mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-18 16:25:45 +00:00
Compare commits
128 Commits
pinned
...
updated_ch
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d97e96b3f0 | ||
|
|
911fbfa5a6 | ||
|
|
d02305671a | ||
|
|
bdfa29dcb5 | ||
|
|
897ed03c19 | ||
|
|
49f0c4f1f8 | ||
|
|
338c02171b | ||
|
|
ef1ade84b6 | ||
|
|
7c81566c54 | ||
|
|
c9df0aea47 | ||
|
|
92e0aeecba | ||
|
|
30c7e07783 | ||
|
|
e99704e9bd | ||
|
|
7f36387f7f | ||
|
|
407592445b | ||
|
|
2e533d8188 | ||
|
|
5b56869937 | ||
|
|
7baeab54e2 | ||
|
|
aefcfb75ef | ||
|
|
e5adcb457d | ||
|
|
db6463644a | ||
|
|
e26ba70cc6 | ||
|
|
66ff723c94 | ||
|
|
dda66f2178 | ||
|
|
0a27f72d20 | ||
|
|
fe397601ed | ||
|
|
3bc187c1d1 | ||
|
|
9a0b9eecf0 | ||
|
|
e08db414c0 | ||
|
|
b5734057b7 | ||
|
|
56beb3ec82 | ||
|
|
9f2c8118d7 | ||
|
|
6e4a3d5d57 | ||
|
|
5b3dcf718f | ||
|
|
07bd20b5b9 | ||
|
|
eb01b175ae | ||
|
|
6f55e5fe56 | ||
|
|
18e7609bfc | ||
|
|
dd69ec6cdb | ||
|
|
e961fa2820 | ||
|
|
d41bf9a3ff | ||
|
|
e3a6c76d51 | ||
|
|
719c2aa0df | ||
|
|
09f487e402 | ||
|
|
33a1548fc1 | ||
|
|
e87c93226a | ||
|
|
5e11a79593 | ||
|
|
f12eb4a5cf | ||
|
|
16863de0aa | ||
|
|
63d1eefee5 | ||
|
|
e338677896 | ||
|
|
7be80c4af9 | ||
|
|
7f1e4a02bf | ||
|
|
5be7d27285 | ||
|
|
fd84b7a768 | ||
|
|
36941ae663 | ||
|
|
212353ed4a | ||
|
|
eb8708f770 | ||
|
|
ac448956e9 | ||
|
|
634a0b9398 | ||
|
|
09d3e47c03 | ||
|
|
9c0cc94f15 | ||
|
|
07dfde2209 | ||
|
|
28e2b78b2e | ||
|
|
0553062ac6 | ||
|
|
284e375ba3 | ||
|
|
1f2f7d0ac2 | ||
|
|
2ecc28b57d | ||
|
|
77cf9b3539 | ||
|
|
076ce2ebd0 | ||
|
|
b625ee32a7 | ||
|
|
c32b93fcc3 | ||
|
|
1c8476072e | ||
|
|
7573416ca1 | ||
|
|
86d8666481 | ||
|
|
8abcde91d4 | ||
|
|
3466451d51 | ||
|
|
413891f143 | ||
|
|
7a0a4d4b79 | ||
|
|
a3439605a5 | ||
|
|
694e79f5e1 | ||
|
|
5dfafc8612 | ||
|
|
62a4aa10db | ||
|
|
a357cdc4c9 | ||
|
|
84615abfdd | ||
|
|
8ae6b1960b | ||
|
|
d9b87bbbc2 | ||
|
|
a0065b01af | ||
|
|
c5306148a3 | ||
|
|
1e17934de4 | ||
|
|
93add96ccc | ||
|
|
3a466a4b08 | ||
|
|
85cbd9caed | ||
|
|
9dc23bf3e7 | ||
|
|
e32809f7ca | ||
|
|
3e58f9f8ab | ||
|
|
2381c8d498 | ||
|
|
c6dadb24dc | ||
|
|
5dc07d4178 | ||
|
|
129c8f8faf | ||
|
|
67bfcabbc5 | ||
|
|
9819aa977a | ||
|
|
8d5b8a4028 | ||
|
|
682319d2e9 | ||
|
|
fe1400aa36 | ||
|
|
e3573b2bc1 | ||
|
|
35b5c44cc7 | ||
|
|
5eddc89b5a | ||
|
|
9a492ceb6d | ||
|
|
3c54ae9de9 | ||
|
|
13f08f3ebb | ||
|
|
bd9f15854f | ||
|
|
366aa2a8ea | ||
|
|
deee237c7e | ||
|
|
100b4a0d16 | ||
|
|
70207b4b39 | ||
|
|
50826b6bef | ||
|
|
3f648cbc31 | ||
|
|
c875a4774f | ||
|
|
049091eb01 | ||
|
|
3dac24542b | ||
|
|
194dcb593d | ||
|
|
bf291d0c0a | ||
|
|
8309f4a802 | ||
|
|
0ff2565125 | ||
|
|
e89dcd7f84 | ||
|
|
645e7e828e | ||
|
|
2a54f14195 |
@@ -65,6 +65,7 @@ jobs:
|
||||
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
|
||||
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
|
||||
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
|
||||
NEXT_PUBLIC_GTM_ENABLED=true
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
14
.github/workflows/pr-chromatic-tests.yml
vendored
14
.github/workflows/pr-chromatic-tests.yml
vendored
@@ -3,12 +3,7 @@ concurrency:
|
||||
group: Run-Chromatic-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
on:
|
||||
merge_group:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- 'release/**'
|
||||
on: push
|
||||
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -16,6 +11,8 @@ env:
|
||||
|
||||
jobs:
|
||||
playwright-tests:
|
||||
name: Playwright Tests
|
||||
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
@@ -108,7 +105,7 @@ jobs:
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
|
||||
|
||||
- name: Start Docker containers
|
||||
- name: Start Docker containers
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
|
||||
@@ -193,7 +190,8 @@ jobs:
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
|
||||
|
||||
chromatic-tests:
|
||||
name: Run Chromatic
|
||||
name: Chromatic Tests
|
||||
|
||||
needs: playwright-tests
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
|
||||
@@ -13,7 +13,10 @@ on:
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
||||
CONFLUENCE_TEST_SPACE_URL: ${{ secrets.CONFLUENCE_TEST_SPACE_URL }}
|
||||
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
|
||||
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
|
||||
|
||||
jobs:
|
||||
integration-tests:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
@@ -195,6 +198,9 @@ jobs:
|
||||
-e API_SERVER_HOST=api_server \
|
||||
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
|
||||
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
|
||||
-e CONFLUENCE_TEST_SPACE_URL=${CONFLUENCE_TEST_SPACE_URL} \
|
||||
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
|
||||
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
|
||||
-e TEST_WEB_HOSTNAME=test-runner \
|
||||
danswer/danswer-integration:test \
|
||||
/app/tests/integration/tests \
|
||||
@@ -32,7 +32,7 @@ To contribute to this project, please follow the
|
||||
When opening a pull request, mention related issues and feel free to tag relevant maintainers.
|
||||
|
||||
Before creating a pull request please make sure that the new changes conform to the formatting and linting requirements.
|
||||
See the [Formatting and Linting](#-formatting-and-linting) section for how to run these checks locally.
|
||||
See the [Formatting and Linting](#formatting-and-linting) section for how to run these checks locally.
|
||||
|
||||
|
||||
### Getting Help 🙋
|
||||
|
||||
@@ -0,0 +1,59 @@
|
||||
"""display custom llm models
|
||||
|
||||
Revision ID: 177de57c21c9
|
||||
Revises: 4ee1287bd26a
|
||||
Create Date: 2024-11-21 11:49:04.488677
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy import and_
|
||||
|
||||
revision = "177de57c21c9"
|
||||
down_revision = "4ee1287bd26a"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
llm_provider = sa.table(
|
||||
"llm_provider",
|
||||
sa.column("id", sa.Integer),
|
||||
sa.column("provider", sa.String),
|
||||
sa.column("model_names", postgresql.ARRAY(sa.String)),
|
||||
sa.column("display_model_names", postgresql.ARRAY(sa.String)),
|
||||
)
|
||||
|
||||
excluded_providers = ["openai", "bedrock", "anthropic", "azure"]
|
||||
|
||||
providers_to_update = sa.select(
|
||||
llm_provider.c.id,
|
||||
llm_provider.c.model_names,
|
||||
llm_provider.c.display_model_names,
|
||||
).where(
|
||||
and_(
|
||||
~llm_provider.c.provider.in_(excluded_providers),
|
||||
llm_provider.c.model_names.isnot(None),
|
||||
)
|
||||
)
|
||||
|
||||
results = conn.execute(providers_to_update).fetchall()
|
||||
|
||||
for provider_id, model_names, display_model_names in results:
|
||||
if display_model_names is None:
|
||||
display_model_names = []
|
||||
|
||||
combined_model_names = list(set(display_model_names + model_names))
|
||||
update_stmt = (
|
||||
llm_provider.update()
|
||||
.where(llm_provider.c.id == provider_id)
|
||||
.values(display_model_names=combined_model_names)
|
||||
)
|
||||
conn.execute(update_stmt)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
pass
|
||||
45
backend/alembic/versions/6d562f86c78b_remove_default_bot.py
Normal file
45
backend/alembic/versions/6d562f86c78b_remove_default_bot.py
Normal file
@@ -0,0 +1,45 @@
|
||||
"""remove default bot
|
||||
|
||||
Revision ID: 6d562f86c78b
|
||||
Revises: 177de57c21c9
|
||||
Create Date: 2024-11-22 11:51:29.331336
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "6d562f86c78b"
|
||||
down_revision = "177de57c21c9"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute(
|
||||
sa.text(
|
||||
"""
|
||||
DELETE FROM slack_bot
|
||||
WHERE name = 'Default Bot'
|
||||
AND bot_token = ''
|
||||
AND app_token = ''
|
||||
AND NOT EXISTS (
|
||||
SELECT 1 FROM slack_channel_config
|
||||
WHERE slack_channel_config.slack_bot_id = slack_bot.id
|
||||
)
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.execute(
|
||||
sa.text(
|
||||
"""
|
||||
INSERT INTO slack_bot (name, enabled, bot_token, app_token)
|
||||
SELECT 'Default Bot', true, '', ''
|
||||
WHERE NOT EXISTS (SELECT 1 FROM slack_bot)
|
||||
RETURNING id;
|
||||
"""
|
||||
)
|
||||
)
|
||||
@@ -9,8 +9,8 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "776b3bbe9092"
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
"""add web ui option to slack config
|
||||
|
||||
Revision ID: 93560ba1b118
|
||||
Revises: 6d562f86c78b
|
||||
Create Date: 2024-11-24 06:36:17.490612
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "93560ba1b118"
|
||||
down_revision = "6d562f86c78b"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add show_continue_in_web_ui with default False to all existing channel_configs
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE slack_channel_config
|
||||
SET channel_config = channel_config || '{"show_continue_in_web_ui": false}'::jsonb
|
||||
WHERE NOT channel_config ? 'show_continue_in_web_ui'
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove show_continue_in_web_ui from all channel_configs
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE slack_channel_config
|
||||
SET channel_config = channel_config - 'show_continue_in_web_ui'
|
||||
"""
|
||||
)
|
||||
@@ -0,0 +1,27 @@
|
||||
"""add auto scroll to user model
|
||||
|
||||
Revision ID: a8c2065484e6
|
||||
Revises: abe7378b8217
|
||||
Create Date: 2024-11-22 17:34:09.690295
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "a8c2065484e6"
|
||||
down_revision = "abe7378b8217"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"user",
|
||||
sa.Column("auto_scroll", sa.Boolean(), nullable=True, server_default=None),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user", "auto_scroll")
|
||||
@@ -0,0 +1,30 @@
|
||||
"""add indexing trigger to cc_pair
|
||||
|
||||
Revision ID: abe7378b8217
|
||||
Revises: 6d562f86c78b
|
||||
Create Date: 2024-11-26 19:09:53.481171
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "abe7378b8217"
|
||||
down_revision = "93560ba1b118"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"connector_credential_pair",
|
||||
sa.Column(
|
||||
"indexing_trigger",
|
||||
sa.Enum("UPDATE", "REINDEX", name="indexingmode", native_enum=False),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("connector_credential_pair", "indexing_trigger")
|
||||
@@ -23,7 +23,9 @@ def load_no_auth_user_preferences(store: KeyValueStore) -> UserPreferences:
|
||||
)
|
||||
return UserPreferences(**preferences_data)
|
||||
except KvKeyNotFoundError:
|
||||
return UserPreferences(chosen_assistants=None, default_model=None)
|
||||
return UserPreferences(
|
||||
chosen_assistants=None, default_model=None, auto_scroll=True
|
||||
)
|
||||
|
||||
|
||||
def fetch_no_auth_user(store: KeyValueStore) -> UserInfo:
|
||||
|
||||
@@ -49,7 +49,7 @@ from httpx_oauth.oauth2 import BaseOAuth2
|
||||
from httpx_oauth.oauth2 import OAuth2Token
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy import text
|
||||
from sqlalchemy.orm import Session
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from danswer.auth.api_key import get_hashed_api_key_from_request
|
||||
from danswer.auth.invited_users import get_invited_users
|
||||
@@ -80,8 +80,8 @@ from danswer.db.auth import get_default_admin_user_emails
|
||||
from danswer.db.auth import get_user_count
|
||||
from danswer.db.auth import get_user_db
|
||||
from danswer.db.auth import SQLAlchemyUserAdminDB
|
||||
from danswer.db.engine import get_async_session
|
||||
from danswer.db.engine import get_async_session_with_tenant
|
||||
from danswer.db.engine import get_session
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.models import AccessToken
|
||||
from danswer.db.models import OAuthAccount
|
||||
@@ -609,7 +609,7 @@ optional_fastapi_current_user = fastapi_users.current_user(active=True, optional
|
||||
async def optional_user_(
|
||||
request: Request,
|
||||
user: User | None,
|
||||
db_session: Session,
|
||||
async_db_session: AsyncSession,
|
||||
) -> User | None:
|
||||
"""NOTE: `request` and `db_session` are not used here, but are included
|
||||
for the EE version of this function."""
|
||||
@@ -618,13 +618,21 @@ async def optional_user_(
|
||||
|
||||
async def optional_user(
|
||||
request: Request,
|
||||
db_session: Session = Depends(get_session),
|
||||
async_db_session: AsyncSession = Depends(get_async_session),
|
||||
user: User | None = Depends(optional_fastapi_current_user),
|
||||
) -> User | None:
|
||||
versioned_fetch_user = fetch_versioned_implementation(
|
||||
"danswer.auth.users", "optional_user_"
|
||||
)
|
||||
return await versioned_fetch_user(request, user, db_session)
|
||||
user = await versioned_fetch_user(request, user, async_db_session)
|
||||
|
||||
# check if an API key is present
|
||||
if user is None:
|
||||
hashed_api_key = get_hashed_api_key_from_request(request)
|
||||
if hashed_api_key:
|
||||
user = await fetch_user_for_api_key(hashed_api_key, async_db_session)
|
||||
|
||||
return user
|
||||
|
||||
|
||||
async def double_check_user(
|
||||
@@ -910,8 +918,8 @@ def get_oauth_router(
|
||||
return router
|
||||
|
||||
|
||||
def api_key_dep(
|
||||
request: Request, db_session: Session = Depends(get_session)
|
||||
async def api_key_dep(
|
||||
request: Request, async_db_session: AsyncSession = Depends(get_async_session)
|
||||
) -> User | None:
|
||||
if AUTH_TYPE == AuthType.DISABLED:
|
||||
return None
|
||||
@@ -921,7 +929,7 @@ def api_key_dep(
|
||||
raise HTTPException(status_code=401, detail="Missing API key")
|
||||
|
||||
if hashed_api_key:
|
||||
user = fetch_user_for_api_key(hashed_api_key, db_session)
|
||||
user = await fetch_user_for_api_key(hashed_api_key, async_db_session)
|
||||
|
||||
if user is None:
|
||||
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import multiprocessing
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from celery import bootsteps # type: ignore
|
||||
from celery import Celery
|
||||
@@ -14,14 +15,16 @@ from celery.signals import worker_shutdown
|
||||
import danswer.background.celery.apps.app_base as app_base
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
from danswer.background.celery.celery_utils import celery_is_worker_primary
|
||||
from danswer.background.celery.tasks.vespa.tasks import get_unfenced_index_attempt_ids
|
||||
from danswer.background.celery.tasks.indexing.tasks import (
|
||||
get_unfenced_index_attempt_ids,
|
||||
)
|
||||
from danswer.configs.constants import CELERY_PRIMARY_WORKER_LOCK_TIMEOUT
|
||||
from danswer.configs.constants import DanswerRedisLocks
|
||||
from danswer.configs.constants import POSTGRES_CELERY_WORKER_PRIMARY_APP_NAME
|
||||
from danswer.db.engine import get_session_with_default_tenant
|
||||
from danswer.db.engine import SqlEngine
|
||||
from danswer.db.index_attempt import get_index_attempt
|
||||
from danswer.db.index_attempt import mark_attempt_failed
|
||||
from danswer.db.index_attempt import mark_attempt_canceled
|
||||
from danswer.redis.redis_connector_credential_pair import RedisConnectorCredentialPair
|
||||
from danswer.redis.redis_connector_delete import RedisConnectorDelete
|
||||
from danswer.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
|
||||
@@ -95,6 +98,15 @@ def on_worker_init(sender: Any, **kwargs: Any) -> None:
|
||||
# by the primary worker. This is unnecessary in the multi tenant scenario
|
||||
r = get_redis_client(tenant_id=None)
|
||||
|
||||
# Log the role and slave count - being connected to a slave or slave count > 0 could be problematic
|
||||
info: dict[str, Any] = cast(dict, r.info("replication"))
|
||||
role: str = cast(str, info.get("role"))
|
||||
connected_slaves: int = info.get("connected_slaves", 0)
|
||||
|
||||
logger.info(
|
||||
f"Redis INFO REPLICATION: role={role} connected_slaves={connected_slaves}"
|
||||
)
|
||||
|
||||
# For the moment, we're assuming that we are the only primary worker
|
||||
# that should be running.
|
||||
# TODO: maybe check for or clean up another zombie primary worker if we detect it
|
||||
@@ -153,13 +165,13 @@ def on_worker_init(sender: Any, **kwargs: Any) -> None:
|
||||
continue
|
||||
|
||||
failure_reason = (
|
||||
f"Orphaned index attempt found on startup: "
|
||||
f"Canceling leftover index attempt found on startup: "
|
||||
f"index_attempt={attempt.id} "
|
||||
f"cc_pair={attempt.connector_credential_pair_id} "
|
||||
f"search_settings={attempt.search_settings_id}"
|
||||
)
|
||||
logger.warning(failure_reason)
|
||||
mark_attempt_failed(attempt.id, db_session, failure_reason)
|
||||
mark_attempt_canceled(attempt.id, db_session, failure_reason)
|
||||
|
||||
|
||||
@worker_ready.connect
|
||||
|
||||
@@ -4,7 +4,6 @@ from typing import Any
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.background.indexing.run_indexing import RunIndexingCallbackInterface
|
||||
from danswer.configs.app_configs import MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE
|
||||
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
|
||||
rate_limit_builder,
|
||||
@@ -17,6 +16,7 @@ from danswer.connectors.models import Document
|
||||
from danswer.db.connector_credential_pair import get_connector_credential_pair
|
||||
from danswer.db.enums import TaskStatus
|
||||
from danswer.db.models import TaskQueueState
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.redis.redis_connector import RedisConnector
|
||||
from danswer.server.documents.models import DeletionAttemptSnapshot
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -78,7 +78,7 @@ def document_batch_to_ids(
|
||||
|
||||
def extract_ids_from_runnable_connector(
|
||||
runnable_connector: BaseConnector,
|
||||
callback: RunIndexingCallbackInterface | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> set[str]:
|
||||
"""
|
||||
If the SlimConnector hasnt been implemented for the given connector, just pull
|
||||
@@ -111,10 +111,15 @@ def extract_ids_from_runnable_connector(
|
||||
for doc_batch in doc_batch_generator:
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("Stop signal received")
|
||||
callback.progress(len(doc_batch))
|
||||
raise RuntimeError(
|
||||
"extract_ids_from_runnable_connector: Stop signal detected"
|
||||
)
|
||||
|
||||
all_connector_doc_ids.update(doc_batch_processing_func(doc_batch))
|
||||
|
||||
if callback:
|
||||
callback.progress("extract_ids_from_runnable_connector", len(doc_batch))
|
||||
|
||||
return all_connector_doc_ids
|
||||
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@ from celery import Celery
|
||||
from celery import shared_task
|
||||
from celery import Task
|
||||
from celery.exceptions import SoftTimeLimitExceeded
|
||||
from redis import Redis
|
||||
from redis.lock import Lock as RedisLock
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
@@ -19,7 +18,7 @@ from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.enums import ConnectorCredentialPairStatus
|
||||
from danswer.db.search_settings import get_all_search_settings
|
||||
from danswer.redis.redis_connector import RedisConnector
|
||||
from danswer.redis.redis_connector_delete import RedisConnectorDeletionFenceData
|
||||
from danswer.redis.redis_connector_delete import RedisConnectorDeletePayload
|
||||
from danswer.redis.redis_pool import get_redis_client
|
||||
|
||||
|
||||
@@ -37,7 +36,7 @@ class TaskDependencyError(RuntimeError):
|
||||
def check_for_connector_deletion_task(self: Task, *, tenant_id: str | None) -> None:
|
||||
r = get_redis_client(tenant_id=tenant_id)
|
||||
|
||||
lock_beat = r.lock(
|
||||
lock_beat: RedisLock = r.lock(
|
||||
DanswerRedisLocks.CHECK_CONNECTOR_DELETION_BEAT_LOCK,
|
||||
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
|
||||
)
|
||||
@@ -60,7 +59,7 @@ def check_for_connector_deletion_task(self: Task, *, tenant_id: str | None) -> N
|
||||
redis_connector = RedisConnector(tenant_id, cc_pair_id)
|
||||
try:
|
||||
try_generate_document_cc_pair_cleanup_tasks(
|
||||
self.app, cc_pair_id, db_session, r, lock_beat, tenant_id
|
||||
self.app, cc_pair_id, db_session, lock_beat, tenant_id
|
||||
)
|
||||
except TaskDependencyError as e:
|
||||
# this means we wanted to start deleting but dependent tasks were running
|
||||
@@ -86,7 +85,6 @@ def try_generate_document_cc_pair_cleanup_tasks(
|
||||
app: Celery,
|
||||
cc_pair_id: int,
|
||||
db_session: Session,
|
||||
r: Redis,
|
||||
lock_beat: RedisLock,
|
||||
tenant_id: str | None,
|
||||
) -> int | None:
|
||||
@@ -118,7 +116,7 @@ def try_generate_document_cc_pair_cleanup_tasks(
|
||||
return None
|
||||
|
||||
# set a basic fence to start
|
||||
fence_payload = RedisConnectorDeletionFenceData(
|
||||
fence_payload = RedisConnectorDeletePayload(
|
||||
num_tasks=None,
|
||||
submitted=datetime.now(timezone.utc),
|
||||
)
|
||||
|
||||
@@ -8,6 +8,7 @@ from celery import shared_task
|
||||
from celery import Task
|
||||
from celery.exceptions import SoftTimeLimitExceeded
|
||||
from redis import Redis
|
||||
from redis.lock import Lock as RedisLock
|
||||
|
||||
from danswer.access.models import DocExternalAccess
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
@@ -27,7 +28,7 @@ from danswer.db.models import ConnectorCredentialPair
|
||||
from danswer.db.users import batch_add_ext_perm_user_if_not_exists
|
||||
from danswer.redis.redis_connector import RedisConnector
|
||||
from danswer.redis.redis_connector_doc_perm_sync import (
|
||||
RedisConnectorPermissionSyncData,
|
||||
RedisConnectorPermissionSyncPayload,
|
||||
)
|
||||
from danswer.redis.redis_pool import get_redis_client
|
||||
from danswer.utils.logger import doc_permission_sync_ctx
|
||||
@@ -138,7 +139,7 @@ def try_creating_permissions_sync_task(
|
||||
|
||||
LOCK_TIMEOUT = 30
|
||||
|
||||
lock = r.lock(
|
||||
lock: RedisLock = r.lock(
|
||||
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_generate_permissions_sync_tasks",
|
||||
timeout=LOCK_TIMEOUT,
|
||||
)
|
||||
@@ -162,7 +163,7 @@ def try_creating_permissions_sync_task(
|
||||
|
||||
custom_task_id = f"{redis_connector.permissions.generator_task_key}_{uuid4()}"
|
||||
|
||||
app.send_task(
|
||||
result = app.send_task(
|
||||
"connector_permission_sync_generator_task",
|
||||
kwargs=dict(
|
||||
cc_pair_id=cc_pair_id,
|
||||
@@ -174,8 +175,8 @@ def try_creating_permissions_sync_task(
|
||||
)
|
||||
|
||||
# set a basic fence to start
|
||||
payload = RedisConnectorPermissionSyncData(
|
||||
started=None,
|
||||
payload = RedisConnectorPermissionSyncPayload(
|
||||
started=None, celery_task_id=result.id
|
||||
)
|
||||
|
||||
redis_connector.permissions.set_fence(payload)
|
||||
@@ -241,13 +242,17 @@ def connector_permission_sync_generator_task(
|
||||
|
||||
doc_sync_func = DOC_PERMISSIONS_FUNC_MAP.get(source_type)
|
||||
if doc_sync_func is None:
|
||||
raise ValueError(f"No doc sync func found for {source_type}")
|
||||
raise ValueError(
|
||||
f"No doc sync func found for {source_type} with cc_pair={cc_pair_id}"
|
||||
)
|
||||
|
||||
logger.info(f"Syncing docs for {source_type}")
|
||||
logger.info(f"Syncing docs for {source_type} with cc_pair={cc_pair_id}")
|
||||
|
||||
payload = RedisConnectorPermissionSyncData(
|
||||
started=datetime.now(timezone.utc),
|
||||
)
|
||||
payload = redis_connector.permissions.payload
|
||||
if not payload:
|
||||
raise ValueError(f"No fence payload found: cc_pair={cc_pair_id}")
|
||||
|
||||
payload.started = datetime.now(timezone.utc)
|
||||
redis_connector.permissions.set_fence(payload)
|
||||
|
||||
document_external_accesses: list[DocExternalAccess] = doc_sync_func(cc_pair)
|
||||
|
||||
@@ -8,6 +8,7 @@ from celery import shared_task
|
||||
from celery import Task
|
||||
from celery.exceptions import SoftTimeLimitExceeded
|
||||
from redis import Redis
|
||||
from redis.lock import Lock as RedisLock
|
||||
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
from danswer.configs.app_configs import JOB_TIMEOUT
|
||||
@@ -24,12 +25,15 @@ from danswer.db.enums import AccessType
|
||||
from danswer.db.enums import ConnectorCredentialPairStatus
|
||||
from danswer.db.models import ConnectorCredentialPair
|
||||
from danswer.redis.redis_connector import RedisConnector
|
||||
from danswer.redis.redis_connector_ext_group_sync import (
|
||||
RedisConnectorExternalGroupSyncPayload,
|
||||
)
|
||||
from danswer.redis.redis_pool import get_redis_client
|
||||
from danswer.utils.logger import setup_logger
|
||||
from ee.danswer.db.connector_credential_pair import get_all_auto_sync_cc_pairs
|
||||
from ee.danswer.db.external_perm import ExternalUserGroup
|
||||
from ee.danswer.db.external_perm import replace_user__ext_group_for_cc_pair
|
||||
from ee.danswer.external_permissions.sync_params import EXTERNAL_GROUP_SYNC_PERIOD
|
||||
from ee.danswer.external_permissions.sync_params import EXTERNAL_GROUP_SYNC_PERIODS
|
||||
from ee.danswer.external_permissions.sync_params import GROUP_PERMISSIONS_FUNC_MAP
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -49,7 +53,7 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
|
||||
if cc_pair.access_type != AccessType.SYNC:
|
||||
return False
|
||||
|
||||
# skip pruning if not active
|
||||
# skip external group sync if not active
|
||||
if cc_pair.status != ConnectorCredentialPairStatus.ACTIVE:
|
||||
return False
|
||||
|
||||
@@ -66,9 +70,9 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
|
||||
if last_ext_group_sync is None:
|
||||
return True
|
||||
|
||||
source_sync_period = EXTERNAL_GROUP_SYNC_PERIOD
|
||||
source_sync_period = EXTERNAL_GROUP_SYNC_PERIODS.get(cc_pair.connector.source)
|
||||
|
||||
# If EXTERNAL_GROUP_SYNC_PERIOD is None, we always run the sync.
|
||||
# If EXTERNAL_GROUP_SYNC_PERIODS is None, we always run the sync.
|
||||
if not source_sync_period:
|
||||
return True
|
||||
|
||||
@@ -107,7 +111,7 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> None:
|
||||
cc_pair_ids_to_sync.append(cc_pair.id)
|
||||
|
||||
for cc_pair_id in cc_pair_ids_to_sync:
|
||||
tasks_created = try_creating_permissions_sync_task(
|
||||
tasks_created = try_creating_external_group_sync_task(
|
||||
self.app, cc_pair_id, r, tenant_id
|
||||
)
|
||||
if not tasks_created:
|
||||
@@ -125,7 +129,7 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> None:
|
||||
lock_beat.release()
|
||||
|
||||
|
||||
def try_creating_permissions_sync_task(
|
||||
def try_creating_external_group_sync_task(
|
||||
app: Celery,
|
||||
cc_pair_id: int,
|
||||
r: Redis,
|
||||
@@ -156,7 +160,7 @@ def try_creating_permissions_sync_task(
|
||||
|
||||
custom_task_id = f"{redis_connector.external_group_sync.taskset_key}_{uuid4()}"
|
||||
|
||||
_ = app.send_task(
|
||||
result = app.send_task(
|
||||
"connector_external_group_sync_generator_task",
|
||||
kwargs=dict(
|
||||
cc_pair_id=cc_pair_id,
|
||||
@@ -166,8 +170,13 @@ def try_creating_permissions_sync_task(
|
||||
task_id=custom_task_id,
|
||||
priority=DanswerCeleryPriority.HIGH,
|
||||
)
|
||||
# set a basic fence to start
|
||||
redis_connector.external_group_sync.set_fence(True)
|
||||
|
||||
payload = RedisConnectorExternalGroupSyncPayload(
|
||||
started=datetime.now(timezone.utc),
|
||||
celery_task_id=result.id,
|
||||
)
|
||||
|
||||
redis_connector.external_group_sync.set_fence(payload)
|
||||
|
||||
except Exception:
|
||||
task_logger.exception(
|
||||
@@ -195,7 +204,7 @@ def connector_external_group_sync_generator_task(
|
||||
tenant_id: str | None,
|
||||
) -> None:
|
||||
"""
|
||||
Permission sync task that handles document permission syncing for a given connector credential pair
|
||||
Permission sync task that handles external group syncing for a given connector credential pair
|
||||
This task assumes that the task has already been properly fenced
|
||||
"""
|
||||
|
||||
@@ -203,7 +212,7 @@ def connector_external_group_sync_generator_task(
|
||||
|
||||
r = get_redis_client(tenant_id=tenant_id)
|
||||
|
||||
lock = r.lock(
|
||||
lock: RedisLock = r.lock(
|
||||
DanswerRedisLocks.CONNECTOR_EXTERNAL_GROUP_SYNC_LOCK_PREFIX
|
||||
+ f"_{redis_connector.id}",
|
||||
timeout=CELERY_EXTERNAL_GROUP_SYNC_LOCK_TIMEOUT,
|
||||
@@ -228,9 +237,13 @@ def connector_external_group_sync_generator_task(
|
||||
|
||||
ext_group_sync_func = GROUP_PERMISSIONS_FUNC_MAP.get(source_type)
|
||||
if ext_group_sync_func is None:
|
||||
raise ValueError(f"No external group sync func found for {source_type}")
|
||||
raise ValueError(
|
||||
f"No external group sync func found for {source_type} for cc_pair: {cc_pair_id}"
|
||||
)
|
||||
|
||||
logger.info(f"Syncing docs for {source_type}")
|
||||
logger.info(
|
||||
f"Syncing external groups for {source_type} for cc_pair: {cc_pair_id}"
|
||||
)
|
||||
|
||||
external_user_groups: list[ExternalUserGroup] = ext_group_sync_func(cc_pair)
|
||||
|
||||
@@ -249,7 +262,6 @@ def connector_external_group_sync_generator_task(
|
||||
)
|
||||
|
||||
mark_cc_pair_as_external_group_synced(db_session, cc_pair.id)
|
||||
|
||||
except Exception as e:
|
||||
task_logger.exception(
|
||||
f"Failed to run external group sync: cc_pair={cc_pair_id}"
|
||||
@@ -260,6 +272,6 @@ def connector_external_group_sync_generator_task(
|
||||
raise e
|
||||
finally:
|
||||
# we always want to clear the fence after the task is done or failed so it doesn't get stuck
|
||||
redis_connector.external_group_sync.set_fence(False)
|
||||
redis_connector.external_group_sync.set_fence(None)
|
||||
if lock.owned():
|
||||
lock.release()
|
||||
|
||||
@@ -3,6 +3,7 @@ from datetime import timezone
|
||||
from http import HTTPStatus
|
||||
from time import sleep
|
||||
|
||||
import redis
|
||||
import sentry_sdk
|
||||
from celery import Celery
|
||||
from celery import shared_task
|
||||
@@ -16,7 +17,6 @@ from sqlalchemy.orm import Session
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
from danswer.background.indexing.job_client import SimpleJobClient
|
||||
from danswer.background.indexing.run_indexing import run_indexing_entrypoint
|
||||
from danswer.background.indexing.run_indexing import RunIndexingCallbackInterface
|
||||
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
|
||||
from danswer.configs.constants import CELERY_INDEXING_LOCK_TIMEOUT
|
||||
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
|
||||
@@ -25,26 +25,33 @@ from danswer.configs.constants import DanswerCeleryPriority
|
||||
from danswer.configs.constants import DanswerCeleryQueues
|
||||
from danswer.configs.constants import DanswerRedisLocks
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.db.connector import mark_ccpair_with_indexing_trigger
|
||||
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
|
||||
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
|
||||
from danswer.db.engine import get_db_current_time
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.enums import ConnectorCredentialPairStatus
|
||||
from danswer.db.enums import IndexingMode
|
||||
from danswer.db.enums import IndexingStatus
|
||||
from danswer.db.enums import IndexModelStatus
|
||||
from danswer.db.index_attempt import create_index_attempt
|
||||
from danswer.db.index_attempt import delete_index_attempt
|
||||
from danswer.db.index_attempt import get_all_index_attempts_by_status
|
||||
from danswer.db.index_attempt import get_index_attempt
|
||||
from danswer.db.index_attempt import get_last_attempt_for_cc_pair
|
||||
from danswer.db.index_attempt import mark_attempt_canceled
|
||||
from danswer.db.index_attempt import mark_attempt_failed
|
||||
from danswer.db.models import ConnectorCredentialPair
|
||||
from danswer.db.models import IndexAttempt
|
||||
from danswer.db.models import SearchSettings
|
||||
from danswer.db.search_settings import get_active_search_settings
|
||||
from danswer.db.search_settings import get_current_search_settings
|
||||
from danswer.db.search_settings import get_secondary_search_settings
|
||||
from danswer.db.swap_index import check_index_swap
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
|
||||
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
|
||||
from danswer.redis.redis_connector import RedisConnector
|
||||
from danswer.redis.redis_connector_index import RedisConnectorIndex
|
||||
from danswer.redis.redis_connector_index import RedisConnectorIndexPayload
|
||||
from danswer.redis.redis_pool import get_redis_client
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -57,7 +64,7 @@ from shared_configs.configs import SENTRY_DSN
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
class RunIndexingCallback(RunIndexingCallbackInterface):
|
||||
class IndexingCallback(IndexingHeartbeatInterface):
|
||||
def __init__(
|
||||
self,
|
||||
stop_key: str,
|
||||
@@ -73,6 +80,7 @@ class RunIndexingCallback(RunIndexingCallbackInterface):
|
||||
self.started: datetime = datetime.now(timezone.utc)
|
||||
self.redis_lock.reacquire()
|
||||
|
||||
self.last_tag: str = "IndexingCallback.__init__"
|
||||
self.last_lock_reacquire: datetime = datetime.now(timezone.utc)
|
||||
|
||||
def should_stop(self) -> bool:
|
||||
@@ -80,15 +88,17 @@ class RunIndexingCallback(RunIndexingCallbackInterface):
|
||||
return True
|
||||
return False
|
||||
|
||||
def progress(self, amount: int) -> None:
|
||||
def progress(self, tag: str, amount: int) -> None:
|
||||
try:
|
||||
self.redis_lock.reacquire()
|
||||
self.last_tag = tag
|
||||
self.last_lock_reacquire = datetime.now(timezone.utc)
|
||||
except LockError:
|
||||
logger.exception(
|
||||
f"RunIndexingCallback - lock.reacquire exceptioned. "
|
||||
f"IndexingCallback - lock.reacquire exceptioned. "
|
||||
f"lock_timeout={self.redis_lock.timeout} "
|
||||
f"start={self.started} "
|
||||
f"last_tag={self.last_tag} "
|
||||
f"last_reacquired={self.last_lock_reacquire} "
|
||||
f"now={datetime.now(timezone.utc)}"
|
||||
)
|
||||
@@ -97,6 +107,54 @@ class RunIndexingCallback(RunIndexingCallbackInterface):
|
||||
self.redis_client.incrby(self.generator_progress_key, amount)
|
||||
|
||||
|
||||
def get_unfenced_index_attempt_ids(db_session: Session, r: redis.Redis) -> list[int]:
|
||||
"""Gets a list of unfenced index attempts. Should not be possible, so we'd typically
|
||||
want to clean them up.
|
||||
|
||||
Unfenced = attempt not in terminal state and fence does not exist.
|
||||
"""
|
||||
unfenced_attempts: list[int] = []
|
||||
|
||||
# inner/outer/inner double check pattern to avoid race conditions when checking for
|
||||
# bad state
|
||||
# inner = index_attempt in non terminal state
|
||||
# outer = r.fence_key down
|
||||
|
||||
# check the db for index attempts in a non terminal state
|
||||
attempts: list[IndexAttempt] = []
|
||||
attempts.extend(
|
||||
get_all_index_attempts_by_status(IndexingStatus.NOT_STARTED, db_session)
|
||||
)
|
||||
attempts.extend(
|
||||
get_all_index_attempts_by_status(IndexingStatus.IN_PROGRESS, db_session)
|
||||
)
|
||||
|
||||
for attempt in attempts:
|
||||
fence_key = RedisConnectorIndex.fence_key_with_ids(
|
||||
attempt.connector_credential_pair_id, attempt.search_settings_id
|
||||
)
|
||||
|
||||
# if the fence is down / doesn't exist, possible error but not confirmed
|
||||
if r.exists(fence_key):
|
||||
continue
|
||||
|
||||
# Between the time the attempts are first looked up and the time we see the fence down,
|
||||
# the attempt may have completed and taken down the fence normally.
|
||||
|
||||
# We need to double check that the index attempt is still in a non terminal state
|
||||
# and matches the original state, which confirms we are really in a bad state.
|
||||
attempt_2 = get_index_attempt(db_session, attempt.id)
|
||||
if not attempt_2:
|
||||
continue
|
||||
|
||||
if attempt.status != attempt_2.status:
|
||||
continue
|
||||
|
||||
unfenced_attempts.append(attempt.id)
|
||||
|
||||
return unfenced_attempts
|
||||
|
||||
|
||||
@shared_task(
|
||||
name="check_for_indexing",
|
||||
soft_time_limit=300,
|
||||
@@ -104,10 +162,10 @@ class RunIndexingCallback(RunIndexingCallbackInterface):
|
||||
)
|
||||
def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
tasks_created = 0
|
||||
|
||||
locked = False
|
||||
r = get_redis_client(tenant_id=tenant_id)
|
||||
|
||||
lock_beat = r.lock(
|
||||
lock_beat: RedisLock = r.lock(
|
||||
DanswerRedisLocks.CHECK_INDEXING_BEAT_LOCK,
|
||||
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
|
||||
)
|
||||
@@ -117,6 +175,9 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
if not lock_beat.acquire(blocking=False):
|
||||
return None
|
||||
|
||||
locked = True
|
||||
|
||||
# check for search settings swap
|
||||
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
|
||||
old_search_settings = check_index_swap(db_session=db_session)
|
||||
current_search_settings = get_current_search_settings(db_session)
|
||||
@@ -135,26 +196,24 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
embedding_model=embedding_model,
|
||||
)
|
||||
|
||||
# gather cc_pair_ids
|
||||
cc_pair_ids: list[int] = []
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
lock_beat.reacquire()
|
||||
cc_pairs = fetch_connector_credential_pairs(db_session)
|
||||
for cc_pair_entry in cc_pairs:
|
||||
cc_pair_ids.append(cc_pair_entry.id)
|
||||
|
||||
# kick off index attempts
|
||||
for cc_pair_id in cc_pair_ids:
|
||||
lock_beat.reacquire()
|
||||
|
||||
redis_connector = RedisConnector(tenant_id, cc_pair_id)
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
# Get the primary search settings
|
||||
primary_search_settings = get_current_search_settings(db_session)
|
||||
search_settings = [primary_search_settings]
|
||||
|
||||
# Check for secondary search settings
|
||||
secondary_search_settings = get_secondary_search_settings(db_session)
|
||||
if secondary_search_settings is not None:
|
||||
# If secondary settings exist, add them to the list
|
||||
search_settings.append(secondary_search_settings)
|
||||
|
||||
for search_settings_instance in search_settings:
|
||||
search_settings_list: list[SearchSettings] = get_active_search_settings(
|
||||
db_session
|
||||
)
|
||||
for search_settings_instance in search_settings_list:
|
||||
redis_connector_index = redis_connector.new_index(
|
||||
search_settings_instance.id
|
||||
)
|
||||
@@ -170,22 +229,46 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
last_attempt = get_last_attempt_for_cc_pair(
|
||||
cc_pair.id, search_settings_instance.id, db_session
|
||||
)
|
||||
|
||||
search_settings_primary = False
|
||||
if search_settings_instance.id == search_settings_list[0].id:
|
||||
search_settings_primary = True
|
||||
|
||||
if not _should_index(
|
||||
cc_pair=cc_pair,
|
||||
last_index=last_attempt,
|
||||
search_settings_instance=search_settings_instance,
|
||||
secondary_index_building=len(search_settings) > 1,
|
||||
search_settings_primary=search_settings_primary,
|
||||
secondary_index_building=len(search_settings_list) > 1,
|
||||
db_session=db_session,
|
||||
):
|
||||
continue
|
||||
|
||||
reindex = False
|
||||
if search_settings_instance.id == search_settings_list[0].id:
|
||||
# the indexing trigger is only checked and cleared with the primary search settings
|
||||
if cc_pair.indexing_trigger is not None:
|
||||
if cc_pair.indexing_trigger == IndexingMode.REINDEX:
|
||||
reindex = True
|
||||
|
||||
task_logger.info(
|
||||
f"Connector indexing manual trigger detected: "
|
||||
f"cc_pair={cc_pair.id} "
|
||||
f"search_settings={search_settings_instance.id} "
|
||||
f"indexing_mode={cc_pair.indexing_trigger}"
|
||||
)
|
||||
|
||||
mark_ccpair_with_indexing_trigger(
|
||||
cc_pair.id, None, db_session
|
||||
)
|
||||
|
||||
# using a task queue and only allowing one task per cc_pair/search_setting
|
||||
# prevents us from starving out certain attempts
|
||||
attempt_id = try_creating_indexing_task(
|
||||
self.app,
|
||||
cc_pair,
|
||||
search_settings_instance,
|
||||
False,
|
||||
reindex,
|
||||
db_session,
|
||||
r,
|
||||
tenant_id,
|
||||
@@ -195,9 +278,31 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
f"Connector indexing queued: "
|
||||
f"index_attempt={attempt_id} "
|
||||
f"cc_pair={cc_pair.id} "
|
||||
f"search_settings={search_settings_instance.id} "
|
||||
f"search_settings={search_settings_instance.id}"
|
||||
)
|
||||
tasks_created += 1
|
||||
|
||||
# Fail any index attempts in the DB that don't have fences
|
||||
# This shouldn't ever happen!
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
unfenced_attempt_ids = get_unfenced_index_attempt_ids(db_session, r)
|
||||
for attempt_id in unfenced_attempt_ids:
|
||||
lock_beat.reacquire()
|
||||
|
||||
attempt = get_index_attempt(db_session, attempt_id)
|
||||
if not attempt:
|
||||
continue
|
||||
|
||||
failure_reason = (
|
||||
f"Unfenced index attempt found in DB: "
|
||||
f"index_attempt={attempt.id} "
|
||||
f"cc_pair={attempt.connector_credential_pair_id} "
|
||||
f"search_settings={attempt.search_settings_id}"
|
||||
)
|
||||
task_logger.error(failure_reason)
|
||||
mark_attempt_failed(
|
||||
attempt.id, db_session, failure_reason=failure_reason
|
||||
)
|
||||
except SoftTimeLimitExceeded:
|
||||
task_logger.info(
|
||||
"Soft time limit exceeded, task is being terminated gracefully."
|
||||
@@ -205,8 +310,14 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
|
||||
except Exception:
|
||||
task_logger.exception(f"Unexpected exception: tenant={tenant_id}")
|
||||
finally:
|
||||
if lock_beat.owned():
|
||||
lock_beat.release()
|
||||
if locked:
|
||||
if lock_beat.owned():
|
||||
lock_beat.release()
|
||||
else:
|
||||
task_logger.error(
|
||||
"check_for_indexing - Lock not owned on completion: "
|
||||
f"tenant={tenant_id}"
|
||||
)
|
||||
|
||||
return tasks_created
|
||||
|
||||
@@ -215,6 +326,7 @@ def _should_index(
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
last_index: IndexAttempt | None,
|
||||
search_settings_instance: SearchSettings,
|
||||
search_settings_primary: bool,
|
||||
secondary_index_building: bool,
|
||||
db_session: Session,
|
||||
) -> bool:
|
||||
@@ -279,6 +391,11 @@ def _should_index(
|
||||
):
|
||||
return False
|
||||
|
||||
if search_settings_primary:
|
||||
if cc_pair.indexing_trigger is not None:
|
||||
# if a manual indexing trigger is on the cc pair, honor it for primary search settings
|
||||
return True
|
||||
|
||||
# if no attempt has ever occurred, we should index regardless of refresh_freq
|
||||
if not last_index:
|
||||
return True
|
||||
@@ -311,10 +428,11 @@ def try_creating_indexing_task(
|
||||
"""
|
||||
|
||||
LOCK_TIMEOUT = 30
|
||||
index_attempt_id: int | None = None
|
||||
|
||||
# we need to serialize any attempt to trigger indexing since it can be triggered
|
||||
# either via celery beat or manually (API call)
|
||||
lock = r.lock(
|
||||
lock: RedisLock = r.lock(
|
||||
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_indexing_task",
|
||||
timeout=LOCK_TIMEOUT,
|
||||
)
|
||||
@@ -365,6 +483,8 @@ def try_creating_indexing_task(
|
||||
|
||||
custom_task_id = redis_connector_index.generate_generator_task_id()
|
||||
|
||||
# when the task is sent, we have yet to finish setting up the fence
|
||||
# therefore, the task must contain code that blocks until the fence is ready
|
||||
result = celery_app.send_task(
|
||||
"connector_indexing_proxy_task",
|
||||
kwargs=dict(
|
||||
@@ -385,13 +505,16 @@ def try_creating_indexing_task(
|
||||
payload.celery_task_id = result.id
|
||||
redis_connector_index.set_fence(payload)
|
||||
except Exception:
|
||||
redis_connector_index.set_fence(None)
|
||||
task_logger.exception(
|
||||
f"Unexpected exception: "
|
||||
f"try_creating_indexing_task - Unexpected exception: "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair.id} "
|
||||
f"search_settings={search_settings.id}"
|
||||
)
|
||||
|
||||
if index_attempt_id is not None:
|
||||
delete_index_attempt(db_session, index_attempt_id)
|
||||
redis_connector_index.set_fence(None)
|
||||
return None
|
||||
finally:
|
||||
if lock.owned():
|
||||
@@ -400,8 +523,11 @@ def try_creating_indexing_task(
|
||||
return index_attempt_id
|
||||
|
||||
|
||||
@shared_task(name="connector_indexing_proxy_task", acks_late=False, track_started=True)
|
||||
@shared_task(
|
||||
name="connector_indexing_proxy_task", bind=True, acks_late=False, track_started=True
|
||||
)
|
||||
def connector_indexing_proxy_task(
|
||||
self: Task,
|
||||
index_attempt_id: int,
|
||||
cc_pair_id: int,
|
||||
search_settings_id: int,
|
||||
@@ -409,15 +535,19 @@ def connector_indexing_proxy_task(
|
||||
) -> None:
|
||||
"""celery tasks are forked, but forking is unstable. This proxies work to a spawned task."""
|
||||
task_logger.info(
|
||||
f"Indexing proxy - starting: attempt={index_attempt_id} "
|
||||
f"Indexing watchdog - starting: attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
)
|
||||
|
||||
if not self.request.id:
|
||||
task_logger.error("self.request.id is None!")
|
||||
|
||||
client = SimpleJobClient()
|
||||
|
||||
job = client.submit(
|
||||
connector_indexing_task,
|
||||
connector_indexing_task_wrapper,
|
||||
index_attempt_id,
|
||||
cc_pair_id,
|
||||
search_settings_id,
|
||||
@@ -428,7 +558,7 @@ def connector_indexing_proxy_task(
|
||||
|
||||
if not job:
|
||||
task_logger.info(
|
||||
f"Indexing proxy - spawn failed: attempt={index_attempt_id} "
|
||||
f"Indexing watchdog - spawn failed: attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
@@ -436,14 +566,36 @@ def connector_indexing_proxy_task(
|
||||
return
|
||||
|
||||
task_logger.info(
|
||||
f"Indexing proxy - spawn succeeded: attempt={index_attempt_id} "
|
||||
f"Indexing watchdog - spawn succeeded: attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
)
|
||||
|
||||
redis_connector = RedisConnector(tenant_id, cc_pair_id)
|
||||
redis_connector_index = redis_connector.new_index(search_settings_id)
|
||||
|
||||
while True:
|
||||
sleep(10)
|
||||
sleep(5)
|
||||
|
||||
if self.request.id and redis_connector_index.terminating(self.request.id):
|
||||
task_logger.warning(
|
||||
"Indexing proxy - termination signal detected: "
|
||||
f"attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
)
|
||||
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
mark_attempt_canceled(
|
||||
index_attempt_id,
|
||||
db_session,
|
||||
"Connector termination signal detected",
|
||||
)
|
||||
|
||||
job.cancel()
|
||||
break
|
||||
|
||||
# do nothing for ongoing jobs that haven't been stopped
|
||||
if not job.done():
|
||||
@@ -460,7 +612,7 @@ def connector_indexing_proxy_task(
|
||||
|
||||
if job.status == "error":
|
||||
task_logger.error(
|
||||
f"Indexing proxy - spawned task exceptioned: "
|
||||
f"Indexing watchdog - spawned task exceptioned: "
|
||||
f"attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
@@ -472,7 +624,7 @@ def connector_indexing_proxy_task(
|
||||
break
|
||||
|
||||
task_logger.info(
|
||||
f"Indexing proxy - finished: attempt={index_attempt_id} "
|
||||
f"Indexing watchdog - finished: attempt={index_attempt_id} "
|
||||
f"tenant={tenant_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
@@ -480,6 +632,38 @@ def connector_indexing_proxy_task(
|
||||
return
|
||||
|
||||
|
||||
def connector_indexing_task_wrapper(
|
||||
index_attempt_id: int,
|
||||
cc_pair_id: int,
|
||||
search_settings_id: int,
|
||||
tenant_id: str | None,
|
||||
is_ee: bool,
|
||||
) -> int | None:
|
||||
"""Just wraps connector_indexing_task so we can log any exceptions before
|
||||
re-raising it."""
|
||||
result: int | None = None
|
||||
|
||||
try:
|
||||
result = connector_indexing_task(
|
||||
index_attempt_id,
|
||||
cc_pair_id,
|
||||
search_settings_id,
|
||||
tenant_id,
|
||||
is_ee,
|
||||
)
|
||||
except:
|
||||
logger.exception(
|
||||
f"connector_indexing_task exceptioned: "
|
||||
f"tenant={tenant_id} "
|
||||
f"index_attempt={index_attempt_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id}"
|
||||
)
|
||||
raise
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def connector_indexing_task(
|
||||
index_attempt_id: int,
|
||||
cc_pair_id: int,
|
||||
@@ -534,6 +718,7 @@ def connector_indexing_task(
|
||||
if redis_connector.delete.fenced:
|
||||
raise RuntimeError(
|
||||
f"Indexing will not start because connector deletion is in progress: "
|
||||
f"attempt={index_attempt_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"fence={redis_connector.delete.fence_key}"
|
||||
)
|
||||
@@ -541,18 +726,18 @@ def connector_indexing_task(
|
||||
if redis_connector.stop.fenced:
|
||||
raise RuntimeError(
|
||||
f"Indexing will not start because a connector stop signal was detected: "
|
||||
f"attempt={index_attempt_id} "
|
||||
f"cc_pair={cc_pair_id} "
|
||||
f"fence={redis_connector.stop.fence_key}"
|
||||
)
|
||||
|
||||
while True:
|
||||
# wait for the fence to come up
|
||||
if not redis_connector_index.fenced:
|
||||
if not redis_connector_index.fenced: # The fence must exist
|
||||
raise ValueError(
|
||||
f"connector_indexing_task - fence not found: fence={redis_connector_index.fence_key}"
|
||||
)
|
||||
|
||||
payload = redis_connector_index.payload
|
||||
payload = redis_connector_index.payload # The payload must exist
|
||||
if not payload:
|
||||
raise ValueError("connector_indexing_task: payload invalid or not found")
|
||||
|
||||
@@ -575,7 +760,7 @@ def connector_indexing_task(
|
||||
)
|
||||
break
|
||||
|
||||
lock = r.lock(
|
||||
lock: RedisLock = r.lock(
|
||||
redis_connector_index.generator_lock_key,
|
||||
timeout=CELERY_INDEXING_LOCK_TIMEOUT,
|
||||
)
|
||||
@@ -584,7 +769,7 @@ def connector_indexing_task(
|
||||
if not acquired:
|
||||
logger.warning(
|
||||
f"Indexing task already running, exiting...: "
|
||||
f"cc_pair={cc_pair_id} search_settings={search_settings_id}"
|
||||
f"index_attempt={index_attempt_id} cc_pair={cc_pair_id} search_settings={search_settings_id}"
|
||||
)
|
||||
return None
|
||||
|
||||
@@ -619,7 +804,7 @@ def connector_indexing_task(
|
||||
)
|
||||
|
||||
# define a callback class
|
||||
callback = RunIndexingCallback(
|
||||
callback = IndexingCallback(
|
||||
redis_connector.stop.fence_key,
|
||||
redis_connector_index.generator_progress_key,
|
||||
lock,
|
||||
|
||||
@@ -12,7 +12,7 @@ from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.background.celery.apps.app_base import task_logger
|
||||
from danswer.background.celery.celery_utils import extract_ids_from_runnable_connector
|
||||
from danswer.background.celery.tasks.indexing.tasks import RunIndexingCallback
|
||||
from danswer.background.celery.tasks.indexing.tasks import IndexingCallback
|
||||
from danswer.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
|
||||
from danswer.configs.app_configs import JOB_TIMEOUT
|
||||
from danswer.configs.constants import CELERY_PRUNING_LOCK_TIMEOUT
|
||||
@@ -277,7 +277,7 @@ def connector_pruning_generator_task(
|
||||
cc_pair.credential,
|
||||
)
|
||||
|
||||
callback = RunIndexingCallback(
|
||||
callback = IndexingCallback(
|
||||
redis_connector.stop.fence_key,
|
||||
redis_connector.prune.generator_progress_key,
|
||||
lock,
|
||||
|
||||
@@ -5,7 +5,6 @@ from http import HTTPStatus
|
||||
from typing import cast
|
||||
|
||||
import httpx
|
||||
import redis
|
||||
from celery import Celery
|
||||
from celery import shared_task
|
||||
from celery import Task
|
||||
@@ -49,11 +48,9 @@ from danswer.db.document_set import mark_document_set_as_synced
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.enums import IndexingStatus
|
||||
from danswer.db.index_attempt import delete_index_attempts
|
||||
from danswer.db.index_attempt import get_all_index_attempts_by_status
|
||||
from danswer.db.index_attempt import get_index_attempt
|
||||
from danswer.db.index_attempt import mark_attempt_failed
|
||||
from danswer.db.models import DocumentSet
|
||||
from danswer.db.models import IndexAttempt
|
||||
from danswer.document_index.document_index_utils import get_both_index_names
|
||||
from danswer.document_index.factory import get_default_document_index
|
||||
from danswer.document_index.interfaces import VespaDocumentFields
|
||||
@@ -62,7 +59,7 @@ from danswer.redis.redis_connector_credential_pair import RedisConnectorCredenti
|
||||
from danswer.redis.redis_connector_delete import RedisConnectorDelete
|
||||
from danswer.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
|
||||
from danswer.redis.redis_connector_doc_perm_sync import (
|
||||
RedisConnectorPermissionSyncData,
|
||||
RedisConnectorPermissionSyncPayload,
|
||||
)
|
||||
from danswer.redis.redis_connector_index import RedisConnectorIndex
|
||||
from danswer.redis.redis_connector_prune import RedisConnectorPrune
|
||||
@@ -592,7 +589,7 @@ def monitor_ccpair_permissions_taskset(
|
||||
if remaining > 0:
|
||||
return
|
||||
|
||||
payload: RedisConnectorPermissionSyncData | None = (
|
||||
payload: RedisConnectorPermissionSyncPayload | None = (
|
||||
redis_connector.permissions.payload
|
||||
)
|
||||
start_time: datetime | None = payload.started if payload else None
|
||||
@@ -600,9 +597,7 @@ def monitor_ccpair_permissions_taskset(
|
||||
mark_cc_pair_as_permissions_synced(db_session, int(cc_pair_id), start_time)
|
||||
task_logger.info(f"Successfully synced permissions for cc_pair={cc_pair_id}")
|
||||
|
||||
redis_connector.permissions.taskset_clear()
|
||||
redis_connector.permissions.generator_clear()
|
||||
redis_connector.permissions.set_fence(None)
|
||||
redis_connector.permissions.reset()
|
||||
|
||||
|
||||
def monitor_ccpair_indexing_taskset(
|
||||
@@ -649,20 +644,26 @@ def monitor_ccpair_indexing_taskset(
|
||||
# the task is still setting up
|
||||
return
|
||||
|
||||
# Read result state BEFORE generator_complete_key to avoid a race condition
|
||||
# never use any blocking methods on the result from inside a task!
|
||||
result: AsyncResult = AsyncResult(payload.celery_task_id)
|
||||
result_state = result.state
|
||||
|
||||
# inner/outer/inner double check pattern to avoid race conditions when checking for
|
||||
# bad state
|
||||
|
||||
# inner = get_completion / generator_complete not signaled
|
||||
# outer = result.state in READY state
|
||||
status_int = redis_connector_index.get_completion()
|
||||
if status_int is None: # completion signal not set ... check for errors
|
||||
# If we get here, and then the task both sets the completion signal and finishes,
|
||||
# we will incorrectly abort the task. We must check result state, then check
|
||||
# get_completion again to avoid the race condition.
|
||||
if result_state in READY_STATES:
|
||||
if status_int is None: # inner signal not set ... possible error
|
||||
result_state = result.state
|
||||
if (
|
||||
result_state in READY_STATES
|
||||
): # outer signal in terminal state ... possible error
|
||||
# Now double check!
|
||||
if redis_connector_index.get_completion() is None:
|
||||
# IF the task state is READY, THEN generator_complete should be set
|
||||
# if it isn't, then the worker crashed
|
||||
# inner signal still not set (and cannot change when outer result_state is READY)
|
||||
# Task is finished but generator complete isn't set.
|
||||
# We have a problem! Worker may have crashed.
|
||||
|
||||
msg = (
|
||||
f"Connector indexing aborted or exceptioned: "
|
||||
f"attempt={payload.index_attempt_id} "
|
||||
@@ -676,11 +677,15 @@ def monitor_ccpair_indexing_taskset(
|
||||
|
||||
index_attempt = get_index_attempt(db_session, payload.index_attempt_id)
|
||||
if index_attempt:
|
||||
mark_attempt_failed(
|
||||
index_attempt_id=payload.index_attempt_id,
|
||||
db_session=db_session,
|
||||
failure_reason=msg,
|
||||
)
|
||||
if (
|
||||
index_attempt.status != IndexingStatus.CANCELED
|
||||
and index_attempt.status != IndexingStatus.FAILED
|
||||
):
|
||||
mark_attempt_failed(
|
||||
index_attempt_id=payload.index_attempt_id,
|
||||
db_session=db_session,
|
||||
failure_reason=msg,
|
||||
)
|
||||
|
||||
redis_connector_index.reset()
|
||||
return
|
||||
@@ -690,6 +695,7 @@ def monitor_ccpair_indexing_taskset(
|
||||
task_logger.info(
|
||||
f"Connector indexing finished: cc_pair={cc_pair_id} "
|
||||
f"search_settings={search_settings_id} "
|
||||
f"progress={progress} "
|
||||
f"status={status_enum.name} "
|
||||
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f}"
|
||||
)
|
||||
@@ -697,37 +703,6 @@ def monitor_ccpair_indexing_taskset(
|
||||
redis_connector_index.reset()
|
||||
|
||||
|
||||
def get_unfenced_index_attempt_ids(db_session: Session, r: redis.Redis) -> list[int]:
|
||||
"""Gets a list of unfenced index attempts. Should not be possible, so we'd typically
|
||||
want to clean them up.
|
||||
|
||||
Unfenced = attempt not in terminal state and fence does not exist.
|
||||
"""
|
||||
unfenced_attempts: list[int] = []
|
||||
|
||||
# do some cleanup before clearing fences
|
||||
# check the db for any outstanding index attempts
|
||||
attempts: list[IndexAttempt] = []
|
||||
attempts.extend(
|
||||
get_all_index_attempts_by_status(IndexingStatus.NOT_STARTED, db_session)
|
||||
)
|
||||
attempts.extend(
|
||||
get_all_index_attempts_by_status(IndexingStatus.IN_PROGRESS, db_session)
|
||||
)
|
||||
|
||||
for attempt in attempts:
|
||||
# if attempts exist in the db but we don't detect them in redis, mark them as failed
|
||||
fence_key = RedisConnectorIndex.fence_key_with_ids(
|
||||
attempt.connector_credential_pair_id, attempt.search_settings_id
|
||||
)
|
||||
if r.exists(fence_key):
|
||||
continue
|
||||
|
||||
unfenced_attempts.append(attempt.id)
|
||||
|
||||
return unfenced_attempts
|
||||
|
||||
|
||||
@shared_task(name="monitor_vespa_sync", soft_time_limit=300, bind=True)
|
||||
def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
|
||||
"""This is a celery beat task that monitors and finalizes metadata sync tasksets.
|
||||
@@ -753,7 +728,7 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
|
||||
|
||||
# print current queue lengths
|
||||
r_celery = self.app.broker_connection().channel().client # type: ignore
|
||||
n_celery = celery_get_queue_length("celery", r)
|
||||
n_celery = celery_get_queue_length("celery", r_celery)
|
||||
n_indexing = celery_get_queue_length(
|
||||
DanswerCeleryQueues.CONNECTOR_INDEXING, r_celery
|
||||
)
|
||||
@@ -779,25 +754,6 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
|
||||
f"permissions_sync={n_permissions_sync} "
|
||||
)
|
||||
|
||||
# Fail any index attempts in the DB that don't have fences
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
unfenced_attempt_ids = get_unfenced_index_attempt_ids(db_session, r)
|
||||
for attempt_id in unfenced_attempt_ids:
|
||||
attempt = get_index_attempt(db_session, attempt_id)
|
||||
if not attempt:
|
||||
continue
|
||||
|
||||
failure_reason = (
|
||||
f"Unfenced index attempt found in DB: "
|
||||
f"index_attempt={attempt.id} "
|
||||
f"cc_pair={attempt.connector_credential_pair_id} "
|
||||
f"search_settings={attempt.search_settings_id}"
|
||||
)
|
||||
task_logger.warning(failure_reason)
|
||||
mark_attempt_failed(
|
||||
attempt.id, db_session, failure_reason=failure_reason
|
||||
)
|
||||
|
||||
lock_beat.reacquire()
|
||||
if r.exists(RedisConnectorCredentialPair.get_fence_key()):
|
||||
monitor_connector_taskset(r)
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
"""Factory stub for running celery worker / celery beat."""
|
||||
from celery import Celery
|
||||
|
||||
from danswer.background.celery.apps.beat import celery_app
|
||||
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
|
||||
|
||||
set_is_ee_based_on_env_variable()
|
||||
app = celery_app
|
||||
app: Celery = celery_app
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
"""Factory stub for running celery worker / celery beat."""
|
||||
from celery import Celery
|
||||
|
||||
from danswer.utils.variable_functionality import fetch_versioned_implementation
|
||||
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
|
||||
|
||||
set_is_ee_based_on_env_variable()
|
||||
app = fetch_versioned_implementation(
|
||||
app: Celery = fetch_versioned_implementation(
|
||||
"danswer.background.celery.apps.primary", "celery_app"
|
||||
)
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
import time
|
||||
import traceback
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from datetime import timezone
|
||||
@@ -21,6 +19,7 @@ from danswer.db.connector_credential_pair import get_last_successful_attempt_tim
|
||||
from danswer.db.connector_credential_pair import update_connector_credential_pair
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.enums import ConnectorCredentialPairStatus
|
||||
from danswer.db.index_attempt import mark_attempt_canceled
|
||||
from danswer.db.index_attempt import mark_attempt_failed
|
||||
from danswer.db.index_attempt import mark_attempt_partially_succeeded
|
||||
from danswer.db.index_attempt import mark_attempt_succeeded
|
||||
@@ -31,7 +30,7 @@ from danswer.db.models import IndexingStatus
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from danswer.document_index.factory import get_default_document_index
|
||||
from danswer.indexing.embedder import DefaultIndexingEmbedder
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeat
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.indexing.indexing_pipeline import build_indexing_pipeline
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.logger import TaskAttemptSingleton
|
||||
@@ -42,19 +41,6 @@ logger = setup_logger()
|
||||
INDEXING_TRACER_NUM_PRINT_ENTRIES = 5
|
||||
|
||||
|
||||
class RunIndexingCallbackInterface(ABC):
|
||||
"""Defines a callback interface to be passed to
|
||||
to run_indexing_entrypoint."""
|
||||
|
||||
@abstractmethod
|
||||
def should_stop(self) -> bool:
|
||||
"""Signal to stop the looping function in flight."""
|
||||
|
||||
@abstractmethod
|
||||
def progress(self, amount: int) -> None:
|
||||
"""Send progress updates to the caller."""
|
||||
|
||||
|
||||
def _get_connector_runner(
|
||||
db_session: Session,
|
||||
attempt: IndexAttempt,
|
||||
@@ -102,11 +88,15 @@ def _get_connector_runner(
|
||||
)
|
||||
|
||||
|
||||
class ConnectorStopSignal(Exception):
|
||||
"""A custom exception used to signal a stop in processing."""
|
||||
|
||||
|
||||
def _run_indexing(
|
||||
db_session: Session,
|
||||
index_attempt: IndexAttempt,
|
||||
tenant_id: str | None,
|
||||
callback: RunIndexingCallbackInterface | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
1. Get documents which are either new or updated from specified application
|
||||
@@ -138,13 +128,7 @@ def _run_indexing(
|
||||
|
||||
embedding_model = DefaultIndexingEmbedder.from_db_search_settings(
|
||||
search_settings=search_settings,
|
||||
heartbeat=IndexingHeartbeat(
|
||||
index_attempt_id=index_attempt.id,
|
||||
db_session=db_session,
|
||||
# let the world know we're still making progress after
|
||||
# every 10 batches
|
||||
freq=10,
|
||||
),
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
indexing_pipeline = build_indexing_pipeline(
|
||||
@@ -157,6 +141,7 @@ def _run_indexing(
|
||||
),
|
||||
db_session=db_session,
|
||||
tenant_id=tenant_id,
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
db_cc_pair = index_attempt.connector_credential_pair
|
||||
@@ -228,7 +213,7 @@ def _run_indexing(
|
||||
# contents still need to be initially pulled.
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("Connector stop signal detected")
|
||||
raise ConnectorStopSignal("Connector stop signal detected")
|
||||
|
||||
# TODO: should we move this into the above callback instead?
|
||||
db_session.refresh(db_cc_pair)
|
||||
@@ -289,7 +274,7 @@ def _run_indexing(
|
||||
db_session.commit()
|
||||
|
||||
if callback:
|
||||
callback.progress(len(doc_batch))
|
||||
callback.progress("_run_indexing", len(doc_batch))
|
||||
|
||||
# This new value is updated every batch, so UI can refresh per batch update
|
||||
update_docs_indexed(
|
||||
@@ -322,26 +307,16 @@ def _run_indexing(
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Connector run ran into exception after elapsed time: {time.time() - start_time} seconds"
|
||||
f"Connector run exceptioned after elapsed time: {time.time() - start_time} seconds"
|
||||
)
|
||||
# Only mark the attempt as a complete failure if this is the first indexing window.
|
||||
# Otherwise, some progress was made - the next run will not start from the beginning.
|
||||
# In this case, it is not accurate to mark it as a failure. When the next run begins,
|
||||
# if that fails immediately, it will be marked as a failure.
|
||||
#
|
||||
# NOTE: if the connector is manually disabled, we should mark it as a failure regardless
|
||||
# to give better clarity in the UI, as the next run will never happen.
|
||||
if (
|
||||
ind == 0
|
||||
or not db_cc_pair.status.is_active()
|
||||
or index_attempt.status != IndexingStatus.IN_PROGRESS
|
||||
):
|
||||
mark_attempt_failed(
|
||||
|
||||
if isinstance(e, ConnectorStopSignal):
|
||||
mark_attempt_canceled(
|
||||
index_attempt.id,
|
||||
db_session,
|
||||
failure_reason=str(e),
|
||||
full_exception_trace=traceback.format_exc(),
|
||||
reason=str(e),
|
||||
)
|
||||
|
||||
if is_primary:
|
||||
update_connector_credential_pair(
|
||||
db_session=db_session,
|
||||
@@ -353,6 +328,37 @@ def _run_indexing(
|
||||
if INDEXING_TRACER_INTERVAL > 0:
|
||||
tracer.stop()
|
||||
raise e
|
||||
else:
|
||||
# Only mark the attempt as a complete failure if this is the first indexing window.
|
||||
# Otherwise, some progress was made - the next run will not start from the beginning.
|
||||
# In this case, it is not accurate to mark it as a failure. When the next run begins,
|
||||
# if that fails immediately, it will be marked as a failure.
|
||||
#
|
||||
# NOTE: if the connector is manually disabled, we should mark it as a failure regardless
|
||||
# to give better clarity in the UI, as the next run will never happen.
|
||||
if (
|
||||
ind == 0
|
||||
or not db_cc_pair.status.is_active()
|
||||
or index_attempt.status != IndexingStatus.IN_PROGRESS
|
||||
):
|
||||
mark_attempt_failed(
|
||||
index_attempt.id,
|
||||
db_session,
|
||||
failure_reason=str(e),
|
||||
full_exception_trace=traceback.format_exc(),
|
||||
)
|
||||
|
||||
if is_primary:
|
||||
update_connector_credential_pair(
|
||||
db_session=db_session,
|
||||
connector_id=db_connector.id,
|
||||
credential_id=db_credential.id,
|
||||
net_docs=net_doc_change,
|
||||
)
|
||||
|
||||
if INDEXING_TRACER_INTERVAL > 0:
|
||||
tracer.stop()
|
||||
raise e
|
||||
|
||||
# break => similar to success case. As mentioned above, if the next run fails for the same
|
||||
# reason it will then be marked as a failure
|
||||
@@ -419,7 +425,7 @@ def run_indexing_entrypoint(
|
||||
tenant_id: str | None,
|
||||
connector_credential_pair_id: int,
|
||||
is_ee: bool = False,
|
||||
callback: RunIndexingCallbackInterface | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> None:
|
||||
try:
|
||||
if is_ee:
|
||||
|
||||
@@ -7,10 +7,10 @@ from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.chat.models import CitationInfo
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.db.chat import get_chat_messages_by_session
|
||||
from danswer.db.models import ChatMessage
|
||||
from danswer.llm.answering.models import PreviousMessage
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -6,10 +6,10 @@ from typing import Any
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.search.enums import QueryFlow
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.search.models import RetrievalDocs
|
||||
from danswer.search.models import SearchResponse
|
||||
from danswer.context.search.enums import QueryFlow
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.context.search.models import RetrievalDocs
|
||||
from danswer.context.search.models import SearchResponse
|
||||
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
|
||||
|
||||
|
||||
|
||||
@@ -23,6 +23,16 @@ from danswer.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
|
||||
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
|
||||
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.context.search.enums import OptionalSearchSetting
|
||||
from danswer.context.search.enums import QueryFlow
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import RetrievalDetails
|
||||
from danswer.context.search.retrieval.search_runner import inference_sections_from_ids
|
||||
from danswer.context.search.utils import chunks_or_sections_to_search_docs
|
||||
from danswer.context.search.utils import dedupe_documents
|
||||
from danswer.context.search.utils import drop_llm_indices
|
||||
from danswer.context.search.utils import relevant_sections_to_indices
|
||||
from danswer.db.chat import attach_files_to_chat_message
|
||||
from danswer.db.chat import create_db_search_doc
|
||||
from danswer.db.chat import create_new_chat_message
|
||||
@@ -56,16 +66,6 @@ from danswer.llm.factory import get_llms_for_persona
|
||||
from danswer.llm.factory import get_main_llm_from_tuple
|
||||
from danswer.llm.utils import litellm_exception_to_error_msg
|
||||
from danswer.natural_language_processing.utils import get_tokenizer
|
||||
from danswer.search.enums import OptionalSearchSetting
|
||||
from danswer.search.enums import QueryFlow
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.search.models import RetrievalDetails
|
||||
from danswer.search.retrieval.search_runner import inference_sections_from_ids
|
||||
from danswer.search.utils import chunks_or_sections_to_search_docs
|
||||
from danswer.search.utils import dedupe_documents
|
||||
from danswer.search.utils import drop_llm_indices
|
||||
from danswer.search.utils import relevant_sections_to_indices
|
||||
from danswer.server.query_and_chat.models import ChatMessageDetail
|
||||
from danswer.server.query_and_chat.models import CreateChatMessageRequest
|
||||
from danswer.server.utils import get_json_line
|
||||
@@ -605,6 +605,7 @@ def stream_chat_message_objects(
|
||||
additional_headers=custom_tool_additional_headers,
|
||||
),
|
||||
)
|
||||
|
||||
tools: list[Tool] = []
|
||||
for tool_list in tool_dict.values():
|
||||
tools.extend(tool_list)
|
||||
|
||||
@@ -1,115 +0,0 @@
|
||||
from typing_extensions import TypedDict # noreorder
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.prompts.chat_tools import DANSWER_TOOL_DESCRIPTION
|
||||
from danswer.prompts.chat_tools import DANSWER_TOOL_NAME
|
||||
from danswer.prompts.chat_tools import TOOL_FOLLOWUP
|
||||
from danswer.prompts.chat_tools import TOOL_LESS_FOLLOWUP
|
||||
from danswer.prompts.chat_tools import TOOL_LESS_PROMPT
|
||||
from danswer.prompts.chat_tools import TOOL_TEMPLATE
|
||||
from danswer.prompts.chat_tools import USER_INPUT
|
||||
|
||||
|
||||
class ToolInfo(TypedDict):
|
||||
name: str
|
||||
description: str
|
||||
|
||||
|
||||
class DanswerChatModelOut(BaseModel):
|
||||
model_raw: str
|
||||
action: str
|
||||
action_input: str
|
||||
|
||||
|
||||
def call_tool(
|
||||
model_actions: DanswerChatModelOut,
|
||||
) -> str:
|
||||
raise NotImplementedError("There are no additional tool integrations right now")
|
||||
|
||||
|
||||
def form_user_prompt_text(
|
||||
query: str,
|
||||
tool_text: str | None,
|
||||
hint_text: str | None,
|
||||
user_input_prompt: str = USER_INPUT,
|
||||
tool_less_prompt: str = TOOL_LESS_PROMPT,
|
||||
) -> str:
|
||||
user_prompt = tool_text or tool_less_prompt
|
||||
|
||||
user_prompt += user_input_prompt.format(user_input=query)
|
||||
|
||||
if hint_text:
|
||||
if user_prompt[-1] != "\n":
|
||||
user_prompt += "\n"
|
||||
user_prompt += "\nHint: " + hint_text
|
||||
|
||||
return user_prompt.strip()
|
||||
|
||||
|
||||
def form_tool_section_text(
|
||||
tools: list[ToolInfo] | None, retrieval_enabled: bool, template: str = TOOL_TEMPLATE
|
||||
) -> str | None:
|
||||
if not tools and not retrieval_enabled:
|
||||
return None
|
||||
|
||||
if retrieval_enabled and tools:
|
||||
tools.append(
|
||||
{"name": DANSWER_TOOL_NAME, "description": DANSWER_TOOL_DESCRIPTION}
|
||||
)
|
||||
|
||||
tools_intro = []
|
||||
if tools:
|
||||
num_tools = len(tools)
|
||||
for tool in tools:
|
||||
description_formatted = tool["description"].replace("\n", " ")
|
||||
tools_intro.append(f"> {tool['name']}: {description_formatted}")
|
||||
|
||||
prefix = "Must be one of " if num_tools > 1 else "Must be "
|
||||
|
||||
tools_intro_text = "\n".join(tools_intro)
|
||||
tool_names_text = prefix + ", ".join([tool["name"] for tool in tools])
|
||||
|
||||
else:
|
||||
return None
|
||||
|
||||
return template.format(
|
||||
tool_overviews=tools_intro_text, tool_names=tool_names_text
|
||||
).strip()
|
||||
|
||||
|
||||
def form_tool_followup_text(
|
||||
tool_output: str,
|
||||
query: str,
|
||||
hint_text: str | None,
|
||||
tool_followup_prompt: str = TOOL_FOLLOWUP,
|
||||
ignore_hint: bool = False,
|
||||
) -> str:
|
||||
# If multi-line query, it likely confuses the model more than helps
|
||||
if "\n" not in query:
|
||||
optional_reminder = f"\nAs a reminder, my query was: {query}\n"
|
||||
else:
|
||||
optional_reminder = ""
|
||||
|
||||
if not ignore_hint and hint_text:
|
||||
hint_text_spaced = f"\nHint: {hint_text}\n"
|
||||
else:
|
||||
hint_text_spaced = ""
|
||||
|
||||
return tool_followup_prompt.format(
|
||||
tool_output=tool_output,
|
||||
optional_reminder=optional_reminder,
|
||||
hint=hint_text_spaced,
|
||||
).strip()
|
||||
|
||||
|
||||
def form_tool_less_followup_text(
|
||||
tool_output: str,
|
||||
query: str,
|
||||
hint_text: str | None,
|
||||
tool_followup_prompt: str = TOOL_LESS_FOLLOWUP,
|
||||
) -> str:
|
||||
hint = f"Hint: {hint_text}" if hint_text else ""
|
||||
return tool_followup_prompt.format(
|
||||
context_str=tool_output, user_query=query, hint_text=hint
|
||||
).strip()
|
||||
@@ -234,7 +234,7 @@ except ValueError:
|
||||
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT
|
||||
)
|
||||
|
||||
CELERY_WORKER_INDEXING_CONCURRENCY_DEFAULT = 1
|
||||
CELERY_WORKER_INDEXING_CONCURRENCY_DEFAULT = 3
|
||||
try:
|
||||
env_value = os.environ.get("CELERY_WORKER_INDEXING_CONCURRENCY")
|
||||
if not env_value:
|
||||
@@ -422,6 +422,9 @@ LOG_ALL_MODEL_INTERACTIONS = (
|
||||
LOG_DANSWER_MODEL_INTERACTIONS = (
|
||||
os.environ.get("LOG_DANSWER_MODEL_INTERACTIONS", "").lower() == "true"
|
||||
)
|
||||
LOG_INDIVIDUAL_MODEL_TOKENS = (
|
||||
os.environ.get("LOG_INDIVIDUAL_MODEL_TOKENS", "").lower() == "true"
|
||||
)
|
||||
# If set to `true` will enable additional logs about Vespa query performance
|
||||
# (time spent on finding the right docs + time spent fetching summaries from disk)
|
||||
LOG_VESPA_TIMING_INFORMATION = (
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
import os
|
||||
|
||||
|
||||
PROMPTS_YAML = "./danswer/chat/prompts.yaml"
|
||||
PERSONAS_YAML = "./danswer/chat/personas.yaml"
|
||||
INPUT_PROMPT_YAML = "./danswer/chat/input_prompts.yaml"
|
||||
PROMPTS_YAML = "./danswer/seeding/prompts.yaml"
|
||||
PERSONAS_YAML = "./danswer/seeding/personas.yaml"
|
||||
INPUT_PROMPT_YAML = "./danswer/seeding/input_prompts.yaml"
|
||||
|
||||
NUM_RETURNED_HITS = 50
|
||||
# Used for LLM filtering and reranking
|
||||
@@ -17,9 +17,6 @@ MAX_CHUNKS_FED_TO_CHAT = float(os.environ.get("MAX_CHUNKS_FED_TO_CHAT") or 10.0)
|
||||
# ~3k input, half for docs, half for chat history + prompts
|
||||
CHAT_TARGET_CHUNK_PERCENTAGE = 512 * 3 / 3072
|
||||
|
||||
# For selecting a different LLM question-answering prompt format
|
||||
# Valid values: default, cot, weak
|
||||
QA_PROMPT_OVERRIDE = os.environ.get("QA_PROMPT_OVERRIDE") or None
|
||||
# 1 / (1 + DOC_TIME_DECAY * doc-age-in-years), set to 0 to have no decay
|
||||
# Capped in Vespa at 0.5
|
||||
DOC_TIME_DECAY = float(
|
||||
@@ -27,8 +24,6 @@ DOC_TIME_DECAY = float(
|
||||
)
|
||||
BASE_RECENCY_DECAY = 0.5
|
||||
FAVOR_RECENT_DECAY_MULTIPLIER = 2.0
|
||||
# Currently this next one is not configurable via env
|
||||
DISABLE_LLM_QUERY_ANSWERABILITY = QA_PROMPT_OVERRIDE == "weak"
|
||||
# For the highest matching base size chunk, how many chunks above and below do we pull in by default
|
||||
# Note this is not in any of the deployment configs yet
|
||||
# Currently only applies to search flow not chat
|
||||
|
||||
@@ -70,7 +70,9 @@ GEN_AI_NUM_RESERVED_OUTPUT_TOKENS = int(
|
||||
)
|
||||
|
||||
# Typically, GenAI models nowadays are at least 4K tokens
|
||||
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = 4096
|
||||
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = int(
|
||||
os.environ.get("GEN_AI_MODEL_FALLBACK_MAX_TOKENS") or 4096
|
||||
)
|
||||
|
||||
# Number of tokens from chat history to include at maximum
|
||||
# 3000 should be enough context regardless of use, no need to include as much as possible
|
||||
|
||||
@@ -7,9 +7,9 @@ from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_LABELS_TO_SKIP
|
||||
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
from danswer.configs.app_configs import INDEX_BATCH_SIZE
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.connectors.confluence.onyx_confluence import build_confluence_client
|
||||
from danswer.connectors.confluence.onyx_confluence import OnyxConfluence
|
||||
from danswer.connectors.confluence.utils import attachment_to_content
|
||||
from danswer.connectors.confluence.utils import build_confluence_client
|
||||
from danswer.connectors.confluence.utils import build_confluence_document_id
|
||||
from danswer.connectors.confluence.utils import datetime_from_string
|
||||
from danswer.connectors.confluence.utils import extract_text_from_confluence_html
|
||||
@@ -51,6 +51,8 @@ _RESTRICTIONS_EXPANSION_FIELDS = [
|
||||
"restrictions.read.restrictions.group",
|
||||
]
|
||||
|
||||
_SLIM_DOC_BATCH_SIZE = 5000
|
||||
|
||||
|
||||
class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
def __init__(
|
||||
@@ -70,7 +72,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
) -> None:
|
||||
self.batch_size = batch_size
|
||||
self.continue_on_failure = continue_on_failure
|
||||
self.confluence_client: OnyxConfluence | None = None
|
||||
self._confluence_client: OnyxConfluence | None = None
|
||||
self.is_cloud = is_cloud
|
||||
|
||||
# Remove trailing slash from wiki_base if present
|
||||
@@ -97,39 +99,44 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
self.cql_label_filter = ""
|
||||
if labels_to_skip:
|
||||
labels_to_skip = list(set(labels_to_skip))
|
||||
comma_separated_labels = ",".join(f"'{label}'" for label in labels_to_skip)
|
||||
comma_separated_labels = ",".join(
|
||||
f"'{quote(label)}'" for label in labels_to_skip
|
||||
)
|
||||
self.cql_label_filter = f" and label not in ({comma_separated_labels})"
|
||||
|
||||
@property
|
||||
def confluence_client(self) -> OnyxConfluence:
|
||||
if self._confluence_client is None:
|
||||
raise ConnectorMissingCredentialError("Confluence")
|
||||
return self._confluence_client
|
||||
|
||||
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
|
||||
# see https://github.com/atlassian-api/atlassian-python-api/blob/master/atlassian/rest_client.py
|
||||
# for a list of other hidden constructor args
|
||||
self.confluence_client = build_confluence_client(
|
||||
credentials_json=credentials,
|
||||
self._confluence_client = build_confluence_client(
|
||||
credentials=credentials,
|
||||
is_cloud=self.is_cloud,
|
||||
wiki_base=self.wiki_base,
|
||||
)
|
||||
return None
|
||||
|
||||
def _get_comment_string_for_page_id(self, page_id: str) -> str:
|
||||
if self.confluence_client is None:
|
||||
raise ConnectorMissingCredentialError("Confluence")
|
||||
|
||||
comment_string = ""
|
||||
|
||||
comment_cql = f"type=comment and container='{page_id}'"
|
||||
comment_cql += self.cql_label_filter
|
||||
|
||||
expand = ",".join(_COMMENT_EXPANSION_FIELDS)
|
||||
for comments in self.confluence_client.paginated_cql_page_retrieval(
|
||||
for comment in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=comment_cql,
|
||||
expand=expand,
|
||||
):
|
||||
for comment in comments:
|
||||
comment_string += "\nComment:\n"
|
||||
comment_string += extract_text_from_confluence_html(
|
||||
confluence_client=self.confluence_client,
|
||||
confluence_object=comment,
|
||||
)
|
||||
comment_string += "\nComment:\n"
|
||||
comment_string += extract_text_from_confluence_html(
|
||||
confluence_client=self.confluence_client,
|
||||
confluence_object=comment,
|
||||
fetched_titles=set(),
|
||||
)
|
||||
|
||||
return comment_string
|
||||
|
||||
@@ -141,9 +148,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
If its a page, it extracts the text, adds the comments for the document text.
|
||||
If its an attachment, it just downloads the attachment and converts that into a document.
|
||||
"""
|
||||
if self.confluence_client is None:
|
||||
raise ConnectorMissingCredentialError("Confluence")
|
||||
|
||||
# The url and the id are the same
|
||||
object_url = build_confluence_document_id(
|
||||
self.wiki_base, confluence_object["_links"]["webui"], self.is_cloud
|
||||
@@ -153,16 +157,19 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
# Extract text from page
|
||||
if confluence_object["type"] == "page":
|
||||
object_text = extract_text_from_confluence_html(
|
||||
self.confluence_client, confluence_object
|
||||
confluence_client=self.confluence_client,
|
||||
confluence_object=confluence_object,
|
||||
fetched_titles={confluence_object.get("title", "")},
|
||||
)
|
||||
# Add comments to text
|
||||
object_text += self._get_comment_string_for_page_id(confluence_object["id"])
|
||||
elif confluence_object["type"] == "attachment":
|
||||
object_text = attachment_to_content(
|
||||
self.confluence_client, confluence_object
|
||||
confluence_client=self.confluence_client, attachment=confluence_object
|
||||
)
|
||||
|
||||
if object_text is None:
|
||||
# This only happens for attachments that are not parseable
|
||||
return None
|
||||
|
||||
# Get space name
|
||||
@@ -193,44 +200,39 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
)
|
||||
|
||||
def _fetch_document_batches(self) -> GenerateDocumentsOutput:
|
||||
if self.confluence_client is None:
|
||||
raise ConnectorMissingCredentialError("Confluence")
|
||||
|
||||
doc_batch: list[Document] = []
|
||||
confluence_page_ids: list[str] = []
|
||||
|
||||
page_query = self.cql_page_query + self.cql_label_filter + self.cql_time_filter
|
||||
# Fetch pages as Documents
|
||||
for page_batch in self.confluence_client.paginated_cql_page_retrieval(
|
||||
for page in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=page_query,
|
||||
expand=",".join(_PAGE_EXPANSION_FIELDS),
|
||||
limit=self.batch_size,
|
||||
):
|
||||
for page in page_batch:
|
||||
confluence_page_ids.append(page["id"])
|
||||
doc = self._convert_object_to_document(page)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
confluence_page_ids.append(page["id"])
|
||||
doc = self._convert_object_to_document(page)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
|
||||
# Fetch attachments as Documents
|
||||
for confluence_page_id in confluence_page_ids:
|
||||
attachment_cql = f"type=attachment and container='{confluence_page_id}'"
|
||||
attachment_cql += self.cql_label_filter
|
||||
# TODO: maybe should add time filter as well?
|
||||
for attachments in self.confluence_client.paginated_cql_page_retrieval(
|
||||
for attachment in self.confluence_client.paginated_cql_retrieval(
|
||||
cql=attachment_cql,
|
||||
expand=",".join(_ATTACHMENT_EXPANSION_FIELDS),
|
||||
):
|
||||
for attachment in attachments:
|
||||
doc = self._convert_object_to_document(attachment)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
doc = self._convert_object_to_document(attachment)
|
||||
if doc is not None:
|
||||
doc_batch.append(doc)
|
||||
if len(doc_batch) >= self.batch_size:
|
||||
yield doc_batch
|
||||
doc_batch = []
|
||||
|
||||
if doc_batch:
|
||||
yield doc_batch
|
||||
@@ -255,52 +257,52 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
start: SecondsSinceUnixEpoch | None = None,
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
) -> GenerateSlimDocumentOutput:
|
||||
if self.confluence_client is None:
|
||||
raise ConnectorMissingCredentialError("Confluence")
|
||||
|
||||
doc_metadata_list: list[SlimDocument] = []
|
||||
|
||||
restrictions_expand = ",".join(_RESTRICTIONS_EXPANSION_FIELDS)
|
||||
|
||||
page_query = self.cql_page_query + self.cql_label_filter
|
||||
for pages in self.confluence_client.cql_paginate_all_expansions(
|
||||
for page in self.confluence_client.cql_paginate_all_expansions(
|
||||
cql=page_query,
|
||||
expand=restrictions_expand,
|
||||
limit=_SLIM_DOC_BATCH_SIZE,
|
||||
):
|
||||
for page in pages:
|
||||
# If the page has restrictions, add them to the perm_sync_data
|
||||
# These will be used by doc_sync.py to sync permissions
|
||||
perm_sync_data = {
|
||||
"restrictions": page.get("restrictions", {}),
|
||||
"space_key": page.get("space", {}).get("key"),
|
||||
}
|
||||
# If the page has restrictions, add them to the perm_sync_data
|
||||
# These will be used by doc_sync.py to sync permissions
|
||||
perm_sync_data = {
|
||||
"restrictions": page.get("restrictions", {}),
|
||||
"space_key": page.get("space", {}).get("key"),
|
||||
}
|
||||
|
||||
doc_metadata_list.append(
|
||||
SlimDocument(
|
||||
id=build_confluence_document_id(
|
||||
self.wiki_base,
|
||||
page["_links"]["webui"],
|
||||
self.is_cloud,
|
||||
),
|
||||
perm_sync_data=perm_sync_data,
|
||||
)
|
||||
)
|
||||
attachment_cql = f"type=attachment and container='{page['id']}'"
|
||||
attachment_cql += self.cql_label_filter
|
||||
for attachment in self.confluence_client.cql_paginate_all_expansions(
|
||||
cql=attachment_cql,
|
||||
expand=restrictions_expand,
|
||||
limit=_SLIM_DOC_BATCH_SIZE,
|
||||
):
|
||||
doc_metadata_list.append(
|
||||
SlimDocument(
|
||||
id=build_confluence_document_id(
|
||||
self.wiki_base,
|
||||
page["_links"]["webui"],
|
||||
attachment["_links"]["webui"],
|
||||
self.is_cloud,
|
||||
),
|
||||
perm_sync_data=perm_sync_data,
|
||||
)
|
||||
)
|
||||
attachment_cql = f"type=attachment and container='{page['id']}'"
|
||||
attachment_cql += self.cql_label_filter
|
||||
for attachments in self.confluence_client.cql_paginate_all_expansions(
|
||||
cql=attachment_cql,
|
||||
expand=restrictions_expand,
|
||||
):
|
||||
for attachment in attachments:
|
||||
doc_metadata_list.append(
|
||||
SlimDocument(
|
||||
id=build_confluence_document_id(
|
||||
self.wiki_base,
|
||||
attachment["_links"]["webui"],
|
||||
self.is_cloud,
|
||||
),
|
||||
perm_sync_data=perm_sync_data,
|
||||
)
|
||||
)
|
||||
yield doc_metadata_list
|
||||
doc_metadata_list = []
|
||||
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:
|
||||
yield doc_metadata_list[:_SLIM_DOC_BATCH_SIZE]
|
||||
doc_metadata_list = doc_metadata_list[_SLIM_DOC_BATCH_SIZE:]
|
||||
|
||||
yield doc_metadata_list
|
||||
|
||||
@@ -20,6 +20,10 @@ F = TypeVar("F", bound=Callable[..., Any])
|
||||
|
||||
RATE_LIMIT_MESSAGE_LOWERCASE = "Rate limit exceeded".lower()
|
||||
|
||||
# https://jira.atlassian.com/browse/CONFCLOUD-76433
|
||||
_PROBLEMATIC_EXPANSIONS = "body.storage.value"
|
||||
_REPLACEMENT_EXPANSIONS = "body.view.value"
|
||||
|
||||
|
||||
class ConfluenceRateLimitError(Exception):
|
||||
pass
|
||||
@@ -80,7 +84,7 @@ def handle_confluence_rate_limit(confluence_call: F) -> F:
|
||||
def wrapped_call(*args: list[Any], **kwargs: Any) -> Any:
|
||||
MAX_RETRIES = 5
|
||||
|
||||
TIMEOUT = 3600
|
||||
TIMEOUT = 600
|
||||
timeout_at = time.monotonic() + TIMEOUT
|
||||
|
||||
for attempt in range(MAX_RETRIES):
|
||||
@@ -95,6 +99,10 @@ def handle_confluence_rate_limit(confluence_call: F) -> F:
|
||||
return confluence_call(*args, **kwargs)
|
||||
except HTTPError as e:
|
||||
delay_until = _handle_http_error(e, attempt)
|
||||
logger.warning(
|
||||
f"HTTPError in confluence call. "
|
||||
f"Retrying in {delay_until} seconds..."
|
||||
)
|
||||
while time.monotonic() < delay_until:
|
||||
# in the future, check a signal here to exit
|
||||
time.sleep(1)
|
||||
@@ -112,7 +120,7 @@ def handle_confluence_rate_limit(confluence_call: F) -> F:
|
||||
return cast(F, wrapped_call)
|
||||
|
||||
|
||||
_DEFAULT_PAGINATION_LIMIT = 100
|
||||
_DEFAULT_PAGINATION_LIMIT = 1000
|
||||
|
||||
|
||||
class OnyxConfluence(Confluence):
|
||||
@@ -141,7 +149,7 @@ class OnyxConfluence(Confluence):
|
||||
|
||||
def _paginate_url(
|
||||
self, url_suffix: str, limit: int | None = None
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
This will paginate through the top level query.
|
||||
"""
|
||||
@@ -153,46 +161,43 @@ class OnyxConfluence(Confluence):
|
||||
|
||||
while url_suffix:
|
||||
try:
|
||||
logger.debug(f"Making confluence call to {url_suffix}")
|
||||
next_response = self.get(url_suffix)
|
||||
except Exception as e:
|
||||
logger.exception("Error in danswer_cql: \n")
|
||||
raise e
|
||||
yield next_response.get("results", [])
|
||||
logger.warning(f"Error in confluence call to {url_suffix}")
|
||||
|
||||
# If the problematic expansion is in the url, replace it
|
||||
# with the replacement expansion and try again
|
||||
# If that fails, raise the error
|
||||
if _PROBLEMATIC_EXPANSIONS not in url_suffix:
|
||||
logger.exception(f"Error in confluence call to {url_suffix}")
|
||||
raise e
|
||||
logger.warning(
|
||||
f"Replacing {_PROBLEMATIC_EXPANSIONS} with {_REPLACEMENT_EXPANSIONS}"
|
||||
" and trying again."
|
||||
)
|
||||
url_suffix = url_suffix.replace(
|
||||
_PROBLEMATIC_EXPANSIONS,
|
||||
_REPLACEMENT_EXPANSIONS,
|
||||
)
|
||||
continue
|
||||
|
||||
# yield the results individually
|
||||
yield from next_response.get("results", [])
|
||||
|
||||
url_suffix = next_response.get("_links", {}).get("next")
|
||||
|
||||
def paginated_groups_retrieval(
|
||||
self,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
return self._paginate_url("rest/api/group", limit)
|
||||
|
||||
def paginated_group_members_retrieval(
|
||||
self,
|
||||
group_name: str,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
group_name = quote(group_name)
|
||||
return self._paginate_url(f"rest/api/group/{group_name}/member", limit)
|
||||
|
||||
def paginated_cql_user_retrieval(
|
||||
def paginated_cql_retrieval(
|
||||
self,
|
||||
cql: str,
|
||||
expand: str | None = None,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
The content/search endpoint can be used to fetch pages, attachments, and comments.
|
||||
"""
|
||||
expand_string = f"&expand={expand}" if expand else ""
|
||||
return self._paginate_url(
|
||||
f"rest/api/search/user?cql={cql}{expand_string}", limit
|
||||
)
|
||||
|
||||
def paginated_cql_page_retrieval(
|
||||
self,
|
||||
cql: str,
|
||||
expand: str | None = None,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
expand_string = f"&expand={expand}" if expand else ""
|
||||
return self._paginate_url(
|
||||
yield from self._paginate_url(
|
||||
f"rest/api/content/search?cql={cql}{expand_string}", limit
|
||||
)
|
||||
|
||||
@@ -201,7 +206,7 @@ class OnyxConfluence(Confluence):
|
||||
cql: str,
|
||||
expand: str | None = None,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[list[dict[str, Any]]]:
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
This function will paginate through the top level query first, then
|
||||
paginate through all of the expansions.
|
||||
@@ -221,6 +226,113 @@ class OnyxConfluence(Confluence):
|
||||
for item in data:
|
||||
_traverse_and_update(item)
|
||||
|
||||
for results in self.paginated_cql_page_retrieval(cql, expand, limit):
|
||||
_traverse_and_update(results)
|
||||
yield results
|
||||
for confluence_object in self.paginated_cql_retrieval(cql, expand, limit):
|
||||
_traverse_and_update(confluence_object)
|
||||
yield confluence_object
|
||||
|
||||
def paginated_cql_user_retrieval(
|
||||
self,
|
||||
expand: str | None = None,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
The search/user endpoint can be used to fetch users.
|
||||
It's a seperate endpoint from the content/search endpoint used only for users.
|
||||
Otherwise it's very similar to the content/search endpoint.
|
||||
"""
|
||||
cql = "type=user"
|
||||
url = "rest/api/search/user" if self.cloud else "rest/api/search"
|
||||
expand_string = f"&expand={expand}" if expand else ""
|
||||
url += f"?cql={cql}{expand_string}"
|
||||
yield from self._paginate_url(url, limit)
|
||||
|
||||
def paginated_groups_by_user_retrieval(
|
||||
self,
|
||||
user: dict[str, Any],
|
||||
limit: int | None = None,
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
This is not an SQL like query.
|
||||
It's a confluence specific endpoint that can be used to fetch groups.
|
||||
"""
|
||||
user_field = "accountId" if self.cloud else "key"
|
||||
user_value = user["accountId"] if self.cloud else user["userKey"]
|
||||
# Server uses userKey (but calls it key during the API call), Cloud uses accountId
|
||||
user_query = f"{user_field}={quote(user_value)}"
|
||||
|
||||
url = f"rest/api/user/memberof?{user_query}"
|
||||
yield from self._paginate_url(url, limit)
|
||||
|
||||
def paginated_groups_retrieval(
|
||||
self,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
This is not an SQL like query.
|
||||
It's a confluence specific endpoint that can be used to fetch groups.
|
||||
"""
|
||||
yield from self._paginate_url("rest/api/group", limit)
|
||||
|
||||
def paginated_group_members_retrieval(
|
||||
self,
|
||||
group_name: str,
|
||||
limit: int | None = None,
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
This is not an SQL like query.
|
||||
It's a confluence specific endpoint that can be used to fetch the members of a group.
|
||||
THIS DOESN'T WORK FOR SERVER because it breaks when there is a slash in the group name.
|
||||
E.g. neither "test/group" nor "test%2Fgroup" works for confluence.
|
||||
"""
|
||||
group_name = quote(group_name)
|
||||
yield from self._paginate_url(f"rest/api/group/{group_name}/member", limit)
|
||||
|
||||
|
||||
def _validate_connector_configuration(
|
||||
credentials: dict[str, Any],
|
||||
is_cloud: bool,
|
||||
wiki_base: str,
|
||||
) -> None:
|
||||
# test connection with direct client, no retries
|
||||
confluence_client_with_minimal_retries = Confluence(
|
||||
api_version="cloud" if is_cloud else "latest",
|
||||
url=wiki_base.rstrip("/"),
|
||||
username=credentials["confluence_username"] if is_cloud else None,
|
||||
password=credentials["confluence_access_token"] if is_cloud else None,
|
||||
token=credentials["confluence_access_token"] if not is_cloud else None,
|
||||
backoff_and_retry=True,
|
||||
max_backoff_retries=6,
|
||||
max_backoff_seconds=10,
|
||||
)
|
||||
spaces = confluence_client_with_minimal_retries.get_all_spaces(limit=1)
|
||||
|
||||
if not spaces:
|
||||
raise RuntimeError(
|
||||
f"No spaces found at {wiki_base}! "
|
||||
"Check your credentials and wiki_base and make sure "
|
||||
"is_cloud is set correctly."
|
||||
)
|
||||
|
||||
|
||||
def build_confluence_client(
|
||||
credentials: dict[str, Any],
|
||||
is_cloud: bool,
|
||||
wiki_base: str,
|
||||
) -> OnyxConfluence:
|
||||
_validate_connector_configuration(
|
||||
credentials=credentials,
|
||||
is_cloud=is_cloud,
|
||||
wiki_base=wiki_base,
|
||||
)
|
||||
return OnyxConfluence(
|
||||
api_version="cloud" if is_cloud else "latest",
|
||||
# Remove trailing slash from wiki_base if present
|
||||
url=wiki_base.rstrip("/"),
|
||||
# passing in username causes issues for Confluence data center
|
||||
username=credentials["confluence_username"] if is_cloud else None,
|
||||
password=credentials["confluence_access_token"] if is_cloud else None,
|
||||
token=credentials["confluence_access_token"] if not is_cloud else None,
|
||||
backoff_and_retry=True,
|
||||
max_backoff_retries=10,
|
||||
max_backoff_seconds=60,
|
||||
)
|
||||
|
||||
@@ -2,6 +2,7 @@ import io
|
||||
from datetime import datetime
|
||||
from datetime import timezone
|
||||
from typing import Any
|
||||
from urllib.parse import quote
|
||||
|
||||
import bs4
|
||||
|
||||
@@ -71,7 +72,9 @@ def _get_user(confluence_client: OnyxConfluence, user_id: str) -> str:
|
||||
|
||||
|
||||
def extract_text_from_confluence_html(
|
||||
confluence_client: OnyxConfluence, confluence_object: dict[str, Any]
|
||||
confluence_client: OnyxConfluence,
|
||||
confluence_object: dict[str, Any],
|
||||
fetched_titles: set[str],
|
||||
) -> str:
|
||||
"""Parse a Confluence html page and replace the 'user Id' by the real
|
||||
User Display Name
|
||||
@@ -79,7 +82,7 @@ def extract_text_from_confluence_html(
|
||||
Args:
|
||||
confluence_object (dict): The confluence object as a dict
|
||||
confluence_client (Confluence): Confluence client
|
||||
|
||||
fetched_titles (set[str]): The titles of the pages that have already been fetched
|
||||
Returns:
|
||||
str: loaded and formated Confluence page
|
||||
"""
|
||||
@@ -101,38 +104,72 @@ def extract_text_from_confluence_html(
|
||||
# Include @ sign for tagging, more clear for LLM
|
||||
user.replaceWith("@" + _get_user(confluence_client, user_id))
|
||||
|
||||
for html_page_reference in soup.findAll("ri:page"):
|
||||
for html_page_reference in soup.findAll("ac:structured-macro"):
|
||||
# Here, we only want to process page within page macros
|
||||
if html_page_reference.attrs.get("ac:name") != "include":
|
||||
continue
|
||||
|
||||
page_data = html_page_reference.find("ri:page")
|
||||
if not page_data:
|
||||
logger.warning(
|
||||
f"Skipping retrieval of {html_page_reference} because because page data is missing"
|
||||
)
|
||||
continue
|
||||
|
||||
page_title = page_data.attrs.get("ri:content-title")
|
||||
if not page_title:
|
||||
# only fetch pages that have a title
|
||||
logger.warning(
|
||||
f"Skipping retrieval of {html_page_reference} because it has no title"
|
||||
)
|
||||
continue
|
||||
|
||||
if page_title in fetched_titles:
|
||||
# prevent recursive fetching of pages
|
||||
logger.debug(f"Skipping {page_title} because it has already been fetched")
|
||||
continue
|
||||
|
||||
fetched_titles.add(page_title)
|
||||
|
||||
# Wrap this in a try-except because there are some pages that might not exist
|
||||
try:
|
||||
page_title = html_page_reference.attrs["ri:content-title"]
|
||||
if not page_title:
|
||||
continue
|
||||
|
||||
page_query = f"type=page and title='{page_title}'"
|
||||
page_query = f"type=page and title='{quote(page_title)}'"
|
||||
|
||||
page_contents: dict[str, Any] | None = None
|
||||
# Confluence enforces title uniqueness, so we should only get one result here
|
||||
for page_batch in confluence_client.paginated_cql_page_retrieval(
|
||||
for page in confluence_client.paginated_cql_retrieval(
|
||||
cql=page_query,
|
||||
expand="body.storage.value",
|
||||
limit=1,
|
||||
):
|
||||
page_contents = page_batch[0]
|
||||
page_contents = page
|
||||
break
|
||||
except Exception:
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Error getting page contents for object {confluence_object}"
|
||||
f"Error getting page contents for object {confluence_object}: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
if not page_contents:
|
||||
continue
|
||||
|
||||
text_from_page = extract_text_from_confluence_html(
|
||||
confluence_client, page_contents
|
||||
confluence_client=confluence_client,
|
||||
confluence_object=page_contents,
|
||||
fetched_titles=fetched_titles,
|
||||
)
|
||||
|
||||
html_page_reference.replaceWith(text_from_page)
|
||||
|
||||
for html_link_body in soup.findAll("ac:link-body"):
|
||||
# This extracts the text from inline links in the page so they can be
|
||||
# represented in the document text as plain text
|
||||
try:
|
||||
text_from_link = html_link_body.text
|
||||
html_link_body.replaceWith(f"(LINK TEXT: {text_from_link})")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error processing ac:link-body: {e}")
|
||||
|
||||
return format_document_soup(soup)
|
||||
|
||||
|
||||
@@ -232,20 +269,3 @@ def datetime_from_string(datetime_string: str) -> datetime:
|
||||
datetime_object = datetime_object.astimezone(timezone.utc)
|
||||
|
||||
return datetime_object
|
||||
|
||||
|
||||
def build_confluence_client(
|
||||
credentials_json: dict[str, Any], is_cloud: bool, wiki_base: str
|
||||
) -> OnyxConfluence:
|
||||
return OnyxConfluence(
|
||||
api_version="cloud" if is_cloud else "latest",
|
||||
# Remove trailing slash from wiki_base if present
|
||||
url=wiki_base.rstrip("/"),
|
||||
# passing in username causes issues for Confluence data center
|
||||
username=credentials_json["confluence_username"] if is_cloud else None,
|
||||
password=credentials_json["confluence_access_token"] if is_cloud else None,
|
||||
token=credentials_json["confluence_access_token"] if not is_cloud else None,
|
||||
backoff_and_retry=True,
|
||||
max_backoff_retries=60,
|
||||
max_backoff_seconds=60,
|
||||
)
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import os
|
||||
from collections.abc import Iterable
|
||||
from datetime import datetime
|
||||
from datetime import timezone
|
||||
from typing import Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from jira import JIRA
|
||||
from jira.resources import Issue
|
||||
@@ -12,129 +12,93 @@ from danswer.configs.app_configs import JIRA_CONNECTOR_LABELS_TO_SKIP
|
||||
from danswer.configs.app_configs import JIRA_CONNECTOR_MAX_TICKET_SIZE
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.connectors.cross_connector_utils.miscellaneous_utils import time_str_to_utc
|
||||
from danswer.connectors.danswer_jira.utils import best_effort_basic_expert_info
|
||||
from danswer.connectors.danswer_jira.utils import best_effort_get_field_from_issue
|
||||
from danswer.connectors.danswer_jira.utils import build_jira_client
|
||||
from danswer.connectors.danswer_jira.utils import build_jira_url
|
||||
from danswer.connectors.danswer_jira.utils import extract_jira_project
|
||||
from danswer.connectors.danswer_jira.utils import extract_text_from_adf
|
||||
from danswer.connectors.danswer_jira.utils import get_comment_strs
|
||||
from danswer.connectors.interfaces import GenerateDocumentsOutput
|
||||
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
|
||||
from danswer.connectors.interfaces import LoadConnector
|
||||
from danswer.connectors.interfaces import PollConnector
|
||||
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
|
||||
from danswer.connectors.models import BasicExpertInfo
|
||||
from danswer.connectors.interfaces import SlimConnector
|
||||
from danswer.connectors.models import ConnectorMissingCredentialError
|
||||
from danswer.connectors.models import Document
|
||||
from danswer.connectors.models import Section
|
||||
from danswer.connectors.models import SlimDocument
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
logger = setup_logger()
|
||||
PROJECT_URL_PAT = "projects"
|
||||
|
||||
JIRA_API_VERSION = os.environ.get("JIRA_API_VERSION") or "2"
|
||||
_JIRA_SLIM_PAGE_SIZE = 500
|
||||
_JIRA_FULL_PAGE_SIZE = 50
|
||||
|
||||
|
||||
def extract_jira_project(url: str) -> tuple[str, str]:
|
||||
parsed_url = urlparse(url)
|
||||
jira_base = parsed_url.scheme + "://" + parsed_url.netloc
|
||||
def _paginate_jql_search(
|
||||
jira_client: JIRA,
|
||||
jql: str,
|
||||
max_results: int,
|
||||
fields: str | None = None,
|
||||
) -> Iterable[Issue]:
|
||||
start = 0
|
||||
while True:
|
||||
logger.debug(
|
||||
f"Fetching Jira issues with JQL: {jql}, "
|
||||
f"starting at {start}, max results: {max_results}"
|
||||
)
|
||||
issues = jira_client.search_issues(
|
||||
jql_str=jql,
|
||||
startAt=start,
|
||||
maxResults=max_results,
|
||||
fields=fields,
|
||||
)
|
||||
|
||||
# Split the path by '/' and find the position of 'projects' to get the project name
|
||||
split_path = parsed_url.path.split("/")
|
||||
if PROJECT_URL_PAT in split_path:
|
||||
project_pos = split_path.index(PROJECT_URL_PAT)
|
||||
if len(split_path) > project_pos + 1:
|
||||
jira_project = split_path[project_pos + 1]
|
||||
else:
|
||||
raise ValueError("No project name found in the URL")
|
||||
else:
|
||||
raise ValueError("'projects' not found in the URL")
|
||||
for issue in issues:
|
||||
if isinstance(issue, Issue):
|
||||
yield issue
|
||||
else:
|
||||
raise Exception(f"Found Jira object not of type Issue: {issue}")
|
||||
|
||||
return jira_base, jira_project
|
||||
if len(issues) < max_results:
|
||||
break
|
||||
|
||||
|
||||
def extract_text_from_adf(adf: dict | None) -> str:
|
||||
"""Extracts plain text from Atlassian Document Format:
|
||||
https://developer.atlassian.com/cloud/jira/platform/apis/document/structure/
|
||||
|
||||
WARNING: This function is incomplete and will e.g. skip lists!
|
||||
"""
|
||||
texts = []
|
||||
if adf is not None and "content" in adf:
|
||||
for block in adf["content"]:
|
||||
if "content" in block:
|
||||
for item in block["content"]:
|
||||
if item["type"] == "text":
|
||||
texts.append(item["text"])
|
||||
return " ".join(texts)
|
||||
|
||||
|
||||
def best_effort_get_field_from_issue(jira_issue: Issue, field: str) -> Any:
|
||||
if hasattr(jira_issue.fields, field):
|
||||
return getattr(jira_issue.fields, field)
|
||||
|
||||
try:
|
||||
return jira_issue.raw["fields"][field]
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def _get_comment_strs(
|
||||
jira: Issue, comment_email_blacklist: tuple[str, ...] = ()
|
||||
) -> list[str]:
|
||||
comment_strs = []
|
||||
for comment in jira.fields.comment.comments:
|
||||
try:
|
||||
body_text = (
|
||||
comment.body
|
||||
if JIRA_API_VERSION == "2"
|
||||
else extract_text_from_adf(comment.raw["body"])
|
||||
)
|
||||
|
||||
if (
|
||||
hasattr(comment, "author")
|
||||
and hasattr(comment.author, "emailAddress")
|
||||
and comment.author.emailAddress in comment_email_blacklist
|
||||
):
|
||||
continue # Skip adding comment if author's email is in blacklist
|
||||
|
||||
comment_strs.append(body_text)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process comment due to an error: {e}")
|
||||
continue
|
||||
|
||||
return comment_strs
|
||||
start += max_results
|
||||
|
||||
|
||||
def fetch_jira_issues_batch(
|
||||
jql: str,
|
||||
start_index: int,
|
||||
jira_client: JIRA,
|
||||
batch_size: int = INDEX_BATCH_SIZE,
|
||||
jql: str,
|
||||
batch_size: int,
|
||||
comment_email_blacklist: tuple[str, ...] = (),
|
||||
labels_to_skip: set[str] | None = None,
|
||||
) -> tuple[list[Document], int]:
|
||||
doc_batch = []
|
||||
|
||||
batch = jira_client.search_issues(
|
||||
jql,
|
||||
startAt=start_index,
|
||||
maxResults=batch_size,
|
||||
)
|
||||
|
||||
for jira in batch:
|
||||
if type(jira) != Issue:
|
||||
logger.warning(f"Found Jira object not of type Issue {jira}")
|
||||
continue
|
||||
|
||||
if labels_to_skip and any(
|
||||
label in jira.fields.labels for label in labels_to_skip
|
||||
):
|
||||
logger.info(
|
||||
f"Skipping {jira.key} because it has a label to skip. Found "
|
||||
f"labels: {jira.fields.labels}. Labels to skip: {labels_to_skip}."
|
||||
)
|
||||
continue
|
||||
) -> Iterable[Document]:
|
||||
for issue in _paginate_jql_search(
|
||||
jira_client=jira_client,
|
||||
jql=jql,
|
||||
max_results=batch_size,
|
||||
):
|
||||
if labels_to_skip:
|
||||
if any(label in issue.fields.labels for label in labels_to_skip):
|
||||
logger.info(
|
||||
f"Skipping {issue.key} because it has a label to skip. Found "
|
||||
f"labels: {issue.fields.labels}. Labels to skip: {labels_to_skip}."
|
||||
)
|
||||
continue
|
||||
|
||||
description = (
|
||||
jira.fields.description
|
||||
issue.fields.description
|
||||
if JIRA_API_VERSION == "2"
|
||||
else extract_text_from_adf(jira.raw["fields"]["description"])
|
||||
else extract_text_from_adf(issue.raw["fields"]["description"])
|
||||
)
|
||||
comments = get_comment_strs(
|
||||
issue=issue,
|
||||
comment_email_blacklist=comment_email_blacklist,
|
||||
)
|
||||
comments = _get_comment_strs(jira, comment_email_blacklist)
|
||||
ticket_content = f"{description}\n" + "\n".join(
|
||||
[f"Comment: {comment}" for comment in comments if comment]
|
||||
)
|
||||
@@ -142,66 +106,53 @@ def fetch_jira_issues_batch(
|
||||
# Check ticket size
|
||||
if len(ticket_content.encode("utf-8")) > JIRA_CONNECTOR_MAX_TICKET_SIZE:
|
||||
logger.info(
|
||||
f"Skipping {jira.key} because it exceeds the maximum size of "
|
||||
f"Skipping {issue.key} because it exceeds the maximum size of "
|
||||
f"{JIRA_CONNECTOR_MAX_TICKET_SIZE} bytes."
|
||||
)
|
||||
continue
|
||||
|
||||
page_url = f"{jira_client.client_info()}/browse/{jira.key}"
|
||||
page_url = f"{jira_client.client_info()}/browse/{issue.key}"
|
||||
|
||||
people = set()
|
||||
try:
|
||||
people.add(
|
||||
BasicExpertInfo(
|
||||
display_name=jira.fields.creator.displayName,
|
||||
email=jira.fields.creator.emailAddress,
|
||||
)
|
||||
)
|
||||
creator = best_effort_get_field_from_issue(issue, "creator")
|
||||
if basic_expert_info := best_effort_basic_expert_info(creator):
|
||||
people.add(basic_expert_info)
|
||||
except Exception:
|
||||
# Author should exist but if not, doesn't matter
|
||||
pass
|
||||
|
||||
try:
|
||||
people.add(
|
||||
BasicExpertInfo(
|
||||
display_name=jira.fields.assignee.displayName, # type: ignore
|
||||
email=jira.fields.assignee.emailAddress, # type: ignore
|
||||
)
|
||||
)
|
||||
assignee = best_effort_get_field_from_issue(issue, "assignee")
|
||||
if basic_expert_info := best_effort_basic_expert_info(assignee):
|
||||
people.add(basic_expert_info)
|
||||
except Exception:
|
||||
# Author should exist but if not, doesn't matter
|
||||
pass
|
||||
|
||||
metadata_dict = {}
|
||||
priority = best_effort_get_field_from_issue(jira, "priority")
|
||||
if priority:
|
||||
if priority := best_effort_get_field_from_issue(issue, "priority"):
|
||||
metadata_dict["priority"] = priority.name
|
||||
status = best_effort_get_field_from_issue(jira, "status")
|
||||
if status:
|
||||
if status := best_effort_get_field_from_issue(issue, "status"):
|
||||
metadata_dict["status"] = status.name
|
||||
resolution = best_effort_get_field_from_issue(jira, "resolution")
|
||||
if resolution:
|
||||
if resolution := best_effort_get_field_from_issue(issue, "resolution"):
|
||||
metadata_dict["resolution"] = resolution.name
|
||||
labels = best_effort_get_field_from_issue(jira, "labels")
|
||||
if labels:
|
||||
if labels := best_effort_get_field_from_issue(issue, "labels"):
|
||||
metadata_dict["label"] = labels
|
||||
|
||||
doc_batch.append(
|
||||
Document(
|
||||
id=page_url,
|
||||
sections=[Section(link=page_url, text=ticket_content)],
|
||||
source=DocumentSource.JIRA,
|
||||
semantic_identifier=jira.fields.summary,
|
||||
doc_updated_at=time_str_to_utc(jira.fields.updated),
|
||||
primary_owners=list(people) or None,
|
||||
# TODO add secondary_owners (commenters) if needed
|
||||
metadata=metadata_dict,
|
||||
)
|
||||
yield Document(
|
||||
id=page_url,
|
||||
sections=[Section(link=page_url, text=ticket_content)],
|
||||
source=DocumentSource.JIRA,
|
||||
semantic_identifier=issue.fields.summary,
|
||||
doc_updated_at=time_str_to_utc(issue.fields.updated),
|
||||
primary_owners=list(people) or None,
|
||||
# TODO add secondary_owners (commenters) if needed
|
||||
metadata=metadata_dict,
|
||||
)
|
||||
return doc_batch, len(batch)
|
||||
|
||||
|
||||
class JiraConnector(LoadConnector, PollConnector):
|
||||
class JiraConnector(LoadConnector, PollConnector, SlimConnector):
|
||||
def __init__(
|
||||
self,
|
||||
jira_project_url: str,
|
||||
@@ -213,8 +164,8 @@ class JiraConnector(LoadConnector, PollConnector):
|
||||
labels_to_skip: list[str] = JIRA_CONNECTOR_LABELS_TO_SKIP,
|
||||
) -> None:
|
||||
self.batch_size = batch_size
|
||||
self.jira_base, self.jira_project = extract_jira_project(jira_project_url)
|
||||
self.jira_client: JIRA | None = None
|
||||
self.jira_base, self._jira_project = extract_jira_project(jira_project_url)
|
||||
self._jira_client: JIRA | None = None
|
||||
self._comment_email_blacklist = comment_email_blacklist or []
|
||||
|
||||
self.labels_to_skip = set(labels_to_skip)
|
||||
@@ -223,54 +174,45 @@ class JiraConnector(LoadConnector, PollConnector):
|
||||
def comment_email_blacklist(self) -> tuple:
|
||||
return tuple(email.strip() for email in self._comment_email_blacklist)
|
||||
|
||||
@property
|
||||
def jira_client(self) -> JIRA:
|
||||
if self._jira_client is None:
|
||||
raise ConnectorMissingCredentialError("Jira")
|
||||
return self._jira_client
|
||||
|
||||
@property
|
||||
def quoted_jira_project(self) -> str:
|
||||
# Quote the project name to handle reserved words
|
||||
return f'"{self._jira_project}"'
|
||||
|
||||
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
|
||||
api_token = credentials["jira_api_token"]
|
||||
# if user provide an email we assume it's cloud
|
||||
if "jira_user_email" in credentials:
|
||||
email = credentials["jira_user_email"]
|
||||
self.jira_client = JIRA(
|
||||
basic_auth=(email, api_token),
|
||||
server=self.jira_base,
|
||||
options={"rest_api_version": JIRA_API_VERSION},
|
||||
)
|
||||
else:
|
||||
self.jira_client = JIRA(
|
||||
token_auth=api_token,
|
||||
server=self.jira_base,
|
||||
options={"rest_api_version": JIRA_API_VERSION},
|
||||
)
|
||||
self._jira_client = build_jira_client(
|
||||
credentials=credentials,
|
||||
jira_base=self.jira_base,
|
||||
)
|
||||
return None
|
||||
|
||||
def load_from_state(self) -> GenerateDocumentsOutput:
|
||||
if self.jira_client is None:
|
||||
raise ConnectorMissingCredentialError("Jira")
|
||||
jql = f"project = {self.quoted_jira_project}"
|
||||
|
||||
# Quote the project name to handle reserved words
|
||||
quoted_project = f'"{self.jira_project}"'
|
||||
start_ind = 0
|
||||
while True:
|
||||
doc_batch, fetched_batch_size = fetch_jira_issues_batch(
|
||||
jql=f"project = {quoted_project}",
|
||||
start_index=start_ind,
|
||||
jira_client=self.jira_client,
|
||||
batch_size=self.batch_size,
|
||||
comment_email_blacklist=self.comment_email_blacklist,
|
||||
labels_to_skip=self.labels_to_skip,
|
||||
)
|
||||
document_batch = []
|
||||
for doc in fetch_jira_issues_batch(
|
||||
jira_client=self.jira_client,
|
||||
jql=jql,
|
||||
batch_size=_JIRA_FULL_PAGE_SIZE,
|
||||
comment_email_blacklist=self.comment_email_blacklist,
|
||||
labels_to_skip=self.labels_to_skip,
|
||||
):
|
||||
document_batch.append(doc)
|
||||
if len(document_batch) >= self.batch_size:
|
||||
yield document_batch
|
||||
document_batch = []
|
||||
|
||||
if doc_batch:
|
||||
yield doc_batch
|
||||
|
||||
start_ind += fetched_batch_size
|
||||
if fetched_batch_size < self.batch_size:
|
||||
break
|
||||
yield document_batch
|
||||
|
||||
def poll_source(
|
||||
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
|
||||
) -> GenerateDocumentsOutput:
|
||||
if self.jira_client is None:
|
||||
raise ConnectorMissingCredentialError("Jira")
|
||||
|
||||
start_date_str = datetime.fromtimestamp(start, tz=timezone.utc).strftime(
|
||||
"%Y-%m-%d %H:%M"
|
||||
)
|
||||
@@ -278,31 +220,54 @@ class JiraConnector(LoadConnector, PollConnector):
|
||||
"%Y-%m-%d %H:%M"
|
||||
)
|
||||
|
||||
# Quote the project name to handle reserved words
|
||||
quoted_project = f'"{self.jira_project}"'
|
||||
jql = (
|
||||
f"project = {quoted_project} AND "
|
||||
f"project = {self.quoted_jira_project} AND "
|
||||
f"updated >= '{start_date_str}' AND "
|
||||
f"updated <= '{end_date_str}'"
|
||||
)
|
||||
|
||||
start_ind = 0
|
||||
while True:
|
||||
doc_batch, fetched_batch_size = fetch_jira_issues_batch(
|
||||
jql=jql,
|
||||
start_index=start_ind,
|
||||
jira_client=self.jira_client,
|
||||
batch_size=self.batch_size,
|
||||
comment_email_blacklist=self.comment_email_blacklist,
|
||||
labels_to_skip=self.labels_to_skip,
|
||||
document_batch = []
|
||||
for doc in fetch_jira_issues_batch(
|
||||
jira_client=self.jira_client,
|
||||
jql=jql,
|
||||
batch_size=_JIRA_FULL_PAGE_SIZE,
|
||||
comment_email_blacklist=self.comment_email_blacklist,
|
||||
labels_to_skip=self.labels_to_skip,
|
||||
):
|
||||
document_batch.append(doc)
|
||||
if len(document_batch) >= self.batch_size:
|
||||
yield document_batch
|
||||
document_batch = []
|
||||
|
||||
yield document_batch
|
||||
|
||||
def retrieve_all_slim_documents(
|
||||
self,
|
||||
start: SecondsSinceUnixEpoch | None = None,
|
||||
end: SecondsSinceUnixEpoch | None = None,
|
||||
) -> GenerateSlimDocumentOutput:
|
||||
jql = f"project = {self.quoted_jira_project}"
|
||||
|
||||
slim_doc_batch = []
|
||||
for issue in _paginate_jql_search(
|
||||
jira_client=self.jira_client,
|
||||
jql=jql,
|
||||
max_results=_JIRA_SLIM_PAGE_SIZE,
|
||||
fields="key",
|
||||
):
|
||||
issue_key = best_effort_get_field_from_issue(issue, "key")
|
||||
id = build_jira_url(self.jira_client, issue_key)
|
||||
slim_doc_batch.append(
|
||||
SlimDocument(
|
||||
id=id,
|
||||
perm_sync_data=None,
|
||||
)
|
||||
)
|
||||
if len(slim_doc_batch) >= _JIRA_SLIM_PAGE_SIZE:
|
||||
yield slim_doc_batch
|
||||
slim_doc_batch = []
|
||||
|
||||
if doc_batch:
|
||||
yield doc_batch
|
||||
|
||||
start_ind += fetched_batch_size
|
||||
if fetched_batch_size < self.batch_size:
|
||||
break
|
||||
yield slim_doc_batch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,17 +1,136 @@
|
||||
"""Module with custom fields processing functions"""
|
||||
import os
|
||||
from typing import Any
|
||||
from typing import List
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from jira import JIRA
|
||||
from jira.resources import CustomFieldOption
|
||||
from jira.resources import Issue
|
||||
from jira.resources import User
|
||||
|
||||
from danswer.connectors.models import BasicExpertInfo
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
PROJECT_URL_PAT = "projects"
|
||||
JIRA_API_VERSION = os.environ.get("JIRA_API_VERSION") or "2"
|
||||
|
||||
|
||||
def best_effort_basic_expert_info(obj: Any) -> BasicExpertInfo | None:
|
||||
display_name = None
|
||||
email = None
|
||||
if hasattr(obj, "display_name"):
|
||||
display_name = obj.display_name
|
||||
else:
|
||||
display_name = obj.get("displayName")
|
||||
|
||||
if hasattr(obj, "emailAddress"):
|
||||
email = obj.emailAddress
|
||||
else:
|
||||
email = obj.get("emailAddress")
|
||||
|
||||
if not email and not display_name:
|
||||
return None
|
||||
|
||||
return BasicExpertInfo(display_name=display_name, email=email)
|
||||
|
||||
|
||||
def best_effort_get_field_from_issue(jira_issue: Issue, field: str) -> Any:
|
||||
if hasattr(jira_issue.fields, field):
|
||||
return getattr(jira_issue.fields, field)
|
||||
|
||||
try:
|
||||
return jira_issue.raw["fields"][field]
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def extract_text_from_adf(adf: dict | None) -> str:
|
||||
"""Extracts plain text from Atlassian Document Format:
|
||||
https://developer.atlassian.com/cloud/jira/platform/apis/document/structure/
|
||||
|
||||
WARNING: This function is incomplete and will e.g. skip lists!
|
||||
"""
|
||||
texts = []
|
||||
if adf is not None and "content" in adf:
|
||||
for block in adf["content"]:
|
||||
if "content" in block:
|
||||
for item in block["content"]:
|
||||
if item["type"] == "text":
|
||||
texts.append(item["text"])
|
||||
return " ".join(texts)
|
||||
|
||||
|
||||
def build_jira_url(jira_client: JIRA, issue_key: str) -> str:
|
||||
return f"{jira_client.client_info()}/browse/{issue_key}"
|
||||
|
||||
|
||||
def build_jira_client(credentials: dict[str, Any], jira_base: str) -> JIRA:
|
||||
api_token = credentials["jira_api_token"]
|
||||
# if user provide an email we assume it's cloud
|
||||
if "jira_user_email" in credentials:
|
||||
email = credentials["jira_user_email"]
|
||||
return JIRA(
|
||||
basic_auth=(email, api_token),
|
||||
server=jira_base,
|
||||
options={"rest_api_version": JIRA_API_VERSION},
|
||||
)
|
||||
else:
|
||||
return JIRA(
|
||||
token_auth=api_token,
|
||||
server=jira_base,
|
||||
options={"rest_api_version": JIRA_API_VERSION},
|
||||
)
|
||||
|
||||
|
||||
def extract_jira_project(url: str) -> tuple[str, str]:
|
||||
parsed_url = urlparse(url)
|
||||
jira_base = parsed_url.scheme + "://" + parsed_url.netloc
|
||||
|
||||
# Split the path by '/' and find the position of 'projects' to get the project name
|
||||
split_path = parsed_url.path.split("/")
|
||||
if PROJECT_URL_PAT in split_path:
|
||||
project_pos = split_path.index(PROJECT_URL_PAT)
|
||||
if len(split_path) > project_pos + 1:
|
||||
jira_project = split_path[project_pos + 1]
|
||||
else:
|
||||
raise ValueError("No project name found in the URL")
|
||||
else:
|
||||
raise ValueError("'projects' not found in the URL")
|
||||
|
||||
return jira_base, jira_project
|
||||
|
||||
|
||||
def get_comment_strs(
|
||||
issue: Issue, comment_email_blacklist: tuple[str, ...] = ()
|
||||
) -> list[str]:
|
||||
comment_strs = []
|
||||
for comment in issue.fields.comment.comments:
|
||||
try:
|
||||
body_text = (
|
||||
comment.body
|
||||
if JIRA_API_VERSION == "2"
|
||||
else extract_text_from_adf(comment.raw["body"])
|
||||
)
|
||||
|
||||
if (
|
||||
hasattr(comment, "author")
|
||||
and hasattr(comment.author, "emailAddress")
|
||||
and comment.author.emailAddress in comment_email_blacklist
|
||||
):
|
||||
continue # Skip adding comment if author's email is in blacklist
|
||||
|
||||
comment_strs.append(body_text)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process comment due to an error: {e}")
|
||||
continue
|
||||
|
||||
return comment_strs
|
||||
|
||||
|
||||
class CustomFieldExtractor:
|
||||
@staticmethod
|
||||
def _process_custom_field_value(value: Any) -> str:
|
||||
|
||||
@@ -2,6 +2,7 @@ import io
|
||||
from datetime import datetime
|
||||
from datetime import timezone
|
||||
|
||||
from googleapiclient.discovery import build # type: ignore
|
||||
from googleapiclient.errors import HttpError # type: ignore
|
||||
|
||||
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
|
||||
@@ -48,6 +49,67 @@ def _extract_sections_basic(
|
||||
return [Section(link=link, text=UNSUPPORTED_FILE_TYPE_CONTENT)]
|
||||
|
||||
try:
|
||||
if mime_type == GDriveMimeType.SPREADSHEET.value:
|
||||
try:
|
||||
sheets_service = build(
|
||||
"sheets", "v4", credentials=service._http.credentials
|
||||
)
|
||||
spreadsheet = (
|
||||
sheets_service.spreadsheets()
|
||||
.get(spreadsheetId=file["id"])
|
||||
.execute()
|
||||
)
|
||||
|
||||
sections = []
|
||||
for sheet in spreadsheet["sheets"]:
|
||||
sheet_name = sheet["properties"]["title"]
|
||||
sheet_id = sheet["properties"]["sheetId"]
|
||||
|
||||
# Get sheet dimensions
|
||||
grid_properties = sheet["properties"].get("gridProperties", {})
|
||||
row_count = grid_properties.get("rowCount", 1000)
|
||||
column_count = grid_properties.get("columnCount", 26)
|
||||
|
||||
# Convert column count to letter (e.g., 26 -> Z, 27 -> AA)
|
||||
end_column = ""
|
||||
while column_count:
|
||||
column_count, remainder = divmod(column_count - 1, 26)
|
||||
end_column = chr(65 + remainder) + end_column
|
||||
|
||||
range_name = f"'{sheet_name}'!A1:{end_column}{row_count}"
|
||||
|
||||
try:
|
||||
result = (
|
||||
sheets_service.spreadsheets()
|
||||
.values()
|
||||
.get(spreadsheetId=file["id"], range=range_name)
|
||||
.execute()
|
||||
)
|
||||
values = result.get("values", [])
|
||||
|
||||
if values:
|
||||
text = f"Sheet: {sheet_name}\n"
|
||||
for row in values:
|
||||
text += "\t".join(str(cell) for cell in row) + "\n"
|
||||
sections.append(
|
||||
Section(
|
||||
link=f"{link}#gid={sheet_id}",
|
||||
text=text,
|
||||
)
|
||||
)
|
||||
except HttpError as e:
|
||||
logger.warning(
|
||||
f"Error fetching data for sheet '{sheet_name}': {e}"
|
||||
)
|
||||
continue
|
||||
return sections
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Ran into exception '{e}' when pulling data from Google Sheet '{file['name']}'."
|
||||
" Falling back to basic extraction."
|
||||
)
|
||||
|
||||
if mime_type in [
|
||||
GDriveMimeType.DOC.value,
|
||||
GDriveMimeType.PPT.value,
|
||||
@@ -65,6 +127,7 @@ def _extract_sections_basic(
|
||||
.decode("utf-8")
|
||||
)
|
||||
return [Section(link=link, text=text)]
|
||||
|
||||
elif mime_type in [
|
||||
GDriveMimeType.PLAIN_TEXT.value,
|
||||
GDriveMimeType.MARKDOWN.value,
|
||||
|
||||
@@ -102,13 +102,21 @@ def _get_tickets(
|
||||
|
||||
|
||||
def _fetch_author(client: ZendeskClient, author_id: str) -> BasicExpertInfo | None:
|
||||
author_data = client.make_request(f"users/{author_id}", {})
|
||||
user = author_data.get("user")
|
||||
return (
|
||||
BasicExpertInfo(display_name=user.get("name"), email=user.get("email"))
|
||||
if user and user.get("name") and user.get("email")
|
||||
else None
|
||||
)
|
||||
# Skip fetching if author_id is invalid
|
||||
if not author_id or author_id == "-1":
|
||||
return None
|
||||
|
||||
try:
|
||||
author_data = client.make_request(f"users/{author_id}", {})
|
||||
user = author_data.get("user")
|
||||
return (
|
||||
BasicExpertInfo(display_name=user.get("name"), email=user.get("email"))
|
||||
if user and user.get("name") and user.get("email")
|
||||
else None
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
# Handle any API errors gracefully
|
||||
return None
|
||||
|
||||
|
||||
def _article_to_document(
|
||||
|
||||
@@ -8,13 +8,13 @@ from pydantic import field_validator
|
||||
|
||||
from danswer.configs.chat_configs import NUM_RETURNED_HITS
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.enums import OptionalSearchSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.db.models import Persona
|
||||
from danswer.db.models import SearchSettings
|
||||
from danswer.indexing.models import BaseChunk
|
||||
from danswer.indexing.models import IndexingSetting
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.enums import OptionalSearchSetting
|
||||
from danswer.search.enums import SearchType
|
||||
from shared_configs.enums import RerankerProvider
|
||||
|
||||
|
||||
@@ -7,6 +7,22 @@ from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.chat.models import SectionRelevancePiece
|
||||
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.enums import QueryFlow
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import RerankMetricsContainer
|
||||
from danswer.context.search.models import RetrievalMetricsContainer
|
||||
from danswer.context.search.models import SearchQuery
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.postprocessing.postprocessing import cleanup_chunks
|
||||
from danswer.context.search.postprocessing.postprocessing import search_postprocessing
|
||||
from danswer.context.search.preprocessing.preprocessing import retrieval_preprocessing
|
||||
from danswer.context.search.retrieval.search_runner import retrieve_chunks
|
||||
from danswer.context.search.utils import inference_section_from_chunks
|
||||
from danswer.context.search.utils import relevant_sections_to_indices
|
||||
from danswer.db.models import User
|
||||
from danswer.db.search_settings import get_current_search_settings
|
||||
from danswer.document_index.factory import get_default_document_index
|
||||
@@ -16,22 +32,6 @@ from danswer.llm.answering.prune_and_merge import _merge_sections
|
||||
from danswer.llm.answering.prune_and_merge import ChunkRange
|
||||
from danswer.llm.answering.prune_and_merge import merge_chunk_intervals
|
||||
from danswer.llm.interfaces import LLM
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.enums import QueryFlow
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.search.models import RerankMetricsContainer
|
||||
from danswer.search.models import RetrievalMetricsContainer
|
||||
from danswer.search.models import SearchQuery
|
||||
from danswer.search.models import SearchRequest
|
||||
from danswer.search.postprocessing.postprocessing import cleanup_chunks
|
||||
from danswer.search.postprocessing.postprocessing import search_postprocessing
|
||||
from danswer.search.preprocessing.preprocessing import retrieval_preprocessing
|
||||
from danswer.search.retrieval.search_runner import retrieve_chunks
|
||||
from danswer.search.utils import inference_section_from_chunks
|
||||
from danswer.search.utils import relevant_sections_to_indices
|
||||
from danswer.secondary_llm_flows.agentic_evaluation import evaluate_inference_section
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.threadpool_concurrency import FunctionCall
|
||||
@@ -9,19 +9,19 @@ from danswer.configs.app_configs import BLURB_SIZE
|
||||
from danswer.configs.constants import RETURN_SEPARATOR
|
||||
from danswer.configs.model_configs import CROSS_ENCODER_RANGE_MAX
|
||||
from danswer.configs.model_configs import CROSS_ENCODER_RANGE_MIN
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.models import ChunkMetric
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceChunkUncleaned
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import MAX_METRICS_CONTENT
|
||||
from danswer.context.search.models import RerankMetricsContainer
|
||||
from danswer.context.search.models import SearchQuery
|
||||
from danswer.document_index.document_index_utils import (
|
||||
translate_boost_count_to_multiplier,
|
||||
)
|
||||
from danswer.llm.interfaces import LLM
|
||||
from danswer.natural_language_processing.search_nlp_models import RerankingModel
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.models import ChunkMetric
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.search.models import InferenceChunkUncleaned
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.search.models import MAX_METRICS_CONTENT
|
||||
from danswer.search.models import RerankMetricsContainer
|
||||
from danswer.search.models import SearchQuery
|
||||
from danswer.secondary_llm_flows.chunk_usefulness import llm_batch_eval_sections
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.threadpool_concurrency import FunctionCall
|
||||
@@ -1,8 +1,8 @@
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.access.access import get_acl_for_user
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.db.models import User
|
||||
from danswer.search.models import IndexFilters
|
||||
|
||||
|
||||
def build_access_filters_for_user(user: User | None, session: Session) -> list[str]:
|
||||
@@ -9,21 +9,25 @@ from danswer.configs.chat_configs import HYBRID_ALPHA
|
||||
from danswer.configs.chat_configs import HYBRID_ALPHA_KEYWORD
|
||||
from danswer.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
|
||||
from danswer.configs.chat_configs import NUM_RETURNED_HITS
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.context.search.models import BaseFilters
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import RerankingDetails
|
||||
from danswer.context.search.models import SearchQuery
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.preprocessing.access_filters import (
|
||||
build_access_filters_for_user,
|
||||
)
|
||||
from danswer.context.search.retrieval.search_runner import (
|
||||
remove_stop_words_and_punctuation,
|
||||
)
|
||||
from danswer.db.engine import CURRENT_TENANT_ID_CONTEXTVAR
|
||||
from danswer.db.models import User
|
||||
from danswer.db.search_settings import get_current_search_settings
|
||||
from danswer.llm.interfaces import LLM
|
||||
from danswer.natural_language_processing.search_nlp_models import QueryAnalysisModel
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.search.models import BaseFilters
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import RerankingDetails
|
||||
from danswer.search.models import SearchQuery
|
||||
from danswer.search.models import SearchRequest
|
||||
from danswer.search.preprocessing.access_filters import build_access_filters_for_user
|
||||
from danswer.search.retrieval.search_runner import remove_stop_words_and_punctuation
|
||||
from danswer.secondary_llm_flows.source_filter import extract_source_filter
|
||||
from danswer.secondary_llm_flows.time_filter import extract_time_filter
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -6,6 +6,16 @@ from nltk.corpus import stopwords # type:ignore
|
||||
from nltk.tokenize import word_tokenize # type:ignore
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.context.search.models import ChunkMetric
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceChunkUncleaned
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import MAX_METRICS_CONTENT
|
||||
from danswer.context.search.models import RetrievalMetricsContainer
|
||||
from danswer.context.search.models import SearchQuery
|
||||
from danswer.context.search.postprocessing.postprocessing import cleanup_chunks
|
||||
from danswer.context.search.utils import inference_section_from_chunks
|
||||
from danswer.db.search_settings import get_current_search_settings
|
||||
from danswer.db.search_settings import get_multilingual_expansion
|
||||
from danswer.document_index.interfaces import DocumentIndex
|
||||
@@ -14,16 +24,6 @@ from danswer.document_index.vespa.shared_utils.utils import (
|
||||
replace_invalid_doc_id_characters,
|
||||
)
|
||||
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
|
||||
from danswer.search.models import ChunkMetric
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.search.models import InferenceChunkUncleaned
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.search.models import MAX_METRICS_CONTENT
|
||||
from danswer.search.models import RetrievalMetricsContainer
|
||||
from danswer.search.models import SearchQuery
|
||||
from danswer.search.postprocessing.postprocessing import cleanup_chunks
|
||||
from danswer.search.utils import inference_section_from_chunks
|
||||
from danswer.secondary_llm_flows.query_expansion import multilingual_query_expansion
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
|
||||
@@ -1,9 +1,9 @@
|
||||
from typing import cast
|
||||
|
||||
from danswer.configs.constants import KV_SEARCH_SETTINGS
|
||||
from danswer.context.search.models import SavedSearchSettings
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from danswer.key_value_store.interface import KvKeyNotFoundError
|
||||
from danswer.search.models import SavedSearchSettings
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -2,12 +2,12 @@ from collections.abc import Sequence
|
||||
from typing import TypeVar
|
||||
|
||||
from danswer.chat.models import SectionRelevancePiece
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import SavedSearchDoc
|
||||
from danswer.context.search.models import SavedSearchDocWithContent
|
||||
from danswer.context.search.models import SearchDoc
|
||||
from danswer.db.models import SearchDoc as DBSearchDoc
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.search.models import SavedSearchDoc
|
||||
from danswer.search.models import SavedSearchDocWithContent
|
||||
from danswer.search.models import SearchDoc
|
||||
|
||||
|
||||
T = TypeVar(
|
||||
@@ -18,20 +18,30 @@ from slack_sdk.models.blocks.block_elements import ImageElement
|
||||
|
||||
from danswer.chat.models import DanswerQuote
|
||||
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
|
||||
from danswer.configs.app_configs import WEB_DOMAIN
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.configs.constants import SearchFeedbackType
|
||||
from danswer.configs.danswerbot_configs import DANSWER_BOT_NUM_DOCS_TO_DISPLAY
|
||||
from danswer.context.search.models import SavedSearchDoc
|
||||
from danswer.danswerbot.slack.constants import CONTINUE_IN_WEB_UI_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import DISLIKE_BLOCK_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_RESOLVED_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import IMMEDIATE_RESOLVED_BUTTON_ACTION_ID
|
||||
from danswer.danswerbot.slack.constants import LIKE_BLOCK_ACTION_ID
|
||||
from danswer.danswerbot.slack.formatting import format_slack_message
|
||||
from danswer.danswerbot.slack.icons import source_to_github_img_link
|
||||
from danswer.danswerbot.slack.models import SlackMessageInfo
|
||||
from danswer.danswerbot.slack.utils import build_continue_in_web_ui_id
|
||||
from danswer.danswerbot.slack.utils import build_feedback_id
|
||||
from danswer.danswerbot.slack.utils import remove_slack_text_interactions
|
||||
from danswer.danswerbot.slack.utils import translate_vespa_highlight_to_slack
|
||||
from danswer.search.models import SavedSearchDoc
|
||||
from danswer.db.chat import get_chat_session_by_message_id
|
||||
from danswer.db.engine import get_session_with_tenant
|
||||
from danswer.db.models import ChannelConfig
|
||||
from danswer.db.models import Persona
|
||||
from danswer.one_shot_answer.models import OneShotQAResponse
|
||||
from danswer.utils.text_processing import decode_escapes
|
||||
from danswer.utils.text_processing import replace_whitespaces_w_space
|
||||
|
||||
@@ -101,12 +111,12 @@ def _split_text(text: str, limit: int = 3000) -> list[str]:
|
||||
return chunks
|
||||
|
||||
|
||||
def clean_markdown_link_text(text: str) -> str:
|
||||
def _clean_markdown_link_text(text: str) -> str:
|
||||
# Remove any newlines within the text
|
||||
return text.replace("\n", " ").strip()
|
||||
|
||||
|
||||
def build_qa_feedback_block(
|
||||
def _build_qa_feedback_block(
|
||||
message_id: int, feedback_reminder_id: str | None = None
|
||||
) -> Block:
|
||||
return ActionsBlock(
|
||||
@@ -115,7 +125,6 @@ def build_qa_feedback_block(
|
||||
ButtonElement(
|
||||
action_id=LIKE_BLOCK_ACTION_ID,
|
||||
text="👍 Helpful",
|
||||
style="primary",
|
||||
value=feedback_reminder_id,
|
||||
),
|
||||
ButtonElement(
|
||||
@@ -155,7 +164,7 @@ def get_document_feedback_blocks() -> Block:
|
||||
)
|
||||
|
||||
|
||||
def build_doc_feedback_block(
|
||||
def _build_doc_feedback_block(
|
||||
message_id: int,
|
||||
document_id: str,
|
||||
document_rank: int,
|
||||
@@ -182,7 +191,7 @@ def get_restate_blocks(
|
||||
]
|
||||
|
||||
|
||||
def build_documents_blocks(
|
||||
def _build_documents_blocks(
|
||||
documents: list[SavedSearchDoc],
|
||||
message_id: int | None,
|
||||
num_docs_to_display: int = DANSWER_BOT_NUM_DOCS_TO_DISPLAY,
|
||||
@@ -223,7 +232,7 @@ def build_documents_blocks(
|
||||
|
||||
feedback: ButtonElement | dict = {}
|
||||
if message_id is not None:
|
||||
feedback = build_doc_feedback_block(
|
||||
feedback = _build_doc_feedback_block(
|
||||
message_id=message_id,
|
||||
document_id=d.document_id,
|
||||
document_rank=rank,
|
||||
@@ -241,7 +250,7 @@ def build_documents_blocks(
|
||||
return section_blocks
|
||||
|
||||
|
||||
def build_sources_blocks(
|
||||
def _build_sources_blocks(
|
||||
cited_documents: list[tuple[int, SavedSearchDoc]],
|
||||
num_docs_to_display: int = DANSWER_BOT_NUM_DOCS_TO_DISPLAY,
|
||||
) -> list[Block]:
|
||||
@@ -286,7 +295,7 @@ def build_sources_blocks(
|
||||
+ ([days_ago_str] if days_ago_str else [])
|
||||
)
|
||||
|
||||
document_title = clean_markdown_link_text(doc_sem_id)
|
||||
document_title = _clean_markdown_link_text(doc_sem_id)
|
||||
img_link = source_to_github_img_link(d.source_type)
|
||||
|
||||
section_blocks.append(
|
||||
@@ -317,7 +326,50 @@ def build_sources_blocks(
|
||||
return section_blocks
|
||||
|
||||
|
||||
def build_quotes_block(
|
||||
def _priority_ordered_documents_blocks(
|
||||
answer: OneShotQAResponse,
|
||||
) -> list[Block]:
|
||||
docs_response = answer.docs if answer.docs else None
|
||||
top_docs = docs_response.top_documents if docs_response else []
|
||||
llm_doc_inds = answer.llm_selected_doc_indices or []
|
||||
llm_docs = [top_docs[i] for i in llm_doc_inds]
|
||||
remaining_docs = [
|
||||
doc for idx, doc in enumerate(top_docs) if idx not in llm_doc_inds
|
||||
]
|
||||
priority_ordered_docs = llm_docs + remaining_docs
|
||||
if not priority_ordered_docs:
|
||||
return []
|
||||
|
||||
document_blocks = _build_documents_blocks(
|
||||
documents=priority_ordered_docs,
|
||||
message_id=answer.chat_message_id,
|
||||
)
|
||||
if document_blocks:
|
||||
document_blocks = [DividerBlock()] + document_blocks
|
||||
return document_blocks
|
||||
|
||||
|
||||
def _build_citations_blocks(
|
||||
answer: OneShotQAResponse,
|
||||
) -> list[Block]:
|
||||
docs_response = answer.docs if answer.docs else None
|
||||
top_docs = docs_response.top_documents if docs_response else []
|
||||
citations = answer.citations or []
|
||||
cited_docs = []
|
||||
for citation in citations:
|
||||
matching_doc = next(
|
||||
(d for d in top_docs if d.document_id == citation.document_id),
|
||||
None,
|
||||
)
|
||||
if matching_doc:
|
||||
cited_docs.append((citation.citation_num, matching_doc))
|
||||
|
||||
cited_docs.sort()
|
||||
citations_block = _build_sources_blocks(cited_documents=cited_docs)
|
||||
return citations_block
|
||||
|
||||
|
||||
def _build_quotes_block(
|
||||
quotes: list[DanswerQuote],
|
||||
) -> list[Block]:
|
||||
quote_lines: list[str] = []
|
||||
@@ -359,58 +411,70 @@ def build_quotes_block(
|
||||
return [SectionBlock(text="*Relevant Snippets*\n" + "\n".join(quote_lines))]
|
||||
|
||||
|
||||
def build_qa_response_blocks(
|
||||
message_id: int | None,
|
||||
answer: str | None,
|
||||
quotes: list[DanswerQuote] | None,
|
||||
source_filters: list[DocumentSource] | None,
|
||||
time_cutoff: datetime | None,
|
||||
favor_recent: bool,
|
||||
def _build_qa_response_blocks(
|
||||
answer: OneShotQAResponse,
|
||||
skip_quotes: bool = False,
|
||||
process_message_for_citations: bool = False,
|
||||
skip_ai_feedback: bool = False,
|
||||
feedback_reminder_id: str | None = None,
|
||||
) -> list[Block]:
|
||||
retrieval_info = answer.docs
|
||||
if not retrieval_info:
|
||||
# This should not happen, even with no docs retrieved, there is still info returned
|
||||
raise RuntimeError("Failed to retrieve docs, cannot answer question.")
|
||||
|
||||
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
|
||||
quotes = answer.quotes.quotes if answer.quotes else None
|
||||
|
||||
if DISABLE_GENERATIVE_AI:
|
||||
return []
|
||||
|
||||
quotes_blocks: list[Block] = []
|
||||
|
||||
filter_block: Block | None = None
|
||||
if time_cutoff or favor_recent or source_filters:
|
||||
if (
|
||||
retrieval_info.applied_time_cutoff
|
||||
or retrieval_info.recency_bias_multiplier > 1
|
||||
or retrieval_info.applied_source_filters
|
||||
):
|
||||
filter_text = "Filters: "
|
||||
if source_filters:
|
||||
sources_str = ", ".join([s.value for s in source_filters])
|
||||
if retrieval_info.applied_source_filters:
|
||||
sources_str = ", ".join(
|
||||
[s.value for s in retrieval_info.applied_source_filters]
|
||||
)
|
||||
filter_text += f"`Sources in [{sources_str}]`"
|
||||
if time_cutoff or favor_recent:
|
||||
if (
|
||||
retrieval_info.applied_time_cutoff
|
||||
or retrieval_info.recency_bias_multiplier > 1
|
||||
):
|
||||
filter_text += " and "
|
||||
if time_cutoff is not None:
|
||||
time_str = time_cutoff.strftime("%b %d, %Y")
|
||||
if retrieval_info.applied_time_cutoff is not None:
|
||||
time_str = retrieval_info.applied_time_cutoff.strftime("%b %d, %Y")
|
||||
filter_text += f"`Docs Updated >= {time_str}` "
|
||||
if favor_recent:
|
||||
if time_cutoff is not None:
|
||||
if retrieval_info.recency_bias_multiplier > 1:
|
||||
if retrieval_info.applied_time_cutoff is not None:
|
||||
filter_text += "+ "
|
||||
filter_text += "`Prioritize Recently Updated Docs`"
|
||||
|
||||
filter_block = SectionBlock(text=f"_{filter_text}_")
|
||||
|
||||
if not answer:
|
||||
if not formatted_answer:
|
||||
answer_blocks = [
|
||||
SectionBlock(
|
||||
text="Sorry, I was unable to find an answer, but I did find some potentially relevant docs 🤓"
|
||||
)
|
||||
]
|
||||
else:
|
||||
answer_processed = decode_escapes(remove_slack_text_interactions(answer))
|
||||
answer_processed = decode_escapes(
|
||||
remove_slack_text_interactions(formatted_answer)
|
||||
)
|
||||
if process_message_for_citations:
|
||||
answer_processed = _process_citations_for_slack(answer_processed)
|
||||
answer_blocks = [
|
||||
SectionBlock(text=text) for text in _split_text(answer_processed)
|
||||
]
|
||||
if quotes:
|
||||
quotes_blocks = build_quotes_block(quotes)
|
||||
quotes_blocks = _build_quotes_block(quotes)
|
||||
|
||||
# if no quotes OR `build_quotes_block()` did not give back any blocks
|
||||
# if no quotes OR `_build_quotes_block()` did not give back any blocks
|
||||
if not quotes_blocks:
|
||||
quotes_blocks = [
|
||||
SectionBlock(
|
||||
@@ -425,20 +489,37 @@ def build_qa_response_blocks(
|
||||
|
||||
response_blocks.extend(answer_blocks)
|
||||
|
||||
if message_id is not None and not skip_ai_feedback:
|
||||
response_blocks.append(
|
||||
build_qa_feedback_block(
|
||||
message_id=message_id, feedback_reminder_id=feedback_reminder_id
|
||||
)
|
||||
)
|
||||
|
||||
if not skip_quotes:
|
||||
response_blocks.extend(quotes_blocks)
|
||||
|
||||
return response_blocks
|
||||
|
||||
|
||||
def build_follow_up_block(message_id: int | None) -> ActionsBlock:
|
||||
def _build_continue_in_web_ui_block(
|
||||
tenant_id: str | None,
|
||||
message_id: int | None,
|
||||
) -> Block:
|
||||
if message_id is None:
|
||||
raise ValueError("No message id provided to build continue in web ui block")
|
||||
with get_session_with_tenant(tenant_id) as db_session:
|
||||
chat_session = get_chat_session_by_message_id(
|
||||
db_session=db_session,
|
||||
message_id=message_id,
|
||||
)
|
||||
return ActionsBlock(
|
||||
block_id=build_continue_in_web_ui_id(message_id),
|
||||
elements=[
|
||||
ButtonElement(
|
||||
action_id=CONTINUE_IN_WEB_UI_ACTION_ID,
|
||||
text="Continue Chat in Danswer!",
|
||||
style="primary",
|
||||
url=f"{WEB_DOMAIN}/chat?slackChatId={chat_session.id}",
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def _build_follow_up_block(message_id: int | None) -> ActionsBlock:
|
||||
return ActionsBlock(
|
||||
block_id=build_feedback_id(message_id) if message_id is not None else None,
|
||||
elements=[
|
||||
@@ -483,3 +564,77 @@ def build_follow_up_resolved_blocks(
|
||||
]
|
||||
)
|
||||
return [text_block, button_block]
|
||||
|
||||
|
||||
def build_slack_response_blocks(
|
||||
tenant_id: str | None,
|
||||
message_info: SlackMessageInfo,
|
||||
answer: OneShotQAResponse,
|
||||
persona: Persona | None,
|
||||
channel_conf: ChannelConfig | None,
|
||||
use_citations: bool,
|
||||
feedback_reminder_id: str | None,
|
||||
skip_ai_feedback: bool = False,
|
||||
) -> list[Block]:
|
||||
"""
|
||||
This function is a top level function that builds all the blocks for the Slack response.
|
||||
It also handles combining all the blocks together.
|
||||
"""
|
||||
# If called with the DanswerBot slash command, the question is lost so we have to reshow it
|
||||
restate_question_block = get_restate_blocks(
|
||||
message_info.thread_messages[-1].message, message_info.is_bot_msg
|
||||
)
|
||||
|
||||
answer_blocks = _build_qa_response_blocks(
|
||||
answer=answer,
|
||||
skip_quotes=persona is not None or use_citations,
|
||||
process_message_for_citations=use_citations,
|
||||
)
|
||||
|
||||
web_follow_up_block = []
|
||||
if channel_conf and channel_conf.get("show_continue_in_web_ui"):
|
||||
web_follow_up_block.append(
|
||||
_build_continue_in_web_ui_block(
|
||||
tenant_id=tenant_id,
|
||||
message_id=answer.chat_message_id,
|
||||
)
|
||||
)
|
||||
|
||||
follow_up_block = []
|
||||
if channel_conf and channel_conf.get("follow_up_tags") is not None:
|
||||
follow_up_block.append(
|
||||
_build_follow_up_block(message_id=answer.chat_message_id)
|
||||
)
|
||||
|
||||
ai_feedback_block = []
|
||||
if answer.chat_message_id is not None and not skip_ai_feedback:
|
||||
ai_feedback_block.append(
|
||||
_build_qa_feedback_block(
|
||||
message_id=answer.chat_message_id,
|
||||
feedback_reminder_id=feedback_reminder_id,
|
||||
)
|
||||
)
|
||||
|
||||
citations_blocks = []
|
||||
document_blocks = []
|
||||
if use_citations:
|
||||
# if citations are enabled, only show cited documents
|
||||
citations_blocks = _build_citations_blocks(answer)
|
||||
else:
|
||||
document_blocks = _priority_ordered_documents_blocks(answer)
|
||||
|
||||
citations_divider = [DividerBlock()] if citations_blocks else []
|
||||
buttons_divider = [DividerBlock()] if web_follow_up_block or follow_up_block else []
|
||||
|
||||
all_blocks = (
|
||||
restate_question_block
|
||||
+ answer_blocks
|
||||
+ ai_feedback_block
|
||||
+ citations_divider
|
||||
+ citations_blocks
|
||||
+ document_blocks
|
||||
+ buttons_divider
|
||||
+ web_follow_up_block
|
||||
+ follow_up_block
|
||||
)
|
||||
return all_blocks
|
||||
|
||||
@@ -2,6 +2,7 @@ from enum import Enum
|
||||
|
||||
LIKE_BLOCK_ACTION_ID = "feedback-like"
|
||||
DISLIKE_BLOCK_ACTION_ID = "feedback-dislike"
|
||||
CONTINUE_IN_WEB_UI_ACTION_ID = "continue-in-web-ui"
|
||||
FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID = "feedback-doc-button"
|
||||
IMMEDIATE_RESOLVED_BUTTON_ACTION_ID = "immediate-resolved-button"
|
||||
FOLLOWUP_BUTTON_ACTION_ID = "followup-button"
|
||||
|
||||
@@ -28,7 +28,7 @@ from danswer.danswerbot.slack.models import SlackMessageInfo
|
||||
from danswer.danswerbot.slack.utils import build_feedback_id
|
||||
from danswer.danswerbot.slack.utils import decompose_action_id
|
||||
from danswer.danswerbot.slack.utils import fetch_group_ids_from_names
|
||||
from danswer.danswerbot.slack.utils import fetch_user_ids_from_emails
|
||||
from danswer.danswerbot.slack.utils import fetch_slack_user_ids_from_emails
|
||||
from danswer.danswerbot.slack.utils import get_channel_name_from_id
|
||||
from danswer.danswerbot.slack.utils import get_feedback_visibility
|
||||
from danswer.danswerbot.slack.utils import read_slack_thread
|
||||
@@ -267,7 +267,7 @@ def handle_followup_button(
|
||||
tag_names = slack_channel_config.channel_config.get("follow_up_tags")
|
||||
remaining = None
|
||||
if tag_names:
|
||||
tag_ids, remaining = fetch_user_ids_from_emails(
|
||||
tag_ids, remaining = fetch_slack_user_ids_from_emails(
|
||||
tag_names, client.web_client
|
||||
)
|
||||
if remaining:
|
||||
|
||||
@@ -13,7 +13,7 @@ from danswer.danswerbot.slack.handlers.handle_standard_answers import (
|
||||
handle_standard_answers,
|
||||
)
|
||||
from danswer.danswerbot.slack.models import SlackMessageInfo
|
||||
from danswer.danswerbot.slack.utils import fetch_user_ids_from_emails
|
||||
from danswer.danswerbot.slack.utils import fetch_slack_user_ids_from_emails
|
||||
from danswer.danswerbot.slack.utils import fetch_user_ids_from_groups
|
||||
from danswer.danswerbot.slack.utils import respond_in_thread
|
||||
from danswer.danswerbot.slack.utils import slack_usage_report
|
||||
@@ -184,7 +184,7 @@ def handle_message(
|
||||
send_to: list[str] | None = None
|
||||
missing_users: list[str] | None = None
|
||||
if respond_member_group_list:
|
||||
send_to, missing_ids = fetch_user_ids_from_emails(
|
||||
send_to, missing_ids = fetch_slack_user_ids_from_emails(
|
||||
respond_member_group_list, client
|
||||
)
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import TypeVar
|
||||
|
||||
from retry import retry
|
||||
from slack_sdk import WebClient
|
||||
from slack_sdk.models.blocks import DividerBlock
|
||||
from slack_sdk.models.blocks import SectionBlock
|
||||
|
||||
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
|
||||
@@ -21,12 +20,11 @@ from danswer.configs.danswerbot_configs import DANSWER_BOT_USE_QUOTES
|
||||
from danswer.configs.danswerbot_configs import DANSWER_FOLLOWUP_EMOJI
|
||||
from danswer.configs.danswerbot_configs import DANSWER_REACT_EMOJI
|
||||
from danswer.configs.danswerbot_configs import ENABLE_DANSWERBOT_REFLEXION
|
||||
from danswer.danswerbot.slack.blocks import build_documents_blocks
|
||||
from danswer.danswerbot.slack.blocks import build_follow_up_block
|
||||
from danswer.danswerbot.slack.blocks import build_qa_response_blocks
|
||||
from danswer.danswerbot.slack.blocks import build_sources_blocks
|
||||
from danswer.danswerbot.slack.blocks import get_restate_blocks
|
||||
from danswer.danswerbot.slack.formatting import format_slack_message
|
||||
from danswer.context.search.enums import OptionalSearchSetting
|
||||
from danswer.context.search.models import BaseFilters
|
||||
from danswer.context.search.models import RerankingDetails
|
||||
from danswer.context.search.models import RetrievalDetails
|
||||
from danswer.danswerbot.slack.blocks import build_slack_response_blocks
|
||||
from danswer.danswerbot.slack.handlers.utils import send_team_member_message
|
||||
from danswer.danswerbot.slack.models import SlackMessageInfo
|
||||
from danswer.danswerbot.slack.utils import respond_in_thread
|
||||
@@ -48,10 +46,6 @@ from danswer.llm.utils import get_max_input_tokens
|
||||
from danswer.one_shot_answer.answer_question import get_search_answer
|
||||
from danswer.one_shot_answer.models import DirectQARequest
|
||||
from danswer.one_shot_answer.models import OneShotQAResponse
|
||||
from danswer.search.enums import OptionalSearchSetting
|
||||
from danswer.search.models import BaseFilters
|
||||
from danswer.search.models import RerankingDetails
|
||||
from danswer.search.models import RetrievalDetails
|
||||
from danswer.utils.logger import DanswerLoggingAdapter
|
||||
|
||||
|
||||
@@ -411,62 +405,16 @@ def handle_regular_answer(
|
||||
)
|
||||
return True
|
||||
|
||||
# If called with the DanswerBot slash command, the question is lost so we have to reshow it
|
||||
restate_question_block = get_restate_blocks(messages[-1].message, is_bot_msg)
|
||||
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
|
||||
|
||||
answer_blocks = build_qa_response_blocks(
|
||||
message_id=answer.chat_message_id,
|
||||
answer=formatted_answer,
|
||||
quotes=answer.quotes.quotes if answer.quotes else None,
|
||||
source_filters=retrieval_info.applied_source_filters,
|
||||
time_cutoff=retrieval_info.applied_time_cutoff,
|
||||
favor_recent=retrieval_info.recency_bias_multiplier > 1,
|
||||
# currently Personas don't support quotes
|
||||
# if citations are enabled, also don't use quotes
|
||||
skip_quotes=persona is not None or use_citations,
|
||||
process_message_for_citations=use_citations,
|
||||
all_blocks = build_slack_response_blocks(
|
||||
tenant_id=tenant_id,
|
||||
message_info=message_info,
|
||||
answer=answer,
|
||||
persona=persona,
|
||||
channel_conf=channel_conf,
|
||||
use_citations=use_citations,
|
||||
feedback_reminder_id=feedback_reminder_id,
|
||||
)
|
||||
|
||||
# Get the chunks fed to the LLM only, then fill with other docs
|
||||
llm_doc_inds = answer.llm_selected_doc_indices or []
|
||||
llm_docs = [top_docs[i] for i in llm_doc_inds]
|
||||
remaining_docs = [
|
||||
doc for idx, doc in enumerate(top_docs) if idx not in llm_doc_inds
|
||||
]
|
||||
priority_ordered_docs = llm_docs + remaining_docs
|
||||
|
||||
document_blocks = []
|
||||
citations_block = []
|
||||
# if citations are enabled, only show cited documents
|
||||
if use_citations:
|
||||
citations = answer.citations or []
|
||||
cited_docs = []
|
||||
for citation in citations:
|
||||
matching_doc = next(
|
||||
(d for d in top_docs if d.document_id == citation.document_id),
|
||||
None,
|
||||
)
|
||||
if matching_doc:
|
||||
cited_docs.append((citation.citation_num, matching_doc))
|
||||
|
||||
cited_docs.sort()
|
||||
citations_block = build_sources_blocks(cited_documents=cited_docs)
|
||||
elif priority_ordered_docs:
|
||||
document_blocks = build_documents_blocks(
|
||||
documents=priority_ordered_docs,
|
||||
message_id=answer.chat_message_id,
|
||||
)
|
||||
document_blocks = [DividerBlock()] + document_blocks
|
||||
|
||||
all_blocks = (
|
||||
restate_question_block + answer_blocks + citations_block + document_blocks
|
||||
)
|
||||
|
||||
if channel_conf and channel_conf.get("follow_up_tags") is not None:
|
||||
all_blocks.append(build_follow_up_block(message_id=answer.chat_message_id))
|
||||
|
||||
try:
|
||||
respond_in_thread(
|
||||
client=client,
|
||||
|
||||
@@ -27,6 +27,7 @@ from danswer.configs.danswerbot_configs import DANSWER_BOT_REPHRASE_MESSAGE
|
||||
from danswer.configs.danswerbot_configs import DANSWER_BOT_RESPOND_EVERY_CHANNEL
|
||||
from danswer.configs.danswerbot_configs import NOTIFY_SLACKBOT_NO_ANSWER
|
||||
from danswer.connectors.slack.utils import expert_info_from_slack_id
|
||||
from danswer.context.search.retrieval.search_runner import download_nltk_data
|
||||
from danswer.danswerbot.slack.config import get_slack_channel_config_for_bot_and_channel
|
||||
from danswer.danswerbot.slack.config import MAX_TENANTS_PER_POD
|
||||
from danswer.danswerbot.slack.config import TENANT_ACQUISITION_INTERVAL
|
||||
@@ -75,7 +76,6 @@ from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
|
||||
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
|
||||
from danswer.one_shot_answer.models import ThreadMessage
|
||||
from danswer.redis.redis_pool import get_redis_client
|
||||
from danswer.search.retrieval.search_runner import download_nltk_data
|
||||
from danswer.server.manage.models import SlackBotTokens
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
|
||||
@@ -197,7 +197,9 @@ class SlackbotHandler:
|
||||
return
|
||||
|
||||
tokens_exist = tenant_bot_pair in self.slack_bot_tokens
|
||||
tokens_changed = slack_bot_tokens != self.slack_bot_tokens[tenant_bot_pair]
|
||||
tokens_changed = (
|
||||
tokens_exist and slack_bot_tokens != self.slack_bot_tokens[tenant_bot_pair]
|
||||
)
|
||||
if not tokens_exist or tokens_changed:
|
||||
if tokens_exist:
|
||||
logger.info(
|
||||
|
||||
@@ -3,9 +3,9 @@ import random
|
||||
import re
|
||||
import string
|
||||
import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
from typing import Optional
|
||||
|
||||
from retry import retry
|
||||
from slack_sdk import WebClient
|
||||
@@ -216,6 +216,13 @@ def build_feedback_id(
|
||||
return unique_prefix + ID_SEPARATOR + feedback_id
|
||||
|
||||
|
||||
def build_continue_in_web_ui_id(
|
||||
message_id: int,
|
||||
) -> str:
|
||||
unique_prefix = str(uuid.uuid4())[:10]
|
||||
return unique_prefix + ID_SEPARATOR + str(message_id)
|
||||
|
||||
|
||||
def decompose_action_id(feedback_id: str) -> tuple[int, str | None, int | None]:
|
||||
"""Decompose into query_id, document_id, document_rank, see above function"""
|
||||
try:
|
||||
@@ -313,7 +320,7 @@ def get_channel_name_from_id(
|
||||
raise e
|
||||
|
||||
|
||||
def fetch_user_ids_from_emails(
|
||||
def fetch_slack_user_ids_from_emails(
|
||||
user_emails: list[str], client: WebClient
|
||||
) -> tuple[list[str], list[str]]:
|
||||
user_ids: list[str] = []
|
||||
@@ -522,7 +529,7 @@ class SlackRateLimiter:
|
||||
self.last_reset_time = time.time()
|
||||
|
||||
def notify(
|
||||
self, client: WebClient, channel: str, position: int, thread_ts: Optional[str]
|
||||
self, client: WebClient, channel: str, position: int, thread_ts: str | None
|
||||
) -> None:
|
||||
respond_in_thread(
|
||||
client=client,
|
||||
|
||||
@@ -2,6 +2,7 @@ import uuid
|
||||
|
||||
from fastapi_users.password import PasswordHelper
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.orm import joinedload
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
@@ -45,14 +46,16 @@ def fetch_api_keys(db_session: Session) -> list[ApiKeyDescriptor]:
|
||||
]
|
||||
|
||||
|
||||
def fetch_user_for_api_key(hashed_api_key: str, db_session: Session) -> User | None:
|
||||
api_key = db_session.scalar(
|
||||
select(ApiKey).where(ApiKey.hashed_api_key == hashed_api_key)
|
||||
async def fetch_user_for_api_key(
|
||||
hashed_api_key: str, async_db_session: AsyncSession
|
||||
) -> User | None:
|
||||
"""NOTE: this is async, since it's used during auth
|
||||
(which is necessarily async due to FastAPI Users)"""
|
||||
return await async_db_session.scalar(
|
||||
select(User)
|
||||
.join(ApiKey, ApiKey.user_id == User.id)
|
||||
.where(ApiKey.hashed_api_key == hashed_api_key)
|
||||
)
|
||||
if api_key is None:
|
||||
return None
|
||||
|
||||
return db_session.scalar(select(User).where(User.id == api_key.user_id)) # type: ignore
|
||||
|
||||
|
||||
def get_api_key_fake_email(
|
||||
|
||||
@@ -3,6 +3,7 @@ from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import HTTPException
|
||||
from sqlalchemy import delete
|
||||
from sqlalchemy import desc
|
||||
from sqlalchemy import func
|
||||
@@ -18,6 +19,9 @@ from danswer.auth.schemas import UserRole
|
||||
from danswer.chat.models import DocumentRelevance
|
||||
from danswer.configs.chat_configs import HARD_DELETE_CHATS
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.context.search.models import RetrievalDocs
|
||||
from danswer.context.search.models import SavedSearchDoc
|
||||
from danswer.context.search.models import SearchDoc as ServerSearchDoc
|
||||
from danswer.db.models import ChatMessage
|
||||
from danswer.db.models import ChatMessage__SearchDoc
|
||||
from danswer.db.models import ChatSession
|
||||
@@ -27,13 +31,11 @@ from danswer.db.models import SearchDoc
|
||||
from danswer.db.models import SearchDoc as DBSearchDoc
|
||||
from danswer.db.models import ToolCall
|
||||
from danswer.db.models import User
|
||||
from danswer.db.persona import get_best_persona_id_for_user
|
||||
from danswer.db.pg_file_store import delete_lobj_by_name
|
||||
from danswer.file_store.models import FileDescriptor
|
||||
from danswer.llm.override_models import LLMOverride
|
||||
from danswer.llm.override_models import PromptOverride
|
||||
from danswer.search.models import RetrievalDocs
|
||||
from danswer.search.models import SavedSearchDoc
|
||||
from danswer.search.models import SearchDoc as ServerSearchDoc
|
||||
from danswer.server.query_and_chat.models import ChatMessageDetail
|
||||
from danswer.tools.tool_runner import ToolCallFinalResult
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -250,6 +252,50 @@ def create_chat_session(
|
||||
return chat_session
|
||||
|
||||
|
||||
def duplicate_chat_session_for_user_from_slack(
|
||||
db_session: Session,
|
||||
user: User | None,
|
||||
chat_session_id: UUID,
|
||||
) -> ChatSession:
|
||||
"""
|
||||
This takes a chat session id for a session in Slack and:
|
||||
- Creates a new chat session in the DB
|
||||
- Tries to copy the persona from the original chat session
|
||||
(if it is available to the user clicking the button)
|
||||
- Sets the user to the given user (if provided)
|
||||
"""
|
||||
chat_session = get_chat_session_by_id(
|
||||
chat_session_id=chat_session_id,
|
||||
user_id=None, # Ignore user permissions for this
|
||||
db_session=db_session,
|
||||
)
|
||||
if not chat_session:
|
||||
raise HTTPException(status_code=400, detail="Invalid Chat Session ID provided")
|
||||
|
||||
# This enforces permissions and sets a default
|
||||
new_persona_id = get_best_persona_id_for_user(
|
||||
db_session=db_session,
|
||||
user=user,
|
||||
persona_id=chat_session.persona_id,
|
||||
)
|
||||
|
||||
return create_chat_session(
|
||||
db_session=db_session,
|
||||
user_id=user.id if user else None,
|
||||
persona_id=new_persona_id,
|
||||
# Set this to empty string so the frontend will force a rename
|
||||
description="",
|
||||
llm_override=chat_session.llm_override,
|
||||
prompt_override=chat_session.prompt_override,
|
||||
# Chat sessions from Slack should put people in the chat UI, not the search
|
||||
one_shot=False,
|
||||
# Chat is in UI now so this is false
|
||||
danswerbot_flow=False,
|
||||
# Maybe we want this in the future to track if it was created from Slack
|
||||
slack_thread_id=None,
|
||||
)
|
||||
|
||||
|
||||
def update_chat_session(
|
||||
db_session: Session,
|
||||
user_id: UUID | None,
|
||||
@@ -336,6 +382,28 @@ def get_chat_message(
|
||||
return chat_message
|
||||
|
||||
|
||||
def get_chat_session_by_message_id(
|
||||
db_session: Session,
|
||||
message_id: int,
|
||||
) -> ChatSession:
|
||||
"""
|
||||
Should only be used for Slack
|
||||
Get the chat session associated with a specific message ID
|
||||
Note: this ignores permission checks.
|
||||
"""
|
||||
stmt = select(ChatMessage).where(ChatMessage.id == message_id)
|
||||
|
||||
result = db_session.execute(stmt)
|
||||
chat_message = result.scalar_one_or_none()
|
||||
|
||||
if chat_message is None:
|
||||
raise ValueError(
|
||||
f"Unable to find chat session associated with message ID: {message_id}"
|
||||
)
|
||||
|
||||
return chat_message.chat_session
|
||||
|
||||
|
||||
def get_chat_messages_by_sessions(
|
||||
chat_session_ids: list[UUID],
|
||||
user_id: UUID | None,
|
||||
@@ -355,6 +423,44 @@ def get_chat_messages_by_sessions(
|
||||
return db_session.execute(stmt).scalars().all()
|
||||
|
||||
|
||||
def add_chats_to_session_from_slack_thread(
|
||||
db_session: Session,
|
||||
slack_chat_session_id: UUID,
|
||||
new_chat_session_id: UUID,
|
||||
) -> None:
|
||||
new_root_message = get_or_create_root_message(
|
||||
chat_session_id=new_chat_session_id,
|
||||
db_session=db_session,
|
||||
)
|
||||
|
||||
for chat_message in get_chat_messages_by_sessions(
|
||||
chat_session_ids=[slack_chat_session_id],
|
||||
user_id=None, # Ignore user permissions for this
|
||||
db_session=db_session,
|
||||
skip_permission_check=True,
|
||||
):
|
||||
if chat_message.message_type == MessageType.SYSTEM:
|
||||
continue
|
||||
# Duplicate the message
|
||||
new_root_message = create_new_chat_message(
|
||||
db_session=db_session,
|
||||
chat_session_id=new_chat_session_id,
|
||||
parent_message=new_root_message,
|
||||
message=chat_message.message,
|
||||
files=chat_message.files,
|
||||
rephrased_query=chat_message.rephrased_query,
|
||||
error=chat_message.error,
|
||||
citations=chat_message.citations,
|
||||
reference_docs=chat_message.search_docs,
|
||||
tool_call=chat_message.tool_call,
|
||||
prompt_id=chat_message.prompt_id,
|
||||
token_count=chat_message.token_count,
|
||||
message_type=chat_message.message_type,
|
||||
alternate_assistant_id=chat_message.alternate_assistant_id,
|
||||
overridden_model=chat_message.overridden_model,
|
||||
)
|
||||
|
||||
|
||||
def get_search_docs_for_chat_message(
|
||||
chat_message_id: int, db_session: Session
|
||||
) -> list[SearchDoc]:
|
||||
|
||||
@@ -12,6 +12,7 @@ from sqlalchemy.orm import Session
|
||||
from danswer.configs.app_configs import DEFAULT_PRUNING_FREQ
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.connectors.models import InputType
|
||||
from danswer.db.enums import IndexingMode
|
||||
from danswer.db.models import Connector
|
||||
from danswer.db.models import ConnectorCredentialPair
|
||||
from danswer.db.models import IndexAttempt
|
||||
@@ -311,3 +312,25 @@ def mark_cc_pair_as_external_group_synced(db_session: Session, cc_pair_id: int)
|
||||
# If this changes, we need to update this function.
|
||||
cc_pair.last_time_external_group_sync = datetime.now(timezone.utc)
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def mark_ccpair_with_indexing_trigger(
|
||||
cc_pair_id: int, indexing_mode: IndexingMode | None, db_session: Session
|
||||
) -> None:
|
||||
"""indexing_mode sets a field which will be picked up by a background task
|
||||
to trigger indexing. Set to None to disable the trigger."""
|
||||
try:
|
||||
cc_pair = db_session.execute(
|
||||
select(ConnectorCredentialPair)
|
||||
.where(ConnectorCredentialPair.id == cc_pair_id)
|
||||
.with_for_update()
|
||||
).scalar_one()
|
||||
|
||||
if cc_pair is None:
|
||||
raise ValueError(f"No cc_pair with ID: {cc_pair_id}")
|
||||
|
||||
cc_pair.indexing_trigger = indexing_mode
|
||||
db_session.commit()
|
||||
except Exception:
|
||||
db_session.rollback()
|
||||
raise
|
||||
|
||||
@@ -324,8 +324,11 @@ def associate_default_cc_pair(db_session: Session) -> None:
|
||||
def _relate_groups_to_cc_pair__no_commit(
|
||||
db_session: Session,
|
||||
cc_pair_id: int,
|
||||
user_group_ids: list[int],
|
||||
user_group_ids: list[int] | None = None,
|
||||
) -> None:
|
||||
if not user_group_ids:
|
||||
return
|
||||
|
||||
for group_id in user_group_ids:
|
||||
db_session.add(
|
||||
UserGroup__ConnectorCredentialPair(
|
||||
@@ -402,12 +405,11 @@ def add_credential_to_connector(
|
||||
db_session.flush() # make sure the association has an id
|
||||
db_session.refresh(association)
|
||||
|
||||
if groups and access_type != AccessType.SYNC:
|
||||
_relate_groups_to_cc_pair__no_commit(
|
||||
db_session=db_session,
|
||||
cc_pair_id=association.id,
|
||||
user_group_ids=groups,
|
||||
)
|
||||
_relate_groups_to_cc_pair__no_commit(
|
||||
db_session=db_session,
|
||||
cc_pair_id=association.id,
|
||||
user_group_ids=groups,
|
||||
)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@ class IndexingStatus(str, PyEnum):
|
||||
NOT_STARTED = "not_started"
|
||||
IN_PROGRESS = "in_progress"
|
||||
SUCCESS = "success"
|
||||
CANCELED = "canceled"
|
||||
FAILED = "failed"
|
||||
COMPLETED_WITH_ERRORS = "completed_with_errors"
|
||||
|
||||
@@ -12,11 +13,17 @@ class IndexingStatus(str, PyEnum):
|
||||
terminal_states = {
|
||||
IndexingStatus.SUCCESS,
|
||||
IndexingStatus.COMPLETED_WITH_ERRORS,
|
||||
IndexingStatus.CANCELED,
|
||||
IndexingStatus.FAILED,
|
||||
}
|
||||
return self in terminal_states
|
||||
|
||||
|
||||
class IndexingMode(str, PyEnum):
|
||||
UPDATE = "update"
|
||||
REINDEX = "reindex"
|
||||
|
||||
|
||||
# these may differ in the future, which is why we're okay with this duplication
|
||||
class DeletionStatus(str, PyEnum):
|
||||
NOT_STARTED = "not_started"
|
||||
|
||||
@@ -67,6 +67,13 @@ def create_index_attempt(
|
||||
return new_attempt.id
|
||||
|
||||
|
||||
def delete_index_attempt(db_session: Session, index_attempt_id: int) -> None:
|
||||
index_attempt = get_index_attempt(db_session, index_attempt_id)
|
||||
if index_attempt:
|
||||
db_session.delete(index_attempt)
|
||||
db_session.commit()
|
||||
|
||||
|
||||
def mock_successful_index_attempt(
|
||||
connector_credential_pair_id: int,
|
||||
search_settings_id: int,
|
||||
@@ -218,6 +225,28 @@ def mark_attempt_partially_succeeded(
|
||||
raise
|
||||
|
||||
|
||||
def mark_attempt_canceled(
|
||||
index_attempt_id: int,
|
||||
db_session: Session,
|
||||
reason: str = "Unknown",
|
||||
) -> None:
|
||||
try:
|
||||
attempt = db_session.execute(
|
||||
select(IndexAttempt)
|
||||
.where(IndexAttempt.id == index_attempt_id)
|
||||
.with_for_update()
|
||||
).scalar_one()
|
||||
|
||||
if not attempt.time_started:
|
||||
attempt.time_started = datetime.now(timezone.utc)
|
||||
attempt.status = IndexingStatus.CANCELED
|
||||
attempt.error_msg = reason
|
||||
db_session.commit()
|
||||
except Exception:
|
||||
db_session.rollback()
|
||||
raise
|
||||
|
||||
|
||||
def mark_attempt_failed(
|
||||
index_attempt_id: int,
|
||||
db_session: Session,
|
||||
|
||||
@@ -42,7 +42,7 @@ from danswer.configs.constants import DEFAULT_BOOST
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.configs.constants import FileOrigin
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.db.enums import AccessType
|
||||
from danswer.db.enums import AccessType, IndexingMode
|
||||
from danswer.configs.constants import NotificationType
|
||||
from danswer.configs.constants import SearchFeedbackType
|
||||
from danswer.configs.constants import TokenRateLimitScope
|
||||
@@ -57,7 +57,7 @@ from danswer.utils.special_types import JSON_ro
|
||||
from danswer.file_store.models import FileDescriptor
|
||||
from danswer.llm.override_models import LLMOverride
|
||||
from danswer.llm.override_models import PromptOverride
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.utils.encryption import decrypt_bytes_to_string
|
||||
from danswer.utils.encryption import encrypt_string_to_bytes
|
||||
from danswer.utils.headers import HeaderItemDict
|
||||
@@ -126,6 +126,7 @@ class User(SQLAlchemyBaseUserTableUUID, Base):
|
||||
|
||||
# if specified, controls the assistants that are shown to the user + their order
|
||||
# if not specified, all assistants are shown
|
||||
auto_scroll: Mapped[bool] = mapped_column(Boolean, default=True)
|
||||
chosen_assistants: Mapped[list[int] | None] = mapped_column(
|
||||
postgresql.JSONB(), nullable=True, default=None
|
||||
)
|
||||
@@ -438,6 +439,10 @@ class ConnectorCredentialPair(Base):
|
||||
|
||||
total_docs_indexed: Mapped[int] = mapped_column(Integer, default=0)
|
||||
|
||||
indexing_trigger: Mapped[IndexingMode | None] = mapped_column(
|
||||
Enum(IndexingMode, native_enum=False), nullable=True
|
||||
)
|
||||
|
||||
connector: Mapped["Connector"] = relationship(
|
||||
"Connector", back_populates="credentials"
|
||||
)
|
||||
@@ -1181,7 +1186,7 @@ class LLMProvider(Base):
|
||||
default_model_name: Mapped[str] = mapped_column(String)
|
||||
fast_default_model_name: Mapped[str | None] = mapped_column(String, nullable=True)
|
||||
|
||||
# Models to actually disp;aly to users
|
||||
# Models to actually display to users
|
||||
# If nulled out, we assume in the application logic we should present all
|
||||
display_model_names: Mapped[list[str] | None] = mapped_column(
|
||||
postgresql.ARRAY(String), nullable=True
|
||||
@@ -1480,6 +1485,7 @@ class ChannelConfig(TypedDict):
|
||||
# If None then no follow up
|
||||
# If empty list, follow up with no tags
|
||||
follow_up_tags: NotRequired[list[str]]
|
||||
show_continue_in_web_ui: NotRequired[bool] # defaults to False
|
||||
|
||||
|
||||
class SlackBotResponseType(str, PyEnum):
|
||||
|
||||
@@ -20,6 +20,7 @@ from danswer.auth.schemas import UserRole
|
||||
from danswer.configs.chat_configs import BING_API_KEY
|
||||
from danswer.configs.chat_configs import CONTEXT_CHUNKS_ABOVE
|
||||
from danswer.configs.chat_configs import CONTEXT_CHUNKS_BELOW
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
|
||||
from danswer.db.engine import get_sqlalchemy_engine
|
||||
from danswer.db.models import DocumentSet
|
||||
@@ -33,7 +34,6 @@ from danswer.db.models import Tool
|
||||
from danswer.db.models import User
|
||||
from danswer.db.models import User__UserGroup
|
||||
from danswer.db.models import UserGroup
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.server.features.persona.models import CreatePersonaRequest
|
||||
from danswer.server.features.persona.models import PersonaSnapshot
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -113,6 +113,31 @@ def fetch_persona_by_id(
|
||||
return persona
|
||||
|
||||
|
||||
def get_best_persona_id_for_user(
|
||||
db_session: Session, user: User | None, persona_id: int | None = None
|
||||
) -> int | None:
|
||||
if persona_id is not None:
|
||||
stmt = select(Persona).where(Persona.id == persona_id).distinct()
|
||||
stmt = _add_user_filters(
|
||||
stmt=stmt,
|
||||
user=user,
|
||||
# We don't want to filter by editable here, we just want to see if the
|
||||
# persona is usable by the user
|
||||
get_editable=False,
|
||||
)
|
||||
persona = db_session.scalars(stmt).one_or_none()
|
||||
if persona:
|
||||
return persona.id
|
||||
|
||||
# If the persona is not found, or the slack bot is using doc sets instead of personas,
|
||||
# we need to find the best persona for the user
|
||||
# This is the persona with the highest display priority that the user has access to
|
||||
stmt = select(Persona).order_by(Persona.display_priority.desc()).distinct()
|
||||
stmt = _add_user_filters(stmt=stmt, user=user, get_editable=True)
|
||||
persona = db_session.scalars(stmt).one_or_none()
|
||||
return persona.id if persona else None
|
||||
|
||||
|
||||
def _get_persona_by_name(
|
||||
persona_name: str, user: User | None, db_session: Session
|
||||
) -> Persona | None:
|
||||
@@ -160,7 +185,7 @@ def create_update_persona(
|
||||
"persona_id": persona_id,
|
||||
"user": user,
|
||||
"db_session": db_session,
|
||||
**create_persona_request.dict(exclude={"users", "groups"}),
|
||||
**create_persona_request.model_dump(exclude={"users", "groups"}),
|
||||
}
|
||||
|
||||
persona = upsert_persona(**persona_data)
|
||||
@@ -259,7 +284,6 @@ def get_personas(
|
||||
) -> Sequence[Persona]:
|
||||
stmt = select(Persona).distinct()
|
||||
stmt = _add_user_filters(stmt=stmt, user=user, get_editable=get_editable)
|
||||
|
||||
if not include_default:
|
||||
stmt = stmt.where(Persona.builtin_persona.is_(False))
|
||||
if not include_slack_bot_personas:
|
||||
@@ -391,6 +415,9 @@ def upsert_prompt(
|
||||
return prompt
|
||||
|
||||
|
||||
# NOTE: This operation cannot update persona configuration options that
|
||||
# are core to the persona, such as its display priority and
|
||||
# whether or not the assistant is a built-in / default assistant
|
||||
def upsert_persona(
|
||||
user: User | None,
|
||||
name: str,
|
||||
@@ -459,7 +486,7 @@ def upsert_persona(
|
||||
validate_persona_tools(tools)
|
||||
|
||||
if persona:
|
||||
if not builtin_persona and persona.builtin_persona:
|
||||
if persona.builtin_persona and not builtin_persona:
|
||||
raise ValueError("Cannot update builtin persona with non-builtin.")
|
||||
|
||||
# this checks if the user has permission to edit the persona
|
||||
@@ -475,7 +502,6 @@ def upsert_persona(
|
||||
persona.llm_relevance_filter = llm_relevance_filter
|
||||
persona.llm_filter_extraction = llm_filter_extraction
|
||||
persona.recency_bias = recency_bias
|
||||
persona.builtin_persona = builtin_persona
|
||||
persona.llm_model_provider_override = llm_model_provider_override
|
||||
persona.llm_model_version_override = llm_model_version_override
|
||||
persona.starter_messages = starter_messages
|
||||
@@ -485,10 +511,8 @@ def upsert_persona(
|
||||
persona.icon_shape = icon_shape
|
||||
if remove_image or uploaded_image_id:
|
||||
persona.uploaded_image_id = uploaded_image_id
|
||||
persona.display_priority = display_priority
|
||||
persona.is_visible = is_visible
|
||||
persona.search_start_date = search_start_date
|
||||
persona.is_default_persona = is_default_persona
|
||||
persona.category_id = category_id
|
||||
# Do not delete any associations manually added unless
|
||||
# a new updated list is provided
|
||||
@@ -734,6 +758,8 @@ def get_prompt_by_name(
|
||||
if user and user.role != UserRole.ADMIN:
|
||||
stmt = stmt.where(Prompt.user_id == user.id)
|
||||
|
||||
# Order by ID to ensure consistent result when multiple prompts exist
|
||||
stmt = stmt.order_by(Prompt.id).limit(1)
|
||||
result = db_session.execute(stmt).scalar_one_or_none()
|
||||
return result
|
||||
|
||||
|
||||
@@ -12,6 +12,7 @@ from danswer.configs.model_configs import NORMALIZE_EMBEDDINGS
|
||||
from danswer.configs.model_configs import OLD_DEFAULT_DOCUMENT_ENCODER_MODEL
|
||||
from danswer.configs.model_configs import OLD_DEFAULT_MODEL_DOC_EMBEDDING_DIM
|
||||
from danswer.configs.model_configs import OLD_DEFAULT_MODEL_NORMALIZE_EMBEDDINGS
|
||||
from danswer.context.search.models import SavedSearchSettings
|
||||
from danswer.db.engine import get_session_with_default_tenant
|
||||
from danswer.db.llm import fetch_embedding_provider
|
||||
from danswer.db.models import CloudEmbeddingProvider
|
||||
@@ -21,7 +22,6 @@ from danswer.db.models import SearchSettings
|
||||
from danswer.indexing.models import IndexingSetting
|
||||
from danswer.natural_language_processing.search_nlp_models import clean_model_name
|
||||
from danswer.natural_language_processing.search_nlp_models import warm_up_cross_encoder
|
||||
from danswer.search.models import SavedSearchSettings
|
||||
from danswer.server.manage.embedding.models import (
|
||||
CloudEmbeddingProvider as ServerCloudEmbeddingProvider,
|
||||
)
|
||||
@@ -143,6 +143,25 @@ def get_secondary_search_settings(db_session: Session) -> SearchSettings | None:
|
||||
return latest_settings
|
||||
|
||||
|
||||
def get_active_search_settings(db_session: Session) -> list[SearchSettings]:
|
||||
"""Returns active search settings. The first entry will always be the current search
|
||||
settings. If there are new search settings that are being migrated to, those will be
|
||||
the second entry."""
|
||||
search_settings_list: list[SearchSettings] = []
|
||||
|
||||
# Get the primary search settings
|
||||
primary_search_settings = get_current_search_settings(db_session)
|
||||
search_settings_list.append(primary_search_settings)
|
||||
|
||||
# Check for secondary search settings
|
||||
secondary_search_settings = get_secondary_search_settings(db_session)
|
||||
if secondary_search_settings is not None:
|
||||
# If secondary settings exist, add them to the list
|
||||
search_settings_list.append(secondary_search_settings)
|
||||
|
||||
return search_settings_list
|
||||
|
||||
|
||||
def get_all_search_settings(db_session: Session) -> list[SearchSettings]:
|
||||
query = select(SearchSettings).order_by(SearchSettings.id.desc())
|
||||
result = db_session.execute(query)
|
||||
|
||||
@@ -5,6 +5,7 @@ from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
|
||||
from danswer.db.models import ChannelConfig
|
||||
from danswer.db.models import Persona
|
||||
@@ -15,7 +16,6 @@ from danswer.db.models import User
|
||||
from danswer.db.persona import get_default_prompt
|
||||
from danswer.db.persona import mark_persona_as_deleted
|
||||
from danswer.db.persona import upsert_persona
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.utils.errors import EERequiredError
|
||||
from danswer.utils.variable_functionality import (
|
||||
fetch_versioned_implementation_with_fallback,
|
||||
|
||||
@@ -103,17 +103,6 @@ def list_users(
|
||||
return db_session.scalars(stmt).unique().all()
|
||||
|
||||
|
||||
def get_users_by_emails(
|
||||
db_session: Session, emails: list[str]
|
||||
) -> tuple[list[User], list[str]]:
|
||||
# Use distinct to avoid duplicates
|
||||
stmt = select(User).filter(User.email.in_(emails)) # type: ignore
|
||||
found_users = list(db_session.scalars(stmt).unique().all()) # Convert to list
|
||||
found_users_emails = [user.email for user in found_users]
|
||||
missing_user_emails = [email for email in emails if email not in found_users_emails]
|
||||
return found_users, missing_user_emails
|
||||
|
||||
|
||||
def get_user_by_email(email: str, db_session: Session) -> User | None:
|
||||
user = (
|
||||
db_session.query(User)
|
||||
@@ -128,7 +117,7 @@ def fetch_user_by_id(db_session: Session, user_id: UUID) -> User | None:
|
||||
return db_session.query(User).filter(User.id == user_id).first() # type: ignore
|
||||
|
||||
|
||||
def _generate_non_web_slack_user(email: str) -> User:
|
||||
def _generate_slack_user(email: str) -> User:
|
||||
fastapi_users_pw_helper = PasswordHelper()
|
||||
password = fastapi_users_pw_helper.generate()
|
||||
hashed_pass = fastapi_users_pw_helper.hash(password)
|
||||
@@ -149,13 +138,29 @@ def add_slack_user_if_not_exists(db_session: Session, email: str) -> User:
|
||||
db_session.commit()
|
||||
return user
|
||||
|
||||
user = _generate_non_web_slack_user(email=email)
|
||||
user = _generate_slack_user(email=email)
|
||||
db_session.add(user)
|
||||
db_session.commit()
|
||||
return user
|
||||
|
||||
|
||||
def _generate_non_web_permissioned_user(email: str) -> User:
|
||||
def _get_users_by_emails(
|
||||
db_session: Session, lower_emails: list[str]
|
||||
) -> tuple[list[User], list[str]]:
|
||||
stmt = select(User).filter(func.lower(User.email).in_(lower_emails)) # type: ignore
|
||||
found_users = list(db_session.scalars(stmt).unique().all()) # Convert to list
|
||||
|
||||
# Extract found emails and convert to lowercase to avoid case sensitivity issues
|
||||
found_users_emails = [user.email.lower() for user in found_users]
|
||||
|
||||
# Separate emails for users that were not found
|
||||
missing_user_emails = [
|
||||
email for email in lower_emails if email not in found_users_emails
|
||||
]
|
||||
return found_users, missing_user_emails
|
||||
|
||||
|
||||
def _generate_ext_permissioned_user(email: str) -> User:
|
||||
fastapi_users_pw_helper = PasswordHelper()
|
||||
password = fastapi_users_pw_helper.generate()
|
||||
hashed_pass = fastapi_users_pw_helper.hash(password)
|
||||
@@ -169,12 +174,12 @@ def _generate_non_web_permissioned_user(email: str) -> User:
|
||||
def batch_add_ext_perm_user_if_not_exists(
|
||||
db_session: Session, emails: list[str]
|
||||
) -> list[User]:
|
||||
emails = [email.lower() for email in emails]
|
||||
found_users, missing_user_emails = get_users_by_emails(db_session, emails)
|
||||
lower_emails = [email.lower() for email in emails]
|
||||
found_users, missing_lower_emails = _get_users_by_emails(db_session, lower_emails)
|
||||
|
||||
new_users: list[User] = []
|
||||
for email in missing_user_emails:
|
||||
new_users.append(_generate_non_web_permissioned_user(email=email))
|
||||
for email in missing_lower_emails:
|
||||
new_users.append(_generate_ext_permissioned_user(email=email))
|
||||
|
||||
db_session.add_all(new_users)
|
||||
db_session.commit()
|
||||
|
||||
@@ -3,10 +3,10 @@ import uuid
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.db.search_settings import get_current_search_settings
|
||||
from danswer.db.search_settings import get_secondary_search_settings
|
||||
from danswer.indexing.models import IndexChunk
|
||||
from danswer.search.models import InferenceChunk
|
||||
|
||||
|
||||
DEFAULT_BATCH_SIZE = 30
|
||||
|
||||
@@ -4,9 +4,9 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.access.models import DocumentAccess
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import InferenceChunkUncleaned
|
||||
from danswer.indexing.models import DocMetadataAwareIndexChunk
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import InferenceChunkUncleaned
|
||||
from shared_configs.model_server_models import Embedding
|
||||
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@ import httpx
|
||||
from retry import retry
|
||||
|
||||
from danswer.configs.app_configs import LOG_VESPA_TIMING_INFORMATION
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import InferenceChunkUncleaned
|
||||
from danswer.document_index.interfaces import VespaChunkRequest
|
||||
from danswer.document_index.vespa.shared_utils.utils import get_vespa_http_client
|
||||
from danswer.document_index.vespa.shared_utils.vespa_request_builders import (
|
||||
@@ -44,8 +46,6 @@ from danswer.document_index.vespa_constants import SOURCE_LINKS
|
||||
from danswer.document_index.vespa_constants import SOURCE_TYPE
|
||||
from danswer.document_index.vespa_constants import TITLE
|
||||
from danswer.document_index.vespa_constants import YQL_BASE
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import InferenceChunkUncleaned
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
|
||||
|
||||
|
||||
@@ -22,6 +22,8 @@ from danswer.configs.chat_configs import NUM_RETURNED_HITS
|
||||
from danswer.configs.chat_configs import TITLE_CONTENT_RATIO
|
||||
from danswer.configs.chat_configs import VESPA_SEARCHER_THREADS
|
||||
from danswer.configs.constants import KV_REINDEX_KEY
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.context.search.models import InferenceChunkUncleaned
|
||||
from danswer.document_index.interfaces import DocumentIndex
|
||||
from danswer.document_index.interfaces import DocumentInsertionRecord
|
||||
from danswer.document_index.interfaces import UpdateRequest
|
||||
@@ -68,8 +70,6 @@ from danswer.document_index.vespa_constants import VESPA_TIMEOUT
|
||||
from danswer.document_index.vespa_constants import YQL_BASE
|
||||
from danswer.indexing.models import DocMetadataAwareIndexChunk
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.search.models import InferenceChunkUncleaned
|
||||
from danswer.utils.batching import batch_generator
|
||||
from danswer.utils.logger import setup_logger
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
|
||||
@@ -3,6 +3,7 @@ from datetime import timedelta
|
||||
from datetime import timezone
|
||||
|
||||
from danswer.configs.constants import INDEX_SEPARATOR
|
||||
from danswer.context.search.models import IndexFilters
|
||||
from danswer.document_index.interfaces import VespaChunkRequest
|
||||
from danswer.document_index.vespa_constants import ACCESS_CONTROL_LIST
|
||||
from danswer.document_index.vespa_constants import CHUNK_ID
|
||||
@@ -13,7 +14,6 @@ from danswer.document_index.vespa_constants import HIDDEN
|
||||
from danswer.document_index.vespa_constants import METADATA_LIST
|
||||
from danswer.document_index.vespa_constants import SOURCE_TYPE
|
||||
from danswer.document_index.vespa_constants import TENANT_ID
|
||||
from danswer.search.models import IndexFilters
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -295,7 +295,7 @@ def pptx_to_text(file: IO[Any]) -> str:
|
||||
|
||||
|
||||
def xlsx_to_text(file: IO[Any]) -> str:
|
||||
workbook = openpyxl.load_workbook(file)
|
||||
workbook = openpyxl.load_workbook(file, read_only=True)
|
||||
text_content = []
|
||||
for sheet in workbook.worksheets:
|
||||
sheet_string = "\n".join(
|
||||
|
||||
@@ -10,10 +10,11 @@ from danswer.connectors.cross_connector_utils.miscellaneous_utils import (
|
||||
get_metadata_keys_to_ignore,
|
||||
)
|
||||
from danswer.connectors.models import Document
|
||||
from danswer.indexing.indexing_heartbeat import Heartbeat
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.indexing.models import DocAwareChunk
|
||||
from danswer.natural_language_processing.utils import BaseTokenizer
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.text_processing import clean_text
|
||||
from danswer.utils.text_processing import shared_precompare_cleanup
|
||||
from shared_configs.configs import STRICT_CHUNK_TOKEN_LIMIT
|
||||
|
||||
@@ -125,7 +126,7 @@ class Chunker:
|
||||
chunk_token_limit: int = DOC_EMBEDDING_CONTEXT_SIZE,
|
||||
chunk_overlap: int = CHUNK_OVERLAP,
|
||||
mini_chunk_size: int = MINI_CHUNK_SIZE,
|
||||
heartbeat: Heartbeat | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> None:
|
||||
from llama_index.text_splitter import SentenceSplitter
|
||||
|
||||
@@ -134,7 +135,7 @@ class Chunker:
|
||||
self.enable_multipass = enable_multipass
|
||||
self.enable_large_chunks = enable_large_chunks
|
||||
self.tokenizer = tokenizer
|
||||
self.heartbeat = heartbeat
|
||||
self.callback = callback
|
||||
|
||||
self.blurb_splitter = SentenceSplitter(
|
||||
tokenizer=tokenizer.tokenize,
|
||||
@@ -220,9 +221,20 @@ class Chunker:
|
||||
mini_chunk_texts=self._get_mini_chunk_texts(text),
|
||||
)
|
||||
|
||||
for section in document.sections:
|
||||
section_text = section.text
|
||||
for section_idx, section in enumerate(document.sections):
|
||||
section_text = clean_text(section.text)
|
||||
section_link_text = section.link or ""
|
||||
# If there is no useful content, not even the title, just drop it
|
||||
if not section_text and (not document.title or section_idx > 0):
|
||||
# If a section is empty and the document has no title, we can just drop it. We return a list of
|
||||
# DocAwareChunks where each one contains the necessary information needed down the line for indexing.
|
||||
# There is no concern about dropping whole documents from this list, it should not cause any indexing failures.
|
||||
logger.warning(
|
||||
f"Skipping section {section.text} from document "
|
||||
f"{document.semantic_identifier} due to empty text after cleaning "
|
||||
f" with link {section_link_text}"
|
||||
)
|
||||
continue
|
||||
|
||||
section_token_count = len(self.tokenizer.tokenize(section_text))
|
||||
|
||||
@@ -238,31 +250,26 @@ class Chunker:
|
||||
split_texts = self.chunk_splitter.split_text(section_text)
|
||||
|
||||
for i, split_text in enumerate(split_texts):
|
||||
split_token_count = len(self.tokenizer.tokenize(split_text))
|
||||
|
||||
if STRICT_CHUNK_TOKEN_LIMIT:
|
||||
split_token_count = len(self.tokenizer.tokenize(split_text))
|
||||
if split_token_count > content_token_limit:
|
||||
# Further split the oversized chunk
|
||||
smaller_chunks = self._split_oversized_chunk(
|
||||
split_text, content_token_limit
|
||||
)
|
||||
for i, small_chunk in enumerate(smaller_chunks):
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
text=small_chunk,
|
||||
links={0: section_link_text},
|
||||
is_continuation=(i != 0),
|
||||
)
|
||||
)
|
||||
else:
|
||||
if (
|
||||
STRICT_CHUNK_TOKEN_LIMIT
|
||||
and
|
||||
# Tokenizer only runs if STRICT_CHUNK_TOKEN_LIMIT is true
|
||||
len(self.tokenizer.tokenize(split_text)) > content_token_limit
|
||||
):
|
||||
# If STRICT_CHUNK_TOKEN_LIMIT is true, manually check
|
||||
# the token count of each split text to ensure it is
|
||||
# not larger than the content_token_limit
|
||||
smaller_chunks = self._split_oversized_chunk(
|
||||
split_text, content_token_limit
|
||||
)
|
||||
for i, small_chunk in enumerate(smaller_chunks):
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
text=split_text,
|
||||
text=small_chunk,
|
||||
links={0: section_link_text},
|
||||
is_continuation=(i != 0),
|
||||
)
|
||||
)
|
||||
|
||||
else:
|
||||
chunks.append(
|
||||
_create_chunk(
|
||||
@@ -354,11 +361,20 @@ class Chunker:
|
||||
return normal_chunks
|
||||
|
||||
def chunk(self, documents: list[Document]) -> list[DocAwareChunk]:
|
||||
"""
|
||||
Takes in a list of documents and chunks them into smaller chunks for indexing
|
||||
while persisting the document metadata.
|
||||
"""
|
||||
final_chunks: list[DocAwareChunk] = []
|
||||
for document in documents:
|
||||
final_chunks.extend(self._handle_single_document(document))
|
||||
if self.callback:
|
||||
if self.callback.should_stop():
|
||||
raise RuntimeError("Chunker.chunk: Stop signal detected")
|
||||
|
||||
if self.heartbeat:
|
||||
self.heartbeat.heartbeat()
|
||||
chunks = self._handle_single_document(document)
|
||||
final_chunks.extend(chunks)
|
||||
|
||||
if self.callback:
|
||||
self.callback.progress("Chunker.chunk", len(chunks))
|
||||
|
||||
return final_chunks
|
||||
|
||||
@@ -2,7 +2,7 @@ from abc import ABC
|
||||
from abc import abstractmethod
|
||||
|
||||
from danswer.db.models import SearchSettings
|
||||
from danswer.indexing.indexing_heartbeat import Heartbeat
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.indexing.models import ChunkEmbedding
|
||||
from danswer.indexing.models import DocAwareChunk
|
||||
from danswer.indexing.models import IndexChunk
|
||||
@@ -34,7 +34,7 @@ class IndexingEmbedder(ABC):
|
||||
api_url: str | None,
|
||||
api_version: str | None,
|
||||
deployment_name: str | None,
|
||||
heartbeat: Heartbeat | None,
|
||||
callback: IndexingHeartbeatInterface | None,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.normalize = normalize
|
||||
@@ -60,7 +60,7 @@ class IndexingEmbedder(ABC):
|
||||
server_host=INDEXING_MODEL_SERVER_HOST,
|
||||
server_port=INDEXING_MODEL_SERVER_PORT,
|
||||
retrim_content=True,
|
||||
heartbeat=heartbeat,
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
@@ -83,7 +83,7 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
|
||||
api_url: str | None = None,
|
||||
api_version: str | None = None,
|
||||
deployment_name: str | None = None,
|
||||
heartbeat: Heartbeat | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
):
|
||||
super().__init__(
|
||||
model_name,
|
||||
@@ -95,7 +95,7 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
|
||||
api_url,
|
||||
api_version,
|
||||
deployment_name,
|
||||
heartbeat,
|
||||
callback,
|
||||
)
|
||||
|
||||
@log_function_time()
|
||||
@@ -201,7 +201,9 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
|
||||
|
||||
@classmethod
|
||||
def from_db_search_settings(
|
||||
cls, search_settings: SearchSettings, heartbeat: Heartbeat | None = None
|
||||
cls,
|
||||
search_settings: SearchSettings,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> "DefaultIndexingEmbedder":
|
||||
return cls(
|
||||
model_name=search_settings.model_name,
|
||||
@@ -213,5 +215,5 @@ class DefaultIndexingEmbedder(IndexingEmbedder):
|
||||
api_url=search_settings.api_url,
|
||||
api_version=search_settings.api_version,
|
||||
deployment_name=search_settings.deployment_name,
|
||||
heartbeat=heartbeat,
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
@@ -1,41 +1,15 @@
|
||||
import abc
|
||||
from typing import Any
|
||||
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.db.index_attempt import get_index_attempt
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
class Heartbeat(abc.ABC):
|
||||
"""Useful for any long-running work that goes through a bunch of items
|
||||
and needs to occasionally give updates on progress.
|
||||
e.g. chunking, embedding, updating vespa, etc."""
|
||||
class IndexingHeartbeatInterface(ABC):
|
||||
"""Defines a callback interface to be passed to
|
||||
to run_indexing_entrypoint."""
|
||||
|
||||
@abc.abstractmethod
|
||||
def heartbeat(self, metadata: Any = None) -> None:
|
||||
raise NotImplementedError
|
||||
@abstractmethod
|
||||
def should_stop(self) -> bool:
|
||||
"""Signal to stop the looping function in flight."""
|
||||
|
||||
|
||||
class IndexingHeartbeat(Heartbeat):
|
||||
def __init__(self, index_attempt_id: int, db_session: Session, freq: int):
|
||||
self.cnt = 0
|
||||
|
||||
self.index_attempt_id = index_attempt_id
|
||||
self.db_session = db_session
|
||||
self.freq = freq
|
||||
|
||||
def heartbeat(self, metadata: Any = None) -> None:
|
||||
self.cnt += 1
|
||||
if self.cnt % self.freq == 0:
|
||||
index_attempt = get_index_attempt(
|
||||
db_session=self.db_session, index_attempt_id=self.index_attempt_id
|
||||
)
|
||||
if index_attempt:
|
||||
index_attempt.time_updated = func.now()
|
||||
self.db_session.commit()
|
||||
else:
|
||||
logger.error("Index attempt not found, this should not happen!")
|
||||
@abstractmethod
|
||||
def progress(self, tag: str, amount: int) -> None:
|
||||
"""Send progress updates to the caller."""
|
||||
|
||||
@@ -34,7 +34,7 @@ from danswer.document_index.interfaces import DocumentIndex
|
||||
from danswer.document_index.interfaces import DocumentMetadata
|
||||
from danswer.indexing.chunker import Chunker
|
||||
from danswer.indexing.embedder import IndexingEmbedder
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeat
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.indexing.models import DocAwareChunk
|
||||
from danswer.indexing.models import DocMetadataAwareIndexChunk
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -414,6 +414,7 @@ def build_indexing_pipeline(
|
||||
ignore_time_skip: bool = False,
|
||||
attempt_id: int | None = None,
|
||||
tenant_id: str | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
) -> IndexingPipelineProtocol:
|
||||
"""Builds a pipeline which takes in a list (batch) of docs and indexes them."""
|
||||
search_settings = get_current_search_settings(db_session)
|
||||
@@ -440,13 +441,8 @@ def build_indexing_pipeline(
|
||||
tokenizer=embedder.embedding_model.tokenizer,
|
||||
enable_multipass=multipass,
|
||||
enable_large_chunks=enable_large_chunks,
|
||||
# after every doc, update status in case there are a bunch of
|
||||
# really long docs
|
||||
heartbeat=IndexingHeartbeat(
|
||||
index_attempt_id=attempt_id, db_session=db_session, freq=1
|
||||
)
|
||||
if attempt_id
|
||||
else None,
|
||||
# after every doc, update status in case there are a bunch of really long docs
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
return partial(
|
||||
|
||||
@@ -233,6 +233,8 @@ class Answer:
|
||||
|
||||
# DEBUG: good breakpoint
|
||||
stream = self.llm.stream(
|
||||
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
|
||||
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
|
||||
prompt=current_llm_call.prompt_builder.build(),
|
||||
tools=[tool.tool_definition() for tool in current_llm_call.tools] or None,
|
||||
tool_choice=(
|
||||
|
||||
@@ -58,8 +58,8 @@ class AnswerPromptBuilder:
|
||||
user_message: HumanMessage,
|
||||
message_history: list[PreviousMessage],
|
||||
llm_config: LLMConfig,
|
||||
raw_user_text: str,
|
||||
single_message_history: str | None = None,
|
||||
raw_user_text: str | None = None,
|
||||
) -> None:
|
||||
self.max_tokens = compute_max_llm_input_tokens(llm_config)
|
||||
|
||||
@@ -89,11 +89,7 @@ class AnswerPromptBuilder:
|
||||
|
||||
self.new_messages_and_token_cnts: list[tuple[BaseMessage, int]] = []
|
||||
|
||||
self.raw_user_message = (
|
||||
HumanMessage(content=raw_user_text)
|
||||
if raw_user_text is not None
|
||||
else user_message
|
||||
)
|
||||
self.raw_user_message = raw_user_text
|
||||
|
||||
def update_system_prompt(self, system_message: SystemMessage | None) -> None:
|
||||
if not system_message:
|
||||
|
||||
@@ -3,6 +3,7 @@ from langchain.schema.messages import SystemMessage
|
||||
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.configs.model_configs import GEN_AI_SINGLE_USER_MESSAGE_EXPECTED_MAX_TOKENS
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.db.models import Persona
|
||||
from danswer.db.persona import get_default_prompt__read_only
|
||||
from danswer.db.search_settings import get_multilingual_expansion
|
||||
@@ -29,7 +30,6 @@ from danswer.prompts.token_counts import (
|
||||
from danswer.prompts.token_counts import CITATION_REMINDER_TOKEN_CNT
|
||||
from danswer.prompts.token_counts import CITATION_STATEMENT_TOKEN_CNT
|
||||
from danswer.prompts.token_counts import LANGUAGE_HINT_TOKEN_CNT
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
@@ -2,45 +2,15 @@ from langchain.schema.messages import HumanMessage
|
||||
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.configs.chat_configs import LANGUAGE_HINT
|
||||
from danswer.configs.chat_configs import QA_PROMPT_OVERRIDE
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.db.search_settings import get_multilingual_expansion
|
||||
from danswer.llm.answering.models import PromptConfig
|
||||
from danswer.llm.utils import message_to_prompt_and_imgs
|
||||
from danswer.prompts.direct_qa_prompts import CONTEXT_BLOCK
|
||||
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK
|
||||
from danswer.prompts.direct_qa_prompts import JSON_PROMPT
|
||||
from danswer.prompts.direct_qa_prompts import WEAK_LLM_PROMPT
|
||||
from danswer.prompts.prompt_utils import add_date_time_to_prompt
|
||||
from danswer.prompts.prompt_utils import build_complete_context_str
|
||||
from danswer.search.models import InferenceChunk
|
||||
|
||||
|
||||
def _build_weak_llm_quotes_prompt(
|
||||
question: str,
|
||||
context_docs: list[LlmDoc] | list[InferenceChunk],
|
||||
history_str: str,
|
||||
prompt: PromptConfig,
|
||||
) -> HumanMessage:
|
||||
"""Since Danswer supports a variety of LLMs, this less demanding prompt is provided
|
||||
as an option to use with weaker LLMs such as small version, low float precision, quantized,
|
||||
or distilled models. It only uses one context document and has very weak requirements of
|
||||
output format.
|
||||
"""
|
||||
context_block = ""
|
||||
if context_docs:
|
||||
context_block = CONTEXT_BLOCK.format(context_docs_str=context_docs[0].content)
|
||||
|
||||
prompt_str = WEAK_LLM_PROMPT.format(
|
||||
system_prompt=prompt.system_prompt,
|
||||
context_block=context_block,
|
||||
task_prompt=prompt.task_prompt,
|
||||
user_query=question,
|
||||
)
|
||||
|
||||
if prompt.datetime_aware:
|
||||
prompt_str = add_date_time_to_prompt(prompt_str=prompt_str)
|
||||
|
||||
return HumanMessage(content=prompt_str)
|
||||
|
||||
|
||||
def _build_strong_llm_quotes_prompt(
|
||||
@@ -81,15 +51,9 @@ def build_quotes_user_message(
|
||||
history_str: str,
|
||||
prompt: PromptConfig,
|
||||
) -> HumanMessage:
|
||||
prompt_builder = (
|
||||
_build_weak_llm_quotes_prompt
|
||||
if QA_PROMPT_OVERRIDE == "weak"
|
||||
else _build_strong_llm_quotes_prompt
|
||||
)
|
||||
|
||||
query, _ = message_to_prompt_and_imgs(message)
|
||||
|
||||
return prompt_builder(
|
||||
return _build_strong_llm_quotes_prompt(
|
||||
question=query,
|
||||
context_docs=context_docs,
|
||||
history_str=history_str,
|
||||
|
||||
@@ -10,6 +10,8 @@ from danswer.chat.models import (
|
||||
)
|
||||
from danswer.configs.constants import IGNORE_FOR_QA
|
||||
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.llm.answering.models import ContextualPruningConfig
|
||||
from danswer.llm.answering.models import PromptConfig
|
||||
from danswer.llm.answering.prompts.citations_prompt import compute_max_document_tokens
|
||||
@@ -17,8 +19,6 @@ from danswer.llm.interfaces import LLMConfig
|
||||
from danswer.natural_language_processing.utils import get_tokenizer
|
||||
from danswer.natural_language_processing.utils import tokenizer_trim_content
|
||||
from danswer.prompts.prompt_utils import build_doc_context_str
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.search.models import InferenceSection
|
||||
from danswer.tools.tool_implementations.search.search_utils import section_to_dict
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
@@ -13,6 +13,9 @@ from danswer.llm.answering.stream_processing.quotes_processing import (
|
||||
QuotesProcessor,
|
||||
)
|
||||
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
class AnswerResponseHandler(abc.ABC):
|
||||
@@ -48,6 +51,9 @@ class CitationResponseHandler(AnswerResponseHandler):
|
||||
self.processed_text = ""
|
||||
self.citations: list[CitationInfo] = []
|
||||
|
||||
# TODO remove this after citation issue is resolved
|
||||
logger.debug(f"Document to ranking map {self.doc_id_to_rank_map}")
|
||||
|
||||
def handle_response_part(
|
||||
self,
|
||||
response_item: BaseMessage | None,
|
||||
|
||||
@@ -12,9 +12,9 @@ from danswer.chat.models import DanswerQuote
|
||||
from danswer.chat.models import DanswerQuotes
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.configs.chat_configs import QUOTE_ALLOWED_ERROR_PERCENT
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.prompts.constants import ANSWER_PAT
|
||||
from danswer.prompts.constants import QUOTE_PAT
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.utils.logger import setup_logger
|
||||
from danswer.utils.text_processing import clean_model_quote
|
||||
from danswer.utils.text_processing import clean_up_code_blocks
|
||||
@@ -231,16 +231,16 @@ class QuotesProcessor:
|
||||
|
||||
model_previous = self.model_output
|
||||
self.model_output += token
|
||||
|
||||
if not self.found_answer_start:
|
||||
m = answer_pattern.search(self.model_output)
|
||||
if m:
|
||||
self.found_answer_start = True
|
||||
|
||||
# Prevent heavy cases of hallucinations
|
||||
if self.is_json_prompt and len(self.model_output) > 70:
|
||||
logger.warning("LLM did not produce json as prompted")
|
||||
if self.is_json_prompt and len(self.model_output) > 400:
|
||||
self.found_answer_end = True
|
||||
logger.warning("LLM did not produce json as prompted")
|
||||
logger.debug("Model output thus far:", self.model_output)
|
||||
return
|
||||
|
||||
remaining = self.model_output[m.end() :]
|
||||
|
||||
@@ -3,7 +3,7 @@ from collections.abc import Sequence
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
|
||||
|
||||
class DocumentIdOrderMapping(BaseModel):
|
||||
|
||||
@@ -62,7 +62,7 @@ class ToolResponseHandler:
|
||||
llm_call.force_use_tool.args
|
||||
if llm_call.force_use_tool.args is not None
|
||||
else tool.get_args_for_non_tool_calling_llm(
|
||||
query=llm_call.prompt_builder.get_user_message_content(),
|
||||
query=llm_call.prompt_builder.raw_user_message,
|
||||
history=llm_call.prompt_builder.raw_message_history,
|
||||
llm=llm,
|
||||
force_run=True,
|
||||
@@ -76,7 +76,7 @@ class ToolResponseHandler:
|
||||
else:
|
||||
tool_options = check_which_tools_should_run_for_non_tool_calling_llm(
|
||||
tools=llm_call.tools,
|
||||
query=llm_call.prompt_builder.get_user_message_content(),
|
||||
query=llm_call.prompt_builder.raw_user_message,
|
||||
history=llm_call.prompt_builder.raw_message_history,
|
||||
llm=llm,
|
||||
)
|
||||
@@ -95,7 +95,7 @@ class ToolResponseHandler:
|
||||
select_single_tool_for_non_tool_calling_llm(
|
||||
tools_and_args=available_tools_and_args,
|
||||
history=llm_call.prompt_builder.raw_message_history,
|
||||
query=llm_call.prompt_builder.get_user_message_content(),
|
||||
query=llm_call.prompt_builder.raw_user_message,
|
||||
llm=llm,
|
||||
)
|
||||
if available_tools_and_args
|
||||
|
||||
@@ -26,7 +26,9 @@ from langchain_core.messages.tool import ToolMessage
|
||||
from langchain_core.prompt_values import PromptValue
|
||||
|
||||
from danswer.configs.app_configs import LOG_DANSWER_MODEL_INTERACTIONS
|
||||
from danswer.configs.model_configs import DISABLE_LITELLM_STREAMING
|
||||
from danswer.configs.model_configs import (
|
||||
DISABLE_LITELLM_STREAMING,
|
||||
)
|
||||
from danswer.configs.model_configs import GEN_AI_TEMPERATURE
|
||||
from danswer.configs.model_configs import LITELLM_EXTRA_BODY
|
||||
from danswer.llm.interfaces import LLM
|
||||
@@ -161,7 +163,9 @@ def _convert_delta_to_message_chunk(
|
||||
|
||||
if role == "user":
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant":
|
||||
# NOTE: if tool calls are present, then it's an assistant.
|
||||
# In Ollama, the role will be None for tool-calls
|
||||
elif role == "assistant" or tool_calls:
|
||||
if tool_calls:
|
||||
tool_call = tool_calls[0]
|
||||
tool_name = tool_call.function.name or (curr_msg and curr_msg.name) or ""
|
||||
@@ -236,6 +240,7 @@ class DefaultMultiLLM(LLM):
|
||||
custom_config: dict[str, str] | None = None,
|
||||
extra_headers: dict[str, str] | None = None,
|
||||
extra_body: dict | None = LITELLM_EXTRA_BODY,
|
||||
model_kwargs: dict[str, Any] | None = None,
|
||||
long_term_logger: LongTermLogger | None = None,
|
||||
):
|
||||
self._timeout = timeout
|
||||
@@ -268,7 +273,7 @@ class DefaultMultiLLM(LLM):
|
||||
for k, v in custom_config.items():
|
||||
os.environ[k] = v
|
||||
|
||||
model_kwargs: dict[str, Any] = {}
|
||||
model_kwargs = model_kwargs or {}
|
||||
if extra_headers:
|
||||
model_kwargs.update({"extra_headers": extra_headers})
|
||||
if extra_body:
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
|
||||
from danswer.configs.chat_configs import QA_TIMEOUT
|
||||
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
|
||||
from danswer.configs.model_configs import GEN_AI_TEMPERATURE
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.db.llm import fetch_default_provider
|
||||
@@ -13,6 +16,15 @@ from danswer.utils.headers import build_llm_extra_headers
|
||||
from danswer.utils.long_term_log import LongTermLogger
|
||||
|
||||
|
||||
def _build_extra_model_kwargs(provider: str) -> dict[str, Any]:
|
||||
"""Ollama requires us to specify the max context window.
|
||||
|
||||
For now, just using the GEN_AI_MODEL_FALLBACK_MAX_TOKENS value.
|
||||
TODO: allow model-specific values to be configured via the UI.
|
||||
"""
|
||||
return {"num_ctx": GEN_AI_MODEL_FALLBACK_MAX_TOKENS} if provider == "ollama" else {}
|
||||
|
||||
|
||||
def get_main_llm_from_tuple(
|
||||
llms: tuple[LLM, LLM],
|
||||
) -> LLM:
|
||||
@@ -132,5 +144,6 @@ def get_llm(
|
||||
temperature=temperature,
|
||||
custom_config=custom_config,
|
||||
extra_headers=build_llm_extra_headers(additional_headers),
|
||||
model_kwargs=_build_extra_model_kwargs(provider),
|
||||
long_term_logger=long_term_logger,
|
||||
)
|
||||
|
||||
@@ -9,6 +9,7 @@ from pydantic import BaseModel
|
||||
|
||||
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
|
||||
from danswer.configs.app_configs import LOG_DANSWER_MODEL_INTERACTIONS
|
||||
from danswer.configs.app_configs import LOG_INDIVIDUAL_MODEL_TOKENS
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
@@ -117,10 +118,19 @@ class LLM(abc.ABC):
|
||||
self._precall(prompt)
|
||||
# TODO add a postcall to log model outputs independent of concrete class
|
||||
# implementation
|
||||
return self._stream_implementation(
|
||||
messages = self._stream_implementation(
|
||||
prompt, tools, tool_choice, structured_response_format
|
||||
)
|
||||
|
||||
tokens = []
|
||||
for message in messages:
|
||||
if LOG_INDIVIDUAL_MODEL_TOKENS:
|
||||
tokens.append(message.content)
|
||||
yield message
|
||||
|
||||
if LOG_INDIVIDUAL_MODEL_TOKENS and tokens:
|
||||
logger.debug(f"Model Tokens: {tokens}")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _stream_implementation(
|
||||
self,
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import copy
|
||||
import io
|
||||
import json
|
||||
from collections.abc import Callable
|
||||
@@ -136,9 +137,11 @@ def translate_history_to_basemessages(
|
||||
return history_basemessages, history_token_counts
|
||||
|
||||
|
||||
def _process_csv_file(file: InMemoryChatFile) -> str:
|
||||
# Processes CSV files to show the first 5 rows and max_columns (default 40) columns
|
||||
def _process_csv_file(file: InMemoryChatFile, max_columns: int = 40) -> str:
|
||||
df = pd.read_csv(io.StringIO(file.content.decode("utf-8")))
|
||||
csv_preview = df.head().to_string()
|
||||
|
||||
csv_preview = df.head().to_string(max_cols=max_columns)
|
||||
|
||||
file_name_section = (
|
||||
f"CSV FILE NAME: {file.filename}\n"
|
||||
@@ -383,6 +386,62 @@ def test_llm(llm: LLM) -> str | None:
|
||||
return error_msg
|
||||
|
||||
|
||||
def get_model_map() -> dict:
|
||||
starting_map = copy.deepcopy(cast(dict, litellm.model_cost))
|
||||
|
||||
# NOTE: we could add additional models here in the future,
|
||||
# but for now there is no point. Ollama allows the user to
|
||||
# to specify their desired max context window, and it's
|
||||
# unlikely to be standard across users even for the same model
|
||||
# (it heavily depends on their hardware). For now, we'll just
|
||||
# rely on GEN_AI_MODEL_FALLBACK_MAX_TOKENS to cover this.
|
||||
# for model_name in [
|
||||
# "llama3.2",
|
||||
# "llama3.2:1b",
|
||||
# "llama3.2:3b",
|
||||
# "llama3.2:11b",
|
||||
# "llama3.2:90b",
|
||||
# ]:
|
||||
# starting_map[f"ollama/{model_name}"] = {
|
||||
# "max_tokens": 128000,
|
||||
# "max_input_tokens": 128000,
|
||||
# "max_output_tokens": 128000,
|
||||
# }
|
||||
|
||||
return starting_map
|
||||
|
||||
|
||||
def _strip_extra_provider_from_model_name(model_name: str) -> str:
|
||||
return model_name.split("/")[1] if "/" in model_name else model_name
|
||||
|
||||
|
||||
def _strip_colon_from_model_name(model_name: str) -> str:
|
||||
return ":".join(model_name.split(":")[:-1]) if ":" in model_name else model_name
|
||||
|
||||
|
||||
def _find_model_obj(
|
||||
model_map: dict, provider: str, model_names: list[str | None]
|
||||
) -> dict | None:
|
||||
# Filter out None values and deduplicate model names
|
||||
filtered_model_names = [name for name in model_names if name]
|
||||
|
||||
# First try all model names with provider prefix
|
||||
for model_name in filtered_model_names:
|
||||
model_obj = model_map.get(f"{provider}/{model_name}")
|
||||
if model_obj:
|
||||
logger.debug(f"Using model object for {provider}/{model_name}")
|
||||
return model_obj
|
||||
|
||||
# Then try all model names without provider prefix
|
||||
for model_name in filtered_model_names:
|
||||
model_obj = model_map.get(model_name)
|
||||
if model_obj:
|
||||
logger.debug(f"Using model object for {model_name}")
|
||||
return model_obj
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_llm_max_tokens(
|
||||
model_map: dict,
|
||||
model_name: str,
|
||||
@@ -395,22 +454,22 @@ def get_llm_max_tokens(
|
||||
return GEN_AI_MAX_TOKENS
|
||||
|
||||
try:
|
||||
model_obj = model_map.get(f"{model_provider}/{model_name}")
|
||||
if model_obj:
|
||||
logger.debug(f"Using model object for {model_provider}/{model_name}")
|
||||
|
||||
if not model_obj:
|
||||
model_obj = model_map.get(model_name)
|
||||
if model_obj:
|
||||
logger.debug(f"Using model object for {model_name}")
|
||||
|
||||
if not model_obj:
|
||||
model_name_split = model_name.split("/")
|
||||
if len(model_name_split) > 1:
|
||||
model_obj = model_map.get(model_name_split[1])
|
||||
if model_obj:
|
||||
logger.debug(f"Using model object for {model_name_split[1]}")
|
||||
|
||||
extra_provider_stripped_model_name = _strip_extra_provider_from_model_name(
|
||||
model_name
|
||||
)
|
||||
model_obj = _find_model_obj(
|
||||
model_map,
|
||||
model_provider,
|
||||
[
|
||||
model_name,
|
||||
# Remove leading extra provider. Usually for cases where user has a
|
||||
# customer model proxy which appends another prefix
|
||||
extra_provider_stripped_model_name,
|
||||
# remove :XXXX from the end, if present. Needed for ollama.
|
||||
_strip_colon_from_model_name(model_name),
|
||||
_strip_colon_from_model_name(extra_provider_stripped_model_name),
|
||||
],
|
||||
)
|
||||
if not model_obj:
|
||||
raise RuntimeError(
|
||||
f"No litellm entry found for {model_provider}/{model_name}"
|
||||
@@ -486,7 +545,7 @@ def get_max_input_tokens(
|
||||
# `model_cost` dict is a named public interface:
|
||||
# https://litellm.vercel.app/docs/completion/token_usage#7-model_cost
|
||||
# model_map is litellm.model_cost
|
||||
litellm_model_map = litellm.model_cost
|
||||
litellm_model_map = get_model_map()
|
||||
|
||||
input_toks = (
|
||||
get_llm_max_tokens(
|
||||
|
||||
@@ -26,6 +26,7 @@ from danswer.auth.schemas import UserRead
|
||||
from danswer.auth.schemas import UserUpdate
|
||||
from danswer.auth.users import auth_backend
|
||||
from danswer.auth.users import BasicAuthenticationError
|
||||
from danswer.auth.users import create_danswer_oauth_router
|
||||
from danswer.auth.users import fastapi_users
|
||||
from danswer.configs.app_configs import APP_API_PREFIX
|
||||
from danswer.configs.app_configs import APP_HOST
|
||||
@@ -44,6 +45,7 @@ from danswer.configs.constants import AuthType
|
||||
from danswer.configs.constants import POSTGRES_WEB_APP_NAME
|
||||
from danswer.db.engine import SqlEngine
|
||||
from danswer.db.engine import warm_up_connections
|
||||
from danswer.server.api_key.api import router as api_key_router
|
||||
from danswer.server.auth_check import check_router_auth
|
||||
from danswer.server.danswer_api.ingestion import router as danswer_api_router
|
||||
from danswer.server.documents.cc_pair import router as cc_pair_router
|
||||
@@ -280,6 +282,7 @@ def get_application() -> FastAPI:
|
||||
application, get_full_openai_assistants_api_router()
|
||||
)
|
||||
include_router_with_global_prefix_prepended(application, long_term_logs_router)
|
||||
include_router_with_global_prefix_prepended(application, api_key_router)
|
||||
|
||||
if AUTH_TYPE == AuthType.DISABLED:
|
||||
# Server logs this during auth setup verification step
|
||||
@@ -323,7 +326,7 @@ def get_application() -> FastAPI:
|
||||
oauth_client = GoogleOAuth2(OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET)
|
||||
include_router_with_global_prefix_prepended(
|
||||
application,
|
||||
fastapi_users.get_oauth_router(
|
||||
create_danswer_oauth_router(
|
||||
oauth_client,
|
||||
auth_backend,
|
||||
USER_AUTH_SECRET,
|
||||
|
||||
@@ -0,0 +1,4 @@
|
||||
class ModelServerRateLimitError(Exception):
|
||||
"""
|
||||
Exception raised for rate limiting errors from the model server.
|
||||
"""
|
||||
@@ -1,4 +1,3 @@
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
@@ -7,6 +6,9 @@ from typing import Any
|
||||
|
||||
import requests
|
||||
from httpx import HTTPError
|
||||
from requests import JSONDecodeError
|
||||
from requests import RequestException
|
||||
from requests import Response
|
||||
from retry import retry
|
||||
|
||||
from danswer.configs.app_configs import LARGE_CHUNK_RATIO
|
||||
@@ -16,7 +18,10 @@ from danswer.configs.model_configs import (
|
||||
)
|
||||
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
|
||||
from danswer.db.models import SearchSettings
|
||||
from danswer.indexing.indexing_heartbeat import Heartbeat
|
||||
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from danswer.natural_language_processing.exceptions import (
|
||||
ModelServerRateLimitError,
|
||||
)
|
||||
from danswer.natural_language_processing.utils import get_tokenizer
|
||||
from danswer.natural_language_processing.utils import tokenizer_trim_content
|
||||
from danswer.utils.logger import setup_logger
|
||||
@@ -50,28 +55,6 @@ def clean_model_name(model_str: str) -> str:
|
||||
return model_str.replace("/", "_").replace("-", "_").replace(".", "_")
|
||||
|
||||
|
||||
_INITIAL_FILTER = re.compile(
|
||||
"["
|
||||
"\U0000FFF0-\U0000FFFF" # Specials
|
||||
"\U0001F000-\U0001F9FF" # Emoticons
|
||||
"\U00002000-\U0000206F" # General Punctuation
|
||||
"\U00002190-\U000021FF" # Arrows
|
||||
"\U00002700-\U000027BF" # Dingbats
|
||||
"]+",
|
||||
flags=re.UNICODE,
|
||||
)
|
||||
|
||||
|
||||
def clean_openai_text(text: str) -> str:
|
||||
# Remove specific Unicode ranges that might cause issues
|
||||
cleaned = _INITIAL_FILTER.sub("", text)
|
||||
|
||||
# Remove any control characters except for newline and tab
|
||||
cleaned = "".join(ch for ch in cleaned if ch >= " " or ch in "\n\t")
|
||||
|
||||
return cleaned
|
||||
|
||||
|
||||
def build_model_server_url(
|
||||
model_server_host: str,
|
||||
model_server_port: int,
|
||||
@@ -99,7 +82,7 @@ class EmbeddingModel:
|
||||
api_url: str | None,
|
||||
provider_type: EmbeddingProvider | None,
|
||||
retrim_content: bool = False,
|
||||
heartbeat: Heartbeat | None = None,
|
||||
callback: IndexingHeartbeatInterface | None = None,
|
||||
api_version: str | None = None,
|
||||
deployment_name: str | None = None,
|
||||
) -> None:
|
||||
@@ -116,34 +99,49 @@ class EmbeddingModel:
|
||||
self.tokenizer = get_tokenizer(
|
||||
model_name=model_name, provider_type=provider_type
|
||||
)
|
||||
self.heartbeat = heartbeat
|
||||
self.callback = callback
|
||||
|
||||
model_server_url = build_model_server_url(server_host, server_port)
|
||||
self.embed_server_endpoint = f"{model_server_url}/encoder/bi-encoder-embed"
|
||||
|
||||
def _make_model_server_request(self, embed_request: EmbedRequest) -> EmbedResponse:
|
||||
def _make_request() -> EmbedResponse:
|
||||
def _make_request() -> Response:
|
||||
response = requests.post(
|
||||
self.embed_server_endpoint, json=embed_request.model_dump()
|
||||
)
|
||||
try:
|
||||
response.raise_for_status()
|
||||
except requests.HTTPError as e:
|
||||
try:
|
||||
error_detail = response.json().get("detail", str(e))
|
||||
except Exception:
|
||||
error_detail = response.text
|
||||
raise HTTPError(f"HTTP error occurred: {error_detail}") from e
|
||||
except requests.RequestException as e:
|
||||
raise HTTPError(f"Request failed: {str(e)}") from e
|
||||
# signify that this is a rate limit error
|
||||
if response.status_code == 429:
|
||||
raise ModelServerRateLimitError(response.text)
|
||||
|
||||
return EmbedResponse(**response.json())
|
||||
response.raise_for_status()
|
||||
return response
|
||||
|
||||
# only perform retries for the non-realtime embedding of passages (e.g. for indexing)
|
||||
final_make_request_func = _make_request
|
||||
|
||||
# if the text type is a passage, add some default
|
||||
# retries + handling for rate limiting
|
||||
if embed_request.text_type == EmbedTextType.PASSAGE:
|
||||
return retry(tries=3, delay=5)(_make_request)()
|
||||
else:
|
||||
return _make_request()
|
||||
final_make_request_func = retry(
|
||||
tries=3,
|
||||
delay=5,
|
||||
exceptions=(RequestException, ValueError, JSONDecodeError),
|
||||
)(final_make_request_func)
|
||||
# use 10 second delay as per Azure suggestion
|
||||
final_make_request_func = retry(
|
||||
tries=10, delay=10, exceptions=ModelServerRateLimitError
|
||||
)(final_make_request_func)
|
||||
|
||||
try:
|
||||
response = final_make_request_func()
|
||||
return EmbedResponse(**response.json())
|
||||
except requests.HTTPError as e:
|
||||
try:
|
||||
error_detail = response.json().get("detail", str(e))
|
||||
except Exception:
|
||||
error_detail = response.text
|
||||
raise HTTPError(f"HTTP error occurred: {error_detail}") from e
|
||||
except requests.RequestException as e:
|
||||
raise HTTPError(f"Request failed: {str(e)}") from e
|
||||
|
||||
def _batch_encode_texts(
|
||||
self,
|
||||
@@ -160,6 +158,10 @@ class EmbeddingModel:
|
||||
|
||||
embeddings: list[Embedding] = []
|
||||
for idx, text_batch in enumerate(text_batches, start=1):
|
||||
if self.callback:
|
||||
if self.callback.should_stop():
|
||||
raise RuntimeError("_batch_encode_texts detected stop signal")
|
||||
|
||||
logger.debug(f"Encoding batch {idx} of {len(text_batches)}")
|
||||
embed_request = EmbedRequest(
|
||||
model_name=self.model_name,
|
||||
@@ -179,8 +181,8 @@ class EmbeddingModel:
|
||||
response = self._make_model_server_request(embed_request)
|
||||
embeddings.extend(response.embeddings)
|
||||
|
||||
if self.heartbeat:
|
||||
self.heartbeat.heartbeat()
|
||||
if self.callback:
|
||||
self.callback.progress("_batch_encode_texts", 1)
|
||||
return embeddings
|
||||
|
||||
def encode(
|
||||
@@ -211,11 +213,6 @@ class EmbeddingModel:
|
||||
for text in texts
|
||||
]
|
||||
|
||||
if self.provider_type == EmbeddingProvider.OPENAI:
|
||||
# If the provider is openai, we need to clean the text
|
||||
# as a temporary workaround for the openai API
|
||||
texts = [clean_openai_text(text) for text in texts]
|
||||
|
||||
batch_size = (
|
||||
api_embedding_batch_size
|
||||
if self.provider_type
|
||||
|
||||
@@ -7,7 +7,7 @@ from transformers import logging as transformer_logging # type:ignore
|
||||
|
||||
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
|
||||
from danswer.configs.model_configs import DOCUMENT_ENCODER_MODEL
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.utils.logger import setup_logger
|
||||
from shared_configs.enums import EmbeddingProvider
|
||||
|
||||
@@ -131,7 +131,7 @@ def _try_initialize_tokenizer(
|
||||
return tokenizer
|
||||
except Exception as hf_error:
|
||||
logger.warning(
|
||||
f"Error initializing HuggingFaceTokenizer for {model_name}: {hf_error}"
|
||||
f"Failed to initialize HuggingFaceTokenizer for {model_name}: {hf_error}"
|
||||
)
|
||||
|
||||
# If both initializations fail, return None
|
||||
|
||||
@@ -18,6 +18,11 @@ from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
|
||||
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
|
||||
from danswer.configs.chat_configs import QA_TIMEOUT
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.models import RerankMetricsContainer
|
||||
from danswer.context.search.models import RetrievalMetricsContainer
|
||||
from danswer.context.search.utils import chunks_or_sections_to_search_docs
|
||||
from danswer.context.search.utils import dedupe_documents
|
||||
from danswer.db.chat import create_chat_session
|
||||
from danswer.db.chat import create_db_search_doc
|
||||
from danswer.db.chat import create_new_chat_message
|
||||
@@ -42,11 +47,7 @@ from danswer.one_shot_answer.models import DirectQARequest
|
||||
from danswer.one_shot_answer.models import OneShotQAResponse
|
||||
from danswer.one_shot_answer.models import QueryRephrase
|
||||
from danswer.one_shot_answer.qa_utils import combine_message_thread
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.models import RerankMetricsContainer
|
||||
from danswer.search.models import RetrievalMetricsContainer
|
||||
from danswer.search.utils import chunks_or_sections_to_search_docs
|
||||
from danswer.search.utils import dedupe_documents
|
||||
from danswer.one_shot_answer.qa_utils import slackify_message_thread
|
||||
from danswer.secondary_llm_flows.answer_validation import get_answer_validity
|
||||
from danswer.secondary_llm_flows.query_expansion import thread_based_query_rephrase
|
||||
from danswer.server.query_and_chat.models import ChatMessageDetail
|
||||
@@ -194,13 +195,22 @@ def stream_answer_objects(
|
||||
)
|
||||
prompt = persona.prompts[0]
|
||||
|
||||
user_message_str = query_msg.message
|
||||
# For this endpoint, we only save one user message to the chat session
|
||||
# However, for slackbot, we want to include the history of the entire thread
|
||||
if danswerbot_flow:
|
||||
# Right now, we only support bringing over citations and search docs
|
||||
# from the last message in the thread, not the entire thread
|
||||
# in the future, we may want to retrieve the entire thread
|
||||
user_message_str = slackify_message_thread(query_req.messages)
|
||||
|
||||
# Create the first User query message
|
||||
new_user_message = create_new_chat_message(
|
||||
chat_session_id=chat_session.id,
|
||||
parent_message=root_message,
|
||||
prompt_id=query_req.prompt_id,
|
||||
message=query_msg.message,
|
||||
token_count=len(llm_tokenizer.encode(query_msg.message)),
|
||||
message=user_message_str,
|
||||
token_count=len(llm_tokenizer.encode(user_message_str)),
|
||||
message_type=MessageType.USER,
|
||||
db_session=db_session,
|
||||
commit=True,
|
||||
|
||||
@@ -9,12 +9,12 @@ from danswer.chat.models import DanswerContexts
|
||||
from danswer.chat.models import DanswerQuotes
|
||||
from danswer.chat.models import QADocsResponse
|
||||
from danswer.configs.constants import MessageType
|
||||
from danswer.search.enums import LLMEvaluationType
|
||||
from danswer.search.enums import RecencyBiasSetting
|
||||
from danswer.search.enums import SearchType
|
||||
from danswer.search.models import ChunkContext
|
||||
from danswer.search.models import RerankingDetails
|
||||
from danswer.search.models import RetrievalDetails
|
||||
from danswer.context.search.enums import LLMEvaluationType
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
from danswer.context.search.models import ChunkContext
|
||||
from danswer.context.search.models import RerankingDetails
|
||||
from danswer.context.search.models import RetrievalDetails
|
||||
|
||||
|
||||
class QueryRephrase(BaseModel):
|
||||
@@ -36,10 +36,6 @@ class PromptConfig(BaseModel):
|
||||
datetime_aware: bool = True
|
||||
|
||||
|
||||
class DocumentSetConfig(BaseModel):
|
||||
id: int
|
||||
|
||||
|
||||
class ToolConfig(BaseModel):
|
||||
id: int
|
||||
|
||||
|
||||
@@ -51,3 +51,31 @@ def combine_message_thread(
|
||||
total_token_count += message_token_count
|
||||
|
||||
return "\n\n".join(message_strs)
|
||||
|
||||
|
||||
def slackify_message(message: ThreadMessage) -> str:
|
||||
if message.role != MessageType.USER:
|
||||
return message.message
|
||||
|
||||
return f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
|
||||
|
||||
|
||||
def slackify_message_thread(messages: list[ThreadMessage]) -> str:
|
||||
if not messages:
|
||||
return ""
|
||||
|
||||
message_strs: list[str] = []
|
||||
for message in messages:
|
||||
if message.role == MessageType.USER:
|
||||
message_text = (
|
||||
f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
|
||||
)
|
||||
elif message.role == MessageType.ASSISTANT:
|
||||
message_text = f"DanswerBot said in Slack:\n{message.message}"
|
||||
else:
|
||||
message_text = (
|
||||
f"{message.role.value.upper()} said in Slack:\n{message.message}"
|
||||
)
|
||||
message_strs.append(message_text)
|
||||
|
||||
return "\n\n".join(message_strs)
|
||||
|
||||
@@ -118,18 +118,6 @@ You should always get right to the point, and never use extraneous language.
|
||||
"""
|
||||
|
||||
|
||||
# For weak LLM which only takes one chunk and cannot output json
|
||||
# Also not requiring quotes as it tends to not work
|
||||
WEAK_LLM_PROMPT = f"""
|
||||
{{system_prompt}}
|
||||
{{context_block}}
|
||||
{{task_prompt}}
|
||||
|
||||
{QUESTION_PAT.upper()}
|
||||
{{user_query}}
|
||||
""".strip()
|
||||
|
||||
|
||||
# This is only for visualization for the users to specify their own prompts
|
||||
# The actual flow does not work like this
|
||||
PARAMATERIZED_PROMPT = f"""
|
||||
|
||||
@@ -7,12 +7,12 @@ from langchain_core.messages import BaseMessage
|
||||
from danswer.chat.models import LlmDoc
|
||||
from danswer.configs.chat_configs import LANGUAGE_HINT
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from danswer.context.search.models import InferenceChunk
|
||||
from danswer.db.models import Prompt
|
||||
from danswer.llm.answering.models import PromptConfig
|
||||
from danswer.prompts.chat_prompts import ADDITIONAL_INFO
|
||||
from danswer.prompts.chat_prompts import CITATION_REMINDER
|
||||
from danswer.prompts.constants import CODE_BLOCK_PAT
|
||||
from danswer.search.models import InferenceChunk
|
||||
from danswer.utils.logger import setup_logger
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
import time
|
||||
|
||||
import redis
|
||||
|
||||
from danswer.db.models import SearchSettings
|
||||
from danswer.redis.redis_connector_delete import RedisConnectorDelete
|
||||
from danswer.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
|
||||
from danswer.redis.redis_connector_ext_group_sync import RedisConnectorExternalGroupSync
|
||||
@@ -31,6 +34,44 @@ class RedisConnector:
|
||||
self.tenant_id, self.id, search_settings_id, self.redis
|
||||
)
|
||||
|
||||
def wait_for_indexing_termination(
|
||||
self,
|
||||
search_settings_list: list[SearchSettings],
|
||||
timeout: float = 15.0,
|
||||
) -> bool:
|
||||
"""
|
||||
Returns True if all indexing for the given redis connector is finished within the given timeout.
|
||||
Returns False if the timeout is exceeded
|
||||
|
||||
This check does not guarantee that current indexings being terminated
|
||||
won't get restarted midflight
|
||||
"""
|
||||
|
||||
finished = False
|
||||
|
||||
start = time.monotonic()
|
||||
|
||||
while True:
|
||||
still_indexing = False
|
||||
for search_settings in search_settings_list:
|
||||
redis_connector_index = self.new_index(search_settings.id)
|
||||
if redis_connector_index.fenced:
|
||||
still_indexing = True
|
||||
break
|
||||
|
||||
if not still_indexing:
|
||||
finished = True
|
||||
break
|
||||
|
||||
now = time.monotonic()
|
||||
if now - start > timeout:
|
||||
break
|
||||
|
||||
time.sleep(1)
|
||||
continue
|
||||
|
||||
return finished
|
||||
|
||||
@staticmethod
|
||||
def get_id_from_fence_key(key: str) -> str | None:
|
||||
"""
|
||||
|
||||
@@ -17,7 +17,7 @@ from danswer.db.document import construct_document_select_for_connector_credenti
|
||||
from danswer.db.models import Document as DbDocument
|
||||
|
||||
|
||||
class RedisConnectorDeletionFenceData(BaseModel):
|
||||
class RedisConnectorDeletePayload(BaseModel):
|
||||
num_tasks: int | None
|
||||
submitted: datetime
|
||||
|
||||
@@ -54,20 +54,18 @@ class RedisConnectorDelete:
|
||||
return False
|
||||
|
||||
@property
|
||||
def payload(self) -> RedisConnectorDeletionFenceData | None:
|
||||
def payload(self) -> RedisConnectorDeletePayload | None:
|
||||
# read related data and evaluate/print task progress
|
||||
fence_bytes = cast(bytes, self.redis.get(self.fence_key))
|
||||
if fence_bytes is None:
|
||||
return None
|
||||
|
||||
fence_str = fence_bytes.decode("utf-8")
|
||||
payload = RedisConnectorDeletionFenceData.model_validate_json(
|
||||
cast(str, fence_str)
|
||||
)
|
||||
payload = RedisConnectorDeletePayload.model_validate_json(cast(str, fence_str))
|
||||
|
||||
return payload
|
||||
|
||||
def set_fence(self, payload: RedisConnectorDeletionFenceData | None) -> None:
|
||||
def set_fence(self, payload: RedisConnectorDeletePayload | None) -> None:
|
||||
if not payload:
|
||||
self.redis.delete(self.fence_key)
|
||||
return
|
||||
|
||||
@@ -14,8 +14,9 @@ from danswer.configs.constants import DanswerCeleryPriority
|
||||
from danswer.configs.constants import DanswerCeleryQueues
|
||||
|
||||
|
||||
class RedisConnectorPermissionSyncData(BaseModel):
|
||||
class RedisConnectorPermissionSyncPayload(BaseModel):
|
||||
started: datetime | None
|
||||
celery_task_id: str | None
|
||||
|
||||
|
||||
class RedisConnectorPermissionSync:
|
||||
@@ -78,14 +79,14 @@ class RedisConnectorPermissionSync:
|
||||
return False
|
||||
|
||||
@property
|
||||
def payload(self) -> RedisConnectorPermissionSyncData | None:
|
||||
def payload(self) -> RedisConnectorPermissionSyncPayload | None:
|
||||
# read related data and evaluate/print task progress
|
||||
fence_bytes = cast(bytes, self.redis.get(self.fence_key))
|
||||
if fence_bytes is None:
|
||||
return None
|
||||
|
||||
fence_str = fence_bytes.decode("utf-8")
|
||||
payload = RedisConnectorPermissionSyncData.model_validate_json(
|
||||
payload = RedisConnectorPermissionSyncPayload.model_validate_json(
|
||||
cast(str, fence_str)
|
||||
)
|
||||
|
||||
@@ -93,7 +94,7 @@ class RedisConnectorPermissionSync:
|
||||
|
||||
def set_fence(
|
||||
self,
|
||||
payload: RedisConnectorPermissionSyncData | None,
|
||||
payload: RedisConnectorPermissionSyncPayload | None,
|
||||
) -> None:
|
||||
if not payload:
|
||||
self.redis.delete(self.fence_key)
|
||||
@@ -162,6 +163,12 @@ class RedisConnectorPermissionSync:
|
||||
|
||||
return len(async_results)
|
||||
|
||||
def reset(self) -> None:
|
||||
self.redis.delete(self.generator_progress_key)
|
||||
self.redis.delete(self.generator_complete_key)
|
||||
self.redis.delete(self.taskset_key)
|
||||
self.redis.delete(self.fence_key)
|
||||
|
||||
@staticmethod
|
||||
def remove_from_taskset(id: int, task_id: str, r: redis.Redis) -> None:
|
||||
taskset_key = f"{RedisConnectorPermissionSync.TASKSET_PREFIX}_{id}"
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user