=_run_in_process, args=(func, args), daemon=True)
job = SimpleJob(id=job_id, process=process)
process.start()
self.jobs[job_id] = job

View File

@@ -1,87 +0,0 @@
import tracemalloc
from onyx.utils.logger import setup_logger
logger = setup_logger()
DANSWER_TRACEMALLOC_FRAMES = 10
class MemoryTracer:
def __init__(self, interval: int = 0, num_print_entries: int = 5):
self.interval = interval
self.num_print_entries = num_print_entries
self.snapshot_first: tracemalloc.Snapshot | None = None
self.snapshot_prev: tracemalloc.Snapshot | None = None
self.snapshot: tracemalloc.Snapshot | None = None
self.counter = 0
def start(self) -> None:
"""Start the memory tracer if interval is greater than 0."""
if self.interval > 0:
logger.debug(f"Memory tracer starting: interval={self.interval}")
tracemalloc.start(DANSWER_TRACEMALLOC_FRAMES)
self._take_snapshot()
def stop(self) -> None:
"""Stop the memory tracer if it's running."""
if self.interval > 0:
self.log_final_diff()
tracemalloc.stop()
logger.debug("Memory tracer stopped.")
def _take_snapshot(self) -> None:
"""Take a snapshot and update internal snapshot states."""
snapshot = tracemalloc.take_snapshot()
# Filter out irrelevant frames
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, tracemalloc.__file__),
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<frozen importlib._bootstrap_external>"),
)
)
if not self.snapshot_first:
self.snapshot_first = snapshot
if self.snapshot:
self.snapshot_prev = self.snapshot
self.snapshot = snapshot
def _log_diff(
self, current: tracemalloc.Snapshot, previous: tracemalloc.Snapshot
) -> None:
"""Log the memory difference between two snapshots."""
stats = current.compare_to(previous, "traceback")
for s in stats[: self.num_print_entries]:
logger.debug(f"Tracer diff: {s}")
for line in s.traceback.format():
logger.debug(f"* {line}")
def increment_and_maybe_trace(self) -> None:
"""Increment counter and perform trace if interval is hit."""
if self.interval <= 0:
return
self.counter += 1
if self.counter % self.interval == 0:
logger.debug(
f"Running trace comparison for batch {self.counter}. interval={self.interval}"
)
self._take_snapshot()
if self.snapshot and self.snapshot_prev:
self._log_diff(self.snapshot, self.snapshot_prev)
def log_final_diff(self) -> None:
"""Log the final memory diff between start and end of indexing."""
if self.interval <= 0:
return
logger.debug(
f"Running trace comparison between start and end of indexing. {self.counter} batches processed."
)
self._take_snapshot()
if self.snapshot and self.snapshot_first:
self._log_diff(self.snapshot, self.snapshot_first)

View File

@@ -1,40 +0,0 @@
from datetime import datetime
from pydantic import BaseModel
from onyx.db.models import IndexAttemptError
class IndexAttemptErrorPydantic(BaseModel):
id: int
connector_credential_pair_id: int
document_id: str | None
document_link: str | None
entity_id: str | None
failed_time_range_start: datetime | None
failed_time_range_end: datetime | None
failure_message: str
is_resolved: bool = False
time_created: datetime
index_attempt_id: int
@classmethod
def from_model(cls, model: IndexAttemptError) -> "IndexAttemptErrorPydantic":
return cls(
id=model.id,
connector_credential_pair_id=model.connector_credential_pair_id,
document_id=model.document_id,
document_link=model.document_link,
entity_id=model.entity_id,
failed_time_range_start=model.failed_time_range_start,
failed_time_range_end=model.failed_time_range_end,
failure_message=model.failure_message,
is_resolved=model.is_resolved,
time_created=model.time_created,
index_attempt_id=model.index_attempt_id,
)

View File

@@ -1,6 +1,5 @@
import time
import traceback
from collections import defaultdict
from datetime import datetime
from datetime import timedelta
from datetime import timezone
@@ -8,11 +7,8 @@ from datetime import timezone
from pydantic import BaseModel
from sqlalchemy.orm import Session
from onyx.background.indexing.checkpointing_utils import check_checkpoint_size
from onyx.background.indexing.checkpointing_utils import get_latest_valid_checkpoint
from onyx.background.indexing.checkpointing_utils import save_checkpoint
from onyx.background.indexing.memory_tracer import MemoryTracer
from onyx.configs.app_configs import INDEX_BATCH_SIZE
from onyx.background.indexing.checkpointing import get_time_windows_for_index_attempt
from onyx.background.indexing.tracer import OnyxTracer
from onyx.configs.app_configs import INDEXING_SIZE_WARNING_THRESHOLD
from onyx.configs.app_configs import INDEXING_TRACER_INTERVAL
from onyx.configs.app_configs import LEAVE_CONNECTOR_ACTIVE_ON_INITIALIZATION_FAILURE
@@ -21,8 +17,6 @@ from onyx.configs.constants import DocumentSource
from onyx.configs.constants import MilestoneRecordType
from onyx.connectors.connector_runner import ConnectorRunner
from onyx.connectors.factory import instantiate_connector
from onyx.connectors.models import ConnectorCheckpoint
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.connectors.models import IndexAttemptMetadata
from onyx.db.connector_credential_pair import get_connector_credential_pair_from_id
@@ -30,18 +24,15 @@ from onyx.db.connector_credential_pair import get_last_successful_attempt_time
from onyx.db.connector_credential_pair import update_connector_credential_pair
from onyx.db.engine import get_session_with_tenant
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.index_attempt import create_index_attempt_error
from onyx.db.index_attempt import get_index_attempt
from onyx.db.index_attempt import get_index_attempt_errors_for_cc_pair
from onyx.db.index_attempt import get_recent_completed_attempts_for_cc_pair
from onyx.db.index_attempt import mark_attempt_canceled
from onyx.db.index_attempt import mark_attempt_failed
from onyx.db.index_attempt import mark_attempt_partially_succeeded
from onyx.db.index_attempt import mark_attempt_succeeded
from onyx.db.index_attempt import transition_attempt_to_in_progress
from onyx.db.index_attempt import update_docs_indexed
from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import IndexAttempt
from onyx.db.models import IndexAttemptError
from onyx.db.models import IndexingStatus
from onyx.db.models import IndexModelStatus
from onyx.document_index.factory import get_default_document_index
@@ -62,7 +53,6 @@ INDEXING_TRACER_NUM_PRINT_ENTRIES = 5
def _get_connector_runner(
db_session: Session,
attempt: IndexAttempt,
batch_size: int,
start_time: datetime,
end_time: datetime,
tenant_id: str | None,
@@ -110,9 +100,7 @@ def _get_connector_runner(
raise e
return ConnectorRunner(
connector=runnable_connector,
batch_size=batch_size,
time_range=(start_time, end_time),
connector=runnable_connector, time_range=(start_time, end_time)
)
@@ -171,66 +159,6 @@ class RunIndexingContext(BaseModel):
search_settings_status: IndexModelStatus
def _check_connector_and_attempt_status(
db_session_temp: Session, ctx: RunIndexingContext, index_attempt_id: int
) -> None:
"""
Checks the status of the connector credential pair and index attempt.
Raises a RuntimeError if any conditions are not met.
"""
cc_pair_loop = get_connector_credential_pair_from_id(
db_session_temp,
ctx.cc_pair_id,
)
if not cc_pair_loop:
raise RuntimeError(f"CC pair {ctx.cc_pair_id} not found in DB.")
if (
cc_pair_loop.status == ConnectorCredentialPairStatus.PAUSED
and ctx.search_settings_status != IndexModelStatus.FUTURE
) or cc_pair_loop.status == ConnectorCredentialPairStatus.DELETING:
raise RuntimeError("Connector was disabled mid run")
index_attempt_loop = get_index_attempt(db_session_temp, index_attempt_id)
if not index_attempt_loop:
raise RuntimeError(f"Index attempt {index_attempt_id} not found in DB.")
if index_attempt_loop.status != IndexingStatus.IN_PROGRESS:
raise RuntimeError(
f"Index Attempt was canceled, status is {index_attempt_loop.status}"
)
def _check_failure_threshold(
total_failures: int,
document_count: int,
batch_num: int,
last_failure: ConnectorFailure | None,
) -> None:
"""Check if we've hit the failure threshold and raise an appropriate exception if so.
We consider the threshold hit if:
1. We have more than 3 failures AND
2. Failures account for more than 10% of processed documents
"""
failure_ratio = total_failures / (document_count or 1)
FAILURE_THRESHOLD = 3
FAILURE_RATIO_THRESHOLD = 0.1
if total_failures > FAILURE_THRESHOLD and failure_ratio > FAILURE_RATIO_THRESHOLD:
logger.error(
f"Connector run failed with '{total_failures}' errors "
f"after '{batch_num}' batches."
)
if last_failure and last_failure.exception:
raise last_failure.exception from last_failure.exception
raise RuntimeError(
f"Connector run encountered too many errors, aborting. "
f"Last error: {last_failure}"
)
def _run_indexing(
db_session: Session,
index_attempt_id: int,
@@ -241,8 +169,11 @@ def _run_indexing(
1. Get documents which are either new or updated from specified application
2. Embed and index these documents into the chosen datastore (vespa)
3. Updates Postgres to record the indexed documents + the outcome of this run
TODO: do not change index attempt statuses here ... instead, set signals in redis
and allow the monitor function to clean them up
"""
start_time = time.monotonic() # jsut used for logging
start_time = time.time()
with get_session_with_tenant(tenant_id) as db_session_temp:
index_attempt_start = get_index_attempt(db_session_temp, index_attempt_id)
@@ -290,46 +221,6 @@ def _run_indexing(
db_session=db_session_temp,
)
)
if last_successful_index_time > POLL_CONNECTOR_OFFSET:
window_start = datetime.fromtimestamp(
last_successful_index_time, tz=timezone.utc
) - timedelta(minutes=POLL_CONNECTOR_OFFSET)
else:
# don't go into "negative" time if we've never indexed before
window_start = datetime.fromtimestamp(0, tz=timezone.utc)
most_recent_attempt = next(
iter(
get_recent_completed_attempts_for_cc_pair(
cc_pair_id=ctx.cc_pair_id,
search_settings_id=index_attempt_start.search_settings_id,
db_session=db_session_temp,
limit=1,
)
),
None,
)
# if the last attempt failed, try and use the same window. This is necessary
# to ensure correctness with checkpointing. If we don't do this, things like
# new slack channels could be missed (since existing slack channels are
# cached as part of the checkpoint).
if (
most_recent_attempt
and most_recent_attempt.poll_range_end
and (
most_recent_attempt.status == IndexingStatus.FAILED
or most_recent_attempt.status == IndexingStatus.CANCELED
)
):
window_end = most_recent_attempt.poll_range_end
else:
window_end = datetime.now(tz=timezone.utc)
# add start/end now that they have been set
index_attempt_start.poll_range_start = window_start
index_attempt_start.poll_range_end = window_end
db_session_temp.add(index_attempt_start)
db_session_temp.commit()
embedding_model = DefaultIndexingEmbedder.from_db_search_settings(
search_settings=index_attempt_start.search_settings,
@@ -343,6 +234,7 @@ def _run_indexing(
)
indexing_pipeline = build_indexing_pipeline(
attempt_id=index_attempt_id,
embedder=embedding_model,
document_index=document_index,
ignore_time_skip=(
@@ -354,73 +246,63 @@ def _run_indexing(
callback=callback,
)
# Initialize memory tracer. NOTE: won't actually do anything if
# `INDEXING_TRACER_INTERVAL` is 0.
memory_tracer = MemoryTracer(interval=INDEXING_TRACER_INTERVAL)
memory_tracer.start()
tracer: OnyxTracer
if INDEXING_TRACER_INTERVAL > 0:
logger.debug(f"Memory tracer starting: interval={INDEXING_TRACER_INTERVAL}")
tracer = OnyxTracer()
tracer.start()
tracer.snap()
index_attempt_md = IndexAttemptMetadata(
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
)
total_failures = 0
batch_num = 0
net_doc_change = 0
document_count = 0
chunk_count = 0
try:
with get_session_with_tenant(tenant_id) as db_session_temp:
index_attempt = get_index_attempt(db_session_temp, index_attempt_id)
if not index_attempt:
raise RuntimeError(f"Index attempt {index_attempt_id} not found in DB.")
run_end_dt = None
tracer_counter: int
connector_runner = _get_connector_runner(
db_session=db_session_temp,
attempt=index_attempt,
batch_size=INDEX_BATCH_SIZE,
start_time=window_start,
end_time=window_end,
tenant_id=tenant_id,
for ind, (window_start, window_end) in enumerate(
get_time_windows_for_index_attempt(
last_successful_run=datetime.fromtimestamp(
last_successful_index_time, tz=timezone.utc
),
source_type=db_connector.source,
)
):
cc_pair_loop: ConnectorCredentialPair | None = None
index_attempt_loop: IndexAttempt | None = None
tracer_counter = 0
try:
window_start = max(
window_start - timedelta(minutes=POLL_CONNECTOR_OFFSET),
datetime(1970, 1, 1, tzinfo=timezone.utc),
)
# don't use a checkpoint if we're explicitly indexing from
# the beginning in order to avoid weird interactions between
# checkpointing / failure handling.
if index_attempt.from_beginning:
checkpoint = ConnectorCheckpoint.build_dummy_checkpoint()
else:
checkpoint = get_latest_valid_checkpoint(
with get_session_with_tenant(tenant_id) as db_session_temp:
index_attempt_loop_start = get_index_attempt(
db_session_temp, index_attempt_id
)
if not index_attempt_loop_start:
raise RuntimeError(
f"Index attempt {index_attempt_id} not found in DB."
)
connector_runner = _get_connector_runner(
db_session=db_session_temp,
cc_pair_id=ctx.cc_pair_id,
search_settings_id=index_attempt.search_settings_id,
window_start=window_start,
window_end=window_end,
attempt=index_attempt_loop_start,
start_time=window_start,
end_time=window_end,
tenant_id=tenant_id,
)
unresolved_errors = get_index_attempt_errors_for_cc_pair(
cc_pair_id=ctx.cc_pair_id,
unresolved_only=True,
db_session=db_session_temp,
)
doc_id_to_unresolved_errors: dict[
str, list[IndexAttemptError]
] = defaultdict(list)
for error in unresolved_errors:
if error.document_id:
doc_id_to_unresolved_errors[error.document_id].append(error)
entity_based_unresolved_errors = [
error for error in unresolved_errors if error.entity_id
]
while checkpoint.has_more:
logger.info(
f"Running '{ctx.source}' connector with checkpoint: {checkpoint}"
)
for document_batch, failure, next_checkpoint in connector_runner.run(
checkpoint
):
if INDEXING_TRACER_INTERVAL > 0:
tracer.snap()
for doc_batch in connector_runner.run():
# Check if connector is disabled mid run and stop if so unless it's the secondary
# index being built. We want to populate it even for paused connectors
# Often paused connectors are sources that aren't updated frequently but the
@@ -431,37 +313,41 @@ def _run_indexing(
# TODO: should we move this into the above callback instead?
with get_session_with_tenant(tenant_id) as db_session_temp:
# will exception if the connector/index attempt is marked as paused/failed
_check_connector_and_attempt_status(
db_session_temp, ctx, index_attempt_id
cc_pair_loop = get_connector_credential_pair_from_id(
db_session_temp,
ctx.cc_pair_id,
)
if not cc_pair_loop:
raise RuntimeError(f"CC pair {ctx.cc_pair_id} not found in DB.")
# save record of any failures at the connector level
if failure is not None:
total_failures += 1
with get_session_with_tenant(tenant_id) as db_session_temp:
create_index_attempt_error(
index_attempt_id,
ctx.cc_pair_id,
failure,
db_session_temp,
if (
(
cc_pair_loop.status == ConnectorCredentialPairStatus.PAUSED
and ctx.search_settings_status != IndexModelStatus.FUTURE
)
# if it's deleting, we don't care if this is a secondary index
or cc_pair_loop.status == ConnectorCredentialPairStatus.DELETING
):
# let the `except` block handle this
raise RuntimeError("Connector was disabled mid run")
index_attempt_loop = get_index_attempt(
db_session_temp, index_attempt_id
)
if not index_attempt_loop:
raise RuntimeError(
f"Index attempt {index_attempt_id} not found in DB."
)
_check_failure_threshold(
total_failures, document_count, batch_num, failure
)
# save the new checkpoint (if one is provided)
if next_checkpoint:
checkpoint = next_checkpoint
# below is all document processing logic, so if no batch we can just continue
if document_batch is None:
continue
if index_attempt_loop.status != IndexingStatus.IN_PROGRESS:
# Likely due to user manually disabling it or model swap
raise RuntimeError(
f"Index Attempt was canceled, status is {index_attempt_loop.status}"
)
batch_description = []
doc_batch_cleaned = strip_null_characters(document_batch)
doc_batch_cleaned = strip_null_characters(doc_batch)
for doc in doc_batch_cleaned:
batch_description.append(doc.to_short_descriptor())
@@ -491,51 +377,15 @@ def _run_indexing(
chunk_count += index_pipeline_result.total_chunks
document_count += index_pipeline_result.total_docs
# resolve errors for documents that were successfully indexed
failed_document_ids = [
failure.failed_document.document_id
for failure in index_pipeline_result.failures
if failure.failed_document
]
successful_document_ids = [
document.id
for document in document_batch
if document.id not in failed_document_ids
]
for document_id in successful_document_ids:
with get_session_with_tenant(tenant_id) as db_session_temp:
if document_id in doc_id_to_unresolved_errors:
logger.info(
f"Resolving IndexAttemptError for document '{document_id}'"
)
for error in doc_id_to_unresolved_errors[document_id]:
error.is_resolved = True
db_session_temp.add(error)
db_session_temp.commit()
# add brand new failures
if index_pipeline_result.failures:
total_failures += len(index_pipeline_result.failures)
with get_session_with_tenant(tenant_id) as db_session_temp:
for failure in index_pipeline_result.failures:
create_index_attempt_error(
index_attempt_id,
ctx.cc_pair_id,
failure,
db_session_temp,
)
_check_failure_threshold(
total_failures,
document_count,
batch_num,
index_pipeline_result.failures[-1],
)
# commit transaction so that the `update` below begins
# with a brand new transaction. Postgres uses the start
# of the transactions when computing `NOW()`, so if we have
# a long running transaction, the `time_updated` field will
# be inaccurate
db_session.commit()
# This new value is updated every batch, so UI can refresh per batch update
with get_session_with_tenant(tenant_id) as db_session_temp:
# NOTE: Postgres uses the start of the transactions when computing `NOW()`
# so we need either to commit() or to use a new session
update_docs_indexed(
db_session=db_session_temp,
index_attempt_id=index_attempt_id,
@@ -547,77 +397,126 @@ def _run_indexing(
if callback:
callback.progress("_run_indexing", len(doc_batch_cleaned))
memory_tracer.increment_and_maybe_trace()
tracer_counter += 1
if (
INDEXING_TRACER_INTERVAL > 0
and tracer_counter % INDEXING_TRACER_INTERVAL == 0
):
logger.debug(
f"Running trace comparison for batch {tracer_counter}. interval={INDEXING_TRACER_INTERVAL}"
)
tracer.snap()
tracer.log_previous_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
# `make sure the checkpoints aren't getting too large`at some regular interval
CHECKPOINT_SIZE_CHECK_INTERVAL = 100
if batch_num % CHECKPOINT_SIZE_CHECK_INTERVAL == 0:
check_checkpoint_size(checkpoint)
run_end_dt = window_end
if ctx.is_primary:
with get_session_with_tenant(tenant_id) as db_session_temp:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
run_dt=run_end_dt,
)
except Exception as e:
logger.exception(
f"Connector run exceptioned after elapsed time: {time.time() - start_time} seconds"
)
# save latest checkpoint
with get_session_with_tenant(tenant_id) as db_session_temp:
save_checkpoint(
db_session=db_session_temp,
index_attempt_id=index_attempt_id,
checkpoint=checkpoint,
)
if isinstance(e, ConnectorStopSignal):
with get_session_with_tenant(tenant_id) as db_session_temp:
mark_attempt_canceled(
index_attempt_id,
db_session_temp,
reason=str(e),
)
except Exception as e:
logger.exception(
"Connector run exceptioned after elapsed time: "
f"{time.monotonic() - start_time} seconds"
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
else:
# Only mark the attempt as a complete failure if this is the first indexing window.
# Otherwise, some progress was made - the next run will not start from the beginning.
# In this case, it is not accurate to mark it as a failure. When the next run begins,
# if that fails immediately, it will be marked as a failure.
#
# NOTE: if the connector is manually disabled, we should mark it as a failure regardless
# to give better clarity in the UI, as the next run will never happen.
if (
ind == 0
or (
cc_pair_loop is not None and not cc_pair_loop.status.is_active()
)
or (
index_attempt_loop is not None
and index_attempt_loop.status != IndexingStatus.IN_PROGRESS
)
):
with get_session_with_tenant(tenant_id) as db_session_temp:
mark_attempt_failed(
index_attempt_id,
db_session_temp,
failure_reason=str(e),
full_exception_trace=traceback.format_exc(),
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
# break => similar to success case. As mentioned above, if the next run fails for the same
# reason it will then be marked as a failure
break
if INDEXING_TRACER_INTERVAL > 0:
logger.debug(
f"Running trace comparison between start and end of indexing. {tracer_counter} batches processed."
)
tracer.snap()
tracer.log_first_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
tracer.stop()
logger.debug("Memory tracer stopped.")
if isinstance(e, ConnectorStopSignal):
with get_session_with_tenant(tenant_id) as db_session_temp:
mark_attempt_canceled(
index_attempt_id,
db_session_temp,
reason=str(e),
if (
index_attempt_md.num_exceptions > 0
and index_attempt_md.num_exceptions >= batch_num
):
with get_session_with_tenant(tenant_id) as db_session_temp:
mark_attempt_failed(
index_attempt_id,
db_session_temp,
failure_reason="All batches exceptioned.",
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
)
raise Exception(
f"Connector failed - All batches exceptioned: batches={batch_num}"
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
elapsed_time = time.time() - start_time
memory_tracer.stop()
raise e
else:
with get_session_with_tenant(tenant_id) as db_session_temp:
mark_attempt_failed(
index_attempt_id,
db_session_temp,
failure_reason=str(e),
full_exception_trace=traceback.format_exc(),
)
if ctx.is_primary:
update_connector_credential_pair(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
net_docs=net_doc_change,
)
memory_tracer.stop()
raise e
memory_tracer.stop()
elapsed_time = time.monotonic() - start_time
with get_session_with_tenant(tenant_id) as db_session_temp:
# resolve entity-based errors
for error in entity_based_unresolved_errors:
logger.info(f"Resolving IndexAttemptError for entity '{error.entity_id}'")
error.is_resolved = True
db_session_temp.add(error)
db_session_temp.commit()
if total_failures == 0:
if index_attempt_md.num_exceptions == 0:
mark_attempt_succeeded(index_attempt_id, db_session_temp)
create_milestone_and_report(
@@ -636,7 +535,7 @@ def _run_indexing(
mark_attempt_partially_succeeded(index_attempt_id, db_session_temp)
logger.info(
f"Connector completed with some errors: "
f"failures={total_failures} "
f"exceptions={index_attempt_md.num_exceptions} "
f"batches={batch_num} "
f"docs={document_count} "
f"chunks={chunk_count} "
@@ -648,7 +547,7 @@ def _run_indexing(
db_session=db_session_temp,
connector_id=ctx.connector_id,
credential_id=ctx.credential_id,
run_dt=window_end,
run_dt=run_end_dt,
)
@@ -659,43 +558,46 @@ def run_indexing_entrypoint(
is_ee: bool = False,
callback: IndexingHeartbeatInterface | None = None,
) -> None:
"""Don't swallow exceptions here ... propagate them up."""
try:
if is_ee:
global_version.set_ee()
if is_ee:
global_version.set_ee()
# set the indexing attempt ID so that all log messages from this process
# will have it added as a prefix
TaskAttemptSingleton.set_cc_and_index_id(
index_attempt_id, connector_credential_pair_id
)
with get_session_with_tenant(tenant_id) as db_session:
# TODO: remove long running session entirely
attempt = transition_attempt_to_in_progress(index_attempt_id, db_session)
tenant_str = ""
if tenant_id is not None:
tenant_str = f" for tenant {tenant_id}"
connector_name = attempt.connector_credential_pair.connector.name
connector_config = (
attempt.connector_credential_pair.connector.connector_specific_config
# set the indexing attempt ID so that all log messages from this process
# will have it added as a prefix
TaskAttemptSingleton.set_cc_and_index_id(
index_attempt_id, connector_credential_pair_id
)
credential_id = attempt.connector_credential_pair.credential_id
with get_session_with_tenant(tenant_id) as db_session:
# TODO: remove long running session entirely
attempt = transition_attempt_to_in_progress(index_attempt_id, db_session)
logger.info(
f"Indexing starting{tenant_str}: "
f"connector='{connector_name}' "
f"config='{connector_config}' "
f"credentials='{credential_id}'"
)
tenant_str = ""
if tenant_id is not None:
tenant_str = f" for tenant {tenant_id}"
with get_session_with_tenant(tenant_id) as db_session:
_run_indexing(db_session, index_attempt_id, tenant_id, callback)
connector_name = attempt.connector_credential_pair.connector.name
connector_config = (
attempt.connector_credential_pair.connector.connector_specific_config
)
credential_id = attempt.connector_credential_pair.credential_id
logger.info(
f"Indexing finished{tenant_str}: "
f"connector='{connector_name}' "
f"config='{connector_config}' "
f"credentials='{credential_id}'"
)
logger.info(
f"Indexing starting{tenant_str}: "
f"connector='{connector_name}' "
f"config='{connector_config}' "
f"credentials='{credential_id}'"
)
with get_session_with_tenant(tenant_id) as db_session:
_run_indexing(db_session, index_attempt_id, tenant_id, callback)
logger.info(
f"Indexing finished{tenant_str}: "
f"connector='{connector_name}' "
f"config='{connector_config}' "
f"credentials='{credential_id}'"
)
except Exception as e:
logger.exception(
f"Indexing job with ID '{index_attempt_id}' for tenant {tenant_id} failed due to {e}"
)

View File

@@ -0,0 +1,77 @@
import tracemalloc
from onyx.utils.logger import setup_logger
logger = setup_logger()
DANSWER_TRACEMALLOC_FRAMES = 10
class OnyxTracer:
def __init__(self) -> None:
self.snapshot_first: tracemalloc.Snapshot | None = None
self.snapshot_prev: tracemalloc.Snapshot | None = None
self.snapshot: tracemalloc.Snapshot | None = None
def start(self) -> None:
tracemalloc.start(DANSWER_TRACEMALLOC_FRAMES)
def stop(self) -> None:
tracemalloc.stop()
def snap(self) -> None:
snapshot = tracemalloc.take_snapshot()
# Filter out irrelevant frames (e.g., from tracemalloc itself or importlib)
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, tracemalloc.__file__), # Exclude tracemalloc
tracemalloc.Filter(
False, "<frozen importlib._bootstrap>"
), # Exclude importlib
tracemalloc.Filter(
False, "<frozen importlib._bootstrap_external>"
), # Exclude external importlib
)
)
if not self.snapshot_first:
self.snapshot_first = snapshot
if self.snapshot:
self.snapshot_prev = self.snapshot
self.snapshot = snapshot
def log_snapshot(self, numEntries: int) -> None:
if not self.snapshot:
return
stats = self.snapshot.statistics("traceback")
for s in stats[:numEntries]:
logger.debug(f"Tracer snap: {s}")
for line in s.traceback:
logger.debug(f"* {line}")
@staticmethod
def log_diff(
snap_current: tracemalloc.Snapshot,
snap_previous: tracemalloc.Snapshot,
numEntries: int,
) -> None:
stats = snap_current.compare_to(snap_previous, "traceback")
for s in stats[:numEntries]:
logger.debug(f"Tracer diff: {s}")
for line in s.traceback.format():
logger.debug(f"* {line}")
def log_previous_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_prev:
return
OnyxTracer.log_diff(self.snapshot, self.snapshot_prev, numEntries)
def log_first_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_first:
return
OnyxTracer.log_diff(self.snapshot, self.snapshot_first, numEntries)

View File

@@ -27,10 +27,8 @@ from onyx.file_store.utils import InMemoryChatFile
from onyx.llm.interfaces import LLM
from onyx.tools.force import ForceUseTool
from onyx.tools.tool import Tool
from onyx.tools.tool_implementations.search.search_tool import QUERY_FIELD
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.gpu_utils import gpu_status_request
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -82,26 +80,6 @@ class Answer:
and not skip_explicit_tool_calling
)
rerank_settings = search_request.rerank_settings
using_cloud_reranking = (
rerank_settings is not None
and rerank_settings.rerank_provider_type is not None
)
allow_agent_reranking = gpu_status_request() or using_cloud_reranking
# TODO: this is a hack to force the query to be used for the search tool
# this should be removed once we fully unify graph inputs (i.e.
# remove SearchQuery entirely)
if (
force_use_tool.force_use
and search_tool
and force_use_tool.args
and force_use_tool.tool_name == search_tool.name
and QUERY_FIELD in force_use_tool.args
):
search_request.query = force_use_tool.args[QUERY_FIELD]
self.graph_inputs = GraphInputs(
search_request=search_request,
prompt_builder=prompt_builder,
@@ -116,6 +94,7 @@ class Answer:
force_use_tool=force_use_tool,
using_tool_calling_llm=using_tool_calling_llm,
)
assert db_session, "db_session must be provided for agentic persistence"
self.graph_persistence = GraphPersistence(
db_session=db_session,
chat_session_id=chat_session_id,
@@ -125,7 +104,6 @@ class Answer:
use_agentic_search=use_agentic_search,
skip_gen_ai_answer_generation=skip_gen_ai_answer_generation,
allow_refinement=True,
allow_agent_reranking=allow_agent_reranking,
)
self.graph_config = GraphConfig(
inputs=self.graph_inputs,

View File

@@ -7,7 +7,7 @@ from typing import cast
from sqlalchemy.orm import Session
from onyx.agents.agent_search.orchestration.nodes.call_tool import ToolCallException
from onyx.agents.agent_search.orchestration.nodes.tool_call import ToolCallException
from onyx.chat.answer import Answer
from onyx.chat.chat_utils import create_chat_chain
from onyx.chat.chat_utils import create_temporary_persona

View File

@@ -8,101 +8,14 @@ AGENT_DEFAULT_RERANKING_HITS = 10
AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS = 8
AGENT_DEFAULT_NUM_DOCS_FOR_INITIAL_DECOMPOSITION = 3
AGENT_DEFAULT_NUM_DOCS_FOR_REFINED_DECOMPOSITION = 5
AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER = 25
AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER = 35
AGENT_DEFAULT_EXPLORATORY_SEARCH_RESULTS = 5
AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS = 3
AGENT_DEFAULT_MAX_ANSWER_CONTEXT_DOCS = 10
AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH = 2000
INITIAL_SEARCH_DECOMPOSITION_ENABLED = True
ALLOW_REFINEMENT = True
AGENT_DEFAULT_RETRIEVAL_HITS = 15
AGENT_DEFAULT_RERANKING_HITS = 10
AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS = 8
AGENT_DEFAULT_NUM_DOCS_FOR_INITIAL_DECOMPOSITION = 3
AGENT_DEFAULT_NUM_DOCS_FOR_REFINED_DECOMPOSITION = 5
AGENT_DEFAULT_EXPLORATORY_SEARCH_RESULTS = 5
AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS = 3
AGENT_DEFAULT_MAX_ANSWER_CONTEXT_DOCS = 10
AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH = 2000
AGENT_ANSWER_GENERATION_BY_FAST_LLM = (
os.environ.get("AGENT_ANSWER_GENERATION_BY_FAST_LLM", "").lower() == "true"
)
AGENT_RETRIEVAL_STATS = (
not os.environ.get("AGENT_RETRIEVAL_STATS") == "False"
) or True # default True
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
# Reranking agent configs
# Reranking stats - no influence on flow outside of stats collection
AGENT_RERANKING_STATS = (
not os.environ.get("AGENT_RERANKING_STATS") == "True"
) or False # default False
AGENT_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_MAX_QUERY_RETRIEVAL_RESULTS") or AGENT_DEFAULT_RETRIEVAL_HITS
) # 15
AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS = int(
os.environ.get("AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS")
or AGENT_DEFAULT_RERANKING_HITS
) # 10
AGENT_NUM_DOCS_FOR_DECOMPOSITION = int(
os.environ.get("AGENT_NUM_DOCS_FOR_DECOMPOSITION")
or AGENT_DEFAULT_NUM_DOCS_FOR_INITIAL_DECOMPOSITION
) # 3
AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION = int(
os.environ.get("AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION")
or AGENT_DEFAULT_NUM_DOCS_FOR_REFINED_DECOMPOSITION
) # 5
AGENT_EXPLORATORY_SEARCH_RESULTS = int(
os.environ.get("AGENT_EXPLORATORY_SEARCH_RESULTS")
or AGENT_DEFAULT_EXPLORATORY_SEARCH_RESULTS
) # 5
AGENT_MIN_ORIG_QUESTION_DOCS = int(
os.environ.get("AGENT_MIN_ORIG_QUESTION_DOCS")
or AGENT_DEFAULT_MIN_ORIG_QUESTION_DOCS
) # 3
AGENT_MAX_ANSWER_CONTEXT_DOCS = int(
os.environ.get("AGENT_MAX_ANSWER_CONTEXT_DOCS")
or AGENT_DEFAULT_SUB_QUESTION_MAX_CONTEXT_HITS
) # 8
AGENT_MAX_STATIC_HISTORY_WORD_LENGTH = int(
os.environ.get("AGENT_MAX_STATIC_HISTORY_WORD_LENGTH")
or AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH
) # 2000
AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER = int(
os.environ.get("AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER")
or AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
) # 25
AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER = int(
os.environ.get("AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER")
or AGENT_DEFAULT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
) # 35
#####
# Agent Configs
#####
AGENT_RETRIEVAL_STATS = (
@@ -164,173 +77,4 @@ AGENT_MAX_STATIC_HISTORY_WORD_LENGTH = int(
or AGENT_DEFAULT_MAX_STATIC_HISTORY_WORD_LENGTH
) # 2000
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION = 10 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION
)
AGENT_DEFAULT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION = 30 # in seconds
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION = int(
os.environ.get("AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION")
or AGENT_DEFAULT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
)
AGENT_DEFAULT_TIMEOUT_LLM_DOCUMENT_VERIFICATION = 4 # in seconds
AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION")
or AGENT_DEFAULT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_GENERAL_GENERATION = 5 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_GENERAL_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_GENERAL_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_GENERAL_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_GENERAL_GENERATION = 30 # in seconds
AGENT_TIMEOUT_LLM_GENERAL_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_GENERAL_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_GENERAL_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_SUBQUESTION_GENERATION = 5 # in seconds
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_SUBQUESTION_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION = 3 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_GENERATION = 30 # in seconds
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION = 5 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION = 25 # in seconds
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION = 5 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION = 30 # in seconds
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
)
AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_CHECK = 8 # in seconds
AGENT_TIMEOUT_LLM_SUBANSWER_CHECK = int(
os.environ.get("AGENT_TIMEOUT_LLM_SUBANSWER_CHECK")
or AGENT_DEFAULT_TIMEOUT_LLM_SUBANSWER_CHECK
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION = 3 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION = 8 # in seconds
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION = 1 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION = 3 # in seconds
AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION
)
AGENT_DEFAULT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION = 5 # in seconds
AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION")
or AGENT_DEFAULT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
)
AGENT_DEFAULT_TIMEOUT_LLM_COMPARE_ANSWERS = 8 # in seconds
AGENT_TIMEOUT_LLM_COMPARE_ANSWERS = int(
os.environ.get("AGENT_TIMEOUT_LLM_COMPARE_ANSWERS")
or AGENT_DEFAULT_TIMEOUT_LLM_COMPARE_ANSWERS
)
AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION = 2 # in seconds
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION = int(
os.environ.get("AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION")
or AGENT_DEFAULT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION
)
AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION = 8 # in seconds
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION = int(
os.environ.get("AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION")
or AGENT_DEFAULT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION
)
GRAPH_VERSION_NAME: str = "a"

View File

@@ -169,11 +169,6 @@ POSTGRES_API_SERVER_POOL_SIZE = int(
POSTGRES_API_SERVER_POOL_OVERFLOW = int(
os.environ.get("POSTGRES_API_SERVER_POOL_OVERFLOW") or 10
)
# defaults to False
# generally should only be used for
POSTGRES_USE_NULL_POOL = os.environ.get("POSTGRES_USE_NULL_POOL", "").lower() == "true"
# defaults to False
POSTGRES_POOL_PRE_PING = os.environ.get("POSTGRES_POOL_PRE_PING", "").lower() == "true"
@@ -626,8 +621,6 @@ POD_NAMESPACE = os.environ.get("POD_NAMESPACE")
DEV_MODE = os.environ.get("DEV_MODE", "").lower() == "true"
MOCK_CONNECTOR_FILE_PATH = os.environ.get("MOCK_CONNECTOR_FILE_PATH")
TEST_ENV = os.environ.get("TEST_ENV", "").lower() == "true"
# Set to true to mock LLM responses for testing purposes

View File

@@ -125,7 +125,6 @@ class DocumentSource(str, Enum):
GMAIL = "gmail"
REQUESTTRACKER = "requesttracker"
GITHUB = "github"
GITBOOK = "gitbook"
GITLAB = "gitlab"
GURU = "guru"
BOOKSTACK = "bookstack"
@@ -165,9 +164,6 @@ class DocumentSource(str, Enum):
EGNYTE = "egnyte"
AIRTABLE = "airtable"
# Special case just for integration tests
MOCK_CONNECTOR = "mock_connector"
DocumentSourceRequiringTenantContext: list[DocumentSource] = [DocumentSource.FILE]
@@ -246,7 +242,6 @@ class FileOrigin(str, Enum):
CHAT_IMAGE_GEN = "chat_image_gen"
CONNECTOR = "connector"
GENERATED_REPORT = "generated_report"
INDEXING_CHECKPOINT = "indexing_checkpoint"
OTHER = "other"
@@ -278,7 +273,6 @@ class OnyxCeleryQueues:
DOC_PERMISSIONS_UPSERT = "doc_permissions_upsert"
CONNECTOR_DELETION = "connector_deletion"
LLM_MODEL_UPDATE = "llm_model_update"
CHECKPOINT_CLEANUP = "checkpoint_cleanup"
# Heavy queue
CONNECTOR_PRUNING = "connector_pruning"
@@ -298,7 +292,6 @@ class OnyxRedisLocks:
CHECK_CONNECTOR_DELETION_BEAT_LOCK = "da_lock:check_connector_deletion_beat"
CHECK_PRUNE_BEAT_LOCK = "da_lock:check_prune_beat"
CHECK_INDEXING_BEAT_LOCK = "da_lock:check_indexing_beat"
CHECK_CHECKPOINT_CLEANUP_BEAT_LOCK = "da_lock:check_checkpoint_cleanup_beat"
CHECK_CONNECTOR_DOC_PERMISSIONS_SYNC_BEAT_LOCK = (
"da_lock:check_connector_doc_permissions_sync_beat"
)
@@ -374,10 +367,6 @@ class OnyxCeleryTask:
CHECK_FOR_EXTERNAL_GROUP_SYNC = "check_for_external_group_sync"
CHECK_FOR_LLM_MODEL_UPDATE = "check_for_llm_model_update"
# Connector checkpoint cleanup
CHECK_FOR_CHECKPOINT_CLEANUP = "check_for_checkpoint_cleanup"
CLEANUP_CHECKPOINT = "cleanup_checkpoint"
MONITOR_BACKGROUND_PROCESSES = "monitor_background_processes"
MONITOR_CELERY_QUEUES = "monitor_celery_queues"

View File

@@ -245,7 +245,7 @@ class AirtableConnector(LoadConnector):
return [(" ".join(combined) if combined else str(field_info), default_link)]
if isinstance(field_info, list):
return [(str(item), default_link) for item in field_info]
return [(item, default_link) for item in field_info]
return [(str(field_info), default_link)]
@@ -268,7 +268,7 @@ class AirtableConnector(LoadConnector):
table_id: str,
view_id: str | None,
record_id: str,
) -> tuple[list[Section], dict[str, str | list[str]]]:
) -> tuple[list[Section], dict[str, Any]]:
"""
Process a single Airtable field and return sections or metadata.
@@ -342,7 +342,7 @@ class AirtableConnector(LoadConnector):
record_id = record["id"]
fields = record["fields"]
sections: list[Section] = []
metadata: dict[str, str | list[str]] = {}
metadata: dict[str, Any] = {}
# Get primary field value if it exists
primary_field_value = (

View File

@@ -1,16 +1,11 @@
import sys
import time
from collections.abc import Generator
from datetime import datetime
from onyx.connectors.interfaces import BaseConnector
from onyx.connectors.interfaces import CheckpointConnector
from onyx.connectors.interfaces import CheckpointOutput
from onyx.connectors.interfaces import GenerateDocumentsOutput
from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.models import ConnectorCheckpoint
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.utils.logger import setup_logger
@@ -20,139 +15,48 @@ logger = setup_logger()
TimeRange = tuple[datetime, datetime]
class CheckpointOutputWrapper:
"""
Wraps a CheckpointOutput generator to give things back in a more digestible format.
The connector format is easier for the connector implementor (e.g. it enforces exactly
one new checkpoint is returned AND that the checkpoint is at the end), thus the different
formats.
"""
def __init__(self) -> None:
self.next_checkpoint: ConnectorCheckpoint | None = None
def __call__(
self,
checkpoint_connector_generator: CheckpointOutput,
) -> Generator[
tuple[Document | None, ConnectorFailure | None, ConnectorCheckpoint | None],
None,
None,
]:
# grabs the final return value and stores it in the `next_checkpoint` variable
def _inner_wrapper(
checkpoint_connector_generator: CheckpointOutput,
) -> CheckpointOutput:
self.next_checkpoint = yield from checkpoint_connector_generator
return self.next_checkpoint # not used
for document_or_failure in _inner_wrapper(checkpoint_connector_generator):
if isinstance(document_or_failure, Document):
yield document_or_failure, None, None
elif isinstance(document_or_failure, ConnectorFailure):
yield None, document_or_failure, None
else:
raise ValueError(
f"Invalid document_or_failure type: {type(document_or_failure)}"
)
if self.next_checkpoint is None:
raise RuntimeError(
"Checkpoint is None. This should never happen - the connector should always return a checkpoint."
)
yield None, None, self.next_checkpoint
class ConnectorRunner:
"""
Handles:
- Batching
- Additional exception logging
- Combining different connector types to a single interface
"""
def __init__(
self,
connector: BaseConnector,
batch_size: int,
time_range: TimeRange | None = None,
fail_loudly: bool = False,
):
self.connector = connector
self.time_range = time_range
self.batch_size = batch_size
self.doc_batch: list[Document] = []
if isinstance(self.connector, PollConnector):
if time_range is None:
raise ValueError("time_range is required for PollConnector")
def run(
self, checkpoint: ConnectorCheckpoint
) -> Generator[
tuple[
list[Document] | None, ConnectorFailure | None, ConnectorCheckpoint | None
],
None,
None,
]:
self.doc_batch_generator = self.connector.poll_source(
time_range[0].timestamp(), time_range[1].timestamp()
)
elif isinstance(self.connector, LoadConnector):
if time_range and fail_loudly:
raise ValueError(
"time_range specified, but passed in connector is not a PollConnector"
)
self.doc_batch_generator = self.connector.load_from_state()
else:
raise ValueError(f"Invalid connector. type: {type(self.connector)}")
def run(self) -> GenerateDocumentsOutput:
"""Adds additional exception logging to the connector."""
try:
if isinstance(self.connector, CheckpointConnector):
if self.time_range is None:
raise ValueError("time_range is required for CheckpointConnector")
start = time.monotonic()
for batch in self.doc_batch_generator:
# to know how long connector is taking
logger.debug(
f"Connector took {time.monotonic() - start} seconds to build a batch."
)
yield batch
start = time.monotonic()
checkpoint_connector_generator = self.connector.load_from_checkpoint(
start=self.time_range[0].timestamp(),
end=self.time_range[1].timestamp(),
checkpoint=checkpoint,
)
next_checkpoint: ConnectorCheckpoint | None = None
# this is guaranteed to always run at least once with next_checkpoint being non-None
for document, failure, next_checkpoint in CheckpointOutputWrapper()(
checkpoint_connector_generator
):
if document is not None:
self.doc_batch.append(document)
if failure is not None:
yield None, failure, None
if len(self.doc_batch) >= self.batch_size:
yield self.doc_batch, None, None
self.doc_batch = []
# yield remaining documents
if len(self.doc_batch) > 0:
yield self.doc_batch, None, None
self.doc_batch = []
yield None, None, next_checkpoint
logger.debug(
f"Connector took {time.monotonic() - start} seconds to get to the next checkpoint."
)
else:
finished_checkpoint = ConnectorCheckpoint.build_dummy_checkpoint()
finished_checkpoint.has_more = False
if isinstance(self.connector, PollConnector):
if self.time_range is None:
raise ValueError("time_range is required for PollConnector")
for document_batch in self.connector.poll_source(
start=self.time_range[0].timestamp(),
end=self.time_range[1].timestamp(),
):
yield document_batch, None, None
yield None, None, finished_checkpoint
elif isinstance(self.connector, LoadConnector):
for document_batch in self.connector.load_from_state():
yield document_batch, None, None
yield None, None, finished_checkpoint
else:
raise ValueError(f"Invalid connector. type: {type(self.connector)}")
except Exception:
exc_type, _, exc_traceback = sys.exc_info()
@@ -172,6 +76,6 @@ class ConnectorRunner:
)
logger.error(
f"Error in connector. type: {exc_type};\n"
f"local_vars below -> \n{local_vars_str[:1024]}"
f"local_vars below -> \n{local_vars_str}"
)
raise

View File

@@ -20,7 +20,6 @@ from onyx.connectors.egnyte.connector import EgnyteConnector
from onyx.connectors.file.connector import LocalFileConnector
from onyx.connectors.fireflies.connector import FirefliesConnector
from onyx.connectors.freshdesk.connector import FreshdeskConnector
from onyx.connectors.gitbook.connector import GitbookConnector
from onyx.connectors.github.connector import GithubConnector
from onyx.connectors.gitlab.connector import GitlabConnector
from onyx.connectors.gmail.connector import GmailConnector
@@ -30,14 +29,12 @@ from onyx.connectors.google_site.connector import GoogleSitesConnector
from onyx.connectors.guru.connector import GuruConnector
from onyx.connectors.hubspot.connector import HubSpotConnector
from onyx.connectors.interfaces import BaseConnector
from onyx.connectors.interfaces import CheckpointConnector
from onyx.connectors.interfaces import EventConnector
from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.linear.connector import LinearConnector
from onyx.connectors.loopio.connector import LoopioConnector
from onyx.connectors.mediawiki.wiki import MediaWikiConnector
from onyx.connectors.mock_connector.connector import MockConnector
from onyx.connectors.models import InputType
from onyx.connectors.notion.connector import NotionConnector
from onyx.connectors.onyx_jira.connector import JiraConnector
@@ -45,7 +42,7 @@ from onyx.connectors.productboard.connector import ProductboardConnector
from onyx.connectors.salesforce.connector import SalesforceConnector
from onyx.connectors.sharepoint.connector import SharepointConnector
from onyx.connectors.slab.connector import SlabConnector
from onyx.connectors.slack.connector import SlackConnector
from onyx.connectors.slack.connector import SlackPollConnector
from onyx.connectors.teams.connector import TeamsConnector
from onyx.connectors.web.connector import WebConnector
from onyx.connectors.wikipedia.connector import WikipediaConnector
@@ -68,13 +65,12 @@ def identify_connector_class(
DocumentSource.WEB: WebConnector,
DocumentSource.FILE: LocalFileConnector,
DocumentSource.SLACK: {
InputType.POLL: SlackConnector,
InputType.SLIM_RETRIEVAL: SlackConnector,
InputType.POLL: SlackPollConnector,
InputType.SLIM_RETRIEVAL: SlackPollConnector,
},
DocumentSource.GITHUB: GithubConnector,
DocumentSource.GMAIL: GmailConnector,
DocumentSource.GITLAB: GitlabConnector,
DocumentSource.GITBOOK: GitbookConnector,
DocumentSource.GOOGLE_DRIVE: GoogleDriveConnector,
DocumentSource.BOOKSTACK: BookstackConnector,
DocumentSource.CONFLUENCE: ConfluenceConnector,
@@ -111,8 +107,6 @@ def identify_connector_class(
DocumentSource.FIREFLIES: FirefliesConnector,
DocumentSource.EGNYTE: EgnyteConnector,
DocumentSource.AIRTABLE: AirtableConnector,
# just for integration tests
DocumentSource.MOCK_CONNECTOR: MockConnector,
}
connector_by_source = connector_map.get(source, {})
@@ -129,23 +123,10 @@ def identify_connector_class(
if any(
[
(
input_type == InputType.LOAD_STATE
and not issubclass(connector, LoadConnector)
),
(
input_type == InputType.POLL
# either poll or checkpoint works for this, in the future
# all connectors should be checkpoint connectors
and (
not issubclass(connector, PollConnector)
and not issubclass(connector, CheckpointConnector)
)
),
(
input_type == InputType.EVENT
and not issubclass(connector, EventConnector)
),
input_type == InputType.LOAD_STATE
and not issubclass(connector, LoadConnector),
input_type == InputType.POLL and not issubclass(connector, PollConnector),
input_type == InputType.EVENT and not issubclass(connector, EventConnector),
]
):
raise ConnectorMissingException(

View File

@@ -1,279 +0,0 @@
from datetime import datetime
from datetime import timezone
from typing import Any
from urllib.parse import urljoin
import requests
from onyx.configs.app_configs import INDEX_BATCH_SIZE
from onyx.configs.constants import DocumentSource
from onyx.connectors.interfaces import GenerateDocumentsOutput
from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import Section
from onyx.utils.logger import setup_logger
logger = setup_logger()
GITBOOK_API_BASE = "https://api.gitbook.com/v1/"
class GitbookApiClient:
def __init__(self, access_token: str) -> None:
self.access_token = access_token
def get(self, endpoint: str, params: dict[str, Any] | None = None) -> Any:
headers = {
"Authorization": f"Bearer {self.access_token}",
"Content-Type": "application/json",
}
url = urljoin(GITBOOK_API_BASE, endpoint.lstrip("/"))
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
return response.json()
def get_page_content(self, space_id: str, page_id: str) -> dict[str, Any]:
return self.get(f"/spaces/{space_id}/content/page/{page_id}")
def _extract_text_from_document(document: dict[str, Any]) -> str:
"""Extract text content from GitBook document structure by parsing the document nodes
into markdown format."""
def parse_leaf(leaf: dict[str, Any]) -> str:
text = leaf.get("text", "")
leaf.get("marks", [])
return text
def parse_text_node(node: dict[str, Any]) -> str:
text = ""
for leaf in node.get("leaves", []):
text += parse_leaf(leaf)
return text
def parse_block_node(node: dict[str, Any]) -> str:
block_type = node.get("type", "")
result = ""
if block_type == "heading-1":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"# {text}\n\n"
elif block_type == "heading-2":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"## {text}\n\n"
elif block_type == "heading-3":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"### {text}\n\n"
elif block_type == "heading-4":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"#### {text}\n\n"
elif block_type == "heading-5":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"##### {text}\n\n"
elif block_type == "heading-6":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"###### {text}\n\n"
elif block_type == "list-unordered":
for list_item in node.get("nodes", []):
paragraph = list_item.get("nodes", [])[0]
text = "".join(parse_text_node(n) for n in paragraph.get("nodes", []))
result += f"* {text}\n"
result += "\n"
elif block_type == "paragraph":
text = "".join(parse_text_node(n) for n in node.get("nodes", []))
result = f"{text}\n\n"
elif block_type == "list-tasks":
for task_item in node.get("nodes", []):
checked = task_item.get("data", {}).get("checked", False)
paragraph = task_item.get("nodes", [])[0]
text = "".join(parse_text_node(n) for n in paragraph.get("nodes", []))
checkbox = "[x]" if checked else "[ ]"
result += f"- {checkbox} {text}\n"
result += "\n"
elif block_type == "code":
for code_line in node.get("nodes", []):
if code_line.get("type") == "code-line":
text = "".join(
parse_text_node(n) for n in code_line.get("nodes", [])
)
result += f"{text}\n"
result += "\n"
elif block_type == "blockquote":
for quote_node in node.get("nodes", []):
if quote_node.get("type") == "paragraph":
text = "".join(
parse_text_node(n) for n in quote_node.get("nodes", [])
)
result += f"> {text}\n"
result += "\n"
elif block_type == "table":
records = node.get("data", {}).get("records", {})
definition = node.get("data", {}).get("definition", {})
view = node.get("data", {}).get("view", {})
columns = view.get("columns", [])
header_cells = []
for col_id in columns:
col_def = definition.get(col_id, {})
header_cells.append(col_def.get("title", ""))
result = "| " + " | ".join(header_cells) + " |\n"
result += "|" + "---|" * len(header_cells) + "\n"
sorted_records = sorted(
records.items(), key=lambda x: x[1].get("orderIndex", "")
)
for record_id, record_data in sorted_records:
values = record_data.get("values", {})
row_cells = []
for col_id in columns:
fragment_id = values.get(col_id, "")
fragment_text = ""
for fragment in node.get("fragments", []):
if fragment.get("fragment") == fragment_id:
for frag_node in fragment.get("nodes", []):
if frag_node.get("type") == "paragraph":
fragment_text = "".join(
parse_text_node(n)
for n in frag_node.get("nodes", [])
)
break
row_cells.append(fragment_text)
result += "| " + " | ".join(row_cells) + " |\n"
result += "\n"
return result
if not document or "document" not in document:
return ""
markdown = ""
nodes = document["document"].get("nodes", [])
for node in nodes:
markdown += parse_block_node(node)
return markdown
def _convert_page_to_document(
client: GitbookApiClient, space_id: str, page: dict[str, Any]
) -> Document:
page_id = page["id"]
page_content = client.get_page_content(space_id, page_id)
return Document(
id=f"gitbook-{space_id}-{page_id}",
sections=[
Section(
link=page.get("urls", {}).get("app", ""),
text=_extract_text_from_document(page_content),
)
],
source=DocumentSource.GITBOOK,
semantic_identifier=page.get("title", ""),
doc_updated_at=datetime.fromisoformat(page["updatedAt"]).replace(
tzinfo=timezone.utc
),
metadata={
"path": page.get("path", ""),
"type": page.get("type", ""),
"kind": page.get("kind", ""),
},
)
class GitbookConnector(LoadConnector, PollConnector):
def __init__(
self,
space_id: str,
batch_size: int = INDEX_BATCH_SIZE,
) -> None:
self.space_id = space_id
self.batch_size = batch_size
self.access_token: str | None = None
self.client: GitbookApiClient | None = None
def load_credentials(self, credentials: dict[str, Any]) -> None:
access_token = credentials.get("gitbook_api_key")
if not access_token:
raise ConnectorMissingCredentialError("GitBook access token")
self.access_token = access_token
self.client = GitbookApiClient(access_token)
def _fetch_all_pages(
self,
start: datetime | None = None,
end: datetime | None = None,
) -> GenerateDocumentsOutput:
if not self.client:
raise ConnectorMissingCredentialError("GitBook")
try:
content = self.client.get(f"/spaces/{self.space_id}/content")
pages = content.get("pages", [])
current_batch: list[Document] = []
for page in pages:
updated_at = datetime.fromisoformat(page["updatedAt"])
if start and updated_at < start:
if current_batch:
yield current_batch
return
if end and updated_at > end:
continue
current_batch.append(
_convert_page_to_document(self.client, self.space_id, page)
)
if len(current_batch) >= self.batch_size:
yield current_batch
current_batch = []
if current_batch:
yield current_batch
except requests.RequestException as e:
logger.error(f"Error fetching GitBook content: {str(e)}")
raise
def load_from_state(self) -> GenerateDocumentsOutput:
return self._fetch_all_pages()
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)
return self._fetch_all_pages(start_datetime, end_datetime)
if __name__ == "__main__":
import os
connector = GitbookConnector(
space_id=os.environ["GITBOOK_SPACE_ID"],
)
connector.load_credentials({"gitbook_api_key": os.environ["GITBOOK_API_KEY"]})
document_batches = connector.load_from_state()
print(next(document_batches))

View File

@@ -302,7 +302,7 @@ class GoogleDriveConnector(LoadConnector, PollConnector, SlimConnector):
if e.status_code == 401:
# fail gracefully, let the other impersonations continue
# one user without access shouldn't block the entire connector
logger.warning(
logger.exception(
f"User '{user_email}' does not have access to the drive APIs."
)
return

View File

@@ -1,13 +1,10 @@
import abc
from collections.abc import Generator
from collections.abc import Iterator
from typing import Any
from pydantic import BaseModel
from onyx.configs.constants import DocumentSource
from onyx.connectors.models import ConnectorCheckpoint
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.connectors.models import SlimDocument
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
@@ -17,7 +14,6 @@ SecondsSinceUnixEpoch = float
GenerateDocumentsOutput = Iterator[list[Document]]
GenerateSlimDocumentOutput = Iterator[list[SlimDocument]]
CheckpointOutput = Generator[Document | ConnectorFailure, None, ConnectorCheckpoint]
class BaseConnector(abc.ABC):
@@ -109,33 +105,3 @@ class EventConnector(BaseConnector):
@abc.abstractmethod
def handle_event(self, event: Any) -> GenerateDocumentsOutput:
raise NotImplementedError
class CheckpointConnector(BaseConnector):
@abc.abstractmethod
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ConnectorCheckpoint,
) -> CheckpointOutput:
"""Yields back documents or failures. Final return is the new checkpoint.
Final return can be access via either:
```
try:
for document_or_failure in connector.load_from_checkpoint(start, end, checkpoint):
print(document_or_failure)
except StopIteration as e:
checkpoint = e.value # Extracting the return value
print(checkpoint)
```
OR
```
checkpoint = yield from connector.load_from_checkpoint(start, end, checkpoint)
```
"""
raise NotImplementedError

View File

@@ -1,86 +0,0 @@
from typing import Any
import httpx
from pydantic import BaseModel
from onyx.connectors.interfaces import CheckpointConnector
from onyx.connectors.interfaces import CheckpointOutput
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.models import ConnectorCheckpoint
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.utils.logger import setup_logger
logger = setup_logger()
class SingleConnectorYield(BaseModel):
documents: list[Document]
checkpoint: ConnectorCheckpoint
failures: list[ConnectorFailure]
unhandled_exception: str | None = None
class MockConnector(CheckpointConnector):
def __init__(
self,
mock_server_host: str,
mock_server_port: int,
) -> None:
self.mock_server_host = mock_server_host
self.mock_server_port = mock_server_port
self.client = httpx.Client(timeout=30.0)
self.connector_yields: list[SingleConnectorYield] | None = None
self.current_yield_index: int = 0
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
response = self.client.get(self._get_mock_server_url("get-documents"))
response.raise_for_status()
data = response.json()
self.connector_yields = [
SingleConnectorYield(**yield_data) for yield_data in data
]
return None
def _get_mock_server_url(self, endpoint: str) -> str:
return f"http://{self.mock_server_host}:{self.mock_server_port}/{endpoint}"
def _save_checkpoint(self, checkpoint: ConnectorCheckpoint) -> None:
response = self.client.post(
self._get_mock_server_url("add-checkpoint"),
json=checkpoint.model_dump(mode="json"),
)
response.raise_for_status()
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ConnectorCheckpoint,
) -> CheckpointOutput:
if self.connector_yields is None:
raise ValueError("No connector yields configured")
# Save the checkpoint to the mock server
self._save_checkpoint(checkpoint)
yield_index = self.current_yield_index
self.current_yield_index += 1
current_yield = self.connector_yields[yield_index]
# If the current yield has an unhandled exception, raise it
# This is used to simulate an unhandled failure in the connector.
if current_yield.unhandled_exception:
raise RuntimeError(current_yield.unhandled_exception)
# yield all documents
for document in current_yield.documents:
yield document
for failure in current_yield.failures:
yield failure
return current_yield.checkpoint

View File

@@ -3,7 +3,6 @@ from enum import Enum
from typing import Any
from pydantic import BaseModel
from pydantic import model_validator
from onyx.configs.constants import DocumentSource
from onyx.configs.constants import INDEX_SEPARATOR
@@ -188,48 +187,36 @@ class SlimDocument(BaseModel):
perm_sync_data: Any | None = None
class IndexAttemptMetadata(BaseModel):
batch_num: int | None = None
connector_id: int
credential_id: int
class ConnectorCheckpoint(BaseModel):
# TODO: maybe move this to something disk-based to handle extremely large checkpoints?
checkpoint_content: dict
has_more: bool
class DocumentErrorSummary(BaseModel):
id: str
semantic_id: str
section_link: str | None
@classmethod
def build_dummy_checkpoint(cls) -> "ConnectorCheckpoint":
return ConnectorCheckpoint(checkpoint_content={}, has_more=True)
def from_document(cls, doc: Document) -> "DocumentErrorSummary":
section_link = doc.sections[0].link if len(doc.sections) > 0 else None
return cls(
id=doc.id, semantic_id=doc.semantic_identifier, section_link=section_link
)
@classmethod
def from_dict(cls, data: dict) -> "DocumentErrorSummary":
return cls(
id=str(data.get("id")),
semantic_id=str(data.get("semantic_id")),
section_link=str(data.get("section_link")),
)
def to_dict(self) -> dict[str, str | None]:
return {
"id": self.id,
"semantic_id": self.semantic_id,
"section_link": self.section_link,
}
class DocumentFailure(BaseModel):
document_id: str
document_link: str | None = None
class EntityFailure(BaseModel):
entity_id: str
missed_time_range: tuple[datetime, datetime] | None = None
class ConnectorFailure(BaseModel):
failed_document: DocumentFailure | None = None
failed_entity: EntityFailure | None = None
failure_message: str
exception: Exception | None = None
model_config = {"arbitrary_types_allowed": True}
@model_validator(mode="before")
def check_failed_fields(cls, values: dict) -> dict:
failed_document = values.get("failed_document")
failed_entity = values.get("failed_entity")
if (failed_document is None and failed_entity is None) or (
failed_document is not None and failed_entity is not None
):
raise ValueError(
"Exactly one of 'failed_document' or 'failed_entity' must be specified."
)
return values
class IndexAttemptMetadata(BaseModel):
batch_num: int | None = None
num_exceptions: int = 0
connector_id: int
credential_id: int

View File

@@ -1,16 +1,10 @@
import contextvars
import copy
import re
from collections.abc import Callable
from collections.abc import Generator
from concurrent.futures import as_completed
from concurrent.futures import Future
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import cast
from typing import TypedDict
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
@@ -18,18 +12,14 @@ from slack_sdk.errors import SlackApiError
from onyx.configs.app_configs import ENABLE_EXPENSIVE_EXPERT_CALLS
from onyx.configs.app_configs import INDEX_BATCH_SIZE
from onyx.configs.constants import DocumentSource
from onyx.connectors.interfaces import CheckpointConnector
from onyx.connectors.interfaces import CheckpointOutput
from onyx.connectors.interfaces import GenerateDocumentsOutput
from onyx.connectors.interfaces import GenerateSlimDocumentOutput
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.interfaces import SlimConnector
from onyx.connectors.models import BasicExpertInfo
from onyx.connectors.models import ConnectorCheckpoint
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import DocumentFailure
from onyx.connectors.models import EntityFailure
from onyx.connectors.models import Section
from onyx.connectors.models import SlimDocument
from onyx.connectors.slack.utils import expert_info_from_slack_id
@@ -43,8 +33,6 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
_SLACK_LIMIT = 900
ChannelType = dict[str, Any]
MessageType = dict[str, Any]
@@ -52,13 +40,6 @@ MessageType = dict[str, Any]
ThreadType = list[MessageType]
class SlackCheckpointContent(TypedDict):
channel_ids: list[str]
channel_completion_map: dict[str, str]
current_channel: ChannelType | None
seen_thread_ts: list[str]
def _collect_paginated_channels(
client: WebClient,
exclude_archived: bool,
@@ -159,10 +140,6 @@ def get_latest_message_time(thread: ThreadType) -> datetime:
return datetime.fromtimestamp(max_ts, tz=timezone.utc)
def _build_doc_id(channel_id: str, thread_ts: str) -> str:
return f"{channel_id}__{thread_ts}"
def thread_to_doc(
channel: ChannelType,
thread: ThreadType,
@@ -205,7 +182,7 @@ def thread_to_doc(
)
return Document(
id=_build_doc_id(channel_id=channel_id, thread_ts=thread[0]["ts"]),
id=f"{channel_id}__{thread[0]['ts']}",
sections=[
Section(
link=get_message_link(event=m, client=client, channel_id=channel_id),
@@ -290,97 +267,64 @@ def filter_channels(
]
def _get_channel_by_id(client: WebClient, channel_id: str) -> ChannelType:
"""Get a channel by its ID.
Args:
client: The Slack WebClient instance
channel_id: The ID of the channel to fetch
Returns:
The channel information
Raises:
SlackApiError: If the channel cannot be fetched
"""
response = make_slack_api_call_w_retries(
client.conversations_info,
channel=channel_id,
)
return cast(ChannelType, response["channel"])
def _get_messages(
channel: ChannelType,
def _get_all_docs(
client: WebClient,
channels: list[str] | None = None,
channel_name_regex_enabled: bool = False,
oldest: str | None = None,
latest: str | None = None,
) -> tuple[list[MessageType], bool]:
"""Slack goes from newest to oldest."""
# have to be in the channel in order to read messages
if not channel["is_member"]:
make_slack_api_call_w_retries(
client.conversations_join,
channel=channel["id"],
is_private=channel["is_private"],
)
logger.info(f"Successfully joined '{channel['name']}'")
response = make_slack_api_call_w_retries(
client.conversations_history,
channel=channel["id"],
oldest=oldest,
latest=latest,
limit=_SLACK_LIMIT,
)
response.validate()
messages = cast(list[MessageType], response.get("messages", []))
cursor = cast(dict[str, Any], response.get("response_metadata", {})).get(
"next_cursor", ""
)
has_more = bool(cursor)
return messages, has_more
def _message_to_doc(
message: MessageType,
client: WebClient,
channel: ChannelType,
slack_cleaner: SlackTextCleaner,
user_cache: dict[str, BasicExpertInfo | None],
seen_thread_ts: set[str],
msg_filter_func: Callable[[MessageType], bool] = default_msg_filter,
) -> Document | None:
filtered_thread: ThreadType | None = None
thread_ts = message.get("thread_ts")
if thread_ts:
# skip threads we've already seen, since we've already processed all
# messages in that thread
if thread_ts in seen_thread_ts:
return None
) -> Generator[Document, None, None]:
"""Get all documents in the workspace, channel by channel"""
slack_cleaner = SlackTextCleaner(client=client)
thread = get_thread(
client=client, channel_id=channel["id"], thread_id=thread_ts
)
filtered_thread = [
message for message in thread if not msg_filter_func(message)
]
elif not msg_filter_func(message):
filtered_thread = [message]
# Cache to prevent refetching via API since users
user_cache: dict[str, BasicExpertInfo | None] = {}
if filtered_thread:
return thread_to_doc(
channel=channel,
thread=filtered_thread,
slack_cleaner=slack_cleaner,
client=client,
user_cache=user_cache,
all_channels = get_channels(client)
filtered_channels = filter_channels(
all_channels, channels, channel_name_regex_enabled
)
for channel in filtered_channels:
channel_docs = 0
channel_message_batches = get_channel_messages(
client=client, channel=channel, oldest=oldest, latest=latest
)
return None
seen_thread_ts: set[str] = set()
for message_batch in channel_message_batches:
for message in message_batch:
filtered_thread: ThreadType | None = None
thread_ts = message.get("thread_ts")
if thread_ts:
# skip threads we've already seen, since we've already processed all
# messages in that thread
if thread_ts in seen_thread_ts:
continue
seen_thread_ts.add(thread_ts)
thread = get_thread(
client=client, channel_id=channel["id"], thread_id=thread_ts
)
filtered_thread = [
message for message in thread if not msg_filter_func(message)
]
elif not msg_filter_func(message):
filtered_thread = [message]
if filtered_thread:
channel_docs += 1
yield thread_to_doc(
channel=channel,
thread=filtered_thread,
slack_cleaner=slack_cleaner,
client=client,
user_cache=user_cache,
)
logger.info(
f"Pulled {channel_docs} documents from slack channel {channel['name']}"
)
def _get_all_doc_ids(
@@ -424,7 +368,7 @@ def _get_all_doc_ids(
for message_ts in message_ts_set:
channel_metadata_list.append(
SlimDocument(
id=_build_doc_id(channel_id=channel_id, thread_ts=message_ts),
id=f"{channel_id}__{message_ts}",
perm_sync_data={"channel_id": channel_id},
)
)
@@ -432,51 +376,7 @@ def _get_all_doc_ids(
yield channel_metadata_list
def _process_message(
message: MessageType,
client: WebClient,
channel: ChannelType,
slack_cleaner: SlackTextCleaner,
user_cache: dict[str, BasicExpertInfo | None],
seen_thread_ts: set[str],
msg_filter_func: Callable[[MessageType], bool] = default_msg_filter,
) -> tuple[Document | None, str | None, ConnectorFailure | None]:
thread_ts = message.get("thread_ts")
try:
# causes random failures for testing checkpointing / continue on failure
# import random
# if random.random() > 0.95:
# raise RuntimeError("Random failure :P")
doc = _message_to_doc(
message=message,
client=client,
channel=channel,
slack_cleaner=slack_cleaner,
user_cache=user_cache,
seen_thread_ts=seen_thread_ts,
msg_filter_func=msg_filter_func,
)
return (doc, thread_ts, None)
except Exception as e:
logger.exception(f"Error processing message {message['ts']}")
return (
None,
thread_ts,
ConnectorFailure(
failed_document=DocumentFailure(
document_id=_build_doc_id(
channel_id=channel["id"], thread_ts=(thread_ts or message["ts"])
),
document_link=get_message_link(message, client, channel["id"]),
),
failure_message=str(e),
exception=e,
),
)
class SlackConnector(SlimConnector, CheckpointConnector):
class SlackPollConnector(PollConnector, SlimConnector):
def __init__(
self,
channels: list[str] | None = None,
@@ -490,14 +390,9 @@ class SlackConnector(SlimConnector, CheckpointConnector):
self.batch_size = batch_size
self.client: WebClient | None = None
# just used for efficiency
self.text_cleaner: SlackTextCleaner | None = None
self.user_cache: dict[str, BasicExpertInfo | None] = {}
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
bot_token = credentials["slack_bot_token"]
self.client = WebClient(token=bot_token)
self.text_cleaner = SlackTextCleaner(client=self.client)
return None
def retrieve_all_slim_documents(
@@ -516,155 +411,30 @@ class SlackConnector(SlimConnector, CheckpointConnector):
callback=callback,
)
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ConnectorCheckpoint,
) -> CheckpointOutput:
"""Rough outline:
Step 1: Get all channels, yield back Checkpoint.
Step 2: Loop through each channel. For each channel:
Step 2.1: Get messages within the time range.
Step 2.2: Process messages in parallel, yield back docs.
Step 2.3: Update checkpoint with new_latest, seen_thread_ts, and current_channel.
Slack returns messages from newest to oldest, so we need to keep track of
the latest message we've seen in each channel.
Step 2.4: If there are no more messages in the channel, switch the current
channel to the next channel.
"""
if self.client is None or self.text_cleaner is None:
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
if self.client is None:
raise ConnectorMissingCredentialError("Slack")
checkpoint_content = cast(
SlackCheckpointContent,
(
copy.deepcopy(checkpoint.checkpoint_content)
or {
"channel_ids": None,
"channel_completion_map": {},
"current_channel": None,
"seen_thread_ts": [],
}
),
)
documents: list[Document] = []
for document in _get_all_docs(
client=self.client,
channels=self.channels,
channel_name_regex_enabled=self.channel_regex_enabled,
# NOTE: need to impute to `None` instead of using 0.0, since Slack will
# throw an error if we use 0.0 on an account without infinite data
# retention
oldest=str(start) if start else None,
latest=str(end),
):
documents.append(document)
if len(documents) >= self.batch_size:
yield documents
documents = []
# if this is the very first time we've called this, need to
# get all relevant channels and save them into the checkpoint
if checkpoint_content["channel_ids"] is None:
raw_channels = get_channels(self.client)
filtered_channels = filter_channels(
raw_channels, self.channels, self.channel_regex_enabled
)
if len(filtered_channels) == 0:
return checkpoint
checkpoint_content["channel_ids"] = [c["id"] for c in filtered_channels]
checkpoint_content["current_channel"] = filtered_channels[0]
checkpoint = ConnectorCheckpoint(
checkpoint_content=checkpoint_content, # type: ignore
has_more=True,
)
return checkpoint
final_channel_ids = checkpoint_content["channel_ids"]
channel = checkpoint_content["current_channel"]
if channel is None:
raise ValueError("current_channel key not found in checkpoint")
channel_id = channel["id"]
if channel_id not in final_channel_ids:
raise ValueError(f"Channel {channel_id} not found in checkpoint")
oldest = str(start) if start else None
latest = checkpoint_content["channel_completion_map"].get(channel_id, str(end))
seen_thread_ts = set(checkpoint_content["seen_thread_ts"])
try:
logger.debug(
f"Getting messages for channel {channel} within range {oldest} - {latest}"
)
message_batch, has_more_in_channel = _get_messages(
channel, self.client, oldest, latest
)
new_latest = message_batch[-1]["ts"] if message_batch else latest
# Process messages in parallel using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=8) as executor:
futures: list[Future] = []
for message in message_batch:
# Capture the current context so that the thread gets the current tenant ID
current_context = contextvars.copy_context()
futures.append(
executor.submit(
current_context.run,
_process_message,
message=message,
client=self.client,
channel=channel,
slack_cleaner=self.text_cleaner,
user_cache=self.user_cache,
seen_thread_ts=seen_thread_ts,
)
)
for future in as_completed(futures):
doc, thread_ts, failures = future.result()
if doc:
# handle race conditions here since this is single
# threaded. Multi-threaded _process_message reads from this
# but since this is single threaded, we won't run into simul
# writes. At worst, we can duplicate a thread, which will be
# deduped later on.
if thread_ts not in seen_thread_ts:
yield doc
if thread_ts:
seen_thread_ts.add(thread_ts)
elif failures:
for failure in failures:
yield failure
checkpoint_content["seen_thread_ts"] = list(seen_thread_ts)
checkpoint_content["channel_completion_map"][channel["id"]] = new_latest
if has_more_in_channel:
checkpoint_content["current_channel"] = channel
else:
new_channel_id = next(
(
channel_id
for channel_id in final_channel_ids
if channel_id
not in checkpoint_content["channel_completion_map"]
),
None,
)
if new_channel_id:
new_channel = _get_channel_by_id(self.client, new_channel_id)
checkpoint_content["current_channel"] = new_channel
else:
checkpoint_content["current_channel"] = None
checkpoint = ConnectorCheckpoint(
checkpoint_content=checkpoint_content, # type: ignore
has_more=checkpoint_content["current_channel"] is not None,
)
return checkpoint
except Exception as e:
logger.exception(f"Error processing channel {channel['name']}")
yield ConnectorFailure(
failed_entity=EntityFailure(
entity_id=channel["id"],
missed_time_range=(
datetime.fromtimestamp(start, tz=timezone.utc),
datetime.fromtimestamp(end, tz=timezone.utc),
),
),
failure_message=str(e),
exception=e,
)
return checkpoint
if documents:
yield documents
if __name__ == "__main__":
@@ -672,7 +442,7 @@ if __name__ == "__main__":
import time
slack_channel = os.environ.get("SLACK_CHANNEL")
connector = SlackConnector(
connector = SlackPollConnector(
channels=[slack_channel] if slack_channel else None,
)
connector.load_credentials({"slack_bot_token": os.environ["SLACK_BOT_TOKEN"]})
@@ -680,17 +450,6 @@ if __name__ == "__main__":
current = time.time()
one_day_ago = current - 24 * 60 * 60 # 1 day
checkpoint = ConnectorCheckpoint.build_dummy_checkpoint()
document_batches = connector.poll_source(one_day_ago, current)
gen = connector.load_from_checkpoint(one_day_ago, current, checkpoint)
try:
for document_or_failure in gen:
if isinstance(document_or_failure, Document):
print(document_or_failure)
elif isinstance(document_or_failure, ConnectorFailure):
print(document_or_failure)
except StopIteration as e:
checkpoint = e.value
print("Next checkpoint:", checkpoint)
print("Next checkpoint:", checkpoint)
print(next(document_batches))

View File

@@ -34,14 +34,9 @@ def get_message_link(
) -> str:
channel_id = channel_id or event["channel"]
message_ts = event["ts"]
message_ts_without_dot = message_ts.replace(".", "")
thread_ts = event.get("thread_ts")
base_url = get_base_url(client.token)
link = f"{base_url.rstrip('/')}/archives/{channel_id}/p{message_ts_without_dot}" + (
f"?thread_ts={thread_ts}" if thread_ts else ""
)
return link
response = client.chat_getPermalink(channel=channel_id, message_ts=message_ts)
permalink = response["permalink"]
return permalink
def _make_slack_api_call_paginated(

View File

@@ -1,14 +1,9 @@
import os
import tempfile
import urllib.parse
from collections.abc import Generator
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
from zulip import Client
@@ -41,39 +36,8 @@ class ZulipConnector(LoadConnector, PollConnector):
) -> None:
self.batch_size = batch_size
self.realm_name = realm_name
# Clean and normalize the URL
realm_url = realm_url.strip().lower()
# Remove any trailing slashes
realm_url = realm_url.rstrip("/")
# Ensure the URL has a scheme
if not realm_url.startswith(("http://", "https://")):
realm_url = f"https://{realm_url}"
try:
parsed = urllib.parse.urlparse(realm_url)
# Extract the base domain without any paths or ports
netloc = parsed.netloc.split(":")[0] # Remove port if present
if not netloc:
raise ValueError(
f"Invalid realm URL format: {realm_url}. "
f"URL must include a valid domain name."
)
# Always use HTTPS for security
self.base_url = f"https://{netloc}"
self.client: Client | None = None
except Exception as e:
raise ValueError(
f"Failed to parse Zulip realm URL: {realm_url}. "
f"Please provide a URL in the format: domain.com or https://domain.com. "
f"Error: {str(e)}"
)
self.realm_url = realm_url if realm_url.endswith("/") else realm_url + "/"
self.client: Client | None = None
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
contents = credentials["zuliprc_content"]
@@ -91,17 +55,12 @@ class ZulipConnector(LoadConnector, PollConnector):
return None
def _message_to_narrow_link(self, m: Message) -> str:
try:
stream_name = m.display_recipient # assume str
stream_operand = encode_zulip_narrow_operand(f"{m.stream_id}-{stream_name}")
topic_operand = encode_zulip_narrow_operand(m.subject)
stream_name = m.display_recipient # assume str
stream_operand = encode_zulip_narrow_operand(f"{m.stream_id}-{stream_name}")
topic_operand = encode_zulip_narrow_operand(m.subject)
narrow_link = f"{self.base_url}#narrow/stream/{stream_operand}/topic/{topic_operand}/near/{m.id}"
return narrow_link
except Exception as e:
logger.error(f"Error generating Zulip message link: {e}")
# Fallback to a basic link that at least includes the base URL
return f"{self.base_url}#narrow/id/{m.id}"
narrow_link = f"{self.realm_url}#narrow/stream/{stream_operand}/topic/{topic_operand}/near/{m.id}"
return narrow_link
def _get_message_batch(self, anchor: str) -> Tuple[bool, List[Message]]:
if self.client is None:
@@ -124,40 +83,6 @@ class ZulipConnector(LoadConnector, PollConnector):
def _message_to_doc(self, message: Message) -> Document:
text = f"{message.sender_full_name}: {message.content}"
try:
# Convert timestamps to UTC datetime objects
post_time = datetime.fromtimestamp(message.timestamp, tz=timezone.utc)
edit_time = (
datetime.fromtimestamp(message.last_edit_timestamp, tz=timezone.utc)
if message.last_edit_timestamp is not None
else None
)
# Use the most recent edit time if available, otherwise use post time
doc_time = edit_time if edit_time is not None else post_time
except (ValueError, TypeError) as e:
logger.warning(f"Failed to parse timestamp for message {message.id}: {e}")
post_time = None
edit_time = None
doc_time = None
metadata: Dict[str, Union[str, List[str]]] = {
"stream_name": str(message.display_recipient),
"topic": str(message.subject),
"sender_name": str(message.sender_full_name),
"sender_email": str(message.sender_email),
"message_timestamp": str(message.timestamp),
"message_id": str(message.id),
"stream_id": str(message.stream_id),
"has_reactions": str(len(message.reactions) > 0),
"content_type": str(message.content_type or "text"),
}
# Always include edit timestamp in metadata when available
if edit_time is not None:
metadata["edit_timestamp"] = str(message.last_edit_timestamp)
return Document(
id=f"{message.stream_id}__{message.id}",
sections=[
@@ -167,9 +92,8 @@ class ZulipConnector(LoadConnector, PollConnector):
)
],
source=DocumentSource.ZULIP,
semantic_identifier=f"{message.display_recipient} > {message.subject}",
metadata=metadata,
doc_updated_at=doc_time, # Use most recent edit time or post time
semantic_identifier=message.display_recipient or message.subject,
metadata={},
)
def _get_docs(

View File

@@ -1,7 +1,6 @@
from typing import Any
from typing import List
from typing import Optional
from typing import Union
from pydantic import BaseModel
from pydantic import Field
@@ -20,7 +19,7 @@ class Message(BaseModel):
sender_realm_str: str
subject: str
topic_links: Optional[List[Any]] = None
last_edit_timestamp: Optional[int] = None
last_edit_timestamp: Optional[int]
edit_history: Any = None
reactions: List[Any]
submessages: List[Any]
@@ -40,5 +39,5 @@ class GetMessagesResponse(BaseModel):
found_oldest: Optional[bool] = None
found_newest: Optional[bool] = None
history_limited: Optional[bool] = None
anchor: Optional[Union[str, int]] = None
anchor: Optional[str] = None
messages: List[Message] = Field(default_factory=list)

View File

@@ -350,17 +350,13 @@ def delete_chat_session(
user_id: UUID | None,
chat_session_id: UUID,
db_session: Session,
include_deleted: bool = False,
hard_delete: bool = HARD_DELETE_CHATS,
) -> None:
chat_session = get_chat_session_by_id(
chat_session_id=chat_session_id,
user_id=user_id,
db_session=db_session,
include_deleted=include_deleted,
chat_session_id=chat_session_id, user_id=user_id, db_session=db_session
)
if chat_session.deleted and not include_deleted:
if chat_session.deleted:
raise ValueError("Cannot delete an already deleted chat session")
if hard_delete:
@@ -384,15 +380,7 @@ def delete_chat_sessions_older_than(days_old: int, db_session: Session) -> None:
).fetchall()
for user_id, session_id in old_sessions:
try:
delete_chat_session(
user_id, session_id, db_session, include_deleted=True, hard_delete=True
)
except Exception:
logger.exception(
"delete_chat_session exceptioned. "
f"user_id={user_id} session_id={session_id}"
)
delete_chat_session(user_id, session_id, db_session, hard_delete=True)
def get_chat_message(
@@ -628,7 +616,7 @@ def create_new_chat_message(
commit: bool = True,
reserved_message_id: int | None = None,
overridden_model: str | None = None,
refined_answer_improvement: bool | None = None,
refined_answer_improvement: bool = True,
) -> ChatMessage:
if reserved_message_id is not None:
# Edit existing message
@@ -905,18 +893,14 @@ def translate_db_sub_questions_to_server_objects(
question=sub_question.sub_question,
answer=sub_question.sub_answer,
sub_queries=sub_queries,
context_docs=get_retrieval_docs_from_search_docs(
verified_docs, sort_by_score=False
),
context_docs=get_retrieval_docs_from_search_docs(verified_docs),
)
)
return sub_questions
def get_retrieval_docs_from_search_docs(
search_docs: list[SearchDoc],
remove_doc_content: bool = False,
sort_by_score: bool = True,
search_docs: list[SearchDoc], remove_doc_content: bool = False
) -> RetrievalDocs:
top_documents = [
translate_db_search_doc_to_server_search_doc(
@@ -924,8 +908,7 @@ def get_retrieval_docs_from_search_docs(
)
for db_doc in search_docs
]
if sort_by_score:
top_documents = sorted(top_documents, key=lambda doc: doc.score, reverse=True) # type: ignore
top_documents = sorted(top_documents, key=lambda doc: doc.score, reverse=True) # type: ignore
return RetrievalDocs(top_documents=top_documents)
@@ -1035,7 +1018,7 @@ def log_agent_sub_question_results(
sub_question = sub_question_answer_result.question
sub_answer = sub_question_answer_result.answer
sub_document_results = _create_citation_format_list(
sub_question_answer_result.context_documents
sub_question_answer_result.verified_reranked_documents
)
sub_question_object = AgentSubQuestion(

View File

@@ -18,7 +18,6 @@ import boto3
from fastapi import HTTPException
from fastapi import Request
from sqlalchemy import event
from sqlalchemy import pool
from sqlalchemy import text
from sqlalchemy.engine import create_engine
from sqlalchemy.engine import Engine
@@ -40,7 +39,6 @@ from onyx.configs.app_configs import POSTGRES_PASSWORD
from onyx.configs.app_configs import POSTGRES_POOL_PRE_PING
from onyx.configs.app_configs import POSTGRES_POOL_RECYCLE
from onyx.configs.app_configs import POSTGRES_PORT
from onyx.configs.app_configs import POSTGRES_USE_NULL_POOL
from onyx.configs.app_configs import POSTGRES_USER
from onyx.configs.constants import POSTGRES_UNKNOWN_APP_NAME
from onyx.configs.constants import SSL_CERT_FILE
@@ -189,38 +187,20 @@ class SqlEngine:
_engine: Engine | None = None
_lock: threading.Lock = threading.Lock()
_app_name: str = POSTGRES_UNKNOWN_APP_NAME
DEFAULT_ENGINE_KWARGS = {
"pool_size": 20,
"max_overflow": 5,
"pool_pre_ping": POSTGRES_POOL_PRE_PING,
"pool_recycle": POSTGRES_POOL_RECYCLE,
}
@classmethod
def _init_engine(cls, **engine_kwargs: Any) -> Engine:
connection_string = build_connection_string(
db_api=SYNC_DB_API, app_name=cls._app_name + "_sync", use_iam=USE_IAM_AUTH
)
# Start with base kwargs that are valid for all pool types
final_engine_kwargs: dict[str, Any] = {}
if POSTGRES_USE_NULL_POOL:
# if null pool is specified, then we need to make sure that
# we remove any passed in kwargs related to pool size that would
# cause the initialization to fail
final_engine_kwargs.update(engine_kwargs)
final_engine_kwargs["poolclass"] = pool.NullPool
if "pool_size" in final_engine_kwargs:
del final_engine_kwargs["pool_size"]
if "max_overflow" in final_engine_kwargs:
del final_engine_kwargs["max_overflow"]
else:
final_engine_kwargs["pool_size"] = 20
final_engine_kwargs["max_overflow"] = 5
final_engine_kwargs["pool_pre_ping"] = POSTGRES_POOL_PRE_PING
final_engine_kwargs["pool_recycle"] = POSTGRES_POOL_RECYCLE
# any passed in kwargs override the defaults
final_engine_kwargs.update(engine_kwargs)
logger.info(f"Creating engine with kwargs: {final_engine_kwargs}")
engine = create_engine(connection_string, **final_engine_kwargs)
merged_kwargs = {**cls.DEFAULT_ENGINE_KWARGS, **engine_kwargs}
engine = create_engine(connection_string, **merged_kwargs)
if USE_IAM_AUTH:
event.listen(engine, "do_connect", provide_iam_token)
@@ -319,21 +299,13 @@ def get_sqlalchemy_async_engine() -> AsyncEngine:
connect_args["ssl"] = ssl_context
engine_kwargs = {
"connect_args": connect_args,
"pool_pre_ping": POSTGRES_POOL_PRE_PING,
"pool_recycle": POSTGRES_POOL_RECYCLE,
}
if POSTGRES_USE_NULL_POOL:
engine_kwargs["poolclass"] = pool.NullPool
else:
engine_kwargs["pool_size"] = POSTGRES_API_SERVER_POOL_SIZE
engine_kwargs["max_overflow"] = POSTGRES_API_SERVER_POOL_OVERFLOW
_ASYNC_ENGINE = create_async_engine(
connection_string,
**engine_kwargs,
connect_args=connect_args,
pool_size=POSTGRES_API_SERVER_POOL_SIZE,
max_overflow=POSTGRES_API_SERVER_POOL_OVERFLOW,
pool_pre_ping=POSTGRES_POOL_PRE_PING,
pool_recycle=POSTGRES_POOL_RECYCLE,
)
if USE_IAM_AUTH:

View File

@@ -11,7 +11,8 @@ from sqlalchemy import select
from sqlalchemy import update
from sqlalchemy.orm import Session
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.connectors.models import DocumentErrorSummary
from onyx.db.models import IndexAttempt
from onyx.db.models import IndexAttemptError
from onyx.db.models import IndexingStatus
@@ -40,27 +41,6 @@ def get_last_attempt_for_cc_pair(
)
def get_recent_completed_attempts_for_cc_pair(
cc_pair_id: int,
search_settings_id: int,
limit: int,
db_session: Session,
) -> list[IndexAttempt]:
return (
db_session.query(IndexAttempt)
.filter(
IndexAttempt.connector_credential_pair_id == cc_pair_id,
IndexAttempt.search_settings_id == search_settings_id,
IndexAttempt.status.notin_(
[IndexingStatus.NOT_STARTED, IndexingStatus.IN_PROGRESS]
),
)
.order_by(IndexAttempt.time_updated.desc())
.limit(limit)
.all()
)
def get_index_attempt(
db_session: Session, index_attempt_id: int
) -> IndexAttempt | None:
@@ -635,32 +615,23 @@ def count_unique_cc_pairs_with_successful_index_attempts(
def create_index_attempt_error(
index_attempt_id: int | None,
connector_credential_pair_id: int,
failure: ConnectorFailure,
batch: int | None,
docs: list[Document],
exception_msg: str,
exception_traceback: str,
db_session: Session,
) -> int:
doc_summaries = []
for doc in docs:
doc_summary = DocumentErrorSummary.from_document(doc)
doc_summaries.append(doc_summary.to_dict())
new_error = IndexAttemptError(
index_attempt_id=index_attempt_id,
connector_credential_pair_id=connector_credential_pair_id,
document_id=(
failure.failed_document.document_id if failure.failed_document else None
),
document_link=(
failure.failed_document.document_link if failure.failed_document else None
),
entity_id=(failure.failed_entity.entity_id if failure.failed_entity else None),
failed_time_range_start=(
failure.failed_entity.missed_time_range[0]
if failure.failed_entity and failure.failed_entity.missed_time_range
else None
),
failed_time_range_end=(
failure.failed_entity.missed_time_range[1]
if failure.failed_entity and failure.failed_entity.missed_time_range
else None
),
failure_message=failure.failure_message,
is_resolved=False,
batch=batch,
doc_summaries=doc_summaries,
error_msg=exception_msg,
traceback=exception_traceback,
)
db_session.add(new_error)
db_session.commit()
@@ -678,42 +649,3 @@ def get_index_attempt_errors(
errors = db_session.scalars(stmt)
return list(errors.all())
def count_index_attempt_errors_for_cc_pair(
cc_pair_id: int,
unresolved_only: bool,
db_session: Session,
) -> int:
stmt = (
select(func.count())
.select_from(IndexAttemptError)
.where(IndexAttemptError.connector_credential_pair_id == cc_pair_id)
)
if unresolved_only:
stmt = stmt.where(IndexAttemptError.is_resolved.is_(False))
result = db_session.scalar(stmt)
return 0 if result is None else result
def get_index_attempt_errors_for_cc_pair(
cc_pair_id: int,
unresolved_only: bool,
db_session: Session,
page: int | None = None,
page_size: int | None = None,
) -> list[IndexAttemptError]:
stmt = select(IndexAttemptError).where(
IndexAttemptError.connector_credential_pair_id == cc_pair_id
)
if unresolved_only:
stmt = stmt.where(IndexAttemptError.is_resolved.is_(False))
# Order by most recent first
stmt = stmt.order_by(desc(IndexAttemptError.time_created))
if page is not None and page_size is not None:
stmt = stmt.offset(page * page_size).limit(page_size)
return list(db_session.scalars(stmt).all())

View File

@@ -827,19 +827,6 @@ class IndexAttempt(Base):
nullable=True,
)
# for polling connectors, the start and end time of the poll window
# will be set when the index attempt starts
poll_range_start: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), nullable=True, default=None
)
poll_range_end: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), nullable=True, default=None
)
# Points to the last checkpoint that was saved for this run. The pointer here
# can be taken to the FileStore to grab the actual checkpoint value
checkpoint_pointer: Mapped[str | None] = mapped_column(String, nullable=True)
time_created: Mapped[datetime.datetime] = mapped_column(
DateTime(timezone=True),
server_default=func.now(),
@@ -883,13 +870,6 @@ class IndexAttempt(Base):
desc("time_updated"),
unique=False,
),
Index(
"ix_index_attempt_cc_pair_settings_poll",
"connector_credential_pair_id",
"search_settings_id",
"status",
desc("time_updated"),
),
)
def __repr__(self) -> str:
@@ -906,33 +886,25 @@ class IndexAttempt(Base):
class IndexAttemptError(Base):
"""
Represents an error that was encountered during an IndexAttempt.
"""
__tablename__ = "index_attempt_errors"
id: Mapped[int] = mapped_column(primary_key=True)
index_attempt_id: Mapped[int] = mapped_column(
ForeignKey("index_attempt.id"),
nullable=False,
)
connector_credential_pair_id: Mapped[int] = mapped_column(
ForeignKey("connector_credential_pair.id"),
nullable=False,
nullable=True,
)
document_id: Mapped[str | None] = mapped_column(String, nullable=True)
document_link: Mapped[str | None] = mapped_column(String, nullable=True)
entity_id: Mapped[str | None] = mapped_column(String, nullable=True)
failed_time_range_start: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), nullable=True
)
failed_time_range_end: Mapped[datetime.datetime | None] = mapped_column(
DateTime(timezone=True), nullable=True
)
failure_message: Mapped[str] = mapped_column(Text)
is_resolved: Mapped[bool] = mapped_column(Boolean, default=False)
# The index of the batch where the error occurred (if looping thru batches)
# Just informational.
batch: Mapped[int | None] = mapped_column(Integer, default=None)
doc_summaries: Mapped[list[Any]] = mapped_column(postgresql.JSONB())
error_msg: Mapped[str | None] = mapped_column(Text, default=None)
traceback: Mapped[str | None] = mapped_column(Text, default=None)
time_created: Mapped[datetime.datetime] = mapped_column(
DateTime(timezone=True),
server_default=func.now(),
@@ -941,6 +913,21 @@ class IndexAttemptError(Base):
# This is the reverse side of the relationship
index_attempt = relationship("IndexAttempt", back_populates="error_rows")
__table_args__ = (
Index(
"index_attempt_id",
"time_created",
),
)
def __repr__(self) -> str:
return (
f"<IndexAttempt(id={self.id!r}, "
f"index_attempt_id={self.index_attempt_id!r}, "
f"error_msg={self.error_msg!r})>"
f"time_created={self.time_created!r}, "
)
class SyncRecord(Base):
"""

View File

@@ -1,10 +1,6 @@
import time
from abc import ABC
from abc import abstractmethod
from collections import defaultdict
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import DocumentFailure
from onyx.db.models import SearchSettings
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.indexing.models import ChunkEmbedding
@@ -221,49 +217,3 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
deployment_name=search_settings.deployment_name,
callback=callback,
)
def embed_chunks_with_failure_handling(
chunks: list[DocAwareChunk],
embedder: IndexingEmbedder,
) -> tuple[list[IndexChunk], list[ConnectorFailure]]:
"""Tries to embed all chunks in one large batch. If that batch fails for any reason,
goes document by document to isolate the failure(s).
"""
# First try to embed all chunks in one batch
try:
return embedder.embed_chunks(chunks=chunks), []
except Exception:
logger.exception("Failed to embed chunk batch. Trying individual docs.")
# wait a couple seconds to let any rate limits or temporary issues resolve
time.sleep(2)
# Try embedding each document's chunks individually
chunks_by_doc: dict[str, list[DocAwareChunk]] = defaultdict(list)
for chunk in chunks:
chunks_by_doc[chunk.source_document.id].append(chunk)
embedded_chunks: list[IndexChunk] = []
failures: list[ConnectorFailure] = []
for doc_id, chunks_for_doc in chunks_by_doc.items():
try:
doc_embedded_chunks = embedder.embed_chunks(chunks=chunks_for_doc)
embedded_chunks.extend(doc_embedded_chunks)
except Exception as e:
logger.exception(f"Failed to embed chunks for document '{doc_id}'")
failures.append(
ConnectorFailure(
failed_document=DocumentFailure(
document_id=doc_id,
document_link=(
chunks_for_doc[0].get_link() if chunks_for_doc else None
),
),
failure_message=str(e),
exception=e,
)
)
return embedded_chunks, failures

View File

@@ -1,21 +1,23 @@
import traceback
from collections.abc import Callable
from functools import partial
from http import HTTPStatus
from typing import Protocol
import httpx
from pydantic import BaseModel
from pydantic import ConfigDict
from sqlalchemy.orm import Session
from onyx.access.access import get_access_for_documents
from onyx.access.models import DocumentAccess
from onyx.configs.app_configs import INDEXING_EXCEPTION_LIMIT
from onyx.configs.app_configs import MAX_DOCUMENT_CHARS
from onyx.configs.constants import DEFAULT_BOOST
from onyx.connectors.cross_connector_utils.miscellaneous_utils import (
get_experts_stores_representations,
)
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import Document
from onyx.connectors.models import DocumentFailure
from onyx.connectors.models import IndexAttemptMetadata
from onyx.db.document import fetch_chunk_counts_for_documents
from onyx.db.document import get_documents_by_ids
@@ -27,6 +29,7 @@ from onyx.db.document import update_docs_updated_at__no_commit
from onyx.db.document import upsert_document_by_connector_credential_pair
from onyx.db.document import upsert_documents
from onyx.db.document_set import fetch_document_sets_for_documents
from onyx.db.index_attempt import create_index_attempt_error
from onyx.db.models import Document as DBDocument
from onyx.db.search_settings import get_current_search_settings
from onyx.db.tag import create_or_add_document_tag
@@ -38,12 +41,10 @@ from onyx.document_index.interfaces import DocumentIndex
from onyx.document_index.interfaces import DocumentMetadata
from onyx.document_index.interfaces import IndexBatchParams
from onyx.indexing.chunker import Chunker
from onyx.indexing.embedder import embed_chunks_with_failure_handling
from onyx.indexing.embedder import IndexingEmbedder
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.indexing.models import DocAwareChunk
from onyx.indexing.models import DocMetadataAwareIndexChunk
from onyx.indexing.vector_db_insertion import write_chunks_to_vector_db_with_backoff
from onyx.utils.logger import setup_logger
from onyx.utils.timing import log_function_time
@@ -66,8 +67,6 @@ class IndexingPipelineResult(BaseModel):
# number of chunks that were inserted into Vespa
total_chunks: int
failures: list[ConnectorFailure]
class IndexingPipelineProtocol(Protocol):
def __call__(
@@ -157,10 +156,14 @@ def index_doc_batch_with_handler(
document_index: DocumentIndex,
document_batch: list[Document],
index_attempt_metadata: IndexAttemptMetadata,
attempt_id: int | None,
db_session: Session,
ignore_time_skip: bool = False,
tenant_id: str | None = None,
) -> IndexingPipelineResult:
index_pipeline_result = IndexingPipelineResult(
new_docs=0, total_docs=len(document_batch), total_chunks=0
)
try:
index_pipeline_result = index_doc_batch(
chunker=chunker,
@@ -173,25 +176,47 @@ def index_doc_batch_with_handler(
tenant_id=tenant_id,
)
except Exception as e:
logger.exception(f"Failed to index document batch: {document_batch}")
index_pipeline_result = IndexingPipelineResult(
new_docs=0,
total_docs=len(document_batch),
total_chunks=0,
failures=[
ConnectorFailure(
failed_document=DocumentFailure(
document_id=document.id,
document_link=(
document.sections[0].link if document.sections else None
),
),
failure_message=str(e),
exception=e,
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == HTTPStatus.INSUFFICIENT_STORAGE:
logger.error(
"NOTE: HTTP Status 507 Insufficient Storage indicates "
"you need to allocate more memory or disk space to the "
"Vespa/index container."
)
for document in document_batch
],
if INDEXING_EXCEPTION_LIMIT == 0:
raise
trace = traceback.format_exc()
create_index_attempt_error(
attempt_id,
batch=index_attempt_metadata.batch_num,
docs=document_batch,
exception_msg=str(e),
exception_traceback=trace,
db_session=db_session,
)
logger.exception(
f"Indexing batch {index_attempt_metadata.batch_num} failed. msg='{e}' trace='{trace}'"
)
index_attempt_metadata.num_exceptions += 1
if index_attempt_metadata.num_exceptions == INDEXING_EXCEPTION_LIMIT:
logger.warning(
f"Maximum number of exceptions for this index attempt "
f"({INDEXING_EXCEPTION_LIMIT}) has been reached. "
f"The next exception will abort the indexing attempt."
)
elif index_attempt_metadata.num_exceptions > INDEXING_EXCEPTION_LIMIT:
logger.warning(
f"Maximum number of exceptions for this index attempt "
f"({INDEXING_EXCEPTION_LIMIT}) has been exceeded."
)
raise RuntimeError(
f"Maximum exception limit of {INDEXING_EXCEPTION_LIMIT} exceeded."
)
else:
pass
return index_pipeline_result
@@ -351,12 +376,8 @@ def index_doc_batch(
document_ids=[doc.id for doc in filtered_documents],
db_session=db_session,
)
db_session.commit()
return IndexingPipelineResult(
new_docs=0,
total_docs=len(filtered_documents),
total_chunks=0,
failures=[],
new_docs=0, total_docs=len(filtered_documents), total_chunks=0
)
doc_descriptors = [
@@ -369,19 +390,10 @@ def index_doc_batch(
logger.debug(f"Starting indexing process for documents: {doc_descriptors}")
logger.debug("Starting chunking")
# NOTE: no special handling for failures here, since the chunker is not
# a common source of failure for the indexing pipeline
chunks: list[DocAwareChunk] = chunker.chunk(ctx.updatable_docs)
logger.debug("Starting embedding")
chunks_with_embeddings, embedding_failures = (
embed_chunks_with_failure_handling(
chunks=chunks,
embedder=embedder,
)
if chunks
else ([], [])
)
chunks_with_embeddings = embedder.embed_chunks(chunks) if chunks else []
updatable_ids = [doc.id for doc in ctx.updatable_docs]
@@ -447,11 +459,7 @@ def index_doc_batch(
# A document will not be spread across different batches, so all the
# documents with chunks in this set, are fully represented by the chunks
# in this set
(
insertion_records,
vector_db_write_failures,
) = write_chunks_to_vector_db_with_backoff(
document_index=document_index,
insertion_records = document_index.index(
chunks=access_aware_chunks,
index_batch_params=IndexBatchParams(
doc_id_to_previous_chunk_cnt=doc_id_to_previous_chunk_cnt,
@@ -511,7 +519,6 @@ def index_doc_batch(
new_docs=len([r for r in insertion_records if r.already_existed is False]),
total_docs=len(filtered_documents),
total_chunks=len(access_aware_chunks),
failures=vector_db_write_failures + embedding_failures,
)
return result
@@ -524,6 +531,7 @@ def build_indexing_pipeline(
db_session: Session,
chunker: Chunker | None = None,
ignore_time_skip: bool = False,
attempt_id: int | None = None,
tenant_id: str | None = None,
callback: IndexingHeartbeatInterface | None = None,
) -> IndexingPipelineProtocol:
@@ -545,6 +553,7 @@ def build_indexing_pipeline(
embedder=embedder,
document_index=document_index,
ignore_time_skip=ignore_time_skip,
attempt_id=attempt_id,
db_session=db_session,
tenant_id=tenant_id,
)

View File

@@ -57,13 +57,6 @@ class DocAwareChunk(BaseChunk):
"""Used when logging the identity of a chunk"""
return f"{self.source_document.to_short_descriptor()} Chunk ID: {self.chunk_id}"
def get_link(self) -> str | None:
return (
self.source_document.sections[0].link
if self.source_document.sections
else None
)
class IndexChunk(DocAwareChunk):
embeddings: ChunkEmbedding

View File

@@ -1,99 +0,0 @@
import time
from collections import defaultdict
from http import HTTPStatus
import httpx
from onyx.connectors.models import ConnectorFailure
from onyx.connectors.models import DocumentFailure
from onyx.document_index.interfaces import DocumentIndex
from onyx.document_index.interfaces import DocumentInsertionRecord
from onyx.document_index.interfaces import IndexBatchParams
from onyx.indexing.models import DocMetadataAwareIndexChunk
from onyx.utils.logger import setup_logger
logger = setup_logger()
def _log_insufficient_storage_error(e: Exception) -> None:
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == HTTPStatus.INSUFFICIENT_STORAGE:
logger.error(
"NOTE: HTTP Status 507 Insufficient Storage indicates "
"you need to allocate more memory or disk space to the "
"Vespa/index container."
)
def write_chunks_to_vector_db_with_backoff(
document_index: DocumentIndex,
chunks: list[DocMetadataAwareIndexChunk],
index_batch_params: IndexBatchParams,
) -> tuple[list[DocumentInsertionRecord], list[ConnectorFailure]]:
"""Tries to insert all chunks in one large batch. If that batch fails for any reason,
goes document by document to isolate the failure(s).
IMPORTANT: must pass in whole documents at a time not individual chunks, since the
vector DB interface assumes that all chunks for a single document are present.
"""
# first try to write the chunks to the vector db
try:
return (
list(
document_index.index(
chunks=chunks,
index_batch_params=index_batch_params,
)
),
[],
)
except Exception as e:
logger.exception(
"Failed to write chunk batch to vector db. Trying individual docs."
)
# give some specific logging on this common failure case.
_log_insufficient_storage_error(e)
# wait a couple seconds just to give the vector db a chance to recover
time.sleep(2)
# try writing each doc one by one
chunks_for_docs: dict[str, list[DocMetadataAwareIndexChunk]] = defaultdict(list)
for chunk in chunks:
chunks_for_docs[chunk.source_document.id].append(chunk)
insertion_records: list[DocumentInsertionRecord] = []
failures: list[ConnectorFailure] = []
for doc_id, chunks_for_doc in chunks_for_docs.items():
try:
insertion_records.extend(
document_index.index(
chunks=chunks_for_doc,
index_batch_params=index_batch_params,
)
)
except Exception as e:
logger.exception(
f"Failed to write document chunks for '{doc_id}' to vector db"
)
# give some specific logging on this common failure case.
_log_insufficient_storage_error(e)
failures.append(
ConnectorFailure(
failed_document=DocumentFailure(
document_id=doc_id,
document_link=(
chunks_for_doc[0].get_link() if chunks_for_doc else None
),
),
failure_message=str(e),
exception=e,
)
)
return insertion_records, failures

View File

@@ -52,18 +52,6 @@ litellm.telemetry = False
_LLM_PROMPT_LONG_TERM_LOG_CATEGORY = "llm_prompt"
class LLMTimeoutError(Exception):
"""
Exception raised when an LLM call times out.
"""
class LLMRateLimitError(Exception):
"""
Exception raised when an LLM call is rate limited.
"""
def _base_msg_to_role(msg: BaseMessage) -> str:
if isinstance(msg, HumanMessage) or isinstance(msg, HumanMessageChunk):
return "user"
@@ -401,7 +389,6 @@ class DefaultMultiLLM(LLM):
tool_choice: ToolChoiceOptions | None,
stream: bool,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> litellm.ModelResponse | litellm.CustomStreamWrapper:
# litellm doesn't accept LangChain BaseMessage objects, so we need to convert them
# to a dict representation
@@ -409,6 +396,10 @@ class DefaultMultiLLM(LLM):
self._record_call(processed_prompt)
try:
print(
"model is",
f"{self.config.model_provider}/{self.config.deployment_name or self.config.model_name}",
)
return litellm.completion(
mock_response=MOCK_LLM_RESPONSE,
# model choice
@@ -428,7 +419,7 @@ class DefaultMultiLLM(LLM):
stream=stream,
# model params
temperature=0,
timeout=timeout_override or self._timeout,
timeout=self._timeout,
# For now, we don't support parallel tool calls
# NOTE: we can't pass this in if tools are not specified
# or else OpenAI throws an error
@@ -447,12 +438,6 @@ class DefaultMultiLLM(LLM):
except Exception as e:
self._record_error(processed_prompt, e)
# for break pointing
if isinstance(e, litellm.Timeout):
raise LLMTimeoutError(e)
elif isinstance(e, litellm.RateLimitError):
raise LLMRateLimitError(e)
raise e
@property
@@ -473,7 +458,6 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
@@ -481,12 +465,7 @@ class DefaultMultiLLM(LLM):
response = cast(
litellm.ModelResponse,
self._completion(
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=False,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
prompt, tools, tool_choice, False, structured_response_format
),
)
choice = response.choices[0]
@@ -504,31 +483,19 @@ class DefaultMultiLLM(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
if LOG_DANSWER_MODEL_INTERACTIONS:
self.log_model_configs()
if DISABLE_LITELLM_STREAMING:
yield self.invoke(
prompt,
tools,
tool_choice,
structured_response_format,
timeout_override,
)
yield self.invoke(prompt, tools, tool_choice, structured_response_format)
return
output = None
response = cast(
litellm.CustomStreamWrapper,
self._completion(
prompt=prompt,
tools=tools,
tool_choice=tool_choice,
stream=True,
structured_response_format=structured_response_format,
timeout_override=timeout_override,
prompt, tools, tool_choice, True, structured_response_format
),
)
try:

View File

@@ -81,7 +81,6 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
return self._execute(prompt)
@@ -91,6 +90,5 @@ class CustomModelServer(LLM):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
yield self._execute(prompt)

View File

@@ -90,13 +90,12 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
return self._invoke_implementation(
prompt, tools, tool_choice, structured_response_format, timeout_override
prompt, tools, tool_choice, structured_response_format
)
@abc.abstractmethod
@@ -106,7 +105,6 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> BaseMessage:
raise NotImplementedError
@@ -116,13 +114,12 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
self._precall(prompt)
# TODO add a postcall to log model outputs independent of concrete class
# implementation
messages = self._stream_implementation(
prompt, tools, tool_choice, structured_response_format, timeout_override
prompt, tools, tool_choice, structured_response_format
)
tokens = []
@@ -141,6 +138,5 @@ class LLM(abc.ABC):
tools: list[dict] | None = None,
tool_choice: ToolChoiceOptions | None = None,
structured_response_format: dict | None = None,
timeout_override: int | None = None,
) -> Iterator[BaseMessage]:
raise NotImplementedError

View File

@@ -51,6 +51,7 @@ from onyx.server.documents.cc_pair import router as cc_pair_router
from onyx.server.documents.connector import router as connector_router
from onyx.server.documents.credential import router as credential_router
from onyx.server.documents.document import router as document_router
from onyx.server.documents.indexing import router as indexing_router
from onyx.server.documents.standard_oauth import router as oauth_router
from onyx.server.features.document_set.api import router as document_set_router
from onyx.server.features.folder.api import router as folder_router
@@ -237,17 +238,12 @@ async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
await close_auth_limiter()
def log_http_error(request: Request, exc: Exception) -> JSONResponse:
def log_http_error(_: Request, exc: Exception) -> JSONResponse:
status_code = getattr(exc, "status_code", 500)
if isinstance(exc, BasicAuthenticationError):
# For BasicAuthenticationError, just log a brief message without stack trace
# (almost always spammy)
logger.debug(f"Authentication failed: {str(exc)}")
elif status_code == 404 and request.url.path == "/metrics":
# Log 404 errors for the /metrics endpoint with debug level
logger.debug(f"404 error for /metrics endpoint: {str(exc)}")
# For BasicAuthenticationError, just log a brief message without stack trace (almost always spam)
logger.warning(f"Authentication failed: {str(exc)}")
elif status_code >= 400:
error_msg = f"{str(exc)}\n"
@@ -316,6 +312,7 @@ def get_application() -> FastAPI:
include_router_with_global_prefix_prepended(
application, token_rate_limit_settings_router
)
include_router_with_global_prefix_prepended(application, indexing_router)
include_router_with_global_prefix_prepended(
application, get_full_openai_assistants_api_router()
)

View File

@@ -1,7 +1,3 @@
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_ANSWER_SEPARATOR,
)
# Standards
SEPARATOR_LINE = "-------"
SEPARATOR_LINE_LONG = "---------------"
@@ -9,6 +5,8 @@ UNKNOWN_ANSWER = "I do not have enough information to answer this question."
NO_RECOVERED_DOCS = "No relevant information recovered"
YES = "yes"
NO = "no"
# Framing/Support/Template Prompts
HISTORY_FRAMING_PROMPT = f"""
For more context, here is the history of the conversation so far that preceded this question:
@@ -18,43 +16,6 @@ For more context, here is the history of the conversation so far that preceded t
""".strip()
COMMON_RAG_RULES = f"""
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
- When constructing/considering categories, focus less on the question and more on the context actually provided! \
Example: if the question is about the products of company A, and the content provided lists a number of products, \
do automatically NOT ASSUME that those belong to company A! So you cannot list those as products of company A, despite \
the fact that the question is about company A's products. What you should say instead is maybe something like \
"Here are a number of products, but I cannot say whether some or all of them belong to company A: \
<proceed with listing the products>". It is ABSOLUTELY ESSENTIAL that the answer constructed reflects \
actual knowledge. For that matter, also consider the title of the document and other information that may be \
provided. If that does not make it clear that - in the example above - the products belong to company A, \
then do not list them as products of company A, just maybe as "A list products that may not necessarily \
belong to company A". THIS IS IMPORTANT!
- Related, if the context provides a list of items with associated data or other information that seems \
to align with the categories in the question, but does not specify whether the items or the information is \
specific to the exact requested category, then present the information with a disclaimer. Use a title such as \
"I am not sure whether these items (or the information provided) is specific to [relevant category] or whether \
these are all [specific group], but I found this information may be helpful:" \
followed by the list of items and associated data/or information discovered.
- Do not group together items amongst one headline where not all items belong to the category of the headline! \
(Example: "Products used by Company A" where some products listed are not built by Company A, but other companies,
or it is not clear that the products are built by Company A). Only state what you know for sure!
- Do NOT perform any calculations in the answer! Just report on facts.
- If appropriate, organizing your answer in bullet points is often useful.
""".strip()
ASSISTANT_SYSTEM_PROMPT_DEFAULT = "You are an assistant for question-answering tasks."
ASSISTANT_SYSTEM_PROMPT_PERSONA = f"""
@@ -168,44 +129,20 @@ History summary:
# Sub-question
# Intentionally left a copy in case we want to modify this one differently
INITIAL_QUESTION_DECOMPOSITION_PROMPT = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
Decompose the initial user question into no more than 3 appropriate sub-questions that help to answer the \
original question. The purpose for this decomposition may be to:
1) isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
2) clarify or disambiguate ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various components of an entity and you \
are generally familiar with the entity, then you can decompose the question into sub-questions that are more \
specific to components (i.e., 'what do we do to improve scalability of product X', 'what do we to to improve \
scalability of product X', 'what do we do to improve stability of product X', ...])
4) research an area that could really help to answer the question.
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
And here is the initial question to create sub-questions for, so that you have the full context:
Here is the initial question to decompose:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
@@ -213,79 +150,7 @@ And here is the initial question to create sub-questions for, so that you have t
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
...
Answer:
""".strip()
# INITIAL PHASE - AWARE OF REFINEMENT
# Sub-question
# Suggest augmenting question generation as well, that a future refinement phase could use
# to generate new questions
# Intentionally left a copy in case we want to modify this one differently
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
5) if meaningful, find relevant facts that may inform another set of sub-questions generate after the set you \
create now are answered. Example: 'which products have we implemented at company A, and is this different to \
its competitors?' could potentially create sub-questions 'what products have we implemented at company A', \
and 'who are the competitors of company A'. The additional round of sub-question generation which sees the \
answers for this initial round of sub-question creation could then use the answer to the second sub-question \
(which could be 'company B and C are competitors of company A') to then ask 'which products have we implemented \
at company B', 'which products have we implemented at company C'...
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
And here is the initial question to create sub-questions for:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
Please formulate your answer as a newline-separated list of questions like so:
<sub-question>
<sub-question>
<sub-question>
@@ -297,47 +162,23 @@ Answer:
# TODO: combine shared pieces with INITIAL_QUESTION_DECOMPOSITION_PROMPT
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
Decompose the initial user question into no more than 3 appropriate sub-questions that help to answer the \
original question. The purpose for this decomposition may be to:
1) isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
2) clarify or disambiguate ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
3) if a term or a metric is essentially clear, but it could relate to various components of an entity and you \
are generally familiar with the entity, then you can decompose the question into sub-questions that are more \
specific to components (i.e., 'what do we do to improve scalability of product X', 'what do we to to improve \
scalability of product X', 'what do we do to improve stability of product X', ...])
4) research an area that could really help to answer the question.
To give you some context, you will see below also some documents that may relate to the question. Please only \
use this information to learn what the question is approximately asking about, but do not focus on the details \
to construct the sub-questions! Also, some of the entities, relationships and terms that are in the dataset may \
not be in these few documents, so DO NOT focus too much on the documents when constructing the sub-questions! \
not be in these few documents, so DO NOT focussed too much on the documents when constructing the sub-questions! \
Decomposition and disambiguations are most important!
Here are the sample docs to give you some context:
@@ -345,7 +186,7 @@ Here are the sample docs to give you some context:
{{sample_doc_str}}
{SEPARATOR_LINE}
And here is the initial question to create sub-questions for, so that you have the full context:
And here is the initial question to decompose:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
@@ -353,9 +194,7 @@ And here is the initial question to create sub-questions for, so that you have t
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!\
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
Please formulate your answer as a newline-separated list of questions like so:
<sub-question>
<sub-question>
<sub-question>
@@ -364,84 +203,6 @@ add any explanations or other text!):
Answer:
""".strip()
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT = f"""
Please create a list of no more than 3 sub-questions whose answers would help to inform the answer \
to the initial question.
The purpose for these sub-questions could be:
1) decomposition to isolate individual entities (i.e., 'compare sales of company A and company B' -> \
['what are sales for company A', 'what are sales for company B'])
2) clarification and/or disambiguation of ambiguous terms (i.e., 'what is our success with company A' -> \
['what are our sales with company A','what is our market share with company A', \
'is company A a reference customer for us', etc.])
3) if a term or a metric is essentially clear, but it could relate to various aspects of an entity and you \
are generally familiar with the entity, then you can create sub-questions that are more \
specific (i.e., 'what do we do to improve product X' -> 'what do we do to improve scalability of product X', \
'what do we do to improve performance of product X', 'what do we do to improve stability of product X', ...)
4) research individual questions and areas that should really help to ultimately answer the question.
5) if applicable and useful, consider using sub-questions to gather relevant information that can inform a \
subsequent set of sub-questions. The answers to your initial sub-questions will be available when generating \
the next set.
For example, if you start with the question, "Which products have we implemented at Company A, and how does \
this compare to its competitors?" you might first create sub-questions like "What products have we implemented \
at Company A?" and "Who are the competitors of Company A?"
The answer to the second sub-question, such as "Company B and C are competitors of Company A," can then be used \
to generate more specific sub-questions in the next round, like "Which products have we implemented at Company B?" \
and "Which products have we implemented at Company C?"
You'll be the judge!
Important:
- Each sub-question should lend itself to be answered by a RAG system. Correspondingly, phrase the question \
in a way that is amenable to that. An example set of sub-questions based on an initial question could look like this:
'what can I do to improve the performance of workflow X' -> \
'what are the settings affecting performance for workflow X', 'are there complaints and bugs related to \
workflow X performance', 'what are performance benchmarks for workflow X', ...
- Consequently, again, don't just decompose, but make sure that the sub-questions have the proper form. I.e., no \
'I', etc.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
To give you some context, you will see below also some documents that may relate to the question. Please only \
use this information to learn what the question is approximately asking about, but do not focus on the details \
to construct the sub-questions! Also, some of the entities, relationships and terms that are in the dataset may \
not be in these few documents, so DO NOT focus too much on the documents when constructing the sub-questions! \
Decomposition and disambiguations are most important!
Here are the sample docs to give you some context:
{SEPARATOR_LINE}
{{sample_doc_str}}
{SEPARATOR_LINE}
And here is the initial question to create sub-questions for, so that you have the full context:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Do NOT include any text in your answer outside of the list of sub-questions!\
Please formulate your answer as a newline-separated list of questions like so (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question>
<sub-question>
<sub-question>
...
Answer:
""".strip()
# Retrieval
QUERY_REWRITING_PROMPT = f"""
@@ -496,35 +257,23 @@ Answer:
""".strip()
# Sub-Question Answer Generation
# Sub-Question Anser Generation
SUB_QUESTION_RAG_PROMPT = f"""
Use the context provided below - and only the provided context - to answer the given question. \
(Note that the answer is in service of answering a broader question, given below as 'motivation').
Make sure that you keep all relevant information, specifically as it concerns the ultimate goal. \
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the \
question based on the context, say "{UNKNOWN_ANSWER}". It is a matter of life and death that you do NOT \
use your internal knowledge, just the provided information!
Make sure that you keep all relevant information, specifically as it concerns to the ultimate goal. \
(But keep other details as well.)
{COMMON_RAG_RULES}
- Make sure that you only state what you actually can positively learn from the provided context! Particularly \
don't make assumptions! Example: if i) a question you should answer is asking for products of companies that \
are competitors of company A, and ii) the context mentions products of companies A, B, C, D, E, etc., do NOT assume \
that B, C, D, E, etc. are competitors of A! All you know is that these are products of a number of companies, and you \
would have to rely on another question - that you do not have access to - to learn which companies are competitors of A.
Correspondingly, you should not say that these are the products of competitors of A, but rather something like \
"Here are some products of various companies".
It is critical that you provide inline citations in the format [D1], [D2], [D3], etc! Please use format [D1][D2] and NOT \
[D1, D2] format if you cite two or more documents together! \
It is critical that you provide inline citations in the format [D1], [D2], [D3], etc! \
It is important that the citation is close to the information it supports. \
Proper citations are very important to the user!
Here is the document context for you to consider:
{SEPARATOR_LINE}
{{context}}
{SEPARATOR_LINE}
For your general information, here is the ultimate motivation for the question you need to answer:
For your general information, here is the ultimate motivation:
{SEPARATOR_LINE}
{{original_question}}
{SEPARATOR_LINE}
@@ -534,8 +283,12 @@ And here is the actual question I want you to answer based on the context above
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents \
for sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Here is the context:
{SEPARATOR_LINE}
{{context}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data.
Answer:
""".strip()
@@ -568,18 +321,22 @@ Use the information provided below - and only the provided information - to answ
The information provided below consists of:
1) a number of answered sub-questions - these are very important to help you organize your thoughts and your answer
2) a number of documents that are deemed relevant for the question.
2) a number of documents that deemed relevant for the question.
{{history}}
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc.! \
It is critical that you provide prover inline citations to documents in the format [D1], [D2], [D3], etc.! \
It is important that the citation is close to the information it supports. If you have multiple citations that support \
a fact, please cite for example as [D1][D3], or [D2][D4], etc. \
Feel free to also cite sub-questions in addition to documents, but make sure that you have documents cited with the \
sub-question citation. If you want to cite both a document and a sub-question, please use [D1][Q3], or [D2][D7][Q4], etc. \
Again, please NEVER cite sub-questions without a document citation! Proper citations are very important for the user!
{COMMON_RAG_RULES}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, specify that the information is not conclusive and say why.
Again, you should be sure that the answer is supported by the information provided!
@@ -604,9 +361,7 @@ And here is the question I want you to answer based on the information above:
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer! Use the answered \
sub-questions as well, but be cautious and reconsider the docments again for validation.)
Please keep your answer brief and concise, and focus on facts and data.
Answer:
""".strip()
@@ -621,7 +376,11 @@ The information provided below consists of a number of documents that were deeme
{{history}}
{COMMON_RAG_RULES}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, specify that the information is not conclusive and say why.
Again, you should be sure that the answer is supported by the information provided!
@@ -640,8 +399,7 @@ And here is the question I want you to answer based on the context above:
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents \
for sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Please keep your answer brief and concise, and focus on facts and data.
Answer:
""".strip()
@@ -681,12 +439,6 @@ independently without the original question available
- For each sub-question, please also provide a search term that can be used to retrieve relevant documents from a document store.
- Consider specifically the sub-questions that were suggested but not answered. This is a sign that they are not answerable \
with the available context, and you should not ask similar questions.
- Do not(!) create sub-questions that are clarifying question to the person who asked the question, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
Here is the initial question:
{SEPARATOR_LINE}
@@ -722,111 +474,7 @@ objects/relationships/terms you can ask about! Do not ask about entities, terms
Again, please find questions that are NOT overlapping too much with the already answered sub-questions or those that \
already were suggested and failed. In other words - what can we try in addition to what has been tried so far?
Generate the list of questions separated by one new line like this (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
<sub-question 1>
<sub-question 2>
<sub-question 3>
...""".strip()
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS = f"""
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite good enough. \
Also, some sub-questions had been answered and this information has been used to provide the initial answer. \
Some other subquestions may have been suggested based on little knowledge, but they were not directly answerable. \
Also, some entities, relationships and terms are given to you so that you have an idea of how the available data looks like.
Your role is to generate 2-4 new sub-questions that would help to answer the initial question, considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered AND their answers
4) The sub-questions that were suggested but not answered (and that you should not repeat!)
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system. So a good idea would be to use the sub-questions to \
resolve ambiguities and/or to separate the question for different entities that may be involved in the original question, \
but in a way that does not duplicate questions that were already tried.
Additional Guidelines:
- The new sub-questions should be specific to the question and provide richer context for the question, resolve ambiguities, \
or address shortcoming of the initial answer
- Each new sub-question - when answered - should be relevant for the answer to the original question
- The new sub-questions should be free from comparisons, ambiguities,judgements, aggregations, or any other complications that \
may require extra context
- The new sub-questions MUST have the full context of the original question so that it can be executed by a RAG system \
independently without the original question available
Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each new sub-question, please also provide a search term that can be used to retrieve relevant documents \
from a document store.
- Consider specifically the sub-questions that were suggested but not answered. This is a sign that they are not answerable \
with the available context, and you should not ask similar questions.
- Pay attention to the answers of previous sub-question to make your sub-questions more specific! \
Often the initial sub-questions were set up to give you critical information that you should use to generate new sub-questions.\
For example, if the answer to a an earlier sub-question is \
'Company B and C are competitors of Company A', you should not ask now a new sub-question involving the term 'competitors', \
as you already have the information to create a more precise question - you should instead explicitly reference \
'Company B' and 'Company C' in your new sub-questions, as these are the competitors based on the previously answered question.
- Be precise(!) and don't make inferences you cannot be sure about! For example, in the previous example \
where Company B and Company C were identified as competitors of Company A, and then you also get information on \
companies D and E, do not make the inference that these are also competitors of Company A! Stick to the information you have!
(Also, don't assume that companies B and C arethe only competitors of A, unless stated!)
- Do not(!) create sub-questions that are clarifying question *to the person who asked the question*, \
like making suggestions or asking the user for more information! This is not useful for the actual \
question-answering process! You need to take the information from the user as it is given to you! \
For example, should the question be of the type 'why does product X perform poorly for customer A', DO NOT create a \
sub-question of the type 'what are the settings that customer A uses for product X?'! A valid sub-question \
could rather be 'which settings for product X have been shown to lead to poor performance for customers?'
Here is the initial question:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
{{history}}
Here is the initial sub-optimal answer:
{SEPARATOR_LINE}
{{base_answer}}
{SEPARATOR_LINE}
Here are the sub-questions that were answered:
{SEPARATOR_LINE}
{{answered_subquestions_with_answers}}
{SEPARATOR_LINE}
Here are the sub-questions that were suggested but not answered:
{SEPARATOR_LINE}
{{failed_sub_questions}}
{SEPARATOR_LINE}
And here are the entities, relationships and terms extracted from the context:
{SEPARATOR_LINE}
{{entity_term_extraction_str}}
{SEPARATOR_LINE}
Please generate the list of good, fully contextualized sub-questions that would help to address the main question. \
Specifically pay attention also to the entities, relationships and terms extracted, as these indicate what type of \
objects/relationships/terms you can ask about! Do not ask about entities, terms or relationships that are not mentioned \
in the 'entities, relationships and terms' section.
Again, please find questions that are NOT overlapping too much with the already answered sub-questions or those that \
already were suggested and failed. In other words - what can we try in addition to what has been tried so far?
Generate the list of questions separated by one new line like this (and please ONLY ANSWER WITH THIS LIST! Do not \
add any explanations or other text!):
Generate the list of questions separated by one new line like this:
<sub-question 1>
<sub-question 2>
<sub-question 3>
@@ -841,7 +489,7 @@ Your task is to improve on a given answer to a question, as the initial answer w
Use the information provided below - and only the provided information - to write your new and improved answer.
The information provided below consists of:
1) an initial answer that was given but likely found to be lacking in some way.
1) an initial answer that was given but found to be lacking in some way.
2) a number of answered sub-questions - these are very important(!) and definitely should help you to answer the main \
question. Note that the sub-questions have a type, 'initial' and 'refined'. The 'initial' ones were available for the \
creation of the initial answer, but the 'refined' were not, they are new. So please use the 'refined' sub-questions in \
@@ -851,7 +499,6 @@ particular to update/extend/correct/enrich the initial answer and to add more de
the relevant document for a fact!
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc! \
Please use format [D1][D2] and NOT [D1, D2] format if you cite two or more documents together! \
It is important that the citation is close to the information it supports. \
DO NOT just list all of the citations at the very end. \
Feel free to also cite sub-questions in addition to documents, \
@@ -862,7 +509,14 @@ Proper citations are very important for the user!
{{history}}
{COMMON_RAG_RULES}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
- Ignore any existing citations within the answered sub-questions, like [D1]... and [Q2]! The citations you will need to \
use will need to refer to the documents (and sub-questions) that you are explicitly presented with below!
Again, you should be sure that the answer is supported by the information provided!
@@ -891,9 +545,7 @@ Lastly, here is the main question I want you to answer based on the information
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer! Use the answered \
sub-questions as well, but be cautious and reconsider the docments again for validation.)
Please keep your answer brief and concise, and focus on facts and data.
Answer:
""".strip()
@@ -909,13 +561,18 @@ The information provided below consists of:
2) a number of documents that were also deemed relevant for the question.
It is critical that you provide proper inline citations to documents in the format [D1], [D2], [D3], etc! \
Please use format [D1][D2] and NOT [D1, D2] format if you cite two or more documents together! \
It is important that the citation is close to the information it supports. \
DO NOT just list all of the citations at the very end of your response. Citations are very important for the user!
{{history}}
{COMMON_RAG_RULES}
IMPORTANT RULES:
- If you cannot reliably answer the question solely using the provided information, say that you cannot reliably answer. \
You may give some additional facts you learned, but do not try to invent an answer.
- If the information is empty or irrelevant, just say "{UNKNOWN_ANSWER}".
- If the information is relevant but not fully conclusive, provide an answer to the extent you can but also specify that \
the information is not conclusive and why.
Again, you should be sure that the answer is supported by the information provided!
Try to keep your answer concise. But also highlight uncertainties you may have should there be substantial ones, \
@@ -940,103 +597,11 @@ Lastly, here is the question I want you to answer based on the information above
{{question}}
{SEPARATOR_LINE}
Please keep your answer brief and concise, and focus on facts and data. (Again, only state what you see in the documents for \
sure and communicate if/in what way this may or may not relate to the question you need to answer!)
Please keep your answer brief and concise, and focus on facts and data.
Answer:
""".strip()
REFINED_ANSWER_VALIDATION_PROMPT = f"""
{{persona_specification}}
Your task is to verify whether a given answer is truthful and accurate, and supported by the facts that you \
will be provided with.
The information provided below consists of:
1) a question that needed to be answered
2) a proposed answer to the question, whose accuracy you should assess
3) potentially, a brief summary of the history of the conversation thus far, as it may give more context \
to the question. Note that the statements in the history are NOT considered as facts, ONLY but serve to to \
give context to the question.
4) a number of answered sub-questions - you can take the answers as facts for these purposes.
5) a number of relevant documents that should support the answer and that you should use as fact, \
i.e., if a statement in the document backs up a statement in the answer, then that statement in the answer \
should be considered as true.
IMPORTANT RULES AND CONSIDERATIONS:
- Please consider the statements made in the proposed answer and assess whether they are truthful and accurate, based \
on the provided sub-answered and the documents. (Again, the history is NOT considered as facts!)
- Look in particular for:
* material statements that are not supported by the sub-answered or the documents
* assignments and groupings that are not supported, like company A is competitor of company B, but this is not \
explicitly supported by documents or sub-answers, guesses or interpretations unless explicitly asked for
- look also at the citations in the proposed answer and assess whether they are appropriate given the statements \
made in the proposed answer that cites the document.
- Are items grouped together amongst one headline where not all items belong to the category of the headline? \
(Example: "Products used by Company A" where some products listed are not used by Company A)
- Does the proposed answer address the question in full?
- Is the answer specific to the question? Example: if the question asks for the prices for products by Company A, \
but the answer lists the prices for products by Company A and Company B, or products it cannot be sure are by \
Company A, then this is not quite specific enough to the question and the answer should be rejected.
- Similarly, if the question asks for properties of a certain class but the proposed answer lists or includes entities \
that are not of that class without very explicitly saying so, then the answer should be considered inaccurate.
- If there are any calculations in the proposed answer that are not supported by the documents, they need to be tested. \
If any calculation is wrong, the proposed answer should be considered as not trustworthy.
Here is the information:
{SEPARATOR_LINE_LONG}
QUESTION:
{SEPARATOR_LINE}
{{question}}
{SEPARATOR_LINE}
PROPOSED ANSWER:
{SEPARATOR_LINE}
{{proposed_answer}}
{SEPARATOR_LINE}
Here is the additional contextual information:
{SEPARATOR_LINE_LONG}
{{history}}
Sub-questions and their answers (to be considered as facts):
{SEPARATOR_LINE}
{{answered_sub_questions}}
{SEPARATOR_LINE}
And here are the relevant documents that support the sub-question answers, and that are relevant for the actual question:
{SEPARATOR_LINE}
{{relevant_docs}}
{SEPARATOR_LINE}
Please think through this step by step. Format your response just as a string in the following format:
Analysis: <think through your reasoning as outlined in the 'IMPORTANT RULES AND CONSIDERATIONS' section above, \
but keep it short. Come to a conclusion whether the proposed answer can be trusted>
Comments: <state your condensed comments you would give to a user reading the proposed answer, regarding the accuracy and \
specificity.>
{AGENT_ANSWER_SEPARATOR} <answer here only with yes or no, whether the proposed answer can be trusted. Base this on your \
analysis, but only say 'yes' (trustworthy) or 'no' (not trustworthy)>
""".strip()
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT = f"""
For the given question, please compare the initial answer and the refined answer and determine if the refined answer is \

View File

@@ -61,10 +61,10 @@ def _create_indexable_chunks(
doc_updated_at=None,
primary_owners=[],
secondary_owners=[],
chunk_count=preprocessed_doc["chunk_ind"] + 1,
chunk_count=1,
)
ids_to_documents[document.id] = document
if preprocessed_doc["chunk_ind"] == 0:
ids_to_documents[document.id] = document
chunk = DocMetadataAwareIndexChunk(
chunk_id=preprocessed_doc["chunk_ind"],
@@ -92,7 +92,6 @@ def _create_indexable_chunks(
boost=DEFAULT_BOOST,
large_chunk_id=None,
)
chunks.append(chunk)
return list(ids_to_documents.values()), chunks
@@ -193,7 +192,6 @@ def seed_initial_documents(
last_successful_index_time=last_index_time,
seeding_flow=True,
)
cc_pair_id = cast(int, result.data)
processed_docs = fetch_versioned_implementation(
"onyx.seeding.load_docs",
@@ -251,5 +249,4 @@ def seed_initial_documents(
.values(chunk_count=doc.chunk_count)
)
db_session.commit()
kv_store.store(KV_DOCUMENTS_SEEDED_KEY, True)

View File

@@ -22,7 +22,6 @@ from onyx.background.celery.tasks.pruning.tasks import (
try_creating_prune_generator_task,
)
from onyx.background.celery.versioned_apps.primary import app as primary_app
from onyx.background.indexing.models import IndexAttemptErrorPydantic
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryTask
from onyx.db.connector_credential_pair import add_credential_to_connector
@@ -40,9 +39,7 @@ from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.enums import AccessType
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.index_attempt import count_index_attempt_errors_for_cc_pair
from onyx.db.index_attempt import count_index_attempts_for_connector
from onyx.db.index_attempt import get_index_attempt_errors_for_cc_pair
from onyx.db.index_attempt import get_latest_index_attempt_for_cc_pair_id
from onyx.db.index_attempt import get_paginated_index_attempts_for_cc_pair_id
from onyx.db.models import SearchSettings
@@ -549,47 +546,6 @@ def get_docs_sync_status(
return [DocumentSyncStatus.from_model(doc) for doc in all_docs_for_cc_pair]
@router.get("/admin/cc-pair/{cc_pair_id}/errors")
def get_cc_pair_indexing_errors(
cc_pair_id: int,
include_resolved: bool = Query(False),
page: int = Query(0, ge=0),
page_size: int = Query(10, ge=1, le=100),
_: User = Depends(current_curator_or_admin_user),
db_session: Session = Depends(get_session),
) -> PaginatedReturn[IndexAttemptErrorPydantic]:
"""Gives back all errors for a given CC Pair. Allows pagination based on page and page_size params.
Args:
cc_pair_id: ID of the connector-credential pair to get errors for
include_resolved: Whether to include resolved errors in the results
page: Page number for pagination, starting at 0
page_size: Number of errors to return per page
_: Current user, must be curator or admin
db_session: Database session
Returns:
Paginated list of indexing errors for the CC pair.
"""
total_count = count_index_attempt_errors_for_cc_pair(
db_session=db_session,
cc_pair_id=cc_pair_id,
unresolved_only=not include_resolved,
)
index_attempt_errors = get_index_attempt_errors_for_cc_pair(
db_session=db_session,
cc_pair_id=cc_pair_id,
unresolved_only=not include_resolved,
page=page,
page_size=page_size,
)
return PaginatedReturn(
items=[IndexAttemptErrorPydantic.from_model(e) for e in index_attempt_errors],
total_items=total_count,
)
@router.put("/connector/{connector_id}/credential/{credential_id}")
def associate_credential_to_connector(
connector_id: int,

View File

@@ -22,7 +22,6 @@ from onyx.auth.users import current_curator_or_admin_user
from onyx.auth.users import current_user
from onyx.background.celery.versioned_apps.primary import app as primary_app
from onyx.configs.app_configs import ENABLED_CONNECTOR_TYPES
from onyx.configs.app_configs import MOCK_CONNECTOR_FILE_PATH
from onyx.configs.constants import DocumentSource
from onyx.configs.constants import FileOrigin
from onyx.configs.constants import MilestoneRecordType
@@ -614,16 +613,6 @@ def get_connector_indexing_status(
) -> list[ConnectorIndexingStatus]:
indexing_statuses: list[ConnectorIndexingStatus] = []
if MOCK_CONNECTOR_FILE_PATH:
import json
with open(MOCK_CONNECTOR_FILE_PATH, "r") as f:
raw_data = json.load(f)
connector_indexing_statuses = [
ConnectorIndexingStatus(**status) for status in raw_data
]
return connector_indexing_statuses
# NOTE: If the connector is deleting behind the scenes,
# accessing cc_pairs can be inconsistent and members like
# connector or credential may be None.

View File

@@ -0,0 +1,23 @@
from fastapi import APIRouter
from fastapi import Depends
from sqlalchemy.orm import Session
from onyx.auth.users import current_admin_user
from onyx.db.engine import get_session
from onyx.db.index_attempt import (
get_index_attempt_errors,
)
from onyx.db.models import User
from onyx.server.documents.models import IndexAttemptError
router = APIRouter(prefix="/manage")
@router.get("/admin/indexing-errors/{index_attempt_id}")
def get_indexing_errors(
index_attempt_id: int,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[IndexAttemptError]:
indexing_errors = get_index_attempt_errors(index_attempt_id, db_session)
return [IndexAttemptError.from_db_model(e) for e in indexing_errors]

View File

@@ -8,9 +8,9 @@ from pydantic import BaseModel
from pydantic import Field
from ee.onyx.server.query_history.models import ChatSessionMinimal
from onyx.background.indexing.models import IndexAttemptErrorPydantic
from onyx.configs.app_configs import MASK_CREDENTIAL_PREFIX
from onyx.configs.constants import DocumentSource
from onyx.connectors.models import DocumentErrorSummary
from onyx.connectors.models import InputType
from onyx.db.enums import AccessType
from onyx.db.enums import ConnectorCredentialPairStatus
@@ -19,6 +19,7 @@ from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import Credential
from onyx.db.models import Document as DbDocument
from onyx.db.models import IndexAttempt
from onyx.db.models import IndexAttemptError as DbIndexAttemptError
from onyx.db.models import IndexingStatus
from onyx.db.models import TaskStatus
from onyx.server.models import FullUserSnapshot
@@ -149,7 +150,6 @@ class CredentialSnapshot(CredentialBase):
class IndexAttemptSnapshot(BaseModel):
id: int
status: IndexingStatus | None
from_beginning: bool
new_docs_indexed: int # only includes completely new docs
total_docs_indexed: int # includes docs that are updated
docs_removed_from_index: int
@@ -166,7 +166,6 @@ class IndexAttemptSnapshot(BaseModel):
return IndexAttemptSnapshot(
id=index_attempt.id,
status=index_attempt.status,
from_beginning=index_attempt.from_beginning,
new_docs_indexed=index_attempt.new_docs_indexed or 0,
total_docs_indexed=index_attempt.total_docs_indexed or 0,
docs_removed_from_index=index_attempt.docs_removed_from_index or 0,
@@ -182,6 +181,31 @@ class IndexAttemptSnapshot(BaseModel):
)
class IndexAttemptError(BaseModel):
id: int
index_attempt_id: int | None
batch_number: int | None
doc_summaries: list[DocumentErrorSummary]
error_msg: str | None
traceback: str | None
time_created: str
@classmethod
def from_db_model(cls, error: DbIndexAttemptError) -> "IndexAttemptError":
doc_summaries = [
DocumentErrorSummary.from_dict(summary) for summary in error.doc_summaries
]
return IndexAttemptError(
id=error.id,
index_attempt_id=error.index_attempt_id,
batch_number=error.batch,
doc_summaries=doc_summaries,
error_msg=error.error_msg,
traceback=error.traceback,
time_created=error.time_created.isoformat(),
)
# These are the types currently supported by the pagination hook
# More api endpoints can be refactored and be added here for use with the pagination hook
PaginatedType = TypeVar(
@@ -190,7 +214,6 @@ PaginatedType = TypeVar(
FullUserSnapshot,
InvitedUserSnapshot,
ChatSessionMinimal,
IndexAttemptErrorPydantic,
)

View File

@@ -213,6 +213,8 @@ def get_chat_session(
# we need the tool call objs anyways, so just fetch them in a single call
prefetch_tool_calls=True,
)
for message in session_messages:
translate_db_message_to_chat_message_detail(message)
return ChatSessionDetailResponse(
chat_session_id=session_id,

View File

@@ -1,7 +1,6 @@
from onyx.configs.constants import KV_SETTINGS_KEY
from onyx.configs.constants import OnyxRedisLocks
from onyx.key_value_store.factory import get_kv_store
from onyx.key_value_store.interface import KvKeyNotFoundError
from onyx.redis.redis_pool import get_redis_client
from onyx.server.settings.models import Settings
from onyx.utils.logger import setup_logger
@@ -18,10 +17,6 @@ def load_settings() -> Settings:
settings = (
Settings.model_validate(stored_settings) if stored_settings else Settings()
)
except KvKeyNotFoundError:
# Default to empty settings if no settings have been set yet
logger.debug(f"No settings found in KV store for key: {KV_SETTINGS_KEY}")
settings = Settings()
except Exception as e:
logger.error(f"Error loading settings from KV store: {str(e)}")
settings = Settings()

View File

@@ -58,7 +58,6 @@ SEARCH_RESPONSE_SUMMARY_ID = "search_response_summary"
SEARCH_DOC_CONTENT_ID = "search_doc_content"
SECTION_RELEVANCE_LIST_ID = "section_relevance_list"
SEARCH_EVALUATION_ID = "llm_doc_eval"
QUERY_FIELD = "query"
class SearchResponseSummary(SearchQueryInfo):
@@ -180,12 +179,12 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
"parameters": {
"type": "object",
"properties": {
QUERY_FIELD: {
"query": {
"type": "string",
"description": "What to search for",
},
},
"required": [QUERY_FIELD],
"required": ["query"],
},
},
}
@@ -224,7 +223,7 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
rephrased_query = history_based_query_rephrase(
query=query, history=history, llm=llm
)
return {QUERY_FIELD: rephrased_query}
return {"query": rephrased_query}
"""Actual tool execution"""
@@ -280,7 +279,7 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
def run(
self, override_kwargs: SearchToolOverrideKwargs | None = None, **llm_kwargs: Any
) -> Generator[ToolResponse, None, None]:
query = cast(str, llm_kwargs[QUERY_FIELD])
query = cast(str, llm_kwargs["query"])
force_no_rerank = False
alternate_db_session = None
retrieved_sections_callback = None

View File

@@ -1,26 +0,0 @@
import sys
from typing import TypeVar
T = TypeVar("T", dict, list, tuple, set, frozenset)
def deep_getsizeof(obj: T, seen: set[int] | None = None) -> int:
"""Recursively sum size of objects, handling circular references."""
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0 # Prevent infinite recursion for circular references
seen.add(obj_id)
size = sys.getsizeof(obj)
if isinstance(obj, dict):
size += sum(
deep_getsizeof(k, seen) + deep_getsizeof(v, seen) for k, v in obj.items()
)
elif isinstance(obj, (list, tuple, set, frozenset)):
size += sum(deep_getsizeof(i, seen) for i in obj)
return size

View File

@@ -1,4 +1,3 @@
import threading
import uuid
from collections.abc import Callable
from concurrent.futures import as_completed
@@ -14,10 +13,6 @@ logger = setup_logger()
R = TypeVar("R")
# WARNING: it is not currently well understood whether we lose access to contextvars when functions are
# executed through this wrapper Do NOT try to acquire a db session in a function run through this unless
# you have heavily tested that multi-tenancy is respected. If/when we know for sure that it is or
# is not safe, update this comment.
def run_functions_tuples_in_parallel(
functions_with_args: list[tuple[Callable, tuple]],
allow_failures: bool = False,
@@ -83,10 +78,6 @@ class FunctionCall(Generic[R]):
return self.func(*self.args, **self.kwargs)
# WARNING: it is not currently well understood whether we lose access to contextvars when functions are
# executed through this wrapper Do NOT try to acquire a db session in a function run through this unless
# you have heavily tested that multi-tenancy is respected. If/when we know for sure that it is or
# is not safe, update this comment.
def run_functions_in_parallel(
function_calls: list[FunctionCall],
allow_failures: bool = False,
@@ -118,49 +109,3 @@ def run_functions_in_parallel(
raise
return results
class TimeoutThread(threading.Thread):
def __init__(
self, timeout: float, func: Callable[..., R], *args: Any, **kwargs: Any
):
super().__init__()
self.timeout = timeout
self.func = func
self.args = args
self.kwargs = kwargs
self.exception: Exception | None = None
def run(self) -> None:
try:
self.result = self.func(*self.args, **self.kwargs)
except Exception as e:
self.exception = e
def end(self) -> None:
raise TimeoutError(
f"Function {self.func.__name__} timed out after {self.timeout} seconds"
)
# WARNING: it is not currently well understood whether we lose access to contextvars when functions are
# executed through this wrapper Do NOT try to acquire a db session in a function run through this unless
# you have heavily tested that multi-tenancy is respected. If/when we know for sure that it is or
# is not safe, update this comment.
def run_with_timeout(
timeout: float, func: Callable[..., R], *args: Any, **kwargs: Any
) -> R:
"""
Executes a function with a timeout. If the function doesn't complete within the specified
timeout, raises TimeoutError.
"""
task = TimeoutThread(timeout, func, *args, **kwargs)
task.start()
task.join(timeout)
if task.exception is not None:
raise task.exception
if task.is_alive():
task.end()
return task.result

View File

@@ -34,8 +34,8 @@ langchain-core==0.3.24
langchain-openai==0.2.9
langchain-text-splitters==0.3.2
langchainhub==0.1.21
langgraph==0.2.72
langgraph-checkpoint==2.0.13
langgraph==0.2.59
langgraph-checkpoint==2.0.5
langgraph-sdk==0.1.44
litellm==1.60.2
lxml==5.3.0

View File

@@ -42,7 +42,7 @@ def run_jobs() -> None:
"--loglevel=INFO",
"--hostname=light@%n",
"-Q",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert,checkpoint_cleanup",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert",
]
cmd_worker_heavy = [

View File

@@ -33,7 +33,7 @@ stopasgroup=true
command=celery -A onyx.background.celery.versioned_apps.light worker
--loglevel=INFO
--hostname=light@%%n
-Q vespa_metadata_sync,connector_deletion,doc_permissions_upsert,checkpoint_cleanup
-Q vespa_metadata_sync,connector_deletion,doc_permissions_upsert
stdout_logfile=/var/log/celery_worker_light.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true

View File

@@ -1,81 +0,0 @@
import os
import time
import pytest
from onyx.configs.constants import DocumentSource
from onyx.connectors.gitbook.connector import GitbookConnector
@pytest.fixture
def gitbook_connector() -> GitbookConnector:
connector = GitbookConnector(
space_id=os.environ["GITBOOK_SPACE_ID"],
)
connector.load_credentials(
{
"gitbook_api_key": os.environ["GITBOOK_API_KEY"],
}
)
return connector
def test_gitbook_connector_basic(gitbook_connector: GitbookConnector) -> None:
doc_batch_generator = gitbook_connector.load_from_state()
# Get first batch of documents
doc_batch = next(doc_batch_generator)
assert len(doc_batch) > 0
# Verify first document structure
doc = doc_batch[0]
# Basic document properties
assert doc.id.startswith("gitbook-")
assert doc.semantic_identifier == "Acme Corp Internal Handbook"
assert doc.source == DocumentSource.GITBOOK
# Metadata checks
assert "path" in doc.metadata
assert "type" in doc.metadata
assert "kind" in doc.metadata
# Section checks
assert len(doc.sections) == 1
section = doc.sections[0]
# Content specific checks
content = section.text
# Check for specific content elements
assert "* Fruit Shopping List:" in content
assert "> test quote it doesn't mean anything" in content
# Check headings
assert "# Heading 1" in content
assert "## Heading 2" in content
assert "### Heading 3" in content
# Check task list
assert "- [ ] Uncompleted Task" in content
assert "- [x] Completed Task" in content
# Check table content
assert "| ethereum | 10 | 3000 |" in content
assert "| bitcoin | 2 | 98000 |" in content
# Check paragraph content
assert "New York City comprises 5 boroughs" in content
assert "Empire State Building" in content
# Check code block (just verify presence of some unique code elements)
assert "function fizzBuzz(n)" in content
assert 'res.push("FizzBuzz")' in content
assert section.link # Should have a URL
# Time-based polling test
current_time = time.time()
poll_docs = gitbook_connector.poll_source(0, current_time)
poll_batch = next(poll_docs)
assert len(poll_batch) > 0

View File

@@ -1,15 +1,14 @@
import requests
from sqlalchemy.orm import Session
from onyx.db.engine import get_session_context_manager
from onyx.db.models import User
def test_create_chat_session_and_send_messages() -> None:
def test_create_chat_session_and_send_messages(db_session: Session) -> None:
# Create a test user
with get_session_context_manager() as db_session:
test_user = User(email="test@example.com", hashed_password="dummy_hash")
db_session.add(test_user)
db_session.commit()
test_user = User(email="test@example.com", hashed_password="dummy_hash")
db_session.add(test_user)
db_session.commit()
base_url = "http://localhost:8080" # Adjust this to your API's base URL
headers = {"Authorization": f"Bearer {test_user.id}"}

Some files were not shown because too many files have changed in this diff Show More