Compare commits

..

85 Commits

Author SHA1 Message Date
pablodanswer
b5f20ab12c various improvements 2025-01-26 11:20:28 -08:00
pablodanswer
c052d6251d quick nit 2025-01-25 17:17:50 -08:00
evan-danswer
4cb603586d Merge pull request #3783 from onyx-dot-app/asf-evan-basic-tools-no-search
basic tools no search
2025-01-25 17:07:51 -08:00
Evan Lohn
07e64caeed allowed empty Search Tool for non-agentic search 2025-01-25 16:06:11 -08:00
pablodanswer
dd6e623cab minor update - doc ordering 2025-01-24 22:10:56 -08:00
pablodanswer
4e4f7bf823 k 2025-01-24 22:08:08 -08:00
pablodanswer
fa70770033 quick nit 2025-01-24 20:17:01 -08:00
pablodanswer
789d98ff9a k 2025-01-24 20:17:01 -08:00
joachim-danswer
30c2b54a15 Replaced additional limit with variable 2025-01-24 20:17:01 -08:00
joachim-danswer
346152aecb Addressing EL's comments
- created vars for a couple of agent settings
 - moved agent configs
 - created a search function
2025-01-24 20:17:01 -08:00
joachim-danswer
eb98c3d069 taking out Extraction for now 2025-01-24 20:17:01 -08:00
joachim-danswer
a387eddd1f earlier entity extraction & sharper generation prompts 2025-01-24 20:17:01 -08:00
joachim-danswer
f23e9e2d96 tmp: force agent search 2025-01-24 20:17:01 -08:00
Evan Lohn
704607fac4 skip reranking for <=1 doc 2025-01-24 20:17:01 -08:00
Evan Lohn
5c6c0c4f56 stop infos when done streaming answers 2025-01-24 20:17:01 -08:00
Evan Lohn
ef4762a523 make field nullable 2025-01-24 20:17:01 -08:00
Evan Lohn
4f5f89df11 persisting refined answer improvement 2025-01-24 20:17:01 -08:00
Evan Lohn
66e675c36a address JR comments 2025-01-24 20:17:01 -08:00
Evan Lohn
803ae4511b fixed chat tests 2025-01-24 20:17:01 -08:00
Evan Lohn
f85941a206 implemented top-level tool calling + force search 2025-01-24 20:17:01 -08:00
Evan Lohn
4402c5e550 WIP, but working basic search using initial tool choice node 2025-01-24 20:17:01 -08:00
pablodanswer
a031ac4b17 k 2025-01-24 20:17:01 -08:00
pablodanswer
e99d1d49e3 updated + functional 2025-01-24 20:17:01 -08:00
pablodanswer
150d6f7acc update- reorg 2025-01-24 20:17:01 -08:00
pablodanswer
316ebc0d12 k 2025-01-24 20:17:01 -08:00
pablodanswer
4122675725 build fix 2025-01-24 20:17:01 -08:00
joachim-danswer
48d43e049d EL comments addressed 2025-01-24 20:17:01 -08:00
joachim-danswer
364dd4bb19 loser verification prompt 2025-01-24 20:17:01 -08:00
joachim-danswer
e07a00d353 turning off initial search pre route decision 2025-01-24 20:17:01 -08:00
joachim-danswer
398263712d change of sub-question answer if no docs recovered 2025-01-24 20:17:01 -08:00
joachim-danswer
14dd40d155 various fixes from Yuhong's list 2025-01-24 20:17:01 -08:00
Yuhong Sun
88d5796b28 Copy changes 2025-01-24 20:17:01 -08:00
Evan Lohn
12fa4fb0be removed print statements, fixed pass through handling 2025-01-24 20:17:01 -08:00
Evan Lohn
5aa7fce418 fixed basic flow citations and second test 2025-01-24 20:17:01 -08:00
Evan Lohn
90ea89e70b fix for early cancellation test; solves issue with tasks being destroyed while pending 2025-01-24 20:17:01 -08:00
pablodanswer
4f4cbfeeb1 add agent search frontend 2025-01-24 20:17:01 -08:00
Evan Lohn
5500357585 fix alembic history 2025-01-24 20:17:01 -08:00
joachim-danswer
3ed10b85f7 streaming + saving of search docs of no verified ones available
- sub-questions only
2025-01-24 20:17:00 -08:00
Evan Lohn
3233f31010 reworked history messages in agent config 2025-01-24 20:17:00 -08:00
Evan Lohn
67c4ec74ff missed files from prev commit 2025-01-24 20:17:00 -08:00
Evan Lohn
63908c90c5 basic search restructure: WIP on fixing tests 2025-01-24 20:17:00 -08:00
joachim-danswer
90e0aba34b prompts that even further motivates to cite docs over sub-q's 2025-01-24 20:17:00 -08:00
joachim-danswer
0b2ff44a54 pydantic for LangGraph + changed ERT extraction flow 2025-01-24 20:17:00 -08:00
joachim-danswer
6d4af4c6af history added to agent flow 2025-01-24 20:17:00 -08:00
pablodanswer
c4c0b42ca4 minor fixes to branch 2025-01-24 20:17:00 -08:00
Evan Lohn
a4eae8a302 second clean commit 2025-01-24 20:17:00 -08:00
Yuhong Sun
b12c51f56c Turn off Unstructured telemetry (#3778) 2025-01-24 18:13:25 -08:00
pablonyx
b9561fc46c Unzip files + no double x (#3767)
* unzip files

* quick nit

* quick nit

* nit
2025-01-24 20:52:58 +00:00
pablonyx
9b19990764 Input shortcut fix in multi tenant case (#3768)
* validated fix

* nit

* k
2025-01-24 20:40:08 +00:00
Chris Weaver
5d6a18f358 Add support for more /models/list formats (#3739) 2025-01-24 18:25:19 +00:00
pablonyx
3c37764974 Allow all LLMs for image generation assistants (#3730)
* Allow all LLMs for image generation assistants

* ensure pushed

* update color + assistant -> model

* update prompt

* fix silly conditional
2025-01-24 18:23:55 +00:00
Chris Weaver
6551d6bc87 Add support for overridding scopes for OIDC (#3759) 2025-01-23 21:20:34 -08:00
pablonyx
2a1bb4ac41 Vespa scripts + Redis script update (#3758)
* update onyx redis script

* looking good

* simplify comments

* remove unnecessary apps option

* iterate

* fix typing
2025-01-23 23:46:17 +00:00
Chris Weaver
5d653e7c19 Add back postgres auth backend support (#3753) 2025-01-23 21:19:35 +00:00
rkuo-danswer
68c959d8ef Merge pull request #3755 from onyx-dot-app/bugfix/ee_tasks
missed ee_tasks_to_schedule declaration
2025-01-23 12:33:53 -08:00
Richard Kuo (Danswer)
ba771483d8 missed ee_tasks_to_schedule declaration 2025-01-23 12:32:43 -08:00
rkuo-danswer
a2d8e815f6 Feature/more celery fanout (#3740)
* WIP

* migrate most beat tasks to fan out strategy

* fix kwargs

* migrate EE tasks

* lock on the task_name level

* typo fix

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-01-23 19:08:42 +00:00
rkuo-danswer
b1e05bb909 Merge pull request #3751 from onyx-dot-app/bugfix/remove_index_debugging
remove debugging for specific problem tenants
2025-01-23 10:20:36 -08:00
pablonyx
ccb16b7484 Indexing latency check fix (#3747)
* add logs + update dev script

* update conig

* remove prints

* temporarily turn off

* va

* update

* fix

* finalize monitoring updates

* update
2025-01-23 17:14:26 +00:00
pablonyx
1613a8ba4f Anonymous Polish (#3746)
* update auth

* k

* address nit
2025-01-23 02:42:44 +00:00
pablonyx
e94ffbc2a1 Fix image wonkiness (#3735)
* fix images

* quick nit

* quick nit

* update

* update for clarity
2025-01-23 02:38:51 +00:00
Richard Kuo (Danswer)
32f220e02c remove debugging for specific problem tenants 2025-01-22 16:23:24 -08:00
rkuo-danswer
69c60feda4 cloud check for migrations (#3734)
* cloud check for migrations

* fix table declaration

* change back interval

* Fix usage of POSTGRES_DEFAULT_SCHEMA

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-01-22 22:41:28 +00:00
pablonyx
a215ea9143 Performance monitoring (#3725)
* nit

* minimal

* config

* not too big a change

* k

* update

* update web push

* node options

* k

* update config

* attempt fix
2025-01-22 19:54:07 +00:00
pablonyx
f81a42b4e8 fix image edge case width screen size (#3738) 2025-01-22 18:54:00 +00:00
rkuo-danswer
b095e17827 Bugfix/watchdog signal (#3699)
* signal from the watchdog so that the monitor task doesn't try to clean up before it can exit

* ttl constants

* improve comment

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-01-22 17:51:06 +00:00
pablonyx
2a758ae33f Slack doc set fix (#3737) 2025-01-22 09:57:21 -08:00
hagen-danswer
3e58cf2667 Added ability to use a tag to insert the current datetime in prompts (#3697)
* Added ability to use a tag to insert the current datetime in prompts

* made tagging logic more robust

* rename

* k

---------

Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2025-01-22 16:17:20 +00:00
hagen-danswer
b9c29f2a36 Fix pagination for index attempts table DAN-1284 (#3722)
* Fix pagination for index attempts table

* fixed index attempts pagination

* fixed query history table

* query clearnup

* fixed test

* fixed weird tests???
2025-01-22 01:51:16 +00:00
Yuhong Sun
647adb9ba0 Change Persona to Assistant for Analytics Page (#3741) 2025-01-21 17:08:03 -08:00
pablonyx
7d6d73529b fix gmail connector (#3733) 2025-01-21 20:43:25 +00:00
Chris Weaver
420476ad92 Add basic passthrough auth (#3731)
* Add basic passthrough auth

* Add server-side validation

* Disallow for non-oauth

* Fix npm build
2025-01-20 23:39:23 -08:00
pablonyx
4ca7325d1a Finalize ux rework (#3720)
* colors

* nit

* finalize chat ux

* fix seeding waiting

* update chat input bar icons

* k

* Revert "fix seeding waiting"

This reverts commit e1aa93ff0c.
2025-01-21 01:09:16 +00:00
pablonyx
8ddd95d0d4 Fix exceptional seeding delay (#3723)
* fix seeding waiting

* k

* updated
2025-01-21 01:02:13 +00:00
Weves
1378364686 Pass in tenant_id to kv_store in monitoring job 2025-01-20 15:23:16 -08:00
pablonyx
cc4953b560 Slackbot optimization (#3696)
* initial pass

* update

* nit

* nit

* bot -> app

* nit

* quick update

* various improvements

* k

* k

* nit
2025-01-20 19:46:52 +00:00
pablonyx
fe3eae3680 Update JWT expiry time config (#3717)
* update redis configs

* update comment
2025-01-20 11:12:48 -08:00
hagen-danswer
2a7a22d953 fixed broken zendesk connector tests 2025-01-20 11:09:04 -08:00
pablonyx
f163b798ea Input Formik + hidden screen (#3715) 2025-01-20 10:16:10 -08:00
pablonyx
d4563b8693 Add linear check to PRs (#3708)
* add linear check

* Update pull_request_template.md
2025-01-20 03:48:22 +00:00
Weves
a54ed77140 Enhance airtable connector 2025-01-19 18:57:48 -08:00
Devin AI
f27979ef7f docs: fix typo in README.md ('Any many' -> 'And many')
Co-Authored-By: Chris Weaver <chris@onyx.app>
2025-01-19 14:26:39 -08:00
pablonyx
122a9af9b3 Polish (#3692) 2025-01-19 14:22:08 -08:00
pablodanswer
32a97e5479 fix bug 2025-01-19 13:42:23 -08:00
Chris Weaver
bf30dab9c4 Enable location support for Vertex AI (#3707) 2025-01-19 17:41:35 +00:00
295 changed files with 18374 additions and 5231 deletions

View File

@@ -11,5 +11,4 @@
Note: You have to check that the action passes, otherwise resolve the conflicts manually and tag the patches.
- [ ] This PR should be backported (make sure to check that the backport attempt succeeds)
- [ ] I have included a link to a Linear ticket in my description.
- [ ] [Optional] Override Linear Check

View File

@@ -67,6 +67,7 @@ jobs:
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
NEXT_PUBLIC_GTM_ENABLED=true
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
NODE_OPTIONS=--max-old-space-size=8192
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -60,6 +60,8 @@ jobs:
push: true
build-args: |
ONYX_VERSION=${{ github.ref_name }}
NODE_OPTIONS=--max-old-space-size=8192
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}

4
.gitignore vendored
View File

@@ -7,4 +7,6 @@
.vscode/
*.sw?
/backend/tests/regression/answer_quality/search_test_config.yaml
/web/test-results/
/web/test-results/
backend/onyx/agent_search/main/test_data.json
backend/tests/regression/answer_quality/test_data.json

View File

@@ -52,3 +52,9 @@ BING_API_KEY=<REPLACE THIS>
# Enable the full set of Danswer Enterprise Edition features
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you are using this for local testing/development)
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=False
# Agent Search configs # TODO: Remove give proper namings
AGENT_RETRIEVAL_STATS=False # Note: This setting will incur substantial re-ranking effort
AGENT_RERANKING_STATS=True
AGENT_MAX_QUERY_RETRIEVAL_RESULTS=20
AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS=20

View File

@@ -119,7 +119,7 @@ There are two editions of Onyx:
- Whitelabeling
- API key authentication
- Encryption of secrets
- Any many more! Checkout [our website](https://www.onyx.app/) for the latest.
- And many more! Checkout [our website](https://www.onyx.app/) for the latest.
To try the Onyx Enterprise Edition:

1
Untitled-12 Normal file
View File

@@ -0,0 +1 @@

View File

@@ -9,8 +9,10 @@ founders@onyx.app for more information. Please visit https://github.com/onyx-dot
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
ARG ONYX_VERSION=0.8-dev
# DO_NOT_TRACK is used to disable telemetry for Unstructured
ENV ONYX_VERSION=${ONYX_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
DANSWER_RUNNING_IN_DOCKER="true" \
DO_NOT_TRACK="true"
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"

View File

@@ -0,0 +1,29 @@
"""agent_doc_result_col
Revision ID: 1adf5ea20d2b
Revises: e9cf2bd7baed
Create Date: 2025-01-05 13:14:58.344316
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "1adf5ea20d2b"
down_revision = "e9cf2bd7baed"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add the new column with JSONB type
op.add_column(
"sub_question",
sa.Column("sub_question_doc_results", postgresql.JSONB(), nullable=True),
)
def downgrade() -> None:
# Drop the column
op.drop_column("sub_question", "sub_question_doc_results")

View File

@@ -0,0 +1,31 @@
"""refined answer improvement
Revision ID: 211b14ab5a91
Revises: 925b58bd75b6
Create Date: 2025-01-24 14:05:03.334309
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "211b14ab5a91"
down_revision = "925b58bd75b6"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"chat_message",
sa.Column(
"refined_answer_improvement",
sa.Boolean(),
nullable=True,
),
)
def downgrade() -> None:
op.drop_column("chat_message", "refined_answer_improvement")

View File

@@ -0,0 +1,35 @@
"""agent_metric_col_rename__s
Revision ID: 925b58bd75b6
Revises: 9787be927e58
Create Date: 2025-01-06 11:20:26.752441
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "925b58bd75b6"
down_revision = "9787be927e58"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Rename columns using PostgreSQL syntax
op.alter_column(
"agent__search_metrics", "base_duration_s", new_column_name="base_duration__s"
)
op.alter_column(
"agent__search_metrics", "full_duration_s", new_column_name="full_duration__s"
)
def downgrade() -> None:
# Revert the column renames
op.alter_column(
"agent__search_metrics", "base_duration__s", new_column_name="base_duration_s"
)
op.alter_column(
"agent__search_metrics", "full_duration__s", new_column_name="full_duration_s"
)

View File

@@ -0,0 +1,25 @@
"""agent_metric_table_renames__agent__
Revision ID: 9787be927e58
Revises: bceb76d618ec
Create Date: 2025-01-06 11:01:44.210160
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "9787be927e58"
down_revision = "bceb76d618ec"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Rename table from agent_search_metrics to agent__search_metrics
op.rename_table("agent_search_metrics", "agent__search_metrics")
def downgrade() -> None:
# Rename table back from agent__search_metrics to agent_search_metrics
op.rename_table("agent__search_metrics", "agent_search_metrics")

View File

@@ -0,0 +1,42 @@
"""agent_tracking
Revision ID: 98a5008d8711
Revises: f1ca58b2f2ec
Create Date: 2025-01-04 14:41:52.732238
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "98a5008d8711"
down_revision = "f1ca58b2f2ec"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"agent_search_metrics",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("user_id", postgresql.UUID(as_uuid=True), nullable=True),
sa.Column("persona_id", sa.Integer(), nullable=True),
sa.Column("agent_type", sa.String(), nullable=False),
sa.Column("start_time", sa.DateTime(timezone=True), nullable=False),
sa.Column("base_duration_s", sa.Float(), nullable=False),
sa.Column("full_duration_s", sa.Float(), nullable=False),
sa.Column("base_metrics", postgresql.JSONB(), nullable=True),
sa.Column("refined_metrics", postgresql.JSONB(), nullable=True),
sa.Column("all_metrics", postgresql.JSONB(), nullable=True),
sa.ForeignKeyConstraint(
["persona_id"],
["persona.id"],
),
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
sa.PrimaryKeyConstraint("id"),
)
def downgrade() -> None:
op.drop_table("agent_search_metrics")

View File

@@ -0,0 +1,84 @@
"""agent_table_renames__agent__
Revision ID: bceb76d618ec
Revises: c0132518a25b
Create Date: 2025-01-06 10:50:48.109285
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "bceb76d618ec"
down_revision = "c0132518a25b"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.drop_constraint(
"sub_query__search_doc_sub_query_id_fkey",
"sub_query__search_doc",
type_="foreignkey",
)
op.drop_constraint(
"sub_query__search_doc_search_doc_id_fkey",
"sub_query__search_doc",
type_="foreignkey",
)
# Rename tables
op.rename_table("sub_query", "agent__sub_query")
op.rename_table("sub_question", "agent__sub_question")
op.rename_table("sub_query__search_doc", "agent__sub_query__search_doc")
# Update both foreign key constraints for agent__sub_query__search_doc
# Create new foreign keys with updated names
op.create_foreign_key(
"agent__sub_query__search_doc_sub_query_id_fkey",
"agent__sub_query__search_doc",
"agent__sub_query",
["sub_query_id"],
["id"],
)
op.create_foreign_key(
"agent__sub_query__search_doc_search_doc_id_fkey",
"agent__sub_query__search_doc",
"search_doc", # This table name doesn't change
["search_doc_id"],
["id"],
)
def downgrade() -> None:
# Update foreign key constraints for sub_query__search_doc
op.drop_constraint(
"agent__sub_query__search_doc_sub_query_id_fkey",
"agent__sub_query__search_doc",
type_="foreignkey",
)
op.drop_constraint(
"agent__sub_query__search_doc_search_doc_id_fkey",
"agent__sub_query__search_doc",
type_="foreignkey",
)
# Rename tables back
op.rename_table("agent__sub_query__search_doc", "sub_query__search_doc")
op.rename_table("agent__sub_question", "sub_question")
op.rename_table("agent__sub_query", "sub_query")
op.create_foreign_key(
"sub_query__search_doc_sub_query_id_fkey",
"sub_query__search_doc",
"sub_query",
["sub_query_id"],
["id"],
)
op.create_foreign_key(
"sub_query__search_doc_search_doc_id_fkey",
"sub_query__search_doc",
"search_doc", # This table name doesn't change
["search_doc_id"],
["id"],
)

View File

@@ -0,0 +1,40 @@
"""agent_table_changes_rename_level
Revision ID: c0132518a25b
Revises: 1adf5ea20d2b
Create Date: 2025-01-05 16:38:37.660152
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "c0132518a25b"
down_revision = "1adf5ea20d2b"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add level and level_question_nr columns with NOT NULL constraint
op.add_column(
"sub_question",
sa.Column("level", sa.Integer(), nullable=False, server_default="0"),
)
op.add_column(
"sub_question",
sa.Column(
"level_question_nr", sa.Integer(), nullable=False, server_default="0"
),
)
# Remove the server_default after the columns are created
op.alter_column("sub_question", "level", server_default=None)
op.alter_column("sub_question", "level_question_nr", server_default=None)
def downgrade() -> None:
# Remove the columns
op.drop_column("sub_question", "level_question_nr")
op.drop_column("sub_question", "level")

View File

@@ -0,0 +1,68 @@
"""create pro search persistence tables
Revision ID: e9cf2bd7baed
Revises: 98a5008d8711
Create Date: 2025-01-02 17:55:56.544246
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects.postgresql import UUID
# revision identifiers, used by Alembic.
revision = "e9cf2bd7baed"
down_revision = "98a5008d8711"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Create sub_question table
op.create_table(
"sub_question",
sa.Column("id", sa.Integer, primary_key=True),
sa.Column("primary_question_id", sa.Integer, sa.ForeignKey("chat_message.id")),
sa.Column(
"chat_session_id", UUID(as_uuid=True), sa.ForeignKey("chat_session.id")
),
sa.Column("sub_question", sa.Text),
sa.Column(
"time_created", sa.DateTime(timezone=True), server_default=sa.func.now()
),
sa.Column("sub_answer", sa.Text),
)
# Create sub_query table
op.create_table(
"sub_query",
sa.Column("id", sa.Integer, primary_key=True),
sa.Column("parent_question_id", sa.Integer, sa.ForeignKey("sub_question.id")),
sa.Column(
"chat_session_id", UUID(as_uuid=True), sa.ForeignKey("chat_session.id")
),
sa.Column("sub_query", sa.Text),
sa.Column(
"time_created", sa.DateTime(timezone=True), server_default=sa.func.now()
),
)
# Create sub_query__search_doc association table
op.create_table(
"sub_query__search_doc",
sa.Column(
"sub_query_id", sa.Integer, sa.ForeignKey("sub_query.id"), primary_key=True
),
sa.Column(
"search_doc_id",
sa.Integer,
sa.ForeignKey("search_doc.id"),
primary_key=True,
),
)
def downgrade() -> None:
op.drop_table("sub_query__search_doc")
op.drop_table("sub_query")
op.drop_table("sub_question")

View File

@@ -0,0 +1,33 @@
"""add passthrough auth to tool
Revision ID: f1ca58b2f2ec
Revises: c7bf5721733e
Create Date: 2024-03-19
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision: str = "f1ca58b2f2ec"
down_revision: Union[str, None] = "c7bf5721733e"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
# Add passthrough_auth column to tool table with default value of False
op.add_column(
"tool",
sa.Column(
"passthrough_auth", sa.Boolean(), nullable=False, server_default=sa.false()
),
)
def downgrade() -> None:
# Remove passthrough_auth column from tool table
op.drop_column("tool", "passthrough_auth")

370
backend/chat_packets.log Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,30 +1,72 @@
from datetime import timedelta
from typing import Any
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
from onyx.background.celery.tasks.beat_schedule import (
cloud_tasks_to_schedule as base_cloud_tasks_to_schedule,
)
from onyx.background.celery.tasks.beat_schedule import (
tasks_to_schedule as base_tasks_to_schedule,
)
from onyx.configs.constants import ONYX_CLOUD_CELERY_TASK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryTask
from shared_configs.configs import MULTI_TENANT
ee_tasks_to_schedule = [
ee_cloud_tasks_to_schedule = [
{
"name": "autogenerate-usage-report",
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
"schedule": timedelta(days=30), # TODO: change this to config flag
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_autogenerate-usage-report",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(days=30),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
},
},
{
"name": "check-ttl-management",
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-ttl-management",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
},
},
]
ee_tasks_to_schedule: list[dict] = []
if not MULTI_TENANT:
ee_tasks_to_schedule = [
{
"name": "autogenerate-usage-report",
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
"schedule": timedelta(days=30), # TODO: change this to config flag
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
{
"name": "check-ttl-management",
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
]
def get_cloud_tasks_to_schedule() -> list[dict[str, Any]]:
return base_cloud_tasks_to_schedule
return ee_cloud_tasks_to_schedule + base_cloud_tasks_to_schedule
def get_tasks_to_schedule() -> list[dict[str, Any]]:

View File

@@ -4,6 +4,20 @@ import os
# Applicable for OIDC Auth
OPENID_CONFIG_URL = os.environ.get("OPENID_CONFIG_URL", "")
# Applicable for OIDC Auth, allows you to override the scopes that
# are requested from the OIDC provider. Currently used when passing
# over access tokens to tool calls and the tool needs more scopes
OIDC_SCOPE_OVERRIDE: list[str] | None = None
_OIDC_SCOPE_OVERRIDE = os.environ.get("OIDC_SCOPE_OVERRIDE")
if _OIDC_SCOPE_OVERRIDE:
try:
OIDC_SCOPE_OVERRIDE = [
scope.strip() for scope in _OIDC_SCOPE_OVERRIDE.split(",")
]
except Exception:
pass
# Applicable for SAML Auth
SAML_CONF_DIR = os.environ.get("SAML_CONF_DIR") or "/app/ee/onyx/configs/saml_config"

View File

@@ -98,10 +98,9 @@ def get_page_of_chat_sessions(
conditions = _build_filter_conditions(start_time, end_time, feedback_filter)
subquery = (
select(ChatSession.id, ChatSession.time_created)
select(ChatSession.id)
.filter(*conditions)
.order_by(ChatSession.id, desc(ChatSession.time_created))
.distinct(ChatSession.id)
.order_by(desc(ChatSession.time_created), ChatSession.id)
.limit(page_size)
.offset(page_num * page_size)
.subquery()
@@ -118,7 +117,11 @@ def get_page_of_chat_sessions(
ChatMessage.chat_message_feedbacks
),
)
.order_by(desc(ChatSession.time_created), asc(ChatMessage.id))
.order_by(
desc(ChatSession.time_created),
ChatSession.id,
asc(ChatMessage.id), # Ensure chronological message order
)
)
return db_session.scalars(stmt).unique().all()

View File

@@ -1,7 +1,9 @@
from fastapi import FastAPI
from httpx_oauth.clients.google import GoogleOAuth2
from httpx_oauth.clients.openid import BASE_SCOPES
from httpx_oauth.clients.openid import OpenID
from ee.onyx.configs.app_configs import OIDC_SCOPE_OVERRIDE
from ee.onyx.configs.app_configs import OPENID_CONFIG_URL
from ee.onyx.server.analytics.api import router as analytics_router
from ee.onyx.server.auth_check import check_ee_router_auth
@@ -88,7 +90,13 @@ def get_application() -> FastAPI:
include_auth_router_with_prefix(
application,
create_onyx_oauth_router(
OpenID(OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET, OPENID_CONFIG_URL),
OpenID(
OAUTH_CLIENT_ID,
OAUTH_CLIENT_SECRET,
OPENID_CONFIG_URL,
# BASE_SCOPES is the same as not setting this
base_scopes=OIDC_SCOPE_OVERRIDE or BASE_SCOPES,
),
auth_backend,
USER_AUTH_SECRET,
associate_by_email=True,

View File

@@ -179,6 +179,7 @@ def handle_simplified_chat_message(
chunks_below=0,
full_doc=chat_message_req.full_doc,
structured_response_format=chat_message_req.structured_response_format,
use_agentic_search=chat_message_req.use_agentic_search,
)
packets = stream_chat_message_objects(
@@ -301,6 +302,7 @@ def handle_send_message_simple_with_history(
chunks_below=0,
full_doc=req.full_doc,
structured_response_format=req.structured_response_format,
use_agentic_search=req.use_agentic_search,
)
packets = stream_chat_message_objects(

View File

@@ -57,6 +57,9 @@ class BasicCreateChatMessageRequest(ChunkContext):
# https://platform.openai.com/docs/guides/structured-outputs/introduction
structured_response_format: dict | None = None
# If True, uses agentic search instead of basic search
use_agentic_search: bool = False
class BasicCreateChatMessageWithHistoryRequest(ChunkContext):
# Last element is the new query. All previous elements are historical context
@@ -71,6 +74,8 @@ class BasicCreateChatMessageWithHistoryRequest(ChunkContext):
# only works if using an OpenAI model. See the following for more details:
# https://platform.openai.com/docs/guides/structured-outputs/introduction
structured_response_format: dict | None = None
# If True, uses agentic search instead of basic search
use_agentic_search: bool = False
class SimpleDoc(BaseModel):
@@ -123,6 +128,9 @@ class OneShotQARequest(ChunkContext):
# If True, skips generative an AI response to the search query
skip_gen_ai_answer_generation: bool = False
# If True, uses pro search instead of basic search
use_agentic_search: bool = False
@model_validator(mode="after")
def check_persona_fields(self) -> "OneShotQARequest":
if self.persona_override_config is None and self.persona_id is None:

View File

@@ -196,6 +196,8 @@ def get_answer_stream(
retrieval_details=query_request.retrieval_options,
rerank_settings=query_request.rerank_settings,
db_session=db_session,
use_agentic_search=query_request.use_agentic_search,
skip_gen_ai_answer_generation=query_request.skip_gen_ai_answer_generation,
)
packets = stream_chat_message_objects(

View File

@@ -0,0 +1,98 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.basic.states import BasicInput
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.utils.logger import setup_logger
logger = setup_logger()
def basic_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=BasicState,
input=BasicInput,
output=BasicOutput,
)
### Add nodes ###
graph.add_node(
node="prepare_tool_input",
action=prepare_tool_input,
)
graph.add_node(
node="llm_tool_choice",
action=llm_tool_choice,
)
graph.add_node(
node="tool_call",
action=tool_call,
)
graph.add_node(
node="basic_use_tool_response",
action=basic_use_tool_response,
)
### Add edges ###
graph.add_edge(start_key=START, end_key="prepare_tool_input")
graph.add_edge(start_key="prepare_tool_input", end_key="llm_tool_choice")
graph.add_conditional_edges("llm_tool_choice", should_continue, ["tool_call", END])
graph.add_edge(
start_key="tool_call",
end_key="basic_use_tool_response",
)
graph.add_edge(
start_key="basic_use_tool_response",
end_key=END,
)
return graph
def should_continue(state: BasicState) -> str:
return (
# If there are no tool calls, basic graph already streamed the answer
END
if state.tool_choice is None
else "tool_call"
)
if __name__ == "__main__":
from onyx.db.engine import get_session_context_manager
from onyx.context.search.models import SearchRequest
from onyx.llm.factory import get_default_llms
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
graph = basic_graph_builder()
compiled_graph = graph.compile()
# TODO: unify basic input
input = BasicInput(logs="")
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
config, _ = get_test_config(
db_session=db_session,
primary_llm=primary_llm,
fast_llm=fast_llm,
search_request=SearchRequest(query="How does onyx use FastAPI?"),
)
compiled_graph.invoke(input, config={"metadata": {"config": config}})

View File

@@ -0,0 +1,42 @@
from typing import TypedDict
from langchain_core.messages import AIMessageChunk
from pydantic import BaseModel
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
# States contain values that change over the course of graph execution,
# Config is for values that are set at the start and never change.
# If you are using a value from the config and realize it needs to change,
# you should add it to the state and use/update the version in the state.
## Graph Input State
class BasicInput(BaseModel):
# TODO: subclass global log update state
logs: str = ""
## Graph Output State
class BasicOutput(TypedDict):
tool_call_chunk: AIMessageChunk
## Update States
## Graph State
class BasicState(
BasicInput,
ToolChoiceInput,
ToolCallUpdate,
ToolChoiceUpdate,
):
pass

View File

@@ -0,0 +1,69 @@
from collections.abc import Iterator
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import BaseMessage
from onyx.chat.models import LlmDoc
from onyx.chat.stream_processing.answer_response_handler import AnswerResponseHandler
from onyx.chat.stream_processing.answer_response_handler import CitationResponseHandler
from onyx.chat.stream_processing.answer_response_handler import (
PassThroughAnswerResponseHandler,
)
from onyx.chat.stream_processing.utils import map_document_id_order
from onyx.utils.logger import setup_logger
logger = setup_logger()
# TODO: handle citations here; below is what was previously passed in
# see basic_use_tool_response.py for where these variables come from
# answer_handler = CitationResponseHandler(
# context_docs=final_search_results,
# final_doc_id_to_rank_map=map_document_id_order(final_search_results),
# display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
# )
def process_llm_stream(
stream: Iterator[BaseMessage],
should_stream_answer: bool,
final_search_results: list[LlmDoc] | None = None,
displayed_search_results: list[LlmDoc] | None = None,
) -> AIMessageChunk:
tool_call_chunk = AIMessageChunk(content="")
# for response in response_handler_manager.handle_llm_response(stream):
if final_search_results and displayed_search_results:
answer_handler: AnswerResponseHandler = CitationResponseHandler(
context_docs=final_search_results,
final_doc_id_to_rank_map=map_document_id_order(final_search_results),
display_doc_id_to_rank_map=map_document_id_order(displayed_search_results),
)
else:
answer_handler = PassThroughAnswerResponseHandler()
full_answer = ""
# This stream will be the llm answer if no tool is chosen. When a tool is chosen,
# the stream will contain AIMessageChunks with tool call information.
for response in stream:
answer_piece = response.content
if not isinstance(answer_piece, str):
# TODO: handle non-string content
logger.warning(f"Received non-string content: {type(answer_piece)}")
answer_piece = str(answer_piece)
full_answer += answer_piece
if isinstance(response, AIMessageChunk) and (
response.tool_call_chunks or response.tool_calls
):
tool_call_chunk += response # type: ignore
elif should_stream_answer:
for response_part in answer_handler.handle_response_part(response, []):
dispatch_custom_event(
"basic_response",
response_part,
)
logger.info(f"Full answer: {full_answer}")
return cast(AIMessageChunk, tool_call_chunk)

View File

@@ -0,0 +1,21 @@
from operator import add
from typing import Annotated
from pydantic import BaseModel
class CoreState(BaseModel):
"""
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
class SubgraphCoreState(BaseModel):
"""
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add]

View File

@@ -0,0 +1,66 @@
from uuid import UUID
from sqlalchemy.orm import Session
from onyx.db.models import AgentSubQuery
from onyx.db.models import AgentSubQuestion
def create_sub_question(
db_session: Session,
chat_session_id: UUID,
primary_message_id: int,
sub_question: str,
sub_answer: str,
) -> AgentSubQuestion:
"""Create a new sub-question record in the database."""
sub_q = AgentSubQuestion(
chat_session_id=chat_session_id,
primary_question_id=primary_message_id,
sub_question=sub_question,
sub_answer=sub_answer,
)
db_session.add(sub_q)
db_session.flush()
return sub_q
def create_sub_query(
db_session: Session,
chat_session_id: UUID,
parent_question_id: int,
sub_query: str,
) -> AgentSubQuery:
"""Create a new sub-query record in the database."""
sub_q = AgentSubQuery(
chat_session_id=chat_session_id,
parent_question_id=parent_question_id,
sub_query=sub_query,
)
db_session.add(sub_q)
db_session.flush()
return sub_q
def get_sub_questions_for_message(
db_session: Session,
primary_message_id: int,
) -> list[AgentSubQuestion]:
"""Get all sub-questions for a given primary message."""
return (
db_session.query(AgentSubQuestion)
.filter(AgentSubQuestion.primary_question_id == primary_message_id)
.all()
)
def get_sub_queries_for_question(
db_session: Session,
sub_question_id: int,
) -> list[AgentSubQuery]:
"""Get all sub-queries for a given sub-question."""
return (
db_session.query(AgentSubQuery)
.filter(AgentSubQuery.parent_question_id == sub_question_id)
.all()
)

View File

@@ -0,0 +1,29 @@
from collections.abc import Hashable
from datetime import datetime
from langgraph.types import Send
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
def send_to_expanded_retrieval(state: AnswerQuestionInput) -> Send | Hashable:
logger.debug("sending to expanded retrieval via edge")
now_start = datetime.now()
return Send(
"initial_sub_question_expanded_retrieval",
ExpandedRetrievalInput(
question=state.question,
base_search=False,
sub_question_id=state.question_id,
log_messages=[f"{now_start} -- Sending to expanded retrieval"],
),
)

View File

@@ -0,0 +1,126 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.edges import (
send_to_expanded_retrieval,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.answer_check import (
answer_check,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.answer_generation import (
answer_generation,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.format_answer import (
format_answer,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.ingest_retrieval import (
ingest_retrieval,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionInput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionState,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
logger = setup_logger()
def answer_query_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=AnswerQuestionState,
input=AnswerQuestionInput,
output=AnswerQuestionOutput,
)
### Add nodes ###
expanded_retrieval = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="initial_sub_question_expanded_retrieval",
action=expanded_retrieval,
)
graph.add_node(
node="answer_check",
action=answer_check,
)
graph.add_node(
node="answer_generation",
action=answer_generation,
)
graph.add_node(
node="format_answer",
action=format_answer,
)
graph.add_node(
node="ingest_retrieval",
action=ingest_retrieval,
)
### Add edges ###
graph.add_conditional_edges(
source=START,
path=send_to_expanded_retrieval,
path_map=["initial_sub_question_expanded_retrieval"],
)
graph.add_edge(
start_key="initial_sub_question_expanded_retrieval",
end_key="ingest_retrieval",
)
graph.add_edge(
start_key="ingest_retrieval",
end_key="answer_generation",
)
graph.add_edge(
start_key="answer_generation",
end_key="answer_check",
)
graph.add_edge(
start_key="answer_check",
end_key="format_answer",
)
graph.add_edge(
start_key="format_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from onyx.db.engine import get_session_context_manager
from onyx.llm.factory import get_default_llms
from onyx.context.search.models import SearchRequest
graph = answer_query_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="what can you do with onyx or danswer?",
)
with get_session_context_manager() as db_session:
agent_search_config, search_tool = get_test_config(
db_session, primary_llm, fast_llm, search_request
)
inputs = AnswerQuestionInput(
question="what can you do with onyx?",
question_id="0_0",
log_messages=[],
)
for thing in compiled_graph.stream(
input=inputs,
config={"configurable": {"config": agent_search_config}},
# debug=True,
# subgraphs=True,
):
logger.debug(thing)

View File

@@ -0,0 +1,8 @@
from pydantic import BaseModel
### Models ###
class AnswerRetrievalStats(BaseModel):
answer_retrieval_stats: dict[str, float | int]

View File

@@ -0,0 +1,59 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionState,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
QACheckUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.prompts import SUB_CHECK_NO
from onyx.agents.agent_search.shared_graph_utils.prompts import SUB_CHECK_PROMPT
from onyx.agents.agent_search.shared_graph_utils.prompts import UNKNOWN_ANSWER
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
def answer_check(state: AnswerQuestionState, config: RunnableConfig) -> QACheckUpdate:
now_start = datetime.now()
level, question_num = parse_question_id(state.question_id)
if state.answer == UNKNOWN_ANSWER:
now_end = datetime.now()
return QACheckUpdate(
answer_quality=SUB_CHECK_NO,
log_messages=[
f"{now_start} -- Answer check SQ-{level}-{question_num} - unknown answer, Time taken: {now_end - now_start}"
],
)
msg = [
HumanMessage(
content=SUB_CHECK_PROMPT.format(
question=state.question,
base_answer=state.answer,
)
)
]
agent_searchch_config = cast(AgentSearchConfig, config["metadata"]["config"])
fast_llm = agent_searchch_config.fast_llm
response = list(
fast_llm.stream(
prompt=msg,
)
)
quality_str = merge_message_runs(response, chunk_separator="")[0].content
now_end = datetime.now()
return QACheckUpdate(
answer_quality=quality_str,
log_messages=[
f"""{now_start} -- Answer check SQ-{level}-{question_num} - Answer quality: {quality_str},
Time taken: {now_end - now_start}"""
],
)

View File

@@ -0,0 +1,116 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionState,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
QAGenerationUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_PERSONA,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import NO_RECOVERED_DOCS
from onyx.agents.agent_search.shared_graph_utils.utils import get_persona_prompt
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.utils.logger import setup_logger
logger = setup_logger()
def answer_generation(
state: AnswerQuestionState, config: RunnableConfig
) -> QAGenerationUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------START ANSWER GENERATION---")
agent_search_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = state.question
docs = state.documents
level, question_nr = parse_question_id(state.question_id)
context_docs = state.context_documents
persona_prompt = get_persona_prompt(agent_search_config.search_request.persona)
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
dispatch_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=answer_str,
level=level,
level_question_nr=question_nr,
answer_type="agent_sub_answer",
),
)
else:
if len(persona_prompt) > 0:
persona_specification = ASSISTANT_SYSTEM_PROMPT_DEFAULT
else:
persona_specification = ASSISTANT_SYSTEM_PROMPT_PERSONA.format(
persona_prompt=persona_prompt
)
logger.debug(f"Number of verified retrieval docs: {len(docs)}")
fast_llm = agent_search_config.fast_llm
msg = build_sub_question_answer_prompt(
question=question,
original_question=agent_search_config.search_request.query,
docs=docs,
persona_specification=persona_specification,
config=fast_llm.config,
)
response: list[str | list[str | dict[str, Any]]] = []
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
dispatch_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_nr=question_nr,
answer_type="agent_sub_answer",
),
)
response.append(content)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type="sub_answer",
level=level,
level_question_nr=question_nr,
)
dispatch_custom_event("stream_finished", stop_event)
now_end = datetime.now()
return QAGenerationUpdate(
answer=answer_str,
log_messages=[
f"{now_end} -- Answer generation SQ-{level} - Q{question_nr} - Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,28 @@
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionState,
)
from onyx.agents.agent_search.shared_graph_utils.models import (
QuestionAnswerResults,
)
def format_answer(state: AnswerQuestionState) -> AnswerQuestionOutput:
return AnswerQuestionOutput(
answer_results=[
QuestionAnswerResults(
question=state.question,
question_id=state.question_id,
quality=state.answer_quality
if hasattr(state, "answer_quality")
else "No",
answer=state.answer,
expanded_retrieval_results=state.expanded_retrieval_results,
documents=state.documents,
context_documents=state.context_documents,
sub_question_retrieval_stats=state.sub_question_retrieval_stats,
)
],
)

View File

@@ -0,0 +1,22 @@
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
RetrievalIngestionUpdate,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalOutput,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
def ingest_retrieval(state: ExpandedRetrievalOutput) -> RetrievalIngestionUpdate:
sub_question_retrieval_stats = (
state.expanded_retrieval_result.sub_question_retrieval_stats
)
if sub_question_retrieval_stats is None:
sub_question_retrieval_stats = [AgentChunkStats()]
return RetrievalIngestionUpdate(
expanded_retrieval_results=state.expanded_retrieval_result.expanded_queries_results,
documents=state.expanded_retrieval_result.all_documents,
context_documents=state.expanded_retrieval_result.context_documents,
sub_question_retrieval_stats=sub_question_retrieval_stats,
)

View File

@@ -0,0 +1,71 @@
from operator import add
from typing import Annotated
from pydantic import BaseModel
from onyx.agents.agent_search.core_state import SubgraphCoreState
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.agents.agent_search.shared_graph_utils.models import (
QuestionAnswerResults,
)
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
from onyx.context.search.models import InferenceSection
## Update States
class QACheckUpdate(BaseModel):
answer_quality: str = ""
log_messages: list[str] = []
class QAGenerationUpdate(BaseModel):
answer: str = ""
log_messages: list[str] = []
# answer_stat: AnswerStats
class RetrievalIngestionUpdate(BaseModel):
expanded_retrieval_results: list[QueryResult] = []
documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
context_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
sub_question_retrieval_stats: AgentChunkStats = AgentChunkStats()
## Graph Input State
class AnswerQuestionInput(SubgraphCoreState):
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.
## Graph State
class AnswerQuestionState(
AnswerQuestionInput,
QAGenerationUpdate,
QACheckUpdate,
RetrievalIngestionUpdate,
):
pass
## Graph Output State
class AnswerQuestionOutput(BaseModel):
"""
This is a list of results even though each call of this subgraph only returns one result.
This is because if we parallelize the answer query subgraph, there will be multiple
results in a list so the add operator is used to add them together.
"""
answer_results: Annotated[list[QuestionAnswerResults], add] = []

View File

@@ -0,0 +1,28 @@
from collections.abc import Hashable
from datetime import datetime
from langgraph.types import Send
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
def send_to_expanded_refined_retrieval(state: AnswerQuestionInput) -> Send | Hashable:
logger.debug("sending to expanded retrieval for follow up question via edge")
datetime.now()
return Send(
"refined_sub_question_expanded_retrieval",
ExpandedRetrievalInput(
question=state.question,
sub_question_id=state.question_id,
base_search=False,
log_messages=[f"{datetime.now()} -- Sending to expanded retrieval"],
),
)

View File

@@ -0,0 +1,123 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.answer_check import (
answer_check,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.answer_generation import (
answer_generation,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.format_answer import (
format_answer,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.nodes.ingest_retrieval import (
ingest_retrieval,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionInput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionState,
)
from onyx.agents.agent_search.deep_search_a.answer_refinement_sub_question.edges import (
send_to_expanded_refined_retrieval,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
def answer_refined_query_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=AnswerQuestionState,
input=AnswerQuestionInput,
output=AnswerQuestionOutput,
)
### Add nodes ###
expanded_retrieval = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="refined_sub_question_expanded_retrieval",
action=expanded_retrieval,
)
graph.add_node(
node="refined_sub_answer_check",
action=answer_check,
)
graph.add_node(
node="refined_sub_answer_generation",
action=answer_generation,
)
graph.add_node(
node="format_refined_sub_answer",
action=format_answer,
)
graph.add_node(
node="ingest_refined_retrieval",
action=ingest_retrieval,
)
### Add edges ###
graph.add_conditional_edges(
source=START,
path=send_to_expanded_refined_retrieval,
path_map=["refined_sub_question_expanded_retrieval"],
)
graph.add_edge(
start_key="refined_sub_question_expanded_retrieval",
end_key="ingest_refined_retrieval",
)
graph.add_edge(
start_key="ingest_refined_retrieval",
end_key="refined_sub_answer_generation",
)
graph.add_edge(
start_key="refined_sub_answer_generation",
end_key="refined_sub_answer_check",
)
graph.add_edge(
start_key="refined_sub_answer_check",
end_key="format_refined_sub_answer",
)
graph.add_edge(
start_key="format_refined_sub_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from onyx.db.engine import get_session_context_manager
from onyx.llm.factory import get_default_llms
from onyx.context.search.models import SearchRequest
graph = answer_refined_query_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="what can you do with onyx or danswer?",
)
with get_session_context_manager() as db_session:
inputs = AnswerQuestionInput(
question="what can you do with onyx?",
question_id="0_0",
log_messages=[],
)
for thing in compiled_graph.stream(
input=inputs,
# debug=True,
# subgraphs=True,
):
logger.debug(thing)
# output = compiled_graph.invoke(inputs)
# logger.debug(output)

View File

@@ -0,0 +1,19 @@
from pydantic import BaseModel
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.context.search.models import InferenceSection
### Models ###
class AnswerRetrievalStats(BaseModel):
answer_retrieval_stats: dict[str, float | int]
class QuestionAnswerResults(BaseModel):
question: str
answer: str
quality: str
# expanded_retrieval_results: list[QueryResult]
documents: list[InferenceSection]
sub_question_retrieval_stats: AgentChunkStats

View File

@@ -0,0 +1,76 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.deep_search_a.base_raw_search.nodes.format_raw_search_results import (
format_raw_search_results,
)
from onyx.agents.agent_search.deep_search_a.base_raw_search.nodes.generate_raw_search_data import (
generate_raw_search_data,
)
from onyx.agents.agent_search.deep_search_a.base_raw_search.states import (
BaseRawSearchInput,
)
from onyx.agents.agent_search.deep_search_a.base_raw_search.states import (
BaseRawSearchOutput,
)
from onyx.agents.agent_search.deep_search_a.base_raw_search.states import (
BaseRawSearchState,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
def base_raw_search_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=BaseRawSearchState,
input=BaseRawSearchInput,
output=BaseRawSearchOutput,
)
### Add nodes ###
graph.add_node(
node="generate_raw_search_data",
action=generate_raw_search_data,
)
expanded_retrieval = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="expanded_retrieval_base_search",
action=expanded_retrieval,
)
graph.add_node(
node="format_raw_search_results",
action=format_raw_search_results,
)
### Add edges ###
graph.add_edge(start_key=START, end_key="generate_raw_search_data")
graph.add_edge(
start_key="generate_raw_search_data",
end_key="expanded_retrieval_base_search",
)
graph.add_edge(
start_key="expanded_retrieval_base_search",
end_key="format_raw_search_results",
)
# graph.add_edge(
# start_key="expanded_retrieval_base_search",
# end_key=END,
# )
graph.add_edge(
start_key="format_raw_search_results",
end_key=END,
)
return graph
if __name__ == "__main__":
pass

View File

@@ -0,0 +1,20 @@
from pydantic import BaseModel
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.context.search.models import InferenceSection
### Models ###
class AnswerRetrievalStats(BaseModel):
answer_retrieval_stats: dict[str, float | int]
class QuestionAnswerResults(BaseModel):
question: str
answer: str
quality: str
expanded_retrieval_results: list[QueryResult]
documents: list[InferenceSection]
sub_question_retrieval_stats: list[AgentChunkStats]

View File

@@ -0,0 +1,18 @@
from onyx.agents.agent_search.deep_search_a.base_raw_search.states import (
BaseRawSearchOutput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalOutput,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
def format_raw_search_results(state: ExpandedRetrievalOutput) -> BaseRawSearchOutput:
logger.debug("format_raw_search_results")
return BaseRawSearchOutput(
base_expanded_retrieval_result=state.expanded_retrieval_result,
# base_retrieval_results=[state.expanded_retrieval_result],
# base_search_documents=[],
)

View File

@@ -0,0 +1,25 @@
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.core_state import CoreState
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.utils.logger import setup_logger
logger = setup_logger()
def generate_raw_search_data(
state: CoreState, config: RunnableConfig
) -> ExpandedRetrievalInput:
logger.debug("generate_raw_search_data")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
return ExpandedRetrievalInput(
question=agent_a_config.search_request.query,
base_search=True,
sub_question_id=None, # This graph is always and only used for the original question
log_messages=[],
)

View File

@@ -0,0 +1,43 @@
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.models import (
ExpandedRetrievalResult,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
## Update States
## Graph Input State
class BaseRawSearchInput(ExpandedRetrievalInput):
pass
## Graph Output State
class BaseRawSearchOutput(BaseModel):
"""
This is a list of results even though each call of this subgraph only returns one result.
This is because if we parallelize the answer query subgraph, there will be multiple
results in a list so the add operator is used to add them together.
"""
# base_search_documents: Annotated[list[InferenceSection], dedup_inference_sections]
# base_retrieval_results: Annotated[list[ExpandedRetrievalResult], add]
base_expanded_retrieval_result: ExpandedRetrievalResult = ExpandedRetrievalResult()
## Graph State
class BaseRawSearchState(
BaseRawSearchInput,
BaseRawSearchOutput,
):
pass

View File

@@ -0,0 +1,37 @@
from collections.abc import Hashable
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from langgraph.types import Send
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
RetrievalInput,
)
from onyx.agents.agent_search.models import AgentSearchConfig
def parallel_retrieval_edge(
state: ExpandedRetrievalState, config: RunnableConfig
) -> list[Send | Hashable]:
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = state.question if state.question else agent_a_config.search_request.query
query_expansions = (
state.expanded_queries if state.expanded_queries else [] + [question]
)
return [
Send(
"doc_retrieval",
RetrievalInput(
query_to_retrieve=query,
question=question,
base_search=False,
sub_question_id=state.sub_question_id,
log_messages=[],
),
)
for query in query_expansions
]

View File

@@ -0,0 +1,147 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.edges import (
parallel_retrieval_edge,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.doc_reranking import (
doc_reranking,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.doc_retrieval import (
doc_retrieval,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.doc_verification import (
doc_verification,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.dummy import (
dummy,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.expand_queries import (
expand_queries,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.format_results import (
format_results,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.nodes.verification_kickoff import (
verification_kickoff,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalOutput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
logger = setup_logger()
def expanded_retrieval_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=ExpandedRetrievalState,
input=ExpandedRetrievalInput,
output=ExpandedRetrievalOutput,
)
### Add nodes ###
graph.add_node(
node="expand_queries",
action=expand_queries,
)
graph.add_node(
node="dummy",
action=dummy,
)
graph.add_node(
node="doc_retrieval",
action=doc_retrieval,
)
graph.add_node(
node="verification_kickoff",
action=verification_kickoff,
)
graph.add_node(
node="doc_verification",
action=doc_verification,
)
graph.add_node(
node="doc_reranking",
action=doc_reranking,
)
graph.add_node(
node="format_results",
action=format_results,
)
### Add edges ###
graph.add_edge(
start_key=START,
end_key="expand_queries",
)
graph.add_edge(
start_key="expand_queries",
end_key="dummy",
)
graph.add_conditional_edges(
source="dummy",
path=parallel_retrieval_edge,
path_map=["doc_retrieval"],
)
graph.add_edge(
start_key="doc_retrieval",
end_key="verification_kickoff",
)
graph.add_edge(
start_key="doc_verification",
end_key="doc_reranking",
)
graph.add_edge(
start_key="doc_reranking",
end_key="format_results",
)
graph.add_edge(
start_key="format_results",
end_key=END,
)
return graph
if __name__ == "__main__":
from onyx.db.engine import get_session_context_manager
from onyx.llm.factory import get_default_llms
from onyx.context.search.models import SearchRequest
graph = expanded_retrieval_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="what can you do with onyx or danswer?",
)
with get_session_context_manager() as db_session:
agent_a_config, search_tool = get_test_config(
db_session, primary_llm, fast_llm, search_request
)
inputs = ExpandedRetrievalInput(
question="what can you do with onyx?",
base_search=False,
sub_question_id=None,
log_messages=[],
)
for thing in compiled_graph.stream(
input=inputs,
config={"configurable": {"config": agent_a_config}},
# debug=True,
subgraphs=True,
):
logger.debug(thing)

View File

@@ -0,0 +1,12 @@
from pydantic import BaseModel
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.context.search.models import InferenceSection
class ExpandedRetrievalResult(BaseModel):
expanded_queries_results: list[QueryResult] = []
all_documents: list[InferenceSection] = []
context_documents: list[InferenceSection] = []
sub_question_retrieval_stats: AgentChunkStats = AgentChunkStats()

View File

@@ -0,0 +1,82 @@
from datetime import datetime
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.operations import logger
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
DocRerankingUpdate,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.calculations import get_fit_scores
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.configs.agent_configs import AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS
from onyx.configs.agent_configs import AGENT_RERANKING_STATS
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import SearchRequest
from onyx.context.search.pipeline import retrieval_preprocessing
from onyx.context.search.postprocessing.postprocessing import rerank_sections
from onyx.db.engine import get_session_context_manager
def doc_reranking(
state: ExpandedRetrievalState, config: RunnableConfig
) -> DocRerankingUpdate:
now_start = datetime.now()
verified_documents = state.verified_documents
# Rerank post retrieval and verification. First, create a search query
# then create the list of reranked sections
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = state.question if state.question else agent_a_config.search_request.query
if agent_a_config.search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
with get_session_context_manager() as db_session:
_search_query = retrieval_preprocessing(
search_request=SearchRequest(query=question),
user=agent_a_config.search_tool.user, # bit of a hack
llm=agent_a_config.fast_llm,
db_session=db_session,
)
# skip section filtering
if (
_search_query.rerank_settings
and _search_query.rerank_settings.rerank_model_name
and _search_query.rerank_settings.num_rerank > 0
and len(verified_documents) > 0
):
if len(verified_documents) > 1:
reranked_documents = rerank_sections(
_search_query,
verified_documents,
)
else:
num = "No" if len(verified_documents) == 0 else "One"
logger.warning(f"{num} verified document(s) found, skipping reranking")
reranked_documents = verified_documents
else:
logger.warning("No reranking settings found, using unranked documents")
reranked_documents = verified_documents
if AGENT_RERANKING_STATS:
fit_scores = get_fit_scores(verified_documents, reranked_documents)
else:
fit_scores = RetrievalFitStats(fit_score_lift=0, rerank_effect=0, fit_scores={})
# TODO: stream deduped docs here, or decide to use search tool ranking/verification
now_end = datetime.now()
return DocRerankingUpdate(
reranked_documents=[
doc for doc in reranked_documents if type(doc) == InferenceSection
][:AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS],
sub_question_retrieval_stats=fit_scores,
log_messages=[
f"{now_end} -- Expanded Retrieval - Reranking - Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,105 @@
from datetime import datetime
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.operations import logger
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
DocRetrievalUpdate,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
RetrievalInput,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.calculations import get_fit_scores
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.configs.agent_configs import AGENT_MAX_QUERY_RETRIEVAL_RESULTS
from onyx.configs.agent_configs import AGENT_RETRIEVAL_STATS
from onyx.context.search.models import InferenceSection
from onyx.db.engine import get_session_context_manager
from onyx.tools.models import SearchQueryInfo
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
def doc_retrieval(state: RetrievalInput, config: RunnableConfig) -> DocRetrievalUpdate:
"""
Retrieve documents
Args:
state (RetrievalInput): Primary state + the query to retrieve
config (RunnableConfig): Configuration containing ProSearchConfig
Updates:
expanded_retrieval_results: list[ExpandedRetrievalResult]
retrieved_documents: list[InferenceSection]
"""
now_start = datetime.now()
query_to_retrieve = state.query_to_retrieve
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
search_tool = agent_a_config.search_tool
retrieved_docs: list[InferenceSection] = []
if not query_to_retrieve.strip():
logger.warning("Empty query, skipping retrieval")
now_end = datetime.now()
return DocRetrievalUpdate(
expanded_retrieval_results=[],
retrieved_documents=[],
log_messages=[
f"{now_end} -- Expanded Retrieval - Retrieval - Empty Query - Time taken: {now_end - now_start}"
],
)
query_info = None
if search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
# new db session to avoid concurrency issues
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=query_to_retrieve,
force_no_rerank=True,
alternate_db_session=db_session,
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
response = cast(SearchResponseSummary, tool_response.response)
retrieved_docs = response.top_sections
query_info = SearchQueryInfo(
predicted_search=response.predicted_search,
final_filters=response.final_filters,
recency_bias_multiplier=response.recency_bias_multiplier,
)
break
retrieved_docs = retrieved_docs[:AGENT_MAX_QUERY_RETRIEVAL_RESULTS]
pre_rerank_docs = retrieved_docs
if search_tool.search_pipeline is not None:
pre_rerank_docs = (
search_tool.search_pipeline._retrieved_sections or retrieved_docs
)
if AGENT_RETRIEVAL_STATS:
fit_scores = get_fit_scores(
pre_rerank_docs,
retrieved_docs,
)
else:
fit_scores = None
expanded_retrieval_result = QueryResult(
query=query_to_retrieve,
search_results=retrieved_docs,
stats=fit_scores,
query_info=query_info,
)
now_end = datetime.now()
return DocRetrievalUpdate(
expanded_retrieval_results=[expanded_retrieval_result],
retrieved_documents=retrieved_docs,
log_messages=[
f"{now_end} -- Expanded Retrieval - Retrieval - Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,60 @@
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
DocVerificationInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
def doc_verification(
state: DocVerificationInput, config: RunnableConfig
) -> DocVerificationUpdate:
"""
Check whether the document is relevant for the original user question
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing ProSearchConfig
Updates:
verified_documents: list[InferenceSection]
"""
question = state.question
doc_to_verify = state.doc_to_verify
document_content = doc_to_verify.combined_content
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
fast_llm = agent_a_config.fast_llm
document_content = trim_prompt_piece(
fast_llm.config, document_content, VERIFIER_PROMPT + question
)
msg = [
HumanMessage(
content=VERIFIER_PROMPT.format(
question=question, document_content=document_content
)
)
]
response = fast_llm.invoke(msg)
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(doc_to_verify)
return DocVerificationUpdate(
verified_documents=verified_documents,
)

View File

@@ -0,0 +1,16 @@
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
QueryExpansionUpdate,
)
def dummy(
state: ExpandedRetrievalState, config: RunnableConfig
) -> QueryExpansionUpdate:
return QueryExpansionUpdate(
expanded_queries=state.expanded_queries,
)

View File

@@ -0,0 +1,68 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.operations import (
dispatch_subquery,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.prompts import (
REWRITE_PROMPT_MULTI_ORIGINAL,
)
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
def expand_queries(
state: ExpandedRetrievalInput, config: RunnableConfig
) -> QueryExpansionUpdate:
# Sometimes we want to expand the original question, sometimes we want to expand a sub-question.
# When we are running this node on the original question, no question is explictly passed in.
# Instead, we use the original question from the search request.
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
now_start = datetime.now()
question = (
state.question
if hasattr(state, "question")
else agent_a_config.search_request.query
)
llm = agent_a_config.fast_llm
chat_session_id = agent_a_config.chat_session_id
sub_question_id = state.sub_question_id
if sub_question_id is None:
level, question_nr = 0, 0
else:
level, question_nr = parse_question_id(sub_question_id)
if chat_session_id is None:
raise ValueError("chat_session_id must be provided for agent search")
msg = [
HumanMessage(
content=REWRITE_PROMPT_MULTI_ORIGINAL.format(question=question),
)
]
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_nr)
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
rewritten_queries = llm_response.split("\n")
now_end = datetime.now()
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
log_messages=[
f"{now_end} -- Expanded Retrieval - Query Expansion - Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,84 @@
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.models import (
ExpandedRetrievalResult,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.operations import (
calculate_sub_question_retrieval_stats,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.chat.models import ExtendedToolResponse
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
def format_results(
state: ExpandedRetrievalState, config: RunnableConfig
) -> ExpandedRetrievalUpdate:
level, question_nr = parse_question_id(state.sub_question_id or "0_0")
query_infos = [
result.query_info
for result in state.expanded_retrieval_results
if result.query_info is not None
]
if len(query_infos) == 0:
raise ValueError("No query info found")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
# main question docs will be sent later after aggregation and deduping with sub-question docs
stream_documents = state.reranked_documents
if not (level == 0 and question_nr == 0):
if len(stream_documents) == 0:
# The sub-question is used as the last query. If no verified documents are found, stream
# the top 3 for that one. We may want to revisit this.
stream_documents = state.expanded_retrieval_results[-1].search_results[:3]
if agent_a_config.search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
for tool_response in yield_search_responses(
query=state.question,
reranked_sections=state.retrieved_documents, # TODO: rename params. (sections pre-merging here.)
final_context_sections=stream_documents,
search_query_info=query_infos[0], # TODO: handle differing query infos?
get_section_relevance=lambda: None, # TODO: add relevance
search_tool=agent_a_config.search_tool,
):
dispatch_custom_event(
"tool_response",
ExtendedToolResponse(
id=tool_response.id,
response=tool_response.response,
level=level,
level_question_nr=question_nr,
),
)
sub_question_retrieval_stats = calculate_sub_question_retrieval_stats(
verified_documents=state.verified_documents,
expanded_retrieval_results=state.expanded_retrieval_results,
)
if sub_question_retrieval_stats is None:
sub_question_retrieval_stats = AgentChunkStats()
# else:
# sub_question_retrieval_stats = [sub_question_retrieval_stats]
return ExpandedRetrievalUpdate(
expanded_retrieval_result=ExpandedRetrievalResult(
expanded_queries_results=state.expanded_retrieval_results,
all_documents=stream_documents,
context_documents=state.reranked_documents,
sub_question_retrieval_stats=sub_question_retrieval_stats,
),
)

View File

@@ -0,0 +1,44 @@
from typing import cast
from typing import Literal
from langchain_core.runnables.config import RunnableConfig
from langgraph.types import Command
from langgraph.types import Send
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
DocVerificationInput,
)
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.states import (
ExpandedRetrievalState,
)
from onyx.agents.agent_search.models import AgentSearchConfig
def verification_kickoff(
state: ExpandedRetrievalState,
config: RunnableConfig,
) -> Command[Literal["doc_verification"]]:
documents = state.retrieved_documents
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
verification_question = (
state.question
if hasattr(state, "question")
else agent_a_config.search_request.query
)
sub_question_id = state.sub_question_id
return Command(
update={},
goto=[
Send(
node="doc_verification",
arg=DocVerificationInput(
doc_to_verify=doc,
question=verification_question,
base_search=False,
sub_question_id=sub_question_id,
log_messages=[],
),
)
for doc in documents
],
)

View File

@@ -0,0 +1,97 @@
from collections import defaultdict
from collections.abc import Callable
import numpy as np
from langchain_core.callbacks.manager import dispatch_custom_event
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.chat.models import SubQueryPiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
logger = setup_logger()
def dispatch_subquery(level: int, question_nr: int) -> Callable[[str, int], None]:
def helper(token: str, num: int) -> None:
dispatch_custom_event(
"subqueries",
SubQueryPiece(
sub_query=token,
level=level,
level_question_nr=question_nr,
query_id=num,
),
)
return helper
def calculate_sub_question_retrieval_stats(
verified_documents: list[InferenceSection],
expanded_retrieval_results: list[QueryResult],
) -> AgentChunkStats:
chunk_scores: dict[str, dict[str, list[int | float]]] = defaultdict(
lambda: defaultdict(list)
)
for expanded_retrieval_result in expanded_retrieval_results:
for doc in expanded_retrieval_result.search_results:
doc_chunk_id = f"{doc.center_chunk.document_id}_{doc.center_chunk.chunk_id}"
if doc.center_chunk.score is not None:
chunk_scores[doc_chunk_id]["score"].append(doc.center_chunk.score)
verified_doc_chunk_ids = [
f"{verified_document.center_chunk.document_id}_{verified_document.center_chunk.chunk_id}"
for verified_document in verified_documents
]
dismissed_doc_chunk_ids = []
raw_chunk_stats_counts: dict[str, int] = defaultdict(int)
raw_chunk_stats_scores: dict[str, float] = defaultdict(float)
for doc_chunk_id, chunk_data in chunk_scores.items():
if doc_chunk_id in verified_doc_chunk_ids:
raw_chunk_stats_counts["verified_count"] += 1
valid_chunk_scores = [
score for score in chunk_data["score"] if score is not None
]
raw_chunk_stats_scores["verified_scores"] += float(
np.mean(valid_chunk_scores)
)
else:
raw_chunk_stats_counts["rejected_count"] += 1
valid_chunk_scores = [
score for score in chunk_data["score"] if score is not None
]
raw_chunk_stats_scores["rejected_scores"] += float(
np.mean(valid_chunk_scores)
)
dismissed_doc_chunk_ids.append(doc_chunk_id)
if raw_chunk_stats_counts["verified_count"] == 0:
verified_avg_scores = 0.0
else:
verified_avg_scores = raw_chunk_stats_scores["verified_scores"] / float(
raw_chunk_stats_counts["verified_count"]
)
rejected_scores = raw_chunk_stats_scores.get("rejected_scores", None)
if rejected_scores is not None:
rejected_avg_scores = rejected_scores / float(
raw_chunk_stats_counts["rejected_count"]
)
else:
rejected_avg_scores = None
chunk_stats = AgentChunkStats(
verified_count=raw_chunk_stats_counts["verified_count"],
verified_avg_scores=verified_avg_scores,
rejected_count=raw_chunk_stats_counts["rejected_count"],
rejected_avg_scores=rejected_avg_scores,
verified_doc_chunk_ids=verified_doc_chunk_ids,
dismissed_doc_chunk_ids=dismissed_doc_chunk_ids,
)
return chunk_stats

View File

@@ -0,0 +1,91 @@
from operator import add
from typing import Annotated
from pydantic import BaseModel
from onyx.agents.agent_search.core_state import SubgraphCoreState
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.models import (
ExpandedRetrievalResult,
)
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
from onyx.context.search.models import InferenceSection
### States ###
## Graph Input State
class ExpandedRetrievalInput(SubgraphCoreState):
question: str = ""
base_search: bool = False
sub_question_id: str | None = None
## Update/Return States
class QueryExpansionUpdate(BaseModel):
expanded_queries: list[str] = ["aaa", "bbb"]
log_messages: list[str] = []
class DocVerificationUpdate(BaseModel):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
class DocRetrievalUpdate(BaseModel):
expanded_retrieval_results: Annotated[list[QueryResult], add] = []
retrieved_documents: Annotated[
list[InferenceSection], dedup_inference_sections
] = []
log_messages: list[str] = []
class DocRerankingUpdate(BaseModel):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
sub_question_retrieval_stats: RetrievalFitStats | None = None
log_messages: list[str] = []
class ExpandedRetrievalUpdate(BaseModel):
expanded_retrieval_result: ExpandedRetrievalResult
## Graph Output State
class ExpandedRetrievalOutput(BaseModel):
expanded_retrieval_result: ExpandedRetrievalResult = ExpandedRetrievalResult()
base_expanded_retrieval_result: ExpandedRetrievalResult = ExpandedRetrievalResult()
log_messages: list[str] = []
## Graph State
class ExpandedRetrievalState(
# This includes the core state
ExpandedRetrievalInput,
QueryExpansionUpdate,
DocRetrievalUpdate,
DocVerificationUpdate,
DocRerankingUpdate,
ExpandedRetrievalOutput,
):
pass
## Conditional Input States
class DocVerificationInput(ExpandedRetrievalInput):
doc_to_verify: InferenceSection
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str = ""

View File

@@ -0,0 +1,120 @@
from collections.abc import Hashable
from datetime import datetime
from typing import cast
from typing import Literal
from langchain_core.runnables import RunnableConfig
from langgraph.types import Send
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionInput,
)
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.deep_search_a.main.states import (
RequireRefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.utils.logger import setup_logger
logger = setup_logger()
def route_initial_tool_choice(
state: MainState, config: RunnableConfig
) -> Literal["tool_call", "agent_search_start", "logging_node"]:
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
if state.tool_choice is not None:
if (
agent_config.use_agentic_search
and agent_config.search_tool is not None
and state.tool_choice.tool.name == agent_config.search_tool.name
):
return "agent_search_start"
else:
return "tool_call"
else:
return "logging_node"
def parallelize_initial_sub_question_answering(
state: MainState,
) -> list[Send | Hashable]:
now_start = datetime.now()
if len(state.initial_decomp_questions) > 0:
# sub_question_record_ids = [subq_record.id for subq_record in state["sub_question_records"]]
# if len(state["sub_question_records"]) == 0:
# if state["config"].use_persistence:
# raise ValueError("No sub-questions found for initial decompozed questions")
# else:
# # in this case, we are doing retrieval on the original question.
# # to make all the logic consistent, we create a new sub-question
# # with the same content as the original question
# sub_question_record_ids = [1] * len(state["initial_decomp_questions"])
return [
Send(
"answer_query_subgraph",
AnswerQuestionInput(
question=question,
question_id=make_question_id(0, question_nr + 1),
log_messages=[
f"{now_start} -- Main Edge - Parallelize Initial Sub-question Answering"
],
),
)
for question_nr, question in enumerate(state.initial_decomp_questions)
]
else:
return [
Send(
"ingest_answers",
AnswerQuestionOutput(
answer_results=[],
),
)
]
# Define the function that determines whether to continue or not
def continue_to_refined_answer_or_end(
state: RequireRefinedAnswerUpdate,
) -> Literal["refined_sub_question_creation", "logging_node"]:
if state.require_refined_answer:
return "refined_sub_question_creation"
else:
return "logging_node"
def parallelize_refined_sub_question_answering(
state: MainState,
) -> list[Send | Hashable]:
now_start = datetime.now()
if len(state.refined_sub_questions) > 0:
return [
Send(
"answer_refined_question",
AnswerQuestionInput(
question=question_data.sub_question,
question_id=make_question_id(1, question_nr),
log_messages=[
f"{now_start} -- Main Edge - Parallelize Refined Sub-question Answering"
],
),
)
for question_nr, question_data in state.refined_sub_questions.items()
]
else:
return [
Send(
"ingest_refined_sub_answers",
AnswerQuestionOutput(
answer_results=[],
),
)
]

View File

@@ -0,0 +1,423 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.graph_builder import (
answer_query_graph_builder,
)
from onyx.agents.agent_search.deep_search_a.answer_refinement_sub_question.graph_builder import (
answer_refined_query_graph_builder,
)
from onyx.agents.agent_search.deep_search_a.base_raw_search.graph_builder import (
base_raw_search_graph_builder,
)
from onyx.agents.agent_search.deep_search_a.main.edges import (
continue_to_refined_answer_or_end,
)
from onyx.agents.agent_search.deep_search_a.main.edges import (
parallelize_initial_sub_question_answering,
)
from onyx.agents.agent_search.deep_search_a.main.edges import (
parallelize_refined_sub_question_answering,
)
from onyx.agents.agent_search.deep_search_a.main.edges import (
route_initial_tool_choice,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.agent_logging import (
agent_logging,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.agent_search_start import (
agent_search_start,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.answer_comparison import (
answer_comparison,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.entity_term_extraction_llm import (
entity_term_extraction_llm,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.direct_llm_handling import (
direct_llm_handling,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.generate_initial_answer import (
generate_initial_answer,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.generate_refined_answer import (
generate_refined_answer,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.ingest_initial_base_retrieval import (
ingest_initial_base_retrieval,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.ingest_initial_sub_question_answers import (
ingest_initial_sub_question_answers,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.ingest_refined_answers import (
ingest_refined_answers,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.initial_answer_quality_check import (
initial_answer_quality_check,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.initial_sub_question_creation import (
initial_sub_question_creation,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.refined_answer_decision import (
refined_answer_decision,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.refined_sub_question_creation import (
refined_sub_question_creation,
)
from onyx.agents.agent_search.deep_search_a.main.nodes.retrieval_consolidation import (
retrieval_consolidation,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainInput
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
logger = setup_logger()
test_mode = False
def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph = StateGraph(
state_schema=MainState,
input=MainInput,
)
# graph.add_node(
# node="agent_path_decision",
# action=agent_path_decision,
# )
# graph.add_node(
# node="agent_path_routing",
# action=agent_path_routing,
# )
# graph.add_node(
# node="LLM",
# action=direct_llm_handling,
# )
graph.add_node(
node="prepare_tool_input",
action=prepare_tool_input,
)
graph.add_node(
node="initial_tool_choice",
action=llm_tool_choice,
)
graph.add_node(
node="tool_call",
action=tool_call,
)
graph.add_node(
node="basic_use_tool_response",
action=basic_use_tool_response,
)
graph.add_node(
node="agent_search_start",
action=agent_search_start,
)
graph.add_node(
node="initial_sub_question_creation",
action=initial_sub_question_creation,
)
answer_query_subgraph = answer_query_graph_builder().compile()
graph.add_node(
node="answer_query_subgraph",
action=answer_query_subgraph,
)
base_raw_search_subgraph = base_raw_search_graph_builder().compile()
graph.add_node(
node="base_raw_search_subgraph",
action=base_raw_search_subgraph,
)
# refined_answer_subgraph = refined_answers_graph_builder().compile()
# graph.add_node(
# node="refined_answer_subgraph",
# action=refined_answer_subgraph,
# )
graph.add_node(
node="refined_sub_question_creation",
action=refined_sub_question_creation,
)
answer_refined_question = answer_refined_query_graph_builder().compile()
graph.add_node(
node="answer_refined_question",
action=answer_refined_question,
)
graph.add_node(
node="ingest_refined_answers",
action=ingest_refined_answers,
)
graph.add_node(
node="generate_refined_answer",
action=generate_refined_answer,
)
# graph.add_node(
# node="check_refined_answer",
# action=check_refined_answer,
# )
graph.add_node(
node="ingest_initial_retrieval",
action=ingest_initial_base_retrieval,
)
graph.add_node(
node="retrieval_consolidation",
action=retrieval_consolidation,
)
graph.add_node(
node="ingest_initial_sub_question_answers",
action=ingest_initial_sub_question_answers,
)
graph.add_node(
node="generate_initial_answer",
action=generate_initial_answer,
)
graph.add_node(
node="initial_answer_quality_check",
action=initial_answer_quality_check,
)
# graph.add_node(
# node="entity_term_extraction_llm",
# action=entity_term_extraction_llm,
# )
graph.add_node(
node="refined_answer_decision",
action=refined_answer_decision,
)
graph.add_node(
node="answer_comparison",
action=answer_comparison,
)
graph.add_node(
node="logging_node",
action=agent_logging,
)
# if test_mode:
# graph.add_node(
# node="generate_initial_base_answer",
# action=generate_initial_base_answer,
# )
### Add edges ###
# raph.add_edge(start_key=START, end_key="base_raw_search_subgraph")
# graph.add_edge(
# start_key=START,
# end_key="agent_path_decision",
# )
# graph.add_edge(
# start_key="agent_path_decision",
# end_key="agent_path_routing",
# )
graph.add_edge(start_key=START, end_key="prepare_tool_input")
graph.add_edge(
start_key="prepare_tool_input",
end_key="initial_tool_choice",
)
graph.add_conditional_edges(
"initial_tool_choice",
route_initial_tool_choice,
["tool_call", "agent_search_start", "logging_node"],
)
graph.add_edge(
start_key="tool_call",
end_key="basic_use_tool_response",
)
graph.add_edge(
start_key="basic_use_tool_response",
end_key="logging_node",
)
graph.add_edge(
start_key="agent_search_start",
end_key="base_raw_search_subgraph",
)
# graph.add_edge(
# start_key="agent_search_start",
# end_key="entity_term_extraction_llm",
# )
graph.add_edge(
start_key="agent_search_start",
end_key="initial_sub_question_creation",
)
graph.add_edge(
start_key="base_raw_search_subgraph",
end_key="ingest_initial_retrieval",
)
graph.add_edge(
start_key=["ingest_initial_retrieval", "ingest_initial_sub_question_answers"],
end_key="retrieval_consolidation",
)
graph.add_edge(
start_key="retrieval_consolidation",
end_key="generate_initial_answer",
)
# graph.add_edge(
# start_key="LLM",
# end_key=END,
# )
# graph.add_edge(
# start_key=START,
# end_key="initial_sub_question_creation",
# )
graph.add_conditional_edges(
source="initial_sub_question_creation",
path=parallelize_initial_sub_question_answering,
path_map=["answer_query_subgraph"],
)
graph.add_edge(
start_key="answer_query_subgraph",
end_key="ingest_initial_sub_question_answers",
)
graph.add_edge(
start_key="retrieval_consolidation",
end_key="generate_initial_answer",
)
# graph.add_edge(
# start_key="generate_initial_answer",
# end_key="entity_term_extraction_llm",
# )
graph.add_edge(
start_key="generate_initial_answer",
end_key="initial_answer_quality_check",
)
# graph.add_edge(
# start_key=["initial_answer_quality_check", "entity_term_extraction_llm"],
# end_key="refined_answer_decision",
# )
graph.add_edge(
start_key="initial_answer_quality_check",
end_key="refined_answer_decision",
)
graph.add_conditional_edges(
source="refined_answer_decision",
path=continue_to_refined_answer_or_end,
path_map=["refined_sub_question_creation", "logging_node"],
)
graph.add_conditional_edges(
source="refined_sub_question_creation", # DONE
path=parallelize_refined_sub_question_answering,
path_map=["answer_refined_question"],
)
graph.add_edge(
start_key="answer_refined_question", # HERE
end_key="ingest_refined_answers",
)
graph.add_edge(
start_key="ingest_refined_answers",
end_key="generate_refined_answer",
)
# graph.add_conditional_edges(
# source="refined_answer_decision",
# path=continue_to_refined_answer_or_end,
# path_map=["refined_answer_subgraph", END],
# )
# graph.add_edge(
# start_key="refined_answer_subgraph",
# end_key="generate_refined_answer",
# )
graph.add_edge(
start_key="generate_refined_answer",
end_key="answer_comparison",
)
graph.add_edge(
start_key="answer_comparison",
end_key="logging_node",
)
graph.add_edge(
start_key="logging_node",
end_key=END,
)
# graph.add_edge(
# start_key="generate_refined_answer",
# end_key="check_refined_answer",
# )
# graph.add_edge(
# start_key="check_refined_answer",
# end_key=END,
# )
return graph
if __name__ == "__main__":
pass
from onyx.db.engine import get_session_context_manager
from onyx.llm.factory import get_default_llms
from onyx.context.search.models import SearchRequest
graph = main_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
search_request = SearchRequest(query="Who created Excel?")
agent_a_config, search_tool = get_test_config(
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(
base_question=agent_a_config.search_request.query, log_messages=[]
)
for thing in compiled_graph.stream(
input=inputs,
config={"configurable": {"config": agent_a_config}},
# stream_mode="debug",
# debug=True,
subgraphs=True,
):
logger.debug(thing)

View File

@@ -0,0 +1,36 @@
from pydantic import BaseModel
class FollowUpSubQuestion(BaseModel):
sub_question: str
sub_question_id: str
verified: bool
answered: bool
answer: str
class AgentTimings(BaseModel):
base_duration__s: float | None
refined_duration__s: float | None
full_duration__s: float | None
class AgentBaseMetrics(BaseModel):
num_verified_documents_total: int | None
num_verified_documents_core: int | None
verified_avg_score_core: float | None
num_verified_documents_base: int | float | None
verified_avg_score_base: float | None = None
base_doc_boost_factor: float | None = None
support_boost_factor: float | None = None
duration__s: float | None = None
class AgentRefinedMetrics(BaseModel):
refined_doc_boost_factor: float | None = None
refined_question_boost_factor: float | None = None
duration__s: float | None = None
class AgentAdditionalMetrics(BaseModel):
pass

View File

@@ -0,0 +1,115 @@
from datetime import datetime
from typing import cast
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.models import AgentAdditionalMetrics
from onyx.agents.agent_search.deep_search_a.main.models import AgentTimings
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import MainOutput
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.models import CombinedAgentMetrics
from onyx.db.chat import log_agent_metrics
from onyx.db.chat import log_agent_sub_question_results
def agent_logging(state: MainState, config: RunnableConfig) -> MainOutput:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------LOGGING NODE---")
agent_start_time = state.agent_start_time
agent_base_end_time = state.agent_base_end_time
agent_refined_start_time = state.agent_refined_start_time
agent_refined_end_time = state.agent_refined_end_time
agent_end_time = agent_refined_end_time or agent_base_end_time
agent_base_duration = None
if agent_base_end_time:
agent_base_duration = (agent_base_end_time - agent_start_time).total_seconds()
agent_refined_duration = None
if agent_refined_start_time and agent_refined_end_time:
agent_refined_duration = (
agent_refined_end_time - agent_refined_start_time
).total_seconds()
agent_full_duration = None
if agent_end_time:
agent_full_duration = (agent_end_time - agent_start_time).total_seconds()
agent_type = "refined" if agent_refined_duration else "base"
agent_base_metrics = state.agent_base_metrics
agent_refined_metrics = state.agent_refined_metrics
combined_agent_metrics = CombinedAgentMetrics(
timings=AgentTimings(
base_duration__s=agent_base_duration,
refined_duration__s=agent_refined_duration,
full_duration__s=agent_full_duration,
),
base_metrics=agent_base_metrics,
refined_metrics=agent_refined_metrics,
additional_metrics=AgentAdditionalMetrics(),
)
persona_id = None
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
if agent_a_config.search_request.persona:
persona_id = agent_a_config.search_request.persona.id
user_id = None
if agent_a_config.search_tool is not None:
user = agent_a_config.search_tool.user
if user:
user_id = user.id
# log the agent metrics
if agent_a_config.db_session is not None:
if agent_base_duration is not None:
log_agent_metrics(
db_session=agent_a_config.db_session,
user_id=user_id,
persona_id=persona_id,
agent_type=agent_type,
start_time=agent_start_time,
agent_metrics=combined_agent_metrics,
)
if agent_a_config.use_persistence:
# Persist the sub-answer in the database
db_session = agent_a_config.db_session
chat_session_id = agent_a_config.chat_session_id
primary_message_id = agent_a_config.message_id
sub_question_answer_results = state.decomp_answer_results
log_agent_sub_question_results(
db_session=db_session,
chat_session_id=chat_session_id,
primary_message_id=primary_message_id,
sub_question_answer_results=sub_question_answer_results,
)
# if chat_session_id is not None and primary_message_id is not None and sub_question_id is not None:
# create_sub_answer(
# db_session=db_session,
# chat_session_id=chat_session_id,
# primary_message_id=primary_message_id,
# sub_question_id=sub_question_id,
# answer=answer_str,
# # )
# pass
now_end = datetime.now()
main_output = MainOutput(
log_messages=[
f"{now_end} -- Main - Logging, Time taken: {now_end - now_start}"
],
)
logger.debug(f"--------{now_end}--{now_end - now_start}--------LOGGING NODE END---")
logger.debug(f"--------{now_end}--{now_end - now_start}--------LOGGING NODE END---")
return main_output

View File

@@ -0,0 +1,92 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.deep_search_a.main.states import RoutingDecision
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import AGENT_DECISION_PROMPT
from onyx.llm.utils import check_number_of_tokens
def agent_path_decision(state: MainState, config: RunnableConfig) -> RoutingDecision:
now_start = datetime.now()
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
# perform_initial_search_path_decision = (
# agent_a_config.perform_initial_search_path_decision
# )
history = build_history_prompt(agent_a_config.prompt_builder)
logger.debug(f"--------{now_start}--------DECIDING TO SEARCH OR GO TO LLM---")
# if perform_initial_search_path_decision:
# search_tool = agent_a_config.search_tool
# retrieved_docs: list[InferenceSection] = []
# # new db session to avoid concurrency issues
# with get_session_context_manager() as db_session:
# for tool_response in search_tool.run(
# query=question,
# force_no_rerank=True,
# alternate_db_session=db_session,
# ):
# # get retrieved docs to send to the rest of the graph
# if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
# response = cast(SearchResponseSummary, tool_response.response)
# retrieved_docs = response.top_sections
# break
# sample_doc_str = "\n\n".join(
# [doc.combined_content for _, doc in enumerate(retrieved_docs[:3])]
# )
# agent_decision_prompt = AGENT_DECISION_PROMPT_AFTER_SEARCH.format(
# question=question, sample_doc_str=sample_doc_str, history=history
# )
# else:
sample_doc_str = ""
agent_decision_prompt = AGENT_DECISION_PROMPT.format(
question=question, history=history
)
msg = [HumanMessage(content=agent_decision_prompt)]
# Get the rewritten queries in a defined format
model = agent_a_config.fast_llm
# no need to stream this
resp = model.invoke(msg)
if isinstance(resp.content, str) and "research" in resp.content.lower():
routing = "agent_search"
else:
routing = "LLM"
routing = "agent_search"
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------DECIDING TO SEARCH OR GO TO LLM END---"
)
check_number_of_tokens(agent_decision_prompt)
return RoutingDecision(
# Decide which route to take
routing=routing,
sample_doc_str=sample_doc_str,
log_messages=[
f"{now_end} -- Path decision: {routing}, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,31 @@
from datetime import datetime
from typing import Literal
from langgraph.types import Command
from onyx.agents.agent_search.deep_search_a.main.states import MainState
def agent_path_routing(
state: MainState,
) -> Command[Literal["agent_search_start", "LLM"]]:
now_start = datetime.now()
routing = state.routing if hasattr(state, "routing") else "agent_search"
if routing == "agent_search":
agent_path = "agent_search_start"
else:
agent_path = "LLM"
now_end = datetime.now()
return Command(
# state update
update={
"log_messages": [
f"{now_end} -- Main - Path routing: {agent_path}, Time taken: {now_end - now_start}"
]
},
# control flow
goto=agent_path,
)

View File

@@ -0,0 +1,50 @@
from datetime import datetime
from typing import cast
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import ExploratorySearchUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.utils import retrieve_search_docs
from onyx.configs.agent_configs import AGENT_EXPLORATORY_SEARCH_RESULTS
from onyx.context.search.models import InferenceSection
def agent_search_start(
state: MainState, config: RunnableConfig
) -> ExploratorySearchUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------EXPLORATORY SEARCH START---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
chat_session_id = agent_a_config.chat_session_id
primary_message_id = agent_a_config.message_id
if chat_session_id is None or primary_message_id is None:
raise ValueError(
"chat_session_id and message_id must be provided for agent search"
)
# Initial search to inform decomposition. Just get top 3 fits
search_tool = agent_a_config.search_tool
if search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
retrieved_docs: list[InferenceSection] = retrieve_search_docs(search_tool, question)
exploratory_search_results = retrieved_docs[:AGENT_EXPLORATORY_SEARCH_RESULTS]
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------EXPLORATORY SEARCH END---"
)
return ExploratorySearchUpdate(
exploratory_search_results=exploratory_search_results,
log_messages=[
f"{now_start} -- Main - Exploratory Search, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,60 @@
from datetime import datetime
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import AnswerComparison
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.prompts import ANSWER_COMPARISON_PROMPT
from onyx.chat.models import RefinedAnswerImprovement
def answer_comparison(state: MainState, config: RunnableConfig) -> AnswerComparison:
now_start = datetime.now()
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
initial_answer = state.initial_answer
refined_answer = state.refined_answer
logger.debug(f"--------{now_start}--------ANSWER COMPARISON STARTED--")
answer_comparison_prompt = ANSWER_COMPARISON_PROMPT.format(
question=question, initial_answer=initial_answer, refined_answer=refined_answer
)
msg = [HumanMessage(content=answer_comparison_prompt)]
# Get the rewritten queries in a defined format
model = agent_a_config.fast_llm
# no need to stream this
resp = model.invoke(msg)
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
dispatch_custom_event(
"refined_answer_improvement",
RefinedAnswerImprovement(
refined_answer_improvement=refined_answer_improvement,
),
)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------ANSWER COMPARISON COMPLETED---"
)
return AnswerComparison(
refined_answer_improvement=refined_answer_improvement,
log_messages=[
f"{now_start} -- Answer comparison: {refined_answer_improvement}, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,89 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_content
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import InitialAnswerUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_PERSONA,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import DIRECT_LLM_PROMPT
from onyx.agents.agent_search.shared_graph_utils.utils import get_persona_prompt
from onyx.chat.models import AgentAnswerPiece
def direct_llm_handling(
state: MainState, config: RunnableConfig
) -> InitialAnswerUpdate:
now_start = datetime.now()
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
persona_prompt = get_persona_prompt(agent_a_config.search_request.persona)
if len(persona_prompt) == 0:
persona_specification = ASSISTANT_SYSTEM_PROMPT_DEFAULT
else:
persona_specification = ASSISTANT_SYSTEM_PROMPT_PERSONA.format(
persona_prompt=persona_prompt
)
logger.debug(f"--------{now_start}--------LLM HANDLING START---")
model = agent_a_config.fast_llm
msg = [
HumanMessage(
content=DIRECT_LLM_PROMPT.format(
persona_specification=persona_specification, question=question
)
)
]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
dispatch_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_nr=0,
answer_type="agent_level_answer",
),
)
streamed_tokens.append(content)
response = merge_content(*streamed_tokens)
answer = cast(str, response)
now_end = datetime.now()
logger.debug(f"--------{now_end}--{now_end - now_start}--------LLM HANDLING END---")
return InitialAnswerUpdate(
initial_answer=answer,
initial_agent_stats=None,
generated_sub_questions=[],
agent_base_end_time=now_end,
agent_base_metrics=None,
log_messages=[
f"{now_end} -- Main - LLM handling: {answer}, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,126 @@
import json
import re
from datetime import datetime
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import (
EntityTermExtractionUpdate,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.models import Entity
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import Relationship
from onyx.agents.agent_search.shared_graph_utils.models import Term
from onyx.agents.agent_search.shared_graph_utils.prompts import ENTITY_TERM_PROMPT
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
def entity_term_extraction_llm(
state: MainState, config: RunnableConfig
) -> EntityTermExtractionUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------GENERATE ENTITIES & TERMS---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
if not agent_a_config.allow_refinement:
now_end = datetime.now()
return EntityTermExtractionUpdate(
entity_relation_term_extractions=EntityRelationshipTermExtraction(
entities=[],
relationships=[],
terms=[],
),
log_messages=[
f"{now_end} -- Main - ETR Extraction, Time taken: {now_end - now_start}"
],
)
# first four lines duplicates from generate_initial_answer
question = agent_a_config.search_request.query
initial_search_docs = state.exploratory_search_results[:15]
# start with the entity/term/extraction
doc_context = format_docs(initial_search_docs)
doc_context = trim_prompt_piece(
agent_a_config.fast_llm.config, doc_context, ENTITY_TERM_PROMPT + question
)
msg = [
HumanMessage(
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
)
]
fast_llm = agent_a_config.fast_llm
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
)
cleaned_response = re.sub(r"```json\n|\n```", "", str(llm_response.content))
parsed_response = json.loads(cleaned_response)
entities = []
relationships = []
terms = []
for entity in parsed_response.get("retrieved_entities_relationships", {}).get(
"entities", {}
):
entity_name = entity.get("entity_name", "")
entity_type = entity.get("entity_type", "")
entities.append(Entity(entity_name=entity_name, entity_type=entity_type))
for relationship in parsed_response.get("retrieved_entities_relationships", {}).get(
"relationships", {}
):
relationship_name = relationship.get("relationship_name", "")
relationship_type = relationship.get("relationship_type", "")
relationship_entities = relationship.get("relationship_entities", [])
relationships.append(
Relationship(
relationship_name=relationship_name,
relationship_type=relationship_type,
relationship_entities=relationship_entities,
)
)
for term in parsed_response.get("retrieved_entities_relationships", {}).get(
"terms", {}
):
term_name = term.get("term_name", "")
term_type = term.get("term_type", "")
term_similar_to = term.get("term_similar_to", [])
terms.append(
Term(
term_name=term_name,
term_type=term_type,
term_similar_to=term_similar_to,
)
)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------ENTITY TERM EXTRACTION END---"
)
return EntityTermExtractionUpdate(
entity_relation_term_extractions=EntityRelationshipTermExtraction(
entities=entities,
relationships=relationships,
terms=terms,
),
log_messages=[
f"{now_start} -- Main - ETR Extraction, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,270 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_content
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.models import AgentBaseMetrics
from onyx.agents.agent_search.deep_search_a.main.operations import (
calculate_initial_agent_stats,
)
from onyx.agents.agent_search.deep_search_a.main.operations import get_query_info
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.operations import (
remove_document_citations,
)
from onyx.agents.agent_search.deep_search_a.main.states import InitialAnswerUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_PERSONA,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import INITIAL_RAG_PROMPT
from onyx.agents.agent_search.shared_graph_utils.prompts import (
INITIAL_RAG_PROMPT_NO_SUB_QUESTIONS,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
SUB_QUESTION_ANSWER_TEMPLATE,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import UNKNOWN_ANSWER
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import get_persona_prompt
from onyx.agents.agent_search.shared_graph_utils.utils import get_today_prompt
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
def generate_initial_answer(
state: MainState, config: RunnableConfig
) -> InitialAnswerUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------GENERATE INITIAL---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
persona_prompt = get_persona_prompt(agent_a_config.search_request.persona)
history = build_history_prompt(agent_a_config.prompt_builder)
date_str = get_today_prompt()
sub_question_docs = state.context_documents
all_original_question_documents = state.all_original_question_documents
relevant_docs = dedup_inference_sections(
sub_question_docs, all_original_question_documents
)
decomp_questions = []
if len(relevant_docs) == 0:
dispatch_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=UNKNOWN_ANSWER,
level=0,
level_question_nr=0,
answer_type="agent_level_answer",
),
)
dispatch_main_answer_stop_info(0)
answer = UNKNOWN_ANSWER
initial_agent_stats = InitialAgentResultStats(
sub_questions={},
original_question={},
agent_effectiveness={},
)
else:
# Use the query info from the base document retrieval
query_info = get_query_info(state.original_question_retrieval_results)
if agent_a_config.search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
for tool_response in yield_search_responses(
query=question,
reranked_sections=relevant_docs,
final_context_sections=relevant_docs,
search_query_info=query_info,
get_section_relevance=lambda: None, # TODO: add relevance
search_tool=agent_a_config.search_tool,
):
dispatch_custom_event(
"tool_response",
ExtendedToolResponse(
id=tool_response.id,
response=tool_response.response,
level=0,
level_question_nr=0, # 0, 0 is the base question
),
)
net_new_original_question_docs = []
for all_original_question_doc in all_original_question_documents:
if all_original_question_doc not in sub_question_docs:
net_new_original_question_docs.append(all_original_question_doc)
decomp_answer_results = state.decomp_answer_results
good_qa_list: list[str] = []
sub_question_nr = 1
for decomp_answer_result in decomp_answer_results:
decomp_questions.append(decomp_answer_result.question)
_, question_nr = parse_question_id(decomp_answer_result.question_id)
if (
decomp_answer_result.quality.lower().startswith("yes")
and len(decomp_answer_result.answer) > 0
and decomp_answer_result.answer != UNKNOWN_ANSWER
):
good_qa_list.append(
SUB_QUESTION_ANSWER_TEMPLATE.format(
sub_question=decomp_answer_result.question,
sub_answer=decomp_answer_result.answer,
sub_question_nr=sub_question_nr,
)
)
sub_question_nr += 1
if len(good_qa_list) > 0:
sub_question_answer_str = "\n\n------\n\n".join(good_qa_list)
else:
sub_question_answer_str = ""
# Determine which persona-specification prompt to use
if len(persona_prompt) == 0:
persona_specification = ASSISTANT_SYSTEM_PROMPT_DEFAULT
else:
persona_specification = ASSISTANT_SYSTEM_PROMPT_PERSONA.format(
persona_prompt=persona_prompt
)
# Determine which base prompt to use given the sub-question information
if len(good_qa_list) > 0:
base_prompt = INITIAL_RAG_PROMPT
else:
base_prompt = INITIAL_RAG_PROMPT_NO_SUB_QUESTIONS
model = agent_a_config.fast_llm
doc_context = format_docs(relevant_docs)
doc_context = trim_prompt_piece(
model.config,
doc_context,
base_prompt
+ sub_question_answer_str
+ persona_specification
+ history
+ date_str,
)
msg = [
HumanMessage(
content=base_prompt.format(
question=question,
answered_sub_questions=remove_document_citations(
sub_question_answer_str
),
relevant_docs=format_docs(relevant_docs),
persona_specification=persona_specification,
history=history,
date_prompt=date_str,
)
)
]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
dispatch_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_nr=0,
answer_type="agent_level_answer",
),
)
streamed_tokens.append(content)
dispatch_main_answer_stop_info(0)
response = merge_content(*streamed_tokens)
answer = cast(str, response)
initial_agent_stats = calculate_initial_agent_stats(
state.decomp_answer_results, state.original_question_retrieval_stats
)
logger.debug(
f"\n\nYYYYY--Sub-Questions:\n\n{sub_question_answer_str}\n\nStats:\n\n"
)
if initial_agent_stats:
logger.debug(initial_agent_stats.original_question)
logger.debug(initial_agent_stats.sub_questions)
logger.debug(initial_agent_stats.agent_effectiveness)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INITIAL AGENT ANSWER END---\n\n"
)
agent_base_end_time = datetime.now()
agent_base_metrics = AgentBaseMetrics(
num_verified_documents_total=len(relevant_docs),
num_verified_documents_core=state.original_question_retrieval_stats.verified_count,
verified_avg_score_core=state.original_question_retrieval_stats.verified_avg_scores,
num_verified_documents_base=initial_agent_stats.sub_questions.get(
"num_verified_documents", None
),
verified_avg_score_base=initial_agent_stats.sub_questions.get(
"verified_avg_score", None
),
base_doc_boost_factor=initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", None
),
support_boost_factor=initial_agent_stats.agent_effectiveness.get(
"support_ratio", None
),
duration__s=(agent_base_end_time - state.agent_start_time).total_seconds(),
)
return InitialAnswerUpdate(
initial_answer=answer,
initial_agent_stats=initial_agent_stats,
generated_sub_questions=decomp_questions,
agent_base_end_time=agent_base_end_time,
agent_base_metrics=agent_base_metrics,
log_messages=[
f"{now_end} -- Main - Initial Answer generation, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,56 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import InitialAnswerBASEUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import INITIAL_RAG_BASE_PROMPT
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
def generate_initial_base_search_only_answer(
state: MainState,
config: RunnableConfig,
) -> InitialAnswerBASEUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------GENERATE INITIAL BASE ANSWER---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
original_question_docs = state.all_original_question_documents
model = agent_a_config.fast_llm
doc_context = format_docs(original_question_docs)
doc_context = trim_prompt_piece(
model.config, doc_context, INITIAL_RAG_BASE_PROMPT + question
)
msg = [
HumanMessage(
content=INITIAL_RAG_BASE_PROMPT.format(
question=question,
context=doc_context,
)
)
]
# Grader
response = model.invoke(msg)
answer = response.pretty_repr()
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INITIAL BASE ANSWER END---\n\n"
)
return InitialAnswerBASEUpdate(initial_base_answer=answer)

View File

@@ -0,0 +1,332 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_content
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.models import AgentRefinedMetrics
from onyx.agents.agent_search.deep_search_a.main.operations import get_query_info
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.operations import (
remove_document_citations,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.deep_search_a.main.states import RefinedAnswerUpdate
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
ASSISTANT_SYSTEM_PROMPT_PERSONA,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import REVISED_RAG_PROMPT
from onyx.agents.agent_search.shared_graph_utils.prompts import (
REVISED_RAG_PROMPT_NO_SUB_QUESTIONS,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
SUB_QUESTION_ANSWER_TEMPLATE,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import UNKNOWN_ANSWER
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import get_persona_prompt
from onyx.agents.agent_search.shared_graph_utils.utils import get_today_prompt
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
def generate_refined_answer(
state: MainState, config: RunnableConfig
) -> RefinedAnswerUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------GENERATE REFINED ANSWER---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
persona_prompt = get_persona_prompt(agent_a_config.search_request.persona)
history = build_history_prompt(agent_a_config.prompt_builder)
date_str = get_today_prompt()
initial_documents = state.documents
revised_documents = state.refined_documents
combined_documents = dedup_inference_sections(initial_documents, revised_documents)
query_info = get_query_info(state.original_question_retrieval_results)
if agent_a_config.search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
# stream refined answer docs
for tool_response in yield_search_responses(
query=question,
reranked_sections=combined_documents,
final_context_sections=combined_documents,
search_query_info=query_info,
get_section_relevance=lambda: None, # TODO: add relevance
search_tool=agent_a_config.search_tool,
):
dispatch_custom_event(
"tool_response",
ExtendedToolResponse(
id=tool_response.id,
response=tool_response.response,
level=1,
level_question_nr=0, # 0, 0 is the base question
),
)
if len(initial_documents) > 0:
revision_doc_effectiveness = len(combined_documents) / len(initial_documents)
elif len(revised_documents) == 0:
revision_doc_effectiveness = 0.0
else:
revision_doc_effectiveness = 10.0
decomp_answer_results = state.decomp_answer_results
# revised_answer_results = state.refined_decomp_answer_results
good_qa_list: list[str] = []
decomp_questions = []
initial_good_sub_questions: list[str] = []
new_revised_good_sub_questions: list[str] = []
sub_question_nr = 1
for decomp_answer_result in decomp_answer_results:
question_level, question_nr = parse_question_id(
decomp_answer_result.question_id
)
decomp_questions.append(decomp_answer_result.question)
if (
decomp_answer_result.quality.lower().startswith("yes")
and len(decomp_answer_result.answer) > 0
and decomp_answer_result.answer != UNKNOWN_ANSWER
):
good_qa_list.append(
SUB_QUESTION_ANSWER_TEMPLATE.format(
sub_question=decomp_answer_result.question,
sub_answer=decomp_answer_result.answer,
sub_question_nr=sub_question_nr,
)
)
if question_level == 0:
initial_good_sub_questions.append(decomp_answer_result.question)
else:
new_revised_good_sub_questions.append(decomp_answer_result.question)
sub_question_nr += 1
initial_good_sub_questions = list(set(initial_good_sub_questions))
new_revised_good_sub_questions = list(set(new_revised_good_sub_questions))
total_good_sub_questions = list(
set(initial_good_sub_questions + new_revised_good_sub_questions)
)
if len(initial_good_sub_questions) > 0:
revision_question_efficiency: float = len(total_good_sub_questions) / len(
initial_good_sub_questions
)
elif len(new_revised_good_sub_questions) > 0:
revision_question_efficiency = 10.0
else:
revision_question_efficiency = 1.0
sub_question_answer_str = "\n\n------\n\n".join(list(set(good_qa_list)))
# original answer
initial_answer = state.initial_answer
# Determine which persona-specification prompt to use
if len(persona_prompt) == 0:
persona_specification = ASSISTANT_SYSTEM_PROMPT_DEFAULT
else:
persona_specification = ASSISTANT_SYSTEM_PROMPT_PERSONA.format(
persona_prompt=persona_prompt
)
# Determine which base prompt to use given the sub-question information
if len(good_qa_list) > 0:
base_prompt = REVISED_RAG_PROMPT
else:
base_prompt = REVISED_RAG_PROMPT_NO_SUB_QUESTIONS
model = agent_a_config.fast_llm
relevant_docs = format_docs(combined_documents)
relevant_docs = trim_prompt_piece(
model.config,
relevant_docs,
base_prompt
+ question
+ sub_question_answer_str
+ relevant_docs
+ initial_answer
+ persona_specification
+ history,
)
msg = [
HumanMessage(
content=base_prompt.format(
question=question,
history=history,
answered_sub_questions=remove_document_citations(
sub_question_answer_str
),
relevant_docs=relevant_docs,
initial_answer=remove_document_citations(initial_answer),
persona_specification=persona_specification,
date_prompt=date_str,
)
)
]
# Grader
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
dispatch_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_nr=0,
answer_type="agent_level_answer",
),
)
streamed_tokens.append(content)
dispatch_main_answer_stop_info(1)
response = merge_content(*streamed_tokens)
answer = cast(str, response)
# refined_agent_stats = _calculate_refined_agent_stats(
# state.decomp_answer_results, state.original_question_retrieval_stats
# )
initial_good_sub_questions_str = "\n".join(list(set(initial_good_sub_questions)))
new_revised_good_sub_questions_str = "\n".join(
list(set(new_revised_good_sub_questions))
)
refined_agent_stats = RefinedAgentStats(
revision_doc_efficiency=revision_doc_effectiveness,
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(
f"\n\n---INITIAL ANSWER START---\n\n Answer:\n Agent: {initial_answer}"
)
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER START---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
logger.debug(f"\n\nINITAL Sub-Questions\n\n{initial_good_sub_questions_str}\n\n")
logger.debug("-" * 10)
logger.debug(
f"\n\nNEW REVISED Sub-Questions\n\n{new_revised_good_sub_questions_str}\n\n"
)
logger.debug("-" * 100)
logger.debug(
f"\n\nINITAL & REVISED Sub-Questions & Answers:\n\n{sub_question_answer_str}\n\nStas:\n\n"
)
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INITIAL AGENT ANSWER END---\n\n"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (
agent_refined_end_time - state.agent_refined_start_time
).total_seconds()
else:
agent_refined_duration = None
agent_refined_metrics = AgentRefinedMetrics(
refined_doc_boost_factor=refined_agent_stats.revision_doc_efficiency,
refined_question_boost_factor=refined_agent_stats.revision_question_efficiency,
duration__s=agent_refined_duration,
)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------REFINED ANSWER UPDATE END---"
)
return RefinedAnswerUpdate(
refined_answer=answer,
refined_answer_quality=True, # TODO: replace this with the actual check value
refined_agent_stats=refined_agent_stats,
agent_refined_end_time=agent_refined_end_time,
agent_refined_metrics=agent_refined_metrics,
)

View File

@@ -0,0 +1,39 @@
from datetime import datetime
from onyx.agents.agent_search.deep_search_a.base_raw_search.states import (
BaseRawSearchOutput,
)
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import ExpandedRetrievalUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
def ingest_initial_base_retrieval(
state: BaseRawSearchOutput,
) -> ExpandedRetrievalUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------INGEST INITIAL RETRIEVAL---")
sub_question_retrieval_stats = (
state.base_expanded_retrieval_result.sub_question_retrieval_stats
)
if sub_question_retrieval_stats is None:
sub_question_retrieval_stats = AgentChunkStats()
else:
sub_question_retrieval_stats = sub_question_retrieval_stats
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INGEST INITIAL RETRIEVAL END---"
)
return ExpandedRetrievalUpdate(
original_question_retrieval_results=state.base_expanded_retrieval_result.expanded_queries_results,
all_original_question_documents=state.base_expanded_retrieval_result.context_documents,
original_question_retrieval_stats=sub_question_retrieval_stats,
log_messages=[
f"{now_end} -- Main - Ingestion base retrieval, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,41 @@
from datetime import datetime
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import DecompAnswersUpdate
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
def ingest_initial_sub_question_answers(
state: AnswerQuestionOutput,
) -> DecompAnswersUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------INGEST ANSWERS---")
documents = []
context_documents = []
answer_results = state.answer_results if hasattr(state, "answer_results") else []
for answer_result in answer_results:
documents.extend(answer_result.documents)
context_documents.extend(answer_result.context_documents)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INGEST ANSWERS END---"
)
return DecompAnswersUpdate(
# Deduping is done by the documents operator for the main graph
# so we might not need to dedup here
documents=dedup_inference_sections(documents, []),
context_documents=dedup_inference_sections(context_documents, []),
decomp_answer_results=answer_results,
log_messages=[
f"{now_end} -- Main - Ingest initial processed sub questions, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,39 @@
from datetime import datetime
from onyx.agents.agent_search.deep_search_a.answer_initial_sub_question.states import (
AnswerQuestionOutput,
)
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import DecompAnswersUpdate
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
def ingest_refined_answers(
state: AnswerQuestionOutput,
) -> DecompAnswersUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------INGEST FOLLOW UP ANSWERS---")
documents = []
answer_results = state.answer_results if hasattr(state, "answer_results") else []
for answer_result in answer_results:
documents.extend(answer_result.documents)
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INGEST FOLLOW UP ANSWERS END---"
)
return DecompAnswersUpdate(
# Deduping is done by the documents operator for the main graph
# so we might not need to dedup here
documents=dedup_inference_sections(documents, []),
decomp_answer_results=answer_results,
log_messages=[
f"{now_end} -- Main - Ingest refined answers, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,40 @@
from datetime import datetime
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import (
InitialAnswerQualityUpdate,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainState
def initial_answer_quality_check(state: MainState) -> InitialAnswerQualityUpdate:
"""
Check whether the final output satisfies the original user question
Args:
state (messages): The current state
Returns:
InitialAnswerQualityUpdate
"""
now_start = datetime.now()
logger.debug(
f"--------{now_start}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------INITIAL ANSWER QUALITY CHECK END---"
)
return InitialAnswerQualityUpdate(
initial_answer_quality=verdict,
log_messages=[
f"{now_end} -- Main - Initial answer quality check, Time taken: {now_end - now_start}"
],
)

View File

@@ -0,0 +1,133 @@
from datetime import datetime
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_content
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.models import AgentRefinedMetrics
from onyx.agents.agent_search.deep_search_a.main.operations import dispatch_subquestion
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import BaseDecompUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
)
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
def initial_sub_question_creation(
state: MainState, config: RunnableConfig
) -> BaseDecompUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------BASE DECOMP START---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
question = agent_a_config.search_request.query
chat_session_id = agent_a_config.chat_session_id
primary_message_id = agent_a_config.message_id
perform_initial_search_decomposition = (
agent_a_config.perform_initial_search_decomposition
)
# perform_initial_search_path_decision = (
# agent_a_config.perform_initial_search_path_decision
# )
history = build_history_prompt(agent_a_config.prompt_builder)
# Use the initial search results to inform the decomposition
sample_doc_str = state.sample_doc_str if hasattr(state, "sample_doc_str") else ""
if not chat_session_id or not primary_message_id:
raise ValueError(
"chat_session_id and message_id must be provided for agent search"
)
agent_start_time = datetime.now()
# Initial search to inform decomposition. Just get top 3 fits
if perform_initial_search_decomposition:
sample_doc_str = "\n\n".join(
[
doc.combined_content
for doc in state.exploratory_search_results[
:AGENT_NUM_DOCS_FOR_DECOMPOSITION
]
]
)
decomposition_prompt = (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
)
else:
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS.format(
question=question, history=history
)
# Start decomposition
msg = [HumanMessage(content=decomposition_prompt)]
# Get the rewritten queries in a defined format
model = agent_a_config.fast_llm
# Send the initial question as a subquestion with number 0
dispatch_custom_event(
"decomp_qs",
SubQuestionPiece(
sub_question=question,
level=0,
level_question_nr=0,
),
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(model.stream(msg), dispatch_subquestion(0))
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type="sub_questions",
level=0,
)
dispatch_custom_event("stream_finished", stop_event)
deomposition_response = merge_content(*streamed_tokens)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
now_end = datetime.now()
logger.debug(f"--------{now_end}--{now_end - now_start}--------BASE DECOMP END---")
return BaseDecompUpdate(
initial_decomp_questions=decomp_list,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=None,
refined_question_boost_factor=None,
duration__s=None,
),
)

View File

@@ -0,0 +1,47 @@
from datetime import datetime
from typing import cast
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.deep_search_a.main.states import (
RequireRefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import AgentSearchConfig
def refined_answer_decision(
state: MainState, config: RunnableConfig
) -> RequireRefinedAnswerUpdate:
now_start = datetime.now()
logger.debug(f"--------{now_start}--------REFINED ANSWER DECISION---")
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
if "?" in agent_a_config.search_request.query:
decision = False
else:
decision = True
decision = True
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------REFINED ANSWER DECISION END---"
)
log_messages = [
f"{now_end} -- Main - Refined answer decision: {decision}, Time taken: {now_end - now_start}"
]
if agent_a_config.allow_refinement:
return RequireRefinedAnswerUpdate(
require_refined_answer=decision,
log_messages=log_messages,
)
else:
return RequireRefinedAnswerUpdate(
require_refined_answer=False,
log_messages=log_messages,
)

View File

@@ -0,0 +1,119 @@
from datetime import datetime
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_content
from langchain_core.runnables import RunnableConfig
from onyx.agents.agent_search.deep_search_a.main.models import FollowUpSubQuestion
from onyx.agents.agent_search.deep_search_a.main.operations import dispatch_subquestion
from onyx.agents.agent_search.deep_search_a.main.operations import logger
from onyx.agents.agent_search.deep_search_a.main.states import (
FollowUpSubQuestionsUpdate,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainState
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION
from onyx.tools.models import ToolCallKickoff
def refined_sub_question_creation(
state: MainState, config: RunnableConfig
) -> FollowUpSubQuestionsUpdate:
""" """
agent_a_config = cast(AgentSearchConfig, config["metadata"]["config"])
dispatch_custom_event(
"start_refined_answer_creation",
ToolCallKickoff(
tool_name="agent_search_1",
tool_args={
"query": agent_a_config.search_request.query,
"answer": state.initial_answer,
},
),
)
now_start = datetime.now()
logger.debug(f"--------{now_start}--------FOLLOW UP DECOMPOSE---")
agent_refined_start_time = datetime.now()
question = agent_a_config.search_request.query
base_answer = state.initial_answer
history = build_history_prompt(agent_a_config.prompt_builder)
# get the entity term extraction dict and properly format it
# entity_retlation_term_extractions = state.entity_relation_term_extractions
# entity_term_extraction_str = format_entity_term_extraction(
# entity_retlation_term_extractions
# )
docs_str = format_docs(
state.all_original_question_documents[:AGENT_NUM_DOCS_FOR_REFINED_DECOMPOSITION]
)
initial_question_answers = state.decomp_answer_results
addressed_question_list = [
x.question for x in initial_question_answers if "yes" in x.quality.lower()
]
failed_question_list = [
x.question for x in initial_question_answers if "no" in x.quality.lower()
]
msg = [
HumanMessage(
content=DEEP_DECOMPOSE_PROMPT.format(
question=question,
history=history,
docs_str=docs_str,
base_answer=base_answer,
answered_sub_questions="\n - ".join(addressed_question_list),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
]
# Grader
model = agent_a_config.fast_llm
streamed_tokens = dispatch_separated(model.stream(msg), dispatch_subquestion(1))
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_nr, sub_question in enumerate(parsed_response):
refined_sub_question = FollowUpSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_nr + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_nr + 1] = refined_sub_question
now_end = datetime.now()
logger.debug(
f"--------{now_end}--{now_end - now_start}--------FOLLOW UP DECOMPOSE END---"
)
return FollowUpSubQuestionsUpdate(
refined_sub_questions=refined_sub_question_dict,
agent_refined_start_time=agent_refined_start_time,
)

View File

@@ -0,0 +1,12 @@
from datetime import datetime
from onyx.agents.agent_search.deep_search_a.main.states import LoggerUpdate
from onyx.agents.agent_search.deep_search_a.main.states import MainState
def retrieval_consolidation(
state: MainState,
) -> LoggerUpdate:
now_start = datetime.now()
return LoggerUpdate(log_messages=[f"{now_start} -- Retrieval consolidation"])

View File

@@ -0,0 +1,145 @@
import re
from collections.abc import Callable
from langchain_core.callbacks.manager import dispatch_custom_event
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.agents.agent_search.shared_graph_utils.models import (
QuestionAnswerResults,
)
from onyx.chat.models import SubQuestionPiece
from onyx.tools.models import SearchQueryInfo
from onyx.utils.logger import setup_logger
logger = setup_logger()
def remove_document_citations(text: str) -> str:
"""
Removes citation expressions of format '[[D1]]()' from text.
The number after D can vary.
Args:
text: Input text containing citations
Returns:
Text with citations removed
"""
# Pattern explanation:
# \[\[D\d+\]\]\(\) matches:
# \[\[ - literal [[ characters
# D - literal D character
# \d+ - one or more digits
# \]\] - literal ]] characters
# \(\) - literal () characters
return re.sub(r"\[\[(?:D|Q)\d+\]\]\(\)", "", text)
def dispatch_subquestion(level: int) -> Callable[[str, int], None]:
def _helper(sub_question_part: str, num: int) -> None:
dispatch_custom_event(
"decomp_qs",
SubQuestionPiece(
sub_question=sub_question_part,
level=level,
level_question_nr=num,
),
)
return _helper
def calculate_initial_agent_stats(
decomp_answer_results: list[QuestionAnswerResults],
original_question_stats: AgentChunkStats,
) -> InitialAgentResultStats:
initial_agent_result_stats: InitialAgentResultStats = InitialAgentResultStats(
sub_questions={},
original_question={},
agent_effectiveness={},
)
orig_verified = original_question_stats.verified_count
orig_support_score = original_question_stats.verified_avg_scores
verified_document_chunk_ids = []
support_scores = 0.0
for decomp_answer_result in decomp_answer_results:
verified_document_chunk_ids += (
decomp_answer_result.sub_question_retrieval_stats.verified_doc_chunk_ids
)
if (
decomp_answer_result.sub_question_retrieval_stats.verified_avg_scores
is not None
):
support_scores += (
decomp_answer_result.sub_question_retrieval_stats.verified_avg_scores
)
verified_document_chunk_ids = list(set(verified_document_chunk_ids))
# Calculate sub-question stats
if (
verified_document_chunk_ids
and len(verified_document_chunk_ids) > 0
and support_scores is not None
):
sub_question_stats: dict[str, float | int | None] = {
"num_verified_documents": len(verified_document_chunk_ids),
"verified_avg_score": float(support_scores / len(decomp_answer_results)),
}
else:
sub_question_stats = {"num_verified_documents": 0, "verified_avg_score": None}
initial_agent_result_stats.sub_questions.update(sub_question_stats)
# Get original question stats
initial_agent_result_stats.original_question.update(
{
"num_verified_documents": original_question_stats.verified_count,
"verified_avg_score": original_question_stats.verified_avg_scores,
}
)
# Calculate chunk utilization ratio
sub_verified = initial_agent_result_stats.sub_questions["num_verified_documents"]
chunk_ratio: float | None = None
if sub_verified is not None and orig_verified is not None and orig_verified > 0:
chunk_ratio = (float(sub_verified) / orig_verified) if sub_verified > 0 else 0.0
elif sub_verified is not None and sub_verified > 0:
chunk_ratio = 10.0
initial_agent_result_stats.agent_effectiveness["utilized_chunk_ratio"] = chunk_ratio
if (
orig_support_score is None
or orig_support_score == 0.0
and initial_agent_result_stats.sub_questions["verified_avg_score"] is None
):
initial_agent_result_stats.agent_effectiveness["support_ratio"] = None
elif orig_support_score is None or orig_support_score == 0.0:
initial_agent_result_stats.agent_effectiveness["support_ratio"] = 10
elif initial_agent_result_stats.sub_questions["verified_avg_score"] is None:
initial_agent_result_stats.agent_effectiveness["support_ratio"] = 0
else:
initial_agent_result_stats.agent_effectiveness["support_ratio"] = (
initial_agent_result_stats.sub_questions["verified_avg_score"]
/ orig_support_score
)
return initial_agent_result_stats
def get_query_info(results: list[QueryResult]) -> SearchQueryInfo:
# Use the query info from the base document retrieval
# TODO: see if this is the right way to do this
query_infos = [
result.query_info for result in results if result.query_info is not None
]
if len(query_infos) == 0:
raise ValueError("No query info found")
return query_infos[0]

View File

@@ -0,0 +1,171 @@
from datetime import datetime
from operator import add
from typing import Annotated
from typing import TypedDict
from pydantic import BaseModel
from onyx.agents.agent_search.core_state import CoreState
from onyx.agents.agent_search.deep_search_a.expanded_retrieval.models import (
ExpandedRetrievalResult,
)
from onyx.agents.agent_search.deep_search_a.main.models import AgentBaseMetrics
from onyx.agents.agent_search.deep_search_a.main.models import AgentRefinedMetrics
from onyx.agents.agent_search.deep_search_a.main.models import FollowUpSubQuestion
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkStats
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import QueryResult
from onyx.agents.agent_search.shared_graph_utils.models import (
QuestionAnswerResults,
)
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_question_answer_results,
)
from onyx.context.search.models import InferenceSection
### States ###
## Update States
class LoggerUpdate(BaseModel):
log_messages: Annotated[list[str], add] = []
class RefinedAgentStartStats(BaseModel):
agent_refined_start_time: datetime | None = None
class RefinedAgentEndStats(BaseModel):
agent_refined_end_time: datetime | None = None
agent_refined_metrics: AgentRefinedMetrics = AgentRefinedMetrics()
class BaseDecompUpdate(RefinedAgentStartStats, RefinedAgentEndStats):
agent_start_time: datetime = datetime.now()
initial_decomp_questions: list[str] = []
class ExploratorySearchUpdate(LoggerUpdate):
exploratory_search_results: list[InferenceSection] = []
class AnswerComparison(LoggerUpdate):
refined_answer_improvement: bool = False
class RoutingDecision(LoggerUpdate):
routing: str = ""
sample_doc_str: str = ""
class InitialAnswerBASEUpdate(BaseModel):
initial_base_answer: str = ""
class InitialAnswerUpdate(LoggerUpdate):
initial_answer: str = ""
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
agent_base_metrics: AgentBaseMetrics | None = None
class RefinedAnswerUpdate(RefinedAgentEndStats):
refined_answer: str = ""
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False
class InitialAnswerQualityUpdate(LoggerUpdate):
initial_answer_quality: bool = False
class RequireRefinedAnswerUpdate(LoggerUpdate):
require_refined_answer: bool = True
class DecompAnswersUpdate(LoggerUpdate):
documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
context_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
decomp_answer_results: Annotated[
list[QuestionAnswerResults], dedup_question_answer_results
] = []
class FollowUpDecompAnswersUpdate(LoggerUpdate):
refined_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
refined_decomp_answer_results: Annotated[list[QuestionAnswerResults], add] = []
class ExpandedRetrievalUpdate(LoggerUpdate):
all_original_question_documents: Annotated[
list[InferenceSection], dedup_inference_sections
]
original_question_retrieval_results: list[QueryResult] = []
original_question_retrieval_stats: AgentChunkStats = AgentChunkStats()
class EntityTermExtractionUpdate(LoggerUpdate):
entity_relation_term_extractions: EntityRelationshipTermExtraction = (
EntityRelationshipTermExtraction()
)
class FollowUpSubQuestionsUpdate(RefinedAgentStartStats):
refined_sub_questions: dict[int, FollowUpSubQuestion] = {}
## Graph Input State
## Graph Input State
class MainInput(CoreState):
pass
## Graph State
class MainState(
# This includes the core state
MainInput,
ToolChoiceInput,
ToolCallUpdate,
ToolChoiceUpdate,
BaseDecompUpdate,
InitialAnswerUpdate,
InitialAnswerBASEUpdate,
DecompAnswersUpdate,
ExpandedRetrievalUpdate,
EntityTermExtractionUpdate,
InitialAnswerQualityUpdate,
RequireRefinedAnswerUpdate,
FollowUpSubQuestionsUpdate,
FollowUpDecompAnswersUpdate,
RefinedAnswerUpdate,
RefinedAgentStartStats,
RefinedAgentEndStats,
RoutingDecision,
AnswerComparison,
ExploratorySearchUpdate,
):
# expanded_retrieval_result: Annotated[list[ExpandedRetrievalResult], add]
base_raw_search_result: Annotated[list[ExpandedRetrievalResult], add]
## Graph Output State - presently not used
class MainOutput(TypedDict):
log_messages: list[str]

View File

@@ -0,0 +1,93 @@
from dataclasses import dataclass
from uuid import UUID
from pydantic import BaseModel
from pydantic import model_validator
from sqlalchemy.orm import Session
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.context.search.models import SearchRequest
from onyx.file_store.utils import InMemoryChatFile
from onyx.llm.interfaces import LLM
from onyx.tools.force import ForceUseTool
from onyx.tools.tool import Tool
from onyx.tools.tool_implementations.search.search_tool import SearchTool
@dataclass
class AgentSearchConfig:
"""
Configuration for the Agent Search feature.
"""
# The search request that was used to generate the Pro Search
search_request: SearchRequest
primary_llm: LLM
fast_llm: LLM
# Whether to force use of a tool, or to
# force tool args IF the tool is used
force_use_tool: ForceUseTool
# contains message history for the current chat session
# has the following (at most one is non-None)
# message_history: list[PreviousMessage] | None = None
# single_message_history: str | None = None
prompt_builder: AnswerPromptBuilder
search_tool: SearchTool | None = None
use_agentic_search: bool = False
# For persisting agent search data
chat_session_id: UUID | None = None
# The message ID of the user message that triggered the Pro Search
message_id: int | None = None
# Whether to persistence data for the Pro Search (turned off for testing)
use_persistence: bool = True
# The database session for the Pro Search
db_session: Session | None = None
# Whether to perform initial search to inform decomposition
# perform_initial_search_path_decision: bool = True
# Whether to perform initial search to inform decomposition
perform_initial_search_decomposition: bool = True
# Whether to allow creation of refinement questions (and entity extraction, etc.)
allow_refinement: bool = True
# Tools available for use
tools: list[Tool] | None = None
using_tool_calling_llm: bool = False
files: list[InMemoryChatFile] | None = None
structured_response_format: dict | None = None
skip_gen_ai_answer_generation: bool = False
@model_validator(mode="after")
def validate_db_session(self) -> "AgentSearchConfig":
if self.use_persistence and self.db_session is None:
raise ValueError(
"db_session must be provided for pro search when using persistence"
)
return self
@model_validator(mode="after")
def validate_search_tool(self) -> "AgentSearchConfig":
if self.use_agentic_search and self.search_tool is None:
raise ValueError("search_tool must be provided for agentic search")
return self
class AgentDocumentCitations(BaseModel):
document_id: str
document_title: str
link: str

View File

@@ -0,0 +1,72 @@
from typing import cast
from langchain_core.messages import AIMessageChunk
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.chat.models import LlmDoc
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_DOC_CONTENT_ID,
)
from onyx.tools.tool_implementations.search_like_tool_utils import (
FINAL_CONTEXT_DOCUMENTS_ID,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
def basic_use_tool_response(state: BasicState, config: RunnableConfig) -> BasicOutput:
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
structured_response_format = agent_config.structured_response_format
llm = agent_config.primary_llm
tool_choice = state.tool_choice
if tool_choice is None:
raise ValueError("Tool choice is None")
tool = tool_choice.tool
prompt_builder = agent_config.prompt_builder
if state.tool_call_output is None:
raise ValueError("Tool call output is None")
tool_call_output = state.tool_call_output
tool_call_summary = tool_call_output.tool_call_summary
tool_call_responses = tool_call_output.tool_call_responses
new_prompt_builder = tool.build_next_prompt(
prompt_builder=prompt_builder,
tool_call_summary=tool_call_summary,
tool_responses=tool_call_responses,
using_tool_calling_llm=agent_config.using_tool_calling_llm,
)
final_search_results = []
initial_search_results = []
for yield_item in tool_call_responses:
if yield_item.id == FINAL_CONTEXT_DOCUMENTS_ID:
final_search_results = cast(list[LlmDoc], yield_item.response)
elif yield_item.id == SEARCH_DOC_CONTENT_ID:
search_contexts = yield_item.response.contexts
for doc in search_contexts:
if doc.document_id not in initial_search_results:
initial_search_results.append(doc)
initial_search_results = cast(list[LlmDoc], initial_search_results)
new_tool_call_chunk = AIMessageChunk(content="")
if not agent_config.skip_gen_ai_answer_generation:
stream = llm.stream(
prompt=new_prompt_builder.build(),
structured_response_format=structured_response_format,
)
# For now, we don't do multiple tool calls, so we ignore the tool_message
new_tool_call_chunk = process_llm_stream(
stream,
True,
final_search_results=final_search_results,
displayed_search_results=initial_search_results,
)
return BasicOutput(tool_call_chunk=new_tool_call_chunk)

View File

@@ -0,0 +1,144 @@
from typing import cast
from uuid import uuid4
from langchain_core.messages import ToolCall
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.orchestration.states import ToolChoice
from onyx.agents.agent_search.orchestration.states import ToolChoiceState
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.chat.tool_handling.tool_response_handler import get_tool_by_name
from onyx.chat.tool_handling.tool_response_handler import (
get_tool_call_for_non_tool_calling_llm_impl,
)
from onyx.tools.tool import Tool
from onyx.utils.logger import setup_logger
logger = setup_logger()
# TODO: break this out into an implementation function
# and a function that handles extracting the necessary fields
# from the state and config
# TODO: fan-out to multiple tool call nodes? Make this configurable?
def llm_tool_choice(state: ToolChoiceState, config: RunnableConfig) -> ToolChoiceUpdate:
"""
This node is responsible for calling the LLM to choose a tool. If no tool is chosen,
The node MAY emit an answer, depending on whether state["should_stream_answer"] is set.
"""
should_stream_answer = state.should_stream_answer
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
using_tool_calling_llm = agent_config.using_tool_calling_llm
prompt_builder = state.prompt_snapshot or agent_config.prompt_builder
llm = agent_config.primary_llm
skip_gen_ai_answer_generation = agent_config.skip_gen_ai_answer_generation
structured_response_format = agent_config.structured_response_format
tools = [tool for tool in (agent_config.tools or []) if tool.name in state.tools]
force_use_tool = agent_config.force_use_tool
tool, tool_args = None, None
if force_use_tool.force_use and force_use_tool.args is not None:
tool_name, tool_args = (
force_use_tool.tool_name,
force_use_tool.args,
)
tool = get_tool_by_name(tools, tool_name)
# special pre-logic for non-tool calling LLM case
elif not using_tool_calling_llm and tools:
chosen_tool_and_args = get_tool_call_for_non_tool_calling_llm_impl(
force_use_tool=force_use_tool,
tools=tools,
prompt_builder=prompt_builder,
llm=llm,
)
if chosen_tool_and_args:
tool, tool_args = chosen_tool_and_args
# If we have a tool and tool args, we are redy to request a tool call.
# This only happens if the tool call was forced or we are using a non-tool calling LLM.
if tool and tool_args:
return ToolChoiceUpdate(
tool_choice=ToolChoice(
tool=tool,
tool_args=tool_args,
id=str(uuid4()),
),
)
# if we're skipping gen ai answer generation, we should only
# continue if we're forcing a tool call (which will be emitted by
# the tool calling llm in the stream() below)
if skip_gen_ai_answer_generation and not force_use_tool.force_use:
return ToolChoiceUpdate(
tool_choice=None,
)
built_prompt = (
prompt_builder.build()
if isinstance(prompt_builder, AnswerPromptBuilder)
else prompt_builder.built_prompt
)
# At this point, we are either using a tool calling LLM or we are skipping the tool call.
# DEBUG: good breakpoint
stream = llm.stream(
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
prompt=built_prompt,
tools=[tool.tool_definition() for tool in tools] or None,
tool_choice=("required" if tools and force_use_tool.force_use else None),
structured_response_format=structured_response_format,
)
tool_message = process_llm_stream(
stream, should_stream_answer and not agent_config.skip_gen_ai_answer_generation
)
# If no tool calls are emitted by the LLM, we should not choose a tool
if len(tool_message.tool_calls) == 0:
logger.info("No tool calls emitted by LLM")
return ToolChoiceUpdate(
tool_choice=None,
)
# TODO: here we could handle parallel tool calls. Right now
# we just pick the first one that matches.
selected_tool: Tool | None = None
selected_tool_call_request: ToolCall | None = None
for tool_call_request in tool_message.tool_calls:
known_tools_by_name = [
tool for tool in tools if tool.name == tool_call_request["name"]
]
if known_tools_by_name:
selected_tool = known_tools_by_name[0]
selected_tool_call_request = tool_call_request
break
logger.error(
"Tool call requested with unknown name field. \n"
f"tools: {tools}"
f"tool_call_request: {tool_call_request}"
)
if not selected_tool or not selected_tool_call_request:
raise ValueError(
f"Tool call attempted with tool {selected_tool}, request {selected_tool_call_request}"
)
logger.info(f"Selected tool: {selected_tool.name}")
logger.debug(f"Selected tool call request: {selected_tool_call_request}")
return ToolChoiceUpdate(
tool_choice=ToolChoice(
tool=selected_tool,
tool_args=selected_tool_call_request["args"],
id=selected_tool_call_request["id"],
),
)

View File

@@ -0,0 +1,17 @@
from typing import Any
from typing import cast
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
def prepare_tool_input(state: Any, config: RunnableConfig) -> ToolChoiceInput:
agent_config = cast(AgentSearchConfig, config["metadata"]["config"])
return ToolChoiceInput(
# NOTE: this node is used at the top level of the agent, so we always stream
should_stream_answer=True,
prompt_snapshot=None, # uses default prompt builder
tools=[tool.name for tool in (agent_config.tools or [])],
)

View File

@@ -0,0 +1,66 @@
from typing import cast
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import AIMessageChunk
from langchain_core.messages.tool import ToolCall
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.orchestration.states import ToolCallOutput
from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.chat.models import AnswerPacket
from onyx.tools.message import build_tool_message
from onyx.tools.message import ToolCallSummary
from onyx.tools.tool_runner import ToolRunner
from onyx.utils.logger import setup_logger
logger = setup_logger()
def emit_packet(packet: AnswerPacket) -> None:
dispatch_custom_event("basic_response", packet)
def tool_call(state: ToolChoiceUpdate, config: RunnableConfig) -> ToolCallUpdate:
"""Calls the tool specified in the state and updates the state with the result"""
cast(AgentSearchConfig, config["metadata"]["config"])
tool_choice = state.tool_choice
if tool_choice is None:
raise ValueError("Cannot invoke tool call node without a tool choice")
tool = tool_choice.tool
tool_args = tool_choice.tool_args
tool_id = tool_choice.id
tool_runner = ToolRunner(tool, tool_args)
tool_kickoff = tool_runner.kickoff()
# TODO: custom events for yields
emit_packet(tool_kickoff)
tool_responses = []
for response in tool_runner.tool_responses():
tool_responses.append(response)
emit_packet(response)
tool_final_result = tool_runner.tool_final_result()
emit_packet(tool_final_result)
tool_call = ToolCall(name=tool.name, args=tool_args, id=tool_id)
tool_call_summary = ToolCallSummary(
tool_call_request=AIMessageChunk(content="", tool_calls=[tool_call]),
tool_call_result=build_tool_message(
tool_call, tool_runner.tool_message_content()
),
)
tool_call_output = ToolCallOutput(
tool_call_summary=tool_call_summary,
tool_call_kickoff=tool_kickoff,
tool_call_responses=tool_responses,
tool_call_final_result=tool_final_result,
)
return ToolCallUpdate(tool_call_output=tool_call_output)

View File

@@ -0,0 +1,48 @@
from pydantic import BaseModel
from onyx.chat.prompt_builder.answer_prompt_builder import PromptSnapshot
from onyx.tools.message import ToolCallSummary
from onyx.tools.models import ToolCallFinalResult
from onyx.tools.models import ToolCallKickoff
from onyx.tools.models import ToolResponse
from onyx.tools.tool import Tool
# TODO: adapt the tool choice/tool call to allow for parallel tool calls by
# creating a subgraph that can be invoked in parallel via Send/Command APIs
class ToolChoiceInput(BaseModel):
should_stream_answer: bool = True
# default to the prompt builder from the config, but
# allow overrides for arbitrary tool calls
prompt_snapshot: PromptSnapshot | None = None
# names of tools to use for tool calling. Filters the tools available in the config
tools: list[str] = []
class ToolCallOutput(BaseModel):
tool_call_summary: ToolCallSummary
tool_call_kickoff: ToolCallKickoff
tool_call_responses: list[ToolResponse]
tool_call_final_result: ToolCallFinalResult
class ToolCallUpdate(BaseModel):
tool_call_output: ToolCallOutput | None = None
class ToolChoice(BaseModel):
tool: Tool
tool_args: dict
id: str | None
class Config:
arbitrary_types_allowed = True
class ToolChoiceUpdate(BaseModel):
tool_choice: ToolChoice | None = None
class ToolChoiceState(ToolChoiceUpdate, ToolChoiceInput):
pass

View File

@@ -0,0 +1,274 @@
import asyncio
from collections.abc import AsyncIterable
from collections.abc import Iterable
from datetime import datetime
from typing import cast
from langchain_core.runnables.schema import StreamEvent
from langgraph.graph.state import CompiledStateGraph
from onyx.agents.agent_search.basic.graph_builder import basic_graph_builder
from onyx.agents.agent_search.basic.states import BasicInput
from onyx.agents.agent_search.deep_search_a.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search_a.main.states import MainInput as MainInput_a
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
from onyx.chat.models import ToolResponse
from onyx.configs.agent_configs import GRAPH_NAME
from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
def _set_combined_token_value(
combined_token: str, parsed_object: AgentAnswerPiece
) -> AgentAnswerPiece:
parsed_object.answer_piece = combined_token
return parsed_object
def _parse_agent_event(
event: StreamEvent,
) -> AnswerPacket | None:
"""
Parse the event into a typed object.
Return None if we are not interested in the event.
"""
event_type = event["event"]
# We always just yield the event data, but this piece is useful for two development reasons:
# 1. It's a list of the names of every place we dispatch a custom event
# 2. We maintain the intended types yielded by each event
if event_type == "on_custom_event":
# TODO: different AnswerStream types for different events
if event["name"] == "decomp_qs":
return cast(SubQuestionPiece, event["data"])
elif event["name"] == "subqueries":
return cast(SubQueryPiece, event["data"])
elif event["name"] == "sub_answers":
return cast(AgentAnswerPiece, event["data"])
elif event["name"] == "stream_finished":
return cast(StreamStopInfo, event["data"])
elif event["name"] == "initial_agent_answer":
return cast(AgentAnswerPiece, event["data"])
elif event["name"] == "refined_agent_answer":
return cast(AgentAnswerPiece, event["data"])
elif event["name"] == "start_refined_answer_creation":
return cast(ToolCallKickoff, event["data"])
elif event["name"] == "tool_response":
return cast(ToolResponse, event["data"])
elif event["name"] == "basic_response":
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
return None
# https://stackoverflow.com/questions/60226557/how-to-forcefully-close-an-async-generator
# https://stackoverflow.com/questions/40897428/please-explain-task-was-destroyed-but-it-is-pending-after-cancelling-tasks
task_references: set[asyncio.Task[StreamEvent]] = set()
def _manage_async_event_streaming(
compiled_graph: CompiledStateGraph,
config: AgentSearchConfig | None,
graph_input: MainInput_a | BasicInput,
) -> Iterable[StreamEvent]:
async def _run_async_event_stream() -> AsyncIterable[StreamEvent]:
message_id = config.message_id if config else None
async for event in compiled_graph.astream_events(
input=graph_input,
config={"metadata": {"config": config, "thread_id": str(message_id)}},
# debug=True,
# indicating v2 here deserves further scrutiny
version="v2",
):
yield event
# This might be able to be simplified
def _yield_async_to_sync() -> Iterable[StreamEvent]:
loop = asyncio.new_event_loop()
try:
# Get the async generator
async_gen = _run_async_event_stream()
# Convert to AsyncIterator
async_iter = async_gen.__aiter__()
while True:
try:
# Create a coroutine by calling anext with the async iterator
next_coro = anext(async_iter)
task = asyncio.ensure_future(next_coro, loop=loop)
task_references.add(task)
# Run the coroutine to get the next event
event = loop.run_until_complete(task)
yield event
except (StopAsyncIteration, GeneratorExit):
break
finally:
try:
for task in task_references.pop():
task.cancel()
except StopAsyncIteration:
pass
loop.close()
return _yield_async_to_sync()
def run_graph(
compiled_graph: CompiledStateGraph,
config: AgentSearchConfig,
input: BasicInput | MainInput_a,
) -> AnswerStream:
# TODO: add these to the environment
# config.perform_initial_search_path_decision = False
config.perform_initial_search_decomposition = True
config.allow_refinement = True
for event in _manage_async_event_streaming(
compiled_graph=compiled_graph, config=config, graph_input=input
):
if not (parsed_object := _parse_agent_event(event)):
continue
yield parsed_object
# TODO: call this once on startup, TBD where and if it should be gated based
# on dev mode or not
def load_compiled_graph(graph_name: str) -> CompiledStateGraph:
main_graph_builder = (
main_graph_builder_a if graph_name == "a" else main_graph_builder_a
)
global _COMPILED_GRAPH
if _COMPILED_GRAPH is None:
graph = main_graph_builder()
_COMPILED_GRAPH = graph.compile()
return _COMPILED_GRAPH
def run_main_graph(
config: AgentSearchConfig,
graph_name: str = "a",
) -> AnswerStream:
compiled_graph = load_compiled_graph(graph_name)
if graph_name == "a":
input = MainInput_a(base_question=config.search_request.query, log_messages=[])
else:
input = MainInput_a(base_question=config.search_request.query, log_messages=[])
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
tool_name="agent_search_0",
tool_args={"query": config.search_request.query},
)
yield from run_graph(compiled_graph, config, input)
# TODO: unify input types, especially prosearchconfig
def run_basic_graph(
config: AgentSearchConfig,
) -> AnswerStream:
graph = basic_graph_builder()
compiled_graph = graph.compile()
# TODO: unify basic input
input = BasicInput()
return run_graph(compiled_graph, config, input)
if __name__ == "__main__":
from onyx.llm.factory import get_default_llms
now_start = datetime.now()
logger.debug(f"Start at {now_start}")
if GRAPH_NAME == "a":
graph = main_graph_builder_a()
else:
graph = main_graph_builder_a()
compiled_graph = graph.compile()
now_end = datetime.now()
logger.debug(f"Graph compiled in {now_end - now_start} seconds")
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
# query="what can you do with gitlab?",
# query="What are the guiding principles behind the development of cockroachDB",
# query="What are the temperatures in Munich, Hawaii, and New York?",
# query="When was Washington born?",
# query="What is Onyx?",
query="What is the difference between astronomy and astrology?",
)
# Joachim custom persona
with get_session_context_manager() as db_session:
config, search_tool = get_test_config(
db_session, primary_llm, fast_llm, search_request
)
# search_request.persona = get_persona_by_id(1, None, db_session)
config.use_persistence = True
# config.perform_initial_search_path_decision = False
config.perform_initial_search_decomposition = True
if GRAPH_NAME == "a":
input = MainInput_a(
base_question=config.search_request.query, log_messages=[]
)
else:
input = MainInput_a(
base_question=config.search_request.query, log_messages=[]
)
# with open("output.txt", "w") as f:
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):
# pass
if isinstance(output, ToolCallKickoff):
pass
elif isinstance(output, ExtendedToolResponse):
tool_responses.append(output.response)
logger.info(
f" ---- ET {output.level} - {output.level_question_nr} | "
)
elif isinstance(output, SubQueryPiece):
logger.info(
f"Sq {output.level} - {output.level_question_nr} - {output.sub_query} | "
)
elif isinstance(output, SubQuestionPiece):
logger.info(
f"SQ {output.level} - {output.level_question_nr} - {output.sub_question} | "
)
elif (
isinstance(output, AgentAnswerPiece)
and output.answer_type == "agent_sub_answer"
):
logger.info(
f" ---- SA {output.level} - {output.level_question_nr} {output.answer_piece} | "
)
elif (
isinstance(output, AgentAnswerPiece)
and output.answer_type == "agent_level_answer"
):
logger.info(
f" ---------- FA {output.level} - {output.level_question_nr} {output.answer_piece} | "
)
elif isinstance(output, RefinedAnswerImprovement):
logger.info(f" ---------- RE {output.refined_answer_improvement} | ")
# for tool_response in tool_responses:
# logger.debug(tool_response)

View File

@@ -0,0 +1,100 @@
from langchain.schema import AIMessage
from langchain.schema import HumanMessage
from langchain.schema import SystemMessage
from langchain_core.messages.tool import ToolMessage
from onyx.agents.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT_v2
from onyx.agents.agent_search.shared_graph_utils.prompts import HISTORY_PROMPT
from onyx.agents.agent_search.shared_graph_utils.utils import get_today_prompt
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.context.search.models import InferenceSection
from onyx.llm.interfaces import LLMConfig
from onyx.llm.utils import get_max_input_tokens
from onyx.natural_language_processing.utils import get_tokenizer
from onyx.natural_language_processing.utils import tokenizer_trim_content
def build_sub_question_answer_prompt(
question: str,
original_question: str,
docs: list[InferenceSection],
persona_specification: str,
config: LLMConfig,
) -> list[SystemMessage | HumanMessage | AIMessage | ToolMessage]:
system_message = SystemMessage(
content=persona_specification,
)
date_str = get_today_prompt()
docs_format_list = [
f"""Document Number: [D{doc_nr + 1}]\n
Content: {doc.combined_content}\n\n"""
for doc_nr, doc in enumerate(docs)
]
docs_str = "\n\n".join(docs_format_list)
docs_str = trim_prompt_piece(
config, docs_str, BASE_RAG_PROMPT_v2 + question + original_question + date_str
)
human_message = HumanMessage(
content=BASE_RAG_PROMPT_v2.format(
question=question,
original_question=original_question,
context=docs_str,
date_prompt=date_str,
)
)
return [system_message, human_message]
def trim_prompt_piece(config: LLMConfig, prompt_piece: str, reserved_str: str) -> str:
# TODO: this truncating might add latency. We could do a rougher + faster check
# first to determine whether truncation is needed
# TODO: maybe save the tokenizer and max input tokens if this is getting called multiple times?
llm_tokenizer = get_tokenizer(
provider_type=config.model_provider,
model_name=config.model_name,
)
max_tokens = get_max_input_tokens(
model_provider=config.model_provider,
model_name=config.model_name,
)
# slightly conservative trimming
return tokenizer_trim_content(
content=prompt_piece,
desired_length=max_tokens - len(llm_tokenizer.encode(reserved_str)),
tokenizer=llm_tokenizer,
)
def build_history_prompt(prompt_builder: AnswerPromptBuilder | None) -> str:
if prompt_builder is None:
return ""
if prompt_builder.single_message_history is not None:
history = prompt_builder.single_message_history
else:
history_components = []
previous_message_type = None
for message in prompt_builder.raw_message_history:
if "user" in message.message_type:
history_components.append(f"User: {message.message}\n")
previous_message_type = "user"
elif "assistant" in message.message_type:
# only use the last agent answer for the history
if previous_message_type != "assistant":
history_components.append(f"You/Agent: {message.message}\n")
else:
history_components = history_components[:-1]
history_components.append(f"You/Agent: {message.message}\n")
previous_message_type = "assistant"
else:
continue
history = "\n".join(history_components)
return HISTORY_PROMPT.format(history=history) if history else ""

View File

@@ -0,0 +1,98 @@
import numpy as np
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitScoreMetrics
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.chat.models import SectionRelevancePiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
logger = setup_logger()
def unique_chunk_id(doc: InferenceSection) -> str:
return f"{doc.center_chunk.document_id}_{doc.center_chunk.chunk_id}"
def calculate_rank_shift(list1: list, list2: list, top_n: int = 20) -> float:
shift = 0
for rank_first, doc_id in enumerate(list1[:top_n], 1):
try:
rank_second = list2.index(doc_id) + 1
except ValueError:
rank_second = len(list2) # Document not found in second list
shift += np.abs(rank_first - rank_second) / np.log(1 + rank_first * rank_second)
return shift / top_n
def get_fit_scores(
pre_reranked_results: list[InferenceSection],
post_reranked_results: list[InferenceSection] | list[SectionRelevancePiece],
) -> RetrievalFitStats | None:
"""
Calculate retrieval metrics for search purposes
"""
if len(pre_reranked_results) == 0 or len(post_reranked_results) == 0:
return None
ranked_sections = {
"initial": pre_reranked_results,
"reranked": post_reranked_results,
}
fit_eval: RetrievalFitStats = RetrievalFitStats(
fit_score_lift=0,
rerank_effect=0,
fit_scores={
"initial": RetrievalFitScoreMetrics(scores={}, chunk_ids=[]),
"reranked": RetrievalFitScoreMetrics(scores={}, chunk_ids=[]),
},
)
for rank_type, docs in ranked_sections.items():
logger.debug(f"rank_type: {rank_type}")
for i in [1, 5, 10]:
fit_eval.fit_scores[rank_type].scores[str(i)] = (
sum(
[
float(doc.center_chunk.score)
for doc in docs[:i]
if type(doc) == InferenceSection
and doc.center_chunk.score is not None
]
)
/ i
)
fit_eval.fit_scores[rank_type].scores["fit_score"] = (
1
/ 3
* (
fit_eval.fit_scores[rank_type].scores["1"]
+ fit_eval.fit_scores[rank_type].scores["5"]
+ fit_eval.fit_scores[rank_type].scores["10"]
)
)
fit_eval.fit_scores[rank_type].scores["fit_score"] = fit_eval.fit_scores[
rank_type
].scores["1"]
fit_eval.fit_scores[rank_type].chunk_ids = [
unique_chunk_id(doc) for doc in docs if type(doc) == InferenceSection
]
fit_eval.fit_score_lift = (
fit_eval.fit_scores["reranked"].scores["fit_score"]
/ fit_eval.fit_scores["initial"].scores["fit_score"]
)
fit_eval.rerank_effect = calculate_rank_shift(
fit_eval.fit_scores["initial"].chunk_ids,
fit_eval.fit_scores["reranked"].chunk_ids,
)
return fit_eval

View File

@@ -0,0 +1,113 @@
from typing import Literal
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search_a.main.models import AgentAdditionalMetrics
from onyx.agents.agent_search.deep_search_a.main.models import AgentBaseMetrics
from onyx.agents.agent_search.deep_search_a.main.models import AgentRefinedMetrics
from onyx.agents.agent_search.deep_search_a.main.models import AgentTimings
from onyx.context.search.models import InferenceSection
from onyx.tools.models import SearchQueryInfo
# Pydantic models for structured outputs
class RewrittenQueries(BaseModel):
rewritten_queries: list[str]
class BinaryDecision(BaseModel):
decision: Literal["yes", "no"]
class BinaryDecisionWithReasoning(BaseModel):
reasoning: str
decision: Literal["yes", "no"]
class RetrievalFitScoreMetrics(BaseModel):
scores: dict[str, float]
chunk_ids: list[str]
class RetrievalFitStats(BaseModel):
fit_score_lift: float
rerank_effect: float
fit_scores: dict[str, RetrievalFitScoreMetrics]
class AgentChunkScores(BaseModel):
scores: dict[str, dict[str, list[int | float]]]
class AgentChunkStats(BaseModel):
verified_count: int | None = None
verified_avg_scores: float | None = None
rejected_count: int | None = None
rejected_avg_scores: float | None = None
verified_doc_chunk_ids: list[str] = []
dismissed_doc_chunk_ids: list[str] = []
class InitialAgentResultStats(BaseModel):
sub_questions: dict[str, float | int | None]
original_question: dict[str, float | int | None]
agent_effectiveness: dict[str, float | int | None]
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
class Term(BaseModel):
term_name: str = ""
term_type: str = ""
term_similar_to: list[str] = []
### Models ###
class Entity(BaseModel):
entity_name: str = ""
entity_type: str = ""
class Relationship(BaseModel):
relationship_name: str = ""
relationship_type: str = ""
relationship_entities: list[str] = []
class EntityRelationshipTermExtraction(BaseModel):
entities: list[Entity] = []
relationships: list[Relationship] = []
terms: list[Term] = []
### Models ###
class QueryResult(BaseModel):
query: str
search_results: list[InferenceSection]
stats: RetrievalFitStats | None
query_info: SearchQueryInfo | None
class QuestionAnswerResults(BaseModel):
question: str
question_id: str
answer: str
quality: str
expanded_retrieval_results: list[QueryResult]
documents: list[InferenceSection]
context_documents: list[InferenceSection]
sub_question_retrieval_stats: AgentChunkStats
class CombinedAgentMetrics(BaseModel):
timings: AgentTimings
base_metrics: AgentBaseMetrics | None
refined_metrics: AgentRefinedMetrics
additional_metrics: AgentAdditionalMetrics

View File

@@ -0,0 +1,31 @@
from onyx.agents.agent_search.shared_graph_utils.models import (
QuestionAnswerResults,
)
from onyx.chat.prune_and_merge import _merge_sections
from onyx.context.search.models import InferenceSection
def dedup_inference_sections(
list1: list[InferenceSection], list2: list[InferenceSection]
) -> list[InferenceSection]:
deduped = _merge_sections(list1 + list2)
return deduped
def dedup_question_answer_results(
question_answer_results_1: list[QuestionAnswerResults],
question_answer_results_2: list[QuestionAnswerResults],
) -> list[QuestionAnswerResults]:
deduped_question_answer_results: list[
QuestionAnswerResults
] = question_answer_results_1
utilized_question_ids: set[str] = set(
[x.question_id for x in question_answer_results_1]
)
for question_answer_result in question_answer_results_2:
if question_answer_result.question_id not in utilized_question_ids:
deduped_question_answer_results.append(question_answer_result)
utilized_question_ids.add(question_answer_result.question_id)
return deduped_question_answer_results

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,327 @@
import ast
import json
import re
from collections.abc import Callable
from collections.abc import Iterator
from collections.abc import Sequence
from datetime import datetime
from datetime import timedelta
from typing import Any
from typing import cast
from uuid import UUID
from langchain_core.callbacks.manager import dispatch_custom_event
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from sqlalchemy.orm import Session
from onyx.agents.agent_search.models import AgentSearchConfig
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.prompts import DATE_PROMPT
from onyx.chat.models import AnswerStyleConfig
from onyx.chat.models import CitationConfig
from onyx.chat.models import DocumentPruningConfig
from onyx.chat.models import PromptConfig
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
from onyx.context.search.enums import LLMEvaluationType
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import RetrievalDetails
from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.interfaces import LLM
from onyx.tools.force import ForceUseTool
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
def normalize_whitespace(text: str) -> str:
"""Normalize whitespace in text to single spaces and strip leading/trailing whitespace."""
import re
return re.sub(r"\s+", " ", text.strip())
# Post-processing
def format_docs(docs: Sequence[InferenceSection]) -> str:
formatted_doc_list = []
for doc_nr, doc in enumerate(docs):
formatted_doc_list.append(f"Document D{doc_nr + 1}:\n{doc.combined_content}")
return "\n\n".join(formatted_doc_list)
def format_docs_content_flat(docs: Sequence[InferenceSection]) -> str:
formatted_doc_list = []
for _, doc in enumerate(docs):
formatted_doc_list.append(f"\n...{doc.combined_content}\n")
return "\n\n".join(formatted_doc_list)
def clean_and_parse_list_string(json_string: str) -> list[dict]:
# Remove any prefixes/labels before the actual JSON content
json_string = re.sub(r"^.*?(?=\[)", "", json_string, flags=re.DOTALL)
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Try parsing with json.loads first, fall back to ast.literal_eval
try:
return json.loads(cleaned_string)
except json.JSONDecodeError:
try:
return ast.literal_eval(cleaned_string)
except (ValueError, SyntaxError) as e:
raise ValueError(f"Failed to parse JSON string: {cleaned_string}") from e
def clean_and_parse_json_string(json_string: str) -> dict[str, Any]:
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Parse the cleaned string into a Python dictionary
return json.loads(cleaned_string)
def format_entity_term_extraction(
entity_term_extraction_dict: EntityRelationshipTermExtraction,
) -> str:
entities = entity_term_extraction_dict.entities
terms = entity_term_extraction_dict.terms
relationships = entity_term_extraction_dict.relationships
entity_strs = ["\nEntities:\n"]
for entity in entities:
entity_str = f"{entity.entity_name} ({entity.entity_type})"
entity_strs.append(entity_str)
entity_str = "\n - ".join(entity_strs)
relationship_strs = ["\n\nRelationships:\n"]
for relationship in relationships:
relationship_name = relationship.relationship_name
relationship_type = relationship.relationship_type
relationship_entities = relationship.relationship_entities
relationship_str = (
f"""{relationship_name} ({relationship_type}): {relationship_entities}"""
)
relationship_strs.append(relationship_str)
relationship_str = "\n - ".join(relationship_strs)
term_strs = ["\n\nTerms:\n"]
for term in terms:
term_str = f"{term.term_name} ({term.term_type}): similar to {', '.join(term.term_similar_to)}"
term_strs.append(term_str)
term_str = "\n - ".join(term_strs)
return "\n".join(entity_strs + relationship_strs + term_strs)
def _format_time_delta(time: timedelta) -> str:
seconds_from_start = f"{((time).seconds):03d}"
microseconds_from_start = f"{((time).microseconds):06d}"
return f"{seconds_from_start}.{microseconds_from_start}"
def generate_log_message(
message: str,
node_start_time: datetime,
graph_start_time: datetime | None = None,
) -> str:
current_time = datetime.now()
if graph_start_time is not None:
graph_time_str = _format_time_delta(current_time - graph_start_time)
else:
graph_time_str = "N/A"
node_time_str = _format_time_delta(current_time - node_start_time)
return f"{graph_time_str} ({node_time_str} s): {message}"
def get_test_config(
db_session: Session,
primary_llm: LLM,
fast_llm: LLM,
search_request: SearchRequest,
use_agentic_search: bool = True,
) -> tuple[AgentSearchConfig, SearchTool]:
persona = get_persona_by_id(DEFAULT_PERSONA_ID, None, db_session)
document_pruning_config = DocumentPruningConfig(
max_chunks=int(
persona.num_chunks
if persona.num_chunks is not None
else MAX_CHUNKS_FED_TO_CHAT
),
max_window_percentage=CHAT_TARGET_CHUNK_PERCENTAGE,
)
answer_style_config = AnswerStyleConfig(
citation_config=CitationConfig(
# The docs retrieved by this flow are already relevance-filtered
all_docs_useful=True
),
document_pruning_config=document_pruning_config,
structured_response_format=None,
)
search_tool_config = SearchToolConfig(
answer_style_config=answer_style_config,
document_pruning_config=document_pruning_config,
retrieval_options=RetrievalDetails(), # may want to set dedupe_docs=True
rerank_settings=None, # Can use this to change reranking model
selected_sections=None,
latest_query_files=None,
bypass_acl=False,
)
prompt_config = PromptConfig.from_model(persona.prompts[0])
search_tool = SearchTool(
db_session=db_session,
user=None,
persona=persona,
retrieval_options=search_tool_config.retrieval_options,
prompt_config=prompt_config,
llm=primary_llm,
fast_llm=fast_llm,
pruning_config=search_tool_config.document_pruning_config,
answer_style_config=search_tool_config.answer_style_config,
selected_sections=search_tool_config.selected_sections,
chunks_above=search_tool_config.chunks_above,
chunks_below=search_tool_config.chunks_below,
full_doc=search_tool_config.full_doc,
evaluation_type=(
LLMEvaluationType.BASIC
if persona.llm_relevance_filter
else LLMEvaluationType.SKIP
),
rerank_settings=search_tool_config.rerank_settings,
bypass_acl=search_tool_config.bypass_acl,
)
config = AgentSearchConfig(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
search_tool=search_tool,
force_use_tool=ForceUseTool(force_use=False, tool_name=""),
prompt_builder=AnswerPromptBuilder(
user_message=HumanMessage(content=search_request.query),
message_history=[],
llm_config=primary_llm.config,
raw_user_query=search_request.query,
raw_user_uploaded_files=[],
),
# chat_session_id=UUID("123e4567-e89b-12d3-a456-426614174000"),
chat_session_id=UUID("edda10d5-6cef-45d8-acfb-39317552a1f4"), # Joachim
# chat_session_id=UUID("d1acd613-2692-4bc3-9d65-c6d3da62e58e"), # Evan
message_id=1,
use_persistence=True,
db_session=db_session,
tools=[search_tool],
use_agentic_search=use_agentic_search,
)
return config, search_tool
def get_persona_prompt(persona: Persona | None) -> str:
if persona is None:
return ""
else:
return "\n".join([x.system_prompt for x in persona.prompts])
def make_question_id(level: int, question_nr: int) -> str:
return f"{level}_{question_nr}"
def parse_question_id(question_id: str) -> tuple[int, int]:
level, question_nr = question_id.split("_")
return int(level), int(question_nr)
def _dispatch_nonempty(
content: str, dispatch_event: Callable[[str, int], None], num: int
) -> None:
if content != "":
dispatch_event(content, num)
def dispatch_separated(
token_itr: Iterator[BaseMessage],
dispatch_event: Callable[[str, int], None],
sep: str = "\n",
) -> list[str | list[str | dict[str, Any]]]:
num = 1
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
for message in token_itr:
content = cast(str, message.content)
if sep in content:
sub_question_parts = content.split(sep)
_dispatch_nonempty(sub_question_parts[0], dispatch_event, num)
num += 1
_dispatch_nonempty(
"".join(sub_question_parts[1:]).strip(), dispatch_event, num
)
else:
_dispatch_nonempty(content, dispatch_event, num)
streamed_tokens.append(content)
return streamed_tokens
def dispatch_main_answer_stop_info(level: int) -> None:
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type="main_answer",
level=level,
)
dispatch_custom_event("stream_finished", stop_event)
def get_today_prompt() -> str:
return DATE_PROMPT.format(date=datetime.now().strftime("%A, %B %d, %Y"))
def retrieve_search_docs(
search_tool: SearchTool, question: str
) -> list[InferenceSection]:
retrieved_docs: list[InferenceSection] = []
# new db session to avoid concurrency issues
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=question,
force_no_rerank=True,
alternate_db_session=db_session,
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
response = cast(SearchResponseSummary, tool_response.response)
retrieved_docs = response.top_sections
break
return retrieved_docs

View File

@@ -23,7 +23,6 @@ def load_no_auth_user_preferences(store: KeyValueStore) -> UserPreferences:
preferences_data = cast(
Mapping[str, Any], store.load(KV_NO_AUTH_USER_PREFERENCES_KEY)
)
print("preferences_data", preferences_data)
return UserPreferences(**preferences_data)
except KvKeyNotFoundError:
return UserPreferences(

View File

@@ -47,3 +47,8 @@ class UserUpdate(schemas.BaseUserUpdate):
Role updates are not allowed through the user update endpoint for security reasons
Role changes should be handled through a separate, admin-only process
"""
class AuthBackend(str, Enum):
REDIS = "redis"
POSTGRES = "postgres"

View File

@@ -33,6 +33,8 @@ from fastapi_users.authentication import AuthenticationBackend
from fastapi_users.authentication import CookieTransport
from fastapi_users.authentication import RedisStrategy
from fastapi_users.authentication import Strategy
from fastapi_users.authentication.strategy.db import AccessTokenDatabase
from fastapi_users.authentication.strategy.db import DatabaseStrategy
from fastapi_users.exceptions import UserAlreadyExists
from fastapi_users.jwt import decode_jwt
from fastapi_users.jwt import generate_jwt
@@ -52,13 +54,15 @@ from onyx.auth.api_key import get_hashed_api_key_from_request
from onyx.auth.email_utils import send_forgot_password_email
from onyx.auth.email_utils import send_user_verification_email
from onyx.auth.invited_users import get_invited_users
from onyx.auth.schemas import AuthBackend
from onyx.auth.schemas import UserCreate
from onyx.auth.schemas import UserRole
from onyx.auth.schemas import UserUpdate
from onyx.configs.app_configs import AUTH_BACKEND
from onyx.configs.app_configs import AUTH_COOKIE_EXPIRE_TIME_SECONDS
from onyx.configs.app_configs import AUTH_TYPE
from onyx.configs.app_configs import DISABLE_AUTH
from onyx.configs.app_configs import EMAIL_CONFIGURED
from onyx.configs.app_configs import REDIS_AUTH_EXPIRE_TIME_SECONDS
from onyx.configs.app_configs import REDIS_AUTH_KEY_PREFIX
from onyx.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from onyx.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
@@ -74,6 +78,7 @@ from onyx.configs.constants import OnyxRedisLocks
from onyx.configs.constants import PASSWORD_SPECIAL_CHARS
from onyx.configs.constants import UNNAMED_KEY_PLACEHOLDER
from onyx.db.api_key import fetch_user_for_api_key
from onyx.db.auth import get_access_token_db
from onyx.db.auth import get_default_admin_user_emails
from onyx.db.auth import get_user_count
from onyx.db.auth import get_user_db
@@ -82,6 +87,7 @@ from onyx.db.engine import get_async_session
from onyx.db.engine import get_async_session_with_tenant
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session_with_tenant
from onyx.db.models import AccessToken
from onyx.db.models import OAuthAccount
from onyx.db.models import User
from onyx.db.users import get_user_by_email
@@ -209,6 +215,7 @@ def verify_email_domain(email: str) -> None:
class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
reset_password_token_secret = USER_AUTH_SECRET
verification_token_secret = USER_AUTH_SECRET
verification_token_lifetime_seconds = AUTH_COOKIE_EXPIRE_TIME_SECONDS
user_db: SQLAlchemyUserDatabase[User, uuid.UUID]
@@ -580,6 +587,14 @@ def get_redis_strategy() -> RedisStrategy:
return TenantAwareRedisStrategy()
def get_database_strategy(
access_token_db: AccessTokenDatabase[AccessToken] = Depends(get_access_token_db),
) -> DatabaseStrategy:
return DatabaseStrategy(
access_token_db, lifetime_seconds=SESSION_EXPIRE_TIME_SECONDS
)
class TenantAwareRedisStrategy(RedisStrategy[User, uuid.UUID]):
"""
A custom strategy that fetches the actual async Redis connection inside each method.
@@ -588,7 +603,7 @@ class TenantAwareRedisStrategy(RedisStrategy[User, uuid.UUID]):
def __init__(
self,
lifetime_seconds: Optional[int] = REDIS_AUTH_EXPIRE_TIME_SECONDS,
lifetime_seconds: Optional[int] = SESSION_EXPIRE_TIME_SECONDS,
key_prefix: str = REDIS_AUTH_KEY_PREFIX,
):
self.lifetime_seconds = lifetime_seconds
@@ -637,9 +652,16 @@ class TenantAwareRedisStrategy(RedisStrategy[User, uuid.UUID]):
await redis.delete(f"{self.key_prefix}{token}")
auth_backend = AuthenticationBackend(
name="redis", transport=cookie_transport, get_strategy=get_redis_strategy
)
if AUTH_BACKEND == AuthBackend.REDIS:
auth_backend = AuthenticationBackend(
name="redis", transport=cookie_transport, get_strategy=get_redis_strategy
)
elif AUTH_BACKEND == AuthBackend.POSTGRES:
auth_backend = AuthenticationBackend(
name="postgres", transport=cookie_transport, get_strategy=get_database_strategy
)
else:
raise ValueError(f"Invalid auth backend: {AUTH_BACKEND}")
class FastAPIUserWithLogoutRouter(FastAPIUsers[models.UP, models.ID]):

View File

@@ -23,8 +23,7 @@ from onyx.background.celery.celery_utils import celery_is_worker_primary
from onyx.configs.constants import ONYX_CLOUD_CELERY_TASK_PREFIX
from onyx.configs.constants import OnyxRedisLocks
from onyx.db.engine import get_sqlalchemy_engine
from onyx.document_index.vespa.shared_utils.utils import get_vespa_http_client
from onyx.document_index.vespa_constants import VESPA_CONFIG_SERVER_URL
from onyx.document_index.vespa.shared_utils.utils import wait_for_vespa_with_timeout
from onyx.redis.redis_connector import RedisConnector
from onyx.redis.redis_connector_credential_pair import RedisConnectorCredentialPair
from onyx.redis.redis_connector_delete import RedisConnectorDelete
@@ -280,51 +279,6 @@ def wait_for_db(sender: Any, **kwargs: Any) -> None:
return
def wait_for_vespa(sender: Any, **kwargs: Any) -> None:
"""Waits for Vespa to become ready subject to a hardcoded timeout.
Will raise WorkerShutdown to kill the celery worker if the timeout is reached."""
WAIT_INTERVAL = 5
WAIT_LIMIT = 60
ready = False
time_start = time.monotonic()
logger.info("Vespa: Readiness probe starting.")
while True:
try:
client = get_vespa_http_client()
response = client.get(f"{VESPA_CONFIG_SERVER_URL}/state/v1/health")
response.raise_for_status()
response_dict = response.json()
if response_dict["status"]["code"] == "up":
ready = True
break
except Exception:
pass
time_elapsed = time.monotonic() - time_start
if time_elapsed > WAIT_LIMIT:
break
logger.info(
f"Vespa: Readiness probe ongoing. elapsed={time_elapsed:.1f} timeout={WAIT_LIMIT:.1f}"
)
time.sleep(WAIT_INTERVAL)
if not ready:
msg = (
f"Vespa: Readiness probe did not succeed within the timeout "
f"({WAIT_LIMIT} seconds). Exiting..."
)
logger.error(msg)
raise WorkerShutdown(msg)
logger.info("Vespa: Readiness probe succeeded. Continuing...")
return
def on_secondary_worker_init(sender: Any, **kwargs: Any) -> None:
logger.info("Running as a secondary celery worker.")
@@ -510,3 +464,13 @@ def reset_tenant_id(
) -> None:
"""Signal handler to reset tenant ID in context var after task ends."""
CURRENT_TENANT_ID_CONTEXTVAR.set(POSTGRES_DEFAULT_SCHEMA)
def wait_for_vespa_or_shutdown(sender: Any, **kwargs: Any) -> None:
"""Waits for Vespa to become ready subject to a timeout.
Raises WorkerShutdown if the timeout is reached."""
if not wait_for_vespa_with_timeout():
msg = "Vespa: Readiness probe did not succeed within the timeout. Exiting..."
logger.error(msg)
raise WorkerShutdown(msg)

View File

@@ -81,7 +81,7 @@ class DynamicTenantScheduler(PersistentScheduler):
cloud_task = {
"task": task["task"],
"schedule": task["schedule"],
"kwargs": {},
"kwargs": task.get("kwargs", {}),
}
if options := task.get("options"):
logger.debug(f"Adding options to task {task_name}: {options}")

View File

@@ -62,7 +62,7 @@ def on_worker_init(sender: Worker, **kwargs: Any) -> None:
app_base.wait_for_redis(sender, **kwargs)
app_base.wait_for_db(sender, **kwargs)
app_base.wait_for_vespa(sender, **kwargs)
app_base.wait_for_vespa_or_shutdown(sender, **kwargs)
# Less startup checks in multi-tenant case
if MULTI_TENANT:

Some files were not shown because too many files have changed in this diff Show More