Compare commits

..

88 Commits

Author SHA1 Message Date
Weves
ca3db17b08 add restart 2025-12-17 12:48:46 -08:00
Weves
ffd13b1104 dump scripts 2025-12-17 12:48:46 -08:00
Wenxi
1caa860f8e fix(file upload): properly convert and process files uploaded directly to chat (#6815)
Co-authored-by: _htz_ <100520465+1htz2@users.noreply.github.com>
2025-12-17 12:38:14 -08:00
trial-danswer
7181cc41af feat: adding support for SearXNG as an option for web search. It operates a… (#6653)
Co-authored-by: Weves <chrisweaver101@gmail.com>
2025-12-17 12:27:19 -08:00
Chris Weaver
959b8c320d fix: don't leave redis ports exposed (#6814) 2025-12-17 12:06:10 -08:00
roshan
96fd0432ff fix(tool): default tool descriptions assistant -> agent (#6788)
Co-authored-by: greptile-apps[bot] <165735046+greptile-apps[bot]@users.noreply.github.com>
2025-12-17 19:12:17 +00:00
Jamison Lahman
4c73a03f57 chore(fe): followups to 7f79e34aa (#6808) 2025-12-17 18:36:31 +00:00
Raunak Bhagat
e57713e376 fix: Clean up DocumentsSidebar (#6805) 2025-12-17 09:00:14 -08:00
Jamison Lahman
21ea320323 fix(style): standardize projects page layout (#6807) 2025-12-17 01:11:09 -08:00
Jamison Lahman
bac9c48e53 fix(style): "More Agents" page is responsive (#6806) 2025-12-17 01:01:13 -08:00
roshan
7f79e34aa4 fix(projects): add special logic for internal search tool when no connectors available (#6774)
Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-12-17 06:45:03 +00:00
Jamison Lahman
f1a81d45a1 chore(fe): popover component uses z-index.css (#6804) 2025-12-16 23:07:31 -08:00
Jamison Lahman
285755a540 chore(pre-commit): fix uv.lock after filelock "upgrade" (#6803) 2025-12-16 22:16:19 -08:00
Justin Tahara
89003ad2d8 chore(tf): Update VPC calling (#6798) 2025-12-17 05:38:50 +00:00
Yuhong Sun
9f93f97259 feat(vectordb): New Document Index Interface (#5700) 2025-12-17 03:28:02 +00:00
Yuhong Sun
f702eebbe7 chore: some readme updates (#6802) 2025-12-16 19:53:23 -08:00
Yuhong Sun
8487e1856b feat: Deep Research first couple stages (#6801) 2025-12-16 19:40:54 -08:00
acaprau
a36445f840 fix(devtools): restart_containers.sh should source venv before running alembic (#6795) 2025-12-17 02:33:21 +00:00
roshan
7f30293b0e chore: improved error handling and display for agent failure types (#6784) 2025-12-17 02:30:24 +00:00
acaprau
619d9528b4 fix(devtools): CLAUDE.md.template makes reference to a venv that does not exist (#6796) 2025-12-17 02:29:47 +00:00
Yuhong Sun
6f83c669e7 feat: enable skip clarification (#6797) 2025-12-16 18:25:15 -08:00
Chris Weaver
c3e5f48cb4 fix: horrible typo in README (#6793) 2025-12-16 17:05:57 -08:00
Justin Tahara
fdf8fe391c fix(ui): Search Settings Active Only (#6657) 2025-12-16 17:00:06 -08:00
Raunak Bhagat
f1d6bb9e02 refactor: Transfer all icons to @opal/icons (#6755) 2025-12-17 00:16:44 +00:00
Justin Tahara
9a64a717dc fix(users): User Groups Race Condition (#6710) 2025-12-17 00:11:07 +00:00
Raunak Bhagat
aa0f475e01 refactor: Add new z-indexing file (#6789) 2025-12-16 23:56:13 +00:00
Nikolas Garza
75238dc353 fix: attach user credentials to assistant requests (#6785) 2025-12-16 23:15:31 +00:00
Nikolas Garza
9e19803244 chore: bump fallback max token limit to 32k (#6787) 2025-12-16 23:09:47 +00:00
dependabot[bot]
5cabd32638 chore(deps): Bump filelock from 3.15.4 to 3.20.1 in /backend/requirements (#6781)
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-12-16 22:36:09 +00:00
Justin Tahara
4ccd88c331 fix(confluence): Skip attachments gracefully (#6769) 2025-12-16 22:34:16 +00:00
Justin Tahara
5a80b98320 feat(cleanup): No Bastion Setup (#6562) 2025-12-16 14:51:05 -08:00
Jamison Lahman
ff109d9f5c chore(style): fix chat page scrollbar after padding change (#6780) 2025-12-16 22:08:12 +00:00
Justin Tahara
4cc276aca9 fix(helm): Add Update Strategy (#6782) 2025-12-16 14:19:20 -08:00
Jamison Lahman
29f0df2c93 fix(style): increase tooltip z-index (#6778) 2025-12-16 21:30:19 +00:00
Nikolas Garza
e2edcf0e0b fix: improve ux for fed slack config error handling (#6699) 2025-12-16 21:23:11 +00:00
Chris Weaver
9396fc547d fix: confluence params (#6773) 2025-12-16 20:53:39 +00:00
Jamison Lahman
c089903aad fix: chat page overflow on small screens (#6723) 2025-12-16 13:03:07 -08:00
Chris Weaver
95471f64e9 fix: main chat page w/ overridden app name (#6775) 2025-12-16 12:56:15 -08:00
Jamison Lahman
13c1619d01 fix(style): center-ish align chat icon on small screen (#6727) 2025-12-16 20:10:09 +00:00
Justin Tahara
ddb5068847 fix(helm): Redis Operator Name (#6770) 2025-12-16 20:07:00 +00:00
Nikolas Garza
81a4f654c2 fix: scrollable container height for popover.tsx (#6772) 2025-12-16 20:04:33 +00:00
Jamison Lahman
9393c56a21 fix: remove unnecessary chat display tabindex (#6722) 2025-12-16 20:00:01 +00:00
Nikolas Garza
1ee96ff99c fix(llm): fix custom provider detection and model filtering (#6766) 2025-12-16 19:14:38 +00:00
Jamison Lahman
6bb00d2c6b chore(gha): run connector tests when uv.lock changes (#6768) 2025-12-16 18:44:06 +00:00
Wenxi
d9cc923c6a fix(hubspot): api client and urllib conflict (#6765) 2025-12-16 18:35:24 +00:00
Evan Lohn
bfbba0f036 chore: gpt 5.2 model naming (#6754) 2025-12-16 10:38:29 -08:00
Wenxi
ccf6911f97 chore: alembic readme nit (#6767) 2025-12-16 10:20:50 -08:00
Wenxi
15c9c2ba8e fix(llms): only save model configs for active/usable LLMs (#6758) 2025-12-16 17:54:47 +00:00
Wenxi
8b3fedf480 fix(web search): clamp google pse max results to api max (#6764) 2025-12-16 09:47:56 -08:00
Jamison Lahman
b8dc0749ee chore(tests): allow REDIS_CLOUD_PYTEST_PASSWORD to be empty (#6249) 2025-12-16 02:53:28 -08:00
Jamison Lahman
d6426458c6 chore(hygiene): rm unused secrets (#6762) 2025-12-16 02:29:56 -08:00
Jamison Lahman
941c4d6a54 chore(gha): use ods openapi in CI (#6761) 2025-12-16 02:04:42 -08:00
Jamison Lahman
653b65da66 chore(devtools): replace check_lazy_imports.py w/ ods check-lazy-imports (#6760) 2025-12-16 01:05:08 -08:00
Jamison Lahman
503e70be02 chore(deployment): fetch-depth: 0 for check-version-tag (#6759) 2025-12-15 23:51:37 -08:00
Nikolas Garza
9c19493160 fix: llm popover scroll (#6757) 2025-12-16 05:24:28 +00:00
Nikolas Garza
933315646b fix(llm): restore default models and filter obsolete/duplicate models from API (#6731) 2025-12-16 03:11:38 +00:00
Nikolas Garza
d2061f8a26 chore(ui): LLM popover improvements (#6742) 2025-12-15 19:36:00 -08:00
Jamison Lahman
6a98f0bf3c chore(devtools): ods openapi to generate schema and client (#6748) 2025-12-15 19:34:12 -08:00
Jamison Lahman
2f4d39d834 chore(devtools): ods check-lazy-imports (#6751) 2025-12-15 18:54:49 -08:00
Raunak Bhagat
40f8bcc6f8 refactor: Clean up message display (#6706) 2025-12-15 18:48:32 -08:00
Wenxi
af9ed73f00 fix(llms): reduce list of openai models (#6753) 2025-12-16 02:28:17 +00:00
acaprau
bf28041f4e feat(agents pagination): FE changes for pagination to the agents admin page (#6516)
Co-authored-by: Andrei <andrei@Andreis-MacBook-Pro.local>
2025-12-16 02:21:43 +00:00
Wenxi
395d5927b7 fix(llms): destructure fetched_model_configurations (#6749) 2025-12-16 01:33:16 +00:00
Jamison Lahman
c96f24e37c chore(deployment): run check-version-tag in debug mode (#6747) 2025-12-15 17:15:51 -08:00
Emerson Gomes
070519f823 Add LLM Session Tracking for Budget Control and Observability (#6564)
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Wenxi Onyx <wenxi@onyx.app>
2025-12-15 23:45:25 +00:00
Jamison Lahman
a7dc1c0f3b chore(gha): remove duplicate check-lazy-imports (#6746) 2025-12-15 15:38:13 -08:00
Jamison Lahman
a947e44926 chore(gha): uv run openapi-generator-cli instead of docker (#6737) 2025-12-15 22:00:39 +00:00
Evan Lohn
a6575b6254 feat: allow updating embedding API key (#6707) 2025-12-15 19:21:05 +00:00
Wenxi
31733a9c7c fix(projects): don't disable internal search when no project files are uploaded (#6732) 2025-12-15 10:53:17 -08:00
dependabot[bot]
5415e2faf1 chore(deps): Bump actions/setup-node from 6.0.0 to 6.1.0 (#6735)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-12-15 18:34:29 +00:00
dependabot[bot]
749f720dfd chore(deps): Bump actions/checkout from 6.0.0 to 6.0.1 (#6734)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-12-15 18:32:05 +00:00
Wenxi
eac79cfdf2 chore: disable coda tests temporarily until we fully configure (#6733) 2025-12-15 10:19:28 -08:00
Chris Weaver
e3b1202731 fix: mypy (#6724) 2025-12-15 09:46:02 -08:00
Yuhong Sun
6df13cc2de feat: Handle repeat calls to internal search (#6728) 2025-12-14 23:59:35 -08:00
Yuhong Sun
682f660aa3 feat: Minor teachups on DR (#6726) 2025-12-14 23:00:30 -08:00
Yuhong Sun
c4670ea86c feat: Deep Research Clarification Stage (#6725) 2025-12-14 22:55:39 -08:00
ethan
a6757eb49f feat: add coda connector (#6558)
Co-authored-by: cubic-dev-ai[bot] <191113872+cubic-dev-ai[bot]@users.noreply.github.com>
2025-12-14 19:49:55 -08:00
Justin Tahara
cd372fb585 fix(asana): Cleaning up Errors (#6689) 2025-12-15 02:07:05 +00:00
Chris Weaver
45fa0d9b32 fix: package-lock.json (#6721) 2025-12-14 17:36:48 -08:00
Chris Weaver
45091f2ee2 fix: add darwin (#6634) 2025-12-14 17:14:16 -08:00
Chris Weaver
43a3cb89b9 fix: env vars for tests (#6720) 2025-12-14 16:37:06 -08:00
Chris Weaver
9428eaed8d fix: copying markdown tables into spreadsheets (#6717) 2025-12-14 23:01:07 +00:00
Chris Weaver
dd29d989ff chore: ignore plans dir (#6718) 2025-12-14 14:50:21 -08:00
Chris Weaver
f44daa2116 fix: remove bottom logo (#6716) 2025-12-14 22:09:27 +00:00
Justin Tahara
212cbcb683 fix(redis): Adding missing TTL's (#6708) 2025-12-13 02:15:09 +00:00
Justin Tahara
aaad573c3f feat(helm): Add Default Redis Configs (#6709) 2025-12-13 02:10:27 +00:00
Jamison Lahman
e1325e84ae chore(pre-commit): test selection w/ merge-group & postsubmits (#6705) 2025-12-13 00:08:39 +00:00
Evan Lohn
e759cdd4ab fix: mcp server name and desc updates (#6692) 2025-12-12 07:04:46 +00:00
568 changed files with 13440 additions and 5668 deletions

View File

@@ -1,33 +0,0 @@
name: Check Lazy Imports
concurrency:
group: Check-Lazy-Imports-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on:
merge_group:
pull_request:
branches:
- main
- 'release/**'
permissions:
contents: read
jobs:
check-lazy-imports:
runs-on: ubuntu-latest
timeout-minutes: 45
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@83679a892e2d95755f2dac6acb0bfd1e9ac5d548 # ratchet:actions/setup-python@v6
with:
python-version: '3.11'
- name: Check lazy imports
run: python3 backend/scripts/check_lazy_imports.py

View File

@@ -89,9 +89,10 @@ jobs:
if: ${{ !startsWith(github.ref_name, 'nightly-latest') && github.event_name != 'workflow_dispatch' }}
steps:
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
fetch-depth: 0
- name: Setup uv
uses: astral-sh/setup-uv@1e862dfacbd1d6d858c55d9b792c756523627244 # ratchet:astral-sh/setup-uv@v7.1.4
@@ -111,7 +112,7 @@ jobs:
timeout-minutes: 10
steps:
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -140,7 +141,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -198,7 +199,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -306,7 +307,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -372,7 +373,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -485,7 +486,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -542,7 +543,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -650,7 +651,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -714,7 +715,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -907,7 +908,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -997,7 +998,7 @@ jobs:
timeout-minutes: 90
steps:
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false

View File

@@ -15,7 +15,7 @@ jobs:
timeout-minutes: 45
steps:
- name: Checkout
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
fetch-depth: 0
persist-credentials: false

View File

@@ -28,7 +28,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false

View File

@@ -52,7 +52,7 @@ jobs:
test-dirs: ${{ steps.set-matrix.outputs.test-dirs }}
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -80,12 +80,13 @@ jobs:
env:
PYTHONPATH: ./backend
MODEL_SERVER_HOST: "disabled"
DISABLE_TELEMETRY: "true"
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -113,6 +114,7 @@ jobs:
run: |
cat <<EOF > deployment/docker_compose/.env
CODE_INTERPRETER_BETA_ENABLED=true
DISABLE_TELEMETRY=true
EOF
- name: Set up Standard Dependencies

View File

@@ -24,7 +24,7 @@ jobs:
# fetch-depth 0 is required for helm/chart-testing-action
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
fetch-depth: 0
persist-credentials: false

View File

@@ -43,7 +43,7 @@ jobs:
test-dirs: ${{ steps.set-matrix.outputs.test-dirs }}
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -74,7 +74,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -129,7 +129,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -183,7 +183,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -259,7 +259,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -274,23 +274,28 @@ jobs:
# NOTE: Use pre-ping/null pool to reduce flakiness due to dropped connections
# NOTE: don't need web server for integration tests
- name: Start Docker containers
- name: Create .env file for Docker Compose
env:
ECR_CACHE: ${{ env.RUNS_ON_ECR_CACHE }}
RUN_ID: ${{ github.run_id }}
run: |
cat <<EOF > deployment/docker_compose/.env
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true
AUTH_TYPE=basic
POSTGRES_POOL_PRE_PING=true
POSTGRES_USE_NULL_POOL=true
REQUIRE_EMAIL_VERIFICATION=false
DISABLE_TELEMETRY=true
ONYX_BACKEND_IMAGE=${ECR_CACHE}:integration-test-backend-test-${RUN_ID}
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID}
INTEGRATION_TESTS_MODE=true
CHECK_TTL_MANAGEMENT_TASK_FREQUENCY_IN_HOURS=0.001
MCP_SERVER_ENABLED=true
EOF
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
POSTGRES_POOL_PRE_PING=true \
POSTGRES_USE_NULL_POOL=true \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
ONYX_BACKEND_IMAGE=${ECR_CACHE}:integration-test-backend-test-${RUN_ID} \
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID} \
INTEGRATION_TESTS_MODE=true \
CHECK_TTL_MANAGEMENT_TASK_FREQUENCY_IN_HOURS=0.001 \
MCP_SERVER_ENABLED=true \
docker compose -f docker-compose.yml -f docker-compose.dev.yml up \
relational_db \
index \
@@ -436,7 +441,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false

View File

@@ -16,12 +16,12 @@ jobs:
timeout-minutes: 45
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
- name: Setup node
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # ratchet:actions/setup-node@v4
uses: actions/setup-node@395ad3262231945c25e8478fd5baf05154b1d79f # ratchet:actions/setup-node@v4
with:
node-version: 22
cache: "npm"

View File

@@ -40,7 +40,7 @@ jobs:
test-dirs: ${{ steps.set-matrix.outputs.test-dirs }}
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -70,7 +70,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -124,7 +124,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -177,7 +177,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -253,7 +253,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -268,21 +268,26 @@ jobs:
# NOTE: Use pre-ping/null pool to reduce flakiness due to dropped connections
# NOTE: don't need web server for integration tests
- name: Start Docker containers
- name: Create .env file for Docker Compose
env:
ECR_CACHE: ${{ env.RUNS_ON_ECR_CACHE }}
RUN_ID: ${{ github.run_id }}
run: |
cat <<EOF > deployment/docker_compose/.env
AUTH_TYPE=basic
POSTGRES_POOL_PRE_PING=true
POSTGRES_USE_NULL_POOL=true
REQUIRE_EMAIL_VERIFICATION=false
DISABLE_TELEMETRY=true
ONYX_BACKEND_IMAGE=${ECR_CACHE}:integration-test-backend-test-${RUN_ID}
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID}
INTEGRATION_TESTS_MODE=true
MCP_SERVER_ENABLED=true
EOF
- name: Start Docker containers
run: |
cd deployment/docker_compose
AUTH_TYPE=basic \
POSTGRES_POOL_PRE_PING=true \
POSTGRES_USE_NULL_POOL=true \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
ONYX_BACKEND_IMAGE=${ECR_CACHE}:integration-test-backend-test-${RUN_ID} \
ONYX_MODEL_SERVER_IMAGE=${ECR_CACHE}:integration-test-model-server-test-${RUN_ID} \
INTEGRATION_TESTS_MODE=true \
MCP_SERVER_ENABLED=true \
docker compose -f docker-compose.yml -f docker-compose.dev.yml up \
relational_db \
index \

View File

@@ -53,7 +53,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -108,7 +108,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -163,7 +163,7 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -229,13 +229,13 @@ jobs:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
fetch-depth: 0
persist-credentials: false
- name: Setup node
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # ratchet:actions/setup-node@v4
uses: actions/setup-node@395ad3262231945c25e8478fd5baf05154b1d79f # ratchet:actions/setup-node@v4
with:
node-version: 22
cache: 'npm'
@@ -465,12 +465,12 @@ jobs:
# ]
# steps:
# - name: Checkout code
# uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
# uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
# with:
# fetch-depth: 0
# - name: Setup node
# uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # ratchet:actions/setup-node@v4
# uses: actions/setup-node@395ad3262231945c25e8478fd5baf05154b1d79f # ratchet:actions/setup-node@v4
# with:
# node-version: 22

View File

@@ -27,7 +27,7 @@ jobs:
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -40,35 +40,10 @@ jobs:
backend/requirements/model_server.txt
backend/requirements/ee.txt
- name: Generate OpenAPI schema
shell: bash
working-directory: backend
env:
PYTHONPATH: "."
run: |
python scripts/onyx_openapi_schema.py --filename generated/openapi.json
# needed for pulling openapitools/openapi-generator-cli
# otherwise, we hit the "Unauthenticated users" limit
# https://docs.docker.com/docker-hub/usage/
- name: Login to Docker Hub
uses: docker/login-action@5e57cd118135c172c3672efd75eb46360885c0ef # ratchet:docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Generate OpenAPI Python client
- name: Generate OpenAPI schema and Python client
shell: bash
run: |
docker run --rm \
-v "${{ github.workspace }}/backend/generated:/local" \
openapitools/openapi-generator-cli generate \
-i /local/openapi.json \
-g python \
-o /local/onyx_openapi_client \
--package-name onyx_openapi_client \
--skip-validate-spec \
--openapi-normalizer "SIMPLIFY_ONEOF_ANYOF=true,SET_OAS3_NULLABLE=true"
ods openapi all
- name: Cache mypy cache
if: ${{ vars.DISABLE_MYPY_CACHE != 'true' }}

View File

@@ -133,12 +133,13 @@ jobs:
env:
PYTHONPATH: ./backend
DISABLE_TELEMETRY: "true"
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
@@ -160,16 +161,20 @@ jobs:
hubspot:
- 'backend/onyx/connectors/hubspot/**'
- 'backend/tests/daily/connectors/hubspot/**'
- 'uv.lock'
salesforce:
- 'backend/onyx/connectors/salesforce/**'
- 'backend/tests/daily/connectors/salesforce/**'
- 'uv.lock'
github:
- 'backend/onyx/connectors/github/**'
- 'backend/tests/daily/connectors/github/**'
- 'uv.lock'
file_processing:
- 'backend/onyx/file_processing/**'
- 'uv.lock'
- name: Run Tests (excluding HubSpot, Salesforce, and GitHub)
- name: Run Tests (excluding HubSpot, Salesforce, GitHub, and Coda)
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: |
py.test \
@@ -182,7 +187,8 @@ jobs:
backend/tests/daily/connectors \
--ignore backend/tests/daily/connectors/hubspot \
--ignore backend/tests/daily/connectors/salesforce \
--ignore backend/tests/daily/connectors/github
--ignore backend/tests/daily/connectors/github \
--ignore backend/tests/daily/connectors/coda
- name: Run HubSpot Connector Tests
if: ${{ github.event_name == 'schedule' || steps.changes.outputs.hubspot == 'true' || steps.changes.outputs.file_processing == 'true' }}

View File

@@ -39,7 +39,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false

View File

@@ -26,15 +26,13 @@ jobs:
env:
PYTHONPATH: ./backend
REDIS_CLOUD_PYTEST_PASSWORD: ${{ secrets.REDIS_CLOUD_PYTEST_PASSWORD }}
SF_USERNAME: ${{ secrets.SF_USERNAME }}
SF_PASSWORD: ${{ secrets.SF_PASSWORD }}
SF_SECURITY_TOKEN: ${{ secrets.SF_SECURITY_TOKEN }}
DISABLE_TELEMETRY: "true"
steps:
- uses: runs-on/action@cd2b598b0515d39d78c38a02d529db87d2196d1e # ratchet:runs-on/action@v2
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false

View File

@@ -7,6 +7,8 @@ on:
merge_group:
pull_request: null
push:
branches:
- main
tags:
- "v*.*.*"
@@ -39,7 +41,7 @@ jobs:
- uses: j178/prek-action@91fd7d7cf70ae1dee9f4f44e7dfa5d1073fe6623 # ratchet:j178/prek-action@v1
with:
prek-version: '0.2.21'
extra_args: ${{ github.event_name == 'pull_request' && format('--from-ref {0} --to-ref {1}', github.event.pull_request.base.sha, github.event.pull_request.head.sha) || '' }}
extra-args: ${{ github.event_name == 'pull_request' && format('--from-ref {0} --to-ref {1}', github.event.pull_request.base.sha, github.event.pull_request.head.sha) || github.event_name == 'merge_group' && format('--from-ref {0} --to-ref {1}', github.event.merge_group.base_sha, github.event.merge_group.head_sha) || github.ref_name == 'main' && '--all-files' || '' }}
- name: Check Actions
uses: giner/check-actions@28d366c7cbbe235f9624a88aa31a628167eee28c # ratchet:giner/check-actions@v1.0.1
with:

View File

@@ -24,7 +24,7 @@ jobs:
- {goos: "darwin", goarch: "arm64"}
- {goos: "", goarch: ""}
steps:
- uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
- uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
persist-credentials: false
fetch-depth: 0

View File

@@ -14,7 +14,7 @@ jobs:
contents: read
steps:
- name: Checkout main Onyx repo
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
fetch-depth: 0
persist-credentials: false

View File

@@ -18,7 +18,7 @@ jobs:
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
# implement here which needs an actual user's deploy key
- name: Checkout code
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6
with:
ssh-key: "${{ secrets.DEPLOY_KEY }}"
persist-credentials: true

View File

@@ -17,7 +17,7 @@ jobs:
security-events: write # needed for SARIF uploads
steps:
- name: Checkout repository
uses: actions/checkout@1af3b93b6815bc44a9784bd300feb67ff0d1eeb3 # ratchet:actions/checkout@v6.0.0
uses: actions/checkout@8e8c483db84b4bee98b60c0593521ed34d9990e8 # ratchet:actions/checkout@v6.0.1
with:
persist-credentials: false

3
.gitignore vendored
View File

@@ -53,3 +53,6 @@ node_modules
# MCP configs
.playwright-mcp
# plans
plans/

View File

@@ -5,8 +5,13 @@ default_install_hook_types:
- post-rewrite
repos:
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 569ddf04117761eb74cef7afb5143bbb96fcdfbb # frozen: 0.9.15
# From: https://github.com/astral-sh/uv-pre-commit/pull/53/commits/d30b4298e4fb63ce8609e29acdbcf4c9018a483c
rev: d30b4298e4fb63ce8609e29acdbcf4c9018a483c
hooks:
- id: uv-run
name: Check lazy imports
args: ["--with=onyx-devtools", "ods", "check-lazy-imports"]
files: ^backend/(?!\.venv/).*\.py$
- id: uv-sync
args: ["--locked", "--all-extras"]
- id: uv-lock
@@ -14,19 +19,19 @@ repos:
- id: uv-export
name: uv-export default.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "backend", "-o", "backend/requirements/default.txt"]
files: ^(pyproject\.toml|uv\.lock)$
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export dev.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "dev", "-o", "backend/requirements/dev.txt"]
files: ^(pyproject\.toml|uv\.lock)$
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export ee.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "ee", "-o", "backend/requirements/ee.txt"]
files: ^(pyproject\.toml|uv\.lock)$
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
- id: uv-export
name: uv-export model_server.txt
args: ["--no-emit-project", "--no-default-groups", "--no-hashes", "--extra", "model_server", "-o", "backend/requirements/model_server.txt"]
files: ^(pyproject\.toml|uv\.lock)$
files: ^(pyproject\.toml|uv\.lock|backend/requirements/.*\.txt)$
# NOTE: This takes ~6s on a single, large module which is prohibitively slow.
# - id: uv-run
# name: mypy
@@ -71,7 +76,7 @@ repos:
args: [ '--remove-all-unused-imports', '--remove-unused-variables', '--in-place' , '--recursive']
- repo: https://github.com/golangci/golangci-lint
rev: e6ebea0145f385056bce15041d3244c0e5e15848 # frozen: v2.7.0
rev: 9f61b0f53f80672872fced07b6874397c3ed197b # frozen: v2.7.2
hooks:
- id: golangci-lint
entry: bash -c "find tools/ -name go.mod -print0 | xargs -0 -I{} bash -c 'cd \"$(dirname {})\" && golangci-lint run ./...'"
@@ -107,12 +112,6 @@ repos:
pass_filenames: false
files: \.tf$
- id: check-lazy-imports
name: Check lazy imports
entry: python3 backend/scripts/check_lazy_imports.py
language: system
files: ^backend/(?!\.venv/).*\.py$
- id: typescript-check
name: TypeScript type check
entry: bash -c 'cd web && npm run types:check'

View File

@@ -508,7 +508,6 @@
],
"cwd": "${workspaceFolder}",
"console": "integratedTerminal",
"stopOnEntry": true,
"presentation": {
"group": "3"
}

View File

@@ -4,7 +4,7 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
## KEY NOTES
- If you run into any missing python dependency errors, try running your command with `source backend/.venv/bin/activate` \
- If you run into any missing python dependency errors, try running your command with `source .venv/bin/activate` \
to assume the python venv.
- To make tests work, check the `.env` file at the root of the project to find an OpenAI key.
- If using `playwright` to explore the frontend, you can usually log in with username `a@test.com` and password

View File

@@ -7,8 +7,12 @@ Onyx migrations use a generic single-database configuration with an async dbapi.
## To generate new migrations:
run from onyx/backend:
`alembic revision --autogenerate -m <DESCRIPTION_OF_MIGRATION>`
From onyx/backend, run:
`alembic revision -m <DESCRIPTION_OF_MIGRATION>`
Note: you cannot use the `--autogenerate` flag as the automatic schema parsing does not work.
Manually populate the upgrade and downgrade in your new migration.
More info can be found here: https://alembic.sqlalchemy.org/en/latest/autogenerate.html

View File

@@ -0,0 +1,29 @@
"""add is_clarification to chat_message
Revision ID: 18b5b2524446
Revises: 87c52ec39f84
Create Date: 2025-01-16
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "18b5b2524446"
down_revision = "87c52ec39f84"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"chat_message",
sa.Column(
"is_clarification", sa.Boolean(), nullable=False, server_default="false"
),
)
def downgrade() -> None:
op.drop_column("chat_message", "is_clarification")

View File

@@ -0,0 +1,62 @@
"""update_default_tool_descriptions
Revision ID: a01bf2971c5d
Revises: 87c52ec39f84
Create Date: 2025-12-16 15:21:25.656375
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "a01bf2971c5d"
down_revision = "18b5b2524446"
branch_labels = None
depends_on = None
# new tool descriptions (12/2025)
TOOL_DESCRIPTIONS = {
"SearchTool": "The Search Action allows the agent to search through connected knowledge to help build an answer.",
"ImageGenerationTool": (
"The Image Generation Action allows the agent to use DALL-E 3 or GPT-IMAGE-1 to generate images. "
"The action will be used when the user asks the agent to generate an image."
),
"WebSearchTool": (
"The Web Search Action allows the agent "
"to perform internet searches for up-to-date information."
),
"KnowledgeGraphTool": (
"The Knowledge Graph Search Action allows the agent to search the "
"Knowledge Graph for information. This tool can (for now) only be active in the KG Beta Agent, "
"and it requires the Knowledge Graph to be enabled."
),
"OktaProfileTool": (
"The Okta Profile Action allows the agent to fetch the current user's information from Okta. "
"This may include the user's name, email, phone number, address, and other details such as their "
"manager and direct reports."
),
}
def upgrade() -> None:
conn = op.get_bind()
conn.execute(sa.text("BEGIN"))
try:
for tool_id, description in TOOL_DESCRIPTIONS.items():
conn.execute(
sa.text(
"UPDATE tool SET description = :description WHERE in_code_tool_id = :tool_id"
),
{"description": description, "tool_id": tool_id},
)
conn.execute(sa.text("COMMIT"))
except Exception as e:
conn.execute(sa.text("ROLLBACK"))
raise e
def downgrade() -> None:
pass

View File

@@ -8,6 +8,7 @@ from sqlalchemy import func
from sqlalchemy import Select
from sqlalchemy import select
from sqlalchemy import update
from sqlalchemy.dialects.postgresql import insert
from sqlalchemy.orm import Session
from ee.onyx.server.user_group.models import SetCuratorRequest
@@ -362,14 +363,29 @@ def _check_user_group_is_modifiable(user_group: UserGroup) -> None:
def _add_user__user_group_relationships__no_commit(
db_session: Session, user_group_id: int, user_ids: list[UUID]
) -> list[User__UserGroup]:
"""NOTE: does not commit the transaction."""
relationships = [
User__UserGroup(user_id=user_id, user_group_id=user_group_id)
for user_id in user_ids
]
db_session.add_all(relationships)
return relationships
) -> None:
"""NOTE: does not commit the transaction.
This function is idempotent - it will skip users who are already in the group
to avoid duplicate key violations during concurrent operations or re-syncs.
Uses ON CONFLICT DO NOTHING to keep inserts atomic under concurrency.
"""
if not user_ids:
return
insert_stmt = (
insert(User__UserGroup)
.values(
[
{"user_id": user_id, "user_group_id": user_group_id}
for user_id in user_ids
]
)
.on_conflict_do_nothing(
index_elements=[User__UserGroup.user_group_id, User__UserGroup.user_id]
)
)
db_session.execute(insert_stmt)
def _add_user_group__cc_pair_relationships__no_commit(

View File

@@ -219,7 +219,7 @@ def verify_email_is_invited(email: str) -> None:
raise PermissionError("Email must be specified")
try:
email_info = validate_email(email)
email_info = validate_email(email, check_deliverability=False)
except EmailUndeliverableError:
raise PermissionError("Email is not valid")
@@ -227,7 +227,9 @@ def verify_email_is_invited(email: str) -> None:
try:
# normalized emails are now being inserted into the db
# we can remove this normalization on read after some time has passed
email_info_whitelist = validate_email(email_whitelist)
email_info_whitelist = validate_email(
email_whitelist, check_deliverability=False
)
except EmailNotValidError:
continue

View File

@@ -105,52 +105,49 @@ S, U1, TC, TR, R -- agent calls another tool -> S, U1, TC, TR, TC, TR, R, A1
- Reminder moved to the end
```
## Product considerations
Project files are important to the entire duration of the chat session. If the user has uploaded project files, they are likely very intent on working with
those files. The LLM is much better at referencing documents close to the end of the context window so keeping it there for ease of access.
User uploaded files are considered relevant for that point in time, it is ok if the Agent forgets about it as the chat gets long. If every uploaded file is
constantly moved towards the end of the chat, it would degrade quality as these stack up. Even with a single file, there is some cost of making the previous
User Message further away. This tradeoff is accepted for Projects because of the intent of the feature.
Reminder are absolutely necessary to ensure 1-2 specific instructions get followed with a very high probability. It is less detailed than the system prompt
and should be very targetted for it to work reliably and also not interfere with the last user message.
## Reasons / Experiments
Custom Agent instructions being placed in the system prompt is poorly followed. It also degrade performance of the system especially when the instructions
are orthogonal (or even possibly contradictory) to the system prompt. For weaker models, it causes strange artifacts in tool calls and final responses
that completely ruins the user experience. Empirically, this way works better across a range of models especially when the history gets longer.
Having the Custom Agent instructions not move means it fades more as the chat gets long which is also not ok from a UX perspective.
Project files are important to the entire duration of the chat session. If the user has uploaded project files, they are likely very intent on working with
those files. The LLM is much better at referencing documents close to the end of the context window so keeping it there for ease of access.
Reminder are absolutely necessary to ensure 1-2 specific instructions get followed with a very high probability. It is less detailed than the system prompt
and should be very targetted for it to work reliably.
User uploaded files are considered relevant for that point in time, it is ok if the Agent forgets about it as the chat gets long. If every uploaded file is
constantly moved towards the end of the chat, it would degrade quality as these stack up. Even with a single file, there is some cost of making the previous
User Message further away. This tradeoff is accepted for Projects because of the intent of the feature.
## Other related pointers
- How messages, files, images are stored can be found in db/models.py
# Appendix (just random tidbits for those interested)
- Reminder messages are placed at the end of the prompt because all model fine tuning approaches cause the LLMs to attend very strongly to the tokens at the very
back of the context closest to generation. This is the only way to get the LLMs to not miss critical information and for the product to be reliable. Specifically
the built-in reminders are around citations and what tools it should call in certain situations.
- LLMs are able to handle changes in topic best at message boundaries. There are special tokens under the hood for this. We also use this property to slice up
the history in the way presented above.
- Different LLMs vary in this but some now have a section that cannot be set via the API layer called the "System Prompt" (OpenAI terminology) which contains
Different LLMs vary in this but some now have a section that cannot be set via the API layer called the "System Prompt" (OpenAI terminology) which contains
information like the model cutoff date, identity, and some other basic non-changing information. The System prompt described above is in that convention called
the "Developer Prompt". It seems the distribution of the System Prompt, by which I mean the style of wording and terms used can also affect the behavior. This
is different between different models and not necessarily scientific so the system prompt is built from an exploration across different models. It currently
starts with: "You are a highly capable, thoughtful, and precise assistant. Your goal is to deeply understand the user's intent..."
- The document json includes a field for the LLM to cite (it's a single number) to make citations reliable and avoid weird artifacts. It's called "document" so
LLMs are able to handle changes in topic best at message boundaries. There are special tokens under the hood for this. We also use this property to slice up
the history in the way presented above.
Reminder messages are placed at the end of the prompt because all model fine tuning approaches cause the LLMs to attend very strongly to the tokens at the very
back of the context closest to generation. This is the only way to get the LLMs to not miss critical information and for the product to be reliable. Specifically
the built-in reminders are around citations and what tools it should call in certain situations.
The document json includes a field for the LLM to cite (it's a single number) to make citations reliable and avoid weird artifacts. It's called "document" so
that the LLM does not create weird artifacts in reasoning like "I should reference citation_id: 5 for...". It is also strategically placed so that it is easy to
reference. It is followed by a couple short sections like the metadata and title before the long content section. It seems LLMs are still better at local
attention despite having global access.
- In a similar concept, LLM instructions in the system prompt are structured specifically so that there are coherent sections for the LLM to attend to. This is
In a similar concept, LLM instructions in the system prompt are structured specifically so that there are coherent sections for the LLM to attend to. This is
fairly surprising actually but if there is a line of instructions effectively saying "If you try to use some tools and find that you need more information or
need to call additional tools, you are encouraged to do this", having this in the Tool section of the System prompt makes all the LLMs follow it well but if it's
even just a paragraph away like near the beginning of the prompt, it is often often ignored. The difference is as drastic as a 30% follow rate to a 90% follow
rate even just moving the same statement a few sentences.
- Custom Agent prompts are also completely separate from the system prompt. Having potentially orthogonal instructions in the system prompt (both the actual
instructions and the writing style) can greatly deteriorate the quality of the responses. There is also a product motivation to keep it close to the end of
generation so it's strongly followed.
## Other related pointers
- How messages, files, images are stored can be found in backend/onyx/db/models.py, there is also a README.md under that directory that may be helpful.

View File

@@ -26,6 +26,8 @@ class ChatStateContainer:
self.answer_tokens: str | None = None
# Store citation mapping for building citation_docs_info during partial saves
self.citation_to_doc: dict[int, SearchDoc] = {}
# True if this turn is a clarification question (deep research flow)
self.is_clarification: bool = False
def add_tool_call(self, tool_call: ToolCallInfo) -> None:
"""Add a tool call to the accumulated state."""
@@ -43,6 +45,10 @@ class ChatStateContainer:
"""Set the citation mapping from citation processor."""
self.citation_to_doc = citation_to_doc
def set_is_clarification(self, is_clarification: bool) -> None:
"""Set whether this turn is a clarification question."""
self.is_clarification = is_clarification
def run_chat_llm_with_state_containers(
func: Callable[..., None],

View File

@@ -477,7 +477,10 @@ def load_chat_file(
# Extract text content if it's a text file type (not an image)
content_text = None
file_type = file_descriptor["type"]
# `FileDescriptor` is often JSON-roundtripped (e.g. JSONB / API), so `type`
# may arrive as a raw string value instead of a `ChatFileType`.
file_type = ChatFileType(file_descriptor["type"])
if file_type.is_text_file():
try:
content_text = content.decode("utf-8")
@@ -708,3 +711,21 @@ def get_custom_agent_prompt(persona: Persona, chat_session: ChatSession) -> str
return chat_session.project.instructions
else:
return None
def is_last_assistant_message_clarification(chat_history: list[ChatMessage]) -> bool:
"""Check if the last assistant message in chat history was a clarification question.
This is used in the deep research flow to determine whether to skip the
clarification step when the user has already responded to a clarification.
Args:
chat_history: List of ChatMessage objects in chronological order
Returns:
True if the last assistant message has is_clarification=True, False otherwise
"""
for message in reversed(chat_history):
if message.message_type == MessageType.ASSISTANT:
return message.is_clarification
return False

View File

@@ -25,6 +25,7 @@ from onyx.context.search.models import SearchDoc
from onyx.context.search.models import SearchDocsResponse
from onyx.db.models import Persona
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.utils import model_needs_formatting_reenabled
from onyx.prompts.chat_prompts import IMAGE_GEN_REMINDER
@@ -103,15 +104,23 @@ def construct_message_history(
custom_agent_prompt: ChatMessageSimple | None,
simple_chat_history: list[ChatMessageSimple],
reminder_message: ChatMessageSimple | None,
project_files: ExtractedProjectFiles,
project_files: ExtractedProjectFiles | None,
available_tokens: int,
last_n_user_messages: int | None = None,
) -> list[ChatMessageSimple]:
if last_n_user_messages is not None:
if last_n_user_messages <= 0:
raise ValueError(
"filtering chat history by last N user messages must be a value greater than 0"
)
history_token_budget = available_tokens
history_token_budget -= system_prompt.token_count
history_token_budget -= (
custom_agent_prompt.token_count if custom_agent_prompt else 0
)
history_token_budget -= project_files.total_token_count
if project_files:
history_token_budget -= project_files.total_token_count
history_token_budget -= reminder_message.token_count if reminder_message else 0
if history_token_budget < 0:
@@ -122,7 +131,7 @@ def construct_message_history(
result = [system_prompt]
if custom_agent_prompt:
result.append(custom_agent_prompt)
if project_files.project_file_texts:
if project_files and project_files.project_file_texts:
project_message = _create_project_files_message(
project_files, token_counter=None
)
@@ -131,6 +140,26 @@ def construct_message_history(
result.append(reminder_message)
return result
# If last_n_user_messages is set, filter history to only include the last n user messages
if last_n_user_messages is not None:
# Find all user message indices
user_msg_indices = [
i
for i, msg in enumerate(simple_chat_history)
if msg.message_type == MessageType.USER
]
if not user_msg_indices:
raise ValueError("No user message found in simple_chat_history")
# If we have more than n user messages, keep only the last n
if len(user_msg_indices) > last_n_user_messages:
# Find the index of the n-th user message from the end
# For example, if last_n_user_messages=2, we want the 2nd-to-last user message
nth_user_msg_index = user_msg_indices[-(last_n_user_messages)]
# Keep everything from that user message onwards
simple_chat_history = simple_chat_history[nth_user_msg_index:]
# Find the last USER message in the history
# The history may contain tool calls and responses after the last user message
last_user_msg_index = None
@@ -178,7 +207,7 @@ def construct_message_history(
break
# Attach project images to the last user message
if project_files.project_image_files:
if project_files and project_files.project_image_files:
existing_images = last_user_message.image_files or []
last_user_message = ChatMessageSimple(
message=last_user_message.message,
@@ -200,7 +229,7 @@ def construct_message_history(
result.append(custom_agent_prompt)
# 3. Add project files message (inserted before last user message)
if project_files.project_file_texts:
if project_files and project_files.project_file_texts:
project_message = _create_project_files_message(
project_files, token_counter=None
)
@@ -263,6 +292,7 @@ def run_llm_loop(
token_counter: Callable[[str], int],
db_session: Session,
forced_tool_id: int | None = None,
user_identity: LLMUserIdentity | None = None,
) -> None:
with trace("run_llm_loop", metadata={"tenant_id": get_current_tenant_id()}):
# Fix some LiteLLM issues,
@@ -310,6 +340,7 @@ def run_llm_loop(
should_cite_documents: bool = False
ran_image_gen: bool = False
just_ran_web_search: bool = False
has_called_search_tool: bool = False
citation_mapping: dict[int, str] = {} # Maps citation_num -> document_id/URL
current_tool_call_index = (
@@ -426,6 +457,7 @@ def run_llm_loop(
# immediately yield the full set of found documents. This gives us the option to show the
# final set of documents immediately if desired.
final_documents=gathered_documents,
user_identity=user_identity,
)
# Consume the generator, emitting packets and capturing the final result
@@ -460,8 +492,13 @@ def run_llm_loop(
user_info=None, # TODO, this is part of memories right now, might want to separate it out
citation_mapping=citation_mapping,
citation_processor=citation_processor,
skip_search_query_expansion=has_called_search_tool,
)
# Track if search tool was called (for skipping query expansion on subsequent calls)
if tool_call.tool_name == SearchTool.NAME:
has_called_search_tool = True
# Build a mapping of tool names to tool objects for getting tool_id
tools_by_name = {tool.name: tool for tool in final_tools}

View File

@@ -15,6 +15,7 @@ from onyx.context.search.models import SearchDoc
from onyx.file_store.models import ChatFileType
from onyx.llm.interfaces import LanguageModelInput
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.models import AssistantMessage
from onyx.llm.models import ChatCompletionMessage
@@ -332,6 +333,7 @@ def run_llm_step(
citation_processor: DynamicCitationProcessor,
state_container: ChatStateContainer,
final_documents: list[SearchDoc] | None = None,
user_identity: LLMUserIdentity | None = None,
) -> Generator[Packet, None, tuple[LlmStepResult, int]]:
# The second return value is for the turn index because reasoning counts on the frontend as a turn
# TODO this is maybe ok but does not align well with the backend logic too well
@@ -365,6 +367,7 @@ def run_llm_step(
tool_choice=tool_choice,
structured_response_format=None, # TODO
# reasoning_effort=ReasoningEffort.OFF, # Can set this for dev/testing.
user_identity=user_identity,
):
if packet.usage:
usage = packet.usage

View File

@@ -102,6 +102,11 @@ class MessageResponseIDInfo(BaseModel):
class StreamingError(BaseModel):
error: str
stack_trace: str | None = None
error_code: str | None = (
None # e.g., "RATE_LIMIT", "AUTH_ERROR", "TOOL_CALL_FAILED"
)
is_retryable: bool = True # Hint to frontend if retry might help
details: dict | None = None # Additional context (tool name, model name, etc.)
class OnyxAnswer(BaseModel):

View File

@@ -13,6 +13,7 @@ from onyx.chat.chat_state import run_chat_llm_with_state_containers
from onyx.chat.chat_utils import convert_chat_history
from onyx.chat.chat_utils import create_chat_history_chain
from onyx.chat.chat_utils import get_custom_agent_prompt
from onyx.chat.chat_utils import is_last_assistant_message_clarification
from onyx.chat.chat_utils import load_all_chat_files
from onyx.chat.emitter import get_default_emitter
from onyx.chat.llm_loop import run_llm_loop
@@ -53,6 +54,7 @@ from onyx.file_store.utils import verify_user_files
from onyx.llm.factory import get_llm_token_counter
from onyx.llm.factory import get_llms_for_persona
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.utils import litellm_exception_to_error_msg
from onyx.onyxbot.slack.models import SlackContext
from onyx.redis.redis_pool import get_redis_client
@@ -62,10 +64,12 @@ from onyx.server.query_and_chat.streaming_models import AgentResponseStart
from onyx.server.query_and_chat.streaming_models import CitationInfo
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.server.utils import get_json_line
from onyx.tools.constants import SEARCH_TOOL_ID
from onyx.tools.tool import Tool
from onyx.tools.tool_constructor import construct_tools
from onyx.tools.tool_constructor import CustomToolConfig
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_constructor import SearchToolUsage
from onyx.utils.logger import setup_logger
from onyx.utils.long_term_log import LongTermLogger
from onyx.utils.timing import log_function_time
@@ -79,6 +83,10 @@ ERROR_TYPE_CANCELLED = "cancelled"
class ToolCallException(Exception):
"""Exception raised for errors during tool calls."""
def __init__(self, message: str, tool_name: str | None = None):
super().__init__(message)
self.tool_name = tool_name
def _extract_project_file_texts_and_images(
project_id: int | None,
@@ -206,6 +214,46 @@ def _extract_project_file_texts_and_images(
)
def _get_project_search_availability(
project_id: int | None,
persona_id: int | None,
has_project_file_texts: bool,
forced_tool_ids: list[int] | None,
search_tool_id: int | None,
) -> SearchToolUsage:
"""Determine search tool availability based on project context.
Args:
project_id: The project ID if the user is in a project
persona_id: The persona ID to check if it's the default persona
has_project_file_texts: Whether project files are loaded in context
forced_tool_ids: List of forced tool IDs (may be mutated to remove search tool)
search_tool_id: The search tool ID to check against
Returns:
SearchToolUsage setting indicating how search should be used
"""
# There are cases where the internal search tool should be disabled
# If the user is in a project, it should not use other sources / generic search
# If they are in a project but using a custom agent, it should use the agent setup
# (which means it can use search)
# However if in a project and there are more files than can fit in the context,
# it should use the search tool with the project filter on
# If no files are uploaded, search should remain enabled
search_usage_forcing_setting = SearchToolUsage.AUTO
if project_id:
if bool(persona_id is DEFAULT_PERSONA_ID and has_project_file_texts):
search_usage_forcing_setting = SearchToolUsage.DISABLED
# Remove search tool from forced_tool_ids if it's present
if forced_tool_ids and search_tool_id and search_tool_id in forced_tool_ids:
forced_tool_ids[:] = [
tool_id for tool_id in forced_tool_ids if tool_id != search_tool_id
]
elif forced_tool_ids and search_tool_id and search_tool_id in forced_tool_ids:
search_usage_forcing_setting = SearchToolUsage.ENABLED
return search_usage_forcing_setting
def _initialize_chat_session(
message_text: str,
files: list[FileDescriptor],
@@ -285,10 +333,15 @@ def stream_chat_message_objects(
tenant_id = get_current_tenant_id()
use_existing_user_message = new_msg_req.use_existing_user_message
llm: LLM
llm: LLM | None = None
try:
user_id = user.id if user is not None else None
llm_user_identifier = (
user.email
if user is not None and getattr(user, "email", None)
else (str(user_id) if user_id else "anonymous_user")
)
chat_session = get_chat_session_by_id(
chat_session_id=new_msg_req.chat_session_id,
@@ -299,6 +352,9 @@ def stream_chat_message_objects(
message_text = new_msg_req.message
chat_session_id = new_msg_req.chat_session_id
user_identity = LLMUserIdentity(
user_id=llm_user_identifier, session_id=str(chat_session_id)
)
parent_id = new_msg_req.parent_message_id
reference_doc_ids = new_msg_req.search_doc_ids
retrieval_options = new_msg_req.retrieval_options
@@ -391,19 +447,23 @@ def stream_chat_message_objects(
db_session=db_session,
)
# There are cases where the internal search tool should be disabled
# If the user is in a project, it should not use other sources / generic search
# If they are in a project but using a custom agent, it should use the agent setup
# (which means it can use search)
# However if in a project and there are more files than can fit in the context,
# it should use the search tool with the project filter on
disable_internal_search = bool(
chat_session.project_id
and persona.id is DEFAULT_PERSONA_ID
and (
extracted_project_files.project_file_texts
or not extracted_project_files.project_as_filter
)
# Build a mapping of tool_id to tool_name for history reconstruction
all_tools = get_tools(db_session)
tool_id_to_name_map = {tool.id: tool.name for tool in all_tools}
search_tool_id = next(
(tool.id for tool in all_tools if tool.in_code_tool_id == SEARCH_TOOL_ID),
None,
)
# This may also mutate the new_msg_req.forced_tool_ids
# This logic is specifically for projects
search_usage_forcing_setting = _get_project_search_availability(
project_id=chat_session.project_id,
persona_id=persona.id,
has_project_file_texts=bool(extracted_project_files.project_file_texts),
forced_tool_ids=new_msg_req.forced_tool_ids,
search_tool_id=search_tool_id,
)
emitter = get_default_emitter()
@@ -432,7 +492,7 @@ def stream_chat_message_objects(
additional_headers=custom_tool_additional_headers,
),
allowed_tool_ids=new_msg_req.allowed_tool_ids,
disable_internal_search=disable_internal_search,
search_usage_forcing_setting=search_usage_forcing_setting,
)
tools: list[Tool] = []
for tool_list in tool_dict.values():
@@ -457,10 +517,6 @@ def stream_chat_message_objects(
reserved_assistant_message_id=assistant_response.id,
)
# Build a mapping of tool_id to tool_name for history reconstruction
all_tools = get_tools(db_session)
tool_id_to_name_map = {tool.id: tool.name for tool in all_tools}
# Convert the chat history into a simple format that is free of any DB objects
# and is easy to parse for the agent loop
simple_chat_history = convert_chat_history(
@@ -491,6 +547,13 @@ def stream_chat_message_objects(
# Note: DB session is not thread safe but nothing else uses it and the
# reference is passed directly so it's ok.
if os.environ.get("ENABLE_DEEP_RESEARCH_LOOP"): # Dev only feature flag for now
if chat_session.project_id:
raise RuntimeError("Deep research is not supported for projects")
# Skip clarification if the last assistant message was a clarification
# (user has already responded to a clarification question)
skip_clarification = is_last_assistant_message_clarification(chat_history)
yield from run_chat_llm_with_state_containers(
run_deep_research_llm_loop,
is_connected=check_is_connected,
@@ -502,6 +565,8 @@ def stream_chat_message_objects(
llm=llm,
token_counter=token_counter,
db_session=db_session,
skip_clarification=skip_clarification,
user_identity=user_identity,
)
else:
yield from run_chat_llm_with_state_containers(
@@ -523,6 +588,7 @@ def stream_chat_message_objects(
if new_msg_req.forced_tool_ids
else None
),
user_identity=user_identity,
)
# Determine if stopped by user
@@ -567,13 +633,18 @@ def stream_chat_message_objects(
tool_calls=state_container.tool_calls,
db_session=db_session,
assistant_message=assistant_response,
is_clarification=state_container.is_clarification,
)
except ValueError as e:
logger.exception("Failed to process chat message.")
error_msg = str(e)
yield StreamingError(error=error_msg)
yield StreamingError(
error=error_msg,
error_code="VALIDATION_ERROR",
is_retryable=True,
)
db_session.rollback()
return
@@ -583,9 +654,17 @@ def stream_chat_message_objects(
stack_trace = traceback.format_exc()
if isinstance(e, ToolCallException):
yield StreamingError(error=error_msg, stack_trace=stack_trace)
yield StreamingError(
error=error_msg,
stack_trace=stack_trace,
error_code="TOOL_CALL_FAILED",
is_retryable=True,
details={"tool_name": e.tool_name} if e.tool_name else None,
)
elif llm:
client_error_msg = litellm_exception_to_error_msg(e, llm)
client_error_msg, error_code, is_retryable = litellm_exception_to_error_msg(
e, llm
)
if llm.config.api_key and len(llm.config.api_key) > 2:
client_error_msg = client_error_msg.replace(
llm.config.api_key, "[REDACTED_API_KEY]"
@@ -594,7 +673,24 @@ def stream_chat_message_objects(
llm.config.api_key, "[REDACTED_API_KEY]"
)
yield StreamingError(error=client_error_msg, stack_trace=stack_trace)
yield StreamingError(
error=client_error_msg,
stack_trace=stack_trace,
error_code=error_code,
is_retryable=is_retryable,
details={
"model": llm.config.model_name,
"provider": llm.config.model_provider,
},
)
else:
# LLM was never initialized - early failure
yield StreamingError(
error="Failed to initialize the chat. Please check your configuration and try again.",
stack_trace=stack_trace,
error_code="INIT_FAILED",
is_retryable=True,
)
db_session.rollback()
return

View File

@@ -148,6 +148,7 @@ def save_chat_turn(
citation_docs_info: list[CitationDocInfo],
db_session: Session,
assistant_message: ChatMessage,
is_clarification: bool = False,
) -> None:
"""
Save a chat turn by populating the assistant_message and creating related entities.
@@ -175,10 +176,12 @@ def save_chat_turn(
citation_docs_info: List of citation document information for building citations mapping
db_session: Database session for persistence
assistant_message: The ChatMessage object to populate (should already exist in DB)
is_clarification: Whether this assistant message is a clarification question (deep research flow)
"""
# 1. Update ChatMessage with message content, reasoning tokens, and token count
assistant_message.message = message_text
assistant_message.reasoning_tokens = reasoning_tokens
assistant_message.is_clarification = is_clarification
# Calculate token count using default tokenizer, when storing, this should not use the LLM
# specific one so we use a system default tokenizer here.

View File

@@ -7,6 +7,7 @@ from shared_configs.contextvars import get_current_tenant_id
# Redis key prefixes for chat session stop signals
PREFIX = "chatsessionstop"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 24 * 60 * 60 # 24 hours - defensive TTL to prevent memory leaks
def set_fence(chat_session_id: UUID, redis_client: Redis, value: bool) -> None:
@@ -24,7 +25,7 @@ def set_fence(chat_session_id: UUID, redis_client: Redis, value: bool) -> None:
redis_client.delete(fence_key)
return
redis_client.set(fence_key, 0)
redis_client.set(fence_key, 0, ex=FENCE_TTL)
def is_connected(chat_session_id: UUID, redis_client: Redis) -> bool:

View File

@@ -24,6 +24,12 @@ APP_PORT = 8080
# prefix from requests directed towards the API server. In these cases, set this to `/api`
APP_API_PREFIX = os.environ.get("API_PREFIX", "")
# Whether to send user metadata (user_id/email and session_id) to the LLM provider.
# Disabled by default.
SEND_USER_METADATA_TO_LLM_PROVIDER = (
os.environ.get("SEND_USER_METADATA_TO_LLM_PROVIDER", "")
).lower() == "true"
#####
# User Facing Features Configs
#####

View File

@@ -177,6 +177,7 @@ class DocumentSource(str, Enum):
SLAB = "slab"
PRODUCTBOARD = "productboard"
FILE = "file"
CODA = "coda"
NOTION = "notion"
ZULIP = "zulip"
LINEAR = "linear"
@@ -596,6 +597,7 @@ DocumentSourceDescription: dict[DocumentSource, str] = {
DocumentSource.SLAB: "slab data",
DocumentSource.PRODUCTBOARD: "productboard data (boards, etc.)",
DocumentSource.FILE: "files",
DocumentSource.CODA: "coda - team workspace with docs, tables, and pages",
DocumentSource.NOTION: "notion data - a workspace that combines note-taking, \
project management, and collaboration tools into a single, customizable platform",
DocumentSource.ZULIP: "zulip data",

View File

@@ -65,9 +65,10 @@ GEN_AI_NUM_RESERVED_OUTPUT_TOKENS = int(
os.environ.get("GEN_AI_NUM_RESERVED_OUTPUT_TOKENS") or 1024
)
# Typically, GenAI models nowadays are at least 4K tokens
# Fallback token limit for models where the max context is unknown
# Set conservatively at 32K to handle most modern models
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = int(
os.environ.get("GEN_AI_MODEL_FALLBACK_MAX_TOKENS") or 4096
os.environ.get("GEN_AI_MODEL_FALLBACK_MAX_TOKENS") or 32000
)
# This is used when computing how much context space is available for documents

View File

@@ -97,28 +97,31 @@ class AsanaAPI:
self, project_gid: str, start_date: str, start_seconds: int
) -> Iterator[AsanaTask]:
project = self.project_api.get_project(project_gid, opts={})
if project["archived"]:
logger.info(f"Skipping archived project: {project['name']} ({project_gid})")
yield from []
if not project["team"] or not project["team"]["gid"]:
project_name = project.get("name", project_gid)
team = project.get("team") or {}
team_gid = team.get("gid")
if project.get("archived"):
logger.info(f"Skipping archived project: {project_name} ({project_gid})")
return
if not team_gid:
logger.info(
f"Skipping project without a team: {project['name']} ({project_gid})"
f"Skipping project without a team: {project_name} ({project_gid})"
)
yield from []
if project["privacy_setting"] == "private":
if self.team_gid and project["team"]["gid"] != self.team_gid:
return
if project.get("privacy_setting") == "private":
if self.team_gid and team_gid != self.team_gid:
logger.info(
f"Skipping private project not in configured team: {project['name']} ({project_gid})"
)
yield from []
else:
logger.info(
f"Processing private project in configured team: {project['name']} ({project_gid})"
f"Skipping private project not in configured team: {project_name} ({project_gid})"
)
return
logger.info(
f"Processing private project in configured team: {project_name} ({project_gid})"
)
simple_start_date = start_date.split(".")[0].split("+")[0]
logger.info(
f"Fetching tasks modified since {simple_start_date} for project: {project['name']} ({project_gid})"
f"Fetching tasks modified since {simple_start_date} for project: {project_name} ({project_gid})"
)
opts = {
@@ -157,7 +160,7 @@ class AsanaAPI:
link=data["permalink_url"],
last_modified=datetime.fromisoformat(data["modified_at"]),
project_gid=project_gid,
project_name=project["name"],
project_name=project_name,
)
yield task
except Exception:

View File

View File

@@ -0,0 +1,711 @@
import os
from collections.abc import Generator
from datetime import datetime
from datetime import timezone
from typing import Any
from typing import cast
from typing import Dict
from typing import List
from typing import Optional
from pydantic import BaseModel
from retry import retry
from onyx.configs.app_configs import INDEX_BATCH_SIZE
from onyx.configs.constants import DocumentSource
from onyx.connectors.cross_connector_utils.rate_limit_wrapper import (
rl_requests,
)
from onyx.connectors.exceptions import ConnectorValidationError
from onyx.connectors.exceptions import CredentialExpiredError
from onyx.connectors.exceptions import UnexpectedValidationError
from onyx.connectors.interfaces import GenerateDocumentsOutput
from onyx.connectors.interfaces import LoadConnector
from onyx.connectors.interfaces import PollConnector
from onyx.connectors.interfaces import SecondsSinceUnixEpoch
from onyx.connectors.models import ConnectorMissingCredentialError
from onyx.connectors.models import Document
from onyx.connectors.models import ImageSection
from onyx.connectors.models import TextSection
from onyx.utils.batching import batch_generator
from onyx.utils.logger import setup_logger
_CODA_CALL_TIMEOUT = 30
_CODA_BASE_URL = "https://coda.io/apis/v1"
logger = setup_logger()
class CodaClientRequestFailedError(ConnectionError):
def __init__(self, message: str, status_code: int):
super().__init__(
f"Coda API request failed with status {status_code}: {message}"
)
self.status_code = status_code
class CodaDoc(BaseModel):
id: str
browser_link: str
name: str
created_at: str
updated_at: str
workspace_id: str
workspace_name: str
folder_id: str | None
folder_name: str | None
class CodaPage(BaseModel):
id: str
browser_link: str
name: str
content_type: str
created_at: str
updated_at: str
doc_id: str
class CodaTable(BaseModel):
id: str
name: str
browser_link: str
created_at: str
updated_at: str
doc_id: str
class CodaRow(BaseModel):
id: str
name: Optional[str] = None
index: Optional[int] = None
browser_link: str
created_at: str
updated_at: str
values: Dict[str, Any]
table_id: str
doc_id: str
class CodaApiClient:
def __init__(
self,
bearer_token: str,
) -> None:
self.bearer_token = bearer_token
self.base_url = os.environ.get("CODA_BASE_URL", _CODA_BASE_URL)
def get(
self, endpoint: str, params: Optional[dict[str, str]] = None
) -> dict[str, Any]:
url = self._build_url(endpoint)
headers = self._build_headers()
response = rl_requests.get(
url, headers=headers, params=params, timeout=_CODA_CALL_TIMEOUT
)
try:
json = response.json()
except Exception:
json = {}
if response.status_code >= 300:
error = response.reason
response_error = json.get("error", {}).get("message", "")
if response_error:
error = response_error
raise CodaClientRequestFailedError(error, response.status_code)
return json
def _build_headers(self) -> Dict[str, str]:
return {"Authorization": f"Bearer {self.bearer_token}"}
def _build_url(self, endpoint: str) -> str:
return self.base_url.rstrip("/") + "/" + endpoint.lstrip("/")
class CodaConnector(LoadConnector, PollConnector):
def __init__(
self,
batch_size: int = INDEX_BATCH_SIZE,
index_page_content: bool = True,
workspace_id: str | None = None,
) -> None:
self.batch_size = batch_size
self.index_page_content = index_page_content
self.workspace_id = workspace_id
self._coda_client: CodaApiClient | None = None
@property
def coda_client(self) -> CodaApiClient:
if self._coda_client is None:
raise ConnectorMissingCredentialError("Coda")
return self._coda_client
@retry(tries=3, delay=1, backoff=2)
def _get_doc(self, doc_id: str) -> CodaDoc:
"""Fetch a specific Coda document by its ID."""
logger.debug(f"Fetching Coda doc with ID: {doc_id}")
try:
response = self.coda_client.get(f"docs/{doc_id}")
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(f"Failed to fetch doc: {doc_id}") from e
else:
raise
return CodaDoc(
id=response["id"],
browser_link=response["browserLink"],
name=response["name"],
created_at=response["createdAt"],
updated_at=response["updatedAt"],
workspace_id=response["workspace"]["id"],
workspace_name=response["workspace"]["name"],
folder_id=response["folder"]["id"] if response.get("folder") else None,
folder_name=response["folder"]["name"] if response.get("folder") else None,
)
@retry(tries=3, delay=1, backoff=2)
def _get_page(self, doc_id: str, page_id: str) -> CodaPage:
"""Fetch a specific page from a Coda document."""
logger.debug(f"Fetching Coda page with ID: {page_id}")
try:
response = self.coda_client.get(f"docs/{doc_id}/pages/{page_id}")
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to fetch page: {page_id} from doc: {doc_id}"
) from e
else:
raise
return CodaPage(
id=response["id"],
doc_id=doc_id,
browser_link=response["browserLink"],
name=response["name"],
content_type=response["contentType"],
created_at=response["createdAt"],
updated_at=response["updatedAt"],
)
@retry(tries=3, delay=1, backoff=2)
def _get_table(self, doc_id: str, table_id: str) -> CodaTable:
"""Fetch a specific table from a Coda document."""
logger.debug(f"Fetching Coda table with ID: {table_id}")
try:
response = self.coda_client.get(f"docs/{doc_id}/tables/{table_id}")
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to fetch table: {table_id} from doc: {doc_id}"
) from e
else:
raise
return CodaTable(
id=response["id"],
name=response["name"],
browser_link=response["browserLink"],
created_at=response["createdAt"],
updated_at=response["updatedAt"],
doc_id=doc_id,
)
@retry(tries=3, delay=1, backoff=2)
def _get_row(self, doc_id: str, table_id: str, row_id: str) -> CodaRow:
"""Fetch a specific row from a Coda table."""
logger.debug(f"Fetching Coda row with ID: {row_id}")
try:
response = self.coda_client.get(
f"docs/{doc_id}/tables/{table_id}/rows/{row_id}"
)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to fetch row: {row_id} from table: {table_id} in doc: {doc_id}"
) from e
else:
raise
values = {}
for col_name, col_value in response.get("values", {}).items():
values[col_name] = col_value
return CodaRow(
id=response["id"],
name=response.get("name"),
index=response.get("index"),
browser_link=response["browserLink"],
created_at=response["createdAt"],
updated_at=response["updatedAt"],
values=values,
table_id=table_id,
doc_id=doc_id,
)
@retry(tries=3, delay=1, backoff=2)
def _list_all_docs(
self, endpoint: str = "docs", params: Optional[Dict[str, str]] = None
) -> List[CodaDoc]:
"""List all Coda documents in the workspace."""
logger.debug("Listing documents in Coda")
all_docs: List[CodaDoc] = []
next_page_token: str | None = None
params = params or {}
if self.workspace_id:
params["workspaceId"] = self.workspace_id
while True:
if next_page_token:
params["pageToken"] = next_page_token
try:
response = self.coda_client.get(endpoint, params=params)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError("Failed to list docs") from e
else:
raise
items = response.get("items", [])
for item in items:
doc = CodaDoc(
id=item["id"],
browser_link=item["browserLink"],
name=item["name"],
created_at=item["createdAt"],
updated_at=item["updatedAt"],
workspace_id=item["workspace"]["id"],
workspace_name=item["workspace"]["name"],
folder_id=item["folder"]["id"] if item.get("folder") else None,
folder_name=item["folder"]["name"] if item.get("folder") else None,
)
all_docs.append(doc)
next_page_token = response.get("nextPageToken")
if not next_page_token:
break
logger.debug(f"Found {len(all_docs)} docs")
return all_docs
@retry(tries=3, delay=1, backoff=2)
def _list_pages_in_doc(self, doc_id: str) -> List[CodaPage]:
"""List all pages in a Coda document."""
logger.debug(f"Listing pages in Coda doc with ID: {doc_id}")
pages: List[CodaPage] = []
endpoint = f"docs/{doc_id}/pages"
params: Dict[str, str] = {}
next_page_token: str | None = None
while True:
if next_page_token:
params["pageToken"] = next_page_token
try:
response = self.coda_client.get(endpoint, params=params)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to list pages for doc: {doc_id}"
) from e
else:
raise
items = response.get("items", [])
for item in items:
# can be removed if we don't care to skip hidden pages
if item.get("isHidden", False):
continue
pages.append(
CodaPage(
id=item["id"],
browser_link=item["browserLink"],
name=item["name"],
content_type=item["contentType"],
created_at=item["createdAt"],
updated_at=item["updatedAt"],
doc_id=doc_id,
)
)
next_page_token = response.get("nextPageToken")
if not next_page_token:
break
logger.debug(f"Found {len(pages)} pages in doc {doc_id}")
return pages
@retry(tries=3, delay=1, backoff=2)
def _fetch_page_content(self, doc_id: str, page_id: str) -> str:
"""Fetch the content of a Coda page."""
logger.debug(f"Fetching content for page {page_id} in doc {doc_id}")
content_parts = []
next_page_token: str | None = None
params: Dict[str, str] = {}
while True:
if next_page_token:
params["pageToken"] = next_page_token
try:
response = self.coda_client.get(
f"docs/{doc_id}/pages/{page_id}/content", params=params
)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
logger.debug(f"No content available for page {page_id}")
return ""
raise
items = response.get("items", [])
for item in items:
item_content = item.get("itemContent", {})
content_text = item_content.get("content", "")
if content_text:
content_parts.append(content_text)
next_page_token = response.get("nextPageToken")
if not next_page_token:
break
return "\n\n".join(content_parts)
@retry(tries=3, delay=1, backoff=2)
def _list_tables(self, doc_id: str) -> List[CodaTable]:
"""List all tables in a Coda document."""
logger.debug(f"Listing tables in Coda doc with ID: {doc_id}")
tables: List[CodaTable] = []
endpoint = f"docs/{doc_id}/tables"
params: Dict[str, str] = {}
next_page_token: str | None = None
while True:
if next_page_token:
params["pageToken"] = next_page_token
try:
response = self.coda_client.get(endpoint, params=params)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to list tables for doc: {doc_id}"
) from e
else:
raise
items = response.get("items", [])
for item in items:
tables.append(
CodaTable(
id=item["id"],
browser_link=item["browserLink"],
name=item["name"],
created_at=item["createdAt"],
updated_at=item["updatedAt"],
doc_id=doc_id,
)
)
next_page_token = response.get("nextPageToken")
if not next_page_token:
break
logger.debug(f"Found {len(tables)} tables in doc {doc_id}")
return tables
@retry(tries=3, delay=1, backoff=2)
def _list_rows_and_values(self, doc_id: str, table_id: str) -> List[CodaRow]:
"""List all rows and their values in a table."""
logger.debug(f"Listing rows in Coda table: {table_id} in Coda doc: {doc_id}")
rows: List[CodaRow] = []
endpoint = f"docs/{doc_id}/tables/{table_id}/rows"
params: Dict[str, str] = {"valueFormat": "rich"}
next_page_token: str | None = None
while True:
if next_page_token:
params["pageToken"] = next_page_token
try:
response = self.coda_client.get(endpoint, params=params)
except CodaClientRequestFailedError as e:
if e.status_code == 404:
raise ConnectorValidationError(
f"Failed to list rows for table: {table_id} in doc: {doc_id}"
) from e
else:
raise
items = response.get("items", [])
for item in items:
values = {}
for col_name, col_value in item.get("values", {}).items():
values[col_name] = col_value
rows.append(
CodaRow(
id=item["id"],
name=item["name"],
index=item["index"],
browser_link=item["browserLink"],
created_at=item["createdAt"],
updated_at=item["updatedAt"],
values=values,
table_id=table_id,
doc_id=doc_id,
)
)
next_page_token = response.get("nextPageToken")
if not next_page_token:
break
logger.debug(f"Found {len(rows)} rows in table {table_id}")
return rows
def _convert_page_to_document(self, page: CodaPage, content: str = "") -> Document:
"""Convert a page into a Document."""
page_updated = datetime.fromisoformat(page.updated_at).astimezone(timezone.utc)
text_parts = [page.name, page.browser_link]
if content:
text_parts.append(content)
sections = [TextSection(link=page.browser_link, text="\n\n".join(text_parts))]
return Document(
id=f"coda-page-{page.doc_id}-{page.id}",
sections=cast(list[TextSection | ImageSection], sections),
source=DocumentSource.CODA,
semantic_identifier=page.name or f"Page {page.id}",
doc_updated_at=page_updated,
metadata={
"browser_link": page.browser_link,
"doc_id": page.doc_id,
"content_type": page.content_type,
},
)
def _convert_table_with_rows_to_document(
self, table: CodaTable, rows: List[CodaRow]
) -> Document:
"""Convert a table and its rows into a single Document with multiple sections (one per row)."""
table_updated = datetime.fromisoformat(table.updated_at).astimezone(
timezone.utc
)
sections: List[TextSection] = []
for row in rows:
content_text = " ".join(
str(v) if not isinstance(v, list) else " ".join(map(str, v))
for v in row.values.values()
)
row_name = row.name or f"Row {row.index or row.id}"
text = f"{row_name}: {content_text}" if content_text else row_name
sections.append(TextSection(link=row.browser_link, text=text))
# If no rows, create a single section for the table itself
if not sections:
sections = [
TextSection(link=table.browser_link, text=f"Table: {table.name}")
]
return Document(
id=f"coda-table-{table.doc_id}-{table.id}",
sections=cast(list[TextSection | ImageSection], sections),
source=DocumentSource.CODA,
semantic_identifier=table.name or f"Table {table.id}",
doc_updated_at=table_updated,
metadata={
"browser_link": table.browser_link,
"doc_id": table.doc_id,
"row_count": str(len(rows)),
},
)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
"""Load and validate Coda credentials."""
self._coda_client = CodaApiClient(bearer_token=credentials["coda_bearer_token"])
try:
self._coda_client.get("docs", params={"limit": "1"})
except CodaClientRequestFailedError as e:
if e.status_code == 401:
raise ConnectorMissingCredentialError("Invalid Coda API token")
raise
return None
def load_from_state(self) -> GenerateDocumentsOutput:
"""Load all documents from Coda workspace."""
def _iter_documents() -> Generator[Document, None, None]:
docs = self._list_all_docs()
logger.info(f"Found {len(docs)} Coda docs to process")
for doc in docs:
logger.debug(f"Processing doc: {doc.name} ({doc.id})")
try:
pages = self._list_pages_in_doc(doc.id)
for page in pages:
content = ""
if self.index_page_content:
try:
content = self._fetch_page_content(doc.id, page.id)
except Exception as e:
logger.warning(
f"Failed to fetch content for page {page.id}: {e}"
)
yield self._convert_page_to_document(page, content)
except ConnectorValidationError as e:
logger.warning(f"Failed to list pages for doc {doc.id}: {e}")
try:
tables = self._list_tables(doc.id)
for table in tables:
try:
rows = self._list_rows_and_values(doc.id, table.id)
yield self._convert_table_with_rows_to_document(table, rows)
except ConnectorValidationError as e:
logger.warning(
f"Failed to list rows for table {table.id}: {e}"
)
yield self._convert_table_with_rows_to_document(table, [])
except ConnectorValidationError as e:
logger.warning(f"Failed to list tables for doc {doc.id}: {e}")
return batch_generator(_iter_documents(), self.batch_size)
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
"""
Polls the Coda API for documents updated between start and end timestamps.
We refer to page and table update times to determine if they need to be re-indexed.
"""
def _iter_documents() -> Generator[Document, None, None]:
docs = self._list_all_docs()
logger.info(
f"Polling {len(docs)} Coda docs for updates between {start} and {end}"
)
for doc in docs:
try:
pages = self._list_pages_in_doc(doc.id)
for page in pages:
page_timestamp = (
datetime.fromisoformat(page.updated_at)
.astimezone(timezone.utc)
.timestamp()
)
if start < page_timestamp <= end:
content = ""
if self.index_page_content:
try:
content = self._fetch_page_content(doc.id, page.id)
except Exception as e:
logger.warning(
f"Failed to fetch content for page {page.id}: {e}"
)
yield self._convert_page_to_document(page, content)
except ConnectorValidationError as e:
logger.warning(f"Failed to list pages for doc {doc.id}: {e}")
try:
tables = self._list_tables(doc.id)
for table in tables:
table_timestamp = (
datetime.fromisoformat(table.updated_at)
.astimezone(timezone.utc)
.timestamp()
)
try:
rows = self._list_rows_and_values(doc.id, table.id)
table_or_rows_updated = start < table_timestamp <= end
if not table_or_rows_updated:
for row in rows:
row_timestamp = (
datetime.fromisoformat(row.updated_at)
.astimezone(timezone.utc)
.timestamp()
)
if start < row_timestamp <= end:
table_or_rows_updated = True
break
if table_or_rows_updated:
yield self._convert_table_with_rows_to_document(
table, rows
)
except ConnectorValidationError as e:
logger.warning(
f"Failed to list rows for table {table.id}: {e}"
)
if table_timestamp > start and table_timestamp <= end:
yield self._convert_table_with_rows_to_document(
table, []
)
except ConnectorValidationError as e:
logger.warning(f"Failed to list tables for doc {doc.id}: {e}")
return batch_generator(_iter_documents(), self.batch_size)
def validate_connector_settings(self) -> None:
"""Validates the Coda connector settings calling the 'whoami' endpoint."""
try:
response = self.coda_client.get("whoami")
logger.info(
f"Coda connector validated for user: {response.get('name', 'Unknown')}"
)
if self.workspace_id:
params = {"workspaceId": self.workspace_id, "limit": "1"}
self.coda_client.get("docs", params=params)
logger.info(f"Validated access to workspace: {self.workspace_id}")
except CodaClientRequestFailedError as e:
if e.status_code == 401:
raise CredentialExpiredError(
"Coda credential appears to be invalid or expired (HTTP 401)."
)
elif e.status_code == 404:
raise ConnectorValidationError(
"Coda workspace not found or not accessible (HTTP 404). "
"Please verify the workspace_id is correct and shared with the integration."
)
elif e.status_code == 429:
raise ConnectorValidationError(
"Validation failed due to Coda rate-limits being exceeded (HTTP 429). "
"Please try again later."
)
else:
raise UnexpectedValidationError(
f"Unexpected Coda HTTP error (status={e.status_code}): {e}"
)
except Exception as exc:
raise UnexpectedValidationError(
f"Unexpected error during Coda settings validation: {exc}"
)

View File

@@ -387,124 +387,162 @@ class ConfluenceConnector(
attachment_docs: list[Document] = []
page_url = ""
for attachment in self.confluence_client.paginated_cql_retrieval(
cql=attachment_query,
expand=",".join(_ATTACHMENT_EXPANSION_FIELDS),
):
media_type: str = attachment.get("metadata", {}).get("mediaType", "")
# TODO(rkuo): this check is partially redundant with validate_attachment_filetype
# and checks in convert_attachment_to_content/process_attachment
# but doing the check here avoids an unnecessary download. Due for refactoring.
if not self.allow_images:
if media_type.startswith("image/"):
logger.info(
f"Skipping attachment because allow images is False: {attachment['title']}"
)
continue
if not validate_attachment_filetype(
attachment,
try:
for attachment in self.confluence_client.paginated_cql_retrieval(
cql=attachment_query,
expand=",".join(_ATTACHMENT_EXPANSION_FIELDS),
):
logger.info(
f"Skipping attachment because it is not an accepted file type: {attachment['title']}"
)
continue
media_type: str = attachment.get("metadata", {}).get("mediaType", "")
logger.info(
f"Processing attachment: {attachment['title']} attached to page {page['title']}"
)
# Attachment document id: use the download URL for stable identity
try:
object_url = build_confluence_document_id(
self.wiki_base, attachment["_links"]["download"], self.is_cloud
)
except Exception as e:
logger.warning(
f"Invalid attachment url for id {attachment['id']}, skipping"
)
logger.debug(f"Error building attachment url: {e}")
continue
try:
response = convert_attachment_to_content(
confluence_client=self.confluence_client,
attachment=attachment,
page_id=page["id"],
allow_images=self.allow_images,
)
if response is None:
# TODO(rkuo): this check is partially redundant with validate_attachment_filetype
# and checks in convert_attachment_to_content/process_attachment
# but doing the check here avoids an unnecessary download. Due for refactoring.
if not self.allow_images:
if media_type.startswith("image/"):
logger.info(
f"Skipping attachment because allow images is False: {attachment['title']}"
)
continue
if not validate_attachment_filetype(
attachment,
):
logger.info(
f"Skipping attachment because it is not an accepted file type: {attachment['title']}"
)
continue
content_text, file_storage_name = response
logger.info(
f"Processing attachment: {attachment['title']} attached to page {page['title']}"
)
# Attachment document id: use the download URL for stable identity
try:
object_url = build_confluence_document_id(
self.wiki_base, attachment["_links"]["download"], self.is_cloud
)
except Exception as e:
logger.warning(
f"Invalid attachment url for id {attachment['id']}, skipping"
)
logger.debug(f"Error building attachment url: {e}")
continue
try:
response = convert_attachment_to_content(
confluence_client=self.confluence_client,
attachment=attachment,
page_id=page["id"],
allow_images=self.allow_images,
)
if response is None:
continue
sections: list[TextSection | ImageSection] = []
if content_text:
sections.append(TextSection(text=content_text, link=object_url))
elif file_storage_name:
sections.append(
ImageSection(link=object_url, image_file_id=file_storage_name)
content_text, file_storage_name = response
sections: list[TextSection | ImageSection] = []
if content_text:
sections.append(TextSection(text=content_text, link=object_url))
elif file_storage_name:
sections.append(
ImageSection(
link=object_url, image_file_id=file_storage_name
)
)
# Build attachment-specific metadata
attachment_metadata: dict[str, str | list[str]] = {}
if "space" in attachment:
attachment_metadata["space"] = attachment["space"].get(
"name", ""
)
labels: list[str] = []
if "metadata" in attachment and "labels" in attachment["metadata"]:
for label in attachment["metadata"]["labels"].get(
"results", []
):
labels.append(label.get("name", ""))
if labels:
attachment_metadata["labels"] = labels
page_url = page_url or build_confluence_document_id(
self.wiki_base, page["_links"]["webui"], self.is_cloud
)
attachment_metadata["parent_page_id"] = page_url
attachment_id = build_confluence_document_id(
self.wiki_base, attachment["_links"]["webui"], self.is_cloud
)
# Build attachment-specific metadata
attachment_metadata: dict[str, str | list[str]] = {}
if "space" in attachment:
attachment_metadata["space"] = attachment["space"].get("name", "")
labels: list[str] = []
if "metadata" in attachment and "labels" in attachment["metadata"]:
for label in attachment["metadata"]["labels"].get("results", []):
labels.append(label.get("name", ""))
if labels:
attachment_metadata["labels"] = labels
page_url = page_url or build_confluence_document_id(
self.wiki_base, page["_links"]["webui"], self.is_cloud
)
attachment_metadata["parent_page_id"] = page_url
attachment_id = build_confluence_document_id(
self.wiki_base, attachment["_links"]["webui"], self.is_cloud
)
primary_owners: list[BasicExpertInfo] | None = None
if "version" in attachment and "by" in attachment["version"]:
author = attachment["version"]["by"]
display_name = author.get("displayName", "Unknown")
email = author.get("email", "unknown@domain.invalid")
primary_owners = [
BasicExpertInfo(display_name=display_name, email=email)
]
primary_owners: list[BasicExpertInfo] | None = None
if "version" in attachment and "by" in attachment["version"]:
author = attachment["version"]["by"]
display_name = author.get("displayName", "Unknown")
email = author.get("email", "unknown@domain.invalid")
primary_owners = [
BasicExpertInfo(display_name=display_name, email=email)
]
attachment_doc = Document(
id=attachment_id,
sections=sections,
source=DocumentSource.CONFLUENCE,
semantic_identifier=attachment.get("title", object_url),
metadata=attachment_metadata,
doc_updated_at=(
datetime_from_string(attachment["version"]["when"])
if attachment.get("version")
and attachment["version"].get("when")
else None
),
primary_owners=primary_owners,
)
attachment_docs.append(attachment_doc)
except Exception as e:
logger.error(
f"Failed to extract/summarize attachment {attachment['title']}",
exc_info=e,
)
if is_atlassian_date_error(e):
# propagate error to be caught and retried
raise
attachment_failures.append(
ConnectorFailure(
failed_document=DocumentFailure(
document_id=object_url,
document_link=object_url,
),
failure_message=f"Failed to extract/summarize attachment {attachment['title']} for doc {object_url}",
exception=e,
)
)
except HTTPError as e:
# If we get a 403 after all retries, the user likely doesn't have permission
# to access attachments on this page. Log and skip rather than failing the whole job.
if e.response and e.response.status_code == 403:
page_title = page.get("title", "unknown")
page_id = page.get("id", "unknown")
logger.warning(
f"Permission denied (403) when fetching attachments for page '{page_title}' "
f"(ID: {page_id}). The user may not have permission to query attachments on this page. "
"Skipping attachments for this page."
)
# Build the page URL for the failure record
try:
page_url = build_confluence_document_id(
self.wiki_base, page["_links"]["webui"], self.is_cloud
)
except Exception:
page_url = f"page_id:{page_id}"
attachment_doc = Document(
id=attachment_id,
sections=sections,
source=DocumentSource.CONFLUENCE,
semantic_identifier=attachment.get("title", object_url),
metadata=attachment_metadata,
doc_updated_at=(
datetime_from_string(attachment["version"]["when"])
if attachment.get("version")
and attachment["version"].get("when")
else None
),
primary_owners=primary_owners,
)
attachment_docs.append(attachment_doc)
except Exception as e:
logger.error(
f"Failed to extract/summarize attachment {attachment['title']}",
exc_info=e,
)
if is_atlassian_date_error(e):
# propagate error to be caught and retried
raise
attachment_failures.append(
return [], [
ConnectorFailure(
failed_document=DocumentFailure(
document_id=object_url,
document_link=object_url,
document_id=page_id,
document_link=page_url,
),
failure_message=f"Failed to extract/summarize attachment {attachment['title']} for doc {object_url}",
failure_message=f"Permission denied (403) when fetching attachments for page '{page_title}'",
exception=e,
)
)
]
else:
raise
return attachment_docs, attachment_failures

View File

@@ -579,13 +579,18 @@ class OnyxConfluence:
while url_suffix:
logger.debug(f"Making confluence call to {url_suffix}")
try:
# Only pass params if they're not already in the URL to avoid duplicate
# params accumulating. Confluence's _links.next already includes these.
params = {}
if "body-format=" not in url_suffix:
params["body-format"] = "atlas_doc_format"
if "expand=" not in url_suffix:
params["expand"] = "body.atlas_doc_format"
raw_response = self.get(
path=url_suffix,
advanced_mode=True,
params={
"body-format": "atlas_doc_format",
"expand": "body.atlas_doc_format",
},
params=params,
)
except Exception as e:
logger.exception(f"Error in confluence call to {url_suffix}")

View File

@@ -26,7 +26,6 @@ from onyx.utils.logger import setup_logger
HUBSPOT_BASE_URL = "https://app.hubspot.com"
HUBSPOT_API_URL = "https://api.hubapi.com/integrations/v1/me"
# Available HubSpot object types
AVAILABLE_OBJECT_TYPES = {"tickets", "companies", "deals", "contacts"}
HUBSPOT_PAGE_SIZE = 100

View File

@@ -68,6 +68,10 @@ CONNECTOR_CLASS_MAP = {
module_path="onyx.connectors.slab.connector",
class_name="SlabConnector",
),
DocumentSource.CODA: ConnectorMapping(
module_path="onyx.connectors.coda.connector",
class_name="CodaConnector",
),
DocumentSource.NOTION: ConnectorMapping(
module_path="onyx.connectors.notion.connector",
class_name="NotionConnector",

View File

@@ -99,7 +99,9 @@ DEFAULT_HEADERS = {
"image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7"
),
"Accept-Language": "en-US,en;q=0.9",
"Accept-Encoding": "gzip, deflate, br",
# Brotli decoding has been flaky in brotlicffi/httpx for certain chunked responses;
# stick to gzip/deflate to keep connectivity checks stable.
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
"Sec-Fetch-Dest": "document",

View File

@@ -20,6 +20,11 @@ class OptionalSearchSetting(str, Enum):
AUTO = "auto"
class QueryType(str, Enum):
KEYWORD = "keyword"
SEMANTIC = "semantic"
class SearchType(str, Enum):
KEYWORD = "keyword"
SEMANTIC = "semantic"

View File

@@ -1,7 +1,7 @@
An explanation of how the history of messages, tool calls, and docs are stored in the database:
Messages are grouped by a chat session, a tree structured is used to allow edits and for the
user to switch between branches. Each ChatMessage is either a user message of an assistant message.
user to switch between branches. Each ChatMessage is either a user message or an assistant message.
It should always alternate between the two, System messages, custom agent prompt injections, and
reminder messages are injected dynamically after the chat session is loaded into memory. The user
and assistant messages are stored in pairs, though it is ok if the user message is stored and the

View File

@@ -2141,6 +2141,8 @@ class ChatMessage(Base):
time_sent: Mapped[datetime.datetime] = mapped_column(
DateTime(timezone=True), server_default=func.now()
)
# True if this assistant message is a clarification question (deep research flow)
is_clarification: Mapped[bool] = mapped_column(Boolean, default=False)
# Relationships
chat_session: Mapped[ChatSession] = relationship("ChatSession")

View File

@@ -1,16 +1,47 @@
# TODO: Notes for potential extensions and future improvements:
# 1. Allow tools that aren't search specific tools
# 2. Use user provided custom prompts
from collections.abc import Callable
from typing import cast
from sqlalchemy.orm import Session
from onyx.chat.chat_state import ChatStateContainer
from onyx.chat.citation_processor import DynamicCitationProcessor
from onyx.chat.emitter import Emitter
from onyx.chat.llm_loop import construct_message_history
from onyx.chat.llm_step import run_llm_step
from onyx.chat.models import ChatMessageSimple
from onyx.chat.models import LlmStepResult
from onyx.configs.constants import MessageType
from onyx.deep_research.dr_mock_tools import get_clarification_tool_definitions
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.models import ToolChoiceOptions
from onyx.llm.utils import model_is_reasoning_model
from onyx.prompts.deep_research.orchestration_layer import CLARIFICATION_PROMPT
from onyx.prompts.deep_research.orchestration_layer import ORCHESTRATOR_PROMPT
from onyx.prompts.deep_research.orchestration_layer import ORCHESTRATOR_PROMPT_REASONING
from onyx.prompts.deep_research.orchestration_layer import RESEARCH_PLAN_PROMPT
from onyx.prompts.prompt_utils import get_current_llm_day_time
from onyx.server.query_and_chat.streaming_models import AgentResponseDelta
from onyx.server.query_and_chat.streaming_models import AgentResponseStart
from onyx.server.query_and_chat.streaming_models import DeepResearchPlanDelta
from onyx.server.query_and_chat.streaming_models import DeepResearchPlanStart
from onyx.server.query_and_chat.streaming_models import OverallStop
from onyx.server.query_and_chat.streaming_models import Packet
from onyx.tools.tool import Tool
from onyx.tools.tool_implementations.open_url.open_url_tool import OpenURLTool
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.tool_implementations.web_search.web_search_tool import WebSearchTool
from onyx.utils.logger import setup_logger
logger = setup_logger()
MAX_USER_MESSAGES_FOR_CONTEXT = 5
MAX_ORCHESTRATOR_CYCLES = 8
def run_deep_research_llm_loop(
emitter: Emitter,
@@ -21,8 +52,203 @@ def run_deep_research_llm_loop(
llm: LLM,
token_counter: Callable[[str], int],
db_session: Session,
skip_clarification: bool = False,
user_identity: LLMUserIdentity | None = None,
) -> None:
# Here for lazy load LiteLLM
from onyx.llm.litellm_singleton.config import initialize_litellm
# An approximate limit. In extreme cases it may still fail but this should allow deep research
# to work in most cases.
if llm.config.max_input_tokens < 25000:
raise RuntimeError(
"Cannot run Deep Research with an LLM that has less than 25,000 max input tokens"
)
initialize_litellm()
available_tokens = llm.config.max_input_tokens
llm_step_result: LlmStepResult | None = None
# Filter tools to only allow web search, internal search, and open URL
allowed_tool_names = {SearchTool.NAME, WebSearchTool.NAME, OpenURLTool.NAME}
[tool for tool in tools if tool.name in allowed_tool_names]
#########################################################
# CLARIFICATION STEP (optional)
#########################################################
if not skip_clarification:
clarification_prompt = CLARIFICATION_PROMPT.format(
current_datetime=get_current_llm_day_time(full_sentence=False)
)
system_prompt = ChatMessageSimple(
message=clarification_prompt,
token_count=300, # Skips the exact token count but has enough leeway
message_type=MessageType.SYSTEM,
)
truncated_message_history = construct_message_history(
system_prompt=system_prompt,
custom_agent_prompt=None,
simple_chat_history=simple_chat_history,
reminder_message=None,
project_files=None,
available_tokens=available_tokens,
last_n_user_messages=MAX_USER_MESSAGES_FOR_CONTEXT,
)
step_generator = run_llm_step(
history=truncated_message_history,
tool_definitions=get_clarification_tool_definitions(),
tool_choice=ToolChoiceOptions.AUTO,
llm=llm,
turn_index=0,
# No citations in this step, it should just pass through all
# tokens directly so initialized as an empty citation processor
citation_processor=DynamicCitationProcessor(),
state_container=state_container,
final_documents=None,
user_identity=user_identity,
)
# Consume the generator, emitting packets and capturing the final result
while True:
try:
packet = next(step_generator)
emitter.emit(packet)
except StopIteration as e:
llm_step_result, _ = e.value
break
# Type narrowing: generator always returns a result, so this can't be None
llm_step_result = cast(LlmStepResult, llm_step_result)
if not llm_step_result.tool_calls:
# Mark this turn as a clarification question
state_container.set_is_clarification(True)
emitter.emit(Packet(turn_index=0, obj=OverallStop(type="stop")))
# If a clarification is asked, we need to end this turn and wait on user input
return
#########################################################
# RESEARCH PLAN STEP
#########################################################
system_prompt = ChatMessageSimple(
message=RESEARCH_PLAN_PROMPT.format(
current_datetime=get_current_llm_day_time(full_sentence=False)
),
token_count=300,
message_type=MessageType.SYSTEM,
)
truncated_message_history = construct_message_history(
system_prompt=system_prompt,
custom_agent_prompt=None,
simple_chat_history=simple_chat_history,
reminder_message=None,
project_files=None,
available_tokens=available_tokens,
last_n_user_messages=MAX_USER_MESSAGES_FOR_CONTEXT,
)
research_plan_generator = run_llm_step(
history=truncated_message_history,
tool_definitions=[],
tool_choice=ToolChoiceOptions.NONE,
llm=llm,
turn_index=0,
# No citations in this step, it should just pass through all
# tokens directly so initialized as an empty citation processor
citation_processor=DynamicCitationProcessor(),
state_container=state_container,
final_documents=None,
user_identity=user_identity,
)
while True:
try:
packet = next(research_plan_generator)
# Translate AgentResponseStart/Delta packets to DeepResearchPlanStart/Delta
if isinstance(packet.obj, AgentResponseStart):
emitter.emit(
Packet(
turn_index=packet.turn_index,
obj=DeepResearchPlanStart(),
)
)
elif isinstance(packet.obj, AgentResponseDelta):
emitter.emit(
Packet(
turn_index=packet.turn_index,
obj=DeepResearchPlanDelta(content=packet.obj.content),
)
)
else:
# Pass through other packet types (e.g., ReasoningStart, ReasoningDelta, etc.)
emitter.emit(packet)
except StopIteration as e:
llm_step_result, _ = e.value
break
llm_step_result = cast(LlmStepResult, llm_step_result)
research_plan = llm_step_result.answer
#########################################################
# RESEARCH EXECUTION STEP
#########################################################
is_reasoning_model = model_is_reasoning_model(
llm.config.model_name, llm.config.model_provider
)
orchestrator_prompt_template = (
ORCHESTRATOR_PROMPT if not is_reasoning_model else ORCHESTRATOR_PROMPT_REASONING
)
token_count_prompt = orchestrator_prompt_template.format(
current_datetime=get_current_llm_day_time(full_sentence=False),
current_cycle_count=1,
max_cycles=MAX_ORCHESTRATOR_CYCLES,
research_plan=research_plan,
)
orchestration_tokens = token_counter(token_count_prompt)
for cycle in range(MAX_ORCHESTRATOR_CYCLES):
orchestrator_prompt = orchestrator_prompt_template.format(
current_datetime=get_current_llm_day_time(full_sentence=False),
current_cycle_count=cycle,
max_cycles=MAX_ORCHESTRATOR_CYCLES,
research_plan=research_plan,
)
system_prompt = ChatMessageSimple(
message=orchestrator_prompt,
token_count=orchestration_tokens,
message_type=MessageType.SYSTEM,
)
truncated_message_history = construct_message_history(
system_prompt=system_prompt,
custom_agent_prompt=None,
simple_chat_history=simple_chat_history,
reminder_message=None,
project_files=None,
available_tokens=available_tokens,
last_n_user_messages=MAX_USER_MESSAGES_FOR_CONTEXT,
)
research_plan_generator = run_llm_step(
history=truncated_message_history,
tool_definitions=[],
tool_choice=ToolChoiceOptions.AUTO,
llm=llm,
turn_index=cycle,
# No citations in this step, it should just pass through all
# tokens directly so initialized as an empty citation processor
citation_processor=DynamicCitationProcessor(),
state_container=state_container,
final_documents=None,
user_identity=user_identity,
)

View File

@@ -0,0 +1,18 @@
GENERATE_PLAN_TOOL_NAME = "generate_plan"
def get_clarification_tool_definitions() -> list[dict]:
return [
{
"type": "function",
"function": {
"name": GENERATE_PLAN_TOOL_NAME,
"description": "No clarification needed, generate a research plan for the user's query.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
},
}
]

View File

@@ -0,0 +1,325 @@
import abc
from collections.abc import Iterator
from typing import Any
from pydantic import BaseModel
from onyx.access.models import DocumentAccess
from onyx.context.search.enums import QueryType
from onyx.context.search.models import IndexFilters
from onyx.context.search.models import InferenceChunk
from onyx.db.enums import EmbeddingPrecision
from onyx.indexing.models import DocMetadataAwareIndexChunk
from shared_configs.model_server_models import Embedding
# NOTE: "Document" in the naming convention is used to refer to the entire document as represented in Onyx.
# What is actually stored in the index is the document chunks. By the terminology of most search engines / vector
# databases, the individual objects stored are called documents, but in this case it refers to a chunk.
# Outside of searching and update capabilities, the document index must also implement the ability to port all of
# the documents over to a secondary index. This allows for embedding models to be updated and for porting documents
# to happen in the background while the primary index still serves the main traffic.
__all__ = [
# Main interfaces - these are what you should inherit from
"DocumentIndex",
# Data models - used in method signatures
"DocumentInsertionRecord",
"DocumentSectionRequest",
"IndexingMetadata",
"MetadataUpdateRequest",
# Capability mixins - for custom compositions or type checking
"SchemaVerifiable",
"Indexable",
"Deletable",
"Updatable",
"IdRetrievalCapable",
"HybridCapable",
"RandomCapable",
]
class DocumentInsertionRecord(BaseModel):
"""
Result of indexing a document
"""
model_config = {"frozen": True}
document_id: str
already_existed: bool
class DocumentSectionRequest(BaseModel):
"""
Request for a document section or whole document
If no min_chunk_ind is provided it should start at the beginning of the document
If no max_chunk_ind is provided it should go to the end of the document
"""
model_config = {"frozen": True}
document_id: str
min_chunk_ind: int | None = None
max_chunk_ind: int | None = None
class IndexingMetadata(BaseModel):
"""
Information about chunk counts for efficient cleaning / updating of document chunks. A common pattern to ensure
that no chunks are left over is to delete all of the chunks for a document and then re-index the document. This
information allows us to only delete the extra "tail" chunks when the document has gotten shorter.
"""
# The tuple is (old_chunk_cnt, new_chunk_cnt)
doc_id_to_chunk_cnt_diff: dict[str, tuple[int, int]]
class MetadataUpdateRequest(BaseModel):
"""
Updates to the documents that can happen without there being an update to the contents of the document.
"""
document_ids: list[str]
# Passed in to help with potential optimizations of the implementation
doc_id_to_chunk_cnt: dict[str, int]
# For the ones that are None, there is no update required to that field
access: DocumentAccess | None = None
document_sets: set[str] | None = None
boost: float | None = None
hidden: bool | None = None
secondary_index_updated: bool | None = None
project_ids: set[int] | None = None
class SchemaVerifiable(abc.ABC):
"""
Class must implement document index schema verification. For example, verify that all of the
necessary attributes for indexing, querying, filtering, and fields to return from search are
all valid in the schema.
"""
def __init__(
self,
index_name: str,
tenant_id: int | None,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self.index_name = index_name
self.tenant_id = tenant_id
@abc.abstractmethod
def verify_and_create_index_if_necessary(
self,
embedding_dim: int,
embedding_precision: EmbeddingPrecision,
) -> None:
"""
Verify that the document index exists and is consistent with the expectations in the code. For certain search
engines, the schema needs to be created before indexing can happen. This call should create the schema if it
does not exist.
Parameters:
- embedding_dim: Vector dimensionality for the vector similarity part of the search
- embedding_precision: Precision of the vector similarity part of the search
"""
raise NotImplementedError
class Indexable(abc.ABC):
"""
Class must implement the ability to index document chunks
"""
@abc.abstractmethod
def index(
self,
chunks: Iterator[DocMetadataAwareIndexChunk],
indexing_metadata: IndexingMetadata,
) -> set[DocumentInsertionRecord]:
"""
Takes a list of document chunks and indexes them in the document index. This is often a batch operation
including chunks from multiple documents.
NOTE: When a document is reindexed/updated here and has gotten shorter, it is important to delete the extra
chunks at the end to ensure there are no stale chunks in the index.
NOTE: The chunks of a document are never separated into separate index() calls. So there is
no worry of receiving the first 0 through n chunks in one index call and the next n through
m chunks of a document in the next index call.
Parameters:
- chunks: Document chunks with all of the information needed for indexing to the document index.
- indexing_metadata: Information about chunk counts for efficient cleaning / updating
Returns:
List of document ids which map to unique documents and are used for deduping chunks
when updating, as well as if the document is newly indexed or already existed and
just updated
"""
raise NotImplementedError
class Deletable(abc.ABC):
"""
Class must implement the ability to delete document by a given unique document id. Note that the document id is the
unique identifier for the document as represented in Onyx, not in the document index.
"""
@abc.abstractmethod
def delete(
self,
db_doc_id: str,
*,
# Passed in in case it helps the efficiency of the delete implementation
chunk_count: int | None,
) -> int:
"""
Given a single document, hard delete all of the chunks for the document from the document index
Parameters:
- doc_id: document id as represented in Onyx
- chunk_count: number of chunks in the document
Returns:
number of chunks deleted
"""
raise NotImplementedError
class Updatable(abc.ABC):
"""
Class must implement the ability to update certain attributes of a document without needing to
update all of the fields. Specifically, needs to be able to update:
- Access Control List
- Document-set membership
- Boost value (learning from feedback mechanism)
- Whether the document is hidden or not, hidden documents are not returned from search
- Which Projects the document is a part of
"""
@abc.abstractmethod
def update(self, update_requests: list[MetadataUpdateRequest]) -> None:
"""
Updates some set of chunks. The document and fields to update are specified in the update
requests. Each update request in the list applies its changes to a list of document ids.
None values mean that the field does not need an update.
Parameters:
- update_requests: for a list of document ids in the update request, apply the same updates
to all of the documents with those ids. This is for bulk handling efficiency. Many
updates are done at the connector level which have many documents for the connector
"""
raise NotImplementedError
class IdRetrievalCapable(abc.ABC):
"""
Class must implement the ability to retrieve either:
- All of the chunks of a document IN ORDER given a document id. Caller assumes it to be in order.
- A specific section (continuous set of chunks) for some document.
"""
@abc.abstractmethod
def id_based_retrieval(
self,
chunk_requests: list[DocumentSectionRequest],
) -> list[InferenceChunk]:
"""
Fetch chunk(s) based on document id
NOTE: This is used to reconstruct a full document or an extended (multi-chunk) section
of a document. Downstream currently assumes that the chunking does not introduce overlaps
between the chunks. If there are overlaps for the chunks, then the reconstructed document
or extended section will have duplicate segments.
NOTE: This should be used after a search call to get more context around returned chunks.
There is no filters here since the calling code should not be calling this on arbitrary
documents.
Parameters:
- chunk_requests: requests containing the document id and the chunk range to retrieve
Returns:
list of sections from the documents specified
"""
raise NotImplementedError
class HybridCapable(abc.ABC):
"""
Class must implement hybrid (keyword + vector) search functionality
"""
@abc.abstractmethod
def hybrid_retrieval(
self,
query: str,
query_embedding: Embedding,
final_keywords: list[str] | None,
query_type: QueryType,
filters: IndexFilters,
num_to_retrieve: int,
offset: int = 0,
) -> list[InferenceChunk]:
"""
Run hybrid search and return a list of inference chunks.
Parameters:
- query: unmodified user query. This may be needed for getting the matching highlighted
keywords or for logging purposes
- query_embedding: vector representation of the query, must be of the correct
dimensionality for the primary index
- final_keywords: Final keywords to be used from the query, defaults to query if not set
- query_type: Semantic or keyword type query, may use different scoring logic for each
- filters: Filters for things like permissions, source type, time, etc.
- num_to_retrieve: number of highest matching chunks to return
- offset: number of highest matching chunks to skip (kind of like pagination)
Returns:
Score ranked (highest first) list of highest matching chunks
"""
raise NotImplementedError
class RandomCapable(abc.ABC):
"""Class must implement random document retrieval capability.
This currently is just used for porting the documents to a secondary index."""
@abc.abstractmethod
def random_retrieval(
self,
filters: IndexFilters | None = None,
num_to_retrieve: int = 100,
dirty: bool | None = None,
) -> list[InferenceChunk]:
"""Retrieve random chunks matching the filters"""
raise NotImplementedError
class DocumentIndex(
SchemaVerifiable,
Indexable,
Updatable,
Deletable,
HybridCapable,
IdRetrievalCapable,
RandomCapable,
abc.ABC,
):
"""
A valid document index that can plug into all Onyx flows must implement all of these
functionalities.
As a high level summary, document indices need to be able to
- Verify the schema definition is valid
- Index new documents
- Update specific attributes of existing documents
- Delete documents
- Run hybrid search
- Retrieve document or sections of documents based on document id
- Retrieve sets of random documents
"""

View File

@@ -25,17 +25,17 @@ class SlackEntities(BaseModel):
# Direct message filtering
include_dm: bool = Field(
default=False,
default=True,
description="Include user direct messages in search results",
)
include_group_dm: bool = Field(
default=False,
default=True,
description="Include group direct messages (multi-person DMs) in search results",
)
# Private channel filtering
include_private_channels: bool = Field(
default=False,
default=True,
description="Include private channels in search results (user must have access)",
)

View File

@@ -298,17 +298,17 @@ def verify_user_files(
for file_descriptor in user_files:
# Check if this file descriptor has a user_file_id
if "user_file_id" in file_descriptor and file_descriptor["user_file_id"]:
if file_descriptor.get("user_file_id"):
try:
user_file_ids.append(UUID(file_descriptor["user_file_id"]))
except (ValueError, TypeError):
logger.warning(
f"Invalid user_file_id in file descriptor: {file_descriptor.get('user_file_id')}"
f"Invalid user_file_id in file descriptor: {file_descriptor['user_file_id']}"
)
continue
else:
# This is a project file - use the 'id' field which is the file_id
if "id" in file_descriptor and file_descriptor["id"]:
if file_descriptor.get("id"):
project_file_ids.append(file_descriptor["id"])
# Verify user files (existing logic)

View File

@@ -80,7 +80,11 @@ class PgRedisKVStore(KeyValueStore):
value = None
try:
self.redis_client.set(REDIS_KEY_PREFIX + key, json.dumps(value))
self.redis_client.set(
REDIS_KEY_PREFIX + key,
json.dumps(value),
ex=KV_REDIS_KEY_EXPIRATION,
)
except Exception as e:
logger.error(f"Failed to set value in Redis for key '{key}': {str(e)}")

View File

@@ -9,12 +9,14 @@ from typing import Union
from langchain_core.messages import BaseMessage
from onyx.configs.app_configs import MOCK_LLM_RESPONSE
from onyx.configs.app_configs import SEND_USER_METADATA_TO_LLM_PROVIDER
from onyx.configs.chat_configs import QA_TIMEOUT
from onyx.configs.model_configs import GEN_AI_TEMPERATURE
from onyx.configs.model_configs import LITELLM_EXTRA_BODY
from onyx.llm.interfaces import LanguageModelInput
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMConfig
from onyx.llm.interfaces import LLMUserIdentity
from onyx.llm.interfaces import ReasoningEffort
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.llm.llm_provider_options import AZURE_PROVIDER_NAME
@@ -41,6 +43,7 @@ if TYPE_CHECKING:
_LLM_PROMPT_LONG_TERM_LOG_CATEGORY = "llm_prompt"
LEGACY_MAX_TOKENS_KWARG = "max_tokens"
STANDARD_MAX_TOKENS_KWARG = "max_completion_tokens"
MAX_LITELLM_USER_ID_LENGTH = 64
class LLMTimeoutError(Exception):
@@ -70,6 +73,17 @@ def _prompt_as_json(prompt: LanguageModelInput) -> JSON_ro:
return cast(JSON_ro, _prompt_to_dicts(prompt))
def _truncate_litellm_user_id(user_id: str) -> str:
if len(user_id) <= MAX_LITELLM_USER_ID_LENGTH:
return user_id
logger.warning(
"LLM user id exceeds %d chars (len=%d); truncating for provider compatibility.",
MAX_LITELLM_USER_ID_LENGTH,
len(user_id),
)
return user_id[:MAX_LITELLM_USER_ID_LENGTH]
class LitellmLLM(LLM):
"""Uses Litellm library to allow easy configuration to use a multitude of LLMs
See https://python.langchain.com/docs/integrations/chat/litellm"""
@@ -233,6 +247,7 @@ class LitellmLLM(LLM):
structured_response_format: dict | None = None,
timeout_override: int | None = None,
max_tokens: int | None = None,
user_identity: LLMUserIdentity | None = None,
) -> Union["ModelResponse", "CustomStreamWrapper"]:
self._record_call(prompt)
from onyx.llm.litellm_singleton import litellm
@@ -251,6 +266,29 @@ class LitellmLLM(LLM):
else:
model_provider = self.config.model_provider
completion_kwargs: dict[str, Any] = self._model_kwargs
if SEND_USER_METADATA_TO_LLM_PROVIDER and user_identity:
completion_kwargs = dict(self._model_kwargs)
if user_identity.user_id:
completion_kwargs["user"] = _truncate_litellm_user_id(
user_identity.user_id
)
if user_identity.session_id:
existing_metadata = completion_kwargs.get("metadata")
metadata: dict[str, Any] | None
if existing_metadata is None:
metadata = {}
elif isinstance(existing_metadata, dict):
metadata = dict(existing_metadata)
else:
metadata = None
if metadata is not None:
metadata["session_id"] = user_identity.session_id
completion_kwargs["metadata"] = metadata
try:
return litellm.completion(
mock_response=MOCK_LLM_RESPONSE,
@@ -324,7 +362,7 @@ class LitellmLLM(LLM):
else {}
),
**({self._max_token_param: max_tokens} if max_tokens else {}),
**self._model_kwargs,
**completion_kwargs,
)
except Exception as e:
@@ -367,6 +405,7 @@ class LitellmLLM(LLM):
timeout_override: int | None = None,
max_tokens: int | None = None,
reasoning_effort: ReasoningEffort | None = None,
user_identity: LLMUserIdentity | None = None,
) -> ModelResponse:
from litellm import ModelResponse as LiteLLMModelResponse
@@ -384,6 +423,7 @@ class LitellmLLM(LLM):
max_tokens=max_tokens,
parallel_tool_calls=True,
reasoning_effort=reasoning_effort,
user_identity=user_identity,
),
)
@@ -398,6 +438,7 @@ class LitellmLLM(LLM):
timeout_override: int | None = None,
max_tokens: int | None = None,
reasoning_effort: ReasoningEffort | None = None,
user_identity: LLMUserIdentity | None = None,
) -> Iterator[ModelResponseStream]:
from litellm import CustomStreamWrapper as LiteLLMCustomStreamWrapper
from onyx.llm.model_response import from_litellm_model_response_stream
@@ -414,6 +455,7 @@ class LitellmLLM(LLM):
max_tokens=max_tokens,
parallel_tool_calls=True,
reasoning_effort=reasoning_effort,
user_identity=user_identity,
),
)

View File

@@ -14,6 +14,11 @@ from onyx.utils.logger import setup_logger
logger = setup_logger()
class LLMUserIdentity(BaseModel):
user_id: str | None = None
session_id: str | None = None
class LLMConfig(BaseModel):
model_provider: str
model_name: str
@@ -44,6 +49,7 @@ class LLM(abc.ABC):
timeout_override: int | None = None,
max_tokens: int | None = None,
reasoning_effort: ReasoningEffort | None = None,
user_identity: LLMUserIdentity | None = None,
) -> "ModelResponse":
raise NotImplementedError
@@ -56,5 +62,6 @@ class LLM(abc.ABC):
timeout_override: int | None = None,
max_tokens: int | None = None,
reasoning_effort: ReasoningEffort | None = None,
user_identity: LLMUserIdentity | None = None,
) -> Iterator[ModelResponseStream]:
raise NotImplementedError

View File

@@ -606,6 +606,56 @@ def _patch_openai_responses_transform_response() -> None:
LiteLLMResponsesTransformationHandler.transform_response = _patched_transform_response # type: ignore[method-assign]
def _patch_openai_responses_tool_content_type() -> None:
"""
Patches LiteLLMResponsesTransformationHandler._convert_content_str_to_input_text
to use 'input_text' type for tool messages instead of 'output_text'.
The OpenAI Responses API only accepts 'input_text', 'input_image', and 'input_file'
in the function_call_output.output array. The default litellm implementation
incorrectly uses 'output_text' for tool messages, causing 400 Bad Request errors.
See: https://github.com/BerriAI/litellm/issues/17507
This should be removed once litellm releases a fix for this issue.
"""
original_method = (
LiteLLMResponsesTransformationHandler._convert_content_str_to_input_text
)
if (
getattr(
original_method,
"__name__",
"",
)
== "_patched_convert_content_str_to_input_text"
):
return
def _patched_convert_content_str_to_input_text(
self: Any, content: str, role: str
) -> Dict[str, Any]:
"""
Convert string content to the appropriate Responses API format.
For user, system, and tool messages, use 'input_text' type.
For assistant messages, use 'output_text' type.
Tool messages go into function_call_output.output, which only accepts
'input_text', 'input_image', and 'input_file' types.
"""
if role in ("user", "system", "tool"):
return {"type": "input_text", "text": content}
else:
return {"type": "output_text", "text": content}
_patched_convert_content_str_to_input_text.__name__ = (
"_patched_convert_content_str_to_input_text"
)
LiteLLMResponsesTransformationHandler._convert_content_str_to_input_text = _patched_convert_content_str_to_input_text # type: ignore[method-assign]
def apply_monkey_patches() -> None:
"""
Apply all necessary monkey patches to LiteLLM for compatibility.
@@ -615,11 +665,13 @@ def apply_monkey_patches() -> None:
- Patching OllamaChatCompletionResponseIterator.chunk_parser for streaming content
- Patching OpenAiResponsesToChatCompletionStreamIterator.chunk_parser for OpenAI Responses API
- Patching LiteLLMResponsesTransformationHandler.transform_response for non-streaming responses
- Patching LiteLLMResponsesTransformationHandler._convert_content_str_to_input_text for tool content types
"""
_patch_ollama_transform_request()
_patch_ollama_chunk_parser()
_patch_openai_responses_chunk_parser()
_patch_openai_responses_transform_response()
_patch_openai_responses_tool_content_type()
def _extract_reasoning_content(message: dict) -> Tuple[Optional[str], Optional[str]]:

View File

@@ -56,6 +56,15 @@ class WellKnownLLMProviderDescriptor(BaseModel):
OPENAI_PROVIDER_NAME = "openai"
# Curated list of OpenAI models to show by default in the UI
OPENAI_VISIBLE_MODEL_NAMES = {
"gpt-5",
"gpt-5-mini",
"o1",
"o3-mini",
"gpt-4o",
"gpt-4o-mini",
}
BEDROCK_PROVIDER_NAME = "bedrock"
BEDROCK_DEFAULT_MODEL = "anthropic.claude-3-5-sonnet-20241022-v2:0"
@@ -125,6 +134,12 @@ _IGNORABLE_ANTHROPIC_MODELS = {
"claude-instant-1",
"anthropic/claude-3-5-sonnet-20241022",
}
# Curated list of Anthropic models to show by default in the UI
ANTHROPIC_VISIBLE_MODEL_NAMES = {
"claude-opus-4-5",
"claude-sonnet-4-5",
"claude-haiku-4-5",
}
AZURE_PROVIDER_NAME = "azure"
@@ -134,6 +149,55 @@ VERTEX_CREDENTIALS_FILE_KWARG = "vertex_credentials"
VERTEX_LOCATION_KWARG = "vertex_location"
VERTEXAI_DEFAULT_MODEL = "gemini-2.5-flash"
VERTEXAI_DEFAULT_FAST_MODEL = "gemini-2.5-flash-lite"
# Curated list of Vertex AI models to show by default in the UI
VERTEXAI_VISIBLE_MODEL_NAMES = {
"gemini-2.5-flash",
"gemini-2.5-flash-lite",
"gemini-2.5-pro",
}
def is_obsolete_model(model_name: str, provider: str) -> bool:
"""Check if a model is obsolete and should be filtered out.
Filters models that are 2+ major versions behind or deprecated.
This is the single source of truth for obsolete model detection.
"""
model_lower = model_name.lower()
# OpenAI obsolete models
if provider == "openai":
# GPT-3 models are obsolete
if "gpt-3" in model_lower:
return True
# Legacy models
deprecated = {
"text-davinci-003",
"text-davinci-002",
"text-curie-001",
"text-babbage-001",
"text-ada-001",
"davinci",
"curie",
"babbage",
"ada",
}
if model_lower in deprecated:
return True
# Anthropic obsolete models
if provider == "anthropic":
if "claude-2" in model_lower or "claude-instant" in model_lower:
return True
# Vertex AI obsolete models
if provider == "vertex_ai":
if "gemini-1.0" in model_lower:
return True
if "palm" in model_lower or "bison" in model_lower:
return True
return False
def _get_provider_to_models_map() -> dict[str, list[str]]:
@@ -155,22 +219,43 @@ def _get_provider_to_models_map() -> dict[str, list[str]]:
def get_openai_model_names() -> list[str]:
"""Get OpenAI model names dynamically from litellm."""
import re
import litellm
# TODO: remove these lists once we have a comprehensive model configuration page
# The ideal flow should be: fetch all available models --> filter by type
# --> allow user to modify filters and select models based on current context
non_chat_model_terms = {
"embed",
"audio",
"tts",
"whisper",
"dall-e",
"image",
"moderation",
"sora",
"container",
}
deprecated_model_terms = {"babbage", "davinci", "gpt-3.5", "gpt-4-"}
excluded_terms = non_chat_model_terms | deprecated_model_terms
# NOTE: We are explicitly excluding all "timestamped" models
# because they are mostly just noise in the admin configuration panel
# e.g. gpt-4o-2025-07-16, gpt-3.5-turbo-0613, etc.
date_pattern = re.compile(r"-\d{4}")
def is_valid_model(model: str) -> bool:
model_lower = model.lower()
return not any(
ex in model_lower for ex in excluded_terms
) and not date_pattern.search(model)
return sorted(
[
# Strip openai/ prefix if present
model.replace("openai/", "") if model.startswith("openai/") else model
(
model.removeprefix("openai/")
for model in litellm.open_ai_chat_completion_models
if "embed" not in model.lower()
and "audio" not in model.lower()
and "tts" not in model.lower()
and "whisper" not in model.lower()
and "dall-e" not in model.lower()
and "moderation" not in model.lower()
and "sora" not in model.lower() # video generation
and "container" not in model.lower() # not a model
],
if is_valid_model(model)
),
reverse=True,
)
@@ -184,6 +269,7 @@ def get_anthropic_model_names() -> list[str]:
model
for model in litellm.anthropic_models
if model not in _IGNORABLE_ANTHROPIC_MODELS
and not is_obsolete_model(model, ANTHROPIC_PROVIDER_NAME)
],
reverse=True,
)
@@ -229,6 +315,7 @@ def get_vertexai_model_names() -> list[str]:
and "/" not in model # filter out prefixed models like openai/gpt-oss
and "search_api" not in model.lower() # not a model
and "-maas" not in model.lower() # marketplace models
and not is_obsolete_model(model, VERTEXAI_PROVIDER_NAME)
],
reverse=True,
)
@@ -468,18 +555,30 @@ def get_provider_display_name(provider_name: str) -> str:
)
def _get_visible_models_for_provider(provider_name: str) -> set[str]:
"""Get the set of models that should be visible by default for a provider."""
_PROVIDER_TO_VISIBLE_MODELS: dict[str, set[str]] = {
OPENAI_PROVIDER_NAME: OPENAI_VISIBLE_MODEL_NAMES,
ANTHROPIC_PROVIDER_NAME: ANTHROPIC_VISIBLE_MODEL_NAMES,
VERTEXAI_PROVIDER_NAME: VERTEXAI_VISIBLE_MODEL_NAMES,
}
return _PROVIDER_TO_VISIBLE_MODELS.get(provider_name, set())
def fetch_model_configurations_for_provider(
provider_name: str,
) -> list[ModelConfigurationView]:
"""Fetch model configurations for a static provider (OpenAI, Anthropic, Vertex AI).
Looks up max_input_tokens from LiteLLM's model_cost. If not found, stores None
and the runtime will use the fallback (4096).
and the runtime will use the fallback (32000).
Models in the curated visible lists (OPENAI_VISIBLE_MODEL_NAMES, etc.) are
marked as is_visible=True by default.
"""
from onyx.llm.utils import get_max_input_tokens
# No models are marked visible by default - the default model logic
# in the frontend/backend will handle making default models visible.
visible_models = _get_visible_models_for_provider(provider_name)
configs = []
for model_name in fetch_models_for_provider(provider_name):
max_input_tokens = get_max_input_tokens(
@@ -490,7 +589,7 @@ def fetch_model_configurations_for_provider(
configs.append(
ModelConfigurationView(
name=model_name,
is_visible=False,
is_visible=model_name in visible_models,
max_input_tokens=max_input_tokens,
supports_image_input=model_supports_image_input(
model_name=model_name,

View File

@@ -2621,6 +2621,28 @@
"model_vendor": "openai",
"model_version": "2025-10-06"
},
"gpt-5.2-pro-2025-12-11": {
"display_name": "GPT-5.2 Pro",
"model_vendor": "openai",
"model_version": "2025-12-11"
},
"gpt-5.2-pro": {
"display_name": "GPT-5.2 Pro",
"model_vendor": "openai"
},
"gpt-5.2-chat-latest": {
"display_name": "GPT 5.2 Chat",
"model_vendor": "openai"
},
"gpt-5.2-2025-12-11": {
"display_name": "GPT 5.2",
"model_vendor": "openai",
"model_version": "2025-12-11"
},
"gpt-5.2": {
"display_name": "GPT 5.2",
"model_vendor": "openai"
},
"gpt-5.1": {
"display_name": "GPT 5.1",
"model_vendor": "openai"

View File

@@ -85,7 +85,15 @@ def litellm_exception_to_error_msg(
custom_error_msg_mappings: (
dict[str, str] | None
) = LITELLM_CUSTOM_ERROR_MESSAGE_MAPPINGS,
) -> str:
) -> tuple[str, str, bool]:
"""Convert a LiteLLM exception to a user-friendly error message with classification.
Returns:
tuple: (error_message, error_code, is_retryable)
- error_message: User-friendly error description
- error_code: Categorized error code for frontend display
- is_retryable: Whether the user should try again
"""
from litellm.exceptions import BadRequestError
from litellm.exceptions import AuthenticationError
from litellm.exceptions import PermissionDeniedError
@@ -102,25 +110,37 @@ def litellm_exception_to_error_msg(
core_exception = _unwrap_nested_exception(e)
error_msg = str(core_exception)
error_code = "UNKNOWN_ERROR"
is_retryable = True
if custom_error_msg_mappings:
for error_msg_pattern, custom_error_msg in custom_error_msg_mappings.items():
if error_msg_pattern in error_msg:
return custom_error_msg
return custom_error_msg, "CUSTOM_ERROR", True
if isinstance(core_exception, BadRequestError):
error_msg = "Bad request: The server couldn't process your request. Please check your input."
error_code = "BAD_REQUEST"
is_retryable = True
elif isinstance(core_exception, AuthenticationError):
error_msg = "Authentication failed: Please check your API key and credentials."
error_code = "AUTH_ERROR"
is_retryable = False
elif isinstance(core_exception, PermissionDeniedError):
error_msg = (
"Permission denied: You don't have the necessary permissions for this operation."
"Permission denied: You don't have the necessary permissions for this operation. "
"Ensure you have access to this model."
)
error_code = "PERMISSION_DENIED"
is_retryable = False
elif isinstance(core_exception, NotFoundError):
error_msg = "Resource not found: The requested resource doesn't exist."
error_code = "NOT_FOUND"
is_retryable = False
elif isinstance(core_exception, UnprocessableEntityError):
error_msg = "Unprocessable entity: The server couldn't process your request due to semantic errors."
error_code = "UNPROCESSABLE_ENTITY"
is_retryable = True
elif isinstance(core_exception, RateLimitError):
provider_name = (
llm.config.model_provider
@@ -151,6 +171,8 @@ def litellm_exception_to_error_msg(
if upstream_detail
else f"{provider_name} rate limit exceeded: Please slow down your requests and try again later."
)
error_code = "RATE_LIMIT"
is_retryable = True
elif isinstance(core_exception, ServiceUnavailableError):
provider_name = (
llm.config.model_provider
@@ -168,6 +190,8 @@ def litellm_exception_to_error_msg(
else:
# Generic 503 Service Unavailable
error_msg = f"{provider_name} service error: {str(core_exception)}"
error_code = "SERVICE_UNAVAILABLE"
is_retryable = True
elif isinstance(core_exception, ContextWindowExceededError):
error_msg = (
"Context window exceeded: Your input is too long for the model to process."
@@ -178,29 +202,44 @@ def litellm_exception_to_error_msg(
model_name=llm.config.model_name,
model_provider=llm.config.model_provider,
)
error_msg += f"Your invoked model ({llm.config.model_name}) has a maximum context size of {max_context}"
error_msg += f" Your invoked model ({llm.config.model_name}) has a maximum context size of {max_context}."
except Exception:
logger.warning(
"Unable to get maximum input token for LiteLLM excpetion handling"
"Unable to get maximum input token for LiteLLM exception handling"
)
error_code = "CONTEXT_TOO_LONG"
is_retryable = False
elif isinstance(core_exception, ContentPolicyViolationError):
error_msg = "Content policy violation: Your request violates the content policy. Please revise your input."
error_code = "CONTENT_POLICY"
is_retryable = False
elif isinstance(core_exception, APIConnectionError):
error_msg = "API connection error: Failed to connect to the API. Please check your internet connection."
error_code = "CONNECTION_ERROR"
is_retryable = True
elif isinstance(core_exception, BudgetExceededError):
error_msg = (
"Budget exceeded: You've exceeded your allocated budget for API usage."
)
error_code = "BUDGET_EXCEEDED"
is_retryable = False
elif isinstance(core_exception, Timeout):
error_msg = "Request timed out: The operation took too long to complete. Please try again."
error_code = "CONNECTION_ERROR"
is_retryable = True
elif isinstance(core_exception, APIError):
error_msg = (
"API error: An error occurred while communicating with the API. "
f"Details: {str(core_exception)}"
)
error_code = "API_ERROR"
is_retryable = True
elif not fallback_to_error_msg:
error_msg = "An unexpected error occurred while processing your request. Please try again later."
return error_msg
error_code = "UNKNOWN_ERROR"
is_retryable = True
return error_msg, error_code, is_retryable
def llm_response_to_string(message: ModelResponse) -> str:
@@ -514,11 +553,11 @@ def get_max_input_tokens_from_llm_provider(
1. Use max_input_tokens from model_configuration (populated from source APIs
like OpenRouter, Ollama, or our Bedrock mapping)
2. Look up in litellm.model_cost dictionary
3. Fall back to GEN_AI_MODEL_FALLBACK_MAX_TOKENS (4096)
3. Fall back to GEN_AI_MODEL_FALLBACK_MAX_TOKENS (32000)
Most dynamic providers (OpenRouter, Ollama) provide context_length via their
APIs. Bedrock doesn't expose this, so we parse from model ID suffix (:200k)
or use BEDROCK_MODEL_TOKEN_LIMITS mapping. The 4096 fallback is only hit for
or use BEDROCK_MODEL_TOKEN_LIMITS mapping. The 32000 fallback is only hit for
unknown models not in any of these sources.
"""
max_input_tokens = None
@@ -545,7 +584,7 @@ def get_bedrock_token_limit(model_id: str) -> int:
1. Parse from model ID suffix (e.g., ":200k" → 200000)
2. Check LiteLLM's model_cost dictionary
3. Fall back to our hardcoded BEDROCK_MODEL_TOKEN_LIMITS mapping
4. Default to 4096 if not found anywhere
4. Default to 32000 if not found anywhere
"""
from onyx.llm.constants import BEDROCK_MODEL_TOKEN_LIMITS

View File

@@ -30,6 +30,7 @@ class RedisConnectorDelete:
PREFIX = "connectordeletion"
FENCE_PREFIX = f"{PREFIX}_fence" # "connectordeletion_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
TASKSET_PREFIX = f"{PREFIX}_taskset" # "connectordeletion_taskset"
# used to signal the overall workflow is still active
@@ -78,7 +79,7 @@ class RedisConnectorDelete:
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.set(self.fence_key, payload.model_dump_json(), ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:

View File

@@ -43,6 +43,7 @@ class RedisConnectorPermissionSync:
PREFIX = "connectordocpermissionsync"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
# phase 1 - geneartor task and progress signals
GENERATORTASK_PREFIX = f"{PREFIX}+generator" # connectorpermissions+generator
@@ -126,7 +127,7 @@ class RedisConnectorPermissionSync:
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.set(self.fence_key, payload.model_dump_json(), ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:
@@ -162,7 +163,7 @@ class RedisConnectorPermissionSync:
self.redis.delete(self.generator_complete_key)
return
self.redis.set(self.generator_complete_key, payload)
self.redis.set(self.generator_complete_key, payload, ex=self.FENCE_TTL)
def update_db(
self,

View File

@@ -25,6 +25,7 @@ class RedisConnectorExternalGroupSync:
PREFIX = "connectorexternalgroupsync"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
# phase 1 - geneartor task and progress signals
GENERATORTASK_PREFIX = f"{PREFIX}+generator" # connectorexternalgroupsync+generator
@@ -110,7 +111,7 @@ class RedisConnectorExternalGroupSync:
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.set(self.fence_key, payload.model_dump_json(), ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:
@@ -147,7 +148,7 @@ class RedisConnectorExternalGroupSync:
self.redis.delete(self.generator_complete_key)
return
self.redis.set(self.generator_complete_key, payload)
self.redis.set(self.generator_complete_key, payload, ex=self.FENCE_TTL)
def generate_tasks(
self,

View File

@@ -33,6 +33,7 @@ class RedisConnectorPrune:
PREFIX = "connectorpruning"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
# phase 1 - geneartor task and progress signals
GENERATORTASK_PREFIX = f"{PREFIX}+generator" # connectorpruning+generator
@@ -115,7 +116,7 @@ class RedisConnectorPrune:
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload.model_dump_json())
self.redis.set(self.fence_key, payload.model_dump_json(), ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
def set_active(self) -> None:
@@ -148,7 +149,7 @@ class RedisConnectorPrune:
self.redis.delete(self.generator_complete_key)
return
self.redis.set(self.generator_complete_key, payload)
self.redis.set(self.generator_complete_key, payload, ex=self.FENCE_TTL)
def generate_tasks(
self,

View File

@@ -7,6 +7,7 @@ class RedisConnectorStop:
PREFIX = "connectorstop"
FENCE_PREFIX = f"{PREFIX}_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
# if this timeout is exceeded, the caller may decide to take more
# drastic measures
@@ -30,7 +31,7 @@ class RedisConnectorStop:
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, 0)
self.redis.set(self.fence_key, 0, ex=self.FENCE_TTL)
@property
def timed_out(self) -> bool:

View File

@@ -21,6 +21,7 @@ from onyx.redis.redis_object_helper import RedisObjectHelper
class RedisDocumentSet(RedisObjectHelper):
PREFIX = "documentset"
FENCE_PREFIX = PREFIX + "_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
TASKSET_PREFIX = PREFIX + "_taskset"
def __init__(self, tenant_id: str, id: int) -> None:
@@ -36,7 +37,7 @@ class RedisDocumentSet(RedisObjectHelper):
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload)
self.redis.set(self.fence_key, payload, ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
@property

View File

@@ -22,6 +22,7 @@ from onyx.utils.variable_functionality import global_version
class RedisUserGroup(RedisObjectHelper):
PREFIX = "usergroup"
FENCE_PREFIX = PREFIX + "_fence"
FENCE_TTL = 7 * 24 * 60 * 60 # 7 days - defensive TTL to prevent memory leaks
TASKSET_PREFIX = PREFIX + "_taskset"
def __init__(self, tenant_id: str, id: int) -> None:
@@ -40,7 +41,7 @@ class RedisUserGroup(RedisObjectHelper):
self.redis.delete(self.fence_key)
return
self.redis.set(self.fence_key, payload)
self.redis.set(self.fence_key, payload, ex=self.FENCE_TTL)
self.redis.sadd(OnyxRedisConstants.ACTIVE_FENCES, self.fence_key)
@property

View File

@@ -1796,6 +1796,19 @@ def update_mcp_server_with_tools(
status_code=400, detail="MCP server has no admin connection config"
)
name_changed = request.name is not None and request.name != mcp_server.name
description_changed = (
request.description is not None
and request.description != mcp_server.description
)
if name_changed or description_changed:
mcp_server = update_mcp_server__no_commit(
server_id=mcp_server.id,
db_session=db_session,
name=request.name if name_changed else None,
description=request.description if description_changed else None,
)
selected_names = set(request.selected_tools or [])
updated_tools = _sync_tools_for_server(
mcp_server,
@@ -1807,6 +1820,7 @@ def update_mcp_server_with_tools(
return MCPServerUpdateResponse(
server_id=mcp_server.id,
server_name=mcp_server.name,
updated_tools=updated_tools,
)

View File

@@ -134,6 +134,10 @@ class MCPToolCreateRequest(BaseModel):
class MCPToolUpdateRequest(BaseModel):
server_id: int = Field(..., description="ID of the MCP server")
name: Optional[str] = Field(None, description="Updated name of the MCP server")
description: Optional[str] = Field(
None, description="Updated description of the MCP server"
)
selected_tools: Optional[List[str]] = Field(
None, description="List of selected tool names to create"
)
@@ -328,6 +332,7 @@ class MCPServerUpdateResponse(BaseModel):
"""Response for updating multiple MCP tools"""
server_id: int
server_name: str
updated_tools: int

View File

@@ -200,6 +200,9 @@ def get_agents_admin_paginated(
get_editable: bool = Query(
False, description="If true, only returns editable personas."
),
include_default: bool = Query(
True, description="If true, includes builtin/default personas."
),
) -> PaginatedReturn[PersonaSnapshot]:
"""Paginated endpoint for listing agents (formerly personas) (admin view).
@@ -212,6 +215,7 @@ def get_agents_admin_paginated(
page_num=page_num,
page_size=page_size,
get_editable=get_editable,
include_default=include_default,
include_deleted=include_deleted,
)
@@ -219,6 +223,7 @@ def get_agents_admin_paginated(
user=user,
db_session=db_session,
get_editable=get_editable,
include_default=include_default,
include_deleted=include_deleted,
)
@@ -441,6 +446,9 @@ def get_agents_paginated(
get_editable: bool = Query(
False, description="If true, only returns editable personas."
),
include_default: bool = Query(
True, description="If true, includes builtin/default personas."
),
) -> PaginatedReturn[MinimalPersonaSnapshot]:
"""Paginated endpoint for listing agents available to the user.
@@ -456,6 +464,7 @@ def get_agents_paginated(
page_num=page_num,
page_size=page_size,
get_editable=get_editable,
include_default=include_default,
include_deleted=include_deleted,
)
@@ -463,6 +472,7 @@ def get_agents_paginated(
user=user,
db_session=db_session,
get_editable=get_editable,
include_default=include_default,
include_deleted=include_deleted,
)

View File

@@ -149,7 +149,7 @@ def test_llm_configuration(
)
if error:
client_error_msg = litellm_exception_to_error_msg(
client_error_msg, _error_code, _is_retryable = litellm_exception_to_error_msg(
error, llm, fallback_to_error_msg=True
)
raise HTTPException(status_code=400, detail=client_error_msg)

View File

@@ -8,6 +8,9 @@ from pydantic import field_validator
from onyx.llm.utils import get_max_input_tokens
from onyx.llm.utils import litellm_thinks_model_supports_image_input
from onyx.llm.utils import model_is_reasoning_model
from onyx.server.manage.llm.utils import DYNAMIC_LLM_PROVIDERS
from onyx.server.manage.llm.utils import extract_vendor_from_model_name
from onyx.server.manage.llm.utils import filter_model_configurations
from onyx.server.manage.llm.utils import is_reasoning_model
@@ -66,6 +69,7 @@ class LLMProviderDescriptor(BaseModel):
from onyx.llm.llm_provider_options import get_provider_display_name
provider = llm_provider_model.provider
return cls(
name=llm_provider_model.name,
provider=provider,
@@ -75,11 +79,8 @@ class LLMProviderDescriptor(BaseModel):
is_default_provider=llm_provider_model.is_default_provider,
is_default_vision_provider=llm_provider_model.is_default_vision_provider,
default_vision_model=llm_provider_model.default_vision_model,
model_configurations=list(
ModelConfigurationView.from_model(
model_configuration, llm_provider_model.provider
)
for model_configuration in llm_provider_model.model_configurations
model_configurations=filter_model_configurations(
llm_provider_model.model_configurations, provider
),
)
@@ -138,10 +139,12 @@ class LLMProviderView(LLMProvider):
except Exception:
personas = []
provider = llm_provider_model.provider
return cls(
id=llm_provider_model.id,
name=llm_provider_model.name,
provider=llm_provider_model.provider,
provider=provider,
api_key=llm_provider_model.api_key,
api_base=llm_provider_model.api_base,
api_version=llm_provider_model.api_version,
@@ -155,11 +158,8 @@ class LLMProviderView(LLMProvider):
groups=groups,
personas=personas,
deployment_name=llm_provider_model.deployment_name,
model_configurations=list(
ModelConfigurationView.from_model(
model_configuration, llm_provider_model.provider
)
for model_configuration in llm_provider_model.model_configurations
model_configurations=filter_model_configurations(
llm_provider_model.model_configurations, provider
),
)
@@ -184,54 +184,6 @@ class ModelConfigurationUpsertRequest(BaseModel):
)
# Dynamic providers fetch models directly from source APIs (not LiteLLM)
DYNAMIC_LLM_PROVIDERS = {"openrouter", "bedrock", "ollama_chat"}
def _extract_vendor_from_model_name(model_name: str, provider: str) -> str | None:
"""Extract vendor from model name for aggregator providers.
Examples:
- OpenRouter: "anthropic/claude-3-5-sonnet""Anthropic"
- Bedrock: "anthropic.claude-3-5-sonnet-...""Anthropic"
- Bedrock: "us.anthropic.claude-...""Anthropic"
- Ollama: "llama3:70b""Meta"
- Ollama: "qwen2.5:7b""Alibaba"
"""
from onyx.llm.constants import OLLAMA_MODEL_TO_VENDOR
from onyx.llm.constants import PROVIDER_DISPLAY_NAMES
if provider == "openrouter":
# Format: "vendor/model-name" e.g., "anthropic/claude-3-5-sonnet"
if "/" in model_name:
vendor_key = model_name.split("/")[0].lower()
return PROVIDER_DISPLAY_NAMES.get(vendor_key, vendor_key.title())
elif provider == "bedrock":
# Format: "vendor.model-name" or "region.vendor.model-name"
parts = model_name.split(".")
if len(parts) >= 2:
# Check if first part is a region (us, eu, global, etc.)
if parts[0] in ("us", "eu", "global", "ap", "apac"):
vendor_key = parts[1].lower() if len(parts) > 2 else parts[0].lower()
else:
vendor_key = parts[0].lower()
return PROVIDER_DISPLAY_NAMES.get(vendor_key, vendor_key.title())
elif provider == "ollama_chat":
# Format: "model-name:tag" e.g., "llama3:70b", "qwen2.5:7b"
# Extract base name (before colon)
base_name = model_name.split(":")[0].lower()
# Match against known model prefixes
for prefix, vendor in OLLAMA_MODEL_TO_VENDOR.items():
if base_name.startswith(prefix):
return vendor
# Fallback: capitalize the base name as vendor
return base_name.split("-")[0].title()
return None
class ModelConfigurationView(BaseModel):
name: str
is_visible: bool
@@ -257,7 +209,7 @@ class ModelConfigurationView(BaseModel):
and model_configuration_model.display_name
):
# Extract vendor from model name for grouping (e.g., "Anthropic", "OpenAI")
vendor = _extract_vendor_from_model_name(
vendor = extract_vendor_from_model_name(
model_configuration_model.name, provider_name
)
@@ -349,7 +301,7 @@ class BedrockModelsRequest(BaseModel):
class BedrockFinalModelResponse(BaseModel):
name: str # Model ID (e.g., "anthropic.claude-3-5-sonnet-20241022-v2:0")
display_name: str # Human-readable name from AWS (e.g., "Claude 3.5 Sonnet v2")
max_input_tokens: int # From LiteLLM, our mapping, or default 4096
max_input_tokens: int # From LiteLLM, our mapping, or default 32000
supports_image_input: bool

View File

@@ -12,6 +12,12 @@ from typing import TypedDict
from onyx.llm.constants import BEDROCK_MODEL_NAME_MAPPINGS
from onyx.llm.constants import OLLAMA_MODEL_NAME_MAPPINGS
from onyx.llm.constants import OLLAMA_MODEL_TO_VENDOR
from onyx.llm.constants import PROVIDER_DISPLAY_NAMES
# Dynamic providers fetch models directly from source APIs (not LiteLLM)
DYNAMIC_LLM_PROVIDERS = {"openrouter", "bedrock", "ollama_chat"}
class ModelMetadata(TypedDict):
@@ -235,3 +241,104 @@ def is_reasoning_model(model_id: str, display_name: str) -> bool:
"""
combined = f"{model_id} {display_name}".lower()
return any(pattern in combined for pattern in REASONING_MODEL_PATTERNS)
def extract_base_model_name(model: str) -> str | None:
"""Extract base model name by removing date suffixes.
Returns None if no date suffix was found.
"""
patterns = [
r"-\d{8}$", # -20250929
r"-\d{4}-\d{2}-\d{2}$", # -2024-08-06
r"@\d{8}$", # @20250219
]
for pattern in patterns:
if re.search(pattern, model):
return re.sub(pattern, "", model)
return None
def should_filter_as_dated_duplicate(
model_name: str, all_model_names: set[str]
) -> bool:
"""Check if this model is a dated variant and a non-dated version exists."""
base = extract_base_model_name(model_name)
if base and base in all_model_names:
return True
return False
def filter_model_configurations(
model_configurations: list,
provider: str,
) -> list:
"""Filter out obsolete and dated duplicate models from configurations.
Args:
model_configurations: List of ModelConfiguration DB models
provider: The provider name (e.g., "openai", "anthropic")
Returns:
List of ModelConfigurationView objects with obsolete/duplicate models removed
"""
# Import here to avoid circular imports
from onyx.llm.llm_provider_options import is_obsolete_model
from onyx.server.manage.llm.models import ModelConfigurationView
all_model_names = {mc.name for mc in model_configurations}
filtered_configs = []
for model_configuration in model_configurations:
# Skip obsolete models
if is_obsolete_model(model_configuration.name, provider):
continue
# Skip dated duplicates when non-dated version exists
if should_filter_as_dated_duplicate(model_configuration.name, all_model_names):
continue
filtered_configs.append(
ModelConfigurationView.from_model(model_configuration, provider)
)
return filtered_configs
def extract_vendor_from_model_name(model_name: str, provider: str) -> str | None:
"""Extract vendor from model name for aggregator providers.
Examples:
- OpenRouter: "anthropic/claude-3-5-sonnet""Anthropic"
- Bedrock: "anthropic.claude-3-5-sonnet-...""Anthropic"
- Bedrock: "us.anthropic.claude-...""Anthropic"
- Ollama: "llama3:70b""Meta"
- Ollama: "qwen2.5:7b""Alibaba"
"""
if provider == "openrouter":
# Format: "vendor/model-name" e.g., "anthropic/claude-3-5-sonnet"
if "/" in model_name:
vendor_key = model_name.split("/")[0].lower()
return PROVIDER_DISPLAY_NAMES.get(vendor_key, vendor_key.title())
elif provider == "bedrock":
# Format: "vendor.model-name" or "region.vendor.model-name"
parts = model_name.split(".")
if len(parts) >= 2:
# Check if first part is a region (us, eu, global, etc.)
if parts[0] in ("us", "eu", "global", "ap", "apac"):
vendor_key = parts[1].lower() if len(parts) > 2 else parts[0].lower()
else:
vendor_key = parts[0].lower()
return PROVIDER_DISPLAY_NAMES.get(vendor_key, vendor_key.title())
elif provider == "ollama_chat":
# Format: "model-name:tag" e.g., "llama3:70b", "qwen2.5:7b"
# Extract base name (before colon)
base_name = model_name.split(":")[0].lower()
# Match against known model prefixes
for prefix, vendor in OLLAMA_MODEL_TO_VENDOR.items():
if base_name.startswith(prefix):
return vendor
# Fallback: capitalize the base name as vendor
return base_name.split("-")[0].title()
return None

View File

@@ -361,7 +361,8 @@ def bulk_invite_users(
try:
for email in emails:
email_info = validate_email(email)
# Allow syntactically valid emails without DNS deliverability checks; tests use test domains
email_info = validate_email(email, check_deliverability=False)
new_invited_emails.append(email_info.normalized)
except (EmailUndeliverableError, EmailNotValidError) as e:

View File

@@ -162,36 +162,13 @@ def test_search_provider(
status_code=400, detail="Unable to build provider configuration."
)
# Actually test the API key by making a real search call
# Run the API client's test_connection method to ensure the connection is valid.
try:
test_results = provider.search("test")
if not test_results or not any(result.link for result in test_results):
raise HTTPException(
status_code=400,
detail="API key validation failed: search returned no results.",
)
return provider.test_connection()
except HTTPException:
raise
except Exception as e:
error_msg = str(e)
if (
"api" in error_msg.lower()
or "key" in error_msg.lower()
or "auth" in error_msg.lower()
):
raise HTTPException(
status_code=400,
detail=f"Invalid API key: {error_msg}",
) from e
raise HTTPException(
status_code=400,
detail=f"API key validation failed: {error_msg}",
) from e
logger.info(
f"Web search provider test succeeded for {request.provider_type.value}."
)
return {"status": "ok"}
raise HTTPException(status_code=400, detail=str(e)) from e
@admin_router.get("/content-providers", response_model=list[WebContentProviderView])

View File

@@ -34,6 +34,9 @@ class StreamingType(Enum):
REASONING_DONE = "reasoning_done"
CITATION_INFO = "citation_info"
DEEP_RESEARCH_PLAN_START = "deep_research_plan_start"
DEEP_RESEARCH_PLAN_DELTA = "deep_research_plan_delta"
class BaseObj(BaseModel):
type: str = ""
@@ -222,6 +225,20 @@ class CustomToolDelta(BaseObj):
file_ids: list[str] | None = None
class DeepResearchPlanStart(BaseObj):
type: Literal["deep_research_plan_start"] = (
StreamingType.DEEP_RESEARCH_PLAN_START.value
)
class DeepResearchPlanDelta(BaseObj):
type: Literal["deep_research_plan_delta"] = (
StreamingType.DEEP_RESEARCH_PLAN_DELTA.value
)
content: str
"""Packet"""
# Discriminated union of all possible packet object types
@@ -254,6 +271,9 @@ PacketObj = Union[
ReasoningDone,
# Citation Packets
CitationInfo,
# Deep Research Packets
DeepResearchPlanStart,
DeepResearchPlanDelta,
]

View File

@@ -13,6 +13,9 @@ from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
# TTL for settings keys - 30 days
SETTINGS_TTL = 30 * 24 * 60 * 60
def load_settings() -> Settings:
kv_store = get_kv_store()
@@ -41,7 +44,9 @@ def load_settings() -> Settings:
# Default to False
anonymous_user_enabled = False
# Optionally store the default back to Redis
redis_client.set(OnyxRedisLocks.ANONYMOUS_USER_ENABLED, "0")
redis_client.set(
OnyxRedisLocks.ANONYMOUS_USER_ENABLED, "0", ex=SETTINGS_TTL
)
except Exception as e:
# Log the error and reset to default
logger.error(f"Error loading anonymous user setting from Redis: {str(e)}")
@@ -66,6 +71,7 @@ def store_settings(settings: Settings) -> None:
redis_client.set(
OnyxRedisLocks.ANONYMOUS_USER_ENABLED,
"1" if settings.anonymous_user_enabled else "0",
ex=SETTINGS_TTL,
)
get_kv_store().store(KV_SETTINGS_KEY, settings.model_dump())

View File

@@ -106,11 +106,16 @@ class SearchToolOverrideKwargs(BaseModel):
# To know what citation number to start at for constructing the string to the LLM
starting_citation_num: int
# This is needed because the LLM won't be able to do a really detailed semantic query well
# without help and a specific custom prompt for this
original_query: str | None = None
message_history: list[ChatMinimalTextMessage] | None = None
memories: list[str] | None = None
user_info: str | None = None
# Used for tool calls after the first one but in the same chat turn. The reason for this is that if the initial pass through
# the custom flow did not yield good results, we don't want to go through it again. In that case, we defer entirely to the LLM
skip_query_expansion: bool = False
# Number of results to return in the richer object format so that it can be rendered in the UI
num_hits: int | None = NUM_RETURNED_HITS
# Number of chunks (token approx) to include in the string to the LLM

View File

@@ -1,3 +1,4 @@
from enum import Enum
from typing import cast
from uuid import UUID
@@ -23,6 +24,7 @@ from onyx.db.models import Persona
from onyx.db.models import User
from onyx.db.oauth_config import get_oauth_config
from onyx.db.search_settings import get_current_search_settings
from onyx.db.tools import get_builtin_tool
from onyx.document_index.factory import get_default_document_index
from onyx.llm.interfaces import LLM
from onyx.llm.interfaces import LLMConfig
@@ -65,6 +67,12 @@ class CustomToolConfig(BaseModel):
additional_headers: dict[str, str] | None = None
class SearchToolUsage(str, Enum):
DISABLED = "disabled"
ENABLED = "enabled"
AUTO = "auto"
def _get_image_generation_config(llm: LLM, db_session: Session) -> LLMConfig:
"""Helper function to get image generation LLM config based on available providers"""
if llm and llm.config.api_key and llm.config.model_provider == "openai":
@@ -127,7 +135,7 @@ def construct_tools(
search_tool_config: SearchToolConfig | None = None,
custom_tool_config: CustomToolConfig | None = None,
allowed_tool_ids: list[int] | None = None,
disable_internal_search: bool = False,
search_usage_forcing_setting: SearchToolUsage = SearchToolUsage.AUTO,
) -> dict[int, list[Tool]]:
"""Constructs tools based on persona configuration and available APIs.
@@ -146,6 +154,7 @@ def construct_tools(
if user and user.oauth_accounts:
user_oauth_token = user.oauth_accounts[0].access_token
added_search_tool = False
for db_tool_model in persona.tools:
# If allowed_tool_ids is specified, skip tools not in the allowed list
if allowed_tool_ids is not None and db_tool_model.id not in allowed_tool_ids:
@@ -171,7 +180,8 @@ def construct_tools(
# Handle Internal Search Tool
if tool_cls.__name__ == SearchTool.__name__:
if disable_internal_search:
added_search_tool = True
if search_usage_forcing_setting == SearchToolUsage.DISABLED:
continue
if not search_tool_config:
@@ -180,7 +190,6 @@ def construct_tools(
search_settings = get_current_search_settings(db_session)
document_index = get_default_document_index(search_settings, None)
# TODO concerning passing the db_session here.
search_tool = SearchTool(
tool_id=db_tool_model.id,
db_session=db_session,
@@ -371,6 +380,36 @@ def construct_tools(
f"Tool '{expected_tool_name}' not found in MCP server '{mcp_server.name}'"
)
if (
not added_search_tool
and search_usage_forcing_setting == SearchToolUsage.ENABLED
):
# Get the database tool model for SearchTool
search_tool_db_model = get_builtin_tool(db_session, SearchTool)
# Use the passed-in config if available, otherwise create a new one
if not search_tool_config:
search_tool_config = SearchToolConfig()
search_settings = get_current_search_settings(db_session)
document_index = get_default_document_index(search_settings, None)
search_tool = SearchTool(
tool_id=search_tool_db_model.id,
db_session=db_session,
emitter=emitter,
user=user,
persona=persona,
llm=llm,
fast_llm=fast_llm,
document_index=document_index,
user_selected_filters=search_tool_config.user_selected_filters,
project_id=search_tool_config.project_id,
bypass_acl=search_tool_config.bypass_acl,
slack_context=search_tool_config.slack_context,
)
tool_dict[search_tool_db_model.id] = [search_tool]
tools: list[Tool] = []
for tool_list in tool_dict.values():
tools.extend(tool_list)

View File

@@ -376,7 +376,7 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
try:
llm_queries = cast(list[str], llm_kwargs[QUERIES_FIELD])
# Run semantic and keyword query expansion in parallel
# Run semantic and keyword query expansion in parallel (unless skipped)
# Use message history, memories, and user info from override_kwargs
message_history = (
override_kwargs.message_history
@@ -386,31 +386,41 @@ class SearchTool(Tool[SearchToolOverrideKwargs]):
memories = override_kwargs.memories
user_info = override_kwargs.user_info
# Start timing for query expansion/rephrase
query_expansion_start_time = time.time()
# Skip query expansion if this is a repeat search call
if override_kwargs.skip_query_expansion:
logger.debug(
"Search tool - Skipping query expansion (repeat search call)"
)
semantic_query = None
keyword_queries: list[str] = []
else:
# Start timing for query expansion/rephrase
query_expansion_start_time = time.time()
functions_with_args: list[tuple[Callable, tuple]] = [
(
semantic_query_rephrase,
(message_history, self.llm, user_info, memories),
),
(
keyword_query_expansion,
(message_history, self.llm, user_info, memories),
),
]
functions_with_args: list[tuple[Callable, tuple]] = [
(
semantic_query_rephrase,
(message_history, self.llm, user_info, memories),
),
(
keyword_query_expansion,
(message_history, self.llm, user_info, memories),
),
]
expansion_results = run_functions_tuples_in_parallel(functions_with_args)
expansion_results = run_functions_tuples_in_parallel(
functions_with_args
)
# End timing for query expansion/rephrase
query_expansion_elapsed = time.time() - query_expansion_start_time
logger.debug(
f"Search tool - Query expansion/rephrase took {query_expansion_elapsed:.3f} seconds"
)
semantic_query = expansion_results[0] # str
keyword_queries = (
expansion_results[1] if expansion_results[1] is not None else []
) # list[str]
# End timing for query expansion/rephrase
query_expansion_elapsed = time.time() - query_expansion_start_time
logger.debug(
f"Search tool - Query expansion/rephrase took {query_expansion_elapsed:.3f} seconds"
)
semantic_query = expansion_results[0] # str
keyword_queries = (
expansion_results[1] if expansion_results[1] is not None else []
) # list[str]
# Prepare queries with their weights and hybrid_alpha settings
# Group 1: Keyword queries (use hybrid_alpha=0.2)

View File

@@ -2,6 +2,7 @@ from collections.abc import Sequence
from exa_py import Exa
from exa_py.api import HighlightsContentsOptions
from fastapi import HTTPException
from onyx.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
from onyx.tools.tool_implementations.open_url.models import WebContent
@@ -12,8 +13,11 @@ from onyx.tools.tool_implementations.web_search.models import (
from onyx.tools.tool_implementations.web_search.models import (
WebSearchResult,
)
from onyx.utils.logger import setup_logger
from onyx.utils.retry_wrapper import retry_builder
logger = setup_logger()
# TODO can probably break this up
class ExaClient(WebSearchProvider, WebContentProvider):
@@ -48,6 +52,35 @@ class ExaClient(WebSearchProvider, WebContentProvider):
for result in response.results
]
def test_connection(self) -> dict[str, str]:
try:
test_results = self.search("test")
if not test_results or not any(result.link for result in test_results):
raise HTTPException(
status_code=400,
detail="API key validation failed: search returned no results.",
)
except HTTPException:
raise
except Exception as e:
error_msg = str(e)
if (
"api" in error_msg.lower()
or "key" in error_msg.lower()
or "auth" in error_msg.lower()
):
raise HTTPException(
status_code=400,
detail=f"Invalid Exa API key: {error_msg}",
) from e
raise HTTPException(
status_code=400,
detail=f"Exa API key validation failed: {error_msg}",
) from e
logger.info("Web search provider test succeeded for Exa.")
return {"status": "ok"}
@retry_builder(tries=3, delay=1, backoff=2)
def contents(self, urls: Sequence[str]) -> list[WebContent]:
response = self.exa.get_contents(

View File

@@ -4,6 +4,7 @@ from datetime import datetime
from typing import Any
import requests
from fastapi import HTTPException
from onyx.tools.tool_implementations.web_search.models import (
WebSearchProvider,
@@ -28,7 +29,7 @@ class GooglePSEClient(WebSearchProvider):
) -> None:
self._api_key = api_key
self._search_engine_id = search_engine_id
self._num_results = num_results
self._num_results = min(num_results, 10) # Google API max is 10
self._timeout_seconds = timeout_seconds
@retry_builder(tries=3, delay=1, backoff=2)
@@ -119,3 +120,38 @@ class GooglePSEClient(WebSearchProvider):
)
return results
# TODO: I'm not really satisfied with how tailored this is to the particulars of Google PSE.
# In particular, I think this might flatten errors that are caused by the API key vs. ones caused
# by the search engine ID, or by other factors.
# I (David Edelstein) don't feel knowledgeable enough about the return behavior of the Google PSE API
# to ensure that we have nicely descriptive and actionable error messages. (Like, what's up with the
# thing where 200 status codes can have error messages in the response body?)
def test_connection(self) -> dict[str, str]:
try:
test_results = self.search("test")
if not test_results or not any(result.link for result in test_results):
raise HTTPException(
status_code=400,
detail="Google PSE validation failed: search returned no results.",
)
except HTTPException:
raise
except Exception as e:
error_msg = str(e)
if (
"api" in error_msg.lower()
or "key" in error_msg.lower()
or "auth" in error_msg.lower()
):
raise HTTPException(
status_code=400,
detail=f"Invalid Google PSE API key: {error_msg}",
) from e
raise HTTPException(
status_code=400,
detail=f"Google PSE validation failed: {error_msg}",
) from e
logger.info("Web search provider test succeeded for Google PSE.")
return {"status": "ok"}

View File

@@ -0,0 +1,137 @@
import requests
from fastapi import HTTPException
from onyx.tools.tool_implementations.web_search.models import (
WebSearchProvider,
)
from onyx.tools.tool_implementations.web_search.models import (
WebSearchResult,
)
from onyx.utils.logger import setup_logger
from onyx.utils.retry_wrapper import retry_builder
logger = setup_logger()
class SearXNGClient(WebSearchProvider):
def __init__(
self,
searxng_base_url: str,
num_results: int = 10,
) -> None:
logger.debug(f"Initializing SearXNGClient with base URL: {searxng_base_url}")
self._searxng_base_url = searxng_base_url
self._num_results = num_results
@retry_builder(tries=3, delay=1, backoff=2)
def search(self, query: str) -> list[WebSearchResult]:
payload = {
"q": query,
"format": "json",
}
logger.debug(
f"Searching with payload: {payload} to {self._searxng_base_url}/search"
)
response = requests.post(
f"{self._searxng_base_url}/search",
data=payload,
)
response.raise_for_status()
results = response.json()
result_list = results.get("results", [])
# SearXNG doesn't support limiting results via API parameters,
# so we limit client-side after receiving the response
limited_results = result_list[: self._num_results]
return [
WebSearchResult(
title=result["title"],
link=result["url"],
snippet=result["content"],
)
for result in limited_results
]
def test_connection(self) -> dict[str, str]:
try:
logger.debug(f"Testing connection to {self._searxng_base_url}/config")
response = requests.get(f"{self._searxng_base_url}/config")
logger.debug(f"Response: {response.status_code}, text: {response.text}")
response.raise_for_status()
except requests.HTTPError as e:
status_code = e.response.status_code
logger.debug(
f"HTTPError: status_code={status_code}, e.response={e.response.status_code if e.response else None}, error={e}"
)
if status_code == 429:
raise HTTPException(
status_code=400,
detail=(
"This SearXNG instance does not allow API requests. "
"Use a private instance and configure it to allow bots."
),
) from e
elif status_code == 404:
raise HTTPException(
status_code=400,
detail="This SearXNG instance was not found. Please check the URL and try again.",
) from e
else:
raise HTTPException(
status_code=400,
detail=f"SearXNG connection failed (status {status_code}): {str(e)}",
) from e
# Not a sure way to check if this is a SearXNG instance as opposed to some other website that
# happens to have a /config endpoint containing a "brand" key with a "GIT_URL" key with value
# "https://github.com/searxng/searxng". I don't think that would happen by coincidence, so I
# think this is a good enough check for now. I'm open for suggestions on improvements.
config = response.json()
if (
config.get("brand", {}).get("GIT_URL")
!= "https://github.com/searxng/searxng"
):
raise HTTPException(
status_code=400,
detail="This does not appear to be a SearXNG instance. Please check the URL and try again.",
)
# Test that JSON mode is enabled by performing a simple search
self._test_json_mode()
logger.info("Web search provider test succeeded for SearXNG.")
return {"status": "ok"}
def _test_json_mode(self) -> None:
"""Test that JSON format is enabled in SearXNG settings.
SearXNG requires JSON format to be explicitly enabled in settings.yml.
If it's not enabled, the search endpoint returns a 403.
"""
try:
payload = {
"q": "test",
"format": "json",
}
response = requests.post(
f"{self._searxng_base_url}/search",
data=payload,
timeout=5,
)
response.raise_for_status()
except requests.HTTPError as e:
status_code = e.response.status_code if e.response is not None else None
if status_code == 403:
raise HTTPException(
status_code=400,
detail=(
"Got a 403 response when trying to reach SearXNG. This likely means that "
"JSON format is not enabled on this SearXNG instance. "
"Please enable JSON format in your SearXNG settings.yml file by adding "
"'json' to the 'search.formats' list."
),
) from e
raise HTTPException(
status_code=400,
detail=f"Failed to test search on SearXNG instance (status {status_code}): {str(e)}",
) from e

View File

@@ -3,6 +3,7 @@ from collections.abc import Sequence
from concurrent.futures import ThreadPoolExecutor
import requests
from fastapi import HTTPException
from onyx.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
from onyx.tools.tool_implementations.open_url.models import WebContent
@@ -13,8 +14,11 @@ from onyx.tools.tool_implementations.web_search.models import (
from onyx.tools.tool_implementations.web_search.models import (
WebSearchResult,
)
from onyx.utils.logger import setup_logger
from onyx.utils.retry_wrapper import retry_builder
logger = setup_logger()
SERPER_SEARCH_URL = "https://google.serper.dev/search"
SERPER_CONTENTS_URL = "https://scrape.serper.dev"
@@ -56,6 +60,35 @@ class SerperClient(WebSearchProvider, WebContentProvider):
for result in organic_results
]
def test_connection(self) -> dict[str, str]:
try:
test_results = self.search("test")
if not test_results or not any(result.link for result in test_results):
raise HTTPException(
status_code=400,
detail="API key validation failed: search returned no results.",
)
except HTTPException:
raise
except Exception as e:
error_msg = str(e)
if (
"api" in error_msg.lower()
or "key" in error_msg.lower()
or "auth" in error_msg.lower()
):
raise HTTPException(
status_code=400,
detail=f"Invalid Serper API key: {error_msg}",
) from e
raise HTTPException(
status_code=400,
detail=f"Serper API key validation failed: {error_msg}",
) from e
logger.info("Web search provider test succeeded for Serper.")
return {"status": "ok"}
def contents(self, urls: Sequence[str]) -> list[WebContent]:
if not urls:
return []

View File

@@ -41,6 +41,10 @@ class WebSearchProvider:
def search(self, query: str) -> Sequence[WebSearchResult]:
pass
@abstractmethod
def test_connection(self) -> dict[str, str]:
pass
class WebContentProviderConfig(BaseModel):
timeout_seconds: int | None = None

View File

@@ -13,6 +13,9 @@ from onyx.tools.tool_implementations.web_search.clients.exa_client import (
from onyx.tools.tool_implementations.web_search.clients.google_pse_client import (
GooglePSEClient,
)
from onyx.tools.tool_implementations.web_search.clients.searxng_client import (
SearXNGClient,
)
from onyx.tools.tool_implementations.web_search.clients.serper_client import (
SerperClient,
)
@@ -55,6 +58,14 @@ def build_search_provider_from_config(
num_results=num_results,
timeout_seconds=int(config.get("timeout_seconds") or 10),
)
if provider_type == WebSearchProviderType.SEARXNG:
searxng_base_url = config.get("searxng_base_url")
if not searxng_base_url:
raise ValueError("Please provide a URL for your private SearXNG instance.")
return SearXNGClient(
searxng_base_url,
num_results=num_results,
)
def _build_search_provider(provider_model: InternetSearchProvider) -> WebSearchProvider:

View File

@@ -88,6 +88,8 @@ def run_tool_calls(
user_info: str | None,
citation_mapping: dict[int, str],
citation_processor: DynamicCitationProcessor,
# Skip query expansion for repeat search tool calls
skip_search_query_expansion: bool = False,
) -> tuple[
list[ToolResponse], dict[int, str]
]: # return also the updated citation mapping
@@ -136,6 +138,7 @@ def run_tool_calls(
message_history=minimal_history,
memories=memories,
user_info=user_info,
skip_query_expansion=skip_search_query_expansion,
)
elif isinstance(tool, WebSearchTool):

View File

@@ -260,7 +260,7 @@ fastmcp==2.13.3
# via onyx
fastuuid==0.14.0
# via litellm
filelock==3.15.4
filelock==3.20.1
# via
# huggingface-hub
# onyx
@@ -344,14 +344,15 @@ greenlet==3.2.4
# sqlalchemy
grpc-google-iam-v1==0.14.3
# via google-cloud-resource-manager
grpcio==1.76.0
grpcio==1.67.1
# via
# google-api-core
# google-cloud-resource-manager
# googleapis-common-protos
# grpc-google-iam-v1
# grpcio-status
grpcio-status==1.76.0
# litellm
grpcio-status==1.67.1
# via google-api-core
h11==0.16.0
# via
@@ -393,7 +394,7 @@ httpx-sse==0.4.3
# via
# cohere
# mcp
hubspot-api-client==8.1.0
hubspot-api-client==11.1.0
# via onyx
huggingface-hub==0.35.3
# via
@@ -485,7 +486,7 @@ langsmith==0.3.45
# langchain-core
lazy-imports==1.0.1
# via onyx
litellm==1.79.0
litellm==1.80.10
# via onyx
locket==1.0.0
# via
@@ -593,7 +594,7 @@ office365-rest-python-client==2.5.9
# via onyx
onnxruntime==1.20.1
# via magika
openai==2.6.1
openai==2.8.1
# via
# exa-py
# langfuse
@@ -700,7 +701,7 @@ proto-plus==1.26.1
# google-api-core
# google-cloud-aiplatform
# google-cloud-resource-manager
protobuf==6.33.1
protobuf==5.29.5
# via
# ddtrace
# google-api-core
@@ -897,6 +898,7 @@ requests==2.32.5
# google-cloud-bigquery
# google-cloud-storage
# google-genai
# hubspot-api-client
# huggingface-hub
# jira
# jsonschema-path
@@ -1088,7 +1090,6 @@ typing-extensions==4.15.0
# fastapi
# google-cloud-aiplatform
# google-genai
# grpcio
# huggingface-hub
# jira
# langchain-core
@@ -1141,7 +1142,7 @@ unstructured-client==0.25.4
# unstructured
uritemplate==4.2.0
# via google-api-python-client
urllib3==2.6.0
urllib3==2.6.1
# via
# asana
# botocore

View File

@@ -101,12 +101,14 @@ executing==2.2.1
faker==37.1.0
# via onyx
fastapi==0.116.1
# via onyx
# via
# onyx
# onyx-devtools
fastavro==1.12.1
# via cohere
fastuuid==0.14.0
# via litellm
filelock==3.15.4
filelock==3.20.1
# via
# huggingface-hub
# virtualenv
@@ -163,14 +165,15 @@ googleapis-common-protos==1.72.0
# grpcio-status
grpc-google-iam-v1==0.14.3
# via google-cloud-resource-manager
grpcio==1.76.0
grpcio==1.67.1
# via
# google-api-core
# google-cloud-resource-manager
# googleapis-common-protos
# grpc-google-iam-v1
# grpcio-status
grpcio-status==1.76.0
# litellm
grpcio-status==1.67.1
# via google-api-core
h11==0.16.0
# via
@@ -231,7 +234,7 @@ jupyter-core==5.9.1
# via
# ipykernel
# jupyter-client
litellm==1.79.0
litellm==1.80.10
# via onyx
manygo==0.2.0
# via onyx
@@ -262,12 +265,16 @@ numpy==1.26.4
# pandas-stubs
# shapely
# voyageai
onyx-devtools==0.1.0
onyx-devtools==0.2.0
# via onyx
openai==2.6.1
openai==2.8.1
# via
# litellm
# onyx
openapi-generator-cli==7.17.0
# via
# onyx
# onyx-devtools
packaging==24.2
# via
# black
@@ -317,7 +324,7 @@ proto-plus==1.26.1
# google-api-core
# google-cloud-aiplatform
# google-cloud-resource-manager
protobuf==6.33.1
protobuf==5.29.5
# via
# google-api-core
# google-cloud-aiplatform
@@ -505,7 +512,6 @@ typing-extensions==4.15.0
# fastapi
# google-cloud-aiplatform
# google-genai
# grpcio
# huggingface-hub
# ipython
# mypy
@@ -520,7 +526,7 @@ typing-inspection==0.4.2
# via pydantic
tzdata==2025.2
# via faker
urllib3==2.6.0
urllib3==2.6.1
# via
# botocore
# requests

View File

@@ -77,7 +77,7 @@ fastavro==1.12.1
# via cohere
fastuuid==0.14.0
# via litellm
filelock==3.15.4
filelock==3.20.1
# via huggingface-hub
frozenlist==1.8.0
# via
@@ -132,14 +132,15 @@ googleapis-common-protos==1.72.0
# grpcio-status
grpc-google-iam-v1==0.14.3
# via google-cloud-resource-manager
grpcio==1.76.0
grpcio==1.67.1
# via
# google-api-core
# google-cloud-resource-manager
# googleapis-common-protos
# grpc-google-iam-v1
# grpcio-status
grpcio-status==1.76.0
# litellm
grpcio-status==1.67.1
# via google-api-core
h11==0.16.0
# via
@@ -180,7 +181,7 @@ jsonschema==4.25.1
# via litellm
jsonschema-specifications==2025.9.1
# via jsonschema
litellm==1.79.0
litellm==1.80.10
# via onyx
markupsafe==3.0.3
# via jinja2
@@ -195,7 +196,7 @@ numpy==1.26.4
# via
# shapely
# voyageai
openai==2.6.1
openai==2.8.1
# via
# litellm
# onyx
@@ -223,7 +224,7 @@ proto-plus==1.26.1
# google-api-core
# google-cloud-aiplatform
# google-cloud-resource-manager
protobuf==6.33.1
protobuf==5.29.5
# via
# google-api-core
# google-cloud-aiplatform
@@ -328,7 +329,6 @@ typing-extensions==4.15.0
# fastapi
# google-cloud-aiplatform
# google-genai
# grpcio
# huggingface-hub
# openai
# pydantic
@@ -338,7 +338,7 @@ typing-extensions==4.15.0
# typing-inspection
typing-inspection==0.4.2
# via pydantic
urllib3==2.6.0
urllib3==2.6.1
# via
# botocore
# requests

View File

@@ -112,7 +112,7 @@ fastavro==1.12.1
# via cohere
fastuuid==0.14.0
# via litellm
filelock==3.15.4
filelock==3.20.1
# via
# datasets
# huggingface-hub
@@ -175,14 +175,15 @@ googleapis-common-protos==1.72.0
# grpcio-status
grpc-google-iam-v1==0.14.3
# via google-cloud-resource-manager
grpcio==1.76.0
grpcio==1.67.1
# via
# google-api-core
# google-cloud-resource-manager
# googleapis-common-protos
# grpc-google-iam-v1
# grpcio-status
grpcio-status==1.76.0
# litellm
grpcio-status==1.67.1
# via google-api-core
h11==0.16.0
# via
@@ -237,7 +238,7 @@ jsonschema-specifications==2025.9.1
# via jsonschema
kombu==5.5.4
# via celery
litellm==1.79.0
litellm==1.80.10
# via onyx
markupsafe==3.0.3
# via jinja2
@@ -301,7 +302,7 @@ nvidia-nvjitlink-cu12==12.4.127 ; platform_machine == 'x86_64' and sys_platform
# torch
nvidia-nvtx-cu12==12.4.127 ; platform_machine == 'x86_64' and sys_platform == 'linux'
# via torch
openai==2.6.1
openai==2.8.1
# via
# litellm
# onyx
@@ -341,7 +342,7 @@ proto-plus==1.26.1
# google-api-core
# google-cloud-aiplatform
# google-cloud-resource-manager
protobuf==6.33.1
protobuf==5.29.5
# via
# google-api-core
# google-cloud-aiplatform
@@ -504,7 +505,6 @@ typing-extensions==4.15.0
# fastapi
# google-cloud-aiplatform
# google-genai
# grpcio
# huggingface-hub
# openai
# pydantic
@@ -520,7 +520,7 @@ tzdata==2025.2
# via
# kombu
# pandas
urllib3==2.6.0
urllib3==2.6.1
# via
# botocore
# requests

View File

@@ -1,335 +0,0 @@
from __future__ import annotations
import argparse
import logging
import re
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Set
# Configure the logger
logging.basicConfig(
level=logging.INFO, # Set the log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", # Log format
handlers=[logging.StreamHandler()], # Output logs to console
)
logger = logging.getLogger(__name__)
@dataclass
class LazyImportSettings:
"""Settings for which files to ignore when checking for lazy imports."""
ignore_files: Set[str] | None = None
# Common ignore directories (virtual envs, caches) used across collectors
_IGNORE_DIRECTORIES: Set[str] = {".venv", "venv", ".env", "env", "__pycache__"}
# Map of modules to lazy import -> settings for what to ignore
_LAZY_IMPORT_MODULES_TO_IGNORE_SETTINGS: Dict[str, LazyImportSettings] = {
"google.genai": LazyImportSettings(),
"openai": LazyImportSettings(),
"markitdown": LazyImportSettings(),
"tiktoken": LazyImportSettings(),
"transformers": LazyImportSettings(ignore_files={"model_server/main.py"}),
"setfit": LazyImportSettings(),
"unstructured": LazyImportSettings(),
"onyx.llm.litellm_singleton": LazyImportSettings(),
"litellm": LazyImportSettings(
ignore_files={
"onyx/llm/litellm_singleton/__init__.py",
"onyx/llm/litellm_singleton/config.py",
"onyx/llm/litellm_singleton/monkey_patches.py",
}
),
"nltk": LazyImportSettings(),
"trafilatura": LazyImportSettings(),
"pypdf": LazyImportSettings(),
"unstructured_client": LazyImportSettings(),
}
@dataclass
class EagerImportResult:
"""Result of checking a file for eager imports."""
violation_lines: List[tuple[int, str]] # (line_number, line_content) tuples
violated_modules: Set[str] # modules that were actually violated
def find_eager_imports(
file_path: Path, protected_modules: Set[str]
) -> EagerImportResult:
"""
Find eager imports of protected modules in a given file.
Eager imports are top-level (module-level) imports that happen immediately
when the module is loaded, as opposed to lazy imports that happen inside
functions only when called.
Args:
file_path: Path to Python file to check
protected_modules: Set of module names that should only be imported lazily
Returns:
EagerImportResult containing violations list and violated modules set
"""
violation_lines = []
violated_modules = set()
try:
content = file_path.read_text(encoding="utf-8")
lines = content.split("\n")
for line_num, line in enumerate(lines, 1):
stripped = line.strip()
# Skip comments and empty lines
if not stripped or stripped.startswith("#"):
continue
# Only check imports at module level (indentation == 0)
current_indent = len(line) - len(line.lstrip())
if current_indent == 0:
# Check for eager imports of protected modules
for module in protected_modules:
# Pattern 1: import module
if re.match(rf"^import\s+{re.escape(module)}(\s|$|\.)", stripped):
violation_lines.append((line_num, line))
violated_modules.add(module)
# Pattern 2: from module import ...
elif re.match(rf"^from\s+{re.escape(module)}(\s|\.|$)", stripped):
violation_lines.append((line_num, line))
violated_modules.add(module)
# Pattern 3: from ... import module (less common but possible)
elif re.search(
rf"^from\s+[\w.]+\s+import\s+.*\b{re.escape(module)}\b",
stripped,
):
violation_lines.append((line_num, line))
violated_modules.add(module)
except Exception as e:
print(f"Error reading {file_path}: {e}")
return EagerImportResult(
violation_lines=violation_lines, violated_modules=violated_modules
)
def find_python_files(backend_dir: Path) -> List[Path]:
"""
Find all Python files in the backend directory, excluding test files.
Args:
backend_dir: Path to the backend directory to search
Returns:
List of Python file paths to check
"""
return _collect_python_files([backend_dir], backend_dir)
def _is_valid_python_file(file_path: Path) -> bool:
"""
Apply shared filtering rules:
- Must be a Python file
- Exclude tests and common virtualenv/cache directories
"""
if file_path.suffix != ".py":
return False
path_parts = file_path.parts
if (
"tests" in path_parts
or file_path.name.startswith("test_")
or file_path.name.endswith("_test.py")
):
return False
if any(ignored_dir in path_parts for ignored_dir in _IGNORE_DIRECTORIES):
return False
return True
def _collect_python_files(start_points: List[Path], backend_dir: Path) -> List[Path]:
"""
Given a list of directories/files, collect Python files that pass shared filters.
Constrains collection to within backend_dir.
"""
collected: List[Path] = []
backend_real = backend_dir.resolve()
for p in start_points:
try:
p = p.resolve()
except Exception:
# If resolve fails, skip the path
continue
try:
_ = p.relative_to(backend_real)
except Exception:
# Skip anything outside backend directory to mirror pre-commit filter
logger.debug(f"Skipping path outside backend directory: {p}")
continue
if p.is_dir():
for file_path in p.glob("**/*.py"):
if _is_valid_python_file(file_path):
collected.append(file_path)
else:
if _is_valid_python_file(p):
collected.append(p)
return collected
def should_check_file_for_module(
file_path: Path, backend_dir: Path, settings: LazyImportSettings
) -> bool:
"""
Check if a file should be checked for a specific module's imports.
Args:
file_path: Path to the file to check
backend_dir: Path to the backend directory
settings: Settings containing files to ignore for this module
Returns:
True if the file should be checked, False if it should be ignored
"""
if not settings.ignore_files:
# Empty set means check everywhere
return True
# Get relative path from backend directory
rel_path = file_path.relative_to(backend_dir)
rel_path_str = rel_path.as_posix()
return rel_path_str not in settings.ignore_files
def _collect_python_files_from_args(
provided_paths: List[str], backend_dir: Path
) -> List[Path]:
"""
From a list of provided file or directory paths, collect Python files to check.
Only files under the backend directory are considered. Test files and venv dirs
are excluded using the same rules as find_python_files.
"""
if not provided_paths:
return []
normalized: List[Path] = []
for raw in provided_paths:
p = Path(raw)
if not p.exists():
logger.debug(f"Ignoring non-existent path: {raw}")
continue
normalized.append(p)
return _collect_python_files(normalized, backend_dir)
class Args(NamedTuple):
paths: List[str]
def _parse_args() -> Args:
parser = argparse.ArgumentParser(
description=(
"Check that specified modules are only lazily imported. "
"Optionally provide files or directories to limit the check; "
"if none are provided, all backend Python files are scanned."
)
)
parser.add_argument(
"paths",
nargs="*",
help="Optional file or directory paths to check (relative to repo root).",
)
parsed = parser.parse_args()
return Args(paths=list(parsed.paths))
def main(
modules_to_lazy_import: Dict[str, LazyImportSettings],
provided_paths: List[str] | None = None,
) -> None:
backend_dir = Path(__file__).parent.parent # Go up from scripts/ to backend/
logger.info(
f"Checking for direct imports of lazy modules: {', '.join(modules_to_lazy_import.keys())}"
)
# Determine Python files to check
if provided_paths:
target_python_files = _collect_python_files_from_args(
provided_paths, backend_dir
)
if not target_python_files:
logger.info("No matching Python files to check based on provided paths.")
return
else:
target_python_files = find_python_files(backend_dir)
violations_found = False
all_violated_modules = set()
# Check each Python file for each module with its specific ignore directories
for file_path in target_python_files:
# Determine which modules should be checked for this file
modules_to_check = set()
for module_name, settings in modules_to_lazy_import.items():
if should_check_file_for_module(file_path, backend_dir, settings):
modules_to_check.add(module_name)
if not modules_to_check:
# This file is ignored for all modules
continue
result = find_eager_imports(file_path, modules_to_check)
if result.violation_lines:
violations_found = True
all_violated_modules.update(result.violated_modules)
rel_path = file_path.relative_to(backend_dir)
logger.error(f"\n❌ Eager import violations found in {rel_path}:")
for line_num, line in result.violation_lines:
logger.error(f" Line {line_num}: {line.strip()}")
# Suggest fix only for violated modules
if result.violated_modules:
logger.error(
f" 💡 You must lazy import {', '.join(sorted(result.violated_modules))} within functions when needed"
)
if violations_found:
violated_modules_str = ", ".join(sorted(all_violated_modules))
raise RuntimeError(
f"Found eager imports of {violated_modules_str}. You must import them only when needed."
)
else:
logger.info("✅ All lazy modules are properly imported!")
if __name__ == "__main__":
try:
args = _parse_args()
main(_LAZY_IMPORT_MODULES_TO_IGNORE_SETTINGS, provided_paths=args.paths)
sys.exit(0)
except RuntimeError:
sys.exit(1)

View File

@@ -0,0 +1,230 @@
# Onyx Data Backup & Restore Scripts
Scripts for backing up and restoring PostgreSQL, Vespa, and MinIO data from an Onyx deployment.
## Overview
Two backup modes are supported:
| Mode | Description | Pros | Cons |
|------|-------------|------|------|
| **volume** | Exports Docker volumes directly | Fast, complete, preserves everything | Services must be stopped for consistency |
| **api** | Uses pg_dump and Vespa REST API | Services can stay running, more portable | Slower for large datasets |
## Quick Start
### Backup (from a running instance)
```bash
# Full backup using volume mode (recommended for complete backups)
# Note: For consistency, stop services first
docker compose -f deployment/docker_compose/docker-compose.yml stop
./scripts/dump_data.sh --mode volume --output ./backups
docker compose -f deployment/docker_compose/docker-compose.yml start
# Or use API mode (services can stay running)
./scripts/dump_data.sh --mode api --output ./backups
```
### Restore (to a local instance)
```bash
# Restore from latest backup
./scripts/restore_data.sh --input ./backups/latest
# Restore from specific backup
./scripts/restore_data.sh --input ./backups/20240115_120000
# Force restore without confirmation
./scripts/restore_data.sh --input ./backups/latest --force
```
## Detailed Usage
### dump_data.sh
```
Usage: ./scripts/dump_data.sh [OPTIONS]
Options:
--mode <volume|api> Backup mode (default: volume)
--output <dir> Output directory (default: ./onyx_backup)
--project <name> Docker Compose project name (default: onyx)
--postgres-only Only backup PostgreSQL
--vespa-only Only backup Vespa
--minio-only Only backup MinIO
--no-minio Skip MinIO backup
--help Show help message
```
**Examples:**
```bash
# Default volume backup
./scripts/dump_data.sh
# API-based backup
./scripts/dump_data.sh --mode api
# Only backup PostgreSQL
./scripts/dump_data.sh --postgres-only --mode api
# Custom output directory
./scripts/dump_data.sh --output /mnt/backups/onyx
# Different project name (if using custom docker compose project)
./scripts/dump_data.sh --project my-onyx-instance
```
### restore_data.sh
```
Usage: ./scripts/restore_data.sh [OPTIONS]
Options:
--input <dir> Backup directory (required)
--project <name> Docker Compose project name (default: onyx)
--postgres-only Only restore PostgreSQL
--vespa-only Only restore Vespa
--minio-only Only restore MinIO
--no-minio Skip MinIO restore
--force Skip confirmation prompts
--help Show help message
```
**Examples:**
```bash
# Restore all components
./scripts/restore_data.sh --input ./onyx_backup/latest
# Restore only PostgreSQL
./scripts/restore_data.sh --input ./onyx_backup/latest --postgres-only
# Non-interactive restore
./scripts/restore_data.sh --input ./onyx_backup/latest --force
```
## Backup Directory Structure
After running a backup, the output directory contains:
```
onyx_backup/
├── 20240115_120000/ # Timestamp-named backup
│ ├── metadata.json # Backup metadata
│ ├── postgres_volume.tar.gz # PostgreSQL data (volume mode)
│ ├── postgres_dump.backup # PostgreSQL dump (api mode)
│ ├── vespa_volume.tar.gz # Vespa data (volume mode)
│ ├── vespa_documents.jsonl # Vespa documents (api mode)
│ ├── minio_volume.tar.gz # MinIO data (volume mode)
│ └── minio_data.tar.gz # MinIO data (api mode)
└── latest -> 20240115_120000 # Symlink to latest backup
```
## Environment Variables
You can customize behavior with environment variables:
```bash
# PostgreSQL settings
export POSTGRES_USER=postgres
export POSTGRES_PASSWORD=password
export POSTGRES_DB=postgres
export POSTGRES_PORT=5432
# Vespa settings
export VESPA_HOST=localhost
export VESPA_PORT=8081
export VESPA_INDEX=danswer_index
```
## Typical Workflows
### Migrate to a new server
```bash
# On source server
./scripts/dump_data.sh --mode volume --output ./migration_backup
tar czf onyx_backup.tar.gz ./migration_backup/latest
# Transfer to new server
scp onyx_backup.tar.gz newserver:/opt/onyx/
# On new server
cd /opt/onyx
tar xzf onyx_backup.tar.gz
./scripts/restore_data.sh --input ./migration_backup/latest --force
docker compose up -d
```
### Create a development copy from production
```bash
# On production (use API mode to avoid downtime)
./scripts/dump_data.sh --mode api --output ./prod_backup
# Copy to dev machine
rsync -avz ./prod_backup/latest dev-machine:/home/dev/onyx_backup/
# On dev machine
./scripts/restore_data.sh --input /home/dev/onyx_backup --force
docker compose -f docker-compose.yml -f docker-compose.dev.yml up -d
```
### Scheduled backups (cron)
```bash
# Add to crontab: crontab -e
# Daily backup at 2 AM
0 2 * * * cd /opt/onyx && ./scripts/dump_data.sh --mode api --output /backups/onyx >> /var/log/onyx-backup.log 2>&1
# Weekly cleanup (keep last 7 days)
0 3 * * 0 find /backups/onyx -maxdepth 1 -type d -mtime +7 -exec rm -rf {} \;
```
## Troubleshooting
### "Volume not found" error
Ensure the Docker Compose project name matches:
```bash
docker volume ls | grep db_volume
# If it shows "myproject_db_volume", use --project myproject
```
### "Container not running" error (API mode)
Start the required services:
```bash
cd deployment/docker_compose
docker compose up -d relational_db index minio
```
### Vespa restore fails with "not ready"
Vespa takes time to initialize. Wait and retry:
```bash
# Check Vespa health
curl http://localhost:8081/state/v1/health
```
### PostgreSQL restore shows warnings
`pg_restore` often shows warnings about objects that don't exist (when using `--clean`). These are usually safe to ignore if the restore completes.
## Alternative: Python Script
For more control, you can also use the existing Python script:
```bash
cd backend
# Save state
python -m scripts.save_load_state --save --checkpoint_dir ../onyx_checkpoint
# Load state
python -m scripts.save_load_state --load --checkpoint_dir ../onyx_checkpoint
```
See `backend/scripts/save_load_state.py` for the Python implementation.

478
backend/scripts/dump/dump_data.sh Executable file
View File

@@ -0,0 +1,478 @@
#!/bin/bash
# =============================================================================
# Onyx Data Dump Script
# =============================================================================
# This script creates a backup of PostgreSQL, Vespa, and MinIO data.
#
# Two modes available:
# - volume: Exports Docker volumes directly (faster, complete backup)
# - api: Uses pg_dump and Vespa API (more portable)
#
# Usage:
# ./dump_data.sh [OPTIONS]
#
# Options:
# --mode <volume|api> Backup mode (default: volume)
# --output <dir> Output directory (default: ./onyx_backup)
# --project <name> Docker Compose project name (default: onyx)
# --volume-prefix <name> Volume name prefix (default: same as project name)
# --compose-dir <dir> Docker Compose directory (for service management)
# --postgres-only Only backup PostgreSQL
# --vespa-only Only backup Vespa
# --minio-only Only backup MinIO
# --no-minio Skip MinIO backup
# --no-restart Don't restart services after backup (volume mode)
# --help Show this help message
#
# Examples:
# ./dump_data.sh # Full volume backup
# ./dump_data.sh --mode api # API-based backup
# ./dump_data.sh --output /tmp/backup # Custom output directory
# ./dump_data.sh --postgres-only --mode api # Only PostgreSQL via pg_dump
# ./dump_data.sh --volume-prefix myprefix # Use custom volume prefix
# =============================================================================
set -e
# Default configuration
MODE="volume"
OUTPUT_DIR="./onyx_backup"
PROJECT_NAME="onyx"
VOLUME_PREFIX="" # Will default to PROJECT_NAME if not set
COMPOSE_DIR="" # Docker Compose directory for service management
BACKUP_POSTGRES=true
BACKUP_VESPA=true
BACKUP_MINIO=true
NO_RESTART=false
# PostgreSQL defaults
POSTGRES_USER="${POSTGRES_USER:-postgres}"
POSTGRES_PASSWORD="${POSTGRES_PASSWORD:-password}"
POSTGRES_DB="${POSTGRES_DB:-postgres}"
POSTGRES_PORT="${POSTGRES_PORT:-5432}"
# Vespa defaults
VESPA_HOST="${VESPA_HOST:-localhost}"
VESPA_PORT="${VESPA_PORT:-8081}"
VESPA_INDEX="${VESPA_INDEX:-danswer_index}"
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
log_info() {
echo -e "${BLUE}[INFO]${NC} $1"
}
log_success() {
echo -e "${GREEN}[SUCCESS]${NC} $1"
}
log_warning() {
echo -e "${YELLOW}[WARNING]${NC} $1"
}
log_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
show_help() {
head -35 "$0" | tail -32
exit 0
}
# Parse arguments
while [[ $# -gt 0 ]]; do
case $1 in
--mode)
MODE="$2"
shift 2
;;
--output)
OUTPUT_DIR="$2"
shift 2
;;
--project)
PROJECT_NAME="$2"
shift 2
;;
--volume-prefix)
VOLUME_PREFIX="$2"
shift 2
;;
--compose-dir)
COMPOSE_DIR="$2"
shift 2
;;
--no-restart)
NO_RESTART=true
shift
;;
--postgres-only)
BACKUP_POSTGRES=true
BACKUP_VESPA=false
BACKUP_MINIO=false
shift
;;
--vespa-only)
BACKUP_POSTGRES=false
BACKUP_VESPA=true
BACKUP_MINIO=false
shift
;;
--minio-only)
BACKUP_POSTGRES=false
BACKUP_VESPA=false
BACKUP_MINIO=true
shift
;;
--no-minio)
BACKUP_MINIO=false
shift
;;
--help)
show_help
;;
*)
log_error "Unknown option: $1"
exit 1
;;
esac
done
# Validate mode
if [[ "$MODE" != "volume" && "$MODE" != "api" ]]; then
log_error "Invalid mode: $MODE. Use 'volume' or 'api'"
exit 1
fi
# Set VOLUME_PREFIX to PROJECT_NAME if not specified
if [[ -z "$VOLUME_PREFIX" ]]; then
VOLUME_PREFIX="$PROJECT_NAME"
fi
# Create output directory with timestamp
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
BACKUP_DIR="${OUTPUT_DIR}/${TIMESTAMP}"
mkdir -p "$BACKUP_DIR"
log_info "Starting Onyx data backup..."
log_info "Mode: $MODE"
log_info "Output directory: $BACKUP_DIR"
log_info "Project name: $PROJECT_NAME"
log_info "Volume prefix: $VOLUME_PREFIX"
# Get container names
POSTGRES_CONTAINER="${PROJECT_NAME}-relational_db-1"
VESPA_CONTAINER="${PROJECT_NAME}-index-1"
MINIO_CONTAINER="${PROJECT_NAME}-minio-1"
# Track which services were stopped
STOPPED_SERVICES=()
# =============================================================================
# Service management functions
# =============================================================================
stop_service() {
local service=$1
local container="${PROJECT_NAME}-${service}-1"
if docker ps --format '{{.Names}}' | grep -q "^${container}$"; then
log_info "Stopping ${service}..."
if [[ -n "$COMPOSE_DIR" ]]; then
docker compose -p "$PROJECT_NAME" -f "${COMPOSE_DIR}/docker-compose.yml" stop "$service" 2>/dev/null || \
docker stop "$container"
else
docker stop "$container"
fi
STOPPED_SERVICES+=("$service")
fi
}
start_services() {
if [[ ${#STOPPED_SERVICES[@]} -eq 0 ]]; then
return
fi
log_info "Restarting services: ${STOPPED_SERVICES[*]}"
if [[ -n "$COMPOSE_DIR" ]]; then
docker compose -p "$PROJECT_NAME" -f "${COMPOSE_DIR}/docker-compose.yml" start "${STOPPED_SERVICES[@]}" 2>/dev/null || {
# Fallback to starting containers directly
for service in "${STOPPED_SERVICES[@]}"; do
docker start "${PROJECT_NAME}-${service}-1" 2>/dev/null || true
done
}
else
for service in "${STOPPED_SERVICES[@]}"; do
docker start "${PROJECT_NAME}-${service}-1" 2>/dev/null || true
done
fi
}
# =============================================================================
# Volume-based backup functions
# =============================================================================
backup_postgres_volume() {
log_info "Backing up PostgreSQL volume..."
local volume_name="${VOLUME_PREFIX}_db_volume"
# Check if volume exists
if ! docker volume inspect "$volume_name" &>/dev/null; then
log_error "PostgreSQL volume '$volume_name' not found"
return 1
fi
# Export volume to tar
docker run --rm \
-v "${volume_name}:/source:ro" \
-v "${BACKUP_DIR}:/backup" \
alpine tar czf /backup/postgres_volume.tar.gz -C /source .
log_success "PostgreSQL volume backed up to postgres_volume.tar.gz"
}
backup_vespa_volume() {
log_info "Backing up Vespa volume..."
local volume_name="${VOLUME_PREFIX}_vespa_volume"
# Check if volume exists
if ! docker volume inspect "$volume_name" &>/dev/null; then
log_error "Vespa volume '$volume_name' not found"
return 1
fi
# Export volume to tar
docker run --rm \
-v "${volume_name}:/source:ro" \
-v "${BACKUP_DIR}:/backup" \
alpine tar czf /backup/vespa_volume.tar.gz -C /source .
log_success "Vespa volume backed up to vespa_volume.tar.gz"
}
backup_minio_volume() {
log_info "Backing up MinIO volume..."
local volume_name="${VOLUME_PREFIX}_minio_data"
# Check if volume exists
if ! docker volume inspect "$volume_name" &>/dev/null; then
log_error "MinIO volume '$volume_name' not found"
return 1
fi
# Export volume to tar
docker run --rm \
-v "${volume_name}:/source:ro" \
-v "${BACKUP_DIR}:/backup" \
alpine tar czf /backup/minio_volume.tar.gz -C /source .
log_success "MinIO volume backed up to minio_volume.tar.gz"
}
# =============================================================================
# API-based backup functions
# =============================================================================
backup_postgres_api() {
log_info "Backing up PostgreSQL via pg_dump..."
# Check if container is running
if ! docker ps --format '{{.Names}}' | grep -q "^${POSTGRES_CONTAINER}$"; then
log_error "PostgreSQL container '$POSTGRES_CONTAINER' is not running"
return 1
fi
# Create dump using pg_dump inside container
docker exec "$POSTGRES_CONTAINER" \
pg_dump -U "$POSTGRES_USER" -F c -b -v "$POSTGRES_DB" \
> "${BACKUP_DIR}/postgres_dump.backup"
log_success "PostgreSQL backed up to postgres_dump.backup"
}
backup_vespa_api() {
log_info "Backing up Vespa via API..."
local endpoint="http://${VESPA_HOST}:${VESPA_PORT}/document/v1/default/${VESPA_INDEX}/docid"
local output_file="${BACKUP_DIR}/vespa_documents.jsonl"
local continuation=""
local total_docs=0
# Check if Vespa is accessible
if ! curl -s -o /dev/null -w "%{http_code}" "$endpoint" | grep -q "200\|404"; then
# Try via container if localhost doesn't work
if docker ps --format '{{.Names}}' | grep -q "^${VESPA_CONTAINER}$"; then
log_warning "Vespa not accessible on $VESPA_HOST:$VESPA_PORT, trying via container..."
endpoint="http://localhost:8081/document/v1/default/${VESPA_INDEX}/docid"
else
log_error "Cannot connect to Vespa at $endpoint"
return 1
fi
fi
# Clear output file
> "$output_file"
# Fetch documents with pagination
while true; do
local url="$endpoint"
if [[ -n "$continuation" ]]; then
url="${endpoint}?continuation=${continuation}"
fi
local response
response=$(curl -s "$url")
# Extract continuation token
continuation=$(echo "$response" | jq -r '.continuation // empty')
# Extract and save documents
local docs
docs=$(echo "$response" | jq -c '.documents[]? | {update: .id, create: true, fields: .fields}')
if [[ -n "$docs" ]]; then
echo "$docs" >> "$output_file"
local count
count=$(echo "$docs" | wc -l)
total_docs=$((total_docs + count))
log_info " Fetched $total_docs documents so far..."
fi
# Check if we're done
if [[ -z "$continuation" ]]; then
break
fi
done
log_success "Vespa backed up to vespa_documents.jsonl ($total_docs documents)"
}
backup_minio_api() {
log_info "Backing up MinIO data..."
local minio_dir="${BACKUP_DIR}/minio_data"
mkdir -p "$minio_dir"
# Check if mc (MinIO client) is available
if command -v mc &>/dev/null; then
# Configure mc alias for local minio
mc alias set onyx-backup http://localhost:9004 minioadmin minioadmin 2>/dev/null || true
# Mirror all buckets
mc mirror onyx-backup/ "$minio_dir/" 2>/dev/null || {
log_warning "mc mirror failed, falling back to volume backup"
backup_minio_volume
return
}
else
# Fallback: copy from container
if docker ps --format '{{.Names}}' | grep -q "^${MINIO_CONTAINER}$"; then
docker cp "${MINIO_CONTAINER}:/data/." "$minio_dir/"
else
log_warning "MinIO container not running and mc not available, using volume backup"
backup_minio_volume
return
fi
fi
# Compress the data
tar czf "${BACKUP_DIR}/minio_data.tar.gz" -C "$minio_dir" .
rm -rf "$minio_dir"
log_success "MinIO backed up to minio_data.tar.gz"
}
# =============================================================================
# Main backup logic
# =============================================================================
# Save metadata
cat > "${BACKUP_DIR}/metadata.json" << EOF
{
"timestamp": "$TIMESTAMP",
"mode": "$MODE",
"project_name": "$PROJECT_NAME",
"volume_prefix": "$VOLUME_PREFIX",
"postgres_db": "$POSTGRES_DB",
"vespa_index": "$VESPA_INDEX",
"components": {
"postgres": $BACKUP_POSTGRES,
"vespa": $BACKUP_VESPA,
"minio": $BACKUP_MINIO
}
}
EOF
# Run backups based on mode
if [[ "$MODE" == "volume" ]]; then
log_info "Using volume-based backup"
# Stop services for consistent backup
log_info "Stopping services for consistent backup..."
if $BACKUP_POSTGRES; then
stop_service "relational_db"
fi
if $BACKUP_VESPA; then
stop_service "index"
fi
if $BACKUP_MINIO; then
stop_service "minio"
fi
# Perform backups
if $BACKUP_POSTGRES; then
backup_postgres_volume || log_warning "PostgreSQL backup failed"
fi
if $BACKUP_VESPA; then
backup_vespa_volume || log_warning "Vespa backup failed"
fi
if $BACKUP_MINIO; then
backup_minio_volume || log_warning "MinIO backup failed"
fi
# Restart services unless --no-restart was specified
if [[ "$NO_RESTART" != true ]]; then
start_services
else
log_info "Skipping service restart (--no-restart specified)"
log_info "Stopped services: ${STOPPED_SERVICES[*]}"
fi
else
log_info "Using API-based backup (services must be running)"
if $BACKUP_POSTGRES; then
backup_postgres_api || log_warning "PostgreSQL backup failed"
fi
if $BACKUP_VESPA; then
backup_vespa_api || log_warning "Vespa backup failed"
fi
if $BACKUP_MINIO; then
backup_minio_api || log_warning "MinIO backup failed"
fi
fi
# Calculate total size
TOTAL_SIZE=$(du -sh "$BACKUP_DIR" | cut -f1)
log_success "==================================="
log_success "Backup completed!"
log_success "Location: $BACKUP_DIR"
log_success "Total size: $TOTAL_SIZE"
log_success "==================================="
# Create a symlink to latest backup
ln -sfn "$TIMESTAMP" "${OUTPUT_DIR}/latest"
log_info "Symlink created: ${OUTPUT_DIR}/latest -> $TIMESTAMP"

View File

@@ -0,0 +1,580 @@
#!/bin/bash
# =============================================================================
# Onyx Data Restore Script
# =============================================================================
# This script restores PostgreSQL, Vespa, and MinIO data from a backup.
#
# The script auto-detects the backup mode based on files present:
# - *_volume.tar.gz files -> volume restore
# - postgres_dump.backup / vespa_documents.jsonl -> api restore
#
# Usage:
# ./restore_data.sh [OPTIONS]
#
# Options:
# --input <dir> Backup directory (required, or use 'latest')
# --project <name> Docker Compose project name (default: onyx)
# --volume-prefix <name> Volume name prefix (default: same as project name)
# --compose-dir <dir> Docker Compose directory (for service management)
# --postgres-only Only restore PostgreSQL
# --vespa-only Only restore Vespa
# --minio-only Only restore MinIO
# --no-minio Skip MinIO restore
# --no-restart Don't restart services after restore (volume mode)
# --force Skip confirmation prompts
# --help Show this help message
#
# Examples:
# ./restore_data.sh --input ./onyx_backup/latest
# ./restore_data.sh --input ./onyx_backup/20240115_120000 --force
# ./restore_data.sh --input ./onyx_backup/latest --postgres-only
# ./restore_data.sh --input ./backup --volume-prefix myprefix
#
# WARNING: This will overwrite existing data in the target instance!
# =============================================================================
set -e
# Default configuration
INPUT_DIR=""
PROJECT_NAME="onyx"
VOLUME_PREFIX="" # Will default to PROJECT_NAME if not set
COMPOSE_DIR="" # Docker Compose directory for service management
RESTORE_POSTGRES=true
RESTORE_VESPA=true
RESTORE_MINIO=true
FORCE=false
NO_RESTART=false
# PostgreSQL defaults
POSTGRES_USER="${POSTGRES_USER:-postgres}"
POSTGRES_PASSWORD="${POSTGRES_PASSWORD:-password}"
POSTGRES_DB="${POSTGRES_DB:-postgres}"
POSTGRES_PORT="${POSTGRES_PORT:-5432}"
# Vespa defaults
VESPA_HOST="${VESPA_HOST:-localhost}"
VESPA_PORT="${VESPA_PORT:-8081}"
VESPA_INDEX="${VESPA_INDEX:-danswer_index}"
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
log_info() {
echo -e "${BLUE}[INFO]${NC} $1"
}
log_success() {
echo -e "${GREEN}[SUCCESS]${NC} $1"
}
log_warning() {
echo -e "${YELLOW}[WARNING]${NC} $1"
}
log_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
show_help() {
head -36 "$0" | tail -33
exit 0
}
# Parse arguments
while [[ $# -gt 0 ]]; do
case $1 in
--input)
INPUT_DIR="$2"
shift 2
;;
--project)
PROJECT_NAME="$2"
shift 2
;;
--volume-prefix)
VOLUME_PREFIX="$2"
shift 2
;;
--compose-dir)
COMPOSE_DIR="$2"
shift 2
;;
--no-restart)
NO_RESTART=true
shift
;;
--postgres-only)
RESTORE_POSTGRES=true
RESTORE_VESPA=false
RESTORE_MINIO=false
shift
;;
--vespa-only)
RESTORE_POSTGRES=false
RESTORE_VESPA=true
RESTORE_MINIO=false
shift
;;
--minio-only)
RESTORE_POSTGRES=false
RESTORE_VESPA=false
RESTORE_MINIO=true
shift
;;
--no-minio)
RESTORE_MINIO=false
shift
;;
--force)
FORCE=true
shift
;;
--help)
show_help
;;
*)
log_error "Unknown option: $1"
exit 1
;;
esac
done
# Validate input directory
if [[ -z "$INPUT_DIR" ]]; then
log_error "Input directory is required. Use --input <dir>"
exit 1
fi
# Resolve symlinks (e.g., 'latest')
INPUT_DIR=$(cd "$INPUT_DIR" && pwd)
if [[ ! -d "$INPUT_DIR" ]]; then
log_error "Input directory not found: $INPUT_DIR"
exit 1
fi
# Load metadata if available
METADATA_FILE="${INPUT_DIR}/metadata.json"
if [[ -f "$METADATA_FILE" ]]; then
log_info "Loading backup metadata..."
BACKUP_MODE=$(jq -r '.mode // "unknown"' "$METADATA_FILE")
BACKUP_TIMESTAMP=$(jq -r '.timestamp // "unknown"' "$METADATA_FILE")
log_info " Backup timestamp: $BACKUP_TIMESTAMP"
log_info " Backup mode: $BACKUP_MODE"
fi
# Set VOLUME_PREFIX to PROJECT_NAME if not specified
if [[ -z "$VOLUME_PREFIX" ]]; then
VOLUME_PREFIX="$PROJECT_NAME"
fi
log_info "Volume prefix: $VOLUME_PREFIX"
# Track which services were stopped
STOPPED_SERVICES=()
# =============================================================================
# Service management functions
# =============================================================================
stop_service() {
local service=$1
local container="${PROJECT_NAME}-${service}-1"
if docker ps --format '{{.Names}}' | grep -q "^${container}$"; then
log_info "Stopping ${service}..."
if [[ -n "$COMPOSE_DIR" ]]; then
docker compose -p "$PROJECT_NAME" -f "${COMPOSE_DIR}/docker-compose.yml" stop "$service" 2>/dev/null || \
docker stop "$container"
else
docker stop "$container"
fi
STOPPED_SERVICES+=("$service")
fi
}
start_services() {
if [[ ${#STOPPED_SERVICES[@]} -eq 0 ]]; then
return
fi
log_info "Restarting services: ${STOPPED_SERVICES[*]}"
if [[ -n "$COMPOSE_DIR" ]]; then
docker compose -p "$PROJECT_NAME" -f "${COMPOSE_DIR}/docker-compose.yml" start "${STOPPED_SERVICES[@]}" 2>/dev/null || {
# Fallback to starting containers directly
for service in "${STOPPED_SERVICES[@]}"; do
docker start "${PROJECT_NAME}-${service}-1" 2>/dev/null || true
done
}
else
for service in "${STOPPED_SERVICES[@]}"; do
docker start "${PROJECT_NAME}-${service}-1" 2>/dev/null || true
done
fi
}
# Auto-detect backup mode based on files present
detect_backup_mode() {
if [[ -f "${INPUT_DIR}/postgres_volume.tar.gz" ]] || [[ -f "${INPUT_DIR}/vespa_volume.tar.gz" ]]; then
echo "volume"
elif [[ -f "${INPUT_DIR}/postgres_dump.backup" ]] || [[ -f "${INPUT_DIR}/vespa_documents.jsonl" ]]; then
echo "api"
else
echo "unknown"
fi
}
DETECTED_MODE=$(detect_backup_mode)
log_info "Detected backup mode: $DETECTED_MODE"
# Get container names
POSTGRES_CONTAINER="${PROJECT_NAME}-relational_db-1"
VESPA_CONTAINER="${PROJECT_NAME}-index-1"
MINIO_CONTAINER="${PROJECT_NAME}-minio-1"
# Confirmation prompt
if [[ "$FORCE" != true ]]; then
echo ""
log_warning "==================================="
log_warning "WARNING: This will overwrite existing data!"
log_warning "==================================="
echo ""
echo "Restore configuration:"
echo " Input directory: $INPUT_DIR"
echo " Project name: $PROJECT_NAME"
echo " Restore PostgreSQL: $RESTORE_POSTGRES"
echo " Restore Vespa: $RESTORE_VESPA"
echo " Restore MinIO: $RESTORE_MINIO"
echo ""
read -p "Are you sure you want to continue? (yes/no): " confirm
if [[ "$confirm" != "yes" ]]; then
log_info "Restore cancelled."
exit 0
fi
fi
# =============================================================================
# Volume-based restore functions
# =============================================================================
restore_postgres_volume() {
log_info "Restoring PostgreSQL from volume backup..."
local volume_name="${VOLUME_PREFIX}_db_volume"
local backup_file="${INPUT_DIR}/postgres_volume.tar.gz"
if [[ ! -f "$backup_file" ]]; then
log_error "PostgreSQL volume backup not found: $backup_file"
return 1
fi
# Remove existing volume and create new one
log_info "Recreating PostgreSQL volume..."
docker volume rm "$volume_name" 2>/dev/null || true
docker volume create "$volume_name"
# Restore volume from tar
docker run --rm \
-v "${volume_name}:/target" \
-v "${INPUT_DIR}:/backup:ro" \
alpine sh -c "cd /target && tar xzf /backup/postgres_volume.tar.gz"
log_success "PostgreSQL volume restored"
}
restore_vespa_volume() {
log_info "Restoring Vespa from volume backup..."
local volume_name="${VOLUME_PREFIX}_vespa_volume"
local backup_file="${INPUT_DIR}/vespa_volume.tar.gz"
if [[ ! -f "$backup_file" ]]; then
log_error "Vespa volume backup not found: $backup_file"
return 1
fi
# Remove existing volume and create new one
log_info "Recreating Vespa volume..."
docker volume rm "$volume_name" 2>/dev/null || true
docker volume create "$volume_name"
# Restore volume from tar
docker run --rm \
-v "${volume_name}:/target" \
-v "${INPUT_DIR}:/backup:ro" \
alpine sh -c "cd /target && tar xzf /backup/vespa_volume.tar.gz"
log_success "Vespa volume restored"
}
restore_minio_volume() {
log_info "Restoring MinIO from volume backup..."
local volume_name="${VOLUME_PREFIX}_minio_data"
local backup_file="${INPUT_DIR}/minio_volume.tar.gz"
if [[ ! -f "$backup_file" ]]; then
log_error "MinIO volume backup not found: $backup_file"
return 1
fi
# Remove existing volume and create new one
log_info "Recreating MinIO volume..."
docker volume rm "$volume_name" 2>/dev/null || true
docker volume create "$volume_name"
# Restore volume from tar
docker run --rm \
-v "${volume_name}:/target" \
-v "${INPUT_DIR}:/backup:ro" \
alpine sh -c "cd /target && tar xzf /backup/minio_volume.tar.gz"
log_success "MinIO volume restored"
}
# =============================================================================
# API-based restore functions
# =============================================================================
restore_postgres_api() {
log_info "Restoring PostgreSQL from pg_dump backup..."
local backup_file="${INPUT_DIR}/postgres_dump.backup"
if [[ ! -f "$backup_file" ]]; then
log_error "PostgreSQL dump not found: $backup_file"
return 1
fi
# Check if container is running
if ! docker ps --format '{{.Names}}' | grep -q "^${POSTGRES_CONTAINER}$"; then
log_error "PostgreSQL container '$POSTGRES_CONTAINER' is not running"
log_info "Please start the containers first: docker compose up -d relational_db"
return 1
fi
# Copy backup file to container
log_info "Copying backup file to container..."
docker cp "$backup_file" "${POSTGRES_CONTAINER}:/tmp/postgres_dump.backup"
# Drop and recreate database (optional, pg_restore --clean should handle this)
log_info "Restoring database..."
# Use pg_restore with --clean to drop objects before recreating
docker exec "$POSTGRES_CONTAINER" \
pg_restore -U "$POSTGRES_USER" -d "$POSTGRES_DB" \
--clean --if-exists --no-owner --no-privileges \
/tmp/postgres_dump.backup 2>&1 || {
# pg_restore may return non-zero even on success due to warnings
log_warning "pg_restore completed with warnings (this is often normal)"
}
# Cleanup
docker exec "$POSTGRES_CONTAINER" rm -f /tmp/postgres_dump.backup
log_success "PostgreSQL restored"
}
restore_vespa_api() {
log_info "Restoring Vespa from JSONL backup..."
local backup_file="${INPUT_DIR}/vespa_documents.jsonl"
if [[ ! -f "$backup_file" ]]; then
log_error "Vespa backup not found: $backup_file"
return 1
fi
local endpoint="http://${VESPA_HOST}:${VESPA_PORT}/document/v1/default/${VESPA_INDEX}/docid"
local total_docs=0
local failed_docs=0
# Check if Vespa is accessible
if ! curl -s -o /dev/null -w "%{http_code}" "http://${VESPA_HOST}:${VESPA_PORT}/state/v1/health" | grep -q "200"; then
log_error "Cannot connect to Vespa at ${VESPA_HOST}:${VESPA_PORT}"
log_info "Please ensure Vespa is running and accessible"
return 1
fi
# Wait for Vespa to be fully ready
log_info "Waiting for Vespa to be fully ready..."
local max_wait=60
local waited=0
while ! curl -s "http://${VESPA_HOST}:${VESPA_PORT}/state/v1/health" | grep -q '"status":{"code":"up"}'; do
if [[ $waited -ge $max_wait ]]; then
log_error "Vespa did not become ready within ${max_wait} seconds"
return 1
fi
sleep 2
waited=$((waited + 2))
done
# Restore documents
log_info "Restoring documents..."
while IFS= read -r line; do
if [[ -z "$line" ]]; then
continue
fi
# Extract document ID
local doc_id
doc_id=$(echo "$line" | jq -r '.update' | sed 's/.*:://')
# Post document
local response
response=$(curl -s -w "\n%{http_code}" -X POST \
-H "Content-Type: application/json" \
-d "$line" \
"${endpoint}/${doc_id}")
local http_code
http_code=$(echo "$response" | tail -1)
total_docs=$((total_docs + 1))
if [[ "$http_code" != "200" ]]; then
failed_docs=$((failed_docs + 1))
if [[ $failed_docs -le 5 ]]; then
log_warning "Failed to restore document $doc_id (HTTP $http_code)"
fi
fi
# Progress update
if [[ $((total_docs % 100)) -eq 0 ]]; then
log_info " Restored $total_docs documents..."
fi
done < "$backup_file"
if [[ $failed_docs -gt 0 ]]; then
log_warning "Vespa restored with $failed_docs failures out of $total_docs documents"
else
log_success "Vespa restored ($total_docs documents)"
fi
}
restore_minio_api() {
log_info "Restoring MinIO data..."
local backup_file="${INPUT_DIR}/minio_data.tar.gz"
if [[ ! -f "$backup_file" ]]; then
log_warning "MinIO backup not found: $backup_file"
# Try volume backup as fallback
if [[ -f "${INPUT_DIR}/minio_volume.tar.gz" ]]; then
log_info "Found volume backup, using that instead"
restore_minio_volume
return
fi
return 1
fi
# Extract to temp directory
local temp_dir
temp_dir=$(mktemp -d)
tar xzf "$backup_file" -C "$temp_dir"
# Check if mc (MinIO client) is available
if command -v mc &>/dev/null; then
# Configure mc alias for local minio
mc alias set onyx-restore http://localhost:9004 minioadmin minioadmin 2>/dev/null || true
# Mirror data to minio
mc mirror "$temp_dir/" onyx-restore/ 2>/dev/null || {
log_warning "mc mirror failed"
}
else
# Fallback: copy to container
if docker ps --format '{{.Names}}' | grep -q "^${MINIO_CONTAINER}$"; then
docker cp "$temp_dir/." "${MINIO_CONTAINER}:/data/"
else
log_error "MinIO container not running and mc not available"
rm -rf "$temp_dir"
return 1
fi
fi
rm -rf "$temp_dir"
log_success "MinIO restored"
}
# =============================================================================
# Main restore logic
# =============================================================================
log_info "Starting Onyx data restore..."
log_info "Input directory: $INPUT_DIR"
log_info "Project name: $PROJECT_NAME"
# Run restores based on detected mode
if [[ "$DETECTED_MODE" == "volume" ]]; then
log_info "Using volume-based restore"
# Stop services before restore
log_info "Stopping services for restore..."
if $RESTORE_POSTGRES; then
stop_service "relational_db"
fi
if $RESTORE_VESPA; then
stop_service "index"
fi
if $RESTORE_MINIO; then
stop_service "minio"
fi
# Perform restores
if $RESTORE_POSTGRES; then
restore_postgres_volume || log_warning "PostgreSQL restore failed"
fi
if $RESTORE_VESPA; then
restore_vespa_volume || log_warning "Vespa restore failed"
fi
if $RESTORE_MINIO; then
restore_minio_volume || log_warning "MinIO restore failed"
fi
# Restart services unless --no-restart was specified
if [[ "$NO_RESTART" != true ]]; then
start_services
else
log_info "Skipping service restart (--no-restart specified)"
log_info "Stopped services: ${STOPPED_SERVICES[*]}"
fi
elif [[ "$DETECTED_MODE" == "api" ]]; then
log_info "Using API-based restore"
log_info "Services must be running for API restore"
if $RESTORE_POSTGRES; then
restore_postgres_api || log_warning "PostgreSQL restore failed"
fi
if $RESTORE_VESPA; then
restore_vespa_api || log_warning "Vespa restore failed"
fi
if $RESTORE_MINIO; then
restore_minio_api || log_warning "MinIO restore failed"
fi
else
log_error "Could not detect backup mode. Ensure backup files exist in $INPUT_DIR"
exit 1
fi
log_success "==================================="
log_success "Restore completed!"
log_success "==================================="
# Post-restore recommendations
echo ""
log_info "Post-restore steps:"
log_info " 1. Run database migrations if needed: docker compose -p $PROJECT_NAME exec api_server alembic upgrade head"
log_info " 2. Verify data integrity in the application"

View File

@@ -55,7 +55,7 @@ else
docker run --detach --name onyx_minio --publish 9004:9000 --publish 9005:9001 -e MINIO_ROOT_USER=minioadmin -e MINIO_ROOT_PASSWORD=minioadmin minio/minio server /data --console-address ":9001"
fi
# Ensure alembic runs in the correct directory
# Ensure alembic runs in the correct directory (backend/)
SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
PARENT_DIR="$(dirname "$SCRIPT_DIR")"
cd "$PARENT_DIR"
@@ -63,6 +63,13 @@ cd "$PARENT_DIR"
# Give Postgres a second to start
sleep 1
# Alembic should be configured in the virtualenv for this repo
if [[ -f "../.venv/bin/activate" ]]; then
source ../.venv/bin/activate
else
echo "Warning: Python virtual environment not found at .venv/bin/activate; alembic may not work."
fi
# Run Alembic upgrade
echo "Running Alembic migration..."
alembic upgrade head

View File

@@ -0,0 +1,80 @@
# Quick Start: Tenant Cleanup Without Bastion
## TL;DR - The Commands You Need
```bash
# Navigate to backend directory
cd onyx/backend
# Step 1: Generate CSV of tenants to clean (5-10 min)
PYTHONPATH=. python scripts/tenant_cleanup/no_bastion_analyze_tenants.py
# Step 2: Mark connectors for deletion (1-2 min)
PYTHONPATH=. python scripts/tenant_cleanup/no_bastion_mark_connectors.py \
--csv gated_tenants_no_query_3mo_*.csv \
--force \
--concurrency 16
# ⏰ WAIT 6+ hours for background deletion to complete
# Step 3: Final cleanup (1-2 min)
PYTHONPATH=. python scripts/tenant_cleanup/no_bastion_cleanup_tenants.py \
--csv gated_tenants_no_query_3mo_*.csv \
--force
```
## What Changed?
Instead of the original scripts that require bastion access:
- `analyze_current_tenants.py``no_bastion_analyze_tenants.py`
- `mark_connectors_for_deletion.py``no_bastion_mark_connectors.py`
- `cleanup_tenants.py``no_bastion_cleanup_tenants.py`
**No environment variables needed!** All queries run directly from pods.
## What You Need
`kubectl` access to your cluster
✅ Running `celery-worker-user-file-processing` pods
✅ Permission to exec into pods
❌ No bastion host required
❌ No SSH keys required
❌ No environment variables required
## Test Your Setup
```bash
# Check if you can find worker pods
kubectl get po | grep celery-worker-user-file-processing | grep Running
# If you see pods, you're ready to go!
```
## Important Notes
1. **Step 2 triggers background deletion** - the actual document deletion happens asynchronously via Celery workers
2. **You MUST wait** between Step 2 and Step 3 for deletion to complete (can take 6+ hours)
3. **Monitor deletion progress** with: `kubectl logs -f <celery-worker-pod>`
4. **All scripts verify tenant status** - they'll refuse to process active (non-GATED_ACCESS) tenants
## Files Generated
- `gated_tenants_no_query_3mo_YYYYMMDD_HHMMSS.csv` - List of tenants to clean
- `cleaned_tenants.csv` - Successfully cleaned tenants with timestamps
## Safety First
The scripts include multiple safety checks:
- ✅ Verifies tenant status before any operation
- ✅ Checks documents are deleted before dropping schemas
- ✅ Prompts for confirmation on dangerous operations (unless `--force`)
- ✅ Records all successful operations in real-time
## Need More Details?
See [NO_BASTION_README.md](./NO_BASTION_README.md) for:
- Detailed explanations of each step
- Troubleshooting guide
- How it works under the hood
- Performance characteristics

Some files were not shown because too many files have changed in this diff Show More