mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-17 15:55:45 +00:00
Compare commits
2 Commits
random_doc
...
fix-google
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b4abbbfe00 | ||
|
|
cf9caf79ff |
7
.github/pull_request_template.md
vendored
7
.github/pull_request_template.md
vendored
@@ -1,14 +1,11 @@
|
||||
## Description
|
||||
|
||||
[Provide a brief description of the changes in this PR]
|
||||
|
||||
## How Has This Been Tested?
|
||||
|
||||
## How Has This Been Tested?
|
||||
[Describe the tests you ran to verify your changes]
|
||||
|
||||
|
||||
## Backporting (check the box to trigger backport action)
|
||||
|
||||
Note: You have to check that the action passes, otherwise resolve the conflicts manually and tag the patches.
|
||||
|
||||
- [ ] This PR should be backported (make sure to check that the backport attempt succeeds)
|
||||
- [ ] [Optional] Override Linear Check
|
||||
|
||||
@@ -67,7 +67,6 @@ jobs:
|
||||
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
|
||||
NEXT_PUBLIC_GTM_ENABLED=true
|
||||
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
|
||||
NODE_OPTIONS=--max-old-space-size=8192
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
@@ -118,6 +118,6 @@ jobs:
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
image-ref: docker.io/onyxdotapp/onyx-model-server:${{ github.ref_name }}
|
||||
severity: "CRITICAL,HIGH"
|
||||
timeout: "10m"
|
||||
|
||||
@@ -60,8 +60,6 @@ jobs:
|
||||
push: true
|
||||
build-args: |
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
NODE_OPTIONS=--max-old-space-size=8192
|
||||
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
2
.github/workflows/pr-chromatic-tests.yml
vendored
2
.github/workflows/pr-chromatic-tests.yml
vendored
@@ -8,8 +8,6 @@ on: push
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
GEN_AI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
MOCK_LLM_RESPONSE: true
|
||||
|
||||
jobs:
|
||||
playwright-tests:
|
||||
|
||||
22
.github/workflows/pr-helm-chart-testing.yml
vendored
22
.github/workflows/pr-helm-chart-testing.yml
vendored
@@ -21,10 +21,10 @@ jobs:
|
||||
- name: Set up Helm
|
||||
uses: azure/setup-helm@v4.2.0
|
||||
with:
|
||||
version: v3.17.0
|
||||
version: v3.14.4
|
||||
|
||||
- name: Set up chart-testing
|
||||
uses: helm/chart-testing-action@v2.7.0
|
||||
uses: helm/chart-testing-action@v2.6.1
|
||||
|
||||
# even though we specify chart-dirs in ct.yaml, it isn't used by ct for the list-changed command...
|
||||
- name: Run chart-testing (list-changed)
|
||||
@@ -37,6 +37,22 @@ jobs:
|
||||
echo "changed=true" >> "$GITHUB_OUTPUT"
|
||||
fi
|
||||
|
||||
# rkuo: I don't think we need python?
|
||||
# - name: Set up Python
|
||||
# uses: actions/setup-python@v5
|
||||
# with:
|
||||
# python-version: '3.11'
|
||||
# cache: 'pip'
|
||||
# cache-dependency-path: |
|
||||
# backend/requirements/default.txt
|
||||
# backend/requirements/dev.txt
|
||||
# backend/requirements/model_server.txt
|
||||
# - run: |
|
||||
# python -m pip install --upgrade pip
|
||||
# pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
|
||||
# pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
|
||||
# pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
|
||||
|
||||
# lint all charts if any changes were detected
|
||||
- name: Run chart-testing (lint)
|
||||
if: steps.list-changed.outputs.changed == 'true'
|
||||
@@ -46,7 +62,7 @@ jobs:
|
||||
|
||||
- name: Create kind cluster
|
||||
if: steps.list-changed.outputs.changed == 'true'
|
||||
uses: helm/kind-action@v1.12.0
|
||||
uses: helm/kind-action@v1.10.0
|
||||
|
||||
- name: Run chart-testing (install)
|
||||
if: steps.list-changed.outputs.changed == 'true'
|
||||
|
||||
29
.github/workflows/pr-linear-check.yml
vendored
29
.github/workflows/pr-linear-check.yml
vendored
@@ -1,29 +0,0 @@
|
||||
name: Ensure PR references Linear
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, edited, reopened, synchronize]
|
||||
|
||||
jobs:
|
||||
linear-check:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check PR body for Linear link or override
|
||||
env:
|
||||
PR_BODY: ${{ github.event.pull_request.body }}
|
||||
run: |
|
||||
# Looking for "https://linear.app" in the body
|
||||
if echo "$PR_BODY" | grep -qE "https://linear\.app"; then
|
||||
echo "Found a Linear link. Check passed."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Looking for a checked override: "[x] Override Linear Check"
|
||||
if echo "$PR_BODY" | grep -q "\[x\].*Override Linear Check"; then
|
||||
echo "Override box is checked. Check passed."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Otherwise, fail the run
|
||||
echo "No Linear link or override found in the PR description."
|
||||
exit 1
|
||||
@@ -39,12 +39,6 @@ env:
|
||||
AIRTABLE_TEST_TABLE_ID: ${{ secrets.AIRTABLE_TEST_TABLE_ID }}
|
||||
AIRTABLE_TEST_TABLE_NAME: ${{ secrets.AIRTABLE_TEST_TABLE_NAME }}
|
||||
AIRTABLE_ACCESS_TOKEN: ${{ secrets.AIRTABLE_ACCESS_TOKEN }}
|
||||
# Sharepoint
|
||||
SHAREPOINT_CLIENT_ID: ${{ secrets.SHAREPOINT_CLIENT_ID }}
|
||||
SHAREPOINT_CLIENT_SECRET: ${{ secrets.SHAREPOINT_CLIENT_SECRET }}
|
||||
SHAREPOINT_CLIENT_DIRECTORY_ID: ${{ secrets.SHAREPOINT_CLIENT_DIRECTORY_ID }}
|
||||
SHAREPOINT_SITE: ${{ secrets.SHAREPOINT_SITE }}
|
||||
|
||||
jobs:
|
||||
connectors-check:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -7,6 +7,4 @@
|
||||
.vscode/
|
||||
*.sw?
|
||||
/backend/tests/regression/answer_quality/search_test_config.yaml
|
||||
/web/test-results/
|
||||
backend/onyx/agent_search/main/test_data.json
|
||||
backend/tests/regression/answer_quality/test_data.json
|
||||
/web/test-results/
|
||||
9
.vscode/env_template.txt
vendored
9
.vscode/env_template.txt
vendored
@@ -5,8 +5,6 @@
|
||||
# For local dev, often user Authentication is not needed
|
||||
AUTH_TYPE=disabled
|
||||
|
||||
# Skip warm up for dev
|
||||
SKIP_WARM_UP=True
|
||||
|
||||
# Always keep these on for Dev
|
||||
# Logs all model prompts to stdout
|
||||
@@ -29,7 +27,6 @@ REQUIRE_EMAIL_VERIFICATION=False
|
||||
|
||||
# Set these so if you wipe the DB, you don't end up having to go through the UI every time
|
||||
GEN_AI_API_KEY=<REPLACE THIS>
|
||||
OPENAI_API_KEY=<REPLACE THIS>
|
||||
# If answer quality isn't important for dev, use gpt-4o-mini since it's cheaper
|
||||
GEN_AI_MODEL_VERSION=gpt-4o
|
||||
FAST_GEN_AI_MODEL_VERSION=gpt-4o
|
||||
@@ -52,9 +49,3 @@ BING_API_KEY=<REPLACE THIS>
|
||||
# Enable the full set of Danswer Enterprise Edition features
|
||||
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you are using this for local testing/development)
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=False
|
||||
|
||||
# Agent Search configs # TODO: Remove give proper namings
|
||||
AGENT_RETRIEVAL_STATS=False # Note: This setting will incur substantial re-ranking effort
|
||||
AGENT_RERANKING_STATS=True
|
||||
AGENT_MAX_QUERY_RETRIEVAL_RESULTS=20
|
||||
AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS=20
|
||||
|
||||
29
.vscode/launch.template.jsonc
vendored
29
.vscode/launch.template.jsonc
vendored
@@ -28,7 +28,6 @@
|
||||
"Celery heavy",
|
||||
"Celery indexing",
|
||||
"Celery beat",
|
||||
"Celery monitoring",
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1",
|
||||
@@ -52,8 +51,7 @@
|
||||
"Celery light",
|
||||
"Celery heavy",
|
||||
"Celery indexing",
|
||||
"Celery beat",
|
||||
"Celery monitoring",
|
||||
"Celery beat"
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1",
|
||||
@@ -271,31 +269,6 @@
|
||||
},
|
||||
"consoleTitle": "Celery indexing Console"
|
||||
},
|
||||
{
|
||||
"name": "Celery monitoring",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"module": "celery",
|
||||
"cwd": "${workspaceFolder}/backend",
|
||||
"envFile": "${workspaceFolder}/.vscode/.env",
|
||||
"env": {},
|
||||
"args": [
|
||||
"-A",
|
||||
"onyx.background.celery.versioned_apps.monitoring",
|
||||
"worker",
|
||||
"--pool=solo",
|
||||
"--concurrency=1",
|
||||
"--prefetch-multiplier=1",
|
||||
"--loglevel=INFO",
|
||||
"--hostname=monitoring@%n",
|
||||
"-Q",
|
||||
"monitoring",
|
||||
],
|
||||
"presentation": {
|
||||
"group": "2",
|
||||
},
|
||||
"consoleTitle": "Celery monitoring Console"
|
||||
},
|
||||
{
|
||||
"name": "Celery beat",
|
||||
"type": "debugpy",
|
||||
|
||||
@@ -17,10 +17,9 @@ Before starting, make sure the Docker Daemon is running.
|
||||
1. Open the Debug view in VSCode (Cmd+Shift+D on macOS)
|
||||
2. From the dropdown at the top, select "Clear and Restart External Volumes and Containers" and press the green play button
|
||||
3. From the dropdown at the top, select "Run All Onyx Services" and press the green play button
|
||||
4. CD into web, run "npm i" followed by npm run dev.
|
||||
5. Now, you can navigate to onyx in your browser (default is http://localhost:3000) and start using the app
|
||||
6. You can set breakpoints by clicking to the left of line numbers to help debug while the app is running
|
||||
7. Use the debug toolbar to step through code, inspect variables, etc.
|
||||
4. Now, you can navigate to onyx in your browser (default is http://localhost:3000) and start using the app
|
||||
5. You can set breakpoints by clicking to the left of line numbers to help debug while the app is running
|
||||
6. Use the debug toolbar to step through code, inspect variables, etc.
|
||||
|
||||
## Features
|
||||
|
||||
|
||||
@@ -119,12 +119,12 @@ There are two editions of Onyx:
|
||||
- Whitelabeling
|
||||
- API key authentication
|
||||
- Encryption of secrets
|
||||
- And many more! Checkout [our website](https://www.onyx.app/) for the latest.
|
||||
- Any many more! Checkout [our website](https://www.onyx.app/) for the latest.
|
||||
|
||||
To try the Onyx Enterprise Edition:
|
||||
|
||||
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
|
||||
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/onyx/founders).
|
||||
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
|
||||
|
||||
## 💡 Contributing
|
||||
|
||||
|
||||
@@ -9,10 +9,8 @@ founders@onyx.app for more information. Please visit https://github.com/onyx-dot
|
||||
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.8-dev
|
||||
# DO_NOT_TRACK is used to disable telemetry for Unstructured
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true" \
|
||||
DO_NOT_TRACK="true"
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
"""add shortcut option for users
|
||||
|
||||
Revision ID: 027381bce97c
|
||||
Revises: 6fc7886d665d
|
||||
Create Date: 2025-01-14 12:14:00.814390
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "027381bce97c"
|
||||
down_revision = "6fc7886d665d"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"user",
|
||||
sa.Column(
|
||||
"shortcut_enabled", sa.Boolean(), nullable=False, server_default="false"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user", "shortcut_enabled")
|
||||
@@ -1,36 +0,0 @@
|
||||
"""add index to index_attempt.time_created
|
||||
|
||||
Revision ID: 0f7ff6d75b57
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-10 14:01:14.067144
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "0f7ff6d75b57"
|
||||
down_revision = "fec3db967bf7"
|
||||
branch_labels: None = None
|
||||
depends_on: None = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_index(
|
||||
op.f("ix_index_attempt_status"),
|
||||
"index_attempt",
|
||||
["status"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
op.create_index(
|
||||
op.f("ix_index_attempt_time_created"),
|
||||
"index_attempt",
|
||||
["time_created"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(op.f("ix_index_attempt_time_created"), table_name="index_attempt")
|
||||
|
||||
op.drop_index(op.f("ix_index_attempt_status"), table_name="index_attempt")
|
||||
@@ -1,36 +0,0 @@
|
||||
"""add chat session specific temperature override
|
||||
|
||||
Revision ID: 2f80c6a2550f
|
||||
Revises: 33ea50e88f24
|
||||
Create Date: 2025-01-31 10:30:27.289646
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "2f80c6a2550f"
|
||||
down_revision = "33ea50e88f24"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"chat_session", sa.Column("temperature_override", sa.Float(), nullable=True)
|
||||
)
|
||||
op.add_column(
|
||||
"user",
|
||||
sa.Column(
|
||||
"temperature_override_enabled",
|
||||
sa.Boolean(),
|
||||
nullable=False,
|
||||
server_default=sa.false(),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("chat_session", "temperature_override")
|
||||
op.drop_column("user", "temperature_override_enabled")
|
||||
@@ -1,80 +0,0 @@
|
||||
"""foreign key input prompts
|
||||
|
||||
Revision ID: 33ea50e88f24
|
||||
Revises: a6df6b88ef81
|
||||
Create Date: 2025-01-29 10:54:22.141765
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "33ea50e88f24"
|
||||
down_revision = "a6df6b88ef81"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Safely drop constraints if exists
|
||||
op.execute(
|
||||
"""
|
||||
ALTER TABLE inputprompt__user
|
||||
DROP CONSTRAINT IF EXISTS inputprompt__user_input_prompt_id_fkey
|
||||
"""
|
||||
)
|
||||
op.execute(
|
||||
"""
|
||||
ALTER TABLE inputprompt__user
|
||||
DROP CONSTRAINT IF EXISTS inputprompt__user_user_id_fkey
|
||||
"""
|
||||
)
|
||||
|
||||
# Recreate with ON DELETE CASCADE
|
||||
op.create_foreign_key(
|
||||
"inputprompt__user_input_prompt_id_fkey",
|
||||
"inputprompt__user",
|
||||
"inputprompt",
|
||||
["input_prompt_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"inputprompt__user_user_id_fkey",
|
||||
"inputprompt__user",
|
||||
"user",
|
||||
["user_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Drop the new FKs with ondelete
|
||||
op.drop_constraint(
|
||||
"inputprompt__user_input_prompt_id_fkey",
|
||||
"inputprompt__user",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.drop_constraint(
|
||||
"inputprompt__user_user_id_fkey",
|
||||
"inputprompt__user",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
# Recreate them without cascading
|
||||
op.create_foreign_key(
|
||||
"inputprompt__user_input_prompt_id_fkey",
|
||||
"inputprompt__user",
|
||||
"inputprompt",
|
||||
["input_prompt_id"],
|
||||
["id"],
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"inputprompt__user_user_id_fkey",
|
||||
"inputprompt__user",
|
||||
"user",
|
||||
["user_id"],
|
||||
["id"],
|
||||
)
|
||||
@@ -1,35 +0,0 @@
|
||||
"""add composite index for index attempt time updated
|
||||
|
||||
Revision ID: 369644546676
|
||||
Revises: 2955778aa44c
|
||||
Create Date: 2025-01-08 15:38:17.224380
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
from sqlalchemy import text
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "369644546676"
|
||||
down_revision = "2955778aa44c"
|
||||
branch_labels: None = None
|
||||
depends_on: None = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_index(
|
||||
"ix_index_attempt_ccpair_search_settings_time_updated",
|
||||
"index_attempt",
|
||||
[
|
||||
"connector_credential_pair_id",
|
||||
"search_settings_id",
|
||||
text("time_updated DESC"),
|
||||
],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(
|
||||
"ix_index_attempt_ccpair_search_settings_time_updated",
|
||||
table_name="index_attempt",
|
||||
)
|
||||
@@ -1,59 +0,0 @@
|
||||
"""add back input prompts
|
||||
|
||||
Revision ID: 3c6531f32351
|
||||
Revises: aeda5f2df4f6
|
||||
Create Date: 2025-01-13 12:49:51.705235
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "3c6531f32351"
|
||||
down_revision = "aeda5f2df4f6"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"inputprompt",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column("prompt", sa.String(), nullable=False),
|
||||
sa.Column("content", sa.String(), nullable=False),
|
||||
sa.Column("active", sa.Boolean(), nullable=False),
|
||||
sa.Column("is_public", sa.Boolean(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
op.create_table(
|
||||
"inputprompt__user",
|
||||
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id", fastapi_users_db_sqlalchemy.generics.GUID(), nullable=False
|
||||
),
|
||||
sa.Column("disabled", sa.Boolean(), nullable=False, default=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["input_prompt_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("inputprompt__user")
|
||||
op.drop_table("inputprompt")
|
||||
@@ -40,6 +40,6 @@ def upgrade() -> None:
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_constraint("persona_category_id_fkey", "persona", type_="foreignkey")
|
||||
op.drop_constraint("fk_persona_category", "persona", type_="foreignkey")
|
||||
op.drop_column("persona", "category_id")
|
||||
op.drop_table("persona_category")
|
||||
|
||||
@@ -1,37 +0,0 @@
|
||||
"""lowercase_user_emails
|
||||
|
||||
Revision ID: 4d58345da04a
|
||||
Revises: f1ca58b2f2ec
|
||||
Create Date: 2025-01-29 07:48:46.784041
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
from sqlalchemy.sql import text
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "4d58345da04a"
|
||||
down_revision = "f1ca58b2f2ec"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Get database connection
|
||||
connection = op.get_bind()
|
||||
|
||||
# Update all user emails to lowercase
|
||||
connection.execute(
|
||||
text(
|
||||
"""
|
||||
UPDATE "user"
|
||||
SET email = LOWER(email)
|
||||
WHERE email != LOWER(email)
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Cannot restore original case of emails
|
||||
pass
|
||||
@@ -1,80 +0,0 @@
|
||||
"""make categories labels and many to many
|
||||
|
||||
Revision ID: 6fc7886d665d
|
||||
Revises: 3c6531f32351
|
||||
Create Date: 2025-01-13 18:12:18.029112
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "6fc7886d665d"
|
||||
down_revision = "3c6531f32351"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Rename persona_category table to persona_label
|
||||
op.rename_table("persona_category", "persona_label")
|
||||
|
||||
# Create the new association table
|
||||
op.create_table(
|
||||
"persona__persona_label",
|
||||
sa.Column("persona_id", sa.Integer(), nullable=False),
|
||||
sa.Column("persona_label_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["persona_id"],
|
||||
["persona.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["persona_label_id"],
|
||||
["persona_label.id"],
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("persona_id", "persona_label_id"),
|
||||
)
|
||||
|
||||
# Copy existing relationships to the new table
|
||||
op.execute(
|
||||
"""
|
||||
INSERT INTO persona__persona_label (persona_id, persona_label_id)
|
||||
SELECT id, category_id FROM persona WHERE category_id IS NOT NULL
|
||||
"""
|
||||
)
|
||||
|
||||
# Remove the old category_id column from persona table
|
||||
op.drop_column("persona", "category_id")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Rename persona_label table back to persona_category
|
||||
op.rename_table("persona_label", "persona_category")
|
||||
|
||||
# Add back the category_id column to persona table
|
||||
op.add_column("persona", sa.Column("category_id", sa.Integer(), nullable=True))
|
||||
op.create_foreign_key(
|
||||
"persona_category_id_fkey",
|
||||
"persona",
|
||||
"persona_category",
|
||||
["category_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Copy the first label relationship back to the persona table
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE persona
|
||||
SET category_id = (
|
||||
SELECT persona_label_id
|
||||
FROM persona__persona_label
|
||||
WHERE persona__persona_label.persona_id = persona.id
|
||||
LIMIT 1
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
# Drop the association table
|
||||
op.drop_table("persona__persona_label")
|
||||
@@ -1,72 +0,0 @@
|
||||
"""Add SyncRecord
|
||||
|
||||
Revision ID: 97dbb53fa8c8
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-11 19:39:50.426302
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "97dbb53fa8c8"
|
||||
down_revision = "be2ab2aa50ee"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"sync_record",
|
||||
sa.Column("id", sa.Integer(), nullable=False),
|
||||
sa.Column("entity_id", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"sync_type",
|
||||
sa.Enum(
|
||||
"DOCUMENT_SET",
|
||||
"USER_GROUP",
|
||||
"CONNECTOR_DELETION",
|
||||
name="synctype",
|
||||
native_enum=False,
|
||||
length=40,
|
||||
),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"sync_status",
|
||||
sa.Enum(
|
||||
"IN_PROGRESS",
|
||||
"SUCCESS",
|
||||
"FAILED",
|
||||
"CANCELED",
|
||||
name="syncstatus",
|
||||
native_enum=False,
|
||||
length=40,
|
||||
),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("num_docs_synced", sa.Integer(), nullable=False),
|
||||
sa.Column("sync_start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("sync_end_time", sa.DateTime(timezone=True), nullable=True),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
# Add index for fetch_latest_sync_record query
|
||||
op.create_index(
|
||||
"ix_sync_record_entity_id_sync_type_sync_start_time",
|
||||
"sync_record",
|
||||
["entity_id", "sync_type", "sync_start_time"],
|
||||
)
|
||||
|
||||
# Add index for cleanup_sync_records query
|
||||
op.create_index(
|
||||
"ix_sync_record_entity_id_sync_type_sync_status",
|
||||
"sync_record",
|
||||
["entity_id", "sync_type", "sync_status"],
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index("ix_sync_record_entity_id_sync_type_sync_status")
|
||||
op.drop_index("ix_sync_record_entity_id_sync_type_sync_start_time")
|
||||
op.drop_table("sync_record")
|
||||
@@ -1,107 +0,0 @@
|
||||
"""agent_tracking
|
||||
|
||||
Revision ID: 98a5008d8711
|
||||
Revises: 2f80c6a2550f
|
||||
Create Date: 2025-01-29 17:00:00.000001
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.dialects.postgresql import UUID
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "98a5008d8711"
|
||||
down_revision = "2f80c6a2550f"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"agent__search_metrics",
|
||||
sa.Column("id", sa.Integer(), nullable=False),
|
||||
sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=True),
|
||||
sa.Column("persona_id", sa.Integer(), nullable=True),
|
||||
sa.Column("agent_type", sa.String(), nullable=False),
|
||||
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("base_duration_s", sa.Float(), nullable=False),
|
||||
sa.Column("full_duration_s", sa.Float(), nullable=False),
|
||||
sa.Column("base_metrics", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("refined_metrics", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("all_metrics", postgresql.JSONB(), nullable=True),
|
||||
sa.ForeignKeyConstraint(
|
||||
["persona_id"],
|
||||
["persona.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
# Create sub_question table
|
||||
op.create_table(
|
||||
"agent__sub_question",
|
||||
sa.Column("id", sa.Integer, primary_key=True),
|
||||
sa.Column("primary_question_id", sa.Integer, sa.ForeignKey("chat_message.id")),
|
||||
sa.Column(
|
||||
"chat_session_id", UUID(as_uuid=True), sa.ForeignKey("chat_session.id")
|
||||
),
|
||||
sa.Column("sub_question", sa.Text),
|
||||
sa.Column(
|
||||
"time_created", sa.DateTime(timezone=True), server_default=sa.func.now()
|
||||
),
|
||||
sa.Column("sub_answer", sa.Text),
|
||||
sa.Column("sub_question_doc_results", postgresql.JSONB(), nullable=True),
|
||||
sa.Column("level", sa.Integer(), nullable=False),
|
||||
sa.Column("level_question_num", sa.Integer(), nullable=False),
|
||||
)
|
||||
|
||||
# Create sub_query table
|
||||
op.create_table(
|
||||
"agent__sub_query",
|
||||
sa.Column("id", sa.Integer, primary_key=True),
|
||||
sa.Column(
|
||||
"parent_question_id", sa.Integer, sa.ForeignKey("agent__sub_question.id")
|
||||
),
|
||||
sa.Column(
|
||||
"chat_session_id", UUID(as_uuid=True), sa.ForeignKey("chat_session.id")
|
||||
),
|
||||
sa.Column("sub_query", sa.Text),
|
||||
sa.Column(
|
||||
"time_created", sa.DateTime(timezone=True), server_default=sa.func.now()
|
||||
),
|
||||
)
|
||||
|
||||
# Create sub_query__search_doc association table
|
||||
op.create_table(
|
||||
"agent__sub_query__search_doc",
|
||||
sa.Column(
|
||||
"sub_query_id",
|
||||
sa.Integer,
|
||||
sa.ForeignKey("agent__sub_query.id"),
|
||||
primary_key=True,
|
||||
),
|
||||
sa.Column(
|
||||
"search_doc_id",
|
||||
sa.Integer,
|
||||
sa.ForeignKey("search_doc.id"),
|
||||
primary_key=True,
|
||||
),
|
||||
)
|
||||
|
||||
op.add_column(
|
||||
"chat_message",
|
||||
sa.Column(
|
||||
"refined_answer_improvement",
|
||||
sa.Boolean(),
|
||||
nullable=True,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("chat_message", "refined_answer_improvement")
|
||||
op.drop_table("agent__sub_query__search_doc")
|
||||
op.drop_table("agent__sub_query")
|
||||
op.drop_table("agent__sub_question")
|
||||
op.drop_table("agent__search_metrics")
|
||||
@@ -1,29 +0,0 @@
|
||||
"""remove recent assistants
|
||||
|
||||
Revision ID: a6df6b88ef81
|
||||
Revises: 4d58345da04a
|
||||
Create Date: 2025-01-29 10:25:52.790407
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "a6df6b88ef81"
|
||||
down_revision = "4d58345da04a"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.drop_column("user", "recent_assistants")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.add_column(
|
||||
"user",
|
||||
sa.Column(
|
||||
"recent_assistants", postgresql.JSONB(), server_default="[]", nullable=False
|
||||
),
|
||||
)
|
||||
@@ -1,27 +0,0 @@
|
||||
"""add pinned assistants
|
||||
|
||||
Revision ID: aeda5f2df4f6
|
||||
Revises: c5eae4a75a1b
|
||||
Create Date: 2025-01-09 16:04:10.770636
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "aeda5f2df4f6"
|
||||
down_revision = "c5eae4a75a1b"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"user", sa.Column("pinned_assistants", postgresql.JSONB(), nullable=True)
|
||||
)
|
||||
op.execute('UPDATE "user" SET pinned_assistants = chosen_assistants')
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user", "pinned_assistants")
|
||||
@@ -1,38 +0,0 @@
|
||||
"""fix_capitalization
|
||||
|
||||
Revision ID: be2ab2aa50ee
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-10 13:13:26.228960
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "be2ab2aa50ee"
|
||||
down_revision = "369644546676"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE document
|
||||
SET
|
||||
external_user_group_ids = ARRAY(
|
||||
SELECT LOWER(unnest(external_user_group_ids))
|
||||
),
|
||||
last_modified = NOW()
|
||||
WHERE
|
||||
external_user_group_ids IS NOT NULL
|
||||
AND external_user_group_ids::text[] <> ARRAY(
|
||||
SELECT LOWER(unnest(external_user_group_ids))
|
||||
)::text[]
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# No way to cleanly persist the bad state through an upgrade/downgrade
|
||||
# cycle, so we just pass
|
||||
pass
|
||||
@@ -1,36 +0,0 @@
|
||||
"""Add chat_message__standard_answer table
|
||||
|
||||
Revision ID: c5eae4a75a1b
|
||||
Revises: 0f7ff6d75b57
|
||||
Create Date: 2025-01-15 14:08:49.688998
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c5eae4a75a1b"
|
||||
down_revision = "0f7ff6d75b57"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"chat_message__standard_answer",
|
||||
sa.Column("chat_message_id", sa.Integer(), nullable=False),
|
||||
sa.Column("standard_answer_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["chat_message_id"],
|
||||
["chat_message.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["standard_answer_id"],
|
||||
["standard_answer.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("chat_message_id", "standard_answer_id"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("chat_message__standard_answer")
|
||||
@@ -1,48 +0,0 @@
|
||||
"""Add has_been_indexed to DocumentByConnectorCredentialPair
|
||||
|
||||
Revision ID: c7bf5721733e
|
||||
Revises: fec3db967bf7
|
||||
Create Date: 2025-01-13 12:39:05.831693
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c7bf5721733e"
|
||||
down_revision = "027381bce97c"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# assume all existing rows have been indexed, no better approach
|
||||
op.add_column(
|
||||
"document_by_connector_credential_pair",
|
||||
sa.Column("has_been_indexed", sa.Boolean(), nullable=True),
|
||||
)
|
||||
op.execute(
|
||||
"UPDATE document_by_connector_credential_pair SET has_been_indexed = TRUE"
|
||||
)
|
||||
op.alter_column(
|
||||
"document_by_connector_credential_pair",
|
||||
"has_been_indexed",
|
||||
nullable=False,
|
||||
)
|
||||
|
||||
# Add index to optimize get_document_counts_for_cc_pairs query pattern
|
||||
op.create_index(
|
||||
"idx_document_cc_pair_counts",
|
||||
"document_by_connector_credential_pair",
|
||||
["connector_id", "credential_id", "has_been_indexed"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove the index first before removing the column
|
||||
op.drop_index(
|
||||
"idx_document_cc_pair_counts",
|
||||
table_name="document_by_connector_credential_pair",
|
||||
)
|
||||
op.drop_column("document_by_connector_credential_pair", "has_been_indexed")
|
||||
@@ -1,76 +0,0 @@
|
||||
"""add default slack channel config
|
||||
|
||||
Revision ID: eaa3b5593925
|
||||
Revises: 98a5008d8711
|
||||
Create Date: 2025-02-03 18:07:56.552526
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "eaa3b5593925"
|
||||
down_revision = "98a5008d8711"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add is_default column
|
||||
op.add_column(
|
||||
"slack_channel_config",
|
||||
sa.Column("is_default", sa.Boolean(), nullable=False, server_default="false"),
|
||||
)
|
||||
|
||||
op.create_index(
|
||||
"ix_slack_channel_config_slack_bot_id_default",
|
||||
"slack_channel_config",
|
||||
["slack_bot_id", "is_default"],
|
||||
unique=True,
|
||||
postgresql_where=sa.text("is_default IS TRUE"),
|
||||
)
|
||||
|
||||
# Create default channel configs for existing slack bots without one
|
||||
conn = op.get_bind()
|
||||
slack_bots = conn.execute(sa.text("SELECT id FROM slack_bot")).fetchall()
|
||||
|
||||
for slack_bot in slack_bots:
|
||||
slack_bot_id = slack_bot[0]
|
||||
existing_default = conn.execute(
|
||||
sa.text(
|
||||
"SELECT id FROM slack_channel_config WHERE slack_bot_id = :bot_id AND is_default = TRUE"
|
||||
),
|
||||
{"bot_id": slack_bot_id},
|
||||
).fetchone()
|
||||
|
||||
if not existing_default:
|
||||
conn.execute(
|
||||
sa.text(
|
||||
"""
|
||||
INSERT INTO slack_channel_config (
|
||||
slack_bot_id, persona_id, channel_config, enable_auto_filters, is_default
|
||||
) VALUES (
|
||||
:bot_id, NULL,
|
||||
'{"channel_name": null, "respond_member_group_list": [], "answer_filters": [], "follow_up_tags": []}',
|
||||
FALSE, TRUE
|
||||
)
|
||||
"""
|
||||
),
|
||||
{"bot_id": slack_bot_id},
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Delete default slack channel configs
|
||||
conn = op.get_bind()
|
||||
conn.execute(sa.text("DELETE FROM slack_channel_config WHERE is_default = TRUE"))
|
||||
|
||||
# Remove index
|
||||
op.drop_index(
|
||||
"ix_slack_channel_config_slack_bot_id_default",
|
||||
table_name="slack_channel_config",
|
||||
)
|
||||
|
||||
# Remove is_default column
|
||||
op.drop_column("slack_channel_config", "is_default")
|
||||
@@ -1,33 +0,0 @@
|
||||
"""add passthrough auth to tool
|
||||
|
||||
Revision ID: f1ca58b2f2ec
|
||||
Revises: c7bf5721733e
|
||||
Create Date: 2024-03-19
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = "f1ca58b2f2ec"
|
||||
down_revision: Union[str, None] = "c7bf5721733e"
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Add passthrough_auth column to tool table with default value of False
|
||||
op.add_column(
|
||||
"tool",
|
||||
sa.Column(
|
||||
"passthrough_auth", sa.Boolean(), nullable=False, server_default=sa.false()
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove passthrough_auth column from tool table
|
||||
op.drop_column("tool", "passthrough_auth")
|
||||
@@ -1,41 +0,0 @@
|
||||
"""Add time_updated to UserGroup and DocumentSet
|
||||
|
||||
Revision ID: fec3db967bf7
|
||||
Revises: 97dbb53fa8c8
|
||||
Create Date: 2025-01-12 15:49:02.289100
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "fec3db967bf7"
|
||||
down_revision = "97dbb53fa8c8"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"document_set",
|
||||
sa.Column(
|
||||
"time_last_modified_by_user",
|
||||
sa.DateTime(timezone=True),
|
||||
nullable=False,
|
||||
server_default=sa.func.now(),
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"user_group",
|
||||
sa.Column(
|
||||
"time_last_modified_by_user",
|
||||
sa.DateTime(timezone=True),
|
||||
nullable=False,
|
||||
server_default=sa.func.now(),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user_group", "time_last_modified_by_user")
|
||||
op.drop_column("document_set", "time_last_modified_by_user")
|
||||
@@ -32,7 +32,6 @@ def perform_ttl_management_task(
|
||||
|
||||
@celery_app.task(
|
||||
name="check_ttl_management_task",
|
||||
ignore_result=True,
|
||||
soft_time_limit=JOB_TIMEOUT,
|
||||
)
|
||||
def check_ttl_management_task(*, tenant_id: str | None) -> None:
|
||||
@@ -57,7 +56,6 @@ def check_ttl_management_task(*, tenant_id: str | None) -> None:
|
||||
|
||||
@celery_app.task(
|
||||
name="autogenerate_usage_report_task",
|
||||
ignore_result=True,
|
||||
soft_time_limit=JOB_TIMEOUT,
|
||||
)
|
||||
def autogenerate_usage_report_task(*, tenant_id: str | None) -> None:
|
||||
|
||||
@@ -1,73 +1,24 @@
|
||||
from datetime import timedelta
|
||||
from typing import Any
|
||||
|
||||
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
|
||||
from onyx.background.celery.tasks.beat_schedule import (
|
||||
cloud_tasks_to_schedule as base_cloud_tasks_to_schedule,
|
||||
)
|
||||
from onyx.background.celery.tasks.beat_schedule import (
|
||||
tasks_to_schedule as base_tasks_to_schedule,
|
||||
)
|
||||
from onyx.configs.constants import ONYX_CLOUD_CELERY_TASK_PREFIX
|
||||
from onyx.configs.constants import OnyxCeleryPriority
|
||||
from onyx.configs.constants import OnyxCeleryTask
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
|
||||
ee_cloud_tasks_to_schedule = [
|
||||
ee_tasks_to_schedule = [
|
||||
{
|
||||
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_autogenerate-usage-report",
|
||||
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
|
||||
"schedule": timedelta(days=30),
|
||||
"options": {
|
||||
"priority": OnyxCeleryPriority.HIGHEST,
|
||||
"expires": BEAT_EXPIRES_DEFAULT,
|
||||
},
|
||||
"kwargs": {
|
||||
"task_name": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
|
||||
},
|
||||
"name": "autogenerate_usage_report",
|
||||
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
|
||||
"schedule": timedelta(days=30), # TODO: change this to config flag
|
||||
},
|
||||
{
|
||||
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-ttl-management",
|
||||
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
|
||||
"name": "check-ttl-management",
|
||||
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
|
||||
"schedule": timedelta(hours=1),
|
||||
"options": {
|
||||
"priority": OnyxCeleryPriority.HIGHEST,
|
||||
"expires": BEAT_EXPIRES_DEFAULT,
|
||||
},
|
||||
"kwargs": {
|
||||
"task_name": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
ee_tasks_to_schedule: list[dict] = []
|
||||
|
||||
if not MULTI_TENANT:
|
||||
ee_tasks_to_schedule = [
|
||||
{
|
||||
"name": "autogenerate-usage-report",
|
||||
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
|
||||
"schedule": timedelta(days=30), # TODO: change this to config flag
|
||||
"options": {
|
||||
"priority": OnyxCeleryPriority.MEDIUM,
|
||||
"expires": BEAT_EXPIRES_DEFAULT,
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "check-ttl-management",
|
||||
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
|
||||
"schedule": timedelta(hours=1),
|
||||
"options": {
|
||||
"priority": OnyxCeleryPriority.MEDIUM,
|
||||
"expires": BEAT_EXPIRES_DEFAULT,
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def get_cloud_tasks_to_schedule() -> list[dict[str, Any]]:
|
||||
return ee_cloud_tasks_to_schedule + base_cloud_tasks_to_schedule
|
||||
|
||||
|
||||
def get_tasks_to_schedule() -> list[dict[str, Any]]:
|
||||
return ee_tasks_to_schedule + base_tasks_to_schedule
|
||||
|
||||
@@ -8,9 +8,6 @@ from ee.onyx.db.user_group import fetch_user_group
|
||||
from ee.onyx.db.user_group import mark_user_group_as_synced
|
||||
from ee.onyx.db.user_group import prepare_user_group_for_deletion
|
||||
from onyx.background.celery.apps.app_base import task_logger
|
||||
from onyx.db.enums import SyncStatus
|
||||
from onyx.db.enums import SyncType
|
||||
from onyx.db.sync_record import update_sync_record_status
|
||||
from onyx.redis.redis_usergroup import RedisUserGroup
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
@@ -46,59 +43,24 @@ def monitor_usergroup_taskset(
|
||||
f"User group sync progress: usergroup_id={usergroup_id} remaining={count} initial={initial_count}"
|
||||
)
|
||||
if count > 0:
|
||||
update_sync_record_status(
|
||||
db_session=db_session,
|
||||
entity_id=usergroup_id,
|
||||
sync_type=SyncType.USER_GROUP,
|
||||
sync_status=SyncStatus.IN_PROGRESS,
|
||||
num_docs_synced=count,
|
||||
)
|
||||
return
|
||||
|
||||
user_group = fetch_user_group(db_session=db_session, user_group_id=usergroup_id)
|
||||
if user_group:
|
||||
usergroup_name = user_group.name
|
||||
try:
|
||||
if user_group.is_up_for_deletion:
|
||||
# this prepare should have been run when the deletion was scheduled,
|
||||
# but run it again to be sure we're ready to go
|
||||
mark_user_group_as_synced(db_session, user_group)
|
||||
prepare_user_group_for_deletion(db_session, usergroup_id)
|
||||
delete_user_group(db_session=db_session, user_group=user_group)
|
||||
|
||||
update_sync_record_status(
|
||||
db_session=db_session,
|
||||
entity_id=usergroup_id,
|
||||
sync_type=SyncType.USER_GROUP,
|
||||
sync_status=SyncStatus.SUCCESS,
|
||||
num_docs_synced=initial_count,
|
||||
)
|
||||
|
||||
task_logger.info(
|
||||
f"Deleted usergroup: name={usergroup_name} id={usergroup_id}"
|
||||
)
|
||||
else:
|
||||
mark_user_group_as_synced(db_session=db_session, user_group=user_group)
|
||||
|
||||
update_sync_record_status(
|
||||
db_session=db_session,
|
||||
entity_id=usergroup_id,
|
||||
sync_type=SyncType.USER_GROUP,
|
||||
sync_status=SyncStatus.SUCCESS,
|
||||
num_docs_synced=initial_count,
|
||||
)
|
||||
|
||||
task_logger.info(
|
||||
f"Synced usergroup. name={usergroup_name} id={usergroup_id}"
|
||||
)
|
||||
except Exception as e:
|
||||
update_sync_record_status(
|
||||
db_session=db_session,
|
||||
entity_id=usergroup_id,
|
||||
sync_type=SyncType.USER_GROUP,
|
||||
sync_status=SyncStatus.FAILED,
|
||||
num_docs_synced=initial_count,
|
||||
if user_group.is_up_for_deletion:
|
||||
# this prepare should have been run when the deletion was scheduled,
|
||||
# but run it again to be sure we're ready to go
|
||||
mark_user_group_as_synced(db_session, user_group)
|
||||
prepare_user_group_for_deletion(db_session, usergroup_id)
|
||||
delete_user_group(db_session=db_session, user_group=user_group)
|
||||
task_logger.info(
|
||||
f"Deleted usergroup: name={usergroup_name} id={usergroup_id}"
|
||||
)
|
||||
else:
|
||||
mark_user_group_as_synced(db_session=db_session, user_group=user_group)
|
||||
task_logger.info(
|
||||
f"Synced usergroup. name={usergroup_name} id={usergroup_id}"
|
||||
)
|
||||
raise e
|
||||
|
||||
rug.reset()
|
||||
|
||||
@@ -4,20 +4,6 @@ import os
|
||||
# Applicable for OIDC Auth
|
||||
OPENID_CONFIG_URL = os.environ.get("OPENID_CONFIG_URL", "")
|
||||
|
||||
# Applicable for OIDC Auth, allows you to override the scopes that
|
||||
# are requested from the OIDC provider. Currently used when passing
|
||||
# over access tokens to tool calls and the tool needs more scopes
|
||||
OIDC_SCOPE_OVERRIDE: list[str] | None = None
|
||||
_OIDC_SCOPE_OVERRIDE = os.environ.get("OIDC_SCOPE_OVERRIDE")
|
||||
|
||||
if _OIDC_SCOPE_OVERRIDE:
|
||||
try:
|
||||
OIDC_SCOPE_OVERRIDE = [
|
||||
scope.strip() for scope in _OIDC_SCOPE_OVERRIDE.split(",")
|
||||
]
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Applicable for SAML Auth
|
||||
SAML_CONF_DIR = os.environ.get("SAML_CONF_DIR") or "/app/ee/onyx/configs/saml_config"
|
||||
|
||||
|
||||
@@ -345,8 +345,7 @@ def fetch_assistant_unique_users_total(
|
||||
def user_can_view_assistant_stats(
|
||||
db_session: Session, user: User | None, assistant_id: int
|
||||
) -> bool:
|
||||
# If user is None and auth is disabled, assume the user is an admin
|
||||
|
||||
# If user is None, assume the user is an admin or auth is disabled
|
||||
if user is None or user.role == UserRole.ADMIN:
|
||||
return True
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.access.models import ExternalAccess
|
||||
from onyx.access.utils import build_ext_group_name_for_onyx
|
||||
from onyx.access.utils import prefix_group_w_source
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.db.models import Document as DbDocument
|
||||
|
||||
@@ -25,7 +25,7 @@ def upsert_document_external_perms__no_commit(
|
||||
).first()
|
||||
|
||||
prefixed_external_groups = [
|
||||
build_ext_group_name_for_onyx(
|
||||
prefix_group_w_source(
|
||||
ext_group_name=group_id,
|
||||
source=source_type,
|
||||
)
|
||||
@@ -66,7 +66,7 @@ def upsert_document_external_perms(
|
||||
).first()
|
||||
|
||||
prefixed_external_groups: set[str] = {
|
||||
build_ext_group_name_for_onyx(
|
||||
prefix_group_w_source(
|
||||
ext_group_name=group_id,
|
||||
source=source_type,
|
||||
)
|
||||
|
||||
@@ -6,9 +6,8 @@ from sqlalchemy import delete
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.access.utils import build_ext_group_name_for_onyx
|
||||
from onyx.access.utils import prefix_group_w_source
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.db.models import User
|
||||
from onyx.db.models import User__ExternalUserGroupId
|
||||
from onyx.db.users import batch_add_ext_perm_user_if_not_exists
|
||||
from onyx.db.users import get_user_by_email
|
||||
@@ -62,10 +61,8 @@ def replace_user__ext_group_for_cc_pair(
|
||||
all_group_member_emails.add(user_email)
|
||||
|
||||
# batch add users if they don't exist and get their ids
|
||||
all_group_members: list[User] = batch_add_ext_perm_user_if_not_exists(
|
||||
db_session=db_session,
|
||||
# NOTE: this function handles case sensitivity for emails
|
||||
emails=list(all_group_member_emails),
|
||||
all_group_members = batch_add_ext_perm_user_if_not_exists(
|
||||
db_session=db_session, emails=list(all_group_member_emails)
|
||||
)
|
||||
|
||||
delete_user__ext_group_for_cc_pair__no_commit(
|
||||
@@ -87,14 +84,12 @@ def replace_user__ext_group_for_cc_pair(
|
||||
f" with email {user_email} not found"
|
||||
)
|
||||
continue
|
||||
external_group_id = build_ext_group_name_for_onyx(
|
||||
ext_group_name=external_group.id,
|
||||
source=source,
|
||||
)
|
||||
new_external_permissions.append(
|
||||
User__ExternalUserGroupId(
|
||||
user_id=user_id,
|
||||
external_user_group_id=external_group_id,
|
||||
external_user_group_id=prefix_group_w_source(
|
||||
external_group.id, source
|
||||
),
|
||||
cc_pair_id=cc_pair_id,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,138 +1,27 @@
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
import datetime
|
||||
from typing import Literal
|
||||
|
||||
from sqlalchemy import asc
|
||||
from sqlalchemy import BinaryExpression
|
||||
from sqlalchemy import ColumnElement
|
||||
from sqlalchemy import desc
|
||||
from sqlalchemy import distinct
|
||||
from sqlalchemy.orm import contains_eager
|
||||
from sqlalchemy.orm import joinedload
|
||||
from sqlalchemy.orm import Session
|
||||
from sqlalchemy.sql import case
|
||||
from sqlalchemy.sql import func
|
||||
from sqlalchemy.sql import select
|
||||
from sqlalchemy.sql.expression import literal
|
||||
from sqlalchemy.sql.expression import UnaryExpression
|
||||
|
||||
from onyx.configs.constants import QAFeedbackType
|
||||
from onyx.db.models import ChatMessage
|
||||
from onyx.db.models import ChatMessageFeedback
|
||||
from onyx.db.models import ChatSession
|
||||
|
||||
|
||||
def _build_filter_conditions(
|
||||
start_time: datetime | None,
|
||||
end_time: datetime | None,
|
||||
feedback_filter: QAFeedbackType | None,
|
||||
) -> list[ColumnElement]:
|
||||
"""
|
||||
Helper function to build all filter conditions for chat sessions.
|
||||
Filters by start and end time, feedback type, and any sessions without messages.
|
||||
start_time: Date from which to filter
|
||||
end_time: Date to which to filter
|
||||
feedback_filter: Feedback type to filter by
|
||||
Returns: List of filter conditions
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
if start_time is not None:
|
||||
conditions.append(ChatSession.time_created >= start_time)
|
||||
if end_time is not None:
|
||||
conditions.append(ChatSession.time_created <= end_time)
|
||||
|
||||
if feedback_filter is not None:
|
||||
feedback_subq = (
|
||||
select(ChatMessage.chat_session_id)
|
||||
.join(ChatMessageFeedback)
|
||||
.group_by(ChatMessage.chat_session_id)
|
||||
.having(
|
||||
case(
|
||||
(
|
||||
case(
|
||||
{literal(feedback_filter == QAFeedbackType.LIKE): True},
|
||||
else_=False,
|
||||
),
|
||||
func.bool_and(ChatMessageFeedback.is_positive),
|
||||
),
|
||||
(
|
||||
case(
|
||||
{literal(feedback_filter == QAFeedbackType.DISLIKE): True},
|
||||
else_=False,
|
||||
),
|
||||
func.bool_and(func.not_(ChatMessageFeedback.is_positive)),
|
||||
),
|
||||
else_=func.bool_or(ChatMessageFeedback.is_positive)
|
||||
& func.bool_or(func.not_(ChatMessageFeedback.is_positive)),
|
||||
)
|
||||
)
|
||||
)
|
||||
conditions.append(ChatSession.id.in_(feedback_subq))
|
||||
|
||||
return conditions
|
||||
|
||||
|
||||
def get_total_filtered_chat_sessions_count(
|
||||
db_session: Session,
|
||||
start_time: datetime | None,
|
||||
end_time: datetime | None,
|
||||
feedback_filter: QAFeedbackType | None,
|
||||
) -> int:
|
||||
conditions = _build_filter_conditions(start_time, end_time, feedback_filter)
|
||||
stmt = (
|
||||
select(func.count(distinct(ChatSession.id)))
|
||||
.select_from(ChatSession)
|
||||
.filter(*conditions)
|
||||
)
|
||||
return db_session.scalar(stmt) or 0
|
||||
|
||||
|
||||
def get_page_of_chat_sessions(
|
||||
start_time: datetime | None,
|
||||
end_time: datetime | None,
|
||||
db_session: Session,
|
||||
page_num: int,
|
||||
page_size: int,
|
||||
feedback_filter: QAFeedbackType | None = None,
|
||||
) -> Sequence[ChatSession]:
|
||||
conditions = _build_filter_conditions(start_time, end_time, feedback_filter)
|
||||
|
||||
subquery = (
|
||||
select(ChatSession.id)
|
||||
.filter(*conditions)
|
||||
.order_by(desc(ChatSession.time_created), ChatSession.id)
|
||||
.limit(page_size)
|
||||
.offset(page_num * page_size)
|
||||
.subquery()
|
||||
)
|
||||
|
||||
stmt = (
|
||||
select(ChatSession)
|
||||
.join(subquery, ChatSession.id == subquery.c.id)
|
||||
.outerjoin(ChatMessage, ChatSession.id == ChatMessage.chat_session_id)
|
||||
.options(
|
||||
joinedload(ChatSession.user),
|
||||
joinedload(ChatSession.persona),
|
||||
contains_eager(ChatSession.messages).joinedload(
|
||||
ChatMessage.chat_message_feedbacks
|
||||
),
|
||||
)
|
||||
.order_by(
|
||||
desc(ChatSession.time_created),
|
||||
ChatSession.id,
|
||||
asc(ChatMessage.id), # Ensure chronological message order
|
||||
)
|
||||
)
|
||||
|
||||
return db_session.scalars(stmt).unique().all()
|
||||
SortByOptions = Literal["time_sent"]
|
||||
|
||||
|
||||
def fetch_chat_sessions_eagerly_by_time(
|
||||
start: datetime,
|
||||
end: datetime,
|
||||
start: datetime.datetime,
|
||||
end: datetime.datetime,
|
||||
db_session: Session,
|
||||
limit: int | None = 500,
|
||||
initial_time: datetime | None = None,
|
||||
initial_time: datetime.datetime | None = None,
|
||||
) -> list[ChatSession]:
|
||||
time_order: UnaryExpression = desc(ChatSession.time_created)
|
||||
message_order: UnaryExpression = asc(ChatMessage.id)
|
||||
|
||||
@@ -7,7 +7,6 @@ from sqlalchemy import select
|
||||
from sqlalchemy.orm import aliased
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from onyx.configs.app_configs import DISABLE_AUTH
|
||||
from onyx.configs.constants import TokenRateLimitScope
|
||||
from onyx.db.models import TokenRateLimit
|
||||
from onyx.db.models import TokenRateLimit__UserGroup
|
||||
@@ -21,11 +20,10 @@ from onyx.server.token_rate_limits.models import TokenRateLimitArgs
|
||||
def _add_user_filters(
|
||||
stmt: Select, user: User | None, get_editable: bool = True
|
||||
) -> Select:
|
||||
# If user is None and auth is disabled, assume the user is an admin
|
||||
if (user is None and DISABLE_AUTH) or (user and user.role == UserRole.ADMIN):
|
||||
# If user is None, assume the user is an admin or auth is disabled
|
||||
if user is None or user.role == UserRole.ADMIN:
|
||||
return stmt
|
||||
|
||||
stmt = stmt.distinct()
|
||||
TRLimit_UG = aliased(TokenRateLimit__UserGroup)
|
||||
User__UG = aliased(User__UserGroup)
|
||||
|
||||
@@ -48,12 +46,6 @@ def _add_user_filters(
|
||||
that the user isn't a curator for
|
||||
- if we are not editing, we show all token_rate_limits in the groups the user curates
|
||||
"""
|
||||
|
||||
# If user is None, this is an anonymous user and we should only show public token_rate_limits
|
||||
if user is None:
|
||||
where_clause = TokenRateLimit.scope == TokenRateLimitScope.GLOBAL
|
||||
return stmt.where(where_clause)
|
||||
|
||||
where_clause = User__UG.user_id == user.id
|
||||
if user.role == UserRole.CURATOR and get_editable:
|
||||
where_clause &= User__UG.is_curator == True # noqa: E712
|
||||
@@ -111,10 +103,10 @@ def insert_user_group_token_rate_limit(
|
||||
return token_limit
|
||||
|
||||
|
||||
def fetch_user_group_token_rate_limits_for_user(
|
||||
def fetch_user_group_token_rate_limits(
|
||||
db_session: Session,
|
||||
group_id: int,
|
||||
user: User | None,
|
||||
user: User | None = None,
|
||||
enabled_only: bool = False,
|
||||
ordered: bool = True,
|
||||
get_editable: bool = True,
|
||||
|
||||
@@ -374,9 +374,7 @@ def _add_user_group__cc_pair_relationships__no_commit(
|
||||
|
||||
|
||||
def insert_user_group(db_session: Session, user_group: UserGroupCreate) -> UserGroup:
|
||||
db_user_group = UserGroup(
|
||||
name=user_group.name, time_last_modified_by_user=func.now()
|
||||
)
|
||||
db_user_group = UserGroup(name=user_group.name)
|
||||
db_session.add(db_user_group)
|
||||
db_session.flush() # give the group an ID
|
||||
|
||||
@@ -632,10 +630,6 @@ def update_user_group(
|
||||
select(User).where(User.id.in_(removed_user_ids)) # type: ignore
|
||||
).unique()
|
||||
_validate_curator_status__no_commit(db_session, list(removed_users))
|
||||
|
||||
# update "time_updated" to now
|
||||
db_user_group.time_last_modified_by_user = func.now()
|
||||
|
||||
db_session.commit()
|
||||
return db_user_group
|
||||
|
||||
@@ -705,10 +699,7 @@ def delete_user_group_cc_pair_relationship__no_commit(
|
||||
connector_credential_pair_id matches the given cc_pair_id.
|
||||
|
||||
Should be used very carefully (only for connectors that are being deleted)."""
|
||||
cc_pair = get_connector_credential_pair_from_id(
|
||||
db_session=db_session,
|
||||
cc_pair_id=cc_pair_id,
|
||||
)
|
||||
cc_pair = get_connector_credential_pair_from_id(cc_pair_id, db_session)
|
||||
if not cc_pair:
|
||||
raise ValueError(f"Connector Credential Pair '{cc_pair_id}' does not exist")
|
||||
|
||||
|
||||
@@ -13,7 +13,6 @@ from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
|
||||
from onyx.connectors.confluence.utils import get_user_email_from_username__server
|
||||
from onyx.connectors.models import SlimDocument
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -25,9 +24,7 @@ _REQUEST_PAGINATION_LIMIT = 5000
|
||||
def _get_server_space_permissions(
|
||||
confluence_client: OnyxConfluence, space_key: str
|
||||
) -> ExternalAccess:
|
||||
space_permissions = confluence_client.get_all_space_permissions_server(
|
||||
space_key=space_key
|
||||
)
|
||||
space_permissions = confluence_client.get_space_permissions(space_key=space_key)
|
||||
|
||||
viewspace_permissions = []
|
||||
for permission_category in space_permissions:
|
||||
@@ -70,13 +67,6 @@ def _get_server_space_permissions(
|
||||
else:
|
||||
logger.warning(f"Email for user {user_name} not found in Confluence")
|
||||
|
||||
if not user_emails and not group_names:
|
||||
logger.warning(
|
||||
"No user emails or group names found in Confluence space permissions"
|
||||
f"\nSpace key: {space_key}"
|
||||
f"\nSpace permissions: {space_permissions}"
|
||||
)
|
||||
|
||||
return ExternalAccess(
|
||||
external_user_emails=user_emails,
|
||||
external_user_group_ids=group_names,
|
||||
@@ -258,7 +248,6 @@ def _fetch_all_page_restrictions(
|
||||
slim_docs: list[SlimDocument],
|
||||
space_permissions_by_space_key: dict[str, ExternalAccess],
|
||||
is_cloud: bool,
|
||||
callback: IndexingHeartbeatInterface | None,
|
||||
) -> list[DocExternalAccess]:
|
||||
"""
|
||||
For all pages, if a page has restrictions, then use those restrictions.
|
||||
@@ -267,12 +256,6 @@ def _fetch_all_page_restrictions(
|
||||
document_restrictions: list[DocExternalAccess] = []
|
||||
|
||||
for slim_doc in slim_docs:
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("confluence_doc_sync: Stop signal detected")
|
||||
|
||||
callback.progress("confluence_doc_sync:fetch_all_page_restrictions", 1)
|
||||
|
||||
if slim_doc.perm_sync_data is None:
|
||||
raise ValueError(
|
||||
f"No permission sync data found for document {slim_doc.id}"
|
||||
@@ -342,7 +325,7 @@ def _fetch_all_page_restrictions(
|
||||
|
||||
|
||||
def confluence_doc_sync(
|
||||
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> list[DocExternalAccess]:
|
||||
"""
|
||||
Adds the external permissions to the documents in postgres
|
||||
@@ -367,12 +350,6 @@ def confluence_doc_sync(
|
||||
logger.debug("Fetching all slim documents from confluence")
|
||||
for doc_batch in confluence_connector.retrieve_all_slim_documents():
|
||||
logger.debug(f"Got {len(doc_batch)} slim documents from confluence")
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("confluence_doc_sync: Stop signal detected")
|
||||
|
||||
callback.progress("confluence_doc_sync", 1)
|
||||
|
||||
slim_docs.extend(doc_batch)
|
||||
|
||||
logger.debug("Fetching all page restrictions for space")
|
||||
@@ -381,5 +358,4 @@ def confluence_doc_sync(
|
||||
slim_docs=slim_docs,
|
||||
space_permissions_by_space_key=space_permissions_by_space_key,
|
||||
is_cloud=is_cloud,
|
||||
callback=callback,
|
||||
)
|
||||
|
||||
@@ -14,8 +14,6 @@ def _build_group_member_email_map(
|
||||
) -> dict[str, set[str]]:
|
||||
group_member_emails: dict[str, set[str]] = {}
|
||||
for user_result in confluence_client.paginated_cql_user_retrieval():
|
||||
logger.debug(f"Processing groups for user: {user_result}")
|
||||
|
||||
user = user_result.get("user", {})
|
||||
if not user:
|
||||
logger.warning(f"user result missing user field: {user_result}")
|
||||
@@ -35,17 +33,10 @@ def _build_group_member_email_map(
|
||||
logger.warning(f"user result missing email field: {user_result}")
|
||||
continue
|
||||
|
||||
all_users_groups: set[str] = set()
|
||||
for group in confluence_client.paginated_groups_by_user_retrieval(user):
|
||||
# group name uniqueness is enforced by Confluence, so we can use it as a group ID
|
||||
group_id = group["name"]
|
||||
group_member_emails.setdefault(group_id, set()).add(email)
|
||||
all_users_groups.add(group_id)
|
||||
|
||||
if not group_member_emails:
|
||||
logger.warning(f"No groups found for user with email: {email}")
|
||||
else:
|
||||
logger.debug(f"Found groups {all_users_groups} for user with email {email}")
|
||||
|
||||
return group_member_emails
|
||||
|
||||
|
||||
@@ -6,7 +6,6 @@ from onyx.access.models import ExternalAccess
|
||||
from onyx.connectors.gmail.connector import GmailConnector
|
||||
from onyx.connectors.interfaces import GenerateSlimDocumentOutput
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -29,7 +28,7 @@ def _get_slim_doc_generator(
|
||||
|
||||
|
||||
def gmail_doc_sync(
|
||||
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> list[DocExternalAccess]:
|
||||
"""
|
||||
Adds the external permissions to the documents in postgres
|
||||
@@ -45,12 +44,6 @@ def gmail_doc_sync(
|
||||
document_external_access: list[DocExternalAccess] = []
|
||||
for slim_doc_batch in slim_doc_generator:
|
||||
for slim_doc in slim_doc_batch:
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("gmail_doc_sync: Stop signal detected")
|
||||
|
||||
callback.progress("gmail_doc_sync", 1)
|
||||
|
||||
if slim_doc.perm_sync_data is None:
|
||||
logger.warning(f"No permissions found for document {slim_doc.id}")
|
||||
continue
|
||||
|
||||
@@ -10,7 +10,6 @@ from onyx.connectors.google_utils.resources import get_drive_service
|
||||
from onyx.connectors.interfaces import GenerateSlimDocumentOutput
|
||||
from onyx.connectors.models import SlimDocument
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
@@ -43,22 +42,24 @@ def _fetch_permissions_for_permission_ids(
|
||||
if not permission_info or not doc_id:
|
||||
return []
|
||||
|
||||
# Check cache first for all permission IDs
|
||||
permissions = [
|
||||
_PERMISSION_ID_PERMISSION_MAP[pid]
|
||||
for pid in permission_ids
|
||||
if pid in _PERMISSION_ID_PERMISSION_MAP
|
||||
]
|
||||
|
||||
# If we found all permissions in cache, return them
|
||||
if len(permissions) == len(permission_ids):
|
||||
return permissions
|
||||
|
||||
owner_email = permission_info.get("owner_email")
|
||||
|
||||
drive_service = get_drive_service(
|
||||
creds=google_drive_connector.creds,
|
||||
user_email=(owner_email or google_drive_connector.primary_admin_email),
|
||||
)
|
||||
|
||||
# Otherwise, fetch all permissions and update cache
|
||||
fetched_permissions = execute_paginated_retrieval(
|
||||
retrieval_function=drive_service.permissions().list,
|
||||
list_key="permissions",
|
||||
@@ -68,6 +69,7 @@ def _fetch_permissions_for_permission_ids(
|
||||
)
|
||||
|
||||
permissions_for_doc_id = []
|
||||
# Update cache and return all permissions
|
||||
for permission in fetched_permissions:
|
||||
permissions_for_doc_id.append(permission)
|
||||
_PERMISSION_ID_PERMISSION_MAP[permission["id"]] = permission
|
||||
@@ -118,18 +120,15 @@ def _get_permissions_from_slim_doc(
|
||||
elif permission_type == "anyone":
|
||||
public = True
|
||||
|
||||
drive_id = permission_info.get("drive_id")
|
||||
group_ids = group_emails | ({drive_id} if drive_id is not None else set())
|
||||
|
||||
return ExternalAccess(
|
||||
external_user_emails=user_emails,
|
||||
external_user_group_ids=group_ids,
|
||||
external_user_group_ids=group_emails,
|
||||
is_public=public,
|
||||
)
|
||||
|
||||
|
||||
def gdrive_doc_sync(
|
||||
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> list[DocExternalAccess]:
|
||||
"""
|
||||
Adds the external permissions to the documents in postgres
|
||||
@@ -147,12 +146,6 @@ def gdrive_doc_sync(
|
||||
document_external_accesses = []
|
||||
for slim_doc_batch in slim_doc_generator:
|
||||
for slim_doc in slim_doc_batch:
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError("gdrive_doc_sync: Stop signal detected")
|
||||
|
||||
callback.progress("gdrive_doc_sync", 1)
|
||||
|
||||
ext_access = _get_permissions_from_slim_doc(
|
||||
google_drive_connector=google_drive_connector,
|
||||
slim_doc=slim_doc,
|
||||
|
||||
@@ -1,127 +1,16 @@
|
||||
from ee.onyx.db.external_perm import ExternalUserGroup
|
||||
from onyx.connectors.google_drive.connector import GoogleDriveConnector
|
||||
from onyx.connectors.google_utils.google_utils import execute_paginated_retrieval
|
||||
from onyx.connectors.google_utils.resources import AdminService
|
||||
from onyx.connectors.google_utils.resources import get_admin_service
|
||||
from onyx.connectors.google_utils.resources import get_drive_service
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def _get_drive_members(
|
||||
google_drive_connector: GoogleDriveConnector,
|
||||
) -> dict[str, tuple[set[str], set[str]]]:
|
||||
"""
|
||||
This builds a map of drive ids to their members (group and user emails).
|
||||
E.g. {
|
||||
"drive_id_1": ({"group_email_1"}, {"user_email_1", "user_email_2"}),
|
||||
"drive_id_2": ({"group_email_3"}, {"user_email_3"}),
|
||||
}
|
||||
"""
|
||||
drive_ids = google_drive_connector.get_all_drive_ids()
|
||||
|
||||
drive_id_to_members_map: dict[str, tuple[set[str], set[str]]] = {}
|
||||
drive_service = get_drive_service(
|
||||
google_drive_connector.creds,
|
||||
google_drive_connector.primary_admin_email,
|
||||
)
|
||||
|
||||
for drive_id in drive_ids:
|
||||
group_emails: set[str] = set()
|
||||
user_emails: set[str] = set()
|
||||
for permission in execute_paginated_retrieval(
|
||||
drive_service.permissions().list,
|
||||
list_key="permissions",
|
||||
fileId=drive_id,
|
||||
fields="permissions(emailAddress, type)",
|
||||
supportsAllDrives=True,
|
||||
):
|
||||
if permission["type"] == "group":
|
||||
group_emails.add(permission["emailAddress"])
|
||||
elif permission["type"] == "user":
|
||||
user_emails.add(permission["emailAddress"])
|
||||
drive_id_to_members_map[drive_id] = (group_emails, user_emails)
|
||||
return drive_id_to_members_map
|
||||
|
||||
|
||||
def _get_all_groups(
|
||||
admin_service: AdminService,
|
||||
google_domain: str,
|
||||
) -> set[str]:
|
||||
"""
|
||||
This gets all the group emails.
|
||||
"""
|
||||
group_emails: set[str] = set()
|
||||
for group in execute_paginated_retrieval(
|
||||
admin_service.groups().list,
|
||||
list_key="groups",
|
||||
domain=google_domain,
|
||||
fields="groups(email)",
|
||||
):
|
||||
group_emails.add(group["email"])
|
||||
return group_emails
|
||||
|
||||
|
||||
def _map_group_email_to_member_emails(
|
||||
admin_service: AdminService,
|
||||
group_emails: set[str],
|
||||
) -> dict[str, set[str]]:
|
||||
"""
|
||||
This maps group emails to their member emails.
|
||||
"""
|
||||
group_to_member_map: dict[str, set[str]] = {}
|
||||
for group_email in group_emails:
|
||||
group_member_emails: set[str] = set()
|
||||
for member in execute_paginated_retrieval(
|
||||
admin_service.members().list,
|
||||
list_key="members",
|
||||
groupKey=group_email,
|
||||
fields="members(email)",
|
||||
):
|
||||
group_member_emails.add(member["email"])
|
||||
|
||||
group_to_member_map[group_email] = group_member_emails
|
||||
return group_to_member_map
|
||||
|
||||
|
||||
def _build_onyx_groups(
|
||||
drive_id_to_members_map: dict[str, tuple[set[str], set[str]]],
|
||||
group_email_to_member_emails_map: dict[str, set[str]],
|
||||
) -> list[ExternalUserGroup]:
|
||||
onyx_groups: list[ExternalUserGroup] = []
|
||||
|
||||
# Convert all drive member definitions to onyx groups
|
||||
# This is because having drive level access means you have
|
||||
# irrevocable access to all the files in the drive.
|
||||
for drive_id, (group_emails, user_emails) in drive_id_to_members_map.items():
|
||||
all_member_emails: set[str] = user_emails
|
||||
for group_email in group_emails:
|
||||
all_member_emails.update(group_email_to_member_emails_map[group_email])
|
||||
onyx_groups.append(
|
||||
ExternalUserGroup(
|
||||
id=drive_id,
|
||||
user_emails=list(all_member_emails),
|
||||
)
|
||||
)
|
||||
|
||||
# Convert all group member definitions to onyx groups
|
||||
for group_email, member_emails in group_email_to_member_emails_map.items():
|
||||
onyx_groups.append(
|
||||
ExternalUserGroup(
|
||||
id=group_email,
|
||||
user_emails=list(member_emails),
|
||||
)
|
||||
)
|
||||
|
||||
return onyx_groups
|
||||
|
||||
|
||||
def gdrive_group_sync(
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> list[ExternalUserGroup]:
|
||||
# Initialize connector and build credential/service objects
|
||||
google_drive_connector = GoogleDriveConnector(
|
||||
**cc_pair.connector.connector_specific_config
|
||||
)
|
||||
@@ -130,23 +19,34 @@ def gdrive_group_sync(
|
||||
google_drive_connector.creds, google_drive_connector.primary_admin_email
|
||||
)
|
||||
|
||||
# Get all drive members
|
||||
drive_id_to_members_map = _get_drive_members(google_drive_connector)
|
||||
onyx_groups: list[ExternalUserGroup] = []
|
||||
for group in execute_paginated_retrieval(
|
||||
admin_service.groups().list,
|
||||
list_key="groups",
|
||||
domain=google_drive_connector.google_domain,
|
||||
fields="groups(email)",
|
||||
):
|
||||
# The id is the group email
|
||||
group_email = group["email"]
|
||||
|
||||
# Get all group emails
|
||||
all_group_emails = _get_all_groups(
|
||||
admin_service, google_drive_connector.google_domain
|
||||
)
|
||||
# Gather group member emails
|
||||
group_member_emails: list[str] = []
|
||||
for member in execute_paginated_retrieval(
|
||||
admin_service.members().list,
|
||||
list_key="members",
|
||||
groupKey=group_email,
|
||||
fields="members(email)",
|
||||
):
|
||||
group_member_emails.append(member["email"])
|
||||
|
||||
# Map group emails to their members
|
||||
group_email_to_member_emails_map = _map_group_email_to_member_emails(
|
||||
admin_service, all_group_emails
|
||||
)
|
||||
if not group_member_emails:
|
||||
continue
|
||||
|
||||
# Convert the maps to onyx groups
|
||||
onyx_groups = _build_onyx_groups(
|
||||
drive_id_to_members_map=drive_id_to_members_map,
|
||||
group_email_to_member_emails_map=group_email_to_member_emails_map,
|
||||
)
|
||||
onyx_groups.append(
|
||||
ExternalUserGroup(
|
||||
id=group_email,
|
||||
user_emails=list(group_member_emails),
|
||||
)
|
||||
)
|
||||
|
||||
return onyx_groups
|
||||
|
||||
@@ -161,10 +161,7 @@ def _get_salesforce_client_for_doc_id(db_session: Session, doc_id: str) -> Sales
|
||||
|
||||
cc_pair_id = _DOC_ID_TO_CC_PAIR_ID_MAP[doc_id]
|
||||
if cc_pair_id not in _CC_PAIR_ID_SALESFORCE_CLIENT_MAP:
|
||||
cc_pair = get_connector_credential_pair_from_id(
|
||||
db_session=db_session,
|
||||
cc_pair_id=cc_pair_id,
|
||||
)
|
||||
cc_pair = get_connector_credential_pair_from_id(cc_pair_id, db_session)
|
||||
if cc_pair is None:
|
||||
raise ValueError(f"CC pair {cc_pair_id} not found")
|
||||
credential_json = cc_pair.credential.credential_json
|
||||
|
||||
@@ -7,7 +7,6 @@ from onyx.connectors.slack.connector import get_channels
|
||||
from onyx.connectors.slack.connector import make_paginated_slack_api_call_w_retries
|
||||
from onyx.connectors.slack.connector import SlackPollConnector
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
|
||||
@@ -15,7 +14,7 @@ logger = setup_logger()
|
||||
|
||||
|
||||
def _get_slack_document_ids_and_channels(
|
||||
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> dict[str, list[str]]:
|
||||
slack_connector = SlackPollConnector(**cc_pair.connector.connector_specific_config)
|
||||
slack_connector.load_credentials(cc_pair.credential.credential_json)
|
||||
@@ -25,14 +24,6 @@ def _get_slack_document_ids_and_channels(
|
||||
channel_doc_map: dict[str, list[str]] = {}
|
||||
for doc_metadata_batch in slim_doc_generator:
|
||||
for doc_metadata in doc_metadata_batch:
|
||||
if callback:
|
||||
if callback.should_stop():
|
||||
raise RuntimeError(
|
||||
"_get_slack_document_ids_and_channels: Stop signal detected"
|
||||
)
|
||||
|
||||
callback.progress("_get_slack_document_ids_and_channels", 1)
|
||||
|
||||
if doc_metadata.perm_sync_data is None:
|
||||
continue
|
||||
channel_id = doc_metadata.perm_sync_data["channel_id"]
|
||||
@@ -123,7 +114,7 @@ def _fetch_channel_permissions(
|
||||
|
||||
|
||||
def slack_doc_sync(
|
||||
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
|
||||
cc_pair: ConnectorCredentialPair,
|
||||
) -> list[DocExternalAccess]:
|
||||
"""
|
||||
Adds the external permissions to the documents in postgres
|
||||
@@ -136,7 +127,7 @@ def slack_doc_sync(
|
||||
)
|
||||
user_id_to_email_map = fetch_user_id_to_email_map(slack_client)
|
||||
channel_doc_map = _get_slack_document_ids_and_channels(
|
||||
cc_pair=cc_pair, callback=callback
|
||||
cc_pair=cc_pair,
|
||||
)
|
||||
workspace_permissions = _fetch_workspace_permissions(
|
||||
user_id_to_email_map=user_id_to_email_map,
|
||||
|
||||
@@ -15,13 +15,11 @@ from ee.onyx.external_permissions.slack.doc_sync import slack_doc_sync
|
||||
from onyx.access.models import DocExternalAccess
|
||||
from onyx.configs.constants import DocumentSource
|
||||
from onyx.db.models import ConnectorCredentialPair
|
||||
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
|
||||
|
||||
# Defining the input/output types for the sync functions
|
||||
DocSyncFuncType = Callable[
|
||||
[
|
||||
ConnectorCredentialPair,
|
||||
IndexingHeartbeatInterface | None,
|
||||
],
|
||||
list[DocExternalAccess],
|
||||
]
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
from fastapi import FastAPI
|
||||
from httpx_oauth.clients.google import GoogleOAuth2
|
||||
from httpx_oauth.clients.openid import BASE_SCOPES
|
||||
from httpx_oauth.clients.openid import OpenID
|
||||
|
||||
from ee.onyx.configs.app_configs import OIDC_SCOPE_OVERRIDE
|
||||
from ee.onyx.configs.app_configs import OPENID_CONFIG_URL
|
||||
from ee.onyx.server.analytics.api import router as analytics_router
|
||||
from ee.onyx.server.auth_check import check_ee_router_auth
|
||||
@@ -90,13 +88,7 @@ def get_application() -> FastAPI:
|
||||
include_auth_router_with_prefix(
|
||||
application,
|
||||
create_onyx_oauth_router(
|
||||
OpenID(
|
||||
OAUTH_CLIENT_ID,
|
||||
OAUTH_CLIENT_SECRET,
|
||||
OPENID_CONFIG_URL,
|
||||
# BASE_SCOPES is the same as not setting this
|
||||
base_scopes=OIDC_SCOPE_OVERRIDE or BASE_SCOPES,
|
||||
),
|
||||
OpenID(OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET, OPENID_CONFIG_URL),
|
||||
auth_backend,
|
||||
USER_AUTH_SECRET,
|
||||
associate_by_email=True,
|
||||
|
||||
@@ -80,7 +80,7 @@ def oneoff_standard_answers(
|
||||
def _handle_standard_answers(
|
||||
message_info: SlackMessageInfo,
|
||||
receiver_ids: list[str] | None,
|
||||
slack_channel_config: SlackChannelConfig,
|
||||
slack_channel_config: SlackChannelConfig | None,
|
||||
prompt: Prompt | None,
|
||||
logger: OnyxLoggingAdapter,
|
||||
client: WebClient,
|
||||
@@ -94,10 +94,13 @@ def _handle_standard_answers(
|
||||
Returns True if standard answers are found to match the user's message and therefore,
|
||||
we still need to respond to the users.
|
||||
"""
|
||||
# if no channel config, then no standard answers are configured
|
||||
if not slack_channel_config:
|
||||
return False
|
||||
|
||||
slack_thread_id = message_info.thread_to_respond
|
||||
configured_standard_answer_categories = (
|
||||
slack_channel_config.standard_answer_categories
|
||||
slack_channel_config.standard_answer_categories if slack_channel_config else []
|
||||
)
|
||||
configured_standard_answers = set(
|
||||
[
|
||||
@@ -147,9 +150,9 @@ def _handle_standard_answers(
|
||||
db_session=db_session,
|
||||
description="",
|
||||
user_id=None,
|
||||
persona_id=(
|
||||
slack_channel_config.persona.id if slack_channel_config.persona else 0
|
||||
),
|
||||
persona_id=slack_channel_config.persona.id
|
||||
if slack_channel_config.persona
|
||||
else 0,
|
||||
onyxbot_flow=True,
|
||||
slack_thread_id=slack_thread_id,
|
||||
)
|
||||
@@ -179,7 +182,7 @@ def _handle_standard_answers(
|
||||
formatted_answers.append(formatted_answer)
|
||||
answer_message = "\n\n".join(formatted_answers)
|
||||
|
||||
chat_message = create_new_chat_message(
|
||||
_ = create_new_chat_message(
|
||||
chat_session_id=chat_session.id,
|
||||
parent_message=new_user_message,
|
||||
prompt_id=prompt.id if prompt else None,
|
||||
@@ -188,13 +191,8 @@ def _handle_standard_answers(
|
||||
message_type=MessageType.ASSISTANT,
|
||||
error=None,
|
||||
db_session=db_session,
|
||||
commit=False,
|
||||
commit=True,
|
||||
)
|
||||
# attach the standard answers to the chat message
|
||||
chat_message.standard_answers = [
|
||||
standard_answer for standard_answer, _ in matching_standard_answers
|
||||
]
|
||||
db_session.commit()
|
||||
|
||||
update_emote_react(
|
||||
emoji=DANSWER_REACT_EMOJI,
|
||||
|
||||
@@ -10,7 +10,6 @@ from fastapi import Response
|
||||
from ee.onyx.auth.users import decode_anonymous_user_jwt_token
|
||||
from ee.onyx.configs.app_configs import ANONYMOUS_USER_COOKIE_NAME
|
||||
from onyx.auth.api_key import extract_tenant_from_api_key_header
|
||||
from onyx.configs.constants import TENANT_ID_COOKIE_NAME
|
||||
from onyx.db.engine import is_valid_schema_name
|
||||
from onyx.redis.redis_pool import retrieve_auth_token_data_from_redis
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
@@ -44,7 +43,6 @@ async def _get_tenant_id_from_request(
|
||||
Attempt to extract tenant_id from:
|
||||
1) The API key header
|
||||
2) The Redis-based token (stored in Cookie: fastapiusersauth)
|
||||
3) Reset token cookie
|
||||
Fallback: POSTGRES_DEFAULT_SCHEMA
|
||||
"""
|
||||
# Check for API key
|
||||
@@ -92,12 +90,3 @@ async def _get_tenant_id_from_request(
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error in _get_tenant_id_from_request: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail="Internal server error")
|
||||
|
||||
finally:
|
||||
# As a final step, check for explicit tenant_id cookie
|
||||
tenant_id_cookie = request.cookies.get(TENANT_ID_COOKIE_NAME)
|
||||
if tenant_id_cookie and is_valid_schema_name(tenant_id_cookie):
|
||||
return tenant_id_cookie
|
||||
|
||||
# If we've reached this point, return the default schema
|
||||
return POSTGRES_DEFAULT_SCHEMA
|
||||
|
||||
@@ -286,7 +286,6 @@ def prepare_authorization_request(
|
||||
oauth_state = (
|
||||
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
|
||||
)
|
||||
session: str
|
||||
|
||||
if connector == DocumentSource.SLACK:
|
||||
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
|
||||
@@ -555,7 +554,6 @@ def handle_google_drive_oauth_callback(
|
||||
)
|
||||
|
||||
session_json = session_json_bytes.decode("utf-8")
|
||||
session: GoogleDriveOAuth.OAuthSession
|
||||
try:
|
||||
session = GoogleDriveOAuth.parse_session(session_json)
|
||||
|
||||
|
||||
@@ -179,7 +179,6 @@ def handle_simplified_chat_message(
|
||||
chunks_below=0,
|
||||
full_doc=chat_message_req.full_doc,
|
||||
structured_response_format=chat_message_req.structured_response_format,
|
||||
use_agentic_search=chat_message_req.use_agentic_search,
|
||||
)
|
||||
|
||||
packets = stream_chat_message_objects(
|
||||
@@ -302,7 +301,6 @@ def handle_send_message_simple_with_history(
|
||||
chunks_below=0,
|
||||
full_doc=req.full_doc,
|
||||
structured_response_format=req.structured_response_format,
|
||||
use_agentic_search=req.use_agentic_search,
|
||||
)
|
||||
|
||||
packets = stream_chat_message_objects(
|
||||
|
||||
@@ -57,9 +57,6 @@ class BasicCreateChatMessageRequest(ChunkContext):
|
||||
# https://platform.openai.com/docs/guides/structured-outputs/introduction
|
||||
structured_response_format: dict | None = None
|
||||
|
||||
# If True, uses agentic search instead of basic search
|
||||
use_agentic_search: bool = False
|
||||
|
||||
|
||||
class BasicCreateChatMessageWithHistoryRequest(ChunkContext):
|
||||
# Last element is the new query. All previous elements are historical context
|
||||
@@ -74,8 +71,6 @@ class BasicCreateChatMessageWithHistoryRequest(ChunkContext):
|
||||
# only works if using an OpenAI model. See the following for more details:
|
||||
# https://platform.openai.com/docs/guides/structured-outputs/introduction
|
||||
structured_response_format: dict | None = None
|
||||
# If True, uses agentic search instead of basic search
|
||||
use_agentic_search: bool = False
|
||||
|
||||
|
||||
class SimpleDoc(BaseModel):
|
||||
@@ -125,12 +120,9 @@ class OneShotQARequest(ChunkContext):
|
||||
# will also disable Thread-based Rewording if specified
|
||||
query_override: str | None = None
|
||||
|
||||
# If True, skips generating an AI response to the search query
|
||||
# If True, skips generative an AI response to the search query
|
||||
skip_gen_ai_answer_generation: bool = False
|
||||
|
||||
# If True, uses agentic search instead of basic search
|
||||
use_agentic_search: bool = False
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_persona_fields(self) -> "OneShotQARequest":
|
||||
if self.persona_override_config is None and self.persona_id is None:
|
||||
|
||||
@@ -196,8 +196,6 @@ def get_answer_stream(
|
||||
retrieval_details=query_request.retrieval_options,
|
||||
rerank_settings=query_request.rerank_settings,
|
||||
db_session=db_session,
|
||||
use_agentic_search=query_request.use_agentic_search,
|
||||
skip_gen_ai_answer_generation=query_request.skip_gen_ai_answer_generation,
|
||||
)
|
||||
|
||||
packets = stream_chat_message_objects(
|
||||
|
||||
@@ -1,23 +1,19 @@
|
||||
import csv
|
||||
import io
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from datetime import timezone
|
||||
from typing import Literal
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi import Depends
|
||||
from fastapi import HTTPException
|
||||
from fastapi import Query
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from ee.onyx.db.query_history import fetch_chat_sessions_eagerly_by_time
|
||||
from ee.onyx.db.query_history import get_page_of_chat_sessions
|
||||
from ee.onyx.db.query_history import get_total_filtered_chat_sessions_count
|
||||
from ee.onyx.server.query_history.models import ChatSessionMinimal
|
||||
from ee.onyx.server.query_history.models import ChatSessionSnapshot
|
||||
from ee.onyx.server.query_history.models import MessageSnapshot
|
||||
from ee.onyx.server.query_history.models import QuestionAnswerPairSnapshot
|
||||
from onyx.auth.users import current_admin_user
|
||||
from onyx.auth.users import get_display_email
|
||||
from onyx.chat.chat_utils import create_chat_chain
|
||||
@@ -27,15 +23,257 @@ from onyx.configs.constants import SessionType
|
||||
from onyx.db.chat import get_chat_session_by_id
|
||||
from onyx.db.chat import get_chat_sessions_by_user
|
||||
from onyx.db.engine import get_session
|
||||
from onyx.db.models import ChatMessage
|
||||
from onyx.db.models import ChatSession
|
||||
from onyx.db.models import User
|
||||
from onyx.server.documents.models import PaginatedReturn
|
||||
from onyx.server.query_and_chat.models import ChatSessionDetails
|
||||
from onyx.server.query_and_chat.models import ChatSessionsResponse
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
class AbridgedSearchDoc(BaseModel):
|
||||
"""A subset of the info present in `SearchDoc`"""
|
||||
|
||||
document_id: str
|
||||
semantic_identifier: str
|
||||
link: str | None
|
||||
|
||||
|
||||
class MessageSnapshot(BaseModel):
|
||||
message: str
|
||||
message_type: MessageType
|
||||
documents: list[AbridgedSearchDoc]
|
||||
feedback_type: QAFeedbackType | None
|
||||
feedback_text: str | None
|
||||
time_created: datetime
|
||||
|
||||
@classmethod
|
||||
def build(cls, message: ChatMessage) -> "MessageSnapshot":
|
||||
latest_messages_feedback_obj = (
|
||||
message.chat_message_feedbacks[-1]
|
||||
if len(message.chat_message_feedbacks) > 0
|
||||
else None
|
||||
)
|
||||
feedback_type = (
|
||||
(
|
||||
QAFeedbackType.LIKE
|
||||
if latest_messages_feedback_obj.is_positive
|
||||
else QAFeedbackType.DISLIKE
|
||||
)
|
||||
if latest_messages_feedback_obj
|
||||
else None
|
||||
)
|
||||
feedback_text = (
|
||||
latest_messages_feedback_obj.feedback_text
|
||||
if latest_messages_feedback_obj
|
||||
else None
|
||||
)
|
||||
return cls(
|
||||
message=message.message,
|
||||
message_type=message.message_type,
|
||||
documents=[
|
||||
AbridgedSearchDoc(
|
||||
document_id=document.document_id,
|
||||
semantic_identifier=document.semantic_id,
|
||||
link=document.link,
|
||||
)
|
||||
for document in message.search_docs
|
||||
],
|
||||
feedback_type=feedback_type,
|
||||
feedback_text=feedback_text,
|
||||
time_created=message.time_sent,
|
||||
)
|
||||
|
||||
|
||||
class ChatSessionMinimal(BaseModel):
|
||||
id: UUID
|
||||
user_email: str
|
||||
name: str | None
|
||||
first_user_message: str
|
||||
first_ai_message: str
|
||||
assistant_id: int | None
|
||||
assistant_name: str | None
|
||||
time_created: datetime
|
||||
feedback_type: QAFeedbackType | Literal["mixed"] | None
|
||||
flow_type: SessionType
|
||||
conversation_length: int
|
||||
|
||||
|
||||
class ChatSessionSnapshot(BaseModel):
|
||||
id: UUID
|
||||
user_email: str
|
||||
name: str | None
|
||||
messages: list[MessageSnapshot]
|
||||
assistant_id: int | None
|
||||
assistant_name: str | None
|
||||
time_created: datetime
|
||||
flow_type: SessionType
|
||||
|
||||
|
||||
class QuestionAnswerPairSnapshot(BaseModel):
|
||||
chat_session_id: UUID
|
||||
# 1-indexed message number in the chat_session
|
||||
# e.g. the first message pair in the chat_session is 1, the second is 2, etc.
|
||||
message_pair_num: int
|
||||
user_message: str
|
||||
ai_response: str
|
||||
retrieved_documents: list[AbridgedSearchDoc]
|
||||
feedback_type: QAFeedbackType | None
|
||||
feedback_text: str | None
|
||||
persona_name: str | None
|
||||
user_email: str
|
||||
time_created: datetime
|
||||
flow_type: SessionType
|
||||
|
||||
@classmethod
|
||||
def from_chat_session_snapshot(
|
||||
cls,
|
||||
chat_session_snapshot: ChatSessionSnapshot,
|
||||
) -> list["QuestionAnswerPairSnapshot"]:
|
||||
message_pairs: list[tuple[MessageSnapshot, MessageSnapshot]] = []
|
||||
for ind in range(1, len(chat_session_snapshot.messages), 2):
|
||||
message_pairs.append(
|
||||
(
|
||||
chat_session_snapshot.messages[ind - 1],
|
||||
chat_session_snapshot.messages[ind],
|
||||
)
|
||||
)
|
||||
|
||||
return [
|
||||
cls(
|
||||
chat_session_id=chat_session_snapshot.id,
|
||||
message_pair_num=ind + 1,
|
||||
user_message=user_message.message,
|
||||
ai_response=ai_message.message,
|
||||
retrieved_documents=ai_message.documents,
|
||||
feedback_type=ai_message.feedback_type,
|
||||
feedback_text=ai_message.feedback_text,
|
||||
persona_name=chat_session_snapshot.assistant_name,
|
||||
user_email=get_display_email(chat_session_snapshot.user_email),
|
||||
time_created=user_message.time_created,
|
||||
flow_type=chat_session_snapshot.flow_type,
|
||||
)
|
||||
for ind, (user_message, ai_message) in enumerate(message_pairs)
|
||||
]
|
||||
|
||||
def to_json(self) -> dict[str, str | None]:
|
||||
return {
|
||||
"chat_session_id": str(self.chat_session_id),
|
||||
"message_pair_num": str(self.message_pair_num),
|
||||
"user_message": self.user_message,
|
||||
"ai_response": self.ai_response,
|
||||
"retrieved_documents": "|".join(
|
||||
[
|
||||
doc.link or doc.semantic_identifier
|
||||
for doc in self.retrieved_documents
|
||||
]
|
||||
),
|
||||
"feedback_type": self.feedback_type.value if self.feedback_type else "",
|
||||
"feedback_text": self.feedback_text or "",
|
||||
"persona_name": self.persona_name,
|
||||
"user_email": self.user_email,
|
||||
"time_created": str(self.time_created),
|
||||
"flow_type": self.flow_type,
|
||||
}
|
||||
|
||||
|
||||
def determine_flow_type(chat_session: ChatSession) -> SessionType:
|
||||
return SessionType.SLACK if chat_session.onyxbot_flow else SessionType.CHAT
|
||||
|
||||
|
||||
def fetch_and_process_chat_session_history_minimal(
|
||||
db_session: Session,
|
||||
start: datetime,
|
||||
end: datetime,
|
||||
feedback_filter: QAFeedbackType | None = None,
|
||||
limit: int | None = 500,
|
||||
) -> list[ChatSessionMinimal]:
|
||||
chat_sessions = fetch_chat_sessions_eagerly_by_time(
|
||||
start=start, end=end, db_session=db_session, limit=limit
|
||||
)
|
||||
|
||||
minimal_sessions = []
|
||||
for chat_session in chat_sessions:
|
||||
if not chat_session.messages:
|
||||
continue
|
||||
|
||||
first_user_message = next(
|
||||
(
|
||||
message.message
|
||||
for message in chat_session.messages
|
||||
if message.message_type == MessageType.USER
|
||||
),
|
||||
"",
|
||||
)
|
||||
first_ai_message = next(
|
||||
(
|
||||
message.message
|
||||
for message in chat_session.messages
|
||||
if message.message_type == MessageType.ASSISTANT
|
||||
),
|
||||
"",
|
||||
)
|
||||
|
||||
has_positive_feedback = any(
|
||||
feedback.is_positive
|
||||
for message in chat_session.messages
|
||||
for feedback in message.chat_message_feedbacks
|
||||
)
|
||||
|
||||
has_negative_feedback = any(
|
||||
not feedback.is_positive
|
||||
for message in chat_session.messages
|
||||
for feedback in message.chat_message_feedbacks
|
||||
)
|
||||
|
||||
feedback_type: QAFeedbackType | Literal["mixed"] | None = (
|
||||
"mixed"
|
||||
if has_positive_feedback and has_negative_feedback
|
||||
else QAFeedbackType.LIKE
|
||||
if has_positive_feedback
|
||||
else QAFeedbackType.DISLIKE
|
||||
if has_negative_feedback
|
||||
else None
|
||||
)
|
||||
|
||||
if feedback_filter:
|
||||
if feedback_filter == QAFeedbackType.LIKE and not has_positive_feedback:
|
||||
continue
|
||||
if feedback_filter == QAFeedbackType.DISLIKE and not has_negative_feedback:
|
||||
continue
|
||||
|
||||
flow_type = determine_flow_type(chat_session)
|
||||
|
||||
minimal_sessions.append(
|
||||
ChatSessionMinimal(
|
||||
id=chat_session.id,
|
||||
user_email=get_display_email(
|
||||
chat_session.user.email if chat_session.user else None
|
||||
),
|
||||
name=chat_session.description,
|
||||
first_user_message=first_user_message,
|
||||
first_ai_message=first_ai_message,
|
||||
assistant_id=chat_session.persona_id,
|
||||
assistant_name=(
|
||||
chat_session.persona.name if chat_session.persona else None
|
||||
),
|
||||
time_created=chat_session.time_created,
|
||||
feedback_type=feedback_type,
|
||||
flow_type=flow_type,
|
||||
conversation_length=len(
|
||||
[
|
||||
m
|
||||
for m in chat_session.messages
|
||||
if m.message_type != MessageType.SYSTEM
|
||||
]
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return minimal_sessions
|
||||
|
||||
|
||||
def fetch_and_process_chat_session_history(
|
||||
db_session: Session,
|
||||
start: datetime,
|
||||
@@ -81,7 +319,7 @@ def snapshot_from_chat_session(
|
||||
except RuntimeError:
|
||||
return None
|
||||
|
||||
flow_type = SessionType.SLACK if chat_session.onyxbot_flow else SessionType.CHAT
|
||||
flow_type = determine_flow_type(chat_session)
|
||||
|
||||
return ChatSessionSnapshot(
|
||||
id=chat_session.id,
|
||||
@@ -133,38 +371,22 @@ def get_user_chat_sessions(
|
||||
|
||||
@router.get("/admin/chat-session-history")
|
||||
def get_chat_session_history(
|
||||
page_num: int = Query(0, ge=0),
|
||||
page_size: int = Query(10, ge=1),
|
||||
feedback_type: QAFeedbackType | None = None,
|
||||
start_time: datetime | None = None,
|
||||
end_time: datetime | None = None,
|
||||
start: datetime | None = None,
|
||||
end: datetime | None = None,
|
||||
_: User | None = Depends(current_admin_user),
|
||||
db_session: Session = Depends(get_session),
|
||||
) -> PaginatedReturn[ChatSessionMinimal]:
|
||||
page_of_chat_sessions = get_page_of_chat_sessions(
|
||||
page_num=page_num,
|
||||
page_size=page_size,
|
||||
) -> list[ChatSessionMinimal]:
|
||||
return fetch_and_process_chat_session_history_minimal(
|
||||
db_session=db_session,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
start=start
|
||||
or (
|
||||
datetime.now(tz=timezone.utc) - timedelta(days=30)
|
||||
), # default is 30d lookback
|
||||
end=end or datetime.now(tz=timezone.utc),
|
||||
feedback_filter=feedback_type,
|
||||
)
|
||||
|
||||
total_filtered_chat_sessions_count = get_total_filtered_chat_sessions_count(
|
||||
db_session=db_session,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
feedback_filter=feedback_type,
|
||||
)
|
||||
|
||||
return PaginatedReturn(
|
||||
items=[
|
||||
ChatSessionMinimal.from_chat_session(chat_session)
|
||||
for chat_session in page_of_chat_sessions
|
||||
],
|
||||
total_items=total_filtered_chat_sessions_count,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/admin/chat-session-history/{chat_session_id}")
|
||||
def get_chat_session_admin(
|
||||
|
||||
@@ -1,218 +0,0 @@
|
||||
from datetime import datetime
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.auth.users import get_display_email
|
||||
from onyx.configs.constants import MessageType
|
||||
from onyx.configs.constants import QAFeedbackType
|
||||
from onyx.configs.constants import SessionType
|
||||
from onyx.db.models import ChatMessage
|
||||
from onyx.db.models import ChatSession
|
||||
|
||||
|
||||
class AbridgedSearchDoc(BaseModel):
|
||||
"""A subset of the info present in `SearchDoc`"""
|
||||
|
||||
document_id: str
|
||||
semantic_identifier: str
|
||||
link: str | None
|
||||
|
||||
|
||||
class MessageSnapshot(BaseModel):
|
||||
id: int
|
||||
message: str
|
||||
message_type: MessageType
|
||||
documents: list[AbridgedSearchDoc]
|
||||
feedback_type: QAFeedbackType | None
|
||||
feedback_text: str | None
|
||||
time_created: datetime
|
||||
|
||||
@classmethod
|
||||
def build(cls, message: ChatMessage) -> "MessageSnapshot":
|
||||
latest_messages_feedback_obj = (
|
||||
message.chat_message_feedbacks[-1]
|
||||
if len(message.chat_message_feedbacks) > 0
|
||||
else None
|
||||
)
|
||||
feedback_type = (
|
||||
(
|
||||
QAFeedbackType.LIKE
|
||||
if latest_messages_feedback_obj.is_positive
|
||||
else QAFeedbackType.DISLIKE
|
||||
)
|
||||
if latest_messages_feedback_obj
|
||||
else None
|
||||
)
|
||||
feedback_text = (
|
||||
latest_messages_feedback_obj.feedback_text
|
||||
if latest_messages_feedback_obj
|
||||
else None
|
||||
)
|
||||
return cls(
|
||||
id=message.id,
|
||||
message=message.message,
|
||||
message_type=message.message_type,
|
||||
documents=[
|
||||
AbridgedSearchDoc(
|
||||
document_id=document.document_id,
|
||||
semantic_identifier=document.semantic_id,
|
||||
link=document.link,
|
||||
)
|
||||
for document in message.search_docs
|
||||
],
|
||||
feedback_type=feedback_type,
|
||||
feedback_text=feedback_text,
|
||||
time_created=message.time_sent,
|
||||
)
|
||||
|
||||
|
||||
class ChatSessionMinimal(BaseModel):
|
||||
id: UUID
|
||||
user_email: str
|
||||
name: str | None
|
||||
first_user_message: str
|
||||
first_ai_message: str
|
||||
assistant_id: int | None
|
||||
assistant_name: str | None
|
||||
time_created: datetime
|
||||
feedback_type: QAFeedbackType | None
|
||||
flow_type: SessionType
|
||||
conversation_length: int
|
||||
|
||||
@classmethod
|
||||
def from_chat_session(cls, chat_session: ChatSession) -> "ChatSessionMinimal":
|
||||
first_user_message = next(
|
||||
(
|
||||
message.message
|
||||
for message in chat_session.messages
|
||||
if message.message_type == MessageType.USER
|
||||
),
|
||||
"",
|
||||
)
|
||||
first_ai_message = next(
|
||||
(
|
||||
message.message
|
||||
for message in chat_session.messages
|
||||
if message.message_type == MessageType.ASSISTANT
|
||||
),
|
||||
"",
|
||||
)
|
||||
|
||||
list_of_message_feedbacks = [
|
||||
feedback.is_positive
|
||||
for message in chat_session.messages
|
||||
for feedback in message.chat_message_feedbacks
|
||||
]
|
||||
session_feedback_type = None
|
||||
if list_of_message_feedbacks:
|
||||
if all(list_of_message_feedbacks):
|
||||
session_feedback_type = QAFeedbackType.LIKE
|
||||
elif not any(list_of_message_feedbacks):
|
||||
session_feedback_type = QAFeedbackType.DISLIKE
|
||||
else:
|
||||
session_feedback_type = QAFeedbackType.MIXED
|
||||
|
||||
return cls(
|
||||
id=chat_session.id,
|
||||
user_email=get_display_email(
|
||||
chat_session.user.email if chat_session.user else None
|
||||
),
|
||||
name=chat_session.description,
|
||||
first_user_message=first_user_message,
|
||||
first_ai_message=first_ai_message,
|
||||
assistant_id=chat_session.persona_id,
|
||||
assistant_name=(
|
||||
chat_session.persona.name if chat_session.persona else None
|
||||
),
|
||||
time_created=chat_session.time_created,
|
||||
feedback_type=session_feedback_type,
|
||||
flow_type=SessionType.SLACK
|
||||
if chat_session.onyxbot_flow
|
||||
else SessionType.CHAT,
|
||||
conversation_length=len(
|
||||
[
|
||||
message
|
||||
for message in chat_session.messages
|
||||
if message.message_type != MessageType.SYSTEM
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class ChatSessionSnapshot(BaseModel):
|
||||
id: UUID
|
||||
user_email: str
|
||||
name: str | None
|
||||
messages: list[MessageSnapshot]
|
||||
assistant_id: int | None
|
||||
assistant_name: str | None
|
||||
time_created: datetime
|
||||
flow_type: SessionType
|
||||
|
||||
|
||||
class QuestionAnswerPairSnapshot(BaseModel):
|
||||
chat_session_id: UUID
|
||||
# 1-indexed message number in the chat_session
|
||||
# e.g. the first message pair in the chat_session is 1, the second is 2, etc.
|
||||
message_pair_num: int
|
||||
user_message: str
|
||||
ai_response: str
|
||||
retrieved_documents: list[AbridgedSearchDoc]
|
||||
feedback_type: QAFeedbackType | None
|
||||
feedback_text: str | None
|
||||
persona_name: str | None
|
||||
user_email: str
|
||||
time_created: datetime
|
||||
flow_type: SessionType
|
||||
|
||||
@classmethod
|
||||
def from_chat_session_snapshot(
|
||||
cls,
|
||||
chat_session_snapshot: ChatSessionSnapshot,
|
||||
) -> list["QuestionAnswerPairSnapshot"]:
|
||||
message_pairs: list[tuple[MessageSnapshot, MessageSnapshot]] = []
|
||||
for ind in range(1, len(chat_session_snapshot.messages), 2):
|
||||
message_pairs.append(
|
||||
(
|
||||
chat_session_snapshot.messages[ind - 1],
|
||||
chat_session_snapshot.messages[ind],
|
||||
)
|
||||
)
|
||||
|
||||
return [
|
||||
cls(
|
||||
chat_session_id=chat_session_snapshot.id,
|
||||
message_pair_num=ind + 1,
|
||||
user_message=user_message.message,
|
||||
ai_response=ai_message.message,
|
||||
retrieved_documents=ai_message.documents,
|
||||
feedback_type=ai_message.feedback_type,
|
||||
feedback_text=ai_message.feedback_text,
|
||||
persona_name=chat_session_snapshot.assistant_name,
|
||||
user_email=get_display_email(chat_session_snapshot.user_email),
|
||||
time_created=user_message.time_created,
|
||||
flow_type=chat_session_snapshot.flow_type,
|
||||
)
|
||||
for ind, (user_message, ai_message) in enumerate(message_pairs)
|
||||
]
|
||||
|
||||
def to_json(self) -> dict[str, str | None]:
|
||||
return {
|
||||
"chat_session_id": str(self.chat_session_id),
|
||||
"message_pair_num": str(self.message_pair_num),
|
||||
"user_message": self.user_message,
|
||||
"ai_response": self.ai_response,
|
||||
"retrieved_documents": "|".join(
|
||||
[
|
||||
doc.link or doc.semantic_identifier
|
||||
for doc in self.retrieved_documents
|
||||
]
|
||||
),
|
||||
"feedback_type": self.feedback_type.value if self.feedback_type else "",
|
||||
"feedback_text": self.feedback_text or "",
|
||||
"persona_name": self.persona_name,
|
||||
"user_email": self.user_email,
|
||||
"time_created": str(self.time_created),
|
||||
"flow_type": self.flow_type,
|
||||
}
|
||||
@@ -24,7 +24,7 @@ from onyx.db.llm import update_default_provider
|
||||
from onyx.db.llm import upsert_llm_provider
|
||||
from onyx.db.models import Tool
|
||||
from onyx.db.persona import upsert_persona
|
||||
from onyx.server.features.persona.models import PersonaUpsertRequest
|
||||
from onyx.server.features.persona.models import CreatePersonaRequest
|
||||
from onyx.server.manage.llm.models import LLMProviderUpsertRequest
|
||||
from onyx.server.settings.models import Settings
|
||||
from onyx.server.settings.store import store_settings as store_base_settings
|
||||
@@ -57,7 +57,7 @@ class SeedConfiguration(BaseModel):
|
||||
llms: list[LLMProviderUpsertRequest] | None = None
|
||||
admin_user_emails: list[str] | None = None
|
||||
seeded_logo_path: str | None = None
|
||||
personas: list[PersonaUpsertRequest] | None = None
|
||||
personas: list[CreatePersonaRequest] | None = None
|
||||
settings: Settings | None = None
|
||||
enterprise_settings: EnterpriseSettings | None = None
|
||||
|
||||
@@ -128,7 +128,7 @@ def _seed_llms(
|
||||
)
|
||||
|
||||
|
||||
def _seed_personas(db_session: Session, personas: list[PersonaUpsertRequest]) -> None:
|
||||
def _seed_personas(db_session: Session, personas: list[CreatePersonaRequest]) -> None:
|
||||
if personas:
|
||||
logger.notice("Seeding Personas")
|
||||
for persona in personas:
|
||||
|
||||
@@ -34,7 +34,6 @@ from onyx.auth.users import get_redis_strategy
|
||||
from onyx.auth.users import optional_user
|
||||
from onyx.auth.users import User
|
||||
from onyx.configs.app_configs import WEB_DOMAIN
|
||||
from onyx.configs.constants import FASTAPI_USERS_AUTH_COOKIE_NAME
|
||||
from onyx.db.auth import get_user_count
|
||||
from onyx.db.engine import get_current_tenant_id
|
||||
from onyx.db.engine import get_session
|
||||
@@ -112,7 +111,6 @@ async def login_as_anonymous_user(
|
||||
token = generate_anonymous_user_jwt_token(tenant_id)
|
||||
|
||||
response = Response()
|
||||
response.delete_cookie(FASTAPI_USERS_AUTH_COOKIE_NAME)
|
||||
response.set_cookie(
|
||||
key=ANONYMOUS_USER_COOKIE_NAME,
|
||||
value=token,
|
||||
|
||||
@@ -5,7 +5,7 @@ from fastapi import Depends
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from ee.onyx.db.token_limit import fetch_all_user_group_token_rate_limits_by_group
|
||||
from ee.onyx.db.token_limit import fetch_user_group_token_rate_limits_for_user
|
||||
from ee.onyx.db.token_limit import fetch_user_group_token_rate_limits
|
||||
from ee.onyx.db.token_limit import insert_user_group_token_rate_limit
|
||||
from onyx.auth.users import current_admin_user
|
||||
from onyx.auth.users import current_curator_or_admin_user
|
||||
@@ -51,10 +51,8 @@ def get_group_token_limit_settings(
|
||||
) -> list[TokenRateLimitDisplay]:
|
||||
return [
|
||||
TokenRateLimitDisplay.from_db(token_rate_limit)
|
||||
for token_rate_limit in fetch_user_group_token_rate_limits_for_user(
|
||||
db_session=db_session,
|
||||
group_id=group_id,
|
||||
user=user,
|
||||
for token_rate_limit in fetch_user_group_token_rate_limits(
|
||||
db_session, group_id, user
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@@ -58,7 +58,6 @@ class UserGroup(BaseModel):
|
||||
credential=CredentialSnapshot.from_credential_db_model(
|
||||
cc_pair_relationship.cc_pair.credential
|
||||
),
|
||||
access_type=cc_pair_relationship.cc_pair.access_type,
|
||||
)
|
||||
for cc_pair_relationship in user_group_model.cc_pair_relationships
|
||||
if cc_pair_relationship.is_current
|
||||
|
||||
@@ -19,9 +19,6 @@ def prefix_external_group(ext_group_name: str) -> str:
|
||||
return f"external_group:{ext_group_name}"
|
||||
|
||||
|
||||
def build_ext_group_name_for_onyx(ext_group_name: str, source: DocumentSource) -> str:
|
||||
"""
|
||||
External groups may collide across sources, every source needs its own prefix.
|
||||
NOTE: the name is lowercased to handle case sensitivity for group names
|
||||
"""
|
||||
return f"{source.value}_{ext_group_name}".lower()
|
||||
def prefix_group_w_source(ext_group_name: str, source: DocumentSource) -> str:
|
||||
"""External groups may collide across sources, every source needs its own prefix."""
|
||||
return f"{source.value.upper()}_{ext_group_name}"
|
||||
|
||||
@@ -1,97 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.basic.states import BasicInput
|
||||
from onyx.agents.agent_search.basic.states import BasicOutput
|
||||
from onyx.agents.agent_search.basic.states import BasicState
|
||||
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
|
||||
basic_use_tool_response,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
|
||||
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
|
||||
prepare_tool_input,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def basic_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=BasicState,
|
||||
input=BasicInput,
|
||||
output=BasicOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="prepare_tool_input",
|
||||
action=prepare_tool_input,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="llm_tool_choice",
|
||||
action=llm_tool_choice,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="tool_call",
|
||||
action=tool_call,
|
||||
)
|
||||
|
||||
graph.add_node(
|
||||
node="basic_use_tool_response",
|
||||
action=basic_use_tool_response,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="prepare_tool_input")
|
||||
|
||||
graph.add_edge(start_key="prepare_tool_input", end_key="llm_tool_choice")
|
||||
|
||||
graph.add_conditional_edges("llm_tool_choice", should_continue, ["tool_call", END])
|
||||
|
||||
graph.add_edge(
|
||||
start_key="tool_call",
|
||||
end_key="basic_use_tool_response",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="basic_use_tool_response",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
def should_continue(state: BasicState) -> str:
|
||||
return (
|
||||
# If there are no tool calls, basic graph already streamed the answer
|
||||
END
|
||||
if state.tool_choice is None
|
||||
else "tool_call"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine import get_session_context_manager
|
||||
from onyx.context.search.models import SearchRequest
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
|
||||
graph = basic_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
input = BasicInput(_unused=True)
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
with get_session_context_manager() as db_session:
|
||||
config, _ = get_test_config(
|
||||
db_session=db_session,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
search_request=SearchRequest(query="How does onyx use FastAPI?"),
|
||||
)
|
||||
compiled_graph.invoke(input, config={"metadata": {"config": config}})
|
||||
@@ -1,35 +0,0 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
|
||||
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
|
||||
|
||||
# States contain values that change over the course of graph execution,
|
||||
# Config is for values that are set at the start and never change.
|
||||
# If you are using a value from the config and realize it needs to change,
|
||||
# you should add it to the state and use/update the version in the state.
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class BasicInput(BaseModel):
|
||||
# Langgraph needs a nonempty input, but we pass in all static
|
||||
# data through a RunnableConfig.
|
||||
_unused: bool = True
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class BasicOutput(TypedDict):
|
||||
tool_call_chunk: AIMessageChunk
|
||||
|
||||
|
||||
## Graph State
|
||||
class BasicState(
|
||||
BasicInput,
|
||||
ToolChoiceInput,
|
||||
ToolCallUpdate,
|
||||
ToolChoiceUpdate,
|
||||
):
|
||||
pass
|
||||
@@ -1,64 +0,0 @@
|
||||
from collections.abc import Iterator
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import LlmDoc
|
||||
from onyx.chat.models import OnyxContext
|
||||
from onyx.chat.stream_processing.answer_response_handler import AnswerResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import CitationResponseHandler
|
||||
from onyx.chat.stream_processing.answer_response_handler import (
|
||||
PassThroughAnswerResponseHandler,
|
||||
)
|
||||
from onyx.chat.stream_processing.utils import map_document_id_order
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def process_llm_stream(
|
||||
messages: Iterator[BaseMessage],
|
||||
should_stream_answer: bool,
|
||||
writer: StreamWriter,
|
||||
final_search_results: list[LlmDoc] | None = None,
|
||||
displayed_search_results: list[OnyxContext] | list[LlmDoc] | None = None,
|
||||
) -> AIMessageChunk:
|
||||
tool_call_chunk = AIMessageChunk(content="")
|
||||
|
||||
if final_search_results and displayed_search_results:
|
||||
answer_handler: AnswerResponseHandler = CitationResponseHandler(
|
||||
context_docs=final_search_results,
|
||||
final_doc_id_to_rank_map=map_document_id_order(final_search_results),
|
||||
display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
|
||||
)
|
||||
else:
|
||||
answer_handler = PassThroughAnswerResponseHandler()
|
||||
|
||||
full_answer = ""
|
||||
# This stream will be the llm answer if no tool is chosen. When a tool is chosen,
|
||||
# the stream will contain AIMessageChunks with tool call information.
|
||||
for message in messages:
|
||||
answer_piece = message.content
|
||||
if not isinstance(answer_piece, str):
|
||||
# this is only used for logging, so fine to
|
||||
# just add the string representation
|
||||
answer_piece = str(answer_piece)
|
||||
full_answer += answer_piece
|
||||
|
||||
if isinstance(message, AIMessageChunk) and (
|
||||
message.tool_call_chunks or message.tool_calls
|
||||
):
|
||||
tool_call_chunk += message # type: ignore
|
||||
elif should_stream_answer:
|
||||
for response_part in answer_handler.handle_response_part(message, []):
|
||||
write_custom_event(
|
||||
"basic_response",
|
||||
response_part,
|
||||
writer,
|
||||
)
|
||||
|
||||
logger.debug(f"Full answer: {full_answer}")
|
||||
return cast(AIMessageChunk, tool_call_chunk)
|
||||
@@ -1,21 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class CoreState(BaseModel):
|
||||
"""
|
||||
This is the core state that is shared across all subgraphs.
|
||||
"""
|
||||
|
||||
base_question: str = ""
|
||||
log_messages: Annotated[list[str], add] = []
|
||||
|
||||
|
||||
class SubgraphCoreState(BaseModel):
|
||||
"""
|
||||
This is the core state that is shared across all subgraphs.
|
||||
"""
|
||||
|
||||
log_messages: Annotated[list[str], add]
|
||||
@@ -1,31 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def send_to_expanded_retrieval(state: SubQuestionAnsweringInput) -> Send | Hashable:
|
||||
"""
|
||||
LangGraph edge to send a sub-question to the expanded retrieval.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
|
||||
return Send(
|
||||
"initial_sub_question_expanded_retrieval",
|
||||
ExpandedRetrievalInput(
|
||||
question=state.question,
|
||||
base_search=False,
|
||||
sub_question_id=state.question_id,
|
||||
log_messages=[f"{edge_start_time} -- Sending to expanded retrieval"],
|
||||
),
|
||||
)
|
||||
@@ -1,137 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.edges import (
|
||||
send_to_expanded_retrieval,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.check_sub_answer import (
|
||||
check_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.format_sub_answer import (
|
||||
format_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.generate_sub_answer import (
|
||||
generate_sub_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.nodes.ingest_retrieved_documents import (
|
||||
ingest_retrieved_documents,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def answer_query_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph sub-graph builder for the initial individual sub-answer generation.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=AnswerQuestionState,
|
||||
input=SubQuestionAnsweringInput,
|
||||
output=AnswerQuestionOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# The sub-graph that executes the expanded retrieval process for a sub-question
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="initial_sub_question_expanded_retrieval",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
|
||||
# The node that ingests the retrieved documents and puts them into the proper
|
||||
# state keys.
|
||||
graph.add_node(
|
||||
node="ingest_retrieval",
|
||||
action=ingest_retrieved_documents,
|
||||
)
|
||||
|
||||
# The node that generates the sub-answer
|
||||
graph.add_node(
|
||||
node="generate_sub_answer",
|
||||
action=generate_sub_answer,
|
||||
)
|
||||
|
||||
# The node that checks the sub-answer
|
||||
graph.add_node(
|
||||
node="answer_check",
|
||||
action=check_sub_answer,
|
||||
)
|
||||
|
||||
# The node that formats the sub-answer for the following initial answer generation
|
||||
graph.add_node(
|
||||
node="format_answer",
|
||||
action=format_sub_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source=START,
|
||||
path=send_to_expanded_retrieval,
|
||||
path_map=["initial_sub_question_expanded_retrieval"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="initial_sub_question_expanded_retrieval",
|
||||
end_key="ingest_retrieval",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="ingest_retrieval",
|
||||
end_key="generate_sub_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="generate_sub_answer",
|
||||
end_key="answer_check",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_check",
|
||||
end_key="format_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from onyx.db.engine import get_session_context_manager
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = answer_query_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="what can you do with onyx or danswer?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
graph_config, search_tool = get_test_config(
|
||||
db_session, primary_llm, fast_llm, search_request
|
||||
)
|
||||
inputs = SubQuestionAnsweringInput(
|
||||
question="what can you do with onyx?",
|
||||
question_id="0_0",
|
||||
log_messages=[],
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
config={"configurable": {"config": graph_config}},
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,75 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnswerCheckUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
|
||||
|
||||
def check_sub_answer(
|
||||
state: AnswerQuestionState, config: RunnableConfig
|
||||
) -> SubQuestionAnswerCheckUpdate:
|
||||
"""
|
||||
LangGraph node to check the quality of the sub-answer. The answer
|
||||
is represented as a boolean value.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
level, question_num = parse_question_id(state.question_id)
|
||||
if state.answer == UNKNOWN_ANSWER:
|
||||
return SubQuestionAnswerCheckUpdate(
|
||||
answer_quality=False,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="check sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result="unknown answer",
|
||||
)
|
||||
],
|
||||
)
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=SUB_ANSWER_CHECK_PROMPT.format(
|
||||
question=state.question,
|
||||
base_answer=state.answer,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
answer_quality = "yes" in quality_str.lower()
|
||||
|
||||
return SubQuestionAnswerCheckUpdate(
|
||||
answer_quality=answer_quality,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="check sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result=f"Answer quality: {quality_str}",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,30 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
|
||||
|
||||
def format_sub_answer(state: AnswerQuestionState) -> AnswerQuestionOutput:
|
||||
"""
|
||||
LangGraph node to generate the sub-answer format.
|
||||
"""
|
||||
return AnswerQuestionOutput(
|
||||
answer_results=[
|
||||
SubQuestionAnswerResults(
|
||||
question=state.question,
|
||||
question_id=state.question_id,
|
||||
verified_high_quality=state.answer_quality,
|
||||
answer=state.answer,
|
||||
sub_query_retrieval_results=state.expanded_retrieval_results,
|
||||
verified_reranked_documents=state.verified_reranked_documents,
|
||||
context_documents=state.context_documents,
|
||||
cited_documents=state.cited_documents,
|
||||
sub_question_retrieval_stats=state.sub_question_retrieval_stats,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,137 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnswerGenerationUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_sub_question_answer_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_persona_agent_prompt_expressions,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def generate_sub_answer(
|
||||
state: AnswerQuestionState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> SubQuestionAnswerGenerationUpdate:
|
||||
"""
|
||||
LangGraph node to generate a sub-answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = state.question
|
||||
state.verified_reranked_documents
|
||||
level, question_num = parse_question_id(state.question_id)
|
||||
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
|
||||
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
|
||||
graph_config.inputs.search_request.persona
|
||||
).contextualized_prompt
|
||||
|
||||
if len(context_docs) == 0:
|
||||
answer_str = NO_RECOVERED_DOCS
|
||||
write_custom_event(
|
||||
"sub_answers",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=answer_str,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
answer_type="agent_sub_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
else:
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
msg = build_sub_question_answer_prompt(
|
||||
question=question,
|
||||
original_question=graph_config.inputs.search_request.query,
|
||||
docs=context_docs,
|
||||
persona_specification=persona_contextualized_prompt,
|
||||
config=fast_llm.config,
|
||||
)
|
||||
|
||||
response: list[str | list[str | dict[str, Any]]] = []
|
||||
dispatch_timings: list[float] = []
|
||||
for message in fast_llm.stream(
|
||||
prompt=msg,
|
||||
):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
if not isinstance(content, str):
|
||||
raise ValueError(
|
||||
f"Expected content to be a string, but got {type(content)}"
|
||||
)
|
||||
start_stream_token = datetime.now()
|
||||
write_custom_event(
|
||||
"sub_answers",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=content,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
answer_type="agent_sub_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
end_stream_token = datetime.now()
|
||||
dispatch_timings.append(
|
||||
(end_stream_token - start_stream_token).microseconds
|
||||
)
|
||||
response.append(content)
|
||||
|
||||
answer_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
logger.debug(
|
||||
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
|
||||
)
|
||||
|
||||
answer_citation_ids = get_answer_citation_ids(answer_str)
|
||||
cited_documents = [
|
||||
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
|
||||
]
|
||||
|
||||
stop_event = StreamStopInfo(
|
||||
stop_reason=StreamStopReason.FINISHED,
|
||||
stream_type=StreamType.SUB_ANSWER,
|
||||
level=level,
|
||||
level_question_num=question_num,
|
||||
)
|
||||
write_custom_event("stream_finished", stop_event, writer)
|
||||
|
||||
return SubQuestionAnswerGenerationUpdate(
|
||||
answer=answer_str,
|
||||
cited_documents=cited_documents,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate individual sub answer",
|
||||
node_name="generate sub answer",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,25 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionRetrievalIngestionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
|
||||
|
||||
def ingest_retrieved_documents(
|
||||
state: ExpandedRetrievalOutput,
|
||||
) -> SubQuestionRetrievalIngestionUpdate:
|
||||
"""
|
||||
LangGraph node to ingest the retrieved documents to format it for the sub-answer.
|
||||
"""
|
||||
sub_question_retrieval_stats = state.expanded_retrieval_result.retrieval_stats
|
||||
if sub_question_retrieval_stats is None:
|
||||
sub_question_retrieval_stats = [AgentChunkRetrievalStats()]
|
||||
|
||||
return SubQuestionRetrievalIngestionUpdate(
|
||||
expanded_retrieval_results=state.expanded_retrieval_result.expanded_query_results,
|
||||
verified_reranked_documents=state.expanded_retrieval_result.verified_reranked_documents,
|
||||
context_documents=state.expanded_retrieval_result.context_documents,
|
||||
sub_question_retrieval_stats=sub_question_retrieval_stats,
|
||||
)
|
||||
@@ -1,75 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from onyx.agents.agent_search.core_state import SubgraphCoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import LoggerUpdate
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import QueryRetrievalResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
SubQuestionAnswerResults,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
## Update States
|
||||
class SubQuestionAnswerCheckUpdate(LoggerUpdate, BaseModel):
|
||||
answer_quality: bool = False
|
||||
log_messages: list[str] = []
|
||||
|
||||
|
||||
class SubQuestionAnswerGenerationUpdate(LoggerUpdate, BaseModel):
|
||||
answer: str = ""
|
||||
log_messages: list[str] = []
|
||||
cited_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
# answer_stat: AnswerStats
|
||||
|
||||
|
||||
class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
|
||||
expanded_retrieval_results: list[QueryRetrievalResult] = []
|
||||
verified_reranked_documents: Annotated[
|
||||
list[InferenceSection], dedup_inference_sections
|
||||
] = []
|
||||
context_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
|
||||
sub_question_retrieval_stats: AgentChunkRetrievalStats = AgentChunkRetrievalStats()
|
||||
|
||||
|
||||
## Graph Input State
|
||||
|
||||
|
||||
class SubQuestionAnsweringInput(SubgraphCoreState):
|
||||
question: str = ""
|
||||
question_id: str = (
|
||||
"" # 0_0 is original question, everything else is <level>_<question_num>.
|
||||
)
|
||||
# level 0 is original question and first decomposition, level 1 is follow up, etc
|
||||
# question_num is a unique number per original question per level.
|
||||
|
||||
|
||||
## Graph State
|
||||
|
||||
|
||||
class AnswerQuestionState(
|
||||
SubQuestionAnsweringInput,
|
||||
SubQuestionAnswerGenerationUpdate,
|
||||
SubQuestionAnswerCheckUpdate,
|
||||
SubQuestionRetrievalIngestionUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
|
||||
|
||||
class AnswerQuestionOutput(LoggerUpdate, BaseModel):
|
||||
"""
|
||||
This is a list of results even though each call of this subgraph only returns one result.
|
||||
This is because if we parallelize the answer query subgraph, there will be multiple
|
||||
results in a list so the add operator is used to add them together.
|
||||
"""
|
||||
|
||||
answer_results: Annotated[list[SubQuestionAnswerResults], add] = []
|
||||
@@ -1,50 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> list[Send | Hashable]:
|
||||
"""
|
||||
LangGraph edge to parallelize the initial sub-question answering. If there are no sub-questions,
|
||||
we send empty answers to the initial answer generation, and that answer would be generated
|
||||
solely based on the documents retrieved for the original question.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_query_subgraph",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,96 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.nodes.generate_initial_answer import (
|
||||
generate_initial_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.nodes.validate_initial_answer import (
|
||||
validate_initial_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.graph_builder import (
|
||||
generate_sub_answers_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.graph_builder import (
|
||||
retrieve_orig_question_docs_graph_builder,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def generate_initial_answer_graph_builder(test_mode: bool = False) -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the initial answer generation.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=SubQuestionRetrievalState,
|
||||
input=SubQuestionRetrievalInput,
|
||||
)
|
||||
|
||||
# The sub-graph that generates the initial sub-answers
|
||||
generate_sub_answers = generate_sub_answers_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="generate_sub_answers_subgraph",
|
||||
action=generate_sub_answers,
|
||||
)
|
||||
|
||||
# The sub-graph that retrieves the original question documents. This is run
|
||||
# in parallel with the sub-answer generation process
|
||||
retrieve_orig_question_docs = retrieve_orig_question_docs_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="retrieve_orig_question_docs_subgraph_wrapper",
|
||||
action=retrieve_orig_question_docs,
|
||||
)
|
||||
|
||||
# Node that generates the initial answer using the results of the previous
|
||||
# two sub-graphs
|
||||
graph.add_node(
|
||||
node="generate_initial_answer",
|
||||
action=generate_initial_answer,
|
||||
)
|
||||
|
||||
# Node that validates the initial answer
|
||||
graph.add_node(
|
||||
node="validate_initial_answer",
|
||||
action=validate_initial_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="retrieve_orig_question_docs_subgraph_wrapper",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="generate_sub_answers_subgraph",
|
||||
)
|
||||
|
||||
# Wait for both, the original question docs and the sub-answers to be generated before proceeding
|
||||
graph.add_edge(
|
||||
start_key=[
|
||||
"retrieve_orig_question_docs_subgraph_wrapper",
|
||||
"generate_sub_answers_subgraph",
|
||||
],
|
||||
end_key="generate_initial_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="generate_initial_answer",
|
||||
end_key="validate_initial_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="validate_initial_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
@@ -1,313 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import AgentBaseMetrics
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
calculate_initial_agent_stats,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
get_prompt_enrichment_components,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import relevance_from_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_citations
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.context.search.models import InferenceSection
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
SUB_QUESTION_ANSWER_TEMPLATE,
|
||||
)
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
|
||||
|
||||
|
||||
def generate_initial_answer(
|
||||
state: SubQuestionRetrievalState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> InitialAnswerUpdate:
|
||||
"""
|
||||
LangGraph node to generate the initial answer, using the initial sub-questions/sub-answers and the
|
||||
documents retrieved for the original question.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.search_request.query
|
||||
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
|
||||
|
||||
sub_questions_cited_documents = state.cited_documents
|
||||
orig_question_retrieval_documents = state.orig_question_retrieved_documents
|
||||
|
||||
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
|
||||
counter = 0
|
||||
for original_doc_number, original_doc in enumerate(
|
||||
orig_question_retrieval_documents
|
||||
):
|
||||
if original_doc_number not in sub_questions_cited_documents:
|
||||
if (
|
||||
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
):
|
||||
consolidated_context_docs.append(original_doc)
|
||||
counter += 1
|
||||
|
||||
# sort docs by their scores - though the scores refer to different questions
|
||||
relevant_docs = dedup_inference_sections(
|
||||
consolidated_context_docs, consolidated_context_docs
|
||||
)
|
||||
|
||||
sub_questions: list[str] = []
|
||||
streamed_documents = (
|
||||
relevant_docs
|
||||
if len(relevant_docs) > 0
|
||||
else state.orig_question_retrieved_documents[:15]
|
||||
)
|
||||
|
||||
# Use the query info from the base document retrieval
|
||||
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
|
||||
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
|
||||
relevance_list = relevance_from_docs(relevant_docs)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
reranked_sections=streamed_documents,
|
||||
final_context_sections=streamed_documents,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
):
|
||||
write_custom_event(
|
||||
"tool_response",
|
||||
ExtendedToolResponse(
|
||||
id=tool_response.id,
|
||||
response=tool_response.response,
|
||||
level=0,
|
||||
level_question_num=0, # 0, 0 is the base question
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if len(relevant_docs) == 0:
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=UNKNOWN_ANSWER,
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
dispatch_main_answer_stop_info(0, writer)
|
||||
|
||||
answer = UNKNOWN_ANSWER
|
||||
initial_agent_stats = InitialAgentResultStats(
|
||||
sub_questions={},
|
||||
original_question={},
|
||||
agent_effectiveness={},
|
||||
)
|
||||
|
||||
else:
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
# Collect the sub-questions and sub-answers and construct an appropriate
|
||||
# prompt string.
|
||||
# Consider replacing by a function.
|
||||
answered_sub_questions: list[str] = []
|
||||
all_sub_questions: list[str] = [] # Separate list for tracking all questions
|
||||
|
||||
for idx, sub_question_answer_result in enumerate(
|
||||
sub_question_answer_results, start=1
|
||||
):
|
||||
all_sub_questions.append(sub_question_answer_result.question)
|
||||
|
||||
is_valid_answer = (
|
||||
sub_question_answer_result.verified_high_quality
|
||||
and sub_question_answer_result.answer
|
||||
and sub_question_answer_result.answer != UNKNOWN_ANSWER
|
||||
)
|
||||
|
||||
if is_valid_answer:
|
||||
answered_sub_questions.append(
|
||||
SUB_QUESTION_ANSWER_TEMPLATE.format(
|
||||
sub_question=sub_question_answer_result.question,
|
||||
sub_answer=sub_question_answer_result.answer,
|
||||
sub_question_num=idx,
|
||||
)
|
||||
)
|
||||
|
||||
sub_question_answer_str = (
|
||||
"\n\n------\n\n".join(answered_sub_questions)
|
||||
if answered_sub_questions
|
||||
else ""
|
||||
)
|
||||
|
||||
# Use the appropriate prompt based on whether there are sub-questions.
|
||||
base_prompt = (
|
||||
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
|
||||
if answered_sub_questions
|
||||
else INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS
|
||||
)
|
||||
|
||||
sub_questions = all_sub_questions # Replace the original assignment
|
||||
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
doc_context = format_docs(relevant_docs)
|
||||
doc_context = trim_prompt_piece(
|
||||
config=model.config,
|
||||
prompt_piece=doc_context,
|
||||
reserved_str=(
|
||||
base_prompt
|
||||
+ sub_question_answer_str
|
||||
+ prompt_enrichment_components.persona_prompts.contextualized_prompt
|
||||
+ prompt_enrichment_components.history
|
||||
+ prompt_enrichment_components.date_str
|
||||
),
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=base_prompt.format(
|
||||
question=question,
|
||||
answered_sub_questions=remove_document_citations(
|
||||
sub_question_answer_str
|
||||
),
|
||||
relevant_docs=doc_context,
|
||||
persona_specification=prompt_enrichment_components.persona_prompts.contextualized_prompt,
|
||||
history=prompt_enrichment_components.history,
|
||||
date_prompt=prompt_enrichment_components.date_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
|
||||
dispatch_timings: list[float] = []
|
||||
for message in model.stream(msg):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
if not isinstance(content, str):
|
||||
raise ValueError(
|
||||
f"Expected content to be a string, but got {type(content)}"
|
||||
)
|
||||
start_stream_token = datetime.now()
|
||||
|
||||
write_custom_event(
|
||||
"initial_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=content,
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
end_stream_token = datetime.now()
|
||||
dispatch_timings.append(
|
||||
(end_stream_token - start_stream_token).microseconds
|
||||
)
|
||||
streamed_tokens.append(content)
|
||||
|
||||
logger.debug(
|
||||
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"
|
||||
)
|
||||
|
||||
dispatch_main_answer_stop_info(0, writer)
|
||||
response = merge_content(*streamed_tokens)
|
||||
answer = cast(str, response)
|
||||
|
||||
initial_agent_stats = calculate_initial_agent_stats(
|
||||
state.sub_question_results, state.orig_question_retrieval_stats
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"\n\nYYYYY--Sub-Questions:\n\n{sub_question_answer_str}\n\nStats:\n\n"
|
||||
)
|
||||
|
||||
if initial_agent_stats:
|
||||
logger.debug(initial_agent_stats.original_question)
|
||||
logger.debug(initial_agent_stats.sub_questions)
|
||||
logger.debug(initial_agent_stats.agent_effectiveness)
|
||||
|
||||
agent_base_end_time = datetime.now()
|
||||
|
||||
if agent_base_end_time and state.agent_start_time:
|
||||
duration_s = (agent_base_end_time - state.agent_start_time).total_seconds()
|
||||
else:
|
||||
duration_s = None
|
||||
|
||||
agent_base_metrics = AgentBaseMetrics(
|
||||
num_verified_documents_total=len(relevant_docs),
|
||||
num_verified_documents_core=state.orig_question_retrieval_stats.verified_count,
|
||||
verified_avg_score_core=state.orig_question_retrieval_stats.verified_avg_scores,
|
||||
num_verified_documents_base=initial_agent_stats.sub_questions.get(
|
||||
"num_verified_documents"
|
||||
),
|
||||
verified_avg_score_base=initial_agent_stats.sub_questions.get(
|
||||
"verified_avg_score"
|
||||
),
|
||||
base_doc_boost_factor=initial_agent_stats.agent_effectiveness.get(
|
||||
"utilized_chunk_ratio"
|
||||
),
|
||||
support_boost_factor=initial_agent_stats.agent_effectiveness.get(
|
||||
"support_ratio"
|
||||
),
|
||||
duration_s=duration_s,
|
||||
)
|
||||
|
||||
return InitialAnswerUpdate(
|
||||
initial_answer=answer,
|
||||
initial_agent_stats=initial_agent_stats,
|
||||
generated_sub_questions=sub_questions,
|
||||
agent_base_end_time=agent_base_end_time,
|
||||
agent_base_metrics=agent_base_metrics,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate initial answer",
|
||||
node_name="generate initial answer",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,40 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerQualityUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def validate_initial_answer(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> InitialAnswerQualityUpdate:
|
||||
"""
|
||||
Check whether the initial answer sufficiently addresses the original user question.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
logger.debug(
|
||||
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
|
||||
)
|
||||
|
||||
verdict = True
|
||||
|
||||
return InitialAnswerQualityUpdate(
|
||||
initial_answer_quality_eval=verdict,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate initial answer",
|
||||
node_name="validate initial answer",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
ExploratorySearchUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerQualityUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
OrigQuestionRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.models import (
|
||||
QuestionRetrievalResult,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
### States ###
|
||||
class SubQuestionRetrievalInput(CoreState):
|
||||
exploratory_search_results: list[InferenceSection]
|
||||
|
||||
|
||||
## Graph State
|
||||
class SubQuestionRetrievalState(
|
||||
# This includes the core state
|
||||
SubQuestionRetrievalInput,
|
||||
InitialQuestionDecompositionUpdate,
|
||||
InitialAnswerUpdate,
|
||||
SubQuestionResultsUpdate,
|
||||
OrigQuestionRetrievalUpdate,
|
||||
InitialAnswerQualityUpdate,
|
||||
ExploratorySearchUpdate,
|
||||
):
|
||||
base_raw_search_result: Annotated[list[QuestionRetrievalResult], add]
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class SubQuestionRetrievalOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
@@ -1,48 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: SubQuestionRetrievalState,
|
||||
) -> list[Send | Hashable]:
|
||||
"""
|
||||
LangGraph edge to parallelize the initial sub-question answering.
|
||||
"""
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_sub_question_subgraphs",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,81 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.graph_builder import (
|
||||
answer_query_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.edges import (
|
||||
parallelize_initial_sub_question_answering,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.nodes.decompose_orig_question import (
|
||||
decompose_orig_question,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.nodes.format_initial_sub_answers import (
|
||||
format_initial_sub_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_sub_answers.states import (
|
||||
SubQuestionAnsweringState,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
test_mode = False
|
||||
|
||||
|
||||
def generate_sub_answers_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the initial sub-answer generation process.
|
||||
It generates the initial sub-questions and produces the answers.
|
||||
"""
|
||||
|
||||
graph = StateGraph(
|
||||
state_schema=SubQuestionAnsweringState,
|
||||
input=SubQuestionAnsweringInput,
|
||||
)
|
||||
|
||||
# Decompose the original question into sub-questions
|
||||
graph.add_node(
|
||||
node="decompose_orig_question",
|
||||
action=decompose_orig_question,
|
||||
)
|
||||
|
||||
# The sub-graph that executes the initial sub-question answering for
|
||||
# each of the sub-questions.
|
||||
answer_sub_question_subgraphs = answer_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_sub_question_subgraphs",
|
||||
action=answer_sub_question_subgraphs,
|
||||
)
|
||||
|
||||
# Node that collects and formats the initial sub-question answers
|
||||
graph.add_node(
|
||||
node="format_initial_sub_question_answers",
|
||||
action=format_initial_sub_answers,
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="decompose_orig_question",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="decompose_orig_question",
|
||||
path=parallelize_initial_sub_question_answering,
|
||||
path_map=["answer_sub_question_subgraphs"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key=["answer_sub_question_subgraphs"],
|
||||
end_key="format_initial_sub_question_answers",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_initial_sub_question_answers",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
@@ -1,153 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.states import (
|
||||
SubQuestionRetrievalState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentRefinedMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
dispatch_subquestion,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_history_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import StreamStopInfo
|
||||
from onyx.chat.models import StreamStopReason
|
||||
from onyx.chat.models import StreamType
|
||||
from onyx.chat.models import SubQuestionPiece
|
||||
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_QUESTION_DECOMPOSITION_PROMPT,
|
||||
)
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def decompose_orig_question(
|
||||
state: SubQuestionRetrievalState,
|
||||
config: RunnableConfig,
|
||||
writer: StreamWriter = lambda _: None,
|
||||
) -> InitialQuestionDecompositionUpdate:
|
||||
"""
|
||||
LangGraph node to decompose the original question into sub-questions.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.search_request.query
|
||||
perform_initial_search_decomposition = (
|
||||
graph_config.behavior.perform_initial_search_decomposition
|
||||
)
|
||||
# Get the rewritten queries in a defined format
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
history = build_history_prompt(graph_config, question)
|
||||
|
||||
# Use the initial search results to inform the decomposition
|
||||
agent_start_time = datetime.now()
|
||||
|
||||
# Initial search to inform decomposition. Just get top 3 fits
|
||||
|
||||
if perform_initial_search_decomposition:
|
||||
# Due to unfortunate state representation in LangGraph, we need here to double check that the retrieval has
|
||||
# happened prior to this point, allowing silent failure here since it is not critical for decomposition in
|
||||
# all queries.
|
||||
if not state.exploratory_search_results:
|
||||
logger.error("Initial search for decomposition failed")
|
||||
|
||||
sample_doc_str = "\n\n".join(
|
||||
[
|
||||
doc.combined_content
|
||||
for doc in state.exploratory_search_results[
|
||||
:AGENT_NUM_DOCS_FOR_DECOMPOSITION
|
||||
]
|
||||
]
|
||||
)
|
||||
|
||||
decomposition_prompt = (
|
||||
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
|
||||
question=question, sample_doc_str=sample_doc_str, history=history
|
||||
)
|
||||
)
|
||||
|
||||
else:
|
||||
decomposition_prompt = INITIAL_QUESTION_DECOMPOSITION_PROMPT.format(
|
||||
question=question, history=history
|
||||
)
|
||||
|
||||
# Start decomposition
|
||||
|
||||
msg = [HumanMessage(content=decomposition_prompt)]
|
||||
|
||||
# Send the initial question as a subquestion with number 0
|
||||
write_custom_event(
|
||||
"decomp_qs",
|
||||
SubQuestionPiece(
|
||||
sub_question=question,
|
||||
level=0,
|
||||
level_question_num=0,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
# dispatches custom events for subquestion tokens, adding in subquestion ids.
|
||||
streamed_tokens = dispatch_separated(
|
||||
model.stream(msg), dispatch_subquestion(0, writer)
|
||||
)
|
||||
|
||||
stop_event = StreamStopInfo(
|
||||
stop_reason=StreamStopReason.FINISHED,
|
||||
stream_type=StreamType.SUB_QUESTIONS,
|
||||
level=0,
|
||||
)
|
||||
write_custom_event("stream_finished", stop_event, writer)
|
||||
|
||||
deomposition_response = merge_content(*streamed_tokens)
|
||||
|
||||
# this call should only return strings. Commenting out for efficiency
|
||||
# assert [type(tok) == str for tok in streamed_tokens]
|
||||
|
||||
# use no-op cast() instead of str() which runs code
|
||||
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
|
||||
list_of_subqs = cast(str, deomposition_response).split("\n")
|
||||
|
||||
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
|
||||
|
||||
return InitialQuestionDecompositionUpdate(
|
||||
initial_sub_questions=decomp_list,
|
||||
agent_start_time=agent_start_time,
|
||||
agent_refined_start_time=None,
|
||||
agent_refined_end_time=None,
|
||||
agent_refined_metrics=AgentRefinedMetrics(
|
||||
refined_doc_boost_factor=None,
|
||||
refined_question_boost_factor=None,
|
||||
duration_s=None,
|
||||
),
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate sub answers",
|
||||
node_name="decompose original question",
|
||||
node_start_time=node_start_time,
|
||||
result=f"decomposed original question into {len(decomp_list)} subquestions",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,50 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def format_initial_sub_answers(
|
||||
state: AnswerQuestionOutput,
|
||||
) -> SubQuestionResultsUpdate:
|
||||
"""
|
||||
LangGraph node to format the answers to the initial sub-questions, including
|
||||
deduping verified documents and context documents.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
documents = []
|
||||
context_documents = []
|
||||
cited_documents = []
|
||||
answer_results = state.answer_results
|
||||
for answer_result in answer_results:
|
||||
documents.extend(answer_result.verified_reranked_documents)
|
||||
context_documents.extend(answer_result.context_documents)
|
||||
cited_documents.extend(answer_result.cited_documents)
|
||||
|
||||
return SubQuestionResultsUpdate(
|
||||
# Deduping is done by the documents operator for the main graph
|
||||
# so we might not need to dedup here
|
||||
verified_reranked_documents=dedup_inference_sections(documents, []),
|
||||
context_documents=dedup_inference_sections(context_documents, []),
|
||||
cited_documents=dedup_inference_sections(cited_documents, []),
|
||||
sub_question_results=answer_results,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="initial - generate sub answers",
|
||||
node_name="format initial sub answers",
|
||||
node_start_time=node_start_time,
|
||||
result="",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,34 +0,0 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.context.search.models import InferenceSection
|
||||
|
||||
|
||||
### States ###
|
||||
class SubQuestionAnsweringInput(CoreState):
|
||||
exploratory_search_results: list[InferenceSection]
|
||||
|
||||
|
||||
## Graph State
|
||||
class SubQuestionAnsweringState(
|
||||
# This includes the core state
|
||||
SubQuestionAnsweringInput,
|
||||
InitialQuestionDecompositionUpdate,
|
||||
InitialAnswerUpdate,
|
||||
SubQuestionResultsUpdate,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class SubQuestionAnsweringOutput(TypedDict):
|
||||
log_messages: list[str]
|
||||
@@ -1,81 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.nodes.format_orig_question_search_input import (
|
||||
format_orig_question_search_input,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.nodes.format_orig_question_search_output import (
|
||||
format_orig_question_search_output,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.retrieve_orig_question_docs.states import (
|
||||
BaseRawSearchState,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
|
||||
|
||||
def retrieve_orig_question_docs_graph_builder() -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the retrieval of documents
|
||||
that are relevant to the original question. This is
|
||||
largely a wrapper around the expanded retrieval process to
|
||||
ensure parallelism with the sub-question answer process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=BaseRawSearchState,
|
||||
input=BaseRawSearchInput,
|
||||
output=BaseRawSearchOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
# Format the original question search output
|
||||
graph.add_node(
|
||||
node="format_orig_question_search_output",
|
||||
action=format_orig_question_search_output,
|
||||
)
|
||||
|
||||
# The sub-graph that executes the expanded retrieval process
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="retrieve_orig_question_docs_subgraph",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
|
||||
# Format the original question search input
|
||||
graph.add_node(
|
||||
node="format_orig_question_search_input",
|
||||
action=format_orig_question_search_input,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="format_orig_question_search_input")
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_orig_question_search_input",
|
||||
end_key="retrieve_orig_question_docs_subgraph",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="retrieve_orig_question_docs_subgraph",
|
||||
end_key="format_orig_question_search_output",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="format_orig_question_search_output",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
@@ -1,28 +0,0 @@
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables.config import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.core_state import CoreState
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def format_orig_question_search_input(
|
||||
state: CoreState, config: RunnableConfig
|
||||
) -> ExpandedRetrievalInput:
|
||||
"""
|
||||
LangGraph node to format the search input for the original question.
|
||||
"""
|
||||
logger.debug("generate_raw_search_data")
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
return ExpandedRetrievalInput(
|
||||
question=graph_config.inputs.search_request.query,
|
||||
base_search=True,
|
||||
sub_question_id=None, # This graph is always and only used for the original question
|
||||
log_messages=[],
|
||||
)
|
||||
@@ -1,30 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.main.states import OrigQuestionRetrievalUpdate
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def format_orig_question_search_output(
|
||||
state: ExpandedRetrievalOutput,
|
||||
) -> OrigQuestionRetrievalUpdate:
|
||||
"""
|
||||
LangGraph node to format the search result for the original question into the
|
||||
proper format.
|
||||
"""
|
||||
sub_question_retrieval_stats = state.expanded_retrieval_result.retrieval_stats
|
||||
if sub_question_retrieval_stats is None:
|
||||
sub_question_retrieval_stats = AgentChunkRetrievalStats()
|
||||
else:
|
||||
sub_question_retrieval_stats = sub_question_retrieval_stats
|
||||
|
||||
return OrigQuestionRetrievalUpdate(
|
||||
orig_question_verified_reranked_documents=state.expanded_retrieval_result.verified_reranked_documents,
|
||||
orig_question_sub_query_retrieval_results=state.expanded_retrieval_result.expanded_query_results,
|
||||
orig_question_retrieved_documents=state.retrieved_documents,
|
||||
orig_question_retrieval_stats=sub_question_retrieval_stats,
|
||||
log_messages=[],
|
||||
)
|
||||
@@ -1,29 +0,0 @@
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
OrigQuestionRetrievalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states import (
|
||||
ExpandedRetrievalInput,
|
||||
)
|
||||
|
||||
|
||||
## Graph Input State
|
||||
class BaseRawSearchInput(ExpandedRetrievalInput):
|
||||
pass
|
||||
|
||||
|
||||
## Graph Output State
|
||||
class BaseRawSearchOutput(OrigQuestionRetrievalUpdate):
|
||||
"""
|
||||
This is a list of results even though each call of this subgraph only returns one result.
|
||||
This is because if we parallelize the answer query subgraph, there will be multiple
|
||||
results in a list so the add operator is used to add them together.
|
||||
"""
|
||||
|
||||
# base_expanded_retrieval_result: QuestionRetrievalResult = QuestionRetrievalResult()
|
||||
|
||||
|
||||
## Graph State
|
||||
class BaseRawSearchState(
|
||||
BaseRawSearchInput, BaseRawSearchOutput, OrigQuestionRetrievalUpdate
|
||||
):
|
||||
pass
|
||||
@@ -1,113 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
from typing import Literal
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import Send
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
SubQuestionAnsweringInput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RequireRefinemenEvalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
|
||||
def route_initial_tool_choice(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> Literal["tool_call", "start_agent_search", "logging_node"]:
|
||||
"""
|
||||
LangGraph edge to route to agent search.
|
||||
"""
|
||||
agent_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if state.tool_choice is not None:
|
||||
if (
|
||||
agent_config.behavior.use_agentic_search
|
||||
and agent_config.tooling.search_tool is not None
|
||||
and state.tool_choice.tool.name == agent_config.tooling.search_tool.name
|
||||
):
|
||||
return "start_agent_search"
|
||||
else:
|
||||
return "tool_call"
|
||||
else:
|
||||
return "logging_node"
|
||||
|
||||
|
||||
def parallelize_initial_sub_question_answering(
|
||||
state: MainState,
|
||||
) -> list[Send | Hashable]:
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.initial_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_query_subgraph",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question,
|
||||
question_id=make_question_id(0, question_num + 1),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Initial Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question in enumerate(state.initial_sub_questions)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
# Define the function that determines whether to continue or not
|
||||
def continue_to_refined_answer_or_end(
|
||||
state: RequireRefinemenEvalUpdate,
|
||||
) -> Literal["create_refined_sub_questions", "logging_node"]:
|
||||
if state.require_refined_answer_eval:
|
||||
return "create_refined_sub_questions"
|
||||
else:
|
||||
return "logging_node"
|
||||
|
||||
|
||||
def parallelize_refined_sub_question_answering(
|
||||
state: MainState,
|
||||
) -> list[Send | Hashable]:
|
||||
edge_start_time = datetime.now()
|
||||
if len(state.refined_sub_questions) > 0:
|
||||
return [
|
||||
Send(
|
||||
"answer_refined_question_subgraphs",
|
||||
SubQuestionAnsweringInput(
|
||||
question=question_data.sub_question,
|
||||
question_id=make_question_id(1, question_num),
|
||||
log_messages=[
|
||||
f"{edge_start_time} -- Main Edge - Parallelize Refined Sub-question Answering"
|
||||
],
|
||||
),
|
||||
)
|
||||
for question_num, question_data in state.refined_sub_questions.items()
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
Send(
|
||||
"ingest_refined_sub_answers",
|
||||
AnswerQuestionOutput(
|
||||
answer_results=[],
|
||||
),
|
||||
)
|
||||
]
|
||||
@@ -1,265 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_initial_answer.graph_builder import (
|
||||
generate_initial_answer_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
continue_to_refined_answer_or_end,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
parallelize_refined_sub_question_answering,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.edges import (
|
||||
route_initial_tool_choice,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.compare_answers import (
|
||||
compare_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.create_refined_sub_questions import (
|
||||
create_refined_sub_questions,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need import (
|
||||
decide_refinement_need,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
|
||||
extract_entities_terms,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.generate_refined_answer import (
|
||||
generate_refined_answer,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
|
||||
ingest_refined_sub_answers,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.persist_agent_results import (
|
||||
persist_agent_results,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.nodes.start_agent_search import (
|
||||
start_agent_search,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainInput
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.graph_builder import (
|
||||
answer_refined_query_graph_builder,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
|
||||
basic_use_tool_response,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
|
||||
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
|
||||
prepare_tool_input,
|
||||
)
|
||||
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
|
||||
from onyx.utils.logger import setup_logger
|
||||
|
||||
logger = setup_logger()
|
||||
|
||||
test_mode = False
|
||||
|
||||
|
||||
def main_graph_builder(test_mode: bool = False) -> StateGraph:
|
||||
"""
|
||||
LangGraph graph builder for the main agent search process.
|
||||
"""
|
||||
graph = StateGraph(
|
||||
state_schema=MainState,
|
||||
input=MainInput,
|
||||
)
|
||||
|
||||
# Prepare the tool input
|
||||
graph.add_node(
|
||||
node="prepare_tool_input",
|
||||
action=prepare_tool_input,
|
||||
)
|
||||
|
||||
# Choose the initial tool
|
||||
graph.add_node(
|
||||
node="initial_tool_choice",
|
||||
action=llm_tool_choice,
|
||||
)
|
||||
|
||||
# Call the tool, if required
|
||||
graph.add_node(
|
||||
node="tool_call",
|
||||
action=tool_call,
|
||||
)
|
||||
|
||||
# Use the tool response
|
||||
graph.add_node(
|
||||
node="basic_use_tool_response",
|
||||
action=basic_use_tool_response,
|
||||
)
|
||||
|
||||
# Start the agent search process
|
||||
graph.add_node(
|
||||
node="start_agent_search",
|
||||
action=start_agent_search,
|
||||
)
|
||||
|
||||
# The sub-graph for the initial answer generation
|
||||
generate_initial_answer_subgraph = generate_initial_answer_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="generate_initial_answer_subgraph",
|
||||
action=generate_initial_answer_subgraph,
|
||||
)
|
||||
|
||||
# Create the refined sub-questions
|
||||
graph.add_node(
|
||||
node="create_refined_sub_questions",
|
||||
action=create_refined_sub_questions,
|
||||
)
|
||||
|
||||
# Subgraph for the refined sub-answer generation
|
||||
answer_refined_question = answer_refined_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_refined_question_subgraphs",
|
||||
action=answer_refined_question,
|
||||
)
|
||||
|
||||
# Ingest the refined sub-answers
|
||||
graph.add_node(
|
||||
node="ingest_refined_sub_answers",
|
||||
action=ingest_refined_sub_answers,
|
||||
)
|
||||
|
||||
# Node to generate the refined answer
|
||||
graph.add_node(
|
||||
node="generate_refined_answer",
|
||||
action=generate_refined_answer,
|
||||
)
|
||||
|
||||
# Early node to extract the entities and terms from the initial answer,
|
||||
# This information is used to inform the creation the refined sub-questions
|
||||
graph.add_node(
|
||||
node="extract_entity_term",
|
||||
action=extract_entities_terms,
|
||||
)
|
||||
|
||||
# Decide if the answer needs to be refined (currently always true)
|
||||
graph.add_node(
|
||||
node="decide_refinement_need",
|
||||
action=decide_refinement_need,
|
||||
)
|
||||
|
||||
# Compare the initial and refined answers, and determine whether
|
||||
# the refined answer is sufficiently better
|
||||
graph.add_node(
|
||||
node="compare_answers",
|
||||
action=compare_answers,
|
||||
)
|
||||
|
||||
# Log the results. This will log the stats as well as the answers, sub-questions, and sub-answers
|
||||
graph.add_node(
|
||||
node="logging_node",
|
||||
action=persist_agent_results,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(start_key=START, end_key="prepare_tool_input")
|
||||
|
||||
graph.add_edge(
|
||||
start_key="prepare_tool_input",
|
||||
end_key="initial_tool_choice",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
"initial_tool_choice",
|
||||
route_initial_tool_choice,
|
||||
["tool_call", "start_agent_search", "logging_node"],
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="tool_call",
|
||||
end_key="basic_use_tool_response",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="basic_use_tool_response",
|
||||
end_key="logging_node",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="start_agent_search",
|
||||
end_key="generate_initial_answer_subgraph",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="start_agent_search",
|
||||
end_key="extract_entity_term",
|
||||
)
|
||||
|
||||
# Wait for the initial answer generation and the entity/term extraction to be complete
|
||||
# before deciding if a refinement is needed.
|
||||
graph.add_edge(
|
||||
start_key=["generate_initial_answer_subgraph", "extract_entity_term"],
|
||||
end_key="decide_refinement_need",
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="decide_refinement_need",
|
||||
path=continue_to_refined_answer_or_end,
|
||||
path_map=["create_refined_sub_questions", "logging_node"],
|
||||
)
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source="create_refined_sub_questions",
|
||||
path=parallelize_refined_sub_question_answering,
|
||||
path_map=["answer_refined_question_subgraphs"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_refined_question_subgraphs",
|
||||
end_key="ingest_refined_sub_answers",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="ingest_refined_sub_answers",
|
||||
end_key="generate_refined_answer",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="generate_refined_answer",
|
||||
end_key="compare_answers",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="compare_answers",
|
||||
end_key="logging_node",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key="logging_node",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
|
||||
from onyx.db.engine import get_session_context_manager
|
||||
from onyx.llm.factory import get_default_llms
|
||||
from onyx.context.search.models import SearchRequest
|
||||
|
||||
graph = main_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
|
||||
with get_session_context_manager() as db_session:
|
||||
search_request = SearchRequest(query="Who created Excel?")
|
||||
graph_config = get_test_config(
|
||||
db_session, primary_llm, fast_llm, search_request
|
||||
)
|
||||
|
||||
inputs = MainInput(
|
||||
base_question=graph_config.inputs.search_request.query, log_messages=[]
|
||||
)
|
||||
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
config={"configurable": {"config": graph_config}},
|
||||
stream_mode="custom",
|
||||
subgraphs=True,
|
||||
):
|
||||
logger.debug(thing)
|
||||
@@ -1,36 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class RefinementSubQuestion(BaseModel):
|
||||
sub_question: str
|
||||
sub_question_id: str
|
||||
verified: bool
|
||||
answered: bool
|
||||
answer: str
|
||||
|
||||
|
||||
class AgentTimings(BaseModel):
|
||||
base_duration_s: float | None
|
||||
refined_duration_s: float | None
|
||||
full_duration_s: float | None
|
||||
|
||||
|
||||
class AgentBaseMetrics(BaseModel):
|
||||
num_verified_documents_total: int | None
|
||||
num_verified_documents_core: int | None
|
||||
verified_avg_score_core: float | None
|
||||
num_verified_documents_base: int | float | None
|
||||
verified_avg_score_base: float | None = None
|
||||
base_doc_boost_factor: float | None = None
|
||||
support_boost_factor: float | None = None
|
||||
duration_s: float | None = None
|
||||
|
||||
|
||||
class AgentRefinedMetrics(BaseModel):
|
||||
refined_doc_boost_factor: float | None = None
|
||||
refined_question_boost_factor: float | None = None
|
||||
duration_s: float | None = None
|
||||
|
||||
|
||||
class AgentAdditionalMetrics(BaseModel):
|
||||
pass
|
||||
@@ -1,71 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
InitialRefinedAnswerComparisonUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import RefinedAnswerImprovement
|
||||
from onyx.prompts.agent_search import (
|
||||
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
|
||||
)
|
||||
|
||||
|
||||
def compare_answers(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> InitialRefinedAnswerComparisonUpdate:
|
||||
"""
|
||||
LangGraph node to compare the initial answer and the refined answer and determine if the
|
||||
refined answer is sufficiently better than the initial answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.search_request.query
|
||||
initial_answer = state.initial_answer
|
||||
refined_answer = state.refined_answer
|
||||
|
||||
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
|
||||
question=question, initial_answer=initial_answer, refined_answer=refined_answer
|
||||
)
|
||||
|
||||
msg = [HumanMessage(content=compare_answers_prompt)]
|
||||
|
||||
# Get the rewritten queries in a defined format
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
# no need to stream this
|
||||
resp = model.invoke(msg)
|
||||
|
||||
refined_answer_improvement = (
|
||||
isinstance(resp.content, str) and "yes" in resp.content.lower()
|
||||
)
|
||||
|
||||
write_custom_event(
|
||||
"refined_answer_improvement",
|
||||
RefinedAnswerImprovement(
|
||||
refined_answer_improvement=refined_answer_improvement,
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
return InitialRefinedAnswerComparisonUpdate(
|
||||
refined_answer_improvement_eval=refined_answer_improvement,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="compare answers",
|
||||
node_start_time=node_start_time,
|
||||
result=f"Answer comparison: {refined_answer_improvement}",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,131 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
RefinementSubQuestion,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import (
|
||||
dispatch_subquestion,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RefinedQuestionDecompositionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
build_history_prompt,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
format_entity_term_extraction,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
|
||||
)
|
||||
from onyx.tools.models import ToolCallKickoff
|
||||
|
||||
|
||||
def create_refined_sub_questions(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> RefinedQuestionDecompositionUpdate:
|
||||
"""
|
||||
LangGraph node to create refined sub-questions based on the initial answer, the history,
|
||||
the entity term extraction results found earlier, and the sub-questions that were answered and failed.
|
||||
"""
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
write_custom_event(
|
||||
"start_refined_answer_creation",
|
||||
ToolCallKickoff(
|
||||
tool_name="agent_search_1",
|
||||
tool_args={
|
||||
"query": graph_config.inputs.search_request.query,
|
||||
"answer": state.initial_answer,
|
||||
},
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
agent_refined_start_time = datetime.now()
|
||||
|
||||
question = graph_config.inputs.search_request.query
|
||||
base_answer = state.initial_answer
|
||||
history = build_history_prompt(graph_config, question)
|
||||
# get the entity term extraction dict and properly format it
|
||||
entity_retlation_term_extractions = state.entity_relation_term_extractions
|
||||
|
||||
entity_term_extraction_str = format_entity_term_extraction(
|
||||
entity_retlation_term_extractions
|
||||
)
|
||||
|
||||
initial_question_answers = state.sub_question_results
|
||||
|
||||
addressed_question_list = [
|
||||
x.question for x in initial_question_answers if x.verified_high_quality
|
||||
]
|
||||
|
||||
failed_question_list = [
|
||||
x.question for x in initial_question_answers if not x.verified_high_quality
|
||||
]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT.format(
|
||||
question=question,
|
||||
history=history,
|
||||
entity_term_extraction_str=entity_term_extraction_str,
|
||||
base_answer=base_answer,
|
||||
answered_sub_questions="\n - ".join(addressed_question_list),
|
||||
failed_sub_questions="\n - ".join(failed_question_list),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = graph_config.tooling.fast_llm
|
||||
|
||||
streamed_tokens = dispatch_separated(
|
||||
model.stream(msg), dispatch_subquestion(1, writer)
|
||||
)
|
||||
response = merge_content(*streamed_tokens)
|
||||
|
||||
if isinstance(response, str):
|
||||
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
|
||||
else:
|
||||
raise ValueError("LLM response is not a string")
|
||||
|
||||
refined_sub_question_dict = {}
|
||||
for sub_question_num, sub_question in enumerate(parsed_response):
|
||||
refined_sub_question = RefinementSubQuestion(
|
||||
sub_question=sub_question,
|
||||
sub_question_id=make_question_id(1, sub_question_num + 1),
|
||||
verified=False,
|
||||
answered=False,
|
||||
answer="",
|
||||
)
|
||||
|
||||
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
|
||||
|
||||
return RefinedQuestionDecompositionUpdate(
|
||||
refined_sub_questions=refined_sub_question_dict,
|
||||
agent_refined_start_time=agent_refined_start_time,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="create refined sub questions",
|
||||
node_start_time=node_start_time,
|
||||
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,47 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RequireRefinemenEvalUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def decide_refinement_need(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> RequireRefinemenEvalUpdate:
|
||||
"""
|
||||
LangGraph node to decide if refinement is needed based on the initial answer and the question.
|
||||
At present, we always refine.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
|
||||
decision = True # TODO: just for current testing purposes
|
||||
|
||||
log_messages = [
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="decide refinement need",
|
||||
node_start_time=node_start_time,
|
||||
result=f"Refinement decision: {decision}",
|
||||
)
|
||||
]
|
||||
|
||||
if graph_config.behavior.allow_refinement:
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=decision,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
else:
|
||||
return RequireRefinemenEvalUpdate(
|
||||
require_refined_answer_eval=False,
|
||||
log_messages=log_messages,
|
||||
)
|
||||
@@ -1,116 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
EntityTermExtractionUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import EntityExtractionResult
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import (
|
||||
EntityRelationshipTermExtraction,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
|
||||
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
|
||||
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
|
||||
|
||||
|
||||
def extract_entities_terms(
|
||||
state: MainState, config: RunnableConfig
|
||||
) -> EntityTermExtractionUpdate:
|
||||
"""
|
||||
LangGraph node to extract entities, relationships, and terms from the initial search results.
|
||||
This data is used to inform particularly the sub-questions that are created for the refined answer.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if not graph_config.behavior.allow_refinement:
|
||||
return EntityTermExtractionUpdate(
|
||||
entity_relation_term_extractions=EntityRelationshipTermExtraction(
|
||||
entities=[],
|
||||
relationships=[],
|
||||
terms=[],
|
||||
),
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="extract entities terms",
|
||||
node_start_time=node_start_time,
|
||||
result="Refinement is not allowed",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
# first four lines duplicates from generate_initial_answer
|
||||
question = graph_config.inputs.search_request.query
|
||||
initial_search_docs = state.exploratory_search_results[:NUM_EXPLORATORY_DOCS]
|
||||
|
||||
# start with the entity/term/extraction
|
||||
doc_context = format_docs(initial_search_docs)
|
||||
|
||||
# Calculation here is only approximate
|
||||
doc_context = trim_prompt_piece(
|
||||
graph_config.tooling.fast_llm.config,
|
||||
doc_context,
|
||||
ENTITY_TERM_EXTRACTION_PROMPT
|
||||
+ question
|
||||
+ ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE,
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=ENTITY_TERM_EXTRACTION_PROMPT.format(
|
||||
question=question, context=doc_context
|
||||
)
|
||||
+ ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE,
|
||||
)
|
||||
]
|
||||
fast_llm = graph_config.tooling.fast_llm
|
||||
# Grader
|
||||
llm_response = fast_llm.invoke(
|
||||
prompt=msg,
|
||||
)
|
||||
|
||||
cleaned_response = (
|
||||
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
|
||||
)
|
||||
first_bracket = cleaned_response.find("{")
|
||||
last_bracket = cleaned_response.rfind("}")
|
||||
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
|
||||
|
||||
try:
|
||||
entity_extraction_result = EntityExtractionResult.model_validate_json(
|
||||
cleaned_response
|
||||
)
|
||||
except ValueError:
|
||||
logger.error("Failed to parse LLM response as JSON in Entity-Term Extraction")
|
||||
entity_extraction_result = EntityExtractionResult(
|
||||
retrieved_entities_relationships=EntityRelationshipTermExtraction(
|
||||
entities=[],
|
||||
relationships=[],
|
||||
terms=[],
|
||||
),
|
||||
)
|
||||
|
||||
return EntityTermExtractionUpdate(
|
||||
entity_relation_term_extractions=entity_extraction_result.retrieved_entities_relationships,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="extract entities terms",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,339 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_content
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.types import StreamWriter
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentRefinedMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
RefinedAnswerUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
get_prompt_enrichment_components,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
|
||||
trim_prompt_piece,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
dispatch_main_answer_stop_info,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import relevance_from_docs
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
remove_document_citations,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
|
||||
from onyx.chat.models import AgentAnswerPiece
|
||||
from onyx.chat.models import ExtendedToolResponse
|
||||
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
|
||||
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
|
||||
)
|
||||
from onyx.prompts.agent_search import (
|
||||
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
|
||||
)
|
||||
from onyx.prompts.agent_search import UNKNOWN_ANSWER
|
||||
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
|
||||
|
||||
|
||||
def generate_refined_answer(
|
||||
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
|
||||
) -> RefinedAnswerUpdate:
|
||||
"""
|
||||
LangGraph node to generate the refined answer.
|
||||
"""
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
question = graph_config.inputs.search_request.query
|
||||
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
|
||||
|
||||
persona_contextualized_prompt = (
|
||||
prompt_enrichment_components.persona_prompts.contextualized_prompt
|
||||
)
|
||||
|
||||
verified_reranked_documents = state.verified_reranked_documents
|
||||
sub_questions_cited_documents = state.cited_documents
|
||||
original_question_verified_documents = (
|
||||
state.orig_question_verified_reranked_documents
|
||||
)
|
||||
original_question_retrieved_documents = state.orig_question_retrieved_documents
|
||||
|
||||
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
|
||||
|
||||
counter = 0
|
||||
for original_doc_number, original_doc in enumerate(
|
||||
original_question_verified_documents
|
||||
):
|
||||
if original_doc_number not in sub_questions_cited_documents:
|
||||
if (
|
||||
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
|
||||
or len(consolidated_context_docs)
|
||||
< 1.5
|
||||
* AGENT_MAX_ANSWER_CONTEXT_DOCS # allow for larger context in refinement
|
||||
):
|
||||
consolidated_context_docs.append(original_doc)
|
||||
counter += 1
|
||||
|
||||
# sort docs by their scores - though the scores refer to different questions
|
||||
relevant_docs = dedup_inference_sections(
|
||||
consolidated_context_docs, consolidated_context_docs
|
||||
)
|
||||
|
||||
streaming_docs = (
|
||||
relevant_docs
|
||||
if len(relevant_docs) > 0
|
||||
else original_question_retrieved_documents[:15]
|
||||
)
|
||||
|
||||
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
# stream refined answer docs, or original question docs if no relevant docs are found
|
||||
relevance_list = relevance_from_docs(relevant_docs)
|
||||
for tool_response in yield_search_responses(
|
||||
query=question,
|
||||
reranked_sections=streaming_docs,
|
||||
final_context_sections=streaming_docs,
|
||||
search_query_info=query_info,
|
||||
get_section_relevance=lambda: relevance_list,
|
||||
search_tool=graph_config.tooling.search_tool,
|
||||
):
|
||||
write_custom_event(
|
||||
"tool_response",
|
||||
ExtendedToolResponse(
|
||||
id=tool_response.id,
|
||||
response=tool_response.response,
|
||||
level=1,
|
||||
level_question_num=0, # 0, 0 is the base question
|
||||
),
|
||||
writer,
|
||||
)
|
||||
|
||||
if len(verified_reranked_documents) > 0:
|
||||
refined_doc_effectiveness = len(relevant_docs) / len(
|
||||
verified_reranked_documents
|
||||
)
|
||||
else:
|
||||
refined_doc_effectiveness = 10.0
|
||||
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
answered_sub_question_answer_list: list[str] = []
|
||||
sub_questions: list[str] = []
|
||||
initial_answered_sub_questions: set[str] = set()
|
||||
refined_answered_sub_questions: set[str] = set()
|
||||
|
||||
for i, result in enumerate(sub_question_answer_results, 1):
|
||||
question_level, _ = parse_question_id(result.question_id)
|
||||
sub_questions.append(result.question)
|
||||
|
||||
if (
|
||||
result.verified_high_quality
|
||||
and result.answer
|
||||
and result.answer != UNKNOWN_ANSWER
|
||||
):
|
||||
sub_question_type = "initial" if question_level == 0 else "refined"
|
||||
question_set = (
|
||||
initial_answered_sub_questions
|
||||
if question_level == 0
|
||||
else refined_answered_sub_questions
|
||||
)
|
||||
question_set.add(result.question)
|
||||
|
||||
answered_sub_question_answer_list.append(
|
||||
SUB_QUESTION_ANSWER_TEMPLATE_REFINED.format(
|
||||
sub_question=result.question,
|
||||
sub_answer=result.answer,
|
||||
sub_question_num=i,
|
||||
sub_question_type=sub_question_type,
|
||||
)
|
||||
)
|
||||
|
||||
# Calculate efficiency
|
||||
total_answered_questions = (
|
||||
initial_answered_sub_questions | refined_answered_sub_questions
|
||||
)
|
||||
revision_question_efficiency = (
|
||||
len(total_answered_questions) / len(initial_answered_sub_questions)
|
||||
if initial_answered_sub_questions
|
||||
else 10.0
|
||||
if refined_answered_sub_questions
|
||||
else 1.0
|
||||
)
|
||||
|
||||
sub_question_answer_str = "\n\n------\n\n".join(
|
||||
set(answered_sub_question_answer_list)
|
||||
)
|
||||
initial_answer = state.initial_answer or ""
|
||||
|
||||
# Choose appropriate prompt template
|
||||
base_prompt = (
|
||||
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS
|
||||
if answered_sub_question_answer_list
|
||||
else REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS
|
||||
)
|
||||
|
||||
model = graph_config.tooling.fast_llm
|
||||
relevant_docs_str = format_docs(relevant_docs)
|
||||
relevant_docs_str = trim_prompt_piece(
|
||||
model.config,
|
||||
relevant_docs_str,
|
||||
base_prompt
|
||||
+ question
|
||||
+ sub_question_answer_str
|
||||
+ initial_answer
|
||||
+ persona_contextualized_prompt
|
||||
+ prompt_enrichment_components.history,
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=base_prompt.format(
|
||||
question=question,
|
||||
history=prompt_enrichment_components.history,
|
||||
answered_sub_questions=remove_document_citations(
|
||||
sub_question_answer_str
|
||||
),
|
||||
relevant_docs=relevant_docs_str,
|
||||
initial_answer=remove_document_citations(initial_answer)
|
||||
if initial_answer
|
||||
else None,
|
||||
persona_specification=persona_contextualized_prompt,
|
||||
date_prompt=prompt_enrichment_components.date_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
|
||||
dispatch_timings: list[float] = []
|
||||
for message in model.stream(msg):
|
||||
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
|
||||
content = message.content
|
||||
if not isinstance(content, str):
|
||||
raise ValueError(
|
||||
f"Expected content to be a string, but got {type(content)}"
|
||||
)
|
||||
|
||||
start_stream_token = datetime.now()
|
||||
write_custom_event(
|
||||
"refined_agent_answer",
|
||||
AgentAnswerPiece(
|
||||
answer_piece=content,
|
||||
level=1,
|
||||
level_question_num=0,
|
||||
answer_type="agent_level_answer",
|
||||
),
|
||||
writer,
|
||||
)
|
||||
end_stream_token = datetime.now()
|
||||
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
|
||||
streamed_tokens.append(content)
|
||||
|
||||
logger.debug(
|
||||
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
|
||||
)
|
||||
dispatch_main_answer_stop_info(1, writer)
|
||||
response = merge_content(*streamed_tokens)
|
||||
answer = cast(str, response)
|
||||
|
||||
refined_agent_stats = RefinedAgentStats(
|
||||
revision_doc_efficiency=refined_doc_effectiveness,
|
||||
revision_question_efficiency=revision_question_efficiency,
|
||||
)
|
||||
|
||||
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
|
||||
logger.debug("-" * 10)
|
||||
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
|
||||
|
||||
logger.debug("-" * 100)
|
||||
|
||||
if state.initial_agent_stats:
|
||||
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
|
||||
"utilized_chunk_ratio", "--"
|
||||
)
|
||||
initial_support_boost_factor = (
|
||||
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
|
||||
)
|
||||
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
|
||||
"num_verified_documents", "--"
|
||||
)
|
||||
initial_verified_docs_avg_score = (
|
||||
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
|
||||
)
|
||||
initial_sub_questions_verified_docs = (
|
||||
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
|
||||
)
|
||||
|
||||
logger.debug("INITIAL AGENT STATS")
|
||||
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
|
||||
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
|
||||
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
|
||||
logger.debug(
|
||||
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
|
||||
)
|
||||
logger.debug(
|
||||
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
|
||||
)
|
||||
if refined_agent_stats:
|
||||
logger.debug("-" * 10)
|
||||
logger.debug("REFINED AGENT STATS")
|
||||
logger.debug(
|
||||
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
|
||||
)
|
||||
logger.debug(
|
||||
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
|
||||
)
|
||||
|
||||
agent_refined_end_time = datetime.now()
|
||||
if state.agent_refined_start_time:
|
||||
agent_refined_duration = (
|
||||
agent_refined_end_time - state.agent_refined_start_time
|
||||
).total_seconds()
|
||||
else:
|
||||
agent_refined_duration = None
|
||||
|
||||
agent_refined_metrics = AgentRefinedMetrics(
|
||||
refined_doc_boost_factor=refined_agent_stats.revision_doc_efficiency,
|
||||
refined_question_boost_factor=refined_agent_stats.revision_question_efficiency,
|
||||
duration_s=agent_refined_duration,
|
||||
)
|
||||
|
||||
return RefinedAnswerUpdate(
|
||||
refined_answer=answer,
|
||||
refined_answer_quality=True, # TODO: replace this with the actual check value
|
||||
refined_agent_stats=refined_agent_stats,
|
||||
agent_refined_end_time=agent_refined_end_time,
|
||||
agent_refined_metrics=agent_refined_metrics,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="generate refined answer",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,42 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
|
||||
AnswerQuestionOutput,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.states import (
|
||||
SubQuestionResultsUpdate,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.operators import (
|
||||
dedup_inference_sections,
|
||||
)
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
|
||||
|
||||
def ingest_refined_sub_answers(
|
||||
state: AnswerQuestionOutput,
|
||||
) -> SubQuestionResultsUpdate:
|
||||
"""
|
||||
LangGraph node to ingest and format the refined sub-answers and retrieved documents.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
documents = []
|
||||
answer_results = state.answer_results
|
||||
for answer_result in answer_results:
|
||||
documents.extend(answer_result.verified_reranked_documents)
|
||||
|
||||
return SubQuestionResultsUpdate(
|
||||
# Deduping is done by the documents operator for the main graph
|
||||
# so we might not need to dedup here
|
||||
verified_reranked_documents=dedup_inference_sections(documents, []),
|
||||
sub_question_results=answer_results,
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="ingest refined answers",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -1,129 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import cast
|
||||
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
from onyx.agents.agent_search.deep_search.main.models import (
|
||||
AgentAdditionalMetrics,
|
||||
)
|
||||
from onyx.agents.agent_search.deep_search.main.models import AgentTimings
|
||||
from onyx.agents.agent_search.deep_search.main.operations import logger
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainOutput
|
||||
from onyx.agents.agent_search.deep_search.main.states import MainState
|
||||
from onyx.agents.agent_search.models import GraphConfig
|
||||
from onyx.agents.agent_search.shared_graph_utils.models import CombinedAgentMetrics
|
||||
from onyx.agents.agent_search.shared_graph_utils.utils import (
|
||||
get_langgraph_node_log_string,
|
||||
)
|
||||
from onyx.db.chat import log_agent_metrics
|
||||
from onyx.db.chat import log_agent_sub_question_results
|
||||
|
||||
|
||||
def persist_agent_results(state: MainState, config: RunnableConfig) -> MainOutput:
|
||||
"""
|
||||
LangGraph node to persist the agent results, including agent logging data.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
agent_start_time = state.agent_start_time
|
||||
agent_base_end_time = state.agent_base_end_time
|
||||
agent_refined_start_time = state.agent_refined_start_time
|
||||
agent_refined_end_time = state.agent_refined_end_time
|
||||
agent_end_time = agent_refined_end_time or agent_base_end_time
|
||||
|
||||
agent_base_duration = None
|
||||
if agent_base_end_time and agent_start_time:
|
||||
agent_base_duration = (agent_base_end_time - agent_start_time).total_seconds()
|
||||
|
||||
agent_refined_duration = None
|
||||
if agent_refined_start_time and agent_refined_end_time:
|
||||
agent_refined_duration = (
|
||||
agent_refined_end_time - agent_refined_start_time
|
||||
).total_seconds()
|
||||
|
||||
agent_full_duration = None
|
||||
if agent_end_time and agent_start_time:
|
||||
agent_full_duration = (agent_end_time - agent_start_time).total_seconds()
|
||||
|
||||
agent_type = "refined" if agent_refined_duration else "base"
|
||||
|
||||
agent_base_metrics = state.agent_base_metrics
|
||||
agent_refined_metrics = state.agent_refined_metrics
|
||||
|
||||
combined_agent_metrics = CombinedAgentMetrics(
|
||||
timings=AgentTimings(
|
||||
base_duration_s=agent_base_duration,
|
||||
refined_duration_s=agent_refined_duration,
|
||||
full_duration_s=agent_full_duration,
|
||||
),
|
||||
base_metrics=agent_base_metrics,
|
||||
refined_metrics=agent_refined_metrics,
|
||||
additional_metrics=AgentAdditionalMetrics(),
|
||||
)
|
||||
|
||||
persona_id = None
|
||||
graph_config = cast(GraphConfig, config["metadata"]["config"])
|
||||
if graph_config.inputs.search_request.persona:
|
||||
persona_id = graph_config.inputs.search_request.persona.id
|
||||
|
||||
user_id = None
|
||||
assert (
|
||||
graph_config.tooling.search_tool
|
||||
), "search_tool must be provided for agentic search"
|
||||
user = graph_config.tooling.search_tool.user
|
||||
if user:
|
||||
user_id = user.id
|
||||
|
||||
# log the agent metrics
|
||||
if graph_config.persistence:
|
||||
if agent_base_duration is not None:
|
||||
log_agent_metrics(
|
||||
db_session=graph_config.persistence.db_session,
|
||||
user_id=user_id,
|
||||
persona_id=persona_id,
|
||||
agent_type=agent_type,
|
||||
start_time=agent_start_time,
|
||||
agent_metrics=combined_agent_metrics,
|
||||
)
|
||||
|
||||
# Persist the sub-answer in the database
|
||||
db_session = graph_config.persistence.db_session
|
||||
chat_session_id = graph_config.persistence.chat_session_id
|
||||
primary_message_id = graph_config.persistence.message_id
|
||||
sub_question_answer_results = state.sub_question_results
|
||||
|
||||
log_agent_sub_question_results(
|
||||
db_session=db_session,
|
||||
chat_session_id=chat_session_id,
|
||||
primary_message_id=primary_message_id,
|
||||
sub_question_answer_results=sub_question_answer_results,
|
||||
)
|
||||
|
||||
main_output = MainOutput(
|
||||
log_messages=[
|
||||
get_langgraph_node_log_string(
|
||||
graph_component="main",
|
||||
node_name="persist agent results",
|
||||
node_start_time=node_start_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
for log_message in state.log_messages:
|
||||
logger.debug(log_message)
|
||||
|
||||
if state.agent_base_metrics:
|
||||
logger.debug(f"Initial loop: {state.agent_base_metrics.duration_s}")
|
||||
if state.agent_refined_metrics:
|
||||
logger.debug(f"Refined loop: {state.agent_refined_metrics.duration_s}")
|
||||
if (
|
||||
state.agent_base_metrics
|
||||
and state.agent_refined_metrics
|
||||
and state.agent_base_metrics.duration_s
|
||||
and state.agent_refined_metrics.duration_s
|
||||
):
|
||||
logger.debug(
|
||||
f"Total time: {float(state.agent_base_metrics.duration_s) + float(state.agent_refined_metrics.duration_s)}"
|
||||
)
|
||||
|
||||
return main_output
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user