Compare commits

..

219 Commits

Author SHA1 Message Date
pablonyx
9087320a06 fix 2025-03-06 14:46:20 -08:00
pablonyx
b0af1458c0 ensure checks pass 2025-03-06 14:46:20 -08:00
pablonyx
bb67a7a122 remove unnecessary logs 2025-03-06 14:46:20 -08:00
pablonyx
e239dc31c1 rename 2025-03-06 14:46:19 -08:00
pablonyx
027128502c add csl 2025-03-06 14:46:19 -08:00
Chris Weaver
a7a374dc81 Confluence fixes (#4220)
* Confluence fixes

* Small tweak

* Address greptile comments
2025-03-06 20:57:07 +00:00
rkuo-danswer
facc8cc2fa add scope needed for permission sync (#4198)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-06 20:03:38 +00:00
rkuo-danswer
2c0af0a0ca Feature/helm updates (#4201)
* add ingress for api and web

* helm setup docs

* add letsencrypt. close blocks

* use pathType ImplementationSpecific as Prefix is deprecated

* fix backend labels. configure nginx routes. update annotations

* fix linting

---------

Co-authored-by: Sajjad Anwar <sajjadkm@gmail.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-06 19:48:20 +00:00
pablonyx
bfbc1cd954 k (#4172) 2025-03-06 18:55:12 +00:00
pablonyx
626da583aa Fix gated tenants (#4177)
* fix

* mypy .
2025-03-06 18:07:15 +00:00
pablonyx
92faca139d Fix extra tenant mystery (#4197)
* fix extra tenant mystery

* nit
2025-03-06 18:06:49 +00:00
pablonyx
cec05c5ee9 Revert "k"
This reverts commit 687122911d.
2025-03-06 09:38:31 -08:00
Richard Kuo (Danswer)
eaf054ef06 oauth router went missing? 2025-03-05 15:50:23 -08:00
pablonyx
a7a1a24658 minor nit 2025-03-05 15:35:02 -08:00
pablonyx
687122911d k 2025-03-05 15:27:14 -08:00
pablonyx
40953bd4fe Workspace configs (#4202) 2025-03-05 12:28:44 -08:00
rkuo-danswer
a7acc07e79 fix usage report pagination (#4183)
* early work in progress

* rename utility script

* move actual data seeding to a shareable function

* add test

* make the test pass with the fix

* fix comment

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-05 19:13:51 +00:00
pablonyx
b6e9e65bb8 * Replaces Amazon and Anthropic Icons with version better suitable fo… (#4190)
* * Replaces Amazon and Anthropic Icons with version better suitable for both Dark and  Light modes;
* Adds icon for DeepSeek;
* Simplify logic on icon selection;
* Adds entries for Phi-4, Claude 3.7, Ministral and Gemini 2.0 models

* nit

* k

* k

---------

Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
2025-03-05 17:57:39 +00:00
pablonyx
20f2b9b2bb Add image support for search (#4090)
* add support for image search

* quick fix up

* k

* k

* k

* k

* nit

* quick fix for connector tests
2025-03-05 17:44:18 +00:00
Chris Weaver
f731beca1f Add ONYX_QUERY_HISTORY_TYPE to the dev compose files (#4196) 2025-03-05 17:34:55 +00:00
Weves
fe246aecbb Attempt to address tool happy claude 2025-03-05 09:47:27 -08:00
pablonyx
50ad066712 Better filtering (#4185)
* k

* k

* k

* k

* k
2025-03-05 04:35:50 +00:00
rkuo-danswer
870b59a1cc Bugfix/vertex crash (#4181)
* Update text embedding model to version 005 and enhance embedding retrieval process

* re

* Fix formatting issues

* Add support for Bedrock reranking provider and AWS credentials handling

* fix: improve AWS key format validation and error messages

* Fix vertex embedding model crash

* feat: add environment template for local development setup

* Add display name for Claude 3.7 Sonnet model

* Add display names for Gemini 2.0 models and update Claude 3.7 Sonnet entry

* Fix ruff errors by ensuring lines are within 130 characters

* revert to currently default onyx browser settings

* add / fix boto requirements

---------

Co-authored-by: ferdinand loesch <f.loesch@sportradar.com>
Co-authored-by: Ferdinand Loesch <ferdinandloesch@me.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-05 01:59:46 +00:00
pablonyx
5c896cb0f7 add minor fixes (#4170) 2025-03-04 20:29:28 +00:00
pablonyx
184b30643d Nit: logging adjustments (#4182) 2025-03-04 11:39:53 -08:00
pablonyx
ae585fd84c Delete all chats (#4171)
* nit

* k
2025-03-04 10:00:08 -08:00
rkuo-danswer
61e8f371b9 fix blowing up the entire task on exception and trying to reuse an in… (#4179)
* fix blowing up the entire task on exception and trying to reuse an invalid db session

* list comprehension

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-04 00:57:27 +00:00
rkuo-danswer
33cc4be492 Bugfix/GitHub validation (#4173)
* fixing unexpected errors disabling connectors

* rename UnexpectedError to UnexpectedValidationError

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-04 00:09:49 +00:00
joachim-danswer
117c8c0d78 Enable ephemeral message responses by Onyx Slack Bots (#4142)
A new setting 'is_ephemeral' has been added to the Slack channel configurations. 

Key features/effects:

  - if is_ephemeral is set for standard channel (and a Search Assistant is chosen):
     - the answer is only shown to user as an ephemeral message
     - the user has access to his private documents for a search (as the answer is only shown to them) 
     - the user has the ability to share the answer with the channel or keep private
     - a recipient list cannot be defined if the channel is set up as ephemeral
 
  - if is_ephemeral is set and DM with bot:
    - the user has access to private docs in searches
    - the message is not sent as ephemeral, as it is a 1:1 discussion with bot

 - if is_ephemeral is not set but recipient list is set:
    - the user search does *not* have access to their private documents as the information goes to the recipient list team members, and they may have different access rights

 - Overall:
     - Unless the channel is set to is_ephemeral or it is a direct conversation with the Bot, only public docs are accessible  
     - The ACL is never bypassed, also not in cases where the admin explicitly attached a document set to the bot config.
2025-03-03 15:02:21 -08:00
rkuo-danswer
9bb8cdfff1 fix web connector tests to handle new deduping (#4175)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-03-03 20:54:20 +00:00
Weves
a52d0d29be Small tweak to NumberInput 2025-03-03 11:20:53 -08:00
Chris Weaver
f25e1e80f6 Add option to not re-index (#4157)
* Add option to not re-index

* Add quantizaton / dimensionality override support

* Fix build / ut
2025-03-03 10:54:11 -08:00
Yuhong Sun
39fd6919ad Fix web scrolling 2025-03-03 09:00:05 -08:00
Yuhong Sun
7f0653d173 Handling of #! sites (#4169) 2025-03-03 08:18:44 -08:00
SubashMohan
e9905a398b Enhance iframe content extraction and add thresholds for JavaScript disabled scenarios (#4167) 2025-03-02 19:29:10 -08:00
Brad Slavin
3ed44e8bae Update Unstructured documentation URL to new location (#4168) 2025-03-02 19:16:38 -08:00
pablonyx
64158a5bdf silence_logs (#4165) 2025-03-02 19:00:59 +00:00
pablonyx
afb2393596 fix dark mode index attempt failure (#4163) 2025-03-02 01:23:16 +00:00
pablonyx
d473c4e876 Fix curator default persona editing (#4158)
* k

* k
2025-03-02 00:40:14 +00:00
pablonyx
692058092f fix typo 2025-03-01 13:00:07 -08:00
pablonyx
e88325aad6 bump version (#4164) 2025-03-01 01:58:45 +00:00
pablonyx
7490250e91 Fix user group edge case (#4159)
* fix user group

* k
2025-02-28 23:55:21 +00:00
pablonyx
e5369fcef8 Update warning copy (#4160)
* k

* k

* quick nit
2025-02-28 23:46:21 +00:00
Yuhong Sun
b0f00953bc Add CODEOWNERS 2025-02-28 13:57:33 -08:00
rkuo-danswer
f6a75c86c6 Bugfix/emit background error (#4156)
* print the test name when it runs

* type hints

* can't reuse session after an exception

* better logging

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-28 18:35:24 +00:00
pablonyx
ed9989282f nit- update casing enforcement on frontend 2025-02-28 10:09:06 -08:00
pablonyx
e80a0f2716 Improved google connector flow (#4155)
* fix handling

* k

* k

* fix function

* k

* k
2025-02-28 05:13:39 +00:00
rkuo-danswer
909403a648 Feature/confluence oauth (#3477)
* first cut at slack oauth flow

* fix usage of hooks

* fix button spacing

* add additional error logging

* no dev redirect

* early cut at google drive oauth

* second pass

* switch to production uri's

* try handling oauth_interactive differently

* pass through client id and secret if uploaded

* fix call

* fix test

* temporarily disable check for testing

* Revert "temporarily disable check for testing"

This reverts commit 4b5a022a5f.

* support visibility in test

* missed file

* first cut at confluence oauth

* work in progress

* work in progress

* work in progress

* work in progress

* work in progress

* first cut at distributed locking

* WIP to make test work

* add some dev mode affordances and gate usage of redis behind dynamic credentials

* mypy and credentials provider fixes

* WIP

* fix created at

* fix setting initialValue on everything

* remove debugging, fix ??? some TextFormField issues

* npm fixes

* comment cleanup

* fix comments

* pin the size of the card section

* more review fixes

* more fixes

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-28 03:48:51 +00:00
pablonyx
cd84b65011 quick fix (#4154) 2025-02-28 02:03:34 +00:00
pablonyx
413f21cec0 Filter assistants fix (#4153)
* k

* quick nit

* minor assistant filtering fix
2025-02-28 02:03:21 +00:00
pablonyx
eb369384a7 Log server side auth error + slackbot pagination fix (#4149) 2025-02-27 18:05:28 -08:00
pablonyx
0a24dbc52c k# Please enter the commit message for your changes. Lines starting (#4144) 2025-02-27 23:34:20 +00:00
pablonyx
a7ba0da8cc Lowercase multi tenant email mapping (#4141) 2025-02-27 15:33:40 -08:00
Richard Kuo (Danswer)
aaced6d551 scan images 2025-02-27 15:25:29 -08:00
Richard Kuo (Danswer)
4c230f92ea trivy test 2025-02-27 15:05:03 -08:00
Richard Kuo (Danswer)
07d75b04d1 enable trivy scan 2025-02-27 14:22:44 -08:00
evan-danswer
a8d10750c1 fix propagation of is_agentic (#4150) 2025-02-27 11:56:51 -08:00
pablonyx
85e3ed57f1 Order chat sessions by time updated, not created (#4143)
* order chat sessions by time updated, not created

* quick update

* k
2025-02-27 17:35:42 +00:00
pablonyx
e10cc8ccdb Multi tenant user google auth fix (#4145) 2025-02-27 10:35:38 -08:00
pablonyx
7018bc974b Better looking errors (#4050)
* add error handling

* fix

* k
2025-02-27 04:58:25 +00:00
pablonyx
9c9075d71d Minor improvements to provisioning (#4109)
* quick fix

* k

* nit
2025-02-27 04:57:31 +00:00
pablonyx
338e084062 Improved tenant handling for slack bot (#4099) 2025-02-27 04:06:26 +00:00
pablonyx
2f64031f5c Improved tenant handling for slack bot1 (#4104) 2025-02-27 03:40:50 +00:00
pablonyx
abb74f2eaa Improved chat search (#4137)
* functional + fast

* k

* adapt

* k

* nit

* k

* k

* fix typing

* k
2025-02-27 02:27:45 +00:00
pablonyx
a3e3d83b7e Improve viewable assistant logic (#4125)
* k

* quick fix

* k
2025-02-27 01:24:39 +00:00
pablonyx
4dc88ca037 debug playwright failure case 2025-02-26 17:32:26 -08:00
rkuo-danswer
11e7e1c4d6 log processed tenant count (#4139)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-26 17:26:48 -08:00
pablonyx
f2d74ce540 Address Auth Edge Case (#4138) 2025-02-26 17:24:23 -08:00
rkuo-danswer
25389c5120 first cut at anonymizing query history (#4123)
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-26 21:32:01 +00:00
pablonyx
ad0721ecd8 update (#4086) 2025-02-26 18:12:07 +00:00
pablonyx
426a8842ae Markdown copying / html formatting (#4120)
* k

* delete unnecessary util
2025-02-26 04:56:38 +00:00
pablonyx
a98dcbc7de Update tenant logic (#4122)
* k

* k

* k

* quick nit

* nit
2025-02-26 03:53:46 +00:00
pablonyx
6f389dc100 Improve lengthy chats (#4126)
* remove scroll

* working well

* nit

* k

* nit
2025-02-26 03:22:21 +00:00
pablonyx
d56177958f fix email headers (#4100) 2025-02-26 03:12:30 +00:00
Kaveen Jayamanna
0e42ae9024 Content of .xlsl are not properly read during indexing. (#4035) 2025-02-25 21:10:47 -08:00
Weves
ce2b4de245 temp remove 2025-02-25 20:46:55 -08:00
Chris Weaver
a515aa78d2 Fix confluence test (#4130) 2025-02-26 03:03:54 +00:00
Weves
23073d91b9 reduce number of chars to index for search 2025-02-25 19:27:50 -08:00
Chris Weaver
f767b1f476 Fix confluence permission syncing at scale (#4129)
* Fix confluence permission syncing at scale

* Remove line

* Better log message

* Adjust log
2025-02-25 19:22:52 -08:00
pablonyx
9ffc8cb2c4 k 2025-02-25 18:15:49 -08:00
pablonyx
98bfb58147 Handle bad slack configurations– multi tenant (#4118)
* k

* quick nit

* k

* k
2025-02-25 22:22:54 +00:00
evan-danswer
6ce810e957 faster indexing status at scale plus minor cleanups (#4081)
* faster indexing status at scale plus minor cleanups

* mypy

* address chris comments

* remove extra prints
2025-02-25 21:22:26 +00:00
pablonyx
07b0b57b31 (nit) bump timeout 2025-02-25 14:10:30 -08:00
pablonyx
118cdd7701 Chat search (#4113)
* add chat search

* don't add the bible

* base functional

* k

* k

* functioning

* functioning well

* functioning well

* k

* delete bible

* quick cleanup

* quick cleanup

* k

* fixed frontend hooks

* delete bible

* nit

* nit

* nit

* fix build

* k

* improved debouncing

* address comments

* fix alembic

* k
2025-02-25 20:49:46 +00:00
rkuo-danswer
ac83b4c365 validate connector deletion (#4108)
* validate connector deletion

* fixes

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-25 20:35:21 +00:00
pablonyx
fa408ff447 add 3.7 (#4116) 2025-02-25 12:41:40 -08:00
rkuo-danswer
4aa8eb8b75 fix scrolling test (#4117)
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-25 10:23:04 -08:00
rkuo-danswer
60bd9271f7 Bugfix/model tests (#4092)
* trying out a fix

* add ability to manually run model tests

* add log dump

* check status code, not text?

* just the model server

* add port mapping to host

* pass through more api keys

* add azure tests

* fix litellm env vars

* fix env vars in github workflow

* temp disable litellm test

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-25 04:53:51 +00:00
Weves
5d58a5e3ea Add ability to index all of Github 2025-02-24 18:56:36 -08:00
Chris Weaver
a99dd05533 Add option to index all Jira projects (#4106)
* Add option to index all Jira projects

* Fix test

* Fix web build

* Address comment
2025-02-25 02:07:00 +00:00
pablonyx
0dce67094e Prettier formatting for bedrock (#4111)
* k

* k
2025-02-25 02:05:29 +00:00
pablonyx
ffd14435a4 Text overflow logic (#4051)
* proper components

* k

* k

* k
2025-02-25 01:05:22 +00:00
rkuo-danswer
c9a3b45ad4 more aggressive handling of tasks blocking deletion (#4093)
* more aggressive handling of tasks blocking deletion

* comment updated

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-24 22:41:13 +00:00
pablonyx
7d40676398 Heavy task improvements, logging, and validation (#4058) 2025-02-24 13:48:53 -08:00
rkuo-danswer
b9e79e5db3 tighten up logs (#4076)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-24 19:23:00 +00:00
rkuo-danswer
558bbe16e4 Bugfix/termination cleanup (#4077)
* move activity timeout cleanup to the function exit

* fix excessive logging

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-24 19:21:55 +00:00
evan-danswer
076619ce2c make Settings model match db (#4087) 2025-02-24 19:04:36 +00:00
pablonyx
1263e21eb5 k (#4102) 2025-02-24 17:44:18 +00:00
pablonyx
f0c13b6558 fix starter message editing (#4101) 2025-02-24 01:01:01 +00:00
evan-danswer
a7125662f1 Fix gpt o-series code block formatting (#4089)
* prompt addition for gpt o-series to encourage markdown formatting of code blocks

* fix to match https://simonwillison.net/tags/markdown/

* chris comment

* chris comment
2025-02-24 00:59:48 +00:00
evan-danswer
4a4e4a6c50 thread utils respect contextvars (#4074)
* thread utils respect contextvars now

* address pablo comments

* removed tenant id from places it was already being passed

* fix rate limit check and pablo comment
2025-02-24 00:43:21 +00:00
pablonyx
1f2af373e1 improve scroll (#4096) 2025-02-23 19:20:07 +00:00
Weves
bdaa293ae4 Fix nginx for prod compose file 2025-02-21 16:57:54 -08:00
pablonyx
5a131f4547 Fix integration tests (#4059) 2025-02-21 15:56:11 -08:00
rkuo-danswer
ffb7d5b85b enable manual testing for model server (#4003)
* trying out a fix

* add ability to manually run model tests

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-21 14:00:32 -08:00
rkuo-danswer
fe8a5d671a don't spam the logs with texts on auth errors (#4085)
* don't spam the logs with texts on auth errors

* refactor the logging a bit

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-21 13:40:07 -08:00
Yuhong Sun
6de53ebf60 README Touchup (#4088) 2025-02-21 13:31:07 -08:00
rkuo-danswer
61d536c782 tool fixes (#4075) 2025-02-21 12:30:33 -08:00
Chris Weaver
e1ff9086a4 Fix LLM selection (#4078) 2025-02-21 11:32:57 -08:00
evan-danswer
ba21bacbbf coerce useLanggraph to boolean (#4084)
* coerce useLanggraph to boolean
2025-02-21 09:43:46 -08:00
pablonyx
158bccc3fc Default on for non-ee (#4083) 2025-02-21 09:11:45 -08:00
Weves
599b7705c2 Fix gitbook connector issues 2025-02-20 15:29:11 -08:00
rkuo-danswer
4958a5355d try more efficient query (#4047) 2025-02-20 12:58:50 -08:00
Chris Weaver
c4b8519381 Add support for sending email invites for single tenant users (#4065) 2025-02-19 21:05:23 -08:00
rkuo-danswer
8b4413694a fix usage of tenant_id (#4062)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-19 17:50:58 -08:00
pablonyx
57cf7d9fac default agent search on 2025-02-19 17:21:26 -08:00
Chris Weaver
ad4efb5f20 Pin xmlsec version + improve SAML flow (#4054)
* Pin xmlsec version

* testing

* test nginx conf change

* Pass through more

* Cleanup + remove DOMAIN across the board
2025-02-19 16:02:05 -08:00
evan-danswer
e304ec4ab6 Agent search history displayed answer (#4052) 2025-02-19 15:52:16 -08:00
joachim-danswer
1690dc45ba timout bumps (#4057) 2025-02-19 15:51:45 -08:00
pablonyx
7582ba1640 Fix streaming (#4055) 2025-02-19 15:23:40 -08:00
pablonyx
99fc546943 Miscellaneous indexing fixes (#4042) 2025-02-19 11:34:49 -08:00
pablonyx
353c185856 Update error class (#4006) 2025-02-19 10:52:23 -08:00
pablonyx
7c96b7f24e minor alembic nit 2025-02-19 10:47:33 -08:00
pablonyx
31524a3eff add connector validation (#4016) 2025-02-19 10:46:06 -08:00
rkuo-danswer
c9f618798e support scrolling before scraping (#4040)
* support scrolling before scraping

* fix mypy

* install playwright deps

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-19 17:54:58 +00:00
rkuo-danswer
11f6b44625 Feature/indexing hard timeout 3 (#3980)
* WIP

* implement hard timeout

* fix callbacks

* put back the timeout

* missed a file

* fixes

* try installing playwright deps

* Revert "try installing playwright deps"

This reverts commit 4217427568.

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-19 04:12:13 +00:00
pablonyx
e82a25f49e Non-SMTP password reset (#4031)
* update

* validate

* k

* minor cleanup

* nit

* finalize

* k

* fix tests

* fix tests

* fix tests
2025-02-19 02:02:28 +00:00
Weves
5a9ec61446 Don't pass thorugh parallel_tool_calls for o-family models 2025-02-18 18:57:05 -08:00
pablonyx
9635522de8 Admin default (#4032)
* clean up

* minor cleanup

* building

* update agnetic message look

* k

* fix alembic history
2025-02-18 18:31:54 -08:00
Yuhong Sun
630bdf71a3 Update README (#4044) 2025-02-18 18:31:28 -08:00
pablonyx
47fd4fa233 Strict Tenant ID Enforcement (#3871)
* strict tenant id enforcement

* k

* k

* nit

* merge

* nit

* k
2025-02-19 00:52:56 +00:00
Weves
2013beb9e0 Adjust behavior when display_model_names is null 2025-02-18 16:19:08 -08:00
pablonyx
466276161c Quick link fix (#4039) 2025-02-18 16:18:41 -08:00
rkuo-danswer
c934892c68 add index to document__tag.tag_id (#4038)
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-18 19:51:36 +00:00
joachim-danswer
1daa3a663d timout bumps (#4037) 2025-02-18 18:26:29 +00:00
Chris Weaver
7324273233 Small confluence group sync tweaks (#4033) 2025-02-18 07:05:41 +00:00
evan-danswer
2b2ba5478c new is_agentic flag for chatmessages (#4026)
* new is_agentic flag for chatmessages

* added cancelled error to db

* added cancelled error to returned message
2025-02-18 04:20:33 +00:00
pablonyx
045a41d929 Add default slack bot disabling (#3935)
* add slack bot disabling

* update

* k

* minor
2025-02-18 04:08:33 +00:00
pablonyx
e3bc7cc747 improve validation schema (#3984) 2025-02-18 03:18:23 +00:00
evan-danswer
0826b035a2 Update README.md (#3908)
* Update README.md

help future integration test runners

* Update README.md

* Update README.md

---------

Co-authored-by: pablonyx <pablo@danswer.ai>
2025-02-18 03:08:47 +00:00
pablonyx
cf0e3d1ff4 fix main 2025-02-17 18:23:15 -08:00
evan-danswer
10c81f75e2 consistent refined answer improvement (#4027) 2025-02-17 21:02:03 +00:00
evan-danswer
5ca898bde2 Force use tool overrides (#4024)
* initial rename + timeout bump

* querry override
2025-02-17 21:01:24 +00:00
pablonyx
58b252727f UX (#4014) 2025-02-17 13:21:43 -08:00
joachim-danswer
86bd121806 no reranking if local model w/o GPU for Agent Search (#4011)
* no reranking if locql model w/o GPU

* more efficient gpu status calling

* fix unit tests

---------

Co-authored-by: Evan Lohn <evan@danswer.ai>
2025-02-17 14:13:24 +00:00
evan-danswer
9324f426c0 added timeouts for agent llm calls (#4019)
* added timeouts for agent llm calls

* timing suggestions in agent config

* improved timeout that actually exits early

* added new global timeout and connection timeout distinction

* fixed error raising bug and made entity extraction recoverable

* warnings and refactor

* mypy

---------

Co-authored-by: joachim-danswer <joachim@danswer.ai>
2025-02-17 07:02:19 +00:00
joachim-danswer
20d3efc86e By default, use primary LLM for initial & refined answer (#4012)
* By default, use primary LLM for initial & refined answer

Use of new env variable

* simplification
2025-02-16 23:20:07 +00:00
pablonyx
ec0e55fd39 Seeding count issue (#4009)
* k

* k

* quick nit

* nit
2025-02-16 20:49:25 +00:00
pablonyx
e441c899af Playwright + Chromatic update (#4015) 2025-02-16 13:03:45 -08:00
Chris Weaver
f1fc8ac19b Connector checkpointing (#3876)
* wip checkpointing/continue on failure

more stuff for checkpointing

Basic implementation

FE stuff

More checkpointing/failure handling

rebase

rebase

initial scaffolding for IT

IT to test checkpointing

Cleanup

cleanup

Fix it

Rebase

Add todo

Fix actions IT

Test more

Pagination + fixes + cleanup

Fix IT networking

fix it

* rebase

* Address misc comments

* Address comments

* Remove unused router

* rebase

* Fix mypy

* Fixes

* fix it

* Fix tests

* Add drop index

* Add retries

* reset lock timeout

* Try hard drop of schema

* Add timeout/retries to downgrade

* rebase

* test

* test

* test

* Close all connections

* test closing idle only

* Fix it

* fix

* try using null pool

* Test

* fix

* rebase

* log

* Fix

* apply null pool

* Fix other test

* Fix quality checks

* Test not using the fixture

* Fix ordering

* fix test

* Change pooling behavior
2025-02-16 02:34:39 +00:00
Weves
bc087fc20e Fix ruff 2025-02-15 16:35:15 -08:00
Yuhong Sun
ab8081c36b k 2025-02-15 13:42:43 -08:00
Adam Siemiginowski
f371efc916 Fix Zulip connector schema + links and enable temporal metadata (#4005) 2025-02-15 11:49:41 -08:00
pablonyx
7fd5d31dbe Minor background process log cleanup (#4010) 2025-02-15 11:03:10 -08:00
rkuo-danswer
2829e6715e Feature/propagate exceptions (#3974)
* better propagation of exceptions up the stack

* remove debug testing

* refactor the watchdog more to emit data consistently at the end of the function

* enumerate a lot more terminal statuses

* handle more codes

* improve logging

* handle "-9"

* single line exception logging

* typo/grammar

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-15 04:53:01 +00:00
Weves
bc7b4ec396 Fix typing for metadata 2025-02-14 18:19:37 -08:00
pablonyx
697f8bc1c6 Reduce background errors (#4004) 2025-02-14 17:35:26 -08:00
evan-danswer
3ba65214b8 bump version and fix related issues (#3996) 2025-02-14 19:57:12 +00:00
joachim-danswer
6687d5d499 major Agent Search Updates (#3994) 2025-02-14 19:40:21 +00:00
pablonyx
ec78f78f3c k (#3999) 2025-02-14 02:33:42 +00:00
rkuo-danswer
ed253e469a add nano and vim to base image (#3995)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-14 02:27:24 +00:00
pablodanswer
e3aafd95af k 2025-02-13 18:34:05 -08:00
Weves
3a704f1950 Add new vars to github action 2025-02-13 18:33:17 -08:00
Weves
2bf8a7aee5 Misc improvements 2025-02-13 18:33:17 -08:00
Weves
c2f3302aa0 Fix mypy 2025-02-13 18:33:17 -08:00
neo773
7f4d1f27a0 Gitbook connector (#3991)
* add parser

* add tests
2025-02-13 17:58:05 -08:00
pablonyx
b70db15622 Bugfix Vespa Deletion Script (#3998) 2025-02-13 17:26:04 -08:00
pablonyx
e9492ce9ec minor read replica fix (#3997) 2025-02-13 17:11:45 -08:00
pablodanswer
35574369ed update cloud build to use public stripe key 2025-02-13 16:55:56 -08:00
pablonyx
eff433bdc5 Reduce errors in workers (#3962) 2025-02-13 15:59:44 -08:00
pablonyx
3260d793d1 Billing fixes (#3976) 2025-02-13 15:59:10 -08:00
Yuhong Sun
1a7aca06b9 Fix Agent Slowness (#3979) 2025-02-13 15:54:34 -08:00
pablonyx
c6434db7eb Add delete all for tenants in Vespa (#3970) 2025-02-13 14:33:49 -08:00
joachim-danswer
667b9e04c5 updated rerank function arguments (#3988) 2025-02-13 14:13:14 -08:00
rkuo-danswer
29c84d7707 xfail this test (#3992)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 14:09:15 -08:00
pablonyx
17c915b11b Improved email formatting (#3985)
* prettier emails

* k

* remove mislieading comment

* minor typing
2025-02-13 21:11:57 +00:00
rkuo-danswer
95ca592d6d fix title check (#3993)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 13:14:55 -08:00
Yuhong Sun
e39a27fd6b Hope this actually skips the model server builds now (#3987) 2025-02-13 11:48:25 -08:00
rkuo-danswer
26d3c952c6 Bugfix/jira connector test 2 (#3986)
* fix jira connector test

* typo fix

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 10:21:54 -08:00
rkuo-danswer
53683e2f3c fix jira connector test (#3983)
Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 09:41:45 -08:00
rkuo-danswer
0c0113a481 ignore result when using send_task on lightweight tasks (#3978)
* ignore result when using send_task on lightweight tasks

* fix ignore_result

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2025-02-13 03:22:13 -08:00
Chris Weaver
c0f381e471 Add background errors ability (#3982) 2025-02-13 00:44:55 -08:00
rkuo-danswer
5ed83f1148 no thread local locks in callbacks and raise permission sync timeout … (#3977)
* no thread local locks in callbacks and raise permission sync timeout by a lot based on empirical log observations

* more fixes

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-12 22:31:01 -08:00
pablonyx
9db7b67a6c Minor misc ux improvements (#3966)
* minor misc ux

* nit

* k

* quick nit

* k
2025-02-13 04:43:11 +00:00
Yuhong Sun
2850048c6b Jira add key to semantic id (#3981) 2025-02-12 20:04:47 -08:00
rkuo-danswer
61058e5fcd merge monitoring with kickoff tasks (#3953)
* move indexing

* all monitor work moved

* reacquire lock more

* remove monitor task completely

* fix import

* fix pruning finalization

* no multiplier on system/cloud tasks

* monitor queues every 30 seconds in the cloud

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-13 02:35:41 +00:00
Yuhong Sun
c87261cda7 Fix edge case with run functions in parallel 2025-02-12 17:57:39 -08:00
pablonyx
e030b0a6fc Address (#3955) 2025-02-12 13:53:13 -08:00
Yuhong Sun
61136975ad Don't build model server every night (#3973) 2025-02-12 13:08:05 -08:00
Weves
0c74bbf9ed Clean illegal chars in metadata 2025-02-12 11:49:16 -08:00
pablonyx
12b2126e69 Update assistants visibility, minor UX, .. (#3965)
* update assistant logic

* quick nit

* k

* fix "featured" logic

* Small tweaks

* k

---------

Co-authored-by: Weves <chrisweaver101@gmail.com>
2025-02-12 00:43:20 +00:00
Chris Weaver
037943c6ff Support share/view IDs for Airtable (#3967) 2025-02-11 16:19:38 -08:00
pablonyx
f9485b1325 Ensure sidepanel defaults sidebar off (#3844)
* ensure sidepanel defaults sidepanel off

* address comment

* reformat

* initial visible
2025-02-11 22:22:56 +00:00
rkuo-danswer
552a0630fe Merge pull request #3948 from onyx-dot-app/feature/beat_rtvar
refactoring and update multiplier in real time
2025-02-11 14:05:14 -08:00
Richard Kuo (Danswer)
5bf520d8b8 comments 2025-02-11 14:04:49 -08:00
Weves
7dc5a77946 Improve starter message splitting 2025-02-11 11:10:13 -08:00
rkuo-danswer
03abd4a1bc Merge pull request #3938 from onyx-dot-app/feature/model_server_logs
improve gpu detection functions and logging in model server
2025-02-11 09:43:25 -08:00
Richard Kuo (Danswer)
16d6d708f6 update logging 2025-02-11 09:15:39 -08:00
Richard Kuo
9740ed32b5 fix reading redis values as floats 2025-02-10 20:48:55 -08:00
rkuo-danswer
b56877cc2e Bugfix/dedupe ids (#3952)
* dedupe make_private_persona and update test

* add comment

* comments, and just have duplicate user id's for the test instead of modifying edit

* found the magic word

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-11 02:27:55 +00:00
pablodanswer
da5c83a96d k 2025-02-10 17:45:00 -08:00
Weves
818225c60e Fix starter message overflow 2025-02-10 17:17:31 -08:00
Weves
d78a1fe9c6 Fix for red background 2025-02-10 16:36:26 -08:00
Weves
05b3e594b5 Increase timeout for reasoning models + make o1 available by default 2025-02-10 16:11:01 -08:00
Richard Kuo (Danswer)
5a4d007cf9 comments 2025-02-10 15:03:59 -08:00
pablonyx
3b25a2dd84 Ux improvements (#3947)
* black history sidebar

* misc improvements

* minor misc ux improvemnts

* quick nit

* add nits

* quick nit
2025-02-10 12:18:41 -08:00
pablonyx
baee4c5f22 Multi tenant specific error page (#3928)
Multi tenant specific error page
2025-02-10 11:51:29 -08:00
Richard Kuo (Danswer)
5e32f9d922 refactoring and update multiplier in real time 2025-02-10 11:20:38 -08:00
pablonyx
1454e7e07d New ux dark (#3944) 2025-02-09 21:14:32 -08:00
rkuo-danswer
6848337445 add validation for pruning/group sync etc (#3882)
* add validation for pruning

* fix missing class

* get external group sync validation working

* backport fix for pruning check

* fix pruning

* log the payload id

* remove scan_iter from pruning

* missed removed scan_iter, also remove other scan_iters and replace with sscan_iter of the lookup table

* external group sync needs active signal. h

* log the payload id when the task starts

* log the payload id in more places

* use the replica

* increase primary pool and slow down beat

* scale sql pool based on concurrency

* fix concurrency

* add debugging for external group sync and tenant

* remove debugging and fix payload id

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-10 03:12:21 +00:00
pablonyx
519fbd897e Add Dark Mode (#3936)
* k

* intermediate unification

* many changes

* update dark mode configs

* updates

* decent state

* functional

* mostly clean

* updaet model selector

* finalize

* calendar update

* additional styling

* nit

* k

* update colors

* push change

* k

* update

* k

* update

* address additions

* quick nit
2025-02-09 23:09:40 +00:00
evan-danswer
217569104b added context type for when internet search tool is used (#3930) 2025-02-08 20:44:38 -08:00
rkuo-danswer
4c184bb7f0 Bugfix/slack stop 2 (#3916)
* use callback in slim doc functions

* more callbacks

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-08 23:45:41 +00:00
rkuo-danswer
a222fae7c8 Bugfix/beat templates (#3754)
* WIP

* migrate most beat tasks to fan out strategy

* fix kwargs

* migrate EE tasks

* lock on the task_name level

* typo fix

* transform beat tasks for cloud

* cloud multiplier is only for cloud tasks

* bumpity

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-08 06:57:57 +00:00
pablonyx
94788cda53 Update display (#3934)
* update display

* quick nit
2025-02-08 02:07:47 +00:00
Richard Kuo (Danswer)
fb931ee4de fixes 2025-02-07 17:28:17 -08:00
Richard Kuo (Danswer)
bc2c56dfb6 improve gpu detection functions and logging in model server 2025-02-07 16:59:02 -08:00
rkuo-danswer
ae37f01f62 event driven indexing/docset/usergroup triggers (#3918)
* WIP

* trigger indexing immediately when the ccpair is created

* add some logging and indexing trigger to the mock-credential endpoint

* better comments

* fix integration test

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-07 22:53:51 +00:00
pablodanswer
ef31e14518 remove debug logs for integration tests 2025-02-07 10:46:24 -08:00
733 changed files with 31843 additions and 11618 deletions

1
.github/CODEOWNERS vendored Normal file
View File

@@ -0,0 +1 @@
* @onyx-dot-app/onyx-core-team

View File

@@ -65,6 +65,7 @@ jobs:
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY=${{ secrets.STRIPE_PUBLISHABLE_KEY }}
NEXT_PUBLIC_GTM_ENABLED=true
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK=true

View File

@@ -12,7 +12,32 @@ env:
BUILDKIT_PROGRESS: plain
jobs:
# 1) Preliminary job to check if the changed files are relevant
check_model_server_changes:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.check.outputs.changed }}
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check if relevant files changed
id: check
run: |
# Default to "false"
echo "changed=false" >> $GITHUB_OUTPUT
# Compare the previous commit (github.event.before) to the current one (github.sha)
# If any file in backend/model_server/** or backend/Dockerfile.model_server is changed,
# set changed=true
if git diff --name-only ${{ github.event.before }} ${{ github.sha }} \
| grep -E '^backend/model_server/|^backend/Dockerfile.model_server'; then
echo "changed=true" >> $GITHUB_OUTPUT
fi
build-amd64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
steps:
@@ -52,6 +77,8 @@ jobs:
provenance: false
build-arm64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
steps:
@@ -91,7 +118,8 @@ jobs:
provenance: false
merge-and-scan:
needs: [build-amd64, build-arm64]
needs: [build-amd64, build-arm64, check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on: ubuntu-latest
steps:
- name: Login to Docker Hub

View File

@@ -53,24 +53,90 @@ jobs:
exclude: '(?i)^(pylint|aio[-_]*).*'
- name: Print report
if: ${{ always() }}
if: always()
run: echo "${{ steps.license_check_report.outputs.report }}"
- name: Install npm dependencies
working-directory: ./web
run: npm ci
- name: Run Trivy vulnerability scanner in repo mode
uses: aquasecurity/trivy-action@0.28.0
with:
scan-type: fs
scanners: license
format: table
# format: sarif
# output: trivy-results.sarif
severity: HIGH,CRITICAL
# - name: Upload Trivy scan results to GitHub Security tab
# uses: github/codeql-action/upload-sarif@v3
# be careful enabling the sarif and upload as it may spam the security tab
# with a huge amount of items. Work out the issues before enabling upload.
# - name: Run Trivy vulnerability scanner in repo mode
# if: always()
# uses: aquasecurity/trivy-action@0.29.0
# with:
# sarif_file: trivy-results.sarif
# scan-type: fs
# scan-ref: .
# scanners: license
# format: table
# severity: HIGH,CRITICAL
# # format: sarif
# # output: trivy-results.sarif
#
# # - name: Upload Trivy scan results to GitHub Security tab
# # uses: github/codeql-action/upload-sarif@v3
# # with:
# # sarif_file: trivy-results.sarif
scan-trivy:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# Backend
- name: Pull backend docker image
run: docker pull onyxdotapp/onyx-backend:latest
- name: Run Trivy vulnerability scanner on backend
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-backend:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0 # Set to 1 if we want a failed scan to fail the workflow
# Web server
- name: Pull web server docker image
run: docker pull onyxdotapp/onyx-web-server:latest
- name: Run Trivy vulnerability scanner on web server
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-web-server:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0
# Model server
- name: Pull model server docker image
run: docker pull onyxdotapp/onyx-model-server:latest
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-model-server:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0

View File

@@ -94,13 +94,12 @@ jobs:
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
MULTI_TENANT=true \
LOG_LEVEL=DEBUG \
AUTH_TYPE=cloud \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
DEV_MODE=true \
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack up -d
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack up -d
id: start_docker_multi_tenant
# In practice, `cloud` Auth type would require OAUTH credentials to be set.
@@ -109,14 +108,14 @@ jobs:
echo "Waiting for 3 minutes to ensure API server is ready..."
sleep 180
echo "Running integration tests..."
docker run --rm --network danswer-stack_default \
docker run --rm --network onyx-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e LOG_LEVEL=DEBUG \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
@@ -145,25 +144,28 @@ jobs:
- name: Stop multi-tenant Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack down -v
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack down -v
# NOTE: Use pre-ping/null pool to reduce flakiness due to dropped connections
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
POSTGRES_POOL_PRE_PING=true \
POSTGRES_USE_NULL_POOL=true \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
LOG_LEVEL=DEBUG \
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
INTEGRATION_TESTS_MODE=true \
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f danswer-stack-api_server-1 &
docker logs -f onyx-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
@@ -193,18 +195,26 @@ jobs:
done
echo "Finished waiting for service."
- name: Start Mock Services
run: |
cd backend/tests/integration/mock_services
docker compose -f docker-compose.mock-it-services.yml \
-p mock-it-services-stack up -d
# NOTE: Use pre-ping/null to reduce flakiness due to dropped connections
- name: Run Standard Integration Tests
run: |
echo "Running integration tests..."
docker run --rm --network danswer-stack_default \
docker run --rm --network onyx-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_POOL_PRE_PING=true \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e LOG_LEVEL=DEBUG \
-e API_SERVER_HOST=api_server \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
-e SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN} \
@@ -212,6 +222,8 @@ jobs:
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
-e TEST_WEB_HOSTNAME=test-runner \
-e MOCK_CONNECTOR_SERVER_HOST=mock_connector_server \
-e MOCK_CONNECTOR_SERVER_PORT=8001 \
onyxdotapp/onyx-integration:test \
/app/tests/integration/tests \
/app/tests/integration/connector_job_tests
@@ -233,13 +245,13 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
- name: Dump all-container logs (optional)
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
- name: Upload logs
if: always()
@@ -253,4 +265,4 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
docker compose -f docker-compose.dev.yml -p onyx-stack down -v

View File

@@ -1,6 +1,6 @@
name: Run Chromatic Tests
name: Run Playwright Tests
concurrency:
group: Run-Chromatic-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
group: Run-Playwright-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on: push
@@ -198,43 +198,47 @@ jobs:
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
chromatic-tests:
name: Chromatic Tests
# NOTE: Chromatic UI diff testing is currently disabled.
# We are using Playwright for local and CI testing without visual regression checks.
# Chromatic may be reintroduced in the future for UI diff testing if needed.
needs: playwright-tests
runs-on:
[
runs-on,
runner=32cpu-linux-x64,
disk=large,
"run-id=${{ github.run_id }}",
]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
# chromatic-tests:
# name: Chromatic Tests
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 22
# needs: playwright-tests
# runs-on:
# [
# runs-on,
# runner=32cpu-linux-x64,
# disk=large,
# "run-id=${{ github.run_id }}",
# ]
# steps:
# - name: Checkout code
# uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Install node dependencies
working-directory: ./web
run: npm ci
# - name: Setup node
# uses: actions/setup-node@v4
# with:
# node-version: 22
- name: Download Playwright test results
uses: actions/download-artifact@v4
with:
name: test-results
path: ./web/test-results
# - name: Install node dependencies
# working-directory: ./web
# run: npm ci
- name: Run Chromatic
uses: chromaui/action@latest
with:
playwright: true
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
workingDir: ./web
env:
CHROMATIC_ARCHIVE_LOCATION: ./test-results
# - name: Download Playwright test results
# uses: actions/download-artifact@v4
# with:
# name: test-results
# path: ./web/test-results
# - name: Run Chromatic
# uses: chromaui/action@latest
# with:
# playwright: true
# projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
# workingDir: ./web
# env:
# CHROMATIC_ARCHIVE_LOCATION: ./test-results

View File

@@ -44,6 +44,9 @@ env:
SHAREPOINT_CLIENT_SECRET: ${{ secrets.SHAREPOINT_CLIENT_SECRET }}
SHAREPOINT_CLIENT_DIRECTORY_ID: ${{ secrets.SHAREPOINT_CLIENT_DIRECTORY_ID }}
SHAREPOINT_SITE: ${{ secrets.SHAREPOINT_SITE }}
# Gitbook
GITBOOK_SPACE_ID: ${{ secrets.GITBOOK_SPACE_ID }}
GITBOOK_API_KEY: ${{ secrets.GITBOOK_API_KEY }}
jobs:
connectors-check:
@@ -71,7 +74,9 @@ jobs:
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
playwright install chromium
playwright install-deps chromium
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/connectors

View File

@@ -1,18 +1,29 @@
name: Connector Tests
name: Model Server Tests
on:
schedule:
# This cron expression runs the job daily at 16:00 UTC (9am PT)
- cron: "0 16 * * *"
workflow_dispatch:
inputs:
branch:
description: 'Branch to run the workflow on'
required: false
default: 'main'
env:
# Bedrock
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_REGION_NAME: ${{ secrets.AWS_REGION_NAME }}
# OpenAI
# API keys for testing
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
LITELLM_API_KEY: ${{ secrets.LITELLM_API_KEY }}
LITELLM_API_URL: ${{ secrets.LITELLM_API_URL }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_API_KEY: ${{ secrets.AZURE_API_KEY }}
AZURE_API_URL: ${{ secrets.AZURE_API_URL }}
jobs:
model-check:
@@ -26,6 +37,23 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# tag every docker image with "test" so that we can spin up the correct set
# of images during testing
# We don't need to build the Web Docker image since it's not yet used
# in the integration tests. We have a separate action to verify that it builds
# successfully.
- name: Pull Model Server Docker image
run: |
docker pull onyxdotapp/onyx-model-server:latest
docker tag onyxdotapp/onyx-model-server:latest onyxdotapp/onyx-model-server:test
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -41,6 +69,49 @@ jobs:
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
docker compose -f docker-compose.model-server-test.yml -p onyx-stack up -d indexing_model_server
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
while true; do
current_time=$(date +%s)
elapsed_time=$((current_time - start_time))
if [ $elapsed_time -ge $timeout ]; then
echo "Timeout reached. Service did not become ready in 5 minutes."
exit 1
fi
# Use curl with error handling to ignore specific exit code 56
response=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:9000/api/health || echo "curl_error")
if [ "$response" = "200" ]; then
echo "Service is ready!"
break
elif [ "$response" = "curl_error" ]; then
echo "Curl encountered an error, possibly exit code 56. Continuing to retry..."
else
echo "Service not ready yet (HTTP status $response). Retrying in 5 seconds..."
fi
sleep 5
done
echo "Finished waiting for service."
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: |
@@ -56,3 +127,23 @@ jobs:
-H 'Content-type: application/json' \
--data '{"text":"Scheduled Model Tests failed! Check the run at: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}"}' \
$SLACK_WEBHOOK
- name: Dump all-container logs (optional)
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.model-server-test.yml -p onyx-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
- name: Upload logs
if: always()
uses: actions/upload-artifact@v4
with:
name: docker-all-logs
path: ${{ github.workspace }}/docker-compose.log
- name: Stop Docker containers
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.model-server-test.yml -p onyx-stack down -v

View File

@@ -205,7 +205,7 @@
"--loglevel=INFO",
"--hostname=light@%n",
"-Q",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert,checkpoint_cleanup",
],
"presentation": {
"group": "2",

121
README.md
View File

@@ -24,112 +24,93 @@
</a>
</p>
<strong>[Onyx](https://www.onyx.app/)</strong> (formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
configuring AI Assistants.
<strong>[Onyx](https://www.onyx.app/)</strong> (formerly Danswer) is the AI platform connected to your company's docs, apps, and people.
Onyx provides a feature rich Chat interface and plugs into any LLM of your choice.
Keep knowledge and access controls sync-ed across over 40 connectors like Google Drive, Slack, Confluence, Salesforce, etc.
Create custom AI agents with unique prompts, knowledge, and actions that the agents can take.
Onyx can be deployed securely anywhere and for any scale - on a laptop, on-premise, or to cloud.
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
supported?" or "Where's the pull request for feature Y?"
<h3>Usage</h3>
<h3>Feature Highlights</h3>
Onyx Web App:
**Deep research over your team's knowledge:**
https://github.com/onyx-dot-app/onyx/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
https://private-user-images.githubusercontent.com/32520769/414509312-48392e83-95d0-4fb5-8650-a396e05e0a32.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5Mjg2MzYsIm5iZiI6MTczOTkyODMzNiwicGF0aCI6Ii8zMjUyMDc2OS80MTQ1MDkzMTItNDgzOTJlODMtOTVkMC00ZmI1LTg2NTAtYTM5NmUwNWUwYTMyLm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE5VDAxMjUzNlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWFhMzk5Njg2Y2Y5YjFmNDNiYTQ2YzM5ZTg5YWJiYTU2NWMyY2YwNmUyODE2NWUxMDRiMWQxZWJmODI4YTA0MTUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.a9D8A0sgKE9AoaoE-mfFbJ6_OKYeqaf7TZ4Han2JfW8
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
https://github.com/onyx-dot-app/onyx/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
**Use Onyx as a secure AI Chat with any LLM:**
![Onyx Chat Silent Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxChatSilentDemo.gif)
**Easily set up connectors to your apps:**
![Onyx Connector Silent Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxConnectorSilentDemo.gif)
**Access Onyx where your team already works:**
![Onyx Bot Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxBot.png)
For more details on the Admin UI to manage connectors and users, check out our
<strong><a href="https://www.youtube.com/watch?v=geNzY1nbCnU">Full Video Demo</a></strong>!
## Deployment
**To try it out for free and get started in seconds, check out [Onyx Cloud](https://cloud.onyx.app/signup)**.
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
Onyx can also be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
We also have built-in support for high-availability/scalable deployment on Kubernetes.
References [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment).
## 💃 Main Features
- Chat UI with the ability to select documents to chat with.
- Create custom AI Assistants with different prompts and backing knowledge sets.
- Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
- Document Search + AI Answers for natural language queries.
- Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
- Slack integration to get answers and search results directly in Slack.
## 🔍 Other Notable Benefits of Onyx
- Custom deep learning models for indexing and inference time, only through Onyx + learning from user feedback.
- Flexible security features like SSO (OIDC/SAML/OAuth2), RBAC, encryption of credentials, etc.
- Knowledge curation features like document-sets, query history, usage analytics, etc.
- Scalable deployment options tested up to many tens of thousands users and hundreds of millions of documents.
## 🚧 Roadmap
- Chat/Prompt sharing with specific teammates and user groups.
- Multimodal model support, chat with images, video etc.
- Choosing between LLMs and parameters during chat session.
- Tool calling and agent configurations options.
- New methods in information retrieval (StructRAG, LightGraphRAG, etc.)
- Personalized Search
- Organizational understanding and ability to locate and suggest experts from your team.
- Code Search
- SQL and Structured Query Language
## Other Notable Benefits of Onyx
- User Authentication with document level access management.
- Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
- Admin Dashboard to configure connectors, document-sets, access, etc.
- Custom deep learning models + learn from user feedback.
- Easy deployment and ability to host Onyx anywhere of your choosing.
## 🔌 Connectors
Keep knowledge and access up to sync across 40+ connectors:
Efficiently pulls the latest changes from:
- Slack
- GitHub
- Google Drive
- Confluence
- Slack
- Gmail
- Salesforce
- Microsoft Sharepoint
- Github
- Jira
- Zendesk
- Gmail
- Notion
- Gong
- Slab
- Linear
- Productboard
- Guru
- Bookstack
- Document360
- Sharepoint
- Hubspot
- Microsoft Teams
- Dropbox
- Local Files
- Websites
- And more ...
## 📚 Editions
See the full list [here](https://docs.onyx.app/connectors).
## 📚 Licensing
There are two editions of Onyx:
- Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
- Single Sign-On (SSO), with support for both SAML and OIDC
- Role-based access control
- Document permission inheritance from connected sources
- Usage analytics and query history accessible to admins
- Whitelabeling
- API key authentication
- Encryption of secrets
- And many more! Checkout [our website](https://www.onyx.app/) for the latest.
- Onyx Community Edition (CE) is available freely under the MIT Expat license. Simply follow the Deployment guide above.
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations.
For feature details, check out [our website](https://www.onyx.app/pricing).
To try the Onyx Enterprise Edition:
1. Checkout [Onyx Cloud](https://cloud.onyx.app/signup).
2. For self-hosting the Enterprise Edition, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/onyx/founders).
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/onyx/founders).
## 💡 Contributing
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
## ⭐Star History
[![Star History Chart](https://api.star-history.com/svg?repos=onyx-dot-app/onyx&type=Date)](https://star-history.com/#onyx-dot-app/onyx&Date)

View File

@@ -28,14 +28,16 @@ RUN apt-get update && \
curl \
zip \
ca-certificates \
libgnutls30=3.7.9-2+deb12u3 \
libblkid1=2.38.1-5+deb12u1 \
libmount1=2.38.1-5+deb12u1 \
libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 \
libgnutls30 \
libblkid1 \
libmount1 \
libsmartcols1 \
libuuid1 \
libxmlsec1-dev \
pkg-config \
gcc && \
gcc \
nano \
vim && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean

View File

@@ -0,0 +1,27 @@
"""Add indexes to document__tag
Revision ID: 1a03d2c2856b
Revises: 9c00a2bccb83
Create Date: 2025-02-18 10:45:13.957807
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "1a03d2c2856b"
down_revision = "9c00a2bccb83"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_index(
op.f("ix_document__tag_tag_id"),
"document__tag",
["tag_id"],
unique=False,
)
def downgrade() -> None:
op.drop_index(op.f("ix_document__tag_tag_id"), table_name="document__tag")

View File

@@ -0,0 +1,32 @@
"""set built in to default
Revision ID: 2cdeff6d8c93
Revises: f5437cc136c5
Create Date: 2025-02-11 14:57:51.308775
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "2cdeff6d8c93"
down_revision = "f5437cc136c5"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Prior to this migration / point in the codebase history,
# built in personas were implicitly treated as default personas (with no option to change this)
# This migration makes that explicit
op.execute(
"""
UPDATE persona
SET is_default_persona = TRUE
WHERE builtin_persona = TRUE
"""
)
def downgrade() -> None:
pass

View File

@@ -0,0 +1,125 @@
"""Update GitHub connector repo_name to repositories
Revision ID: 3934b1bc7b62
Revises: b7c2b63c4a03
Create Date: 2025-03-05 10:50:30.516962
"""
from alembic import op
import sqlalchemy as sa
import json
import logging
# revision identifiers, used by Alembic.
revision = "3934b1bc7b62"
down_revision = "b7c2b63c4a03"
branch_labels = None
depends_on = None
logger = logging.getLogger("alembic.runtime.migration")
def upgrade() -> None:
# Get all GitHub connectors
conn = op.get_bind()
# First get all GitHub connectors
github_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = 'GITHUB'
"""
)
).fetchall()
# Update each connector's config
updated_count = 0
for connector_id, config in github_connectors:
try:
if not config:
logger.warning(f"Connector {connector_id} has no config, skipping")
continue
# Parse the config if it's a string
if isinstance(config, str):
config = json.loads(config)
if "repo_name" not in config:
continue
# Create new config with repositories instead of repo_name
new_config = dict(config)
repo_name_value = new_config.pop("repo_name")
new_config["repositories"] = repo_name_value
# Update the connector with the new config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :new_config
WHERE id = :connector_id
"""
),
{"connector_id": connector_id, "new_config": json.dumps(new_config)},
)
updated_count += 1
except Exception as e:
logger.error(f"Error updating connector {connector_id}: {str(e)}")
def downgrade() -> None:
# Get all GitHub connectors
conn = op.get_bind()
logger.debug(
"Starting rollback of GitHub connectors from repositories to repo_name"
)
github_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = 'GITHUB'
"""
)
).fetchall()
logger.debug(f"Found {len(github_connectors)} GitHub connectors to rollback")
# Revert each GitHub connector to use repo_name instead of repositories
reverted_count = 0
for connector_id, config in github_connectors:
try:
if not config:
continue
# Parse the config if it's a string
if isinstance(config, str):
config = json.loads(config)
if "repositories" not in config:
continue
# Create new config with repo_name instead of repositories
new_config = dict(config)
repositories_value = new_config.pop("repositories")
new_config["repo_name"] = repositories_value
# Update the connector with the new config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :new_config
WHERE id = :connector_id
"""
),
{"new_config": json.dumps(new_config), "connector_id": connector_id},
)
reverted_count += 1
except Exception as e:
logger.error(f"Error reverting connector {connector_id}: {str(e)}")

View File

@@ -0,0 +1,84 @@
"""improved index
Revision ID: 3bd4c84fe72f
Revises: 8f43500ee275
Create Date: 2025-02-26 13:07:56.217791
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "3bd4c84fe72f"
down_revision = "8f43500ee275"
branch_labels = None
depends_on = None
# NOTE:
# This migration addresses issues with the previous migration (8f43500ee275) which caused
# an outage by creating an index without using CONCURRENTLY. This migration:
#
# 1. Creates more efficient full-text search capabilities using tsvector columns and GIN indexes
# 2. Uses CONCURRENTLY for all index creation to prevent table locking
# 3. Explicitly manages transactions with COMMIT statements to allow CONCURRENTLY to work
# (see: https://www.postgresql.org/docs/9.4/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY)
# (see: https://github.com/sqlalchemy/alembic/issues/277)
# 4. Adds indexes to both chat_message and chat_session tables for comprehensive search
def upgrade() -> None:
# Create a GIN index for full-text search on chat_message.message
op.execute(
"""
ALTER TABLE chat_message
ADD COLUMN message_tsv tsvector
GENERATED ALWAYS AS (to_tsvector('english', message)) STORED;
"""
)
# Commit the current transaction before creating concurrent indexes
op.execute("COMMIT")
op.execute(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv
ON chat_message
USING GIN (message_tsv)
"""
)
# Also add a stored tsvector column for chat_session.description
op.execute(
"""
ALTER TABLE chat_session
ADD COLUMN description_tsv tsvector
GENERATED ALWAYS AS (to_tsvector('english', coalesce(description, ''))) STORED;
"""
)
# Commit again before creating the second concurrent index
op.execute("COMMIT")
op.execute(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv
ON chat_session
USING GIN (description_tsv)
"""
)
def downgrade() -> None:
# Drop the indexes first (use CONCURRENTLY for dropping too)
op.execute("COMMIT")
op.execute("DROP INDEX CONCURRENTLY IF EXISTS idx_chat_message_tsv;")
op.execute("COMMIT")
op.execute("DROP INDEX CONCURRENTLY IF EXISTS idx_chat_session_desc_tsv;")
# Then drop the columns
op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv;")
op.execute("ALTER TABLE chat_session DROP COLUMN IF EXISTS description_tsv;")
op.execute("DROP INDEX IF EXISTS idx_chat_message_message_lower;")

View File

@@ -0,0 +1,32 @@
"""add index
Revision ID: 8f43500ee275
Revises: da42808081e3
Create Date: 2025-02-24 17:35:33.072714
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "8f43500ee275"
down_revision = "da42808081e3"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Create a basic index on the lowercase message column for direct text matching
# Limit to 1500 characters to stay well under the 2856 byte limit of btree version 4
# op.execute(
# """
# CREATE INDEX idx_chat_message_message_lower
# ON chat_message (LOWER(substring(message, 1, 1500)))
# """
# )
pass
def downgrade() -> None:
# Drop the index
op.execute("DROP INDEX IF EXISTS idx_chat_message_message_lower;")

View File

@@ -0,0 +1,43 @@
"""chat_message_agentic
Revision ID: 9c00a2bccb83
Revises: b7a7eee5aa15
Create Date: 2025-02-17 11:15:43.081150
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9c00a2bccb83"
down_revision = "b7a7eee5aa15"
branch_labels = None
depends_on = None
def upgrade() -> None:
# First add the column as nullable
op.add_column("chat_message", sa.Column("is_agentic", sa.Boolean(), nullable=True))
# Update existing rows based on presence of SubQuestions
op.execute(
"""
UPDATE chat_message
SET is_agentic = EXISTS (
SELECT 1
FROM agent__sub_question
WHERE agent__sub_question.primary_question_id = chat_message.id
)
WHERE is_agentic IS NULL
"""
)
# Make the column non-nullable with a default value of False
op.alter_column(
"chat_message", "is_agentic", nullable=False, server_default=sa.text("false")
)
def downgrade() -> None:
op.drop_column("chat_message", "is_agentic")

View File

@@ -0,0 +1,29 @@
"""remove inactive ccpair status on downgrade
Revision ID: acaab4ef4507
Revises: b388730a2899
Create Date: 2025-02-16 18:21:41.330212
"""
from alembic import op
from onyx.db.models import ConnectorCredentialPair
from onyx.db.enums import ConnectorCredentialPairStatus
from sqlalchemy import update
# revision identifiers, used by Alembic.
revision = "acaab4ef4507"
down_revision = "b388730a2899"
branch_labels = None
depends_on = None
def upgrade() -> None:
pass
def downgrade() -> None:
op.execute(
update(ConnectorCredentialPair)
.where(ConnectorCredentialPair.status == ConnectorCredentialPairStatus.INVALID)
.values(status=ConnectorCredentialPairStatus.ACTIVE)
)

View File

@@ -0,0 +1,31 @@
"""nullable preferences
Revision ID: b388730a2899
Revises: 1a03d2c2856b
Create Date: 2025-02-17 18:49:22.643902
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "b388730a2899"
down_revision = "1a03d2c2856b"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("user", "temperature_override_enabled", nullable=True)
op.alter_column("user", "auto_scroll", nullable=True)
def downgrade() -> None:
# Ensure no null values before making columns non-nullable
op.execute(
'UPDATE "user" SET temperature_override_enabled = false WHERE temperature_override_enabled IS NULL'
)
op.execute('UPDATE "user" SET auto_scroll = false WHERE auto_scroll IS NULL')
op.alter_column("user", "temperature_override_enabled", nullable=False)
op.alter_column("user", "auto_scroll", nullable=False)

View File

@@ -0,0 +1,124 @@
"""Add checkpointing/failure handling
Revision ID: b7a7eee5aa15
Revises: f39c5794c10a
Create Date: 2025-01-24 15:17:36.763172
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "b7a7eee5aa15"
down_revision = "f39c5794c10a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"index_attempt",
sa.Column("checkpoint_pointer", sa.String(), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_start", sa.DateTime(timezone=True), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_end", sa.DateTime(timezone=True), nullable=True),
)
op.create_index(
"ix_index_attempt_cc_pair_settings_poll",
"index_attempt",
[
"connector_credential_pair_id",
"search_settings_id",
"status",
sa.text("time_updated DESC"),
],
)
# Drop the old IndexAttemptError table
op.drop_index("index_attempt_id", table_name="index_attempt_errors")
op.drop_table("index_attempt_errors")
# Create the new version of the table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=False),
sa.Column("connector_credential_pair_id", sa.Integer(), nullable=False),
sa.Column("document_id", sa.String(), nullable=True),
sa.Column("document_link", sa.String(), nullable=True),
sa.Column("entity_id", sa.String(), nullable=True),
sa.Column("failed_time_range_start", sa.DateTime(timezone=True), nullable=True),
sa.Column("failed_time_range_end", sa.DateTime(timezone=True), nullable=True),
sa.Column("failure_message", sa.Text(), nullable=False),
sa.Column("is_resolved", sa.Boolean(), nullable=False, default=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
sa.ForeignKeyConstraint(
["connector_credential_pair_id"],
["connector_credential_pair.id"],
),
)
def downgrade() -> None:
op.execute("SET lock_timeout = '5s'")
# try a few times to drop the table, this has been observed to fail due to other locks
# blocking the drop
NUM_TRIES = 10
for i in range(NUM_TRIES):
try:
op.drop_table("index_attempt_errors")
break
except Exception as e:
if i == NUM_TRIES - 1:
raise e
print(f"Error dropping table: {e}. Retrying...")
op.execute("SET lock_timeout = DEFAULT")
# Recreate the old IndexAttemptError table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=True),
sa.Column("batch", sa.Integer(), nullable=True),
sa.Column("doc_summaries", postgresql.JSONB(), nullable=False),
sa.Column("error_msg", sa.Text(), nullable=True),
sa.Column("traceback", sa.Text(), nullable=True),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
)
op.create_index(
"index_attempt_id",
"index_attempt_errors",
["time_created"],
)
op.drop_index("ix_index_attempt_cc_pair_settings_poll")
op.drop_column("index_attempt", "checkpoint_pointer")
op.drop_column("index_attempt", "poll_range_start")
op.drop_column("index_attempt", "poll_range_end")

View File

@@ -0,0 +1,55 @@
"""add background_reindex_enabled field
Revision ID: b7c2b63c4a03
Revises: f11b408e39d3
Create Date: 2024-03-26 12:34:56.789012
"""
from alembic import op
import sqlalchemy as sa
from onyx.db.enums import EmbeddingPrecision
# revision identifiers, used by Alembic.
revision = "b7c2b63c4a03"
down_revision = "f11b408e39d3"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add background_reindex_enabled column with default value of True
op.add_column(
"search_settings",
sa.Column(
"background_reindex_enabled",
sa.Boolean(),
nullable=False,
server_default="true",
),
)
# Add embedding_precision column with default value of FLOAT
op.add_column(
"search_settings",
sa.Column(
"embedding_precision",
sa.Enum(EmbeddingPrecision, native_enum=False),
nullable=False,
server_default=EmbeddingPrecision.FLOAT.name,
),
)
# Add reduced_dimension column with default value of None
op.add_column(
"search_settings",
sa.Column("reduced_dimension", sa.Integer(), nullable=True),
)
def downgrade() -> None:
# Remove the background_reindex_enabled column
op.drop_column("search_settings", "background_reindex_enabled")
op.drop_column("search_settings", "embedding_precision")
op.drop_column("search_settings", "reduced_dimension")

View File

@@ -0,0 +1,120 @@
"""migrate jira connectors to new format
Revision ID: da42808081e3
Revises: f13db29f3101
Create Date: 2025-02-24 11:24:54.396040
"""
from alembic import op
import sqlalchemy as sa
import json
from onyx.configs.constants import DocumentSource
from onyx.connectors.onyx_jira.utils import extract_jira_project
# revision identifiers, used by Alembic.
revision = "da42808081e3"
down_revision = "f13db29f3101"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Get all Jira connectors
conn = op.get_bind()
# First get all Jira connectors
jira_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = :source
"""
),
{"source": DocumentSource.JIRA.value.upper()},
).fetchall()
# Update each connector's config
for connector_id, old_config in jira_connectors:
if not old_config:
continue
# Extract project key from URL if it exists
new_config: dict[str, str | None] = {}
if project_url := old_config.get("jira_project_url"):
# Parse the URL to get base and project
try:
jira_base, project_key = extract_jira_project(project_url)
new_config = {"jira_base_url": jira_base, "project_key": project_key}
except ValueError:
# If URL parsing fails, just use the URL as the base
new_config = {
"jira_base_url": project_url.split("/projects/")[0],
"project_key": None,
}
else:
# For connectors without a project URL, we need admin intervention
# Mark these for review
print(
f"WARNING: Jira connector {connector_id} has no project URL configured"
)
continue
# Update the connector config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :new_config
WHERE id = :id
"""
),
{"id": connector_id, "new_config": json.dumps(new_config)},
)
def downgrade() -> None:
# Get all Jira connectors
conn = op.get_bind()
# First get all Jira connectors
jira_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = :source
"""
),
{"source": DocumentSource.JIRA.value.upper()},
).fetchall()
# Update each connector's config back to the old format
for connector_id, new_config in jira_connectors:
if not new_config:
continue
old_config = {}
base_url = new_config.get("jira_base_url")
project_key = new_config.get("project_key")
if base_url and project_key:
old_config = {"jira_project_url": f"{base_url}/projects/{project_key}"}
elif base_url:
old_config = {"jira_project_url": base_url}
else:
continue
# Update the connector config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :old_config
WHERE id = :id
"""
),
{"id": connector_id, "old_config": old_config},
)

View File

@@ -0,0 +1,36 @@
"""force lowercase all users
Revision ID: f11b408e39d3
Revises: 3bd4c84fe72f
Create Date: 2025-02-26 17:04:55.683500
"""
# revision identifiers, used by Alembic.
revision = "f11b408e39d3"
down_revision = "3bd4c84fe72f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# 1) Convert all existing user emails to lowercase
from alembic import op
op.execute(
"""
UPDATE "user"
SET email = LOWER(email)
"""
)
# 2) Add a check constraint to ensure emails are always lowercase
op.create_check_constraint("ensure_lowercase_email", "user", "email = LOWER(email)")
def downgrade() -> None:
# Drop the check constraint
from alembic import op
op.drop_constraint("ensure_lowercase_email", "user", type_="check")

View File

@@ -0,0 +1,27 @@
"""Add composite index for last_modified and last_synced to document
Revision ID: f13db29f3101
Revises: b388730a2899
Create Date: 2025-02-18 22:48:11.511389
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "f13db29f3101"
down_revision = "acaab4ef4507"
branch_labels: str | None = None
depends_on: str | None = None
def upgrade() -> None:
op.create_index(
"ix_document_sync_status",
"document",
["last_modified", "last_synced"],
unique=False,
)
def downgrade() -> None:
op.drop_index("ix_document_sync_status", table_name="document")

View File

@@ -0,0 +1,40 @@
"""Add background errors table
Revision ID: f39c5794c10a
Revises: 2cdeff6d8c93
Create Date: 2025-02-12 17:11:14.527876
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f39c5794c10a"
down_revision = "2cdeff6d8c93"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"background_error",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("message", sa.String(), nullable=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("cc_pair_id", sa.Integer(), nullable=True),
sa.PrimaryKeyConstraint("id"),
sa.ForeignKeyConstraint(
["cc_pair_id"],
["connector_credential_pair.id"],
ondelete="CASCADE",
),
)
def downgrade() -> None:
op.drop_table("background_error")

View File

@@ -0,0 +1,42 @@
"""lowercase multi-tenant user auth
Revision ID: 34e3630c7f32
Revises: a4f6ee863c47
Create Date: 2025-02-26 15:03:01.211894
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "34e3630c7f32"
down_revision = "a4f6ee863c47"
branch_labels = None
depends_on = None
def upgrade() -> None:
# 1) Convert all existing rows to lowercase
op.execute(
"""
UPDATE user_tenant_mapping
SET email = LOWER(email)
"""
)
# 2) Add a check constraint so that emails cannot be written in uppercase
op.create_check_constraint(
"ensure_lowercase_email",
"user_tenant_mapping",
"email = LOWER(email)",
schema="public",
)
def downgrade() -> None:
# Drop the check constraint
op.drop_constraint(
"ensure_lowercase_email",
"user_tenant_mapping",
schema="public",
type_="check",
)

View File

@@ -4,12 +4,11 @@ from ee.onyx.server.reporting.usage_export_generation import create_new_usage_re
from onyx.background.celery.apps.primary import celery_app
from onyx.background.task_utils import build_celery_task_wrapper
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.db.chat import delete_chat_sessions_older_than
from onyx.db.engine import get_session_with_tenant
from onyx.db.chat import delete_chat_session
from onyx.db.chat import get_chat_sessions_older_than
from onyx.db.engine import get_session_with_current_tenant
from onyx.server.settings.store import load_settings
from onyx.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
@@ -18,11 +17,28 @@ logger = setup_logger()
@build_celery_task_wrapper(name_chat_ttl_task)
@celery_app.task(soft_time_limit=JOB_TIMEOUT)
def perform_ttl_management_task(
retention_limit_days: int, *, tenant_id: str | None
) -> None:
with get_session_with_tenant(tenant_id) as db_session:
delete_chat_sessions_older_than(retention_limit_days, db_session)
def perform_ttl_management_task(retention_limit_days: int, *, tenant_id: str) -> None:
with get_session_with_current_tenant() as db_session:
old_chat_sessions = get_chat_sessions_older_than(
retention_limit_days, db_session
)
for user_id, session_id in old_chat_sessions:
# one session per delete so that we don't blow up if a deletion fails.
with get_session_with_current_tenant() as db_session:
try:
delete_chat_session(
user_id,
session_id,
db_session,
include_deleted=True,
hard_delete=True,
)
except Exception:
logger.exception(
"delete_chat_session exceptioned. "
f"user_id={user_id} session_id={session_id}"
)
#####
@@ -35,24 +51,19 @@ def perform_ttl_management_task(
ignore_result=True,
soft_time_limit=JOB_TIMEOUT,
)
def check_ttl_management_task(*, tenant_id: str | None) -> None:
def check_ttl_management_task(*, tenant_id: str) -> None:
"""Runs periodically to check if any ttl tasks should be run and adds them
to the queue"""
token = None
if MULTI_TENANT and tenant_id is not None:
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
settings = load_settings()
retention_limit_days = settings.maximum_chat_retention_days
with get_session_with_tenant(tenant_id) as db_session:
with get_session_with_current_tenant() as db_session:
if should_perform_chat_ttl_check(retention_limit_days, db_session):
perform_ttl_management_task.apply_async(
kwargs=dict(
retention_limit_days=retention_limit_days, tenant_id=tenant_id
),
)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
@celery_app.task(
@@ -60,9 +71,9 @@ def check_ttl_management_task(*, tenant_id: str | None) -> None:
ignore_result=True,
soft_time_limit=JOB_TIMEOUT,
)
def autogenerate_usage_report_task(*, tenant_id: str | None) -> None:
def autogenerate_usage_report_task(*, tenant_id: str) -> None:
"""This generates usage report under the /admin/generate-usage/report endpoint"""
with get_session_with_tenant(tenant_id) as db_session:
with get_session_with_current_tenant() as db_session:
create_new_usage_report(
db_session=db_session,
user_id=None,

View File

@@ -1,44 +1,46 @@
from datetime import timedelta
from typing import Any
from onyx.background.celery.tasks.beat_schedule import (
beat_cloud_tasks as base_beat_system_tasks,
)
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
from onyx.background.celery.tasks.beat_schedule import (
cloud_tasks_to_schedule as base_cloud_tasks_to_schedule,
beat_task_templates as base_beat_task_templates,
)
from onyx.background.celery.tasks.beat_schedule import generate_cloud_tasks
from onyx.background.celery.tasks.beat_schedule import (
tasks_to_schedule as base_tasks_to_schedule,
get_tasks_to_schedule as base_get_tasks_to_schedule,
)
from onyx.configs.constants import ONYX_CLOUD_CELERY_TASK_PREFIX
from onyx.configs.constants import OnyxCeleryPriority
from onyx.configs.constants import OnyxCeleryTask
from shared_configs.configs import MULTI_TENANT
ee_cloud_tasks_to_schedule = [
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_autogenerate-usage-report",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(days=30),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
ee_beat_system_tasks: list[dict] = []
ee_beat_task_templates: list[dict] = []
ee_beat_task_templates.extend(
[
{
"name": "autogenerate-usage-report",
"task": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
"schedule": timedelta(days=30),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
"kwargs": {
"task_name": OnyxCeleryTask.AUTOGENERATE_USAGE_REPORT_TASK,
{
"name": "check-ttl-management",
"task": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.MEDIUM,
"expires": BEAT_EXPIRES_DEFAULT,
},
},
},
{
"name": f"{ONYX_CLOUD_CELERY_TASK_PREFIX}_check-ttl-management",
"task": OnyxCeleryTask.CLOUD_BEAT_TASK_GENERATOR,
"schedule": timedelta(hours=1),
"options": {
"priority": OnyxCeleryPriority.HIGHEST,
"expires": BEAT_EXPIRES_DEFAULT,
},
"kwargs": {
"task_name": OnyxCeleryTask.CHECK_TTL_MANAGEMENT_TASK,
},
},
]
]
)
ee_tasks_to_schedule: list[dict] = []
@@ -65,9 +67,14 @@ if not MULTI_TENANT:
]
def get_cloud_tasks_to_schedule() -> list[dict[str, Any]]:
return ee_cloud_tasks_to_schedule + base_cloud_tasks_to_schedule
def get_cloud_tasks_to_schedule(beat_multiplier: float) -> list[dict[str, Any]]:
beat_system_tasks = ee_beat_system_tasks + base_beat_system_tasks
beat_task_templates = ee_beat_task_templates + base_beat_task_templates
cloud_tasks = generate_cloud_tasks(
beat_system_tasks, beat_task_templates, beat_multiplier
)
return cloud_tasks
def get_tasks_to_schedule() -> list[dict[str, Any]]:
return ee_tasks_to_schedule + base_tasks_to_schedule
return ee_tasks_to_schedule + base_get_tasks_to_schedule()

View File

@@ -18,7 +18,7 @@ logger = setup_logger()
def monitor_usergroup_taskset(
tenant_id: str | None, key_bytes: bytes, r: Redis, db_session: Session
tenant_id: str, key_bytes: bytes, r: Redis, db_session: Session
) -> None:
"""This function is likely to move in the worker refactor happening next."""
fence_key = key_bytes.decode("utf-8")

View File

@@ -59,10 +59,14 @@ SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
OAUTH_SLACK_CLIENT_ID = os.environ.get("OAUTH_SLACK_CLIENT_ID", "")
OAUTH_SLACK_CLIENT_SECRET = os.environ.get("OAUTH_SLACK_CLIENT_SECRET", "")
OAUTH_CONFLUENCE_CLIENT_ID = os.environ.get("OAUTH_CONFLUENCE_CLIENT_ID", "")
OAUTH_CONFLUENCE_CLIENT_SECRET = os.environ.get("OAUTH_CONFLUENCE_CLIENT_SECRET", "")
OAUTH_JIRA_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLIENT_ID", "")
OAUTH_JIRA_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLIENT_SECRET", "")
OAUTH_CONFLUENCE_CLOUD_CLIENT_ID = os.environ.get(
"OAUTH_CONFLUENCE_CLOUD_CLIENT_ID", ""
)
OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET = os.environ.get(
"OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET", ""
)
OAUTH_JIRA_CLOUD_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_ID", "")
OAUTH_JIRA_CLOUD_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_SECRET", "")
OAUTH_GOOGLE_DRIVE_CLIENT_ID = os.environ.get("OAUTH_GOOGLE_DRIVE_CLIENT_ID", "")
OAUTH_GOOGLE_DRIVE_CLIENT_SECRET = os.environ.get(
"OAUTH_GOOGLE_DRIVE_CLIENT_SECRET", ""
@@ -77,3 +81,5 @@ POSTHOG_HOST = os.environ.get("POSTHOG_HOST") or "https://us.i.posthog.com"
HUBSPOT_TRACKING_URL = os.environ.get("HUBSPOT_TRACKING_URL")
ANONYMOUS_USER_COOKIE_NAME = "onyx_anonymous_user"
GATED_TENANTS_KEY = "gated_tenants"

View File

@@ -4,6 +4,7 @@ from sqlalchemy.orm import Session
from onyx.configs.constants import DocumentSource
from onyx.db.connector_credential_pair import get_connector_credential_pair
from onyx.db.enums import AccessType
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.models import Connector
from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import UserGroup__ConnectorCredentialPair
@@ -35,10 +36,11 @@ def _delete_connector_credential_pair_user_groups_relationship__no_commit(
def get_cc_pairs_by_source(
db_session: Session,
source_type: DocumentSource,
only_sync: bool,
access_type: AccessType | None = None,
status: ConnectorCredentialPairStatus | None = None,
) -> list[ConnectorCredentialPair]:
"""
Get all cc_pairs for a given source type (and optionally only sync)
Get all cc_pairs for a given source type with optional filtering by access_type and status
result is sorted by cc_pair id
"""
query = (
@@ -48,8 +50,11 @@ def get_cc_pairs_by_source(
.order_by(ConnectorCredentialPair.id)
)
if only_sync:
query = query.filter(ConnectorCredentialPair.access_type == AccessType.SYNC)
if access_type is not None:
query = query.filter(ConnectorCredentialPair.access_type == access_type)
if status is not None:
query = query.filter(ConnectorCredentialPair.status == status)
cc_pairs = query.all()
return cc_pairs

View File

@@ -15,6 +15,9 @@ def make_persona_private(
group_ids: list[int] | None,
db_session: Session,
) -> None:
"""NOTE(rkuo): This function batches all updates into a single commit. If we don't
dedupe the inputs, the commit will exception."""
db_session.query(Persona__User).filter(
Persona__User.persona_id == persona_id
).delete(synchronize_session="fetch")
@@ -23,19 +26,22 @@ def make_persona_private(
).delete(synchronize_session="fetch")
if user_ids:
for user_uuid in user_ids:
db_session.add(Persona__User(persona_id=persona_id, user_id=user_uuid))
user_ids_set = set(user_ids)
for user_id in user_ids_set:
db_session.add(Persona__User(persona_id=persona_id, user_id=user_id))
create_notification(
user_id=user_uuid,
user_id=user_id,
notif_type=NotificationType.PERSONA_SHARED,
db_session=db_session,
additional_data=PersonaSharedNotificationData(
persona_id=persona_id,
).model_dump(),
)
if group_ids:
for group_id in group_ids:
group_ids_set = set(group_ids)
for group_id in group_ids_set:
db_session.add(
Persona__UserGroup(persona_id=persona_id, user_group_id=group_id)
)

View File

@@ -134,7 +134,9 @@ def fetch_chat_sessions_eagerly_by_time(
limit: int | None = 500,
initial_time: datetime | None = None,
) -> list[ChatSession]:
time_order: UnaryExpression = desc(ChatSession.time_created)
"""Sorted by oldest to newest, then by message id"""
asc_time_order: UnaryExpression = asc(ChatSession.time_created)
message_order: UnaryExpression = asc(ChatMessage.id)
filters: list[ColumnElement | BinaryExpression] = [
@@ -147,8 +149,7 @@ def fetch_chat_sessions_eagerly_by_time(
subquery = (
db_session.query(ChatSession.id, ChatSession.time_created)
.filter(*filters)
.order_by(ChatSession.id, time_order)
.distinct(ChatSession.id)
.order_by(asc_time_order)
.limit(limit)
.subquery()
)
@@ -164,7 +165,7 @@ def fetch_chat_sessions_eagerly_by_time(
ChatMessage.chat_message_feedbacks
),
)
.order_by(time_order, message_order)
.order_by(asc_time_order, message_order)
)
chat_sessions = query.all()

View File

@@ -16,13 +16,18 @@ from onyx.db.models import UsageReport
from onyx.file_store.file_store import get_default_file_store
# Gets skeletons of all message
# Gets skeletons of all messages in the given range
def get_empty_chat_messages_entries__paginated(
db_session: Session,
period: tuple[datetime, datetime],
limit: int | None = 500,
initial_time: datetime | None = None,
) -> tuple[Optional[datetime], list[ChatMessageSkeleton]]:
"""Returns a tuple where:
first element is the most recent timestamp out of the sessions iterated
- this timestamp can be used to paginate forward in time
second element is a list of messages belonging to all the sessions iterated
"""
chat_sessions = fetch_chat_sessions_eagerly_by_time(
start=period[0],
end=period[1],
@@ -52,18 +57,17 @@ def get_empty_chat_messages_entries__paginated(
if len(chat_sessions) == 0:
return None, []
return chat_sessions[0].time_created, message_skeletons
return chat_sessions[-1].time_created, message_skeletons
def get_all_empty_chat_message_entries(
db_session: Session,
period: tuple[datetime, datetime],
) -> Generator[list[ChatMessageSkeleton], None, None]:
"""period is the range of time over which to fetch messages."""
initial_time: Optional[datetime] = period[0]
ind = 0
while True:
ind += 1
# iterate from oldest to newest
time_created, message_skeletons = get_empty_chat_messages_entries__paginated(
db_session,
period,

View File

@@ -424,7 +424,7 @@ def _validate_curator_status__no_commit(
)
# if the user is a curator in any of their groups, set their role to CURATOR
# otherwise, set their role to BASIC
# otherwise, set their role to BASIC only if they were previously a CURATOR
if curator_relationships:
user.role = UserRole.CURATOR
elif user.role == UserRole.CURATOR:
@@ -631,7 +631,16 @@ def update_user_group(
removed_users = db_session.scalars(
select(User).where(User.id.in_(removed_user_ids)) # type: ignore
).unique()
_validate_curator_status__no_commit(db_session, list(removed_users))
# Filter out admin and global curator users before validating curator status
users_to_validate = [
user
for user in removed_users
if user.role not in [UserRole.ADMIN, UserRole.GLOBAL_CURATOR]
]
if users_to_validate:
_validate_curator_status__no_commit(db_session, users_to_validate)
# update "time_updated" to now
db_user_group.time_last_modified_by_user = func.now()

View File

@@ -9,12 +9,16 @@ from ee.onyx.external_permissions.confluence.constants import ALL_CONF_EMAILS_GR
from onyx.access.models import DocExternalAccess
from onyx.access.models import ExternalAccess
from onyx.connectors.confluence.connector import ConfluenceConnector
from onyx.connectors.confluence.onyx_confluence import (
get_user_email_from_username__server,
)
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
from onyx.connectors.confluence.utils import get_user_email_from_username__server
from onyx.connectors.credentials_provider import OnyxDBCredentialsProvider
from onyx.connectors.models import SlimDocument
from onyx.db.models import ConnectorCredentialPair
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
@@ -342,7 +346,8 @@ def _fetch_all_page_restrictions(
def confluence_doc_sync(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres
@@ -354,7 +359,11 @@ def confluence_doc_sync(
confluence_connector = ConfluenceConnector(
**cc_pair.connector.connector_specific_config
)
confluence_connector.load_credentials(cc_pair.credential.credential_json)
provider = OnyxDBCredentialsProvider(
get_current_tenant_id(), "confluence", cc_pair.credential_id
)
confluence_connector.set_credentials_provider(provider)
is_cloud = cc_pair.connector.connector_specific_config.get("is_cloud", False)
@@ -365,7 +374,9 @@ def confluence_doc_sync(
slim_docs = []
logger.debug("Fetching all slim documents from confluence")
for doc_batch in confluence_connector.retrieve_all_slim_documents():
for doc_batch in confluence_connector.retrieve_all_slim_documents(
callback=callback
):
logger.debug(f"Got {len(doc_batch)} slim documents from confluence")
if callback:
if callback.should_stop():

View File

@@ -1,8 +1,11 @@
from ee.onyx.db.external_perm import ExternalUserGroup
from ee.onyx.external_permissions.confluence.constants import ALL_CONF_EMAILS_GROUP_NAME
from onyx.connectors.confluence.onyx_confluence import build_confluence_client
from onyx.background.error_logging import emit_background_error
from onyx.connectors.confluence.onyx_confluence import (
get_user_email_from_username__server,
)
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
from onyx.connectors.confluence.utils import get_user_email_from_username__server
from onyx.connectors.credentials_provider import OnyxDBCredentialsProvider
from onyx.db.models import ConnectorCredentialPair
from onyx.utils.logger import setup_logger
@@ -10,57 +13,81 @@ logger = setup_logger()
def _build_group_member_email_map(
confluence_client: OnyxConfluence,
confluence_client: OnyxConfluence, cc_pair_id: int
) -> dict[str, set[str]]:
group_member_emails: dict[str, set[str]] = {}
for user_result in confluence_client.paginated_cql_user_retrieval():
logger.debug(f"Processing groups for user: {user_result}")
for user in confluence_client.paginated_cql_user_retrieval():
logger.debug(f"Processing groups for user: {user}")
user = user_result.get("user", {})
if not user:
logger.warning(f"user result missing user field: {user_result}")
continue
email = user.get("email")
email = user.email
if not email:
# This field is only present in Confluence Server
user_name = user.get("username")
user_name = user.username
# If it is present, try to get the email using a Server-specific method
if user_name:
email = get_user_email_from_username__server(
confluence_client=confluence_client,
user_name=user_name,
)
if not email:
# If we still don't have an email, skip this user
logger.warning(f"user result missing email field: {user_result}")
msg = f"user result missing email field: {user}"
if user.type == "app":
logger.warning(msg)
else:
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
continue
all_users_groups: set[str] = set()
for group in confluence_client.paginated_groups_by_user_retrieval(user):
for group in confluence_client.paginated_groups_by_user_retrieval(user.user_id):
# group name uniqueness is enforced by Confluence, so we can use it as a group ID
group_id = group["name"]
group_member_emails.setdefault(group_id, set()).add(email)
all_users_groups.add(group_id)
if not group_member_emails:
logger.warning(f"No groups found for user with email: {email}")
if not all_users_groups:
msg = f"No groups found for user with email: {email}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
else:
logger.debug(f"Found groups {all_users_groups} for user with email {email}")
if not group_member_emails:
msg = "No groups found for any users."
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
return group_member_emails
def confluence_group_sync(
tenant_id: str,
cc_pair: ConnectorCredentialPair,
) -> list[ExternalUserGroup]:
confluence_client = build_confluence_client(
credentials=cc_pair.credential.credential_json,
is_cloud=cc_pair.connector.connector_specific_config.get("is_cloud", False),
wiki_base=cc_pair.connector.connector_specific_config["wiki_base"],
)
provider = OnyxDBCredentialsProvider(tenant_id, "confluence", cc_pair.credential_id)
is_cloud = cc_pair.connector.connector_specific_config.get("is_cloud", False)
wiki_base: str = cc_pair.connector.connector_specific_config["wiki_base"]
url = wiki_base.rstrip("/")
probe_kwargs = {
"max_backoff_retries": 6,
"max_backoff_seconds": 10,
}
final_kwargs = {
"max_backoff_retries": 10,
"max_backoff_seconds": 60,
}
confluence_client = OnyxConfluence(is_cloud, url, provider)
confluence_client._probe_connection(**probe_kwargs)
confluence_client._initialize_connection(**final_kwargs)
group_member_email_map = _build_group_member_email_map(
confluence_client=confluence_client,
cc_pair_id=cc_pair.id,
)
onyx_groups: list[ExternalUserGroup] = []
all_found_emails = set()

View File

@@ -15,6 +15,7 @@ logger = setup_logger()
def _get_slim_doc_generator(
cc_pair: ConnectorCredentialPair,
gmail_connector: GmailConnector,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
current_time = datetime.now(timezone.utc)
start_time = (
@@ -24,12 +25,15 @@ def _get_slim_doc_generator(
)
return gmail_connector.retrieve_all_slim_documents(
start=start_time, end=current_time.timestamp()
start=start_time,
end=current_time.timestamp(),
callback=callback,
)
def gmail_doc_sync(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres
@@ -40,7 +44,9 @@ def gmail_doc_sync(
gmail_connector = GmailConnector(**cc_pair.connector.connector_specific_config)
gmail_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = _get_slim_doc_generator(cc_pair, gmail_connector)
slim_doc_generator = _get_slim_doc_generator(
cc_pair, gmail_connector, callback=callback
)
document_external_access: list[DocExternalAccess] = []
for slim_doc_batch in slim_doc_generator:

View File

@@ -21,6 +21,7 @@ _PERMISSION_ID_PERMISSION_MAP: dict[str, dict[str, Any]] = {}
def _get_slim_doc_generator(
cc_pair: ConnectorCredentialPair,
google_drive_connector: GoogleDriveConnector,
callback: IndexingHeartbeatInterface | None = None,
) -> GenerateSlimDocumentOutput:
current_time = datetime.now(timezone.utc)
start_time = (
@@ -30,7 +31,9 @@ def _get_slim_doc_generator(
)
return google_drive_connector.retrieve_all_slim_documents(
start=start_time, end=current_time.timestamp()
start=start_time,
end=current_time.timestamp(),
callback=callback,
)
@@ -59,12 +62,14 @@ def _fetch_permissions_for_permission_ids(
user_email=(owner_email or google_drive_connector.primary_admin_email),
)
# We continue on 404 or 403 because the document may not exist or the user may not have access to it
fetched_permissions = execute_paginated_retrieval(
retrieval_function=drive_service.permissions().list,
list_key="permissions",
fileId=doc_id,
fields="permissions(id, emailAddress, type, domain)",
supportsAllDrives=True,
continue_on_404_or_403=True,
)
permissions_for_doc_id = []
@@ -101,7 +106,13 @@ def _get_permissions_from_slim_doc(
user_emails: set[str] = set()
group_emails: set[str] = set()
public = False
skipped_permissions = 0
for permission in permissions_list:
if not permission:
skipped_permissions += 1
continue
permission_type = permission["type"]
if permission_type == "user":
user_emails.add(permission["emailAddress"])
@@ -118,6 +129,11 @@ def _get_permissions_from_slim_doc(
elif permission_type == "anyone":
public = True
if skipped_permissions > 0:
logger.warning(
f"Skipped {skipped_permissions} permissions of {len(permissions_list)} for document {slim_doc.id}"
)
drive_id = permission_info.get("drive_id")
group_ids = group_emails | ({drive_id} if drive_id is not None else set())
@@ -129,7 +145,8 @@ def _get_permissions_from_slim_doc(
def gdrive_doc_sync(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres

View File

@@ -119,6 +119,7 @@ def _build_onyx_groups(
def gdrive_group_sync(
tenant_id: str,
cc_pair: ConnectorCredentialPair,
) -> list[ExternalUserGroup]:
# Initialize connector and build credential/service objects

View File

@@ -5,7 +5,7 @@ from onyx.access.models import DocExternalAccess
from onyx.access.models import ExternalAccess
from onyx.connectors.slack.connector import get_channels
from onyx.connectors.slack.connector import make_paginated_slack_api_call_w_retries
from onyx.connectors.slack.connector import SlackPollConnector
from onyx.connectors.slack.connector import SlackConnector
from onyx.db.models import ConnectorCredentialPair
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -17,22 +17,14 @@ logger = setup_logger()
def _get_slack_document_ids_and_channels(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> dict[str, list[str]]:
slack_connector = SlackPollConnector(**cc_pair.connector.connector_specific_config)
slack_connector = SlackConnector(**cc_pair.connector.connector_specific_config)
slack_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = slack_connector.retrieve_all_slim_documents()
slim_doc_generator = slack_connector.retrieve_all_slim_documents(callback=callback)
channel_doc_map: dict[str, list[str]] = {}
for doc_metadata_batch in slim_doc_generator:
for doc_metadata in doc_metadata_batch:
if callback:
if callback.should_stop():
raise RuntimeError(
"_get_slack_document_ids_and_channels: Stop signal detected"
)
callback.progress("_get_slack_document_ids_and_channels", 1)
if doc_metadata.perm_sync_data is None:
continue
channel_id = doc_metadata.perm_sync_data["channel_id"]
@@ -40,6 +32,14 @@ def _get_slack_document_ids_and_channels(
channel_doc_map[channel_id] = []
channel_doc_map[channel_id].append(doc_metadata.id)
if callback:
if callback.should_stop():
raise RuntimeError(
"_get_slack_document_ids_and_channels: Stop signal detected"
)
callback.progress("_get_slack_document_ids_and_channels", 1)
return channel_doc_map
@@ -123,7 +123,8 @@ def _fetch_channel_permissions(
def slack_doc_sync(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres

View File

@@ -28,6 +28,7 @@ DocSyncFuncType = Callable[
GroupSyncFuncType = Callable[
[
str,
ConnectorCredentialPair,
],
list[ExternalUserGroup],

View File

@@ -15,7 +15,7 @@ from ee.onyx.server.enterprise_settings.api import (
)
from ee.onyx.server.manage.standard_answer import router as standard_answer_router
from ee.onyx.server.middleware.tenant_tracking import add_tenant_id_middleware
from ee.onyx.server.oauth import router as oauth_router
from ee.onyx.server.oauth.api import router as ee_oauth_router
from ee.onyx.server.query_and_chat.chat_backend import (
router as chat_router,
)
@@ -128,7 +128,7 @@ def get_application() -> FastAPI:
include_router_with_global_prefix_prepended(application, query_router)
include_router_with_global_prefix_prepended(application, chat_router)
include_router_with_global_prefix_prepended(application, standard_answer_router)
include_router_with_global_prefix_prepended(application, oauth_router)
include_router_with_global_prefix_prepended(application, ee_oauth_router)
# Enterprise-only global settings
include_router_with_global_prefix_prepended(
@@ -152,4 +152,8 @@ def get_application() -> FastAPI:
# environment variable. Used to automate deployment for multiple environments.
seed_db()
# for debugging discovered routes
# for route in application.router.routes:
# print(f"Path: {route.path}, Methods: {route.methods}")
return application

View File

@@ -22,7 +22,7 @@ from onyx.onyxbot.slack.blocks import get_restate_blocks
from onyx.onyxbot.slack.constants import GENERATE_ANSWER_BUTTON_ACTION_ID
from onyx.onyxbot.slack.handlers.utils import send_team_member_message
from onyx.onyxbot.slack.models import SlackMessageInfo
from onyx.onyxbot.slack.utils import respond_in_thread
from onyx.onyxbot.slack.utils import respond_in_thread_or_channel
from onyx.onyxbot.slack.utils import update_emote_react
from onyx.utils.logger import OnyxLoggingAdapter
from onyx.utils.logger import setup_logger
@@ -216,7 +216,7 @@ def _handle_standard_answers(
all_blocks = restate_question_blocks + answer_blocks
try:
respond_in_thread(
respond_in_thread_or_channel(
client=client,
channel=message_info.channel_to_respond,
receiver_ids=receiver_ids,
@@ -231,6 +231,7 @@ def _handle_standard_answers(
client=client,
channel=message_info.channel_to_respond,
thread_ts=slack_thread_id,
receiver_ids=receiver_ids,
)
return True

View File

@@ -33,7 +33,7 @@ def add_tenant_id_middleware(app: FastAPI, logger: logging.LoggerAdapter) -> Non
return await call_next(request)
except Exception as e:
logger.error(f"Error in tenant ID middleware: {str(e)}")
logger.exception(f"Error in tenant ID middleware: {str(e)}")
raise
@@ -49,7 +49,7 @@ async def _get_tenant_id_from_request(
"""
# Check for API key
tenant_id = extract_tenant_from_api_key_header(request)
if tenant_id:
if tenant_id is not None:
return tenant_id
# Check for anonymous user cookie

View File

@@ -1,631 +0,0 @@
import base64
import json
import uuid
from typing import Any
from typing import cast
import requests
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLIENT_SECRET
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_SECRET
from onyx.auth.users import current_user
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.google_utils.google_auth import get_google_oauth_creds
from onyx.connectors.google_utils.google_auth import sanitize_oauth_credentials
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_AUTHENTICATION_METHOD,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_TOKEN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
GoogleOAuthAuthenticationMethod,
)
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
from onyx.utils.logger import setup_logger
logger = setup_logger()
router = APIRouter(prefix="/oauth")
class SlackOAuth:
# https://knock.app/blog/how-to-authenticate-users-in-slack-using-oauth
# Example: https://api.slack.com/authentication/oauth-v2#exchanging
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_SLACK_CLIENT_ID
CLIENT_SECRET = OAUTH_SLACK_CLIENT_SECRET
TOKEN_URL = "https://slack.com/api/oauth.v2.access"
# SCOPE is per https://docs.onyx.app/connectors/slack
BOT_SCOPE = (
"channels:history,"
"channels:read,"
"groups:history,"
"groups:read,"
"channels:join,"
"im:history,"
"users:read,"
"users:read.email,"
"usergroups:read"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/slack/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = SlackOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
class ConfluenceCloudOAuth:
"""work in progress"""
# https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_CONFLUENCE_CLIENT_ID
CLIENT_SECRET = OAUTH_CONFLUENCE_CLIENT_SECRET
TOKEN_URL = "https://auth.atlassian.com/oauth/token"
# All read scopes per https://developer.atlassian.com/cloud/confluence/scopes-for-oauth-2-3LO-and-forge-apps/
CONFLUENCE_OAUTH_SCOPE = (
"read:confluence-props%20"
"read:confluence-content.all%20"
"read:confluence-content.summary%20"
"read:confluence-content.permission%20"
"read:confluence-user%20"
"read:confluence-groups%20"
"readonly:content.attachment:confluence"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
# eventually for Confluence Data Center
# oauth_url = (
# f"http://localhost:8090/rest/oauth/v2/authorize?client_id={CONFLUENCE_OAUTH_CLIENT_ID}"
# f"&scope={CONFLUENCE_OAUTH_SCOPE_2}"
# f"&redirect_uri={redirectme_uri}"
# )
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
"https://auth.atlassian.com/authorize"
f"?audience=api.atlassian.com"
f"&client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.CONFLUENCE_OAUTH_SCOPE}"
f"&state={state}"
"&response_type=code"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = ConfluenceCloudOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> SlackOAuth.OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
class GoogleDriveOAuth:
# https://developers.google.com/identity/protocols/oauth2
# https://developers.google.com/identity/protocols/oauth2/web-server
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_GOOGLE_DRIVE_CLIENT_ID
CLIENT_SECRET = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
TOKEN_URL = "https://oauth2.googleapis.com/token"
# SCOPE is per https://docs.onyx.app/connectors/google-drive
# TODO: Merge with or use google_utils.GOOGLE_SCOPES
SCOPE = (
"https://www.googleapis.com/auth/drive.readonly%20"
"https://www.googleapis.com/auth/drive.metadata.readonly%20"
"https://www.googleapis.com/auth/admin.directory.user.readonly%20"
"https://www.googleapis.com/auth/admin.directory.group.readonly"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/google-drive/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# without prompt=consent, a refresh token is only issued the first time the user approves
url = (
f"https://accounts.google.com/o/oauth2/v2/auth"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
"&response_type=code"
f"&scope={cls.SCOPE}"
"&access_type=offline"
f"&state={state}"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = GoogleDriveOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = GoogleDriveOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/prepare-authorization-request")
def prepare_authorization_request(
connector: DocumentSource,
redirect_on_success: str | None,
user: User = Depends(current_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Used by the frontend to generate the url for the user's browser during auth request.
Example: https://www.oauth.com/oauth2-servers/authorization/the-authorization-request/
"""
# create random oauth state param for security and to retrieve user data later
oauth_uuid = uuid.uuid4()
oauth_uuid_str = str(oauth_uuid)
# urlsafe b64 encode the uuid for the oauth url
oauth_state = (
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
)
session: str
if connector == DocumentSource.SLACK:
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
session = SlackOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.GOOGLE_DRIVE:
oauth_url = GoogleDriveOAuth.generate_oauth_url(oauth_state)
session = GoogleDriveOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
# elif connector == DocumentSource.CONFLUENCE:
# oauth_url = ConfluenceCloudOAuth.generate_oauth_url(oauth_state)
# session = ConfluenceCloudOAuth.session_dump_json(
# email=user.email, redirect_on_success=redirect_on_success
# )
# elif connector == DocumentSource.JIRA:
# oauth_url = JiraCloudOAuth.generate_dev_oauth_url(oauth_state)
else:
oauth_url = None
if not oauth_url:
raise HTTPException(
status_code=404,
detail=f"The document source type {connector} does not have OAuth implemented",
)
r = get_redis_client(tenant_id=tenant_id)
# store important session state to retrieve when the user is redirected back
# 10 min is the max we want an oauth flow to be valid
r.set(f"da_oauth:{oauth_uuid_str}", session, ex=600)
return JSONResponse(content={"url": oauth_url})
@router.post("/connector/slack/callback")
def handle_slack_oauth_callback(
code: str,
state: str,
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not SlackOAuth.CLIENT_ID or not SlackOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Slack client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = SlackOAuth.parse_session(session_json)
# Exchange the authorization code for an access token
response = requests.post(
SlackOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": SlackOAuth.CLIENT_ID,
"client_secret": SlackOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": SlackOAuth.REDIRECT_URI,
},
)
response_data = response.json()
if not response_data.get("ok"):
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed: {response_data.get('error')}",
)
# Extract token and team information
access_token: str = response_data.get("access_token")
team_id: str = response_data.get("team", {}).get("id")
authed_user_id: str = response_data.get("authed_user", {}).get("id")
credential_info = CredentialBase(
credential_json={"slack_bot_token": access_token},
admin_public=True,
source=DocumentSource.SLACK,
name="Slack OAuth",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Slack OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Slack OAuth completed successfully.",
"team_id": team_id,
"authed_user_id": authed_user_id,
"redirect_on_success": session.redirect_on_success,
}
)
# Work in progress
# @router.post("/connector/confluence/callback")
# def handle_confluence_oauth_callback(
# code: str,
# state: str,
# user: User = Depends(current_user),
# db_session: Session = Depends(get_session),
# tenant_id: str | None = Depends(get_current_tenant_id),
# ) -> JSONResponse:
# if not ConfluenceCloudOAuth.CLIENT_ID or not ConfluenceCloudOAuth.CLIENT_SECRET:
# raise HTTPException(
# status_code=500,
# detail="Confluence client ID or client secret is not configured."
# )
# r = get_redis_client(tenant_id=tenant_id)
# # recover the state
# padded_state = state + '=' * (-len(state) % 4) # Add padding back (Base64 decoding requires padding)
# uuid_bytes = base64.urlsafe_b64decode(padded_state) # Decode the Base64 string back to bytes
# # Convert bytes back to a UUID
# oauth_uuid = uuid.UUID(bytes=uuid_bytes)
# oauth_uuid_str = str(oauth_uuid)
# r_key = f"da_oauth:{oauth_uuid_str}"
# result = r.get(r_key)
# if not result:
# raise HTTPException(
# status_code=400,
# detail=f"Confluence OAuth failed - OAuth state key not found: key={r_key}"
# )
# try:
# session = ConfluenceCloudOAuth.parse_session(result)
# # Exchange the authorization code for an access token
# response = requests.post(
# ConfluenceCloudOAuth.TOKEN_URL,
# headers={"Content-Type": "application/x-www-form-urlencoded"},
# data={
# "client_id": ConfluenceCloudOAuth.CLIENT_ID,
# "client_secret": ConfluenceCloudOAuth.CLIENT_SECRET,
# "code": code,
# "redirect_uri": ConfluenceCloudOAuth.DEV_REDIRECT_URI,
# },
# )
# response_data = response.json()
# if not response_data.get("ok"):
# raise HTTPException(
# status_code=400,
# detail=f"ConfluenceCloudOAuth OAuth failed: {response_data.get('error')}"
# )
# # Extract token and team information
# access_token: str = response_data.get("access_token")
# team_id: str = response_data.get("team", {}).get("id")
# authed_user_id: str = response_data.get("authed_user", {}).get("id")
# credential_info = CredentialBase(
# credential_json={"slack_bot_token": access_token},
# admin_public=True,
# source=DocumentSource.CONFLUENCE,
# name="Confluence OAuth",
# )
# logger.info(f"Slack access token: {access_token}")
# credential = create_credential(credential_info, user, db_session)
# logger.info(f"new_credential_id={credential.id}")
# except Exception as e:
# return JSONResponse(
# status_code=500,
# content={
# "success": False,
# "message": f"An error occurred during Slack OAuth: {str(e)}",
# },
# )
# finally:
# r.delete(r_key)
# # return the result
# return JSONResponse(
# content={
# "success": True,
# "message": "Slack OAuth completed successfully.",
# "team_id": team_id,
# "authed_user_id": authed_user_id,
# "redirect_on_success": session.redirect_on_success,
# }
# )
@router.post("/connector/google-drive/callback")
def handle_google_drive_oauth_callback(
code: str,
state: str,
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not GoogleDriveOAuth.CLIENT_ID or not GoogleDriveOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Google Drive client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Google Drive OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
session: GoogleDriveOAuth.OAuthSession
try:
session = GoogleDriveOAuth.parse_session(session_json)
# Exchange the authorization code for an access token
response = requests.post(
GoogleDriveOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": GoogleDriveOAuth.CLIENT_ID,
"client_secret": GoogleDriveOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": GoogleDriveOAuth.REDIRECT_URI,
"grant_type": "authorization_code",
},
)
response.raise_for_status()
authorization_response: dict[str, Any] = response.json()
# the connector wants us to store the json in its authorized_user_info format
# returned from OAuthCredentials.get_authorized_user_info().
# So refresh immediately via get_google_oauth_creds with the params filled in
# from fields in authorization_response to get the json we need
authorized_user_info = {}
authorized_user_info["client_id"] = OAUTH_GOOGLE_DRIVE_CLIENT_ID
authorized_user_info["client_secret"] = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
authorized_user_info["refresh_token"] = authorization_response["refresh_token"]
token_json_str = json.dumps(authorized_user_info)
oauth_creds = get_google_oauth_creds(
token_json_str=token_json_str, source=DocumentSource.GOOGLE_DRIVE
)
if not oauth_creds:
raise RuntimeError("get_google_oauth_creds returned None.")
# save off the credentials
oauth_creds_sanitized_json_str = sanitize_oauth_credentials(oauth_creds)
credential_dict: dict[str, str] = {}
credential_dict[DB_CREDENTIALS_DICT_TOKEN_KEY] = oauth_creds_sanitized_json_str
credential_dict[DB_CREDENTIALS_PRIMARY_ADMIN_KEY] = session.email
credential_dict[
DB_CREDENTIALS_AUTHENTICATION_METHOD
] = GoogleOAuthAuthenticationMethod.OAUTH_INTERACTIVE.value
credential_info = CredentialBase(
credential_json=credential_dict,
admin_public=True,
source=DocumentSource.GOOGLE_DRIVE,
name="OAuth (interactive)",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Google Drive OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Google Drive OAuth completed successfully.",
"redirect_on_success": session.redirect_on_success,
}
)

View File

@@ -0,0 +1,91 @@
import base64
import uuid
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from ee.onyx.server.oauth.api_router import router
from ee.onyx.server.oauth.confluence_cloud import ConfluenceCloudOAuth
from ee.onyx.server.oauth.google_drive import GoogleDriveOAuth
from ee.onyx.server.oauth.slack import SlackOAuth
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.constants import DocumentSource
from onyx.db.engine import get_current_tenant_id
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.utils.logger import setup_logger
logger = setup_logger()
@router.post("/prepare-authorization-request")
def prepare_authorization_request(
connector: DocumentSource,
redirect_on_success: str | None,
user: User = Depends(current_admin_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Used by the frontend to generate the url for the user's browser during auth request.
Example: https://www.oauth.com/oauth2-servers/authorization/the-authorization-request/
"""
# create random oauth state param for security and to retrieve user data later
oauth_uuid = uuid.uuid4()
oauth_uuid_str = str(oauth_uuid)
# urlsafe b64 encode the uuid for the oauth url
oauth_state = (
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
)
session: str | None = None
if connector == DocumentSource.SLACK:
if not DEV_MODE:
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = SlackOAuth.generate_dev_oauth_url(oauth_state)
session = SlackOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.CONFLUENCE:
if not DEV_MODE:
oauth_url = ConfluenceCloudOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = ConfluenceCloudOAuth.generate_dev_oauth_url(oauth_state)
session = ConfluenceCloudOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.GOOGLE_DRIVE:
if not DEV_MODE:
oauth_url = GoogleDriveOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = GoogleDriveOAuth.generate_dev_oauth_url(oauth_state)
session = GoogleDriveOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
else:
oauth_url = None
if not oauth_url:
raise HTTPException(
status_code=404,
detail=f"The document source type {connector} does not have OAuth implemented",
)
if not session:
raise HTTPException(
status_code=500,
detail=f"The document source type {connector} failed to generate an OAuth session.",
)
r = get_redis_client(tenant_id=tenant_id)
# store important session state to retrieve when the user is redirected back
# 10 min is the max we want an oauth flow to be valid
r.set(f"da_oauth:{oauth_uuid_str}", session, ex=600)
return JSONResponse(content={"url": oauth_url})

View File

@@ -0,0 +1,3 @@
from fastapi import APIRouter
router: APIRouter = APIRouter(prefix="/oauth")

View File

@@ -0,0 +1,362 @@
import base64
import uuid
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from pydantic import ValidationError
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLOUD_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.confluence.utils import CONFLUENCE_OAUTH_TOKEN_URL
from onyx.db.credentials import create_credential
from onyx.db.credentials import fetch_credential_by_id_for_user
from onyx.db.credentials import update_credential_json
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
from onyx.utils.logger import setup_logger
logger = setup_logger()
class ConfluenceCloudOAuth:
# https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
class TokenResponse(BaseModel):
access_token: str
expires_in: int
token_type: str
refresh_token: str
scope: str
class AccessibleResources(BaseModel):
id: str
name: str
url: str
scopes: list[str]
avatarUrl: str
CLIENT_ID = OAUTH_CONFLUENCE_CLOUD_CLIENT_ID
CLIENT_SECRET = OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET
TOKEN_URL = CONFLUENCE_OAUTH_TOKEN_URL
ACCESSIBLE_RESOURCE_URL = (
"https://api.atlassian.com/oauth/token/accessible-resources"
)
# All read scopes per https://developer.atlassian.com/cloud/confluence/scopes-for-oauth-2-3LO-and-forge-apps/
CONFLUENCE_OAUTH_SCOPE = (
# classic scope
"read:confluence-space.summary%20"
"read:confluence-props%20"
"read:confluence-content.all%20"
"read:confluence-content.summary%20"
"read:confluence-content.permission%20"
"read:confluence-user%20"
"read:confluence-groups%20"
"readonly:content.attachment:confluence%20"
"search:confluence%20"
# granular scope
"read:attachment:confluence%20" # possibly unneeded unless calling v2 attachments api
"read:content-details:confluence%20" # for permission sync
"offline_access"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
# eventually for Confluence Data Center
# oauth_url = (
# f"http://localhost:8090/rest/oauth/v2/authorize?client_id={CONFLUENCE_OAUTH_CLIENT_ID}"
# f"&scope={CONFLUENCE_OAUTH_SCOPE_2}"
# f"&redirect_uri={redirectme_uri}"
# )
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# https://developer.atlassian.com/cloud/jira/platform/oauth-2-3lo-apps/#1--direct-the-user-to-the-authorization-url-to-get-an-authorization-code
url = (
"https://auth.atlassian.com/authorize"
f"?audience=api.atlassian.com"
f"&client_id={cls.CLIENT_ID}"
f"&scope={cls.CONFLUENCE_OAUTH_SCOPE}"
f"&redirect_uri={redirect_uri}"
f"&state={state}"
"&response_type=code"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = ConfluenceCloudOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = ConfluenceCloudOAuth.OAuthSession.model_validate_json(session_json)
return session
@classmethod
def generate_finalize_url(cls, credential_id: int) -> str:
return f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/finalize?credential={credential_id}"
@router.post("/connector/confluence/callback")
def confluence_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Handles the backend logic for the frontend page that the user is redirected to
after visiting the oauth authorization url."""
if not ConfluenceCloudOAuth.CLIENT_ID or not ConfluenceCloudOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Confluence Cloud client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Confluence Cloud OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = ConfluenceCloudOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = ConfluenceCloudOAuth.REDIRECT_URI
else:
redirect_uri = ConfluenceCloudOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
ConfluenceCloudOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": ConfluenceCloudOAuth.CLIENT_ID,
"client_secret": ConfluenceCloudOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
"grant_type": "authorization_code",
},
)
token_response: ConfluenceCloudOAuth.TokenResponse | None = None
try:
token_response = ConfluenceCloudOAuth.TokenResponse.model_validate_json(
response.text
)
except Exception:
raise RuntimeError(
"Confluence Cloud OAuth failed during code/token exchange."
)
now = datetime.now(timezone.utc)
expires_at = now + timedelta(seconds=token_response.expires_in)
credential_info = CredentialBase(
credential_json={
"confluence_access_token": token_response.access_token,
"confluence_refresh_token": token_response.refresh_token,
"created_at": now.isoformat(),
"expires_at": expires_at.isoformat(),
"expires_in": token_response.expires_in,
"scope": token_response.scope,
},
admin_public=True,
source=DocumentSource.CONFLUENCE,
name="Confluence Cloud OAuth",
)
credential = create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Confluence Cloud OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud OAuth completed successfully.",
"finalize_url": ConfluenceCloudOAuth.generate_finalize_url(credential.id),
"redirect_on_success": session.redirect_on_success,
}
)
@router.get("/connector/confluence/accessible-resources")
def confluence_oauth_accessible_resources(
credential_id: int,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Atlassian's API is weird and does not supply us with enough info to be in a
usable state after authorizing. All API's require a cloud id. We have to list
the accessible resources/sites and let the user choose which site to use."""
credential = fetch_credential_by_id_for_user(credential_id, user, db_session)
if not credential:
raise HTTPException(400, f"Credential {credential_id} not found.")
credential_dict = credential.credential_json
access_token = credential_dict["confluence_access_token"]
try:
# Exchange the authorization code for an access token
response = requests.get(
ConfluenceCloudOAuth.ACCESSIBLE_RESOURCE_URL,
headers={
"Authorization": f"Bearer {access_token}",
"Accept": "application/json",
},
)
response.raise_for_status()
accessible_resources_data = response.json()
# Validate the list of AccessibleResources
try:
accessible_resources = [
ConfluenceCloudOAuth.AccessibleResources(**resource)
for resource in accessible_resources_data
]
except ValidationError as e:
raise RuntimeError(f"Failed to parse accessible resources: {e}")
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred retrieving Confluence Cloud accessible resources: {str(e)}",
},
)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud get accessible resources completed successfully.",
"accessible_resources": [
resource.model_dump() for resource in accessible_resources
],
}
)
@router.post("/connector/confluence/finalize")
def confluence_oauth_finalize(
credential_id: int,
cloud_id: str,
cloud_name: str,
cloud_url: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Saves the info for the selected cloud site to the credential.
This is the final step in the confluence oauth flow where after the traditional
OAuth process, the user has to select a site to associate with the credentials.
After this, the credential is usable."""
credential = fetch_credential_by_id_for_user(credential_id, user, db_session)
if not credential:
raise HTTPException(
status_code=400,
detail=f"Confluence Cloud OAuth failed - credential {credential_id} not found.",
)
new_credential_json: dict[str, Any] = dict(credential.credential_json)
new_credential_json["cloud_id"] = cloud_id
new_credential_json["cloud_name"] = cloud_name
new_credential_json["wiki_base"] = cloud_url
try:
update_credential_json(credential_id, new_credential_json, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Confluence Cloud OAuth: {str(e)}",
},
)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud OAuth finalized successfully.",
"redirect_url": f"{WEB_DOMAIN}/admin/connectors/confluence",
}
)

View File

@@ -0,0 +1,229 @@
import base64
import json
import uuid
from typing import Any
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.google_utils.google_auth import get_google_oauth_creds
from onyx.connectors.google_utils.google_auth import sanitize_oauth_credentials
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_AUTHENTICATION_METHOD,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_TOKEN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
GoogleOAuthAuthenticationMethod,
)
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
class GoogleDriveOAuth:
# https://developers.google.com/identity/protocols/oauth2
# https://developers.google.com/identity/protocols/oauth2/web-server
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_GOOGLE_DRIVE_CLIENT_ID
CLIENT_SECRET = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
TOKEN_URL = "https://oauth2.googleapis.com/token"
# SCOPE is per https://docs.danswer.dev/connectors/google-drive
# TODO: Merge with or use google_utils.GOOGLE_SCOPES
SCOPE = (
"https://www.googleapis.com/auth/drive.readonly%20"
"https://www.googleapis.com/auth/drive.metadata.readonly%20"
"https://www.googleapis.com/auth/admin.directory.user.readonly%20"
"https://www.googleapis.com/auth/admin.directory.group.readonly"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/google-drive/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# without prompt=consent, a refresh token is only issued the first time the user approves
url = (
f"https://accounts.google.com/o/oauth2/v2/auth"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
"&response_type=code"
f"&scope={cls.SCOPE}"
"&access_type=offline"
f"&state={state}"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = GoogleDriveOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = GoogleDriveOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/connector/google-drive/callback")
def handle_google_drive_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not GoogleDriveOAuth.CLIENT_ID or not GoogleDriveOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Google Drive client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Google Drive OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = GoogleDriveOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = GoogleDriveOAuth.REDIRECT_URI
else:
redirect_uri = GoogleDriveOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
GoogleDriveOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": GoogleDriveOAuth.CLIENT_ID,
"client_secret": GoogleDriveOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
"grant_type": "authorization_code",
},
)
response.raise_for_status()
authorization_response: dict[str, Any] = response.json()
# the connector wants us to store the json in its authorized_user_info format
# returned from OAuthCredentials.get_authorized_user_info().
# So refresh immediately via get_google_oauth_creds with the params filled in
# from fields in authorization_response to get the json we need
authorized_user_info = {}
authorized_user_info["client_id"] = OAUTH_GOOGLE_DRIVE_CLIENT_ID
authorized_user_info["client_secret"] = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
authorized_user_info["refresh_token"] = authorization_response["refresh_token"]
token_json_str = json.dumps(authorized_user_info)
oauth_creds = get_google_oauth_creds(
token_json_str=token_json_str, source=DocumentSource.GOOGLE_DRIVE
)
if not oauth_creds:
raise RuntimeError("get_google_oauth_creds returned None.")
# save off the credentials
oauth_creds_sanitized_json_str = sanitize_oauth_credentials(oauth_creds)
credential_dict: dict[str, str] = {}
credential_dict[DB_CREDENTIALS_DICT_TOKEN_KEY] = oauth_creds_sanitized_json_str
credential_dict[DB_CREDENTIALS_PRIMARY_ADMIN_KEY] = session.email
credential_dict[
DB_CREDENTIALS_AUTHENTICATION_METHOD
] = GoogleOAuthAuthenticationMethod.OAUTH_INTERACTIVE.value
credential_info = CredentialBase(
credential_json=credential_dict,
admin_public=True,
source=DocumentSource.GOOGLE_DRIVE,
name="OAuth (interactive)",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Google Drive OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Google Drive OAuth completed successfully.",
"finalize_url": None,
"redirect_on_success": session.redirect_on_success,
}
)

View File

@@ -0,0 +1,197 @@
import base64
import uuid
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
class SlackOAuth:
# https://knock.app/blog/how-to-authenticate-users-in-slack-using-oauth
# Example: https://api.slack.com/authentication/oauth-v2#exchanging
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_SLACK_CLIENT_ID
CLIENT_SECRET = OAUTH_SLACK_CLIENT_SECRET
TOKEN_URL = "https://slack.com/api/oauth.v2.access"
# SCOPE is per https://docs.danswer.dev/connectors/slack
BOT_SCOPE = (
"channels:history,"
"channels:read,"
"groups:history,"
"groups:read,"
"channels:join,"
"im:history,"
"users:read,"
"users:read.email,"
"usergroups:read"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/slack/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = SlackOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/connector/slack/callback")
def handle_slack_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not SlackOAuth.CLIENT_ID or not SlackOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Slack client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = SlackOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = SlackOAuth.REDIRECT_URI
else:
redirect_uri = SlackOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
SlackOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": SlackOAuth.CLIENT_ID,
"client_secret": SlackOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
},
)
response_data = response.json()
if not response_data.get("ok"):
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed: {response_data.get('error')}",
)
# Extract token and team information
access_token: str = response_data.get("access_token")
team_id: str = response_data.get("team", {}).get("id")
authed_user_id: str = response_data.get("authed_user", {}).get("id")
credential_info = CredentialBase(
credential_json={"slack_bot_token": access_token},
admin_public=True,
source=DocumentSource.SLACK,
name="Slack OAuth",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Slack OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Slack OAuth completed successfully.",
"finalize_url": None,
"redirect_on_success": session.redirect_on_success,
"team_id": team_id,
"authed_user_id": authed_user_id,
}
)

View File

@@ -83,6 +83,7 @@ def handle_search_request(
user=user,
llm=llm,
fast_llm=fast_llm,
skip_query_analysis=False,
db_session=db_session,
bypass_acl=False,
)

View File

@@ -13,7 +13,7 @@ from sqlalchemy import select
from sqlalchemy.orm import Session
from onyx.db.api_key import is_api_key_email_address
from onyx.db.engine import get_session_with_tenant
from onyx.db.engine import get_session_with_current_tenant
from onyx.db.models import ChatMessage
from onyx.db.models import ChatSession
from onyx.db.models import TokenRateLimit
@@ -28,21 +28,21 @@ from onyx.server.query_and_chat.token_limit import _user_is_rate_limited_by_glob
from onyx.utils.threadpool_concurrency import run_functions_tuples_in_parallel
def _check_token_rate_limits(user: User | None, tenant_id: str | None) -> None:
def _check_token_rate_limits(user: User | None) -> None:
if user is None:
# Unauthenticated users are only rate limited by global settings
_user_is_rate_limited_by_global(tenant_id)
_user_is_rate_limited_by_global()
elif is_api_key_email_address(user.email):
# API keys are only rate limited by global settings
_user_is_rate_limited_by_global(tenant_id)
_user_is_rate_limited_by_global()
else:
run_functions_tuples_in_parallel(
[
(_user_is_rate_limited, (user.id, tenant_id)),
(_user_is_rate_limited_by_group, (user.id, tenant_id)),
(_user_is_rate_limited_by_global, (tenant_id,)),
(_user_is_rate_limited, (user.id,)),
(_user_is_rate_limited_by_group, (user.id,)),
(_user_is_rate_limited_by_global, ()),
]
)
@@ -52,8 +52,8 @@ User rate limits
"""
def _user_is_rate_limited(user_id: UUID, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
def _user_is_rate_limited(user_id: UUID) -> None:
with get_session_with_current_tenant() as db_session:
user_rate_limits = fetch_all_user_token_rate_limits(
db_session=db_session, enabled_only=True, ordered=False
)
@@ -93,8 +93,8 @@ User Group rate limits
"""
def _user_is_rate_limited_by_group(user_id: UUID, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
def _user_is_rate_limited_by_group(user_id: UUID) -> None:
with get_session_with_current_tenant() as db_session:
group_rate_limits = _fetch_all_user_group_rate_limits(user_id, db_session)
if group_rate_limits:

View File

@@ -2,6 +2,7 @@ import csv
import io
from datetime import datetime
from datetime import timezone
from http import HTTPStatus
from uuid import UUID
from fastapi import APIRouter
@@ -21,8 +22,10 @@ from ee.onyx.server.query_history.models import QuestionAnswerPairSnapshot
from onyx.auth.users import current_admin_user
from onyx.auth.users import get_display_email
from onyx.chat.chat_utils import create_chat_chain
from onyx.configs.app_configs import ONYX_QUERY_HISTORY_TYPE
from onyx.configs.constants import MessageType
from onyx.configs.constants import QAFeedbackType
from onyx.configs.constants import QueryHistoryType
from onyx.configs.constants import SessionType
from onyx.db.chat import get_chat_session_by_id
from onyx.db.chat import get_chat_sessions_by_user
@@ -35,6 +38,8 @@ from onyx.server.query_and_chat.models import ChatSessionsResponse
router = APIRouter()
ONYX_ANONYMIZED_EMAIL = "anonymous@anonymous.invalid"
def fetch_and_process_chat_session_history(
db_session: Session,
@@ -107,6 +112,17 @@ def get_user_chat_sessions(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> ChatSessionsResponse:
# we specifically don't allow this endpoint if "anonymized" since
# this is a direct query on the user id
if ONYX_QUERY_HISTORY_TYPE in [
QueryHistoryType.DISABLED,
QueryHistoryType.ANONYMIZED,
]:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Per user query history has been disabled by the administrator.",
)
try:
chat_sessions = get_chat_sessions_by_user(
user_id=user_id, deleted=False, db_session=db_session, limit=0
@@ -122,6 +138,7 @@ def get_user_chat_sessions(
name=chat.description,
persona_id=chat.persona_id,
time_created=chat.time_created.isoformat(),
time_updated=chat.time_updated.isoformat(),
shared_status=chat.shared_status,
folder_id=chat.folder_id,
current_alternate_model=chat.current_alternate_model,
@@ -141,6 +158,12 @@ def get_chat_session_history(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> PaginatedReturn[ChatSessionMinimal]:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
page_of_chat_sessions = get_page_of_chat_sessions(
page_num=page_num,
page_size=page_size,
@@ -157,11 +180,16 @@ def get_chat_session_history(
feedback_filter=feedback_type,
)
minimal_chat_sessions: list[ChatSessionMinimal] = []
for chat_session in page_of_chat_sessions:
minimal_chat_session = ChatSessionMinimal.from_chat_session(chat_session)
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
minimal_chat_session.user_email = ONYX_ANONYMIZED_EMAIL
minimal_chat_sessions.append(minimal_chat_session)
return PaginatedReturn(
items=[
ChatSessionMinimal.from_chat_session(chat_session)
for chat_session in page_of_chat_sessions
],
items=minimal_chat_sessions,
total_items=total_filtered_chat_sessions_count,
)
@@ -172,6 +200,12 @@ def get_chat_session_admin(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> ChatSessionSnapshot:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
try:
chat_session = get_chat_session_by_id(
chat_session_id=chat_session_id,
@@ -193,6 +227,9 @@ def get_chat_session_admin(
f"Could not create snapshot for chat session with id '{chat_session_id}'",
)
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
snapshot.user_email = ONYX_ANONYMIZED_EMAIL
return snapshot
@@ -203,6 +240,12 @@ def get_query_history_as_csv(
end: datetime | None = None,
db_session: Session = Depends(get_session),
) -> StreamingResponse:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
complete_chat_session_history = fetch_and_process_chat_session_history(
db_session=db_session,
start=start or datetime.fromtimestamp(0, tz=timezone.utc),
@@ -213,6 +256,9 @@ def get_query_history_as_csv(
question_answer_pairs: list[QuestionAnswerPairSnapshot] = []
for chat_session_snapshot in complete_chat_session_history:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
chat_session_snapshot.user_email = ONYX_ANONYMIZED_EMAIL
question_answer_pairs.extend(
QuestionAnswerPairSnapshot.from_chat_session_snapshot(chat_session_snapshot)
)

View File

@@ -18,11 +18,16 @@ from ee.onyx.server.tenants.anonymous_user_path import (
from ee.onyx.server.tenants.anonymous_user_path import modify_anonymous_user_path
from ee.onyx.server.tenants.anonymous_user_path import validate_anonymous_user_path
from ee.onyx.server.tenants.billing import fetch_billing_information
from ee.onyx.server.tenants.billing import fetch_stripe_checkout_session
from ee.onyx.server.tenants.billing import fetch_tenant_stripe_information
from ee.onyx.server.tenants.models import AnonymousUserPath
from ee.onyx.server.tenants.models import BillingInformation
from ee.onyx.server.tenants.models import ImpersonateRequest
from ee.onyx.server.tenants.models import ProductGatingRequest
from ee.onyx.server.tenants.models import ProductGatingResponse
from ee.onyx.server.tenants.models import SubscriptionSessionResponse
from ee.onyx.server.tenants.models import SubscriptionStatusResponse
from ee.onyx.server.tenants.product_gating import store_product_gating
from ee.onyx.server.tenants.provisioning import delete_user_from_control_plane
from ee.onyx.server.tenants.user_mapping import get_tenant_id_for_email
from ee.onyx.server.tenants.user_mapping import remove_all_users_from_tenant
@@ -36,17 +41,15 @@ from onyx.auth.users import User
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import FASTAPI_USERS_AUTH_COOKIE_NAME
from onyx.db.auth import get_user_count
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.engine import get_session_with_shared_schema
from onyx.db.engine import get_session_with_tenant
from onyx.db.notification import create_notification
from onyx.db.users import delete_user_from_db
from onyx.db.users import get_user_by_email
from onyx.server.manage.models import UserByEmail
from onyx.server.settings.store import load_settings
from onyx.server.settings.store import store_settings
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
from shared_configs.contextvars import get_current_tenant_id
stripe.api_key = STRIPE_SECRET_KEY
logger = setup_logger()
@@ -55,13 +58,14 @@ router = APIRouter(prefix="/tenants")
@router.get("/anonymous-user-path")
async def get_anonymous_user_path_api(
tenant_id: str | None = Depends(get_current_tenant_id),
_: User | None = Depends(current_admin_user),
) -> AnonymousUserPath:
tenant_id = get_current_tenant_id()
if tenant_id is None:
raise HTTPException(status_code=404, detail="Tenant not found")
with get_session_with_tenant(tenant_id=None) as db_session:
with get_session_with_shared_schema() as db_session:
current_path = get_anonymous_user_path(tenant_id, db_session)
return AnonymousUserPath(anonymous_user_path=current_path)
@@ -70,15 +74,15 @@ async def get_anonymous_user_path_api(
@router.post("/anonymous-user-path")
async def set_anonymous_user_path_api(
anonymous_user_path: str,
tenant_id: str = Depends(get_current_tenant_id),
_: User | None = Depends(current_admin_user),
) -> None:
tenant_id = get_current_tenant_id()
try:
validate_anonymous_user_path(anonymous_user_path)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
with get_session_with_tenant(tenant_id=None) as db_session:
with get_session_with_shared_schema() as db_session:
try:
modify_anonymous_user_path(tenant_id, anonymous_user_path, db_session)
except IntegrityError:
@@ -99,7 +103,7 @@ async def login_as_anonymous_user(
anonymous_user_path: str,
_: User | None = Depends(optional_user),
) -> Response:
with get_session_with_tenant(tenant_id=None) as db_session:
with get_session_with_shared_schema() as db_session:
tenant_id = get_tenant_id_for_anonymous_user_path(
anonymous_user_path, db_session
)
@@ -126,52 +130,48 @@ async def login_as_anonymous_user(
@router.post("/product-gating")
def gate_product(
product_gating_request: ProductGatingRequest, _: None = Depends(control_plane_dep)
) -> None:
) -> ProductGatingResponse:
"""
Gating the product means that the product is not available to the tenant.
They will be directed to the billing page.
We gate the product when
1) User has ended free trial without adding payment method
2) User's card has declined
We gate the product when their subscription has ended.
"""
tenant_id = product_gating_request.tenant_id
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
try:
store_product_gating(
product_gating_request.tenant_id, product_gating_request.application_status
)
return ProductGatingResponse(updated=True, error=None)
settings = load_settings()
settings.product_gating = product_gating_request.product_gating
store_settings(settings)
if product_gating_request.notification:
with get_session_with_tenant(tenant_id) as db_session:
create_notification(None, product_gating_request.notification, db_session)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
except Exception as e:
logger.exception("Failed to gate product")
return ProductGatingResponse(updated=False, error=str(e))
@router.get("/billing-information", response_model=BillingInformation)
@router.get("/billing-information")
async def billing_information(
_: User = Depends(current_admin_user),
) -> BillingInformation:
) -> BillingInformation | SubscriptionStatusResponse:
logger.info("Fetching billing information")
return BillingInformation(
**fetch_billing_information(CURRENT_TENANT_ID_CONTEXTVAR.get())
)
tenant_id = get_current_tenant_id()
return fetch_billing_information(tenant_id)
@router.post("/create-customer-portal-session")
async def create_customer_portal_session(_: User = Depends(current_admin_user)) -> dict:
async def create_customer_portal_session(
_: User = Depends(current_admin_user),
) -> dict:
tenant_id = get_current_tenant_id()
try:
# Fetch tenant_id and current tenant's information
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
stripe_info = fetch_tenant_stripe_information(tenant_id)
stripe_customer_id = stripe_info.get("stripe_customer_id")
if not stripe_customer_id:
raise HTTPException(status_code=400, detail="Stripe customer ID not found")
logger.info(stripe_customer_id)
portal_session = stripe.billing_portal.Session.create(
customer=stripe_customer_id,
return_url=f"{WEB_DOMAIN}/admin/cloud-settings",
return_url=f"{WEB_DOMAIN}/admin/billing",
)
logger.info(portal_session)
return {"url": portal_session.url}
@@ -180,6 +180,22 @@ async def create_customer_portal_session(_: User = Depends(current_admin_user))
raise HTTPException(status_code=500, detail=str(e))
@router.post("/create-subscription-session")
async def create_subscription_session(
_: User = Depends(current_admin_user),
) -> SubscriptionSessionResponse:
try:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
if not tenant_id:
raise HTTPException(status_code=400, detail="Tenant ID not found")
session_id = fetch_stripe_checkout_session(tenant_id)
return SubscriptionSessionResponse(sessionId=session_id)
except Exception as e:
logger.exception("Failed to create resubscription session")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/impersonate")
async def impersonate_user(
impersonate_request: ImpersonateRequest,
@@ -188,7 +204,7 @@ async def impersonate_user(
"""Allows a cloud superuser to impersonate another user by generating an impersonation JWT token"""
tenant_id = get_tenant_id_for_email(impersonate_request.email)
with get_session_with_tenant(tenant_id) as tenant_session:
with get_session_with_tenant(tenant_id=tenant_id) as tenant_session:
user_to_impersonate = get_user_by_email(
impersonate_request.email, tenant_session
)
@@ -212,8 +228,9 @@ async def leave_organization(
user_email: UserByEmail,
current_user: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str = Depends(get_current_tenant_id),
) -> None:
tenant_id = get_current_tenant_id()
if current_user is None or current_user.email != user_email.user_email:
raise HTTPException(
status_code=403, detail="You can only leave the organization as yourself"

View File

@@ -6,6 +6,8 @@ import stripe
from ee.onyx.configs.app_configs import STRIPE_PRICE_ID
from ee.onyx.configs.app_configs import STRIPE_SECRET_KEY
from ee.onyx.server.tenants.access import generate_data_plane_token
from ee.onyx.server.tenants.models import BillingInformation
from ee.onyx.server.tenants.models import SubscriptionStatusResponse
from onyx.configs.app_configs import CONTROL_PLANE_API_BASE_URL
from onyx.utils.logger import setup_logger
@@ -14,6 +16,19 @@ stripe.api_key = STRIPE_SECRET_KEY
logger = setup_logger()
def fetch_stripe_checkout_session(tenant_id: str) -> str:
token = generate_data_plane_token()
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
}
url = f"{CONTROL_PLANE_API_BASE_URL}/create-checkout-session"
params = {"tenant_id": tenant_id}
response = requests.post(url, headers=headers, params=params)
response.raise_for_status()
return response.json()["sessionId"]
def fetch_tenant_stripe_information(tenant_id: str) -> dict:
token = generate_data_plane_token()
headers = {
@@ -27,7 +42,9 @@ def fetch_tenant_stripe_information(tenant_id: str) -> dict:
return response.json()
def fetch_billing_information(tenant_id: str) -> dict:
def fetch_billing_information(
tenant_id: str,
) -> BillingInformation | SubscriptionStatusResponse:
logger.info("Fetching billing information")
token = generate_data_plane_token()
headers = {
@@ -38,8 +55,19 @@ def fetch_billing_information(tenant_id: str) -> dict:
params = {"tenant_id": tenant_id}
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
billing_info = response.json()
return billing_info
response_data = response.json()
# Check if the response indicates no subscription
if (
isinstance(response_data, dict)
and "subscribed" in response_data
and not response_data["subscribed"]
):
return SubscriptionStatusResponse(**response_data)
# Otherwise, parse as BillingInformation
return BillingInformation(**response_data)
def register_tenant_users(tenant_id: str, number_of_users: int) -> stripe.Subscription:

View File

@@ -1,7 +1,8 @@
from datetime import datetime
from pydantic import BaseModel
from onyx.configs.constants import NotificationType
from onyx.server.settings.models import GatingType
from onyx.server.settings.models import ApplicationStatus
class CheckoutSessionCreationRequest(BaseModel):
@@ -15,15 +16,24 @@ class CreateTenantRequest(BaseModel):
class ProductGatingRequest(BaseModel):
tenant_id: str
product_gating: GatingType
notification: NotificationType | None = None
application_status: ApplicationStatus
class SubscriptionStatusResponse(BaseModel):
subscribed: bool
class BillingInformation(BaseModel):
stripe_subscription_id: str
status: str
current_period_start: datetime
current_period_end: datetime
number_of_seats: int
cancel_at_period_end: bool
canceled_at: datetime | None
trial_start: datetime | None
trial_end: datetime | None
seats: int
subscription_status: str
billing_start: str
billing_end: str
payment_method_enabled: bool
@@ -48,3 +58,12 @@ class TenantDeletionPayload(BaseModel):
class AnonymousUserPath(BaseModel):
anonymous_user_path: str | None
class ProductGatingResponse(BaseModel):
updated: bool
error: str | None
class SubscriptionSessionResponse(BaseModel):
sessionId: str

View File

@@ -0,0 +1,52 @@
from typing import cast
from ee.onyx.configs.app_configs import GATED_TENANTS_KEY
from onyx.configs.constants import ONYX_CLOUD_TENANT_ID
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.server.settings.models import ApplicationStatus
from onyx.server.settings.store import load_settings
from onyx.server.settings.store import store_settings
from onyx.setup import setup_logger
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
def update_tenant_gating(tenant_id: str, status: ApplicationStatus) -> None:
redis_client = get_redis_client(tenant_id=ONYX_CLOUD_TENANT_ID)
# Store the full status
status_key = f"tenant:{tenant_id}:status"
redis_client.set(status_key, status.value)
# Maintain the GATED_ACCESS set
if status == ApplicationStatus.GATED_ACCESS:
redis_client.sadd(GATED_TENANTS_KEY, tenant_id)
else:
redis_client.srem(GATED_TENANTS_KEY, tenant_id)
def store_product_gating(tenant_id: str, application_status: ApplicationStatus) -> None:
try:
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
settings = load_settings()
settings.application_status = application_status
store_settings(settings)
# Store gated tenant information in Redis
update_tenant_gating(tenant_id, application_status)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
except Exception:
logger.exception("Failed to gate product")
raise
def get_gated_tenants() -> set[str]:
redis_client = get_redis_replica_client(tenant_id=ONYX_CLOUD_TENANT_ID)
gated_tenants_bytes = cast(set[bytes], redis_client.smembers(GATED_TENANTS_KEY))
return {tenant_id.decode("utf-8") for tenant_id in gated_tenants_bytes}

View File

@@ -55,7 +55,11 @@ logger = logging.getLogger(__name__)
async def get_or_provision_tenant(
email: str, referral_source: str | None = None, request: Request | None = None
) -> str:
"""Get existing tenant ID for an email or create a new tenant if none exists."""
"""
Get existing tenant ID for an email or create a new tenant if none exists.
This function should only be called after we have verified we want this user's tenant to exist.
It returns the tenant ID associated with the email, creating a new tenant if necessary.
"""
if not MULTI_TENANT:
return POSTGRES_DEFAULT_SCHEMA
@@ -104,21 +108,21 @@ async def provision_tenant(tenant_id: str, email: str) -> None:
status_code=409, detail="User already belongs to an organization"
)
logger.info(f"Provisioning tenant: {tenant_id}")
logger.debug(f"Provisioning tenant {tenant_id} for user {email}")
token = None
try:
if not create_schema_if_not_exists(tenant_id):
logger.info(f"Created schema for tenant {tenant_id}")
logger.debug(f"Created schema for tenant {tenant_id}")
else:
logger.info(f"Schema already exists for tenant {tenant_id}")
logger.debug(f"Schema already exists for tenant {tenant_id}")
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
# Await the Alembic migrations
await asyncio.to_thread(run_alembic_migrations, tenant_id)
with get_session_with_tenant(tenant_id) as db_session:
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
configure_default_api_keys(db_session)
current_search_settings = (
@@ -134,7 +138,7 @@ async def provision_tenant(tenant_id: str, email: str) -> None:
add_users_to_tenant([email], tenant_id)
with get_session_with_tenant(tenant_id) as db_session:
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
create_milestone_and_report(
user=None,
distinct_id=tenant_id,
@@ -200,33 +204,15 @@ async def rollback_tenant_provisioning(tenant_id: str) -> None:
def configure_default_api_keys(db_session: Session) -> None:
if OPENAI_DEFAULT_API_KEY:
open_provider = LLMProviderUpsertRequest(
name="OpenAI",
provider=OPENAI_PROVIDER_NAME,
api_key=OPENAI_DEFAULT_API_KEY,
default_model_name="gpt-4",
fast_default_model_name="gpt-4o-mini",
model_names=OPEN_AI_MODEL_NAMES,
)
try:
full_provider = upsert_llm_provider(open_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure OpenAI provider: {e}")
else:
logger.error(
"OPENAI_DEFAULT_API_KEY not set, skipping OpenAI provider configuration"
)
if ANTHROPIC_DEFAULT_API_KEY:
anthropic_provider = LLMProviderUpsertRequest(
name="Anthropic",
provider=ANTHROPIC_PROVIDER_NAME,
api_key=ANTHROPIC_DEFAULT_API_KEY,
default_model_name="claude-3-5-sonnet-20241022",
default_model_name="claude-3-7-sonnet-20250219",
fast_default_model_name="claude-3-5-sonnet-20241022",
model_names=ANTHROPIC_MODEL_NAMES,
display_model_names=["claude-3-5-sonnet-20241022"],
)
try:
full_provider = upsert_llm_provider(anthropic_provider, db_session)
@@ -238,6 +224,26 @@ def configure_default_api_keys(db_session: Session) -> None:
"ANTHROPIC_DEFAULT_API_KEY not set, skipping Anthropic provider configuration"
)
if OPENAI_DEFAULT_API_KEY:
open_provider = LLMProviderUpsertRequest(
name="OpenAI",
provider=OPENAI_PROVIDER_NAME,
api_key=OPENAI_DEFAULT_API_KEY,
default_model_name="gpt-4o",
fast_default_model_name="gpt-4o-mini",
model_names=OPEN_AI_MODEL_NAMES,
display_model_names=["o1", "o3-mini", "gpt-4o", "gpt-4o-mini"],
)
try:
full_provider = upsert_llm_provider(open_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure OpenAI provider: {e}")
else:
logger.error(
"OPENAI_DEFAULT_API_KEY not set, skipping OpenAI provider configuration"
)
if COHERE_DEFAULT_API_KEY:
cloud_embedding_provider = CloudEmbeddingProviderCreationRequest(
provider_type=EmbeddingProvider.COHERE,

View File

@@ -28,7 +28,7 @@ def get_tenant_id_for_email(email: str) -> str:
def user_owns_a_tenant(email: str) -> bool:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
result = (
db_session.query(UserTenantMapping)
.filter(UserTenantMapping.email == email)
@@ -38,7 +38,7 @@ def user_owns_a_tenant(email: str) -> bool:
def add_users_to_tenant(emails: list[str], tenant_id: str) -> None:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
try:
for email in emails:
db_session.add(UserTenantMapping(email=email, tenant_id=tenant_id))
@@ -48,7 +48,7 @@ def add_users_to_tenant(emails: list[str], tenant_id: str) -> None:
def remove_users_from_tenant(emails: list[str], tenant_id: str) -> None:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
try:
mappings_to_delete = (
db_session.query(UserTenantMapping)
@@ -71,7 +71,7 @@ def remove_users_from_tenant(emails: list[str], tenant_id: str) -> None:
def remove_all_users_from_tenant(tenant_id: str) -> None:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
db_session.query(UserTenantMapping).filter(
UserTenantMapping.tenant_id == tenant_id
).delete()

View File

@@ -6,7 +6,7 @@ MODEL_WARM_UP_STRING = "hi " * 512
DEFAULT_OPENAI_MODEL = "text-embedding-3-small"
DEFAULT_COHERE_MODEL = "embed-english-light-v3.0"
DEFAULT_VOYAGE_MODEL = "voyage-large-2-instruct"
DEFAULT_VERTEX_MODEL = "text-embedding-004"
DEFAULT_VERTEX_MODEL = "text-embedding-005"
class EmbeddingModelTextType:
@@ -28,3 +28,9 @@ class EmbeddingModelTextType:
@staticmethod
def get_type(provider: EmbeddingProvider, text_type: EmbedTextType) -> str:
return EmbeddingModelTextType.PROVIDER_TEXT_TYPE_MAP[provider][text_type]
class GPUStatus:
CUDA = "cuda"
MAC_MPS = "mps"
NONE = "none"

View File

@@ -5,6 +5,7 @@ from types import TracebackType
from typing import cast
from typing import Optional
import aioboto3 # type: ignore
import httpx
import openai
import vertexai # type: ignore
@@ -12,6 +13,7 @@ import voyageai # type: ignore
from cohere import AsyncClient as CohereAsyncClient
from fastapi import APIRouter
from fastapi import HTTPException
from fastapi import Request
from google.oauth2 import service_account # type: ignore
from litellm import aembedding
from litellm.exceptions import RateLimitError
@@ -27,11 +29,13 @@ from model_server.constants import DEFAULT_VERTEX_MODEL
from model_server.constants import DEFAULT_VOYAGE_MODEL
from model_server.constants import EmbeddingModelTextType
from model_server.constants import EmbeddingProvider
from model_server.utils import pass_aws_key
from model_server.utils import simple_log_function_time
from onyx.utils.logger import setup_logger
from shared_configs.configs import API_BASED_EMBEDDING_TIMEOUT
from shared_configs.configs import INDEXING_ONLY
from shared_configs.configs import OPENAI_EMBEDDING_TIMEOUT
from shared_configs.configs import VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
from shared_configs.enums import EmbedTextType
from shared_configs.enums import RerankerProvider
from shared_configs.model_server_models import Embedding
@@ -77,7 +81,7 @@ class CloudEmbedding:
self._closed = False
async def _embed_openai(
self, texts: list[str], model: str | None
self, texts: list[str], model: str | None, reduced_dimension: int | None
) -> list[Embedding]:
if not model:
model = DEFAULT_OPENAI_MODEL
@@ -90,19 +94,28 @@ class CloudEmbedding:
final_embeddings: list[Embedding] = []
try:
for text_batch in batch_list(texts, _OPENAI_MAX_INPUT_LEN):
response = await client.embeddings.create(input=text_batch, model=model)
response = await client.embeddings.create(
input=text_batch,
model=model,
dimensions=reduced_dimension or openai.NOT_GIVEN,
)
final_embeddings.extend(
[embedding.embedding for embedding in response.data]
)
return final_embeddings
except Exception as e:
error_string = (
f"Error embedding text with OpenAI: {str(e)} \n"
f"Model: {model} \n"
f"Provider: {self.provider} \n"
f"Texts: {texts}"
f"Exception embedding text with OpenAI - {type(e)}: "
f"Model: {model} "
f"Provider: {self.provider} "
f"Exception: {e}"
)
logger.error(error_string)
# only log text when it's not an authentication error.
if not isinstance(e, openai.AuthenticationError):
logger.debug(f"Exception texts: {texts}")
raise RuntimeError(error_string)
async def _embed_cohere(
@@ -172,17 +185,24 @@ class CloudEmbedding:
vertexai.init(project=project_id, credentials=credentials)
client = TextEmbeddingModel.from_pretrained(model)
embeddings = await client.get_embeddings_async(
[
TextEmbeddingInput(
text,
embedding_type,
)
for text in texts
],
auto_truncate=True, # This is the default
)
return [embedding.values for embedding in embeddings]
inputs = [TextEmbeddingInput(text, embedding_type) for text in texts]
# Split into batches of 25 texts
max_texts_per_batch = VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
batches = [
inputs[i : i + max_texts_per_batch]
for i in range(0, len(inputs), max_texts_per_batch)
]
# Dispatch all embedding calls asynchronously at once
tasks = [
client.get_embeddings_async(batch, auto_truncate=True) for batch in batches
]
# Wait for all tasks to complete in parallel
results = await asyncio.gather(*tasks)
return [embedding.values for batch in results for embedding in batch]
async def _embed_litellm_proxy(
self, texts: list[str], model_name: str | None
@@ -217,9 +237,10 @@ class CloudEmbedding:
text_type: EmbedTextType,
model_name: str | None = None,
deployment_name: str | None = None,
reduced_dimension: int | None = None,
) -> list[Embedding]:
if self.provider == EmbeddingProvider.OPENAI:
return await self._embed_openai(texts, model_name)
return await self._embed_openai(texts, model_name, reduced_dimension)
elif self.provider == EmbeddingProvider.AZURE:
return await self._embed_azure(texts, f"azure/{deployment_name}")
elif self.provider == EmbeddingProvider.LITELLM:
@@ -320,6 +341,8 @@ async def embed_text(
prefix: str | None,
api_url: str | None,
api_version: str | None,
reduced_dimension: int | None,
gpu_type: str = "UNKNOWN",
) -> list[Embedding]:
if not all(texts):
logger.error("Empty strings provided for embedding")
@@ -362,6 +385,7 @@ async def embed_text(
model_name=model_name,
deployment_name=deployment_name,
text_type=text_type,
reduced_dimension=reduced_dimension,
)
if any(embedding is None for embedding in embeddings):
@@ -373,8 +397,11 @@ async def embed_text(
elapsed = time.monotonic() - start
logger.info(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with provider {provider_type} in {elapsed:.2f}"
f"event=embedding_provider "
f"texts={len(texts)} "
f"chars={total_chars} "
f"provider={provider_type} "
f"elapsed={elapsed:.2f}"
)
elif model_name is not None:
logger.info(
@@ -403,6 +430,14 @@ async def embed_text(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with local model {model_name} in {elapsed:.2f}"
)
logger.info(
f"event=embedding_model "
f"texts={len(texts)} "
f"chars={total_chars} "
f"model={model_name} "
f"gpu={gpu_type} "
f"elapsed={elapsed:.2f}"
)
else:
logger.error("Neither model name nor provider specified for embedding")
raise ValueError(
@@ -422,7 +457,7 @@ async def local_rerank(query: str, docs: list[str], model_name: str) -> list[flo
)
async def cohere_rerank(
async def cohere_rerank_api(
query: str, docs: list[str], model_name: str, api_key: str
) -> list[float]:
cohere_client = CohereAsyncClient(api_key=api_key)
@@ -432,6 +467,45 @@ async def cohere_rerank(
return [result.relevance_score for result in sorted_results]
async def cohere_rerank_aws(
query: str,
docs: list[str],
model_name: str,
region_name: str,
aws_access_key_id: str,
aws_secret_access_key: str,
) -> list[float]:
session = aioboto3.Session(
aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key
)
async with session.client(
"bedrock-runtime", region_name=region_name
) as bedrock_client:
body = json.dumps(
{
"query": query,
"documents": docs,
"api_version": 2,
}
)
# Invoke the Bedrock model asynchronously
response = await bedrock_client.invoke_model(
modelId=model_name,
accept="application/json",
contentType="application/json",
body=body,
)
# Read the response asynchronously
response_body = json.loads(await response["body"].read())
# Extract and sort the results
results = response_body.get("results", [])
sorted_results = sorted(results, key=lambda item: item["index"])
return [result["relevance_score"] for result in sorted_results]
async def litellm_rerank(
query: str, docs: list[str], api_url: str, model_name: str, api_key: str | None
) -> list[float]:
@@ -455,8 +529,15 @@ async def litellm_rerank(
@router.post("/bi-encoder-embed")
async def process_embed_request(
async def route_bi_encoder_embed(
request: Request,
embed_request: EmbedRequest,
) -> EmbedResponse:
return await process_embed_request(embed_request, request.app.state.gpu_type)
async def process_embed_request(
embed_request: EmbedRequest, gpu_type: str = "UNKNOWN"
) -> EmbedResponse:
if not embed_request.texts:
raise HTTPException(status_code=400, detail="No texts to be embedded")
@@ -483,7 +564,9 @@ async def process_embed_request(
text_type=embed_request.text_type,
api_url=embed_request.api_url,
api_version=embed_request.api_version,
reduced_dimension=embed_request.reduced_dimension,
prefix=prefix,
gpu_type=gpu_type,
)
return EmbedResponse(embeddings=embeddings)
except RateLimitError as e:
@@ -538,15 +621,32 @@ async def process_rerank_request(rerank_request: RerankRequest) -> RerankRespons
elif rerank_request.provider_type == RerankerProvider.COHERE:
if rerank_request.api_key is None:
raise RuntimeError("Cohere Rerank Requires an API Key")
sim_scores = await cohere_rerank(
sim_scores = await cohere_rerank_api(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
api_key=rerank_request.api_key,
)
return RerankResponse(scores=sim_scores)
elif rerank_request.provider_type == RerankerProvider.BEDROCK:
if rerank_request.api_key is None:
raise RuntimeError("Bedrock Rerank Requires an API Key")
aws_access_key_id, aws_secret_access_key, aws_region = pass_aws_key(
rerank_request.api_key
)
sim_scores = await cohere_rerank_aws(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
region_name=aws_region,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
)
return RerankResponse(scores=sim_scores)
else:
raise ValueError(f"Unsupported provider: {rerank_request.provider_type}")
except Exception as e:
logger.exception(f"Error during reranking process:\n{str(e)}")
raise HTTPException(

View File

@@ -16,6 +16,7 @@ from model_server.custom_models import router as custom_models_router
from model_server.custom_models import warm_up_intent_model
from model_server.encoders import router as encoders_router
from model_server.management_endpoints import router as management_router
from model_server.utils import get_gpu_type
from onyx import __version__
from onyx.utils.logger import setup_logger
from shared_configs.configs import INDEXING_ONLY
@@ -58,12 +59,10 @@ def _move_files_recursively(source: Path, dest: Path, overwrite: bool = False) -
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator:
if torch.cuda.is_available():
logger.notice("CUDA GPU is available")
elif torch.backends.mps.is_available():
logger.notice("Mac MPS is available")
else:
logger.notice("GPU is not available, using CPU")
gpu_type = get_gpu_type()
logger.notice(f"Torch GPU Detection: gpu_type={gpu_type}")
app.state.gpu_type = gpu_type
if TEMP_HF_CACHE_PATH.is_dir():
logger.notice("Moving contents of temp_huggingface to huggingface cache.")

View File

@@ -1,7 +1,9 @@
import torch
from fastapi import APIRouter
from fastapi import Response
from model_server.constants import GPUStatus
from model_server.utils import get_gpu_type
router = APIRouter(prefix="/api")
@@ -11,10 +13,7 @@ async def healthcheck() -> Response:
@router.get("/gpu-status")
async def gpu_status() -> dict[str, bool | str]:
if torch.cuda.is_available():
return {"gpu_available": True, "type": "cuda"}
elif torch.backends.mps.is_available():
return {"gpu_available": True, "type": "mps"}
else:
return {"gpu_available": False, "type": "none"}
async def route_gpu_status() -> dict[str, bool | str]:
gpu_type = get_gpu_type()
gpu_available = gpu_type != GPUStatus.NONE
return {"gpu_available": gpu_available, "type": gpu_type}

View File

@@ -8,6 +8,9 @@ from typing import Any
from typing import cast
from typing import TypeVar
import torch
from model_server.constants import GPUStatus
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -58,3 +61,41 @@ def simple_log_function_time(
return cast(F, wrapped_sync_func)
return decorator
def get_gpu_type() -> str:
if torch.cuda.is_available():
return GPUStatus.CUDA
if torch.backends.mps.is_available():
return GPUStatus.MAC_MPS
return GPUStatus.NONE
def pass_aws_key(api_key: str) -> tuple[str, str, str]:
"""Parse AWS API key string into components.
Args:
api_key: String in format 'aws_ACCESSKEY_SECRETKEY_REGION'
Returns:
Tuple of (access_key, secret_key, region)
Raises:
ValueError: If key format is invalid
"""
if not api_key.startswith("aws"):
raise ValueError("API key must start with 'aws' prefix")
parts = api_key.split("_")
if len(parts) != 4:
raise ValueError(
f"API key must be in format 'aws_ACCESSKEY_SECRETKEY_REGION', got {len(parts) - 1} parts"
"this is an onyx specific format for formatting the aws secrets for bedrock"
)
try:
_, aws_access_key_id, aws_secret_access_key, aws_region = parts
return aws_access_key_id, aws_secret_access_key, aws_region
except Exception as e:
raise ValueError(f"Failed to parse AWS key components: {str(e)}")

View File

@@ -3,17 +3,16 @@ from langgraph.graph import START
from langgraph.graph import StateGraph
from onyx.agents.agent_search.basic.states import BasicInput
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.configs.agent_configs import AGENT_MAX_TOOL_CALLS
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -23,7 +22,7 @@ def basic_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=BasicState,
input=BasicInput,
output=ToolChoiceUpdate,
output=BasicOutput,
)
### Add nodes ###
@@ -34,13 +33,13 @@ def basic_graph_builder() -> StateGraph:
)
graph.add_node(
node="llm_tool_choice",
action=llm_tool_choice,
node="choose_tool",
action=choose_tool,
)
graph.add_node(
node="tool_call",
action=tool_call,
node="call_tool",
action=call_tool,
)
graph.add_node(
@@ -52,24 +51,20 @@ def basic_graph_builder() -> StateGraph:
graph.add_edge(start_key=START, end_key="prepare_tool_input")
graph.add_edge(start_key="prepare_tool_input", end_key="llm_tool_choice")
graph.add_edge(start_key="prepare_tool_input", end_key="choose_tool")
graph.add_conditional_edges("llm_tool_choice", should_continue, ["tool_call", END])
graph.add_conditional_edges("choose_tool", should_continue, ["call_tool", END])
graph.add_edge(
start_key="tool_call",
start_key="call_tool",
end_key="basic_use_tool_response",
)
graph.add_conditional_edges(
"basic_use_tool_response", should_continue, ["tool_call", END]
graph.add_edge(
start_key="basic_use_tool_response",
end_key=END,
)
# graph.add_edge(
# start_key="basic_use_tool_response",
# end_key=END,
# )
return graph
@@ -77,9 +72,8 @@ def should_continue(state: BasicState) -> str:
return (
# If there are no tool calls, basic graph already streamed the answer
END
if state.tool_choices[-1] is None
or len(state.tool_choices) > AGENT_MAX_TOOL_CALLS
else "tool_call"
if state.tool_choice is None
else "call_tool"
)
@@ -91,7 +85,7 @@ if __name__ == "__main__":
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(_unused=True)
input = BasicInput(unused=True)
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
config, _ = get_test_config(

View File

@@ -17,7 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
class BasicInput(BaseModel):
# Langgraph needs a nonempty input, but we pass in all static
# data through a RunnableConfig.
_unused: bool = True
unused: bool = True
## Graph Output State

View File

@@ -9,7 +9,6 @@ class CoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
@@ -18,4 +17,4 @@ class SubgraphCoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add]
log_messages: Annotated[list[str], add] = []

View File

@@ -1,8 +1,8 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
@@ -12,14 +12,45 @@ from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer
SubQuestionAnswerCheckUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_CHECK
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def check_sub_answer(
state: AnswerQuestionState, config: RunnableConfig
) -> SubQuestionAnswerCheckUpdate:
@@ -53,14 +84,42 @@ def check_sub_answer(
graph_config = cast(GraphConfig, config["metadata"]["config"])
fast_llm = graph_config.tooling.fast_llm
response = list(
fast_llm.stream(
agent_error: AgentErrorLog | None = None
response: BaseMessage | None = None
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_CHECK,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK,
)
)
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
answer_quality = "yes" in quality_str.lower()
quality_str: str = cast(str, response.content)
answer_quality = binary_string_test(
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
)
log_result = f"Answer quality: {quality_str}"
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Timeout Error - check sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Rate Limit Error - check sub answer")
return SubQuestionAnswerCheckUpdate(
answer_quality=answer_quality,
@@ -69,7 +128,7 @@ def check_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="check sub answer",
node_start_time=node_start_time,
result=f"Answer quality: {quality_str}",
result=log_result,
)
],
)

View File

@@ -1,5 +1,4 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import merge_message_runs
@@ -16,6 +15,23 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
dedup_sort_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
LLM_ANSWER_ERROR_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -30,12 +46,25 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
)
@log_function_time(print_only=True)
def generate_sub_answer(
state: AnswerQuestionState,
config: RunnableConfig,
@@ -51,12 +80,17 @@ def generate_sub_answer(
state.verified_reranked_documents
level, question_num = parse_question_id(state.question_id)
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
context_docs = dedup_sort_inference_section_list(context_docs)
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
graph_config.inputs.search_request.persona
).contextualized_prompt
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
cited_documents: list = []
log_results = "No documents retrieved"
write_custom_event(
"sub_answers",
AgentAnswerPiece(
@@ -77,43 +111,75 @@ def generate_sub_answer(
config=fast_llm.config,
)
response: list[str | list[str | dict[str, Any]]] = []
dispatch_timings: list[float] = []
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
agent_error: AgentErrorLog | None = None
response: list[str] = []
def stream_sub_answer() -> list[str]:
for message in fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
answer_str = merge_message_runs(response, chunk_separator="")[0].content
logger.debug(
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
)
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION,
stream_sub_answer,
)
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate sub answer")
if agent_error:
answer_str = LLM_ANSWER_ERROR_MESSAGE
cited_documents = []
log_results = (
agent_error.error_result
or "Sub-answer generation failed due to LLM error"
)
else:
answer_str = merge_message_runs(response, chunk_separator="")[0].content
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
log_results = None
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -131,7 +197,7 @@ def generate_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="generate sub answer",
node_start_time=node_start_time,
result="",
result=log_results or "",
)
],
)

View File

@@ -42,10 +42,8 @@ class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
class SubQuestionAnsweringInput(SubgraphCoreState):
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
question: str
question_id: str
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.

View File

@@ -1,5 +1,4 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -26,14 +25,31 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
dedup_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -42,12 +58,20 @@ from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_ci
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.context.search.models import InferenceSection
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
@@ -56,8 +80,17 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The initial answer could not be generated.",
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
general_error="General LLM Error. The initial answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_initial_answer(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -73,15 +106,19 @@ def generate_initial_answer(
question = graph_config.inputs.search_request.query
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
sub_questions_cited_documents = state.cited_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
orig_question_retrieval_documents = state.orig_question_retrieved_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
orig_question_retrieval_documents
):
if original_doc_number not in sub_questions_cited_documents:
if original_doc_number not in structured_subquestion_docs.cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
@@ -90,15 +127,18 @@ def generate_initial_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
sub_questions: list[str] = []
streamed_documents = (
relevant_docs
if len(relevant_docs) > 0
else state.orig_question_retrieved_documents[:15]
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=orig_question_retrieval_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER,
)
# Use the query info from the base document retrieval
@@ -108,11 +148,13 @@ def generate_initial_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
relevance_list = relevance_from_docs(relevant_docs)
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
for tool_response in yield_search_responses(
query=question,
reranked_sections=streamed_documents,
final_context_sections=streamed_documents,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -128,7 +170,7 @@ def generate_initial_answer(
writer,
)
if len(relevant_docs) == 0:
if len(answer_generation_documents.context_documents) == 0:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
@@ -192,9 +234,13 @@ def generate_initial_answer(
sub_questions = all_sub_questions # Replace the original assignment
model = graph_config.tooling.fast_llm
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
doc_context = format_docs(relevant_docs)
doc_context = format_docs(answer_generation_documents.context_documents)
doc_context = trim_prompt_piece(
config=model.config,
prompt_piece=doc_context,
@@ -222,32 +268,92 @@ def generate_initial_answer(
)
]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
streamed_tokens: list[str] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
agent_error: AgentErrorLog | None = None
def stream_initial_answer() -> list[str]:
response: list[str] = []
for message in model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
stream_initial_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate initial answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate initial answer")
if agent_error:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
return InitialAnswerUpdate(
initial_answer=None,
answer_error=AgentErrorLog(
error_message=agent_error.error_message or "An LLM error occurred",
error_type=agent_error.error_type,
error_result=agent_error.error_result,
),
initial_agent_stats=None,
generated_sub_questions=sub_questions,
agent_base_end_time=None,
agent_base_metrics=None,
log_messages=[
get_langgraph_node_log_string(
graph_component="initial - generate initial answer",
node_name="generate initial answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"

View File

@@ -10,8 +10,10 @@ from onyx.agents.agent_search.deep_search.main.states import (
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def validate_initial_answer(
state: SubQuestionRetrievalState,
) -> InitialAnswerQualityUpdate:
@@ -25,7 +27,7 @@ def validate_initial_answer(
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True
verdict = True # not actually required as already streamed out. Refinement will do similar
return InitialAnswerQualityUpdate(
initial_answer_quality_eval=verdict,

View File

@@ -23,6 +23,8 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -33,17 +35,34 @@ from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT,
)
from onyx.prompts.agent_search import (
INITIAL_QUESTION_DECOMPOSITION_PROMPT,
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. Sub-questions could not be generated.",
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
general_error="General LLM Error. Sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def decompose_orig_question(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -85,15 +104,15 @@ def decompose_orig_question(
]
)
decomposition_prompt = (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
else:
decomposition_prompt = INITIAL_QUESTION_DECOMPOSITION_PROMPT.format(
question=question, history=history
decomposition_prompt = (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT.format(
question=question, history=history
)
)
# Start decomposition
@@ -112,32 +131,44 @@ def decompose_orig_question(
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
streamed_tokens: list[BaseMessage_Content] = []
deomposition_response = merge_content(*streamed_tokens)
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
decomposition_response = merge_content(*streamed_tokens)
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
list_of_subqs = cast(str, decomposition_response).split("\n")
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
except (LLMTimeoutError, TimeoutError) as e:
logger.error("LLM Timeout Error - decompose orig question")
raise e # fail loudly on this critical step
except LLMRateLimitError as e:
logger.error("LLM Rate Limit Error - decompose orig question")
raise e
return InitialQuestionDecompositionUpdate(
initial_sub_questions=decomp_list,
initial_sub_questions=initial_sub_questions,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
@@ -151,7 +182,7 @@ def decompose_orig_question(
graph_component="initial - generate sub answers",
node_name="decompose original question",
node_start_time=node_start_time,
result=f"decomposed original question into {len(decomp_list)} subquestions",
result=log_result,
)
],
)

View File

@@ -25,21 +25,20 @@ logger = setup_logger()
def route_initial_tool_choice(
state: MainState, config: RunnableConfig
) -> Literal["tool_call", "start_agent_search", "logging_node"]:
) -> Literal["call_tool", "start_agent_search", "logging_node"]:
"""
LangGraph edge to route to agent search.
"""
agent_config = cast(GraphConfig, config["metadata"]["config"])
if state.tool_choices[-1] is not None:
if state.tool_choice is not None:
if (
agent_config.behavior.use_agentic_search
and agent_config.tooling.search_tool is not None
and state.tool_choices[-1].tool.name
== agent_config.tooling.search_tool.name
and state.tool_choice.tool.name == agent_config.tooling.search_tool.name
):
return "start_agent_search"
else:
return "tool_call"
return "call_tool"
else:
return "logging_node"

View File

@@ -26,8 +26,8 @@ from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need impo
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
extract_entities_terms,
)
from onyx.agents.agent_search.deep_search.main.nodes.generate_refined_answer import (
generate_refined_answer,
from onyx.agents.agent_search.deep_search.main.nodes.generate_validate_refined_answer import (
generate_validate_refined_answer,
)
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
ingest_refined_sub_answers,
@@ -43,14 +43,14 @@ from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.graph_builder import (
answer_refined_query_graph_builder,
)
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
@@ -77,13 +77,13 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Choose the initial tool
graph.add_node(
node="initial_tool_choice",
action=llm_tool_choice,
action=choose_tool,
)
# Call the tool, if required
graph.add_node(
node="tool_call",
action=tool_call,
node="call_tool",
action=call_tool,
)
# Use the tool response
@@ -126,8 +126,8 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Node to generate the refined answer
graph.add_node(
node="generate_refined_answer",
action=generate_refined_answer,
node="generate_validate_refined_answer",
action=generate_validate_refined_answer,
)
# Early node to extract the entities and terms from the initial answer,
@@ -168,11 +168,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_conditional_edges(
"initial_tool_choice",
route_initial_tool_choice,
["tool_call", "start_agent_search", "logging_node"],
["call_tool", "start_agent_search", "logging_node"],
)
graph.add_edge(
start_key="tool_call",
start_key="call_tool",
end_key="basic_use_tool_response",
)
graph.add_edge(
@@ -215,11 +215,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_edge(
start_key="ingest_refined_sub_answers",
end_key="generate_refined_answer",
end_key="generate_validate_refined_answer",
)
graph.add_edge(
start_key="generate_refined_answer",
start_key="generate_validate_refined_answer",
end_key="compare_answers",
)
graph.add_edge(
@@ -252,9 +252,7 @@ if __name__ == "__main__":
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(
base_question=graph_config.inputs.search_request.query, log_messages=[]
)
inputs = MainInput(log_messages=[])
for thing in compiled_graph.stream(
input=inputs,

View File

@@ -1,6 +1,7 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from langgraph.types import StreamWriter
@@ -10,16 +11,53 @@ from onyx.agents.agent_search.deep_search.main.states import (
)
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import RefinedAnswerImprovement
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_COMPARE_ANSWERS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out, and the answers could not be compared.",
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
general_error="The LLM encountered an error, and the answers could not be compared.",
)
_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE = (
"Answer quality is not sufficient, so stay with the initial answer."
)
@log_function_time(print_only=True)
def compare_answers(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> InitialRefinedAnswerComparisonUpdate:
@@ -34,21 +72,78 @@ def compare_answers(
initial_answer = state.initial_answer
refined_answer = state.refined_answer
# if answer quality is not sufficient, then stay with the initial answer
if not state.refined_answer_quality:
write_custom_event(
"refined_answer_improvement",
RefinedAnswerImprovement(
refined_answer_improvement=False,
),
writer,
)
return InitialRefinedAnswerComparisonUpdate(
refined_answer_improvement_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE,
)
],
)
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
question=question, initial_answer=initial_answer, refined_answer=refined_answer
)
msg = [HumanMessage(content=compare_answers_prompt)]
agent_error: AgentErrorLog | None = None
# Get the rewritten queries in a defined format
model = graph_config.tooling.fast_llm
resp: BaseMessage | None = None
refined_answer_improvement: bool | None = None
# no need to stream this
resp = model.invoke(msg)
try:
resp = run_with_timeout(
AGENT_TIMEOUT_LLM_COMPARE_ANSWERS,
model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS,
)
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - compare answers")
# continue as True in this support step
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - compare answers")
# continue as True in this support step
if agent_error or resp is None:
refined_answer_improvement = True
if agent_error:
log_result = agent_error.error_result
else:
log_result = "An answer could not be generated."
else:
refined_answer_improvement = binary_string_test(
text=cast(str, resp.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
)
log_result = f"Answer comparison: {refined_answer_improvement}"
write_custom_event(
"refined_answer_improvement",
@@ -65,7 +160,7 @@ def compare_answers(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=f"Answer comparison: {refined_answer_improvement}",
result=log_result,
)
],
)

View File

@@ -21,6 +21,18 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
format_entity_term_extraction,
@@ -30,12 +42,35 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
)
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS,
)
from onyx.tools.models import ToolCallKickoff
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_ANSWERED_SUBQUESTIONS_DIVIDER = "\n\n---\n\n"
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The sub-questions could not be generated.",
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
general_error="The LLM encountered an error. The sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def create_refined_sub_questions(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedQuestionDecompositionUpdate:
@@ -72,8 +107,10 @@ def create_refined_sub_questions(
initial_question_answers = state.sub_question_results
addressed_question_list = [
x.question for x in initial_question_answers if x.verified_high_quality
addressed_subquestions_with_answers = [
f"Subquestion: {x.question}\nSubanswer:\n{x.answer}"
for x in initial_question_answers
if x.verified_high_quality and x.answer
]
failed_question_list = [
@@ -82,12 +119,14 @@ def create_refined_sub_questions(
msg = [
HumanMessage(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT.format(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS.format(
question=question,
history=history,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_sub_questions="\n - ".join(addressed_question_list),
answered_subquestions_with_answers=_ANSWERED_SUBQUESTIONS_DIVIDER.join(
addressed_subquestions_with_answers
),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
@@ -96,29 +135,67 @@ def create_refined_sub_questions(
# Grader
model = graph_config.tooling.fast_llm
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
response = merge_content(*streamed_tokens)
agent_error: AgentErrorLog | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - create refined sub questions")
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - create refined sub questions")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
if agent_error:
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
log_result = agent_error.error_result
write_custom_event(
"refined_sub_question_creation_error",
StreamingError(
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
),
writer,
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
else:
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
return RefinedQuestionDecompositionUpdate(
refined_sub_questions=refined_sub_question_dict,
@@ -128,7 +205,7 @@ def create_refined_sub_questions(
graph_component="main",
node_name="create refined sub questions",
node_start_time=node_start_time,
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
result=log_result,
)
],
)

View File

@@ -11,8 +11,10 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def decide_refinement_need(
state: MainState, config: RunnableConfig
) -> RequireRefinemenEvalUpdate:
@@ -26,6 +28,19 @@ def decide_refinement_need(
decision = True # TODO: just for current testing purposes
if state.answer_error:
return RequireRefinemenEvalUpdate(
require_refined_answer_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="decide refinement need",
node_start_time=node_start_time,
result="Timeout Error",
)
],
)
log_messages = [
get_langgraph_node_log_string(
graph_component="main",

View File

@@ -21,11 +21,22 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def extract_entities_terms(
state: MainState, config: RunnableConfig
) -> EntityTermExtractionUpdate:
@@ -79,29 +90,42 @@ def extract_entities_terms(
]
fast_llm = graph_config.tooling.fast_llm
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
)
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
llm_response = run_with_timeout(
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
)
except ValueError:
logger.error("Failed to parse LLM response as JSON in Entity-Term Extraction")
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
)
except ValueError:
logger.error(
"Failed to parse LLM response as JSON in Entity-Term Extraction"
)
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - extract entities terms")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(
entities=[],
relationships=[],
terms=[],
),
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - extract entities terms")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
return EntityTermExtractionUpdate(

View File

@@ -1,5 +1,4 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -11,27 +10,49 @@ from onyx.agents.agent_search.deep_search.main.models import (
AgentRefinedMetrics,
)
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
from onyx.agents.agent_search.deep_search.main.operations import logger
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.main.states import (
RefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test_after_answer_separator,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
get_prompt_enrichment_components,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AGENT_ANSWER_SEPARATOR
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_sections,
dedup_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -43,26 +64,58 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_VALIDATION_PROMPT,
)
from onyx.prompts.agent_search import (
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The refined answer could not be generated.",
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
general_error="The LLM encountered an error. The refined answer could not be generated.",
)
def generate_refined_answer(
@log_function_time(print_only=True)
def generate_validate_refined_answer(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedAnswerUpdate:
"""
LangGraph node to generate the refined answer.
LangGraph node to generate the refined answer and validate it.
"""
node_start_time = datetime.now()
@@ -76,19 +129,24 @@ def generate_refined_answer(
)
verified_reranked_documents = state.verified_reranked_documents
sub_questions_cited_documents = state.cited_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
original_question_verified_documents = (
state.orig_question_verified_reranked_documents
)
original_question_retrieved_documents = state.orig_question_retrieved_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
original_question_verified_documents
):
if original_doc_number not in sub_questions_cited_documents:
if original_doc_number not in structured_subquestion_docs.cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs)
@@ -99,14 +157,16 @@ def generate_refined_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
streaming_docs = (
relevant_docs
if len(relevant_docs) > 0
else original_question_retrieved_documents[:15]
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=original_question_retrieved_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER,
)
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
@@ -114,11 +174,13 @@ def generate_refined_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
# stream refined answer docs, or original question docs if no relevant docs are found
relevance_list = relevance_from_docs(relevant_docs)
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
for tool_response in yield_search_responses(
query=question,
reranked_sections=streaming_docs,
final_context_sections=streaming_docs,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -198,8 +260,13 @@ def generate_refined_answer(
else REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS
)
model = graph_config.tooling.fast_llm
relevant_docs_str = format_docs(relevant_docs)
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
relevant_docs_str = format_docs(answer_generation_documents.context_documents)
relevant_docs_str = trim_prompt_piece(
model.config,
relevant_docs_str,
@@ -229,30 +296,89 @@ def generate_refined_answer(
)
]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
streamed_tokens: list[str] = [""]
dispatch_timings: list[float] = []
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
agent_error: AgentErrorLog | None = None
start_stream_token = datetime.now()
def stream_refined_answer() -> list[str]:
for message in model.stream(
msg, timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
return streamed_tokens
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
stream_refined_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate refined answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate refined answer")
if agent_error:
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
),
writer,
)
end_stream_token = datetime.now()
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
streamed_tokens.append(content)
return RefinedAnswerUpdate(
refined_answer=None,
refined_answer_quality=False, # TODO: replace this with the actual check value
refined_agent_stats=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=0.0,
refined_question_boost_factor=0.0,
duration_s=None,
),
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="generate refined answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
logger.debug(
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
@@ -261,54 +387,47 @@ def generate_refined_answer(
response = merge_content(*streamed_tokens)
answer = cast(str, response)
# run a validation step for the refined answer only
msg = [
HumanMessage(
content=REFINED_ANSWER_VALIDATION_PROMPT.format(
question=question,
history=prompt_enrichment_components.history,
answered_sub_questions=sub_question_answer_str,
relevant_docs=relevant_docs_str,
proposed_answer=answer,
persona_specification=persona_contextualized_prompt,
)
)
]
validation_model = graph_config.tooling.fast_llm
try:
validation_response = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
validation_model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
refined_answer_quality = binary_string_test_after_answer_separator(
text=cast(str, validation_response.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
separator=AGENT_ANSWER_SEPARATOR,
)
except (LLMTimeoutError, TimeoutError):
refined_answer_quality = True
logger.error("LLM Timeout Error - validate refined answer")
except LLMRateLimitError:
refined_answer_quality = True
logger.error("LLM Rate Limit Error - validate refined answer")
refined_agent_stats = RefinedAgentStats(
revision_doc_efficiency=refined_doc_effectiveness,
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (
@@ -325,7 +444,7 @@ def generate_refined_answer(
return RefinedAnswerUpdate(
refined_answer=answer,
refined_answer_quality=True, # TODO: replace this with the actual check value
refined_answer_quality=refined_answer_quality,
refined_agent_stats=refined_agent_stats,
agent_refined_end_time=agent_refined_end_time,
agent_refined_metrics=agent_refined_metrics,

View File

@@ -17,6 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -76,6 +77,7 @@ class InitialAnswerUpdate(LoggerUpdate):
"""
initial_answer: str | None = None
answer_error: AgentErrorLog | None = None
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
@@ -88,6 +90,7 @@ class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
"""
refined_answer: str | None = None
answer_error: AgentErrorLog | None = None
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False

View File

@@ -16,16 +16,46 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
QUERY_REWRITING_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
general_error="Query rewriting failed due to LLM error - the original question will be used.",
)
@log_function_time(print_only=True)
def expand_queries(
state: ExpandedRetrievalInput,
config: RunnableConfig,
@@ -41,7 +71,7 @@ def expand_queries(
node_start_time = datetime.now()
question = state.question
llm = graph_config.tooling.fast_llm
model = graph_config.tooling.fast_llm
sub_question_id = state.sub_question_id
if sub_question_id is None:
level, question_num = 0, 0
@@ -54,13 +84,45 @@ def expand_queries(
)
]
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_num, writer)
)
agent_error: AgentErrorLog | None = None
llm_response_list: list[BaseMessage_Content] = []
llm_response = ""
rewritten_queries = []
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
try:
llm_response_list = run_with_timeout(
AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION,
dispatch_separated,
model.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
),
dispatch_subquery(level, question_num, writer),
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
0
].content
rewritten_queries = llm_response.split("\n")
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
rewritten_queries = llm_response.split("\n")
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - expand queries")
log_result = agent_error.error_result
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - expand queries")
log_result = agent_error.error_result
# use subquestion as query if query generation fails
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
@@ -69,7 +131,7 @@ def expand_queries(
graph_component="shared - expanded retrieval",
node_name="expand queries",
node_start_time=node_start_time,
result=f"Number of expanded queries: {len(rewritten_queries)}",
result=log_result,
)
],
)

View File

@@ -21,12 +21,15 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.configs.agent_configs import AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS
from onyx.configs.agent_configs import AGENT_RERANKING_STATS
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import SearchRequest
from onyx.context.search.pipeline import retrieval_preprocessing
from onyx.context.search.models import RerankingDetails
from onyx.context.search.postprocessing.postprocessing import rerank_sections
from onyx.context.search.postprocessing.postprocessing import should_rerank
from onyx.db.engine import get_session_context_manager
from onyx.db.search_settings import get_current_search_settings
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def rerank_documents(
state: ExpandedRetrievalState, config: RunnableConfig
) -> DocRerankingUpdate:
@@ -39,6 +42,8 @@ def rerank_documents(
# Rerank post retrieval and verification. First, create a search query
# then create the list of reranked sections
# If no question defined/question is None in the state, use the original
# question from the search request as query
graph_config = cast(GraphConfig, config["metadata"]["config"])
question = (
@@ -47,44 +52,42 @@ def rerank_documents(
assert (
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
with get_session_context_manager() as db_session:
# we ignore some of the user specified fields since this search is
# internal to agentic search, but we still want to pass through
# persona (for stuff like document sets) and rerank settings
# (to not make an unnecessary db call).
search_request = SearchRequest(
query=question,
persona=graph_config.inputs.search_request.persona,
rerank_settings=graph_config.inputs.search_request.rerank_settings,
)
_search_query = retrieval_preprocessing(
search_request=search_request,
user=graph_config.tooling.search_tool.user, # bit of a hack
llm=graph_config.tooling.fast_llm,
db_session=db_session,
)
# skip section filtering
# Note that these are passed in values from the API and are overrides which are typically None
rerank_settings = graph_config.inputs.search_request.rerank_settings
allow_agent_reranking = graph_config.behavior.allow_agent_reranking
if (
_search_query.rerank_settings
and _search_query.rerank_settings.rerank_model_name
and _search_query.rerank_settings.num_rerank > 0
and len(verified_documents) > 0
):
if rerank_settings is None:
with get_session_context_manager() as db_session:
search_settings = get_current_search_settings(db_session)
if not search_settings.disable_rerank_for_streaming:
rerank_settings = RerankingDetails.from_db_model(search_settings)
# Initial default: no reranking. Will be overwritten below if reranking is warranted
reranked_documents = verified_documents
if should_rerank(rerank_settings) and len(verified_documents) > 0:
if len(verified_documents) > 1:
reranked_documents = rerank_sections(
_search_query,
verified_documents,
)
if not allow_agent_reranking:
logger.info("Use of local rerank model without GPU, skipping reranking")
# No reranking, stay with verified_documents as default
else:
# Reranking is warranted, use the rerank_sections functon
reranked_documents = rerank_sections(
query_str=question,
# if runnable, then rerank_settings is not None
rerank_settings=cast(RerankingDetails, rerank_settings),
sections_to_rerank=verified_documents,
)
else:
num = "No" if len(verified_documents) == 0 else "One"
logger.warning(f"{num} verified document(s) found, skipping reranking")
reranked_documents = verified_documents
logger.warning(
f"{len(verified_documents)} verified document(s) found, skipping reranking"
)
# No reranking, stay with verified_documents as default
else:
logger.warning("No reranking settings found, using unranked documents")
reranked_documents = verified_documents
# No reranking, stay with verified_documents as default
if AGENT_RERANKING_STATS:
fit_scores = get_fit_scores(verified_documents, reranked_documents)
else:

View File

@@ -23,12 +23,15 @@ from onyx.configs.agent_configs import AGENT_RETRIEVAL_STATS
from onyx.context.search.models import InferenceSection
from onyx.db.engine import get_session_context_manager
from onyx.tools.models import SearchQueryInfo
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def retrieve_documents(
state: RetrievalInput, config: RunnableConfig
) -> DocRetrievalUpdate:
@@ -67,9 +70,12 @@ def retrieve_documents(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=query_to_retrieve,
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
skip_query_analysis=not state.base_search,
),
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:

View File

@@ -1,5 +1,7 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
@@ -10,14 +12,40 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
DOCUMENT_VERIFICATION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def verify_documents(
state: DocVerificationInput, config: RunnableConfig
) -> DocVerificationUpdate:
@@ -26,12 +54,14 @@ def verify_documents(
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing ProSearchConfig
config (RunnableConfig): Configuration containing AgentSearchConfig
Updates:
verified_documents: list[InferenceSection]
"""
node_start_time = datetime.now()
question = state.question
retrieved_document_to_verify = state.retrieved_document_to_verify
document_content = retrieved_document_to_verify.combined_content
@@ -51,12 +81,43 @@ def verify_documents(
)
]
response = fast_llm.invoke(msg)
response: BaseMessage | None = None
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(retrieved_document_to_verify)
verified_documents = [
retrieved_document_to_verify
] # default is to treat document as relevant
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION,
)
assert isinstance(response.content, str)
if not binary_string_test(
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
):
verified_documents = []
except (LLMTimeoutError, TimeoutError):
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Timeout Error - verify documents")
except LLMRateLimitError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Rate Limit Error - verify documents")
return DocVerificationUpdate(
verified_documents=verified_documents,
log_messages=[
get_langgraph_node_log_string(
graph_component="shared - expanded retrieval",
node_name="verify documents",
node_start_time=node_start_time,
)
],
)

View File

@@ -21,9 +21,13 @@ from onyx.context.search.models import InferenceSection
class ExpandedRetrievalInput(SubgraphCoreState):
question: str = ""
base_search: bool = False
# exception from 'no default value'for LangGraph input states
# Here, sub_question_id default None implies usage for the
# original question. This is sometimes needed for nested sub-graphs
sub_question_id: str | None = None
question: str
base_search: bool
## Update/Return States
@@ -34,7 +38,7 @@ class QueryExpansionUpdate(LoggerUpdate, BaseModel):
log_messages: list[str] = []
class DocVerificationUpdate(BaseModel):
class DocVerificationUpdate(LoggerUpdate, BaseModel):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
@@ -88,4 +92,4 @@ class DocVerificationInput(ExpandedRetrievalInput):
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str = ""
query_to_retrieve: str

View File

@@ -67,6 +67,7 @@ class GraphSearchConfig(BaseModel):
# Whether to allow creation of refinement questions (and entity extraction, etc.)
allow_refinement: bool = True
skip_gen_ai_answer_generation: bool = False
allow_agent_reranking: bool = False
class GraphConfig(BaseModel):

View File

@@ -28,7 +28,7 @@ def emit_packet(packet: AnswerPacket, writer: StreamWriter) -> None:
write_custom_event("basic_response", packet, writer)
def tool_call(
def call_tool(
state: ToolChoiceUpdate,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,
@@ -37,10 +37,7 @@ def tool_call(
cast(GraphConfig, config["metadata"]["config"])
assert (
len(state.tool_choices) > 0
), "Tool call node must have at least one tool choice"
tool_choice = state.tool_choices[-1]
tool_choice = state.tool_choice
if tool_choice is None:
raise ValueError("Cannot invoke tool call node without a tool choice")

View File

@@ -1,21 +1,21 @@
from typing import cast
from uuid import uuid4
from langchain_core.messages import ToolCall
from langchain_core.runnables.config import RunnableConfig
from langgraph.types import StreamWriter
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.orchestration.states import ToolChoice
from onyx.agents.agent_search.orchestration.states import ToolChoiceState
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.orchestration.utils import get_tool_choice_update
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.chat.tool_handling.tool_response_handler import get_tool_by_name
from onyx.chat.tool_handling.tool_response_handler import (
get_tool_call_for_non_tool_calling_llm_impl,
)
from onyx.llm.interfaces import ToolChoiceOptions
from onyx.tools.tool import Tool
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -25,8 +25,8 @@ logger = setup_logger()
# and a function that handles extracting the necessary fields
# from the state and config
# TODO: fan-out to multiple tool call nodes? Make this configurable?
def llm_tool_choice(
state: BasicState,
def choose_tool(
state: ToolChoiceState,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,
) -> ToolChoiceUpdate:
@@ -72,13 +72,11 @@ def llm_tool_choice(
# This only happens if the tool call was forced or we are using a non-tool calling LLM.
if tool and tool_args:
return ToolChoiceUpdate(
tool_choices=[
ToolChoice(
tool=tool,
tool_args=tool_args,
id=str(uuid4()),
)
],
tool_choice=ToolChoice(
tool=tool,
tool_args=tool_args,
id=str(uuid4()),
),
)
# if we're skipping gen ai answer generation, we should only
@@ -86,7 +84,7 @@ def llm_tool_choice(
# the tool calling llm in the stream() below)
if skip_gen_ai_answer_generation and not force_use_tool.force_use:
return ToolChoiceUpdate(
tool_choices=[None],
tool_choice=None,
)
built_prompt = (
@@ -100,9 +98,15 @@ def llm_tool_choice(
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
prompt=built_prompt,
tools=[tool.tool_definition() for tool in tools] or None,
tools=(
[tool.tool_definition() for tool in tools] or None
if using_tool_calling_llm
else None
),
tool_choice=(
ToolChoiceOptions.REQUIRED if tools and force_use_tool.force_use else None
"required"
if tools and force_use_tool.force_use and using_tool_calling_llm
else None
),
structured_response_format=structured_response_format,
)
@@ -114,4 +118,45 @@ def llm_tool_choice(
writer,
)
return get_tool_choice_update(tool_message, tools)
# If no tool calls are emitted by the LLM, we should not choose a tool
if len(tool_message.tool_calls) == 0:
logger.debug("No tool calls emitted by LLM")
return ToolChoiceUpdate(
tool_choice=None,
)
# TODO: here we could handle parallel tool calls. Right now
# we just pick the first one that matches.
selected_tool: Tool | None = None
selected_tool_call_request: ToolCall | None = None
for tool_call_request in tool_message.tool_calls:
known_tools_by_name = [
tool for tool in tools if tool.name == tool_call_request["name"]
]
if known_tools_by_name:
selected_tool = known_tools_by_name[0]
selected_tool_call_request = tool_call_request
break
logger.error(
"Tool call requested with unknown name field. \n"
f"tools: {tools}"
f"tool_call_request: {tool_call_request}"
)
if not selected_tool or not selected_tool_call_request:
raise ValueError(
f"Tool call attempted with tool {selected_tool}, request {selected_tool_call_request}"
)
logger.debug(f"Selected tool: {selected_tool.name}")
logger.debug(f"Selected tool call request: {selected_tool_call_request}")
return ToolChoiceUpdate(
tool_choice=ToolChoice(
tool=selected_tool,
tool_args=selected_tool_call_request["args"],
id=selected_tool_call_request["id"],
),
)

View File

@@ -4,11 +4,10 @@ from langchain_core.messages import AIMessageChunk
from langchain_core.runnables.config import RunnableConfig
from langgraph.types import StreamWriter
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.basic.utils import process_llm_stream
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.orchestration.utils import get_tool_choice_update
from onyx.chat.models import LlmDoc
from onyx.chat.models import OnyxContexts
from onyx.tools.tool_implementations.search.search_tool import (
@@ -24,15 +23,11 @@ logger = setup_logger()
def basic_use_tool_response(
state: BasicState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> ToolChoiceUpdate:
) -> BasicOutput:
agent_config = cast(GraphConfig, config["metadata"]["config"])
structured_response_format = agent_config.inputs.structured_response_format
llm = agent_config.tooling.primary_llm
assert (
len(state.tool_choices) > 0
), "Tool choice node must have at least one tool choice"
tool_choice = state.tool_choices[-1]
tool_choice = state.tool_choice
if tool_choice is None:
raise ValueError("Tool choice is None")
tool = tool_choice.tool
@@ -66,8 +61,6 @@ def basic_use_tool_response(
stream = llm.stream(
prompt=new_prompt_builder.build(),
structured_response_format=structured_response_format,
tools=[_tool.tool_definition() for _tool in agent_config.tooling.tools],
tool_choice=None,
)
# For now, we don't do multiple tool calls, so we ignore the tool_message
@@ -81,4 +74,4 @@ def basic_use_tool_response(
displayed_search_results=initial_search_results or final_search_results,
)
return get_tool_choice_update(new_tool_call_chunk, agent_config.tooling.tools)
return BasicOutput(tool_call_chunk=new_tool_call_chunk)

View File

@@ -1,6 +1,3 @@
from operator import add
from typing import Annotated
from pydantic import BaseModel
from onyx.chat.prompt_builder.answer_prompt_builder import PromptSnapshot
@@ -44,7 +41,7 @@ class ToolChoice(BaseModel):
class ToolChoiceUpdate(BaseModel):
tool_choices: Annotated[list[ToolChoice | None], add] = []
tool_choice: ToolChoice | None = None
class ToolChoiceState(ToolChoiceUpdate, ToolChoiceInput):

View File

@@ -1,58 +0,0 @@
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import ToolCall
from onyx.agents.agent_search.orchestration.states import ToolChoice
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.tools.tool import Tool
from onyx.utils.logger import setup_logger
logger = setup_logger()
def get_tool_choice_update(
tool_message: AIMessageChunk, tools: list[Tool]
) -> ToolChoiceUpdate:
# If no tool calls are emitted by the LLM, we should not choose a tool
if len(tool_message.tool_calls) == 0:
logger.debug("No tool calls emitted by LLM")
return ToolChoiceUpdate(
tool_choices=[None],
)
# TODO: here we could handle parallel tool calls. Right now
# we just pick the first one that matches.
selected_tool: Tool | None = None
selected_tool_call_request: ToolCall | None = None
for tool_call_request in tool_message.tool_calls:
known_tools_by_name = [
tool for tool in tools if tool.name == tool_call_request["name"]
]
if known_tools_by_name:
selected_tool = known_tools_by_name[0]
selected_tool_call_request = tool_call_request
break
logger.error(
"Tool call requested with unknown name field. \n"
f"tools: {tools}"
f"tool_call_request: {tool_call_request}"
)
if not selected_tool or not selected_tool_call_request:
raise ValueError(
f"Tool call attempted with tool {selected_tool}, request {selected_tool_call_request}"
)
logger.debug(f"Selected tool: {selected_tool.name}")
logger.debug(f"Selected tool call request: {selected_tool_call_request}")
return ToolChoiceUpdate(
tool_choices=[
ToolChoice(
tool=selected_tool,
tool_args=selected_tool_call_request["args"],
id=selected_tool_call_request["id"],
)
],
)

View File

@@ -12,7 +12,7 @@ from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput_a,
MainInput as MainInput,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
@@ -21,6 +21,7 @@ from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamingError
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
@@ -33,6 +34,7 @@ from onyx.llm.factory import get_default_llms
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
@@ -72,13 +74,15 @@ def _parse_agent_event(
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
elif event["name"] == "refined_sub_question_creation_error":
return cast(StreamingError, event["data"])
return None
def manage_sync_streaming(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
graph_input: BasicInput | MainInput_a,
graph_input: BasicInput | MainInput,
) -> Iterable[StreamEvent]:
message_id = config.persistence.message_id if config.persistence else None
for event in compiled_graph.stream(
@@ -92,7 +96,7 @@ def manage_sync_streaming(
def run_graph(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
input: BasicInput | MainInput_a,
input: BasicInput | MainInput,
) -> AnswerStream:
config.behavior.perform_initial_search_decomposition = (
INITIAL_SEARCH_DECOMPOSITION_ENABLED
@@ -123,9 +127,7 @@ def run_main_graph(
) -> AnswerStream:
compiled_graph = load_compiled_graph()
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
@@ -140,7 +142,7 @@ def run_basic_graph(
) -> AnswerStream:
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput()
input = BasicInput(unused=True)
return run_graph(compiled_graph, config, input)
@@ -172,9 +174,7 @@ if __name__ == "__main__":
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
input = MainInput(log_messages=[])
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):

View File

@@ -7,6 +7,7 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.models import (
AgentPromptEnrichmentComponents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_persona_agent_prompt_expressions,
)
@@ -40,13 +41,7 @@ def build_sub_question_answer_prompt(
date_str = build_date_time_string()
# TODO: This should include document metadata and title
docs_format_list = [
f"Document Number: [D{doc_num + 1}]\nContent: {doc.combined_content}\n\n"
for doc_num, doc in enumerate(docs)
]
docs_str = "\n\n".join(docs_format_list)
docs_str = format_docs(docs)
docs_str = trim_prompt_piece(
config,
@@ -150,3 +145,38 @@ def get_prompt_enrichment_components(
history=history,
date_str=date_str,
)
def binary_string_test(text: str, positive_value: str = "yes") -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
return positive_value.lower() in text.lower()
def binary_string_test_after_answer_separator(
text: str, positive_value: str = "yes", separator: str = "Answer:"
) -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
if separator not in text:
return False
relevant_text = text.split(f"{separator}")[-1]
return binary_string_test(relevant_text, positive_value)

View File

@@ -1,7 +1,11 @@
import numpy as np
from onyx.agents.agent_search.shared_graph_utils.models import AnswerGenerationDocuments
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitScoreMetrics
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import SectionRelevancePiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
@@ -96,3 +100,106 @@ def get_fit_scores(
)
return fit_eval
def get_answer_generation_documents(
relevant_docs: list[InferenceSection],
context_documents: list[InferenceSection],
original_question_docs: list[InferenceSection],
max_docs: int,
) -> AnswerGenerationDocuments:
"""
Create a deduplicated list of documents to stream, prioritizing relevant docs.
Args:
relevant_docs: Primary documents to include
context_documents: Additional context documents to append
original_question_docs: Original question documents to append
max_docs: Maximum number of documents to return
Returns:
List of deduplicated documents, limited to max_docs
"""
# get relevant_doc ids
relevant_doc_ids = [doc.center_chunk.document_id for doc in relevant_docs]
# Start with relevant docs or fallback to original question docs
streaming_documents = relevant_docs.copy()
# Use a set for O(1) lookups of document IDs
seen_doc_ids = {doc.center_chunk.document_id for doc in streaming_documents}
# Combine additional documents to check in one iteration
additional_docs = context_documents + original_question_docs
for doc_idx, doc in enumerate(additional_docs):
doc_id = doc.center_chunk.document_id
if doc_id not in seen_doc_ids:
streaming_documents.append(doc)
seen_doc_ids.add(doc_id)
streaming_documents = dedup_inference_section_list(streaming_documents)
relevant_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id in relevant_doc_ids
]
relevant_streaming_docs = dedup_sort_inference_section_list(relevant_streaming_docs)
additional_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id not in relevant_doc_ids
]
additional_streaming_docs = dedup_sort_inference_section_list(
additional_streaming_docs
)
for doc in additional_streaming_docs:
if doc.center_chunk.score:
doc.center_chunk.score += -2.0
else:
doc.center_chunk.score = -2.0
sorted_streaming_documents = relevant_streaming_docs + additional_streaming_docs
return AnswerGenerationDocuments(
streaming_documents=sorted_streaming_documents[:max_docs],
context_documents=relevant_streaming_docs[:max_docs],
)
def dedup_sort_inference_section_list(
sections: list[InferenceSection],
) -> list[InferenceSection]:
"""Deduplicates InferenceSections by document_id and sorts by score.
Args:
sections: List of InferenceSections to deduplicate and sort
Returns:
Deduplicated list of InferenceSections sorted by score in descending order
"""
# dedupe/merge with existing framework
sections = dedup_inference_section_list(sections)
# Use dict to deduplicate by document_id, keeping highest scored version
unique_sections: dict[str, InferenceSection] = {}
for section in sections:
doc_id = section.center_chunk.document_id
if doc_id not in unique_sections:
unique_sections[doc_id] = section
continue
# Keep version with higher score
existing_score = unique_sections[doc_id].center_chunk.score or 0
new_score = section.center_chunk.score or 0
if new_score > existing_score:
unique_sections[doc_id] = section
# Sort by score in descending order, handling None scores
sorted_sections = sorted(
unique_sections.values(), key=lambda x: x.center_chunk.score or 0, reverse=True
)
return sorted_sections

View File

@@ -0,0 +1,19 @@
from enum import Enum
AGENT_LLM_TIMEOUT_MESSAGE = "The agent timed out. Please try again."
AGENT_LLM_ERROR_MESSAGE = "The agent encountered an error. Please try again."
AGENT_LLM_RATELIMIT_MESSAGE = (
"The agent encountered a rate limit error. Please try again."
)
LLM_ANSWER_ERROR_MESSAGE = "The question was not answered due to an LLM error."
AGENT_POSITIVE_VALUE_STR = "yes"
AGENT_NEGATIVE_VALUE_STR = "no"
AGENT_ANSWER_SEPARATOR = "Answer:"
class AgentLLMErrorType(str, Enum):
TIMEOUT = "timeout"
RATE_LIMIT = "rate_limit"
GENERAL_ERROR = "general_error"

View File

@@ -1,3 +1,5 @@
from typing import Any
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search.main.models import (
@@ -56,6 +58,12 @@ class InitialAgentResultStats(BaseModel):
agent_effectiveness: dict[str, float | int | None]
class AgentErrorLog(BaseModel):
error_message: str
error_type: str
error_result: str
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
@@ -110,6 +118,11 @@ class SubQuestionAnswerResults(BaseModel):
sub_question_retrieval_stats: AgentChunkRetrievalStats
class StructuredSubquestionDocuments(BaseModel):
cited_documents: list[InferenceSection]
context_documents: list[InferenceSection]
class CombinedAgentMetrics(BaseModel):
timings: AgentTimings
base_metrics: AgentBaseMetrics | None
@@ -126,3 +139,17 @@ class AgentPromptEnrichmentComponents(BaseModel):
persona_prompts: PersonaPromptExpressions
history: str
date_str: str
class LLMNodeErrorStrings(BaseModel):
timeout: str = "LLM Timeout Error"
rate_limit: str = "LLM Rate Limit Error"
general_error: str = "General LLM Error"
class AnswerGenerationDocuments(BaseModel):
streaming_documents: list[InferenceSection]
context_documents: list[InferenceSection]
BaseMessage_Content = str | list[str | dict[str, Any]]

View File

@@ -12,6 +12,13 @@ def dedup_inference_sections(
return deduped
def dedup_inference_section_list(
list: list[InferenceSection],
) -> list[InferenceSection]:
deduped = _merge_sections(list)
return deduped
def dedup_question_answer_results(
question_answer_results_1: list[SubQuestionAnswerResults],
question_answer_results_2: list[SubQuestionAnswerResults],

View File

@@ -20,10 +20,18 @@ from onyx.agents.agent_search.models import GraphInputs
from onyx.agents.agent_search.models import GraphPersistence
from onyx.agents.agent_search.models import GraphSearchConfig
from onyx.agents.agent_search.models import GraphTooling
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import PersonaPromptExpressions
from onyx.agents.agent_search.shared_graph_utils.models import (
StructuredSubquestionDocuments,
)
from onyx.agents.agent_search.shared_graph_utils.models import SubQuestionAnswerResults
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStyleConfig
from onyx.chat.models import CitationConfig
@@ -34,6 +42,10 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
@@ -46,6 +58,8 @@ from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.llm.interfaces import LLM
from onyx.prompts.agent_search import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
@@ -58,6 +72,7 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.prompt_utils import handle_onyx_date_awareness
from onyx.tools.force import ForceUseTool
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
@@ -65,8 +80,10 @@ from onyx.tools.tool_implementations.search.search_tool import (
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
BaseMessage_Content = str | list[str | dict[str, Any]]
logger = setup_logger()
# Post-processing
@@ -218,7 +235,10 @@ def get_test_config(
using_tool_calling_llm=using_tool_calling_llm,
)
chat_session_id = os.environ.get("ONYX_AS_CHAT_SESSION_ID")
chat_session_id = (
os.environ.get("ONYX_AS_CHAT_SESSION_ID")
or "00000000-0000-0000-0000-000000000000"
)
assert (
chat_session_id is not None
), "ONYX_AS_CHAT_SESSION_ID must be set for backend tests"
@@ -341,8 +361,12 @@ def retrieve_search_docs(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=question,
force_no_rerank=True,
alternate_db_session=db_session,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=None,
skip_query_analysis=False,
),
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
@@ -372,8 +396,26 @@ def summarize_history(
)
)
history_response = llm.invoke(history_context_prompt)
try:
history_response = run_with_timeout(
AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION,
llm.invoke,
history_context_prompt,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
assert isinstance(history_response.content, str)
return history_response.content
@@ -439,3 +481,27 @@ def remove_document_citations(text: str) -> str:
# \d+ - one or more digits
# \] - literal ] character
return re.sub(r"\[(?:D|Q)?\d+\]", "", text)
def get_deduplicated_structured_subquestion_documents(
sub_question_results: list[SubQuestionAnswerResults],
) -> StructuredSubquestionDocuments:
"""
Extract and deduplicate all cited documents from sub-question results.
Args:
sub_question_results: List of sub-question results containing cited documents
Returns:
Deduplicated list of cited documents
"""
cited_docs = [
doc for result in sub_question_results for doc in result.cited_documents
]
context_docs = [
doc for result in sub_question_results for doc in result.context_documents
]
return StructuredSubquestionDocuments(
cited_documents=dedup_inference_section_list(cited_docs),
context_documents=dedup_inference_section_list(context_docs),
)

Some files were not shown because too many files have changed in this diff Show More