Compare commits

...

414 Commits

Author SHA1 Message Date
Weves
5f82de7c45 Debug test 2024-09-23 11:05:27 -07:00
pablodanswer
45f67368a2 Add support for o1 (#2538)
* add o1 support + bump litellm/openai

* ports

* update exception message for testing
2024-09-22 23:16:28 +00:00
pablodanswer
014ba9e220 Begin distinguishing upsert operations for clarity (#2535)
* additional clarity for llm provider creation / updates

* update provider APIs

* update typing (minor)
2024-09-21 22:36:22 +00:00
pablodanswer
ba64543dd7 Updated modals for clarity (#2529)
* udpated modals for clarity

* fix build
2024-09-21 19:55:54 +00:00
pablodanswer
18c62a0c24 Add additional custom tooling configuration (#2426)
* add custom headers

* add tool seeding

* squash

* tmep

* validated

* rm

* update typing

* update alembic

* update import name

* reformat

* alembic
2024-09-20 23:12:52 +00:00
Chris Weaver
33f555922c Fix duplicate users from slack / web (#2530) 2024-09-20 21:51:33 +00:00
pablodanswer
05f6f6d5b5 update default search assistant selection (#2527)
* update default search assistant selection

* update language
2024-09-20 21:21:44 +00:00
hagen-danswer
19dae1d870 Wrote tests for the chat apis (#2525)
* Wrote tests for the chat apis

* slight changes to the case
2024-09-20 19:00:03 +00:00
rkuo-danswer
6d859bd37c try adding build essential (#2526) 2024-09-20 11:51:44 -07:00
pablodanswer
122e3fa3fa Access type (#2523) 2024-09-20 11:16:37 -07:00
pablodanswer
87b542b335 align alembic 2024-09-20 11:13:00 -07:00
pablodanswer
00229d2abe Add start date to persona (#2407)
* add start date to persona

* remove logs

* rename

* update assistant editor

* update alembic

* update alembic

* update alembic

* udpate alembic

* remove rebase artifacts
2024-09-20 16:39:34 +00:00
pablodanswer
5f2644985c Route name (#2520)
* clearer refresh logic

* rename path
2024-09-20 15:44:28 +00:00
pablodanswer
c82a36ad68 Saml account fastapi deletion (#2512)
* saml account fastapi deletion

* update error detail
2024-09-20 00:20:50 +00:00
hagen-danswer
16d1c19d9f Added bool to disable chat_session_id check for search_docs for api 2024-09-19 17:36:46 -07:00
pablodanswer
9f179940f8 Asana connector (community originated) (#2485)
* initial Asana connector

* hint on how to get Asana workspace ID

* re-format with black

* re-order imports

* update asana connector for clarity

* minor robustification

* minor update to naming

* update for best practice

* update connector

---------

Co-authored-by: Daniel Naber <naber@danielnaber.de>
2024-09-19 23:54:18 +00:00
pablodanswer
8a8e2b310e Assistants panel rework (#2509)
* update user model

* squash - update assistant gallery

* rework assistant display logic + ux

* update tool + assistant display

* update a couple function names

* update typing + some logic

* remove unnecessary comments

* finalize functionality

* updated logic

* fully functional

* remove logs + ports

* small update to logic

* update typing

* allow seeding of display priority

* reorder migrations

* update for alembic
2024-09-19 23:36:15 +00:00
hagen-danswer
2274cab554 Added permission syncing (#2340)
* Added permission syncing on the backend

* Rewored to work with celery

alembic fix

fixed test

* frontend changes

* got groups working

* added comments and fixed public docs

* fixed merge issues

* frontend complete!

* frontend cleanup and mypy fixes

* refactored connector access_type selection

* mypy fixes

* minor refactor and frontend improvements

* get to fetch

* renames and comments

* minor change to var names

* got curator stuff working

* addressed pablo's comments

* refactored user_external_group to reference users table

* implemented polling

* small refactor

* fixed a whoopsies on the frontend

* added scripts to seed dummy docs and test query times

* fixed frontend build issue

* alembic fix

* handled is_public overlap

* yuhong feedback

* added more checks for sync

* black

* mypy

* fixed circular import

* todos

* alembic fix

* alembic
2024-09-19 22:07:36 +00:00
pablodanswer
ef104e9a82 Non-spotfix deletion of users (#2499)
* add description / robustify

* additional minor robustification (ideally we organized cascades slightly better)

* update deletion for simplicity

* minor typing update
2024-09-19 20:02:36 +00:00
hagen-danswer
a575d7f1eb Citations prompt for slack now includes thread history (#2510) 2024-09-19 19:31:26 +00:00
pablodanswer
f404c4b448 Move code block default language creation to citation processing (#2501)
* move code block default language creation to citaiton processing

* add test cases

* update copy
2024-09-19 06:00:58 +00:00
rkuo-danswer
3884f1d70a Bugfix/larger test runner (#2508)
* add pip retries to the github workflows too

* let's try running on amd64 ... docker builds are unusually flaky

* bump

* try large

* no yaml anchors

* switch back down to Amd64

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-19 05:36:07 +00:00
rkuo-danswer
bc9d5fece7 prevent trying to submit to jobclient when it can't take any more work (reduces log spam) (#2482) 2024-09-19 04:01:15 +00:00
rkuo-danswer
bb279a8580 add pip retries. should help with github's occasional flaky network during build/test (#2506) 2024-09-19 00:46:41 +00:00
pablodanswer
a9403016c9 fix basic auth (#2505) 2024-09-18 22:45:58 +00:00
hagen-danswer
f3cea79c1c Deleting a connector should redirect to the indexing status page (#2504)
* Deleting a connector should redirect to the indexing status page

* minor update to dev background jobs

* update refresh logic

* remove print statement

---------

Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-09-18 21:38:35 +00:00
hagen-danswer
54bb79303c corrected error message (#2502) 2024-09-18 19:13:28 +00:00
pablodanswer
d3dfabb20e fix parentheses (#2486) 2024-09-18 18:39:23 +00:00
pablodanswer
7d1ec1095c proper z index for chat bubbles (#2500) 2024-09-18 18:02:50 +00:00
rkuo-danswer
f531d071af Feature/background deletion (#2337)
* first cut at redis

* some new helper functions for the db

* ignore kombu tables in alembic migrations (used by celery)

* multiline commands for readability, add vespa_metadata_sync queue to worker

* typo fix

* fix returning tuple fields

* add constants

* fix _get_access_for_document

* docstrings!

* fix double function declaration and typing

* fix type hinting

* add a global redis pool

* Add get_document function

* use task_logger in various celery tasks

* add celeryconfig.py to simplify configuration. Will be used in a subsequent commit

* Add celery redis helper. used in a subsequent PR

* kombu warning getting spammy since celery is not self managing its queue in Postgres any more

* add last_modified and last_synced to documents

* fix task naming convention

* use celeryconfig.py

* the big one. adds queues and tasks, updates functions to use the queues with priorities, etc

* change vespa index log line to debug

* mypy fixes

* update alembic migration

* fix fence ordering, rename to "monitor", fix fetch_versioned_implementation call

* mypy

* switch to monotonic time

* fix startup dependencies on redis

* rebase alembic migration

* kombu cleanup - fail silently

* mypy

* add redis_host environment override

* update REDIS_HOST env var in docker-compose.dev.yml

* update the rest of the docker files

* in flight

* harden indexing-status endpoint against db changes happening in the background.  Needs further improvement but OK for now.

* allow no task syncs to run because we create certain objects with no entries but initially marked as out of date

* add back writing to vespa on indexing

* actually working connector deletion

* update contributing guide

* backporting fixes from background_deletion

* renaming cache to cache_volume

* add redis password to various deployments

* try setting up pr testing for helm

* fix indent

* hopefully this release version actually exists

* fix command line option to --chart-dirs

* fetch-depth 0

* edit values.yaml

* try setting ct working directory

* bypass testing only on change for now

* move files and lint them

* update helm testing

* some issues suggest using --config works

* add vespa repo

* add postgresql repo

* increase timeout

* try amd64 runner

* fix redis password reference

* add comment to helm chart testing workflow

* rename helm testing workflow to disable it

* adding clarifying comments

* address code review

* missed a file

* remove commented warning ... just not needed

* fix imports

* refactor to use update_single

* mypy fixes

* add vespa test

* add db refresh to connector deletion

* code review fixes

* move monitor_usergroup_taskset to ee, improve logging

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-18 16:50:11 +00:00
Chris Weaver
4218814385 Add flow to query history CSV (#2492) 2024-09-18 14:23:56 +00:00
rkuo-danswer
e662e3b57d clarify ssl cert reqs (#2494)
Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-18 05:35:57 +00:00
pablodanswer
2073820e33 Update default assistants to all visible (#2490)
* update default assistants to all visible

* update with catch-all

* minor update

* update
2024-09-18 02:08:11 +00:00
Chris Weaver
5f25b243c5 Add back llm_chunks_indices (#2491) 2024-09-18 01:21:31 +00:00
pablodanswer
a9427f190a Extend time range (contributor submission) (#2484)
* added new options for time range; removed duplicated code

* refactor + remove unused code

---------

Co-authored-by: Zoltan Szabo <zoltan.szabo@eaudeweb.ro>
2024-09-17 22:36:25 +00:00
pablodanswer
18fbe9d7e8 Warn users of gpu-sensitive operation (#2488)
* warn users of gpu-sensitive operation

* update copy
2024-09-17 21:59:43 +00:00
Chris Weaver
75c9b1cafe Fix concatenate string with toolcallkickoff issue (#2487) 2024-09-17 21:25:06 +00:00
rkuo-danswer
632a8f700b Feature/celery backend db number (#2475)
* use separate database number for celery result backend

* add comments

* add env var for celery's result_expires

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-17 21:06:36 +00:00
pablodanswer
cd58c96014 Memoize AI message component (#2483)
* memoize AI message component

* rename memoized file

* remove "zz"

* update name

* memoize for coverage

* add display name
2024-09-17 18:47:23 +00:00
pablodanswer
c5032d25c9 Minor clarity update for connectors (#2480) 2024-09-17 10:25:39 -07:00
pablodanswer
72acde6fd4 Handle tool errors in display properly (can show valueError to user) (#2481)
* handle tool errors in display properly (can show valueerrors to user)

* update for clarity
2024-09-17 17:08:46 +00:00
rkuo-danswer
5596a68d08 harden migration (#2476)
* harden migration

* remove duplicate line
2024-09-17 16:44:53 +00:00
Weves
5b18409c89 Change user-message to user-prompt 2024-09-16 21:53:27 -07:00
Chris Weaver
84272af5ac Add back scrolling to ExceptionTraceModal (#2473) 2024-09-17 02:25:53 +00:00
pablodanswer
6bef70c8b7 ensure disabled gets propagated 2024-09-16 19:27:31 -07:00
pablodanswer
7f7559e3d2 Allow users to share assistants (#2434)
* enable assistant sharing

* functional

* remove logs

* revert ports

* remove accidental update

* minor updates to copy

* update formatting

* update for merge queue
2024-09-17 01:35:29 +00:00
Chris Weaver
7ba829a585 Add top_documents to APIs (#2469)
* Add top_documents

* Fix test

---------

Co-authored-by: hagen-danswer <hagen@danswer.ai>
2024-09-16 23:48:33 +00:00
trial-danswer
8b2ecb4eab EE movement followup for Standard Answers (#2467)
* Move StandardAnswer to EE section of danswer/db/models

* Move StandardAnswer DB layer to EE

* Add EERequiredError for distinct error handling here

* Handle EE fallback for slack bot config

* Migrate all standard answer models to ee

* Flagging categories for removal

* Add missing versioned impl for update_slack_bot_config

---------

Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-16 22:05:53 +00:00
pablodanswer
2dd3870504 Add ability to specify persona in API request (#2302)
* persona

* all prepared excluding configuration

* more sensical model structure

* update tstream

* type updates

* rm

* quick and simple updates

* minor updates

* te

* ensure typing + naming

* remove old todo + rebase update

* remove unnecessary check
2024-09-16 21:31:01 +00:00
pablodanswer
df464fc54b Allow for CORS Origin Setting (#2449)
* allow setting of CORS origin

* simplify

* add environment variable + rename

* slightly more efficient

* simplify so mypy doens't complain

* temp

* go back to my preferred formatting
2024-09-16 18:54:36 +00:00
pablodanswer
96b98fbc4a Make it impossible to switch to non-image (#2440)
* make it impossible to switch to non-image

* revert ports

* proper provider support

* remove unused imports

* minor rename

* simplify interface

* remove logs
2024-09-16 18:35:40 +00:00
trial-danswer
66cf67d04d hotfix: sqlalchemy default -> server_default (#2442)
Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-16 17:49:01 +00:00
pablodanswer
285bdbbaf9 Fix stop generating locally (#2452)
* fix stop generating locally

* .
2024-09-15 23:55:30 +00:00
pablodanswer
e2c37d6847 Test stream + Update Copy (#2317)
* update copy + conditional ordering

* answer stream checks

* update

* add basic tests for chat streams

* slightly simplify

* fix typing

* quick typing updates + nits
2024-09-15 19:40:48 +00:00
Yuhong Sun
3ff2ba7ee4 k (#2450) 2024-09-15 17:32:58 +00:00
pablodanswer
290f4f0f8c add some minor ux updates (#2441) 2024-09-15 08:29:31 +00:00
rkuo-danswer
3c934a93cd using is_up_to_date cached outside of the fence was causing a race condition where the same sync could be kicked off again (#2433) 2024-09-15 06:27:05 +00:00
Yuhong Sun
a51b0f636e Logs from API Server Container on Merge Queue (#2448)
* k

* k
2024-09-14 20:32:18 +00:00
pablodanswer
a50c2e30ec Very minor polish (#2445)
* fix minor polish

* cleaner chat flow

* remove keys

* slight robustification to copying
2024-09-14 17:54:29 +00:00
pablodanswer
ee278522ef update indexing status clarity (#2446) 2024-09-14 17:19:55 +00:00
trial-danswer
430c9a47d7 Match any/all keywords in Standard Answers (#2443)
* migration: add column "match_any_keywords" to StandardAnswer

* Implement any/all keyword matching for standard answers

* Add match_any_keywords to non-searchable fields

* Remove stray print

* Simplify Slack messages for any and all cases

---------

Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-14 05:28:07 +00:00
hj-danswer
974f85da66 Migrate standard answers implementations to ee/ (#2378)
* Migrate standard answers implementations to ee/

* renaming

* Clean up slackbot non-ee standard answers import

* Move backend api/manage/standard_answer route to ee

* Move standard answers web UI to ee

* Hide standard answer controls in bot edit page

* Kwargs for fetch_versioned_implementation

* Add docstring explaining return types for handle_standard_answers

* Consolidate blocks into ee/handle_standard_answers

---------

Co-authored-by: Hyeong Joon Suh <hyeongjoonsuh@Hyeongs-MacBook-Pro.local>
Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-14 01:57:03 +00:00
hagen-danswer
a63cb9da43 fixed /danswer handling (#2436)
* fixed

* mypy

* cleaned up and commented

* mypy

* Update handle_regular_answer.py
2024-09-14 01:21:13 +00:00
rkuo-danswer
d807ad7699 fix document set connection removal sync, add tests for document set and user group removal (#2437) 2024-09-14 01:01:26 +00:00
hj-danswer
3cb00de6d4 Support regex in standard answers (#2377)
* Support regex in standard answers

* fix mypy

* Add match_regex boolean column to StandardAnswer

* Add match_regex flag and validation to Pydantic models

* GET /manage/admin/standard-answer: add match_regex to create_standard_answer

* PATCH /manage/admin/standard-answer/🆔 add match_regex to update_standard_answer

* Add "Match Regex" toggle to standard answer form

* Decode error pattern in case it's bytes

* Refactor regex support to use match_regex flag instead of supplemental tuple

* Better error handling for invalid regexes

* Show "match regex" in table and style keywords appropriately

* Fix stale UI copy for non-"match_regex" branch

* Fix stale docstring in find_matching_standard_answers

* Update down_revision to reflect most recent migration

* Update UI copy

* Initial implementation of match group display

* Fix pydantic StandardAnswer vs SQLAlchemy StandardAnswer model usage

* Update docstring return type

* Fix missing key prop

---------

Co-authored-by: Hyeong Joon Suh <hyeongjoonsuh@Hyeongs-MacBook-Pro.local>
Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-14 00:07:42 +00:00
Chris Weaver
da6e46ae75 Slack flow improvements (#2366) 2024-09-13 16:56:45 -07:00
pablodanswer
648c2531f9 Add custom tool chat session / message ID dynamic prompting (#2404)
* add custom tool chat session / message ID dynamic prompting

* update some formatting

* code organization + remove unnecessary card

* remove log

* update for clarity
2024-09-13 18:42:21 +00:00
pablodanswer
fc98c560a4 Add fix for logging (#2431) 2024-09-13 11:27:20 -07:00
pablodanswer
566f44fcd6 Minor update to llm image ability tracking (#2423)
* minor update to llm image ability tracking

* quick robustification
2024-09-13 17:24:51 +00:00
rkuo-danswer
2fe49e5efb add ssl testing for redis against a cloud instance (#2422) 2024-09-13 10:28:04 -07:00
rkuo-danswer
f58acd4e2a Add redis to helm chart (#2390) 2024-09-13 10:26:51 -07:00
pablodanswer
53008a0271 update multipass indeixng server default 2024-09-13 10:24:26 -07:00
pablodanswer
13278663d9 Update refresh + robustify embeddings (#2420)
* update refresh + robustify embeddings

* squash
2024-09-13 14:26:33 +00:00
pablodanswer
31ca6857fb Custom Refresh on Client Side (#2376) 2024-09-13 00:04:03 -07:00
pablodanswer
6dd91414be delete chat session immediately 2024-09-13 00:02:43 -07:00
rkuo-danswer
140c34e59e ephemeral behavior for redis (#2373)
* ephemeral behavior for redis

* notes for redis command line consistency
2024-09-13 04:48:50 +00:00
rkuo-danswer
da8e68b320 reformat celery logging to match danswer style logging across services (#2409)
* reformat celery logging to match danswer style logging across services

* mypy fixes

* handle logfile argument
2024-09-13 01:51:51 +00:00
hagen-danswer
e9a616e579 Added search_doc_ids to the simple api to allow for skipping search (#2421)
* Added search_doc_ids to the simple api to allow for skipping search

* comment

* fixed behaviour
2024-09-12 23:22:41 +00:00
pablodanswer
cb2169f2a3 Warm up reranker on model switch (#2408)
* warm up reranker on model switch

* properly type

* fix issue

* Update search_settings.py
2024-09-12 22:12:17 +00:00
pablodanswer
79aa5dd6e0 add a tiny bit of clarity to index doc counts (#2414) 2024-09-12 21:59:10 +00:00
hagen-danswer
604ebafe6c simple apis now cited/context doc indices (#2419)
* simple apis now cited/context doc indices

* minor fixes
2024-09-12 21:29:24 +00:00
pablodanswer
a2d775efbd Reformatted tailwind config (#2417)
* reformatted tailwind config

* minor update
2024-09-12 19:41:11 +00:00
rkuo-danswer
641690e3f7 fix enabling ssl in connection pool (#2418) 2024-09-12 19:18:04 +00:00
rkuo-danswer
eebf98e3a6 fix setting redis_scheme (#2416) 2024-09-12 18:07:38 +00:00
rkuo-danswer
4bc4da29f5 add SSL parameter support for redis (#2389)
* add SSL parameter support for redis

* add ssl support to redis pool
2024-09-12 16:18:11 +00:00
pablodanswer
7af572d0e7 display only failed (#2413) 2024-09-12 16:01:17 +00:00
pablodanswer
58bdf9d684 Add connector deletion failure message (#2392) 2024-09-11 22:38:15 -07:00
pablodanswer
f69922fff7 Add environment variable for setting vespa search threads (#2400) 2024-09-11 22:37:38 -07:00
pablodanswer
d4d37c9cdd add bedrock models (#2405) 2024-09-12 04:34:43 +00:00
Yuhong Sun
2654df49fd Update CONTRIBUTING.md 2024-09-11 19:17:23 -07:00
pablodanswer
aee5fcd4e0 Add env variables for overriding embedding batch size (#2395)
* add env variabels for overriding

* proper ports

* proper overrides
2024-09-12 00:51:45 +00:00
pablodanswer
2c77dd241b Add error table to re-indexing (#2388)
* add error table to re-indexing

* robustify

* update with proper comment

* add popup

* update typo
2024-09-11 22:55:55 +00:00
pablodanswer
d90c90dd92 simplify unnecessary display logic (#2406) 2024-09-11 21:35:50 +00:00
pablodanswer
2c971cf774 add claude image-support 2024-09-11 13:31:27 -07:00
trial-danswer
eab55bdd85 Misc clarifications for CONTRIBUTING.md (#2401)
* Reorder and clarify dependency installation instructions

* Clarify instructions for local development with Docker external deps vs full Docker stack

* Final words at the end of the local setup process

---------

Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-11 19:16:37 +00:00
rkuo-danswer
f4f2fb5943 Bugfix/connector deletion test (#2402)
* fixes a bug with deleting connectors and foreign keys

* test foreign key handling on deletion
2024-09-11 12:04:27 -07:00
rkuo-danswer
71f2f1a90a fixes a bug with deleting connectors and foreign keys (#2398) 2024-09-11 12:03:51 -07:00
hagen-danswer
74a2271422 Added HARD_DELETE_CHATS to environment variables (#2397) 2024-09-11 18:08:29 +00:00
trial-danswer
d42fb6ce34 Add link to macOS contributions doc for installing Python 3.11 (#2396)
Co-authored-by: danswer-trial <danswer-trial@danswer-trials-MacBook-Pro.local>
2024-09-11 17:45:52 +00:00
pablodanswer
0d749ebd46 add ccpair id to logging (#2391) 2024-09-11 01:27:03 +00:00
pablodanswer
9f6e8bd124 Improve Dev Experience (#2347)
* clean interfaces + improve dex experience

* update formatting

* update ports

* ports

* remove some number of unnecessary lines

* remove unnecssary isPublicGroupSelector checks in all spots

* add comment

* update building
2024-09-10 20:49:04 +00:00
pablodanswer
3a2a6abed4 Add basic virtualization (#2370)
* add basic virtualization

* functioning perfectly

* squash

* change ports

* remove some comments

* remove comment

* update buffering clarity
2024-09-10 19:06:04 +00:00
pablodanswer
07f49a384f Update spread order (#2386)
* update spread

* update
2024-09-10 18:04:47 +00:00
rkuo-danswer
f1c5e80f17 Feature/background processing (#2275)
* first cut at redis

* some new helper functions for the db

* ignore kombu tables in alembic migrations (used by celery)

* multiline commands for readability, add vespa_metadata_sync queue to worker

* typo fix

* fix returning tuple fields

* add constants

* fix _get_access_for_document

* docstrings!

* fix double function declaration and typing

* fix type hinting

* add a global redis pool

* Add get_document function

* use task_logger in various celery tasks

* add celeryconfig.py to simplify configuration. Will be used in a subsequent commit

* Add celery redis helper. used in a subsequent PR

* kombu warning getting spammy since celery is not self managing its queue in Postgres any more

* add last_modified and last_synced to documents

* fix task naming convention

* use celeryconfig.py

* the big one. adds queues and tasks, updates functions to use the queues with priorities, etc

* change vespa index log line to debug

* mypy fixes

* update alembic migration

* fix fence ordering, rename to "monitor", fix fetch_versioned_implementation call

* mypy

* switch to monotonic time

* fix startup dependencies on redis

* rebase alembic migration

* kombu cleanup - fail silently

* mypy

* add redis_host environment override

* update REDIS_HOST env var in docker-compose.dev.yml

* update the rest of the docker files

* harden indexing-status endpoint against db changes happening in the background.  Needs further improvement but OK for now.

* allow no task syncs to run because we create certain objects with no entries but initially marked as out of date

* add back writing to vespa on indexing

* update contributing guide

* backporting fixes from background_deletion

* renaming cache to cache_volume

* add redis password to various deployments

* try setting up pr testing for helm

* fix indent

* hopefully this release version actually exists

* fix command line option to --chart-dirs

* fetch-depth 0

* edit values.yaml

* try setting ct working directory

* bypass testing only on change for now

* move files and lint them

* update helm testing

* some issues suggest using --config works

* add vespa repo

* add postgresql repo

* increase timeout

* try amd64 runner

* fix redis password reference

* add comment to helm chart testing workflow

* rename helm testing workflow to disable it

* adding clarifying comments

* address code review

* missed a file

* remove commented warning ... just not needed

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-10 16:28:19 +00:00
pablodanswer
b7ad810d83 Prevent spam search (#2367) 2024-09-10 08:44:50 -07:00
pablodanswer
99b28643f7 show groups if they exist for user (#2384) 2024-09-10 15:14:30 +00:00
rkuo-danswer
f52d1142eb Fail instead of continuing if vespa cannot be reached within the time… (#2379)
* Fail instead of continuing if vespa cannot be reached within the timeout period

* improve startup readability

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-10 03:10:25 +00:00
pablodanswer
e563746730 Consent screen (#2381)
* update

* add consent popup

* rm
2024-09-10 02:40:32 +00:00
Yuhong Sun
aa86830bde mypy 2024-09-09 16:43:45 -07:00
James Jordan
4558351801 Zendesk tickets (#2192) 2024-09-09 16:36:53 -07:00
Sebastian Müller
a4dcae57cd Google Drive Plaintext Types (#2371) 2024-09-09 15:37:47 -07:00
pablodanswer
dbd56f946f address pablo's nits (#2368) 2024-09-09 14:44:27 -07:00
hj-danswer
e4e4765c60 Add user when they interact outside of UI (e.g. Slack bot) (#2369)
* Add user when they interact outside of UI (e.g. Slack bot)

* fix mypy errors

* don't use user manager to avoid async messiness

* fix email is none scenario

* fix mypy

* make code slightly clearer

* PR comments

* get slack email in generate button as well

* fix alembic migration

* update name to be more descriptive

---------

Co-authored-by: Hyeong Joon Suh <hyeongjoonsuh@Hyeongs-MacBook-Pro.local>
2024-09-09 20:21:31 +00:00
rkuo-danswer
c967f53c02 docker versions have been deprecated for a while, so fixing the annoying warning (#2372) 2024-09-09 18:26:12 +00:00
pablodanswer
3a9b964d5c Add Litellm Rerank proxy (#2346)
* add ability ot set reranking litellm proxy

* add fully functional rerank litellm cards

* minor formatting enforcement

* remove logs
2024-09-09 15:57:01 +00:00
Yuhong Sun
f04ecbf87a Un-bump nltk due to llamaindex issue 2024-09-08 16:39:19 -07:00
Shukant Pal
362156f97e Model inference for connector classifier on queries (#2137) 2024-09-08 14:46:00 -07:00
Andres Jose Sebastian Rincon Gonzalez
3fa9676478 [1802] adjust the code to support a different db schemas (#1803) 2024-09-08 14:16:54 -07:00
Chris Weaver
be4b6189d2 Fix streaming auth locally (#2357) 2024-09-08 14:01:26 -07:00
pablodanswer
ace041415a Clearer onboarding + Provider Updates (#2361) 2024-09-08 13:35:20 -07:00
Yuhong Sun
148c2a7375 Remove wordnet (#2365) 2024-09-08 12:34:09 -07:00
pablodanswer
1555ac9dab More explicit credential creation flow (#2363)
* more explcit drive credential creation flow

* remove logs

* update naming

* fix user-contributed formatting

* fix (^) v2
2024-09-08 12:09:23 -07:00
Weves
80de408cef Fix formatting 2024-09-08 12:09:14 -07:00
Cola Chen
e20c825e16 Notion Connector to skip reading external blocks in NotionConnector
The commit skips reading 'external_object_instance_page' blocks in the NotionConnector due to the lack of support in the Notion API. This change is in response to the issue #1761.

Co-authored-by: Cola Chen <6825116+colachg@users.noreply.github.com>
2024-09-08 11:34:04 -07:00
mattboret
b0568ac8ae Sharepoint: Fix get all sites (#1700)
Co-authored-by: Matthieu Boret <matthieu.boret@fr.clara.net>
2024-09-08 11:28:11 -07:00
Art Matsak
0896d3b7da Fix content extraction from JIRA with API v2 vs. v3 (#1678) 2024-09-08 11:27:14 -07:00
Kshitiz Gupta
87b27046bd changes to the docker file for mac (#1773) 2024-09-08 11:02:18 -07:00
dependabot[bot]
5e9c6d1499 Bump aiohttp from 3.9.4 to 3.10.2 in /backend/requirements (#2097)
Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.9.4 to 3.10.2.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.9.4...v3.10.2)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-08 10:59:47 -07:00
dependabot[bot]
50211ec401 Bump nltk from 3.8.1 to 3.9 in /backend/requirements (#2174)
Bumps [nltk](https://github.com/nltk/nltk) from 3.8.1 to 3.9.
- [Changelog](https://github.com/nltk/nltk/blob/develop/ChangeLog)
- [Commits](https://github.com/nltk/nltk/compare/3.8.1...3.9)

---
updated-dependencies:
- dependency-name: nltk
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-08 10:50:36 -07:00
Bart Schuller
6012a7cbd9 Fix multilingual .env embedding dimension (#1976) 2024-09-08 10:25:07 -07:00
dependabot[bot]
1e4b27185d Bump torch from 2.0.1 to 2.2.0 in /backend/requirements (#1933)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.0.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.0.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-08 10:17:17 -07:00
Moshe Zada
0c66da17bb Web Connector - Get doc_updated_at from Last-Modified header (#1693) 2024-09-08 10:05:04 -07:00
Art Matsak
d985cd4352 Fix JIRA comment indexing when author has no email (#1663) 2024-09-08 09:43:09 -07:00
Yuhong Sun
c8891a5829 Remove LangChain Community (#2362) 2024-09-08 09:41:20 -07:00
Art Matsak
51a13f5fc7 Implement indexing of simple tables in Word files (#1651) 2024-09-08 09:38:46 -07:00
dependabot[bot]
57c1deb8b8 Bump braces from 3.0.2 to 3.0.3 in /web (#1628)
Bumps [braces](https://github.com/micromatch/braces) from 3.0.2 to 3.0.3.
- [Changelog](https://github.com/micromatch/braces/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/braces/compare/3.0.2...3.0.3)

---
updated-dependencies:
- dependency-name: braces
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-07 21:06:34 -07:00
dependabot[bot]
e2e04af7e2 Bump msal from 1.26.0 to 1.28.0 in /backend/requirements (#1626)
Bumps [msal](https://github.com/AzureAD/microsoft-authentication-library-for-python) from 1.26.0 to 1.28.0.
- [Release notes](https://github.com/AzureAD/microsoft-authentication-library-for-python/releases)
- [Commits](https://github.com/AzureAD/microsoft-authentication-library-for-python/compare/1.26.0...1.28.0)

---
updated-dependencies:
- dependency-name: msal
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-07 21:05:11 -07:00
lombax85
c1735fcd3a Google Drive connector - txt and markdown support (#1469) 2024-09-07 20:28:23 -07:00
hj-danswer
b43e5735d7 Use user information in Slack bot DMs (#2360)
* Use user information from Slack bot DMs

* fix lint

---------

Co-authored-by: Hyeong Joon Suh <hyeongjoonsuh@Hyeongs-MacBook-Pro.local>
2024-09-08 03:08:24 +00:00
pablodanswer
7d4f8ef4e8 Minor Confluence Fixes for Robustification (#2349)
* add connector config

* update confluence connector
2024-09-08 01:39:49 +00:00
Weves
7c03b6f521 Fix responses for HTTPExceptions 2024-09-07 17:40:21 -07:00
Chris Weaver
ccf986808c Add retries (#2358)
* Add retries

* fix

* add

* remove --build

* Remove cache-to

* Don't push

* Add back push

* Add newline

* Remove alembic logs
2024-09-08 00:12:32 +00:00
pablodanswer
350482e53e Squash misc UX bugs (#2356) 2024-09-07 14:26:14 -07:00
pablodanswer
fb3d7330fa minor QOL improvement on first chat (#2353) 2024-09-07 14:25:05 -07:00
Yuhong Sun
6cec31088d CONTRIBUTING updates (#2354) 2024-09-07 14:05:36 -07:00
pablodanswer
491f3254a5 regeneration - don't remove human message unnecessarily 2024-09-06 15:38:02 -07:00
pablodanswer
5abf67fbf0 PDF metadata + list defaults (#2341)
* validate web list

* update pdf extraction of metadat

* remove pdf + log

* stricter type enforcing

* fix up indexing widths

* minor formatting

* add list case

* check for empty metadata
2024-09-06 21:21:24 +00:00
rkuo-danswer
2933c3598b first cut at redis (#2226)
* first cut at redis

* fix startup dependencies on redis

* kombu cleanup - fail silently

* mypy

* add redis_host environment override

* update REDIS_HOST env var in docker-compose.dev.yml

* update the rest of the docker files

* update contributing guide

* renaming cache to cache_volume

* add redis password to various deployments

* try setting up pr testing for helm

* fix indent

* hopefully this release version actually exists

* fix command line option to --chart-dirs

* fetch-depth 0

* edit values.yaml

* try setting ct working directory

* bypass testing only on change for now

* move files and lint them

* update helm testing

* some issues suggest using --config works

* add vespa repo

* add postgresql repo

* increase timeout

* try amd64 runner

* fix redis password reference

* add comment to helm chart testing workflow

* rename helm testing workflow to disable it

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-09-06 19:21:29 +00:00
pablodanswer
aeb6060854 Add ability to delete users (#2342)
* add ability to delete users

* fix tiny build issue

* Add comments
2024-09-06 17:37:04 +00:00
hagen-danswer
8977b1b5fc Paginate connector page (#2328)
* Added pagination to individual connector pages

* I cooked

* Gordon Ramsay in this b

* meepe

* properly calculated max chunk and switch dict to array

* chunks -> batches

* increased max page size

* renmaed var
2024-09-06 17:00:25 +00:00
pablodanswer
69c0419146 Updated refreshing (#2327)
* clean up + add environment variables

* remove log

* update

* update api settings

* somewhat cleaner refresh functionality

* fully functional

* update settings

* validated

* remove random logs

* remove unneeded paramter + log

* move to ee + remove comments

* Cleanup unused

---------

Co-authored-by: Weves <chrisweaver101@gmail.com>
2024-09-06 04:36:55 +00:00
pablodanswer
2bd3833c55 Update search settings + chat/search handling (#2333)
* validate web list

* update search settings + chat/search handling

* remove accidentally added search manager

* minor build fix

* push from local
2024-09-06 00:07:39 +00:00
rkuo-danswer
2d7b312e6c harden indexing-status endpoint against db changes happening in the background. Needs further improvement but OK for now. (#2338) 2024-09-05 20:09:33 +00:00
pablodanswer
ebe3674ca7 update for edge case (#2336) 2024-09-05 17:58:49 +00:00
pablodanswer
04f83eb1e1 Proper popover behavior, no showing queries with no docs, + bubbles (#2330) 2024-09-04 21:26:19 -07:00
pablodanswer
420aabc963 Update UX (#2324) 2024-09-04 18:45:52 -07:00
pablodanswer
61a17319c9 rename directory if needed 2024-09-04 17:22:59 -07:00
hagen-danswer
e4c85352b4 made connectors summary page faster (#2320)
* made connectors summary page faster

* not worth risk
2024-09-04 23:25:45 +00:00
pablodanswer
34ba3181ff Update auth for litellm proxy (#2316)
* update for auth

* validated embedding model names

* remove embedding provider

* remove logs

* add ability to delete search setting

* add abiility to delete models + more streamlined API endpoints

* remove upsert

* minor typing fix

* add connector utils
2024-09-04 20:59:07 +00:00
rkuo-danswer
630e2248bd fixing a race condition in celery task wrapper. could randomly blow up any task. (#2321) 2024-09-04 04:17:29 +00:00
hagen-danswer
c358c91e4c Added instance domain to telemetry (#2310) 2024-09-03 21:04:40 -07:00
Yuhong Sun
2b7915f33b Update Connector README PATH (#2323) 2024-09-03 20:56:37 -07:00
pablodanswer
0ff1a023cd Minor search setting clarity (#2300)
* minor search setting clarity

* 5433

* squash

* remove logs
2024-09-03 20:48:34 -07:00
Yuhong Sun
d68d281e1c Slight copy update (#2322) 2024-09-03 20:14:03 -07:00
hagen-danswer
ebce3ff6ba added wait for sync after creating document set in tests (#2319) 2024-09-04 00:34:40 +00:00
pablodanswer
f96bd12ab8 prevent accidental submission (#2318) 2024-09-03 16:44:54 -07:00
pablodanswer
32359d2dff Add user dropdown seed-able list (#2308)
* add user dropdown seedable list

* minor cleanup

* fix build issue

* minor type update

* remove log

* quick update to divider logic (squash)

* tiny icon updates
2024-09-03 19:24:50 +00:00
Chris Weaver
5da6d792de Add ingestion as a "Source" for the FE + improve typing (#2312) 2024-09-03 12:34:31 -07:00
pablodanswer
fb95398e5b Cleaner stream handling in Answer class (#2314)
* add cleaner stream

* add cleaner stream handling
2024-09-03 18:36:01 +00:00
rkuo-danswer
af66650ee3 fail safely if lookup for document fails (#2309) 2024-09-03 10:01:17 -07:00
pablodanswer
5b1f3c8d4e Formatting nits (#2311)
* stream in all cases

* update code block

* code formatting nits

* proper ports

* proper ports

* remove unnecessary lines
2024-09-03 16:05:02 +00:00
hagen-danswer
a3b1b1db38 fixed doc set table (#2306) 2024-09-03 15:36:07 +00:00
Weves
7520fae068 Add back test 2024-09-02 18:04:55 -07:00
Weves
39c946536c Fix deletion due to foreign key issue 2024-09-02 17:56:43 -07:00
Yuhong Sun
90528ba195 k 2024-09-02 17:33:33 -07:00
pablodanswer
6afcaafe54 Continue Generating (#2286)
* add stop reason

* add initial propagation

* add continue generating full functionality

* proper continue across chat session

* add new look

* propagate proper types

* fix typing

* cleaner continue generating functionality

* update types

* remove unused imports

* proper infodump

* temp

* add standardized stream handling

* validateing chosen tool args

* properly handle tools

* proper ports

* remove logs + build

* minor typing fix

* fix more minor typing issues

* add stashed reversion for tool call chunks

* ignore model dump types

* remove stop stream

* fix typing
2024-09-02 22:49:56 +00:00
Yuhong Sun
812ca69949 Vespa Degraded Handling (#2304) 2024-09-02 15:53:37 -07:00
rkuo-danswer
abe01144ca Update CONTRIBUTING.md (#2298) 2024-09-02 15:30:18 -07:00
Yuhong Sun
d988a3e736 Productboard Minor Fix (#2303) 2024-09-02 14:46:35 -07:00
pablodanswer
2b14afe878 Add proper typing such that tests pass mypy (#2301)
* add proper typing such that tests pass mypy

* nit (squash)

* minor update
2024-09-02 21:03:53 +00:00
Chris Weaver
033ec0b6b1 Remove unused env variables (#2299) 2024-09-02 20:29:14 +00:00
pablodanswer
14a9fecc64 update code block (#2297) 2024-09-02 13:33:18 -07:00
Weves
0027f161d7 Fix revisions 2024-09-02 11:13:55 -07:00
Yuhong Sun
32e551b69c Vespa Log No Response (#2295) 2024-09-02 09:14:28 -07:00
pablodanswer
299cb5035c Add litellm proxy embeddings (#2291)
* add litellm proxy

* formatting

* move `api_url` to cloud provider + nits

* remove log

* typing

* quick tuyping fix

* update LiteLLM selection logic

* remove logs + validate functionality

* rename proxy var

* update path casing

* remove pricing for custom models

* functional values
2024-09-02 09:08:35 -07:00
pablodanswer
910821c723 Ordered indexing status (#2292) 2024-09-02 08:39:18 -07:00
hagen-danswer
aa84846298 Connector deletion fix (#2293)
---------

Co-authored-by: Weves <chrisweaver101@gmail.com>
2024-09-01 23:32:20 -07:00
pablodanswer
c122be2f6a More explicit Confluence Connector (#2289) 2024-09-01 20:35:29 -07:00
Weves
f871b4c6eb Update default anthropic / bedrock models 2024-09-01 20:35:00 -07:00
hagen-danswer
a96cea2ce0 logging improvements 2024-09-01 16:21:35 -07:00
hagen-danswer
8d443ada5b Integration tests (#2256)
* initial commit

* almost done

* finished 3 tests

* minor refactor

* built out initial permisison tests

* reworked test_deletion

* removed logging

* all original tests have been converted

* renamed user_groups to user_group

* mypy

* added test for doc set permissions

* unified naming for manager methods

* Refactored models and added new deletion test

* minor additions

* better logging+fixed input variables

* commented out failed tests

* Added readme

* readme update

* Added auth to IT

set auth_type to basic and require_email_verification to false

* Update run-it.yml

* used verify and added to readme

* added api key manager
2024-09-01 22:21:00 +00:00
pablodanswer
634de83d72 Very minor update to divider logic (#2287) 2024-08-31 14:40:15 -07:00
Yuhong Sun
580848cf8c mypy (#2283) 2024-08-30 18:02:18 -07:00
Yuhong Sun
f01027cfb7 Catch LLM Eval Failures (#2272) 2024-08-30 17:42:58 -07:00
pablodanswer
76db4b765a Detect GPU on startup for default multi-pass indexing value (#2242) 2024-08-30 17:38:31 -07:00
pablodanswer
5800c7158e Add typing to pdf extraction (#2280) 2024-08-30 17:16:56 -07:00
Weves
21af852073 Add connector creation docs 2024-08-30 16:43:42 -07:00
hagen-danswer
355326f935 Added frontend logical polish (#2274) 2024-08-30 16:42:54 -07:00
Chris Weaver
762b7b1047 Connector tests (#2273) 2024-08-30 15:48:26 -07:00
pablodanswer
df31cac1f1 allow users to deselect reranking (#2243) 2024-08-30 15:40:54 -07:00
pablodanswer
4181124e7a add metadata to pdf extraction (#2278) 2024-08-30 15:14:02 -07:00
pablodanswer
44c45cbf2a Minor simplification to chat header (#2277) 2024-08-30 15:01:55 -07:00
pablodanswer
f2e8680955 Account for edge case in indexing times with connectors #2190 (#2190) 2024-08-30 14:07:07 -07:00
pablodanswer
b952dbef42 Minor search formatting updates (#2276) 2024-08-30 14:02:35 -07:00
pablodanswer
e2f4145cd2 add better spacing (#2265) 2024-08-30 11:56:24 -07:00
pablodanswer
183569061b Minor search UX improvements + Critical connector fixes (#2259) 2024-08-30 11:47:52 -07:00
pablodanswer
8f26728a29 update command keys (#2271) 2024-08-30 10:54:24 -07:00
hagen-danswer
1734a4a18c Added DanswerBot response limit environment variables (#2266)
* Added DanswerBot response limit environment variables

* mypy fix

* changed defaults
2024-08-29 19:25:11 +00:00
rkuo-danswer
766652de14 ignore kombu tables used by celery in alembic (#2261) 2024-08-29 18:49:35 +00:00
pablodanswer
00fa36d591 Get accurate model output max (#2260)
* get accurate model output max

* squash

* udpated max default tokens

* rename + use fallbacks

* functional

* remove max tokens

* update naming

* comment out function to prevent mypy issues
2024-08-29 18:01:56 +00:00
pablodanswer
3b596fd6a8 Default rerank API key to None (new Pydantic compatibility) (#2258)
* default to None

* rm
2024-08-28 16:02:06 +00:00
pablodanswer
5a83b00190 change backg (#2255) 2024-08-28 03:20:06 +00:00
Chris Weaver
57491ceaae Lowercase slack channels automatically (#2254)
* Improve slack channel selection

* Lowercasing slack channels
2024-08-28 03:07:26 +00:00
hagen-danswer
e4e67c61ef Some additional curator polish (#2253) 2024-08-28 02:44:24 +00:00
Chris Weaver
8afa53c6bf Confluence improvements (#2248)
* Confluence improvements

* Improve CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
2024-08-28 02:16:10 +00:00
Weves
fb6637d5b3 Fix quality-checks on merge queue 2024-08-27 19:15:53 -07:00
Yuhong Sun
1e67332078 Remove warning on user signup (#2252) 2024-08-27 18:49:05 -07:00
Weves
effce919bd Remove redundant merge queue files 2024-08-27 18:03:43 -07:00
Weves
e5b3843ef8 Add othe checks to merge queue 2024-08-27 17:55:36 -07:00
josvdw
50c17438d5 Litellm bump (#2195)
* ran bump-pydantic

* replace root_validator with model_validator

* mostly working. some alternate assistant error. changed root_validator and typing_extensions

* working generation chat. changed type

* replacing .dict with .model_dump

* argument needed to bring model_dump up to parity with dict()

* fix a fewremaining issues -- working with llama and gpt

* updating requirements file

* more requirement updates

* more requirement updates

* fix to make search work

* return type fix:

* half way tpyes change

* fixes for mypy and pydantic:

* endpoint fix

* fix pydantic protected namespaces

* it works!

* removed unecessary None initializations

* better logging

* changed default values to empty lists

* mypy fixes

* fixed array defaulting

---------

Co-authored-by: hagen-danswer <hagen@danswer.ai>
2024-08-28 00:00:27 +00:00
Yuhong Sun
657d2050a5 Confluence Internal Error Handling (#2247) 2024-08-27 15:23:02 -07:00
Yuhong Sun
3640d0c550 Better Web Connector Logging (#2246) 2024-08-27 15:06:24 -07:00
pablodanswer
336ddbd1fe Filter by user for docset display (#2245)
* filter by user for docset display

* spacing
2024-08-27 21:01:04 +00:00
Chris Weaver
8614cd8934 Handle missing email more gracefully (#2244) 2024-08-27 20:29:25 +00:00
pablodanswer
525f3e01f5 remove constant refresh artifact (#2241) 2024-08-27 17:51:59 +00:00
pablodanswer
feaa85f764 new util for modal edge cases 2024-08-27 09:50:17 -07:00
pablodanswer
b36cd4937f Cleaner + cleaner assistants creation flow etc. (#2232)
* rework assistants creation flow + components

* remove unnecessary padding + validate each page

* remove additional spacing

* rebase + form
2024-08-27 16:01:57 +00:00
pablodanswer
97ba71e1b3 Db search (#2235)
* k

* update enum imports

* add functional types + model swaps

* remove a log

* remove kv

* fully functional + robustified for kv swap

* validated with hosted + cloud

* ensure not updating current search settings when reindexing

* add instance check

* revert back to updating search settings (will need a slight refactor for endpoint)

* protect advanced config override1

* run pretty

* fix typing

* update typing

* remove unnecessary function

* update model name

* clearer interface names

* validated foreign key constaint

* proper migration

* squash

---------

Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
2024-08-27 04:26:51 +00:00
pablodanswer
5f12b7ad58 Rebased concurrent chats (#2214)
* refactored for stop / regenerate

* properly reset blank screen

* functional new message carry-over

* robust chat session state persistence

* add env variable

* rebased onto regenerate

* squash

* squash

* squash

* rebase + robustify tool calling

* squash

* alembic

* remove environment variable

* simplify interface

* squash

* minor streaming improvement

* some robustification
2024-08-27 02:57:31 +00:00
Chris Weaver
a873fc6483 Fix Confluence freezing (#2239) 2024-08-26 19:44:01 -07:00
Chris Weaver
c0e1a02e8e Add it on merge queue (#2112)
* Github action to run integration tests

* Improve

* Fix build

* Add pull

* Fix readiness script

* Add IT runner

* Add IT runner

* Add logs

* update

* Fix

* Fix path

* file path

* test

* fix

* fix

* fix

* test

* network

* fix

* cleanup

* fix

* test

* Fix downgrade

* Add OpenAI API key

* Add VESPA_HOST

* test pulling first

* Add API server host

* Cache tweak

* Fix pull/push settings:

* Stop pushing to latest tag

* test cache change

* test

* test

* test

* remove cache temporarily

* Fix

* Enable EE

* test

* Remove duplicate funcs

* add back build

* Update all

* Fix stop cmd

* Add to merge queue

* Cleanup image tag
2024-08-26 07:20:28 +00:00
hagen-danswer
205c3c3fc8 Combined the get document set endpoints (#2234)
* Combined the get document set endpoints

* removed unused function

* fixed permissioning for document sets
2024-08-25 19:02:27 +00:00
Christian Köberl
e5ceb76de8 Fix icons in personas (assistants) - AWS and Azrue were mixed up (#2027)
Fixes #2025
2024-08-25 06:36:50 +00:00
hagen-danswer
c21b0ee3f5 Curator polish (#2229)
* add new user provider hook

* account for additional logic

* add users

* remove is loading

* Curator polish

* useeffect -> provider + effect

* squash

* use use user for user default models

* squash

* Added ability to add users to groups among other things

* final polish

* added connection button to groups

* mypy fix

* Improved document set clarity

* string fixes

---------

Co-authored-by: pablodanswer <pablo@danswer.ai>
2024-08-25 01:10:24 +00:00
pablodanswer
1e1b2a0901 add some quick search filterl logic (UX) (#2218) 2024-08-24 15:45:46 -07:00
hagen-danswer
c1c35b00cb Fixed slack bot auto filters for document sets (#2231) 2024-08-24 18:54:21 +00:00
pablodanswer
1bc899cc67 Add CSS identifiers to main sections (#2224)
* squash

* add initial ids
2024-08-23 23:59:17 +00:00
pablodanswer
6fc6ee5c37 Update white-labelling to be clearer (advanced settings) (#2228)
* update white labelling to be somewhat clearer

* ensure logotype set to null post submission
2024-08-23 20:47:16 +00:00
Weves
7d201f67d4 Fix typing for custom tool response 2024-08-23 13:34:53 -07:00
pablodanswer
e749fa0f28 Update search tool selection (#2223)
* update search tool selection

* squash
2024-08-23 16:58:39 +00:00
pablodanswer
2e0222d1c1 logotype from toggle -> redirect (#2222) 2024-08-23 16:15:50 +00:00
pablodanswer
c152123ef4 alembic once again (#2221) 2024-08-23 05:28:13 +00:00
Chris Weaver
5cb9c17ddf Add better logging for connectors (#2219)
* Add better logging for connectors

* fix
2024-08-23 03:58:29 +00:00
Chris Weaver
b1302303b2 Add chat_session_id + message_pair_num (#2220) 2024-08-22 20:55:21 -07:00
pablodanswer
e89dc67e5d Update embedding interface (#2205)
* squash

* simplify interface

* some updates to typing

* cloud provider type

* update typing to be even clearer

* push local commit (squash)

* cleaner interfaces

* another quick pass

* squash

* cleaner alembic

* cleaner

* remove trailing whitespace

* add sequence

* quick circle back to double check

* update

* update naming

* update naming
2024-08-23 03:52:02 +00:00
pablodanswer
7da6d33451 slightly updated settings error (#2217)
* update settings issues

* slightly updated settings error
2024-08-23 02:19:00 +00:00
hagen-danswer
c042a19c00 Curator role (#2166)
* Added backend support for curator role

* modal refactor

* finalized first 2 commits

same as before

finally

what was it for

* added credential, cc_pair, and cleanup

mypy is super helpful hahahahahahahahahahahaha

* curator support for personas

* added connector management permission checks

* fixed the connector creation flow

* added document access to curator

* small cleanup added comments and started ui

* groups and assistant editor

* Persona frontend

* Document set frontend

* cleaned up the entire frontend

* alembic fix

* Minor fixes

* credentials section

* some credential updates

* removed logging statements

* fixed try catch

* fixed model name

* made everything happen in one db commit

* Final cleanup

* cleaned up fast code

* mypy/build fixes

* polish

* more token rate limit polish

* fixed weird credential permissions

* Addressed chris feedback

* addressed pablo feedback

* fixed alembic

* removed deduping and caching

* polish!!!!
2024-08-23 01:39:37 +00:00
pablodanswer
5409777e0b add edge case (#2216) 2024-08-22 20:40:18 +00:00
josvdw
5f4b7dd23e clarify what model and provider name should be for custom models (#2215) 2024-08-22 20:04:10 +00:00
Chris Weaver
99db27d989 Add metadata for simple doc (#2212) 2024-08-22 12:30:28 -07:00
pablodanswer
197b62aed1 Regenerate (branch of stop) (#2157)
* add regenerate

* functional once again post rebase but quite ugly

* validated + cleaner UI

* more robust implementation for first messages

* squash

* remove parameter

* proper margin

* clarify for future programmers

* remove some logs

* self nit pick - smoother ux

* more self-nits

* stroke line cap

* rebase
2024-08-22 19:06:44 +00:00
Yuhong Sun
9d5db05e4b Add Migration (#2213) 2024-08-22 10:44:42 -07:00
pablodanswer
27e094d2ec allow graceful 404s (#2211) 2024-08-22 17:00:20 +00:00
Yuhong Sun
1a9e5da7c0 Enable Surrounding Context (#2210) 2024-08-22 09:59:13 -07:00
Chris Weaver
8afcb03f3c Fix OIDC expiry issues (#2206)
* Fix oidc expiry issues

* fix

* fix
2024-08-22 03:15:17 +00:00
Chris Weaver
9bf42d2303 Fix connectors running while deleting (#2204)
* Fix connectors running while deleting

* fix
2024-08-22 02:18:01 +00:00
rkuo-danswer
e50b558b5b prevent usage of combinedSettings if endpoints fail (which none of them should) (#2201) 2024-08-22 01:27:38 +00:00
Chris Weaver
020dff52f7 Remove settings cache (#2203) 2024-08-21 17:55:23 -07:00
pablodanswer
13303edf29 Jira email optional + PAT (#2198)
* make jira email optional

* remove logs

* remove more logs

* change wording from PAT -> Personal Access Token

* ensure name fits in default width
2024-08-21 22:59:08 +00:00
rkuo-danswer
584eae17e3 fix message param to use query instead of rephrased query (#2199) 2024-08-21 18:00:55 +00:00
rkuo-danswer
b9b633bb74 support indexing attachments as separate docs when not part of a page (#2194)
* support indexing attachments as separate docs when not part of a page

* fix time filter, fix batch handling, fix returned number of attachments processed
2024-08-21 17:15:13 +00:00
Yuhong Sun
bb1916d5d0 Warm Up Models Prep (#2196) 2024-08-20 20:53:02 -07:00
pablodanswer
048cb8dd55 update alembic version (for rebase) (#2193) 2024-08-21 02:58:22 +00:00
Yuhong Sun
3b035d791e Fix Model Server (#2191) 2024-08-20 17:57:09 -07:00
pablodanswer
53387ab3eb Simplify index and model name swap logic (#2188) 2024-08-20 17:31:00 -07:00
Yuhong Sun
ec6e2369a1 Log YQL (#2189) 2024-08-20 17:03:57 -07:00
hagen-danswer
075eacdd91 added collection and collection type to Guru metadata (#2187)
* added collection and collection type to metadata

* removed collection type
2024-08-20 23:29:40 +00:00
hagen-danswer
f77b1ebd87 Updated pruning defaults (#2186)
* Updated pruning defaults

* changed minutes to days
2024-08-20 23:29:19 +00:00
rkuo-danswer
1ddb4b2025 normalize emails on bulk invite, normalize/lowercase emails on invite… (#2184)
* normalize emails on bulk invite, normalize/lowercase emails on invite matching

* fix validate_email import
2024-08-20 22:15:42 +00:00
Yuhong Sun
42f0fea9f8 Fix Assistant vs Persona (#2185) 2024-08-20 14:43:15 -07:00
Yuhong Sun
8de04acb7f k 2024-08-20 14:06:49 -07:00
pablodanswer
5053f4e383 Add granularity to filter widths (#2183) 2024-08-20 13:39:08 -07:00
Chris Weaver
730a757090 Disable oidc_expiry by default (#2182) 2024-08-20 13:24:58 -07:00
pablodanswer
006cfa1d3d fix text selection + closing modal 2024-08-20 13:15:17 -07:00
pablodanswer
69f6b7d148 Update SSE handling to accommodate slow networks (#2180) 2024-08-20 12:57:17 -07:00
pablodanswer
53a3fb8e52 Scrollable user model (#2177) 2024-08-20 12:25:06 -07:00
pablodanswer
919110a655 Untoggle sidebar fully on untoggling (#2179)
* add explicit untoggle

* add to all history sidebars

* add back commented out line

* add comment
2024-08-20 19:19:17 +00:00
pablodanswer
19cccd267d show full stack trace 2024-08-20 11:45:14 -07:00
pablodanswer
71c2b16a01 Pull out stripping of model suffix (#2175) 2024-08-20 11:32:03 -07:00
Yuhong Sun
12f0dbcfc5 Background Container Logs (#2176) 2024-08-20 11:26:45 -07:00
rkuo-danswer
583bd1d207 add kombu message cleanup task (#2172)
* add kombu message cleanup task

* added some logging if we find an associated task (since tasks shouldn't be around for longer than 7 days)
2024-08-20 05:15:44 +00:00
pablodanswer
8a4e47781b remove history sidebar on mouse exiting window (#2173) 2024-08-19 23:15:54 +00:00
Chris Weaver
af647959f6 Performance Improvements (#2162) 2024-08-19 11:07:00 -07:00
pablodanswer
ea53977617 prevent empty doc link click (#2170) 2024-08-19 18:03:36 +00:00
Weves
c44c22a009 Fix model server 2024-08-19 07:23:24 -07:00
Yuhong Sun
5ab4d94d94 Logging Level Update (#2165) 2024-08-18 21:53:40 -07:00
Yuhong Sun
119aefba88 Add log files to containers (#2164) 2024-08-18 19:18:28 -07:00
pablodanswer
12fccfeffd Add stop generating functionality (#2100)
* functional types + sidebar

* remove commits

* remove logs

* functional rework of temporary user/assistant ID

* robustify switching

* remove logs

* typing

* robustify frontend handling

* cleaner loop + data persistence

* migrate to streaming response

* formatting

* add new loading state to prevent collisions

* add `ChatState` for more robust handling

* remove logs

* robustify typing

* unnecessary list removed

* robustify

* remove log

* remove false comment

* slightly more robust chat state

* update utility + copy

* improve clarity + new SSE handling utility function

* remove comments

* clearer

* add back stack trace detail

* cleaner messages

* clean final message handling

* tiny formatting (remove newline)

* add synchronous wrapper to avoid hampering main event loop

* update typing

* include logs

* slightly more specific logs

* add `critical` error just in case
2024-08-18 22:15:55 +00:00
Yuhong Sun
8a7bc4e411 Log Level Default (#2163) 2024-08-18 14:35:32 -07:00
rkuo-danswer
492797c9f3 Feature/indexing errors (#2148)
* backend changes to handle partial completion of index attempts

* typo fix

* Display partial success in UI

* make log timing more readable by limiting printed precision to milliseconds

* forgot alembic

* initial cut at "completed with errors" indexing

* remove and reorganize unused imports

* show view errors while indexing is in progress

* code review fixes
2024-08-18 19:14:32 +00:00
Yuhong Sun
739058aacc Logging updates (#2159) 2024-08-17 22:05:09 -07:00
Chris Weaver
17570038bb Add PG query logging (#2156) 2024-08-16 21:53:54 -07:00
Yuhong Sun
c0edfb50df k 2024-08-16 21:43:14 -07:00
pablodanswer
22573aba2a Improve Search (#2105) 2024-08-16 21:29:15 -07:00
Chris Weaver
efae24acd0 improve model seeding (#2155) 2024-08-17 01:30:13 +00:00
pablodanswer
f8e0e6f015 Extremely robustified Index Attempt migration (#2151)
* account for connector_id edge case

* robustified
2024-08-17 01:12:18 +00:00
pablodanswer
3cbc341b60 Enable persistence / removal of assistant icons + remove accidental regression (#2153)
* enable persistence / removal of assistant icons + remove accidental regression

* simpler env seeding for web building
2024-08-17 01:11:04 +00:00
pablodanswer
46c7089328 Enable seeding of analytics via file path (#2146)
* enable seeding of analytics via file path

* remove log
2024-08-16 03:14:56 +00:00
pablodanswer
3ffbe659e3 add handling for poorly formatting model names (#2143) 2024-08-15 22:01:57 +00:00
pablodanswer
33fed955d9 Add verbose error messages + robustify assistant switching (#2144)
* add verbose error messages + robustify assistant switching and chat sessions

* fix typing

* cleaner errors + add stack trace
2024-08-15 21:05:04 +00:00
rkuo-danswer
9fa4280f96 add configurable support for memory tracing during indexing (#2140) 2024-08-15 20:40:17 +00:00
Yuhong Sun
4d194bc86a Cohere No Large Chunks (#2145) 2024-08-15 10:18:54 -07:00
Weves
0853d1a8f1 Update force deletion script 2024-08-14 23:29:26 -07:00
Weves
f6547a64a0 More logging for SAML endpoints 2024-08-14 23:25:42 -07:00
hagen-danswer
61b5bd569b Reworked chunking to support mega chunks (#2032) 2024-08-14 22:18:53 -07:00
pablodanswer
680388537b UX clarity + minor new features (#2136) 2024-08-14 15:23:36 -07:00
pablodanswer
d9bcacfae7 validate messages (#2139) 2024-08-14 22:06:48 +00:00
hagen-danswer
2ab192933b Added import statement to fix typescript error (#2138) 2024-08-14 20:10:08 +00:00
Yuhong Sun
1c10f54294 GPU Model Server (#2135) 2024-08-14 11:04:28 -07:00
josvdw
0530f4283e updating readme for widget (#2132)
Co-authored-by: Jos Van der westhuizen <jos@danser.ai>
2024-08-14 16:55:59 +00:00
pablodanswer
3540aa579b Add ux improvements (#2130)
* add ux improvements

* add danswer version display

* show version properly

* improve copy + add web version to settings context

* update copy + danswer version
2024-08-14 16:43:52 +00:00
josvdw
54732a83c9 stopgap: clarify text on standard answer page for improved UX (#2122)
* stopgap: clarify text on standard answer page for improved UX

* replce apostrophe

* using tailwind:

---------

Co-authored-by: Jos Van der westhuizen <jos@danser.ai>
2024-08-14 01:28:49 +00:00
pablodanswer
5e6365c449 Minor update to clarify user adding (#2126)
* minor update to clarify user adding

* Update page.tsx

* run pretty
2024-08-13 21:09:51 +00:00
rkuo-danswer
20369fc451 Refactor/default indexing embedder (#2073)
* refactor embedding model instantiation

* remove unused UNCERTAINTY_PAT constant

* typo fixes

* fix mypy typing issues

* more typing fixes

* log attempt.id on dispatch

* unnecessary check removed after fixing type
2024-08-13 21:01:34 +00:00
rkuo-danswer
f15d6d2b59 allow admin role api keys (#2124)
* allow admin role api keys

* bump to rerun deployment

* types needs explicit export now for APIKey

* remove api_key.role, use User.role instead

* fix formatting

* formatting

* formatting

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-08-13 21:00:57 +00:00
pablodanswer
5dda047999 Always show search filters (#2128) 2024-08-13 13:36:46 -07:00
pablodanswer
ffd9b0180b Fix overflow for quotes in search section (#2123)
* fix overflow for quotes in search section

* proper overflow check
2024-08-13 20:32:11 +00:00
Yuhong Sun
5ad54fec87 Inference to handle no link docs (#2129) 2024-08-13 12:40:11 -07:00
hagen-danswer
d636181aa5 Added catch for empty link (#2037) 2024-08-12 20:08:56 -07:00
pablodanswer
e12ed7750a Add scrollbar to search / chat (#2121)
* add scrollbar to search / chat

* show overflow for lists
2024-08-13 03:07:37 +00:00
hagen-danswer
bbb8c5ff0b Speed up docker launch (#2099)
* use move instead of copy

* added logging

* fix overwrites

* tested throughly

* fixes

* clearer commenting
2024-08-13 00:45:05 +00:00
pablodanswer
83e945ba57 add cleaner / consolidate no docs found message (#2119) 2024-08-12 16:04:59 -07:00
rkuo-danswer
26df869b91 Feature/harden memory limits (#2118)
* log warning in indexer when size exceeds INDEXING_SIZE_WARNING_THRESHOLD

* add configurable attachment size limit for confluence

* specify "attachments"
2024-08-12 15:12:34 -07:00
Weves
1a4df1d65e Remove unnecessary LLM settings 2024-08-12 11:33:49 -07:00
Chris Weaver
0a165aae0b Slack improvements (#2113) 2024-08-11 21:27:37 -07:00
rkuo-danswer
e517f47a89 add send-message-simple-with-history endpoint to avoid… (#2101)
* add send-message-simple-with-history endpoint to support ramp. avoids bad json output in models and allows client to pass history in instead of maintaining it in our own session

* slightly better error checking

* addressing code review

* reject on any empty message

* update test naming
2024-08-12 03:33:52 +00:00
Nathan Schwerdfeger
c7e5b11c63 EE Connector Deletion Bugfix + Refactor (#2042)
---------

Co-authored-by: Weves <chrisweaver101@gmail.com>
2024-08-11 20:33:07 -07:00
Yuhong Sun
79523f2e0a Warm up reranker (#2111) 2024-08-11 15:20:51 -07:00
pablodanswer
7fae66b766 provider type default to none (#2110) 2024-08-11 14:51:12 -07:00
Yuhong Sun
386b229ed3 Cohere Rerank (#2109) 2024-08-11 14:22:42 -07:00
Yuhong Sun
ce666f3320 Propagate Embedding Enum (#2108) 2024-08-11 12:17:54 -07:00
Yuhong Sun
d60fb15ad3 Allowing users to set Search Settings (#2106) 2024-08-10 20:48:58 -07:00
pablodanswer
7358ece008 enable assistant editing 2024-08-10 14:38:34 -07:00
josvdw
9c5d33e198 open chatdocument links in a new tab instead of overriding danswer (#2090)
Co-authored-by: Jos Van der westhuizen <jos@danser.ai>
2024-08-10 21:37:59 +00:00
pablodanswer
7d5cfd2fa3 Add user specific model defaults (#2043) 2024-08-10 14:37:33 -07:00
Yuhong Sun
a4caf66a35 User Notification Backend (#2104) 2024-08-10 11:39:21 -07:00
pablodanswer
0a8d44b44c quote processing for lengthy intros (#2103) 2024-08-10 11:09:45 -07:00
pablodanswer
cc8a6da8e3 improve llm-generated citations (account for edge case) (#2096)
* improve llm-generated citations (account for edge case)

* additional test case
2024-08-10 02:06:39 +00:00
pablodanswer
54d4526b73 (Minor) Add cleaner search, feedback model, and connector view (#2098)
* add cleaner search, feedback model, and connector view

* Update ChatPage.tsx
2024-08-10 01:54:31 +00:00
Yuhong Sun
c8ead6a0dc Need Reindexing Flag Setup (#2102) 2024-08-09 17:44:57 -07:00
pablodanswer
7bfa99766d Add support for google slides (#2083)
* add support for google slides

* remove log + account for dead code

* squash
2024-08-09 17:12:51 +00:00
hagen-danswer
b230082891 Openai encoding temp hotfix (#2094) 2024-08-09 08:17:31 -07:00
Yuhong Sun
8cd1eda8b1 Rework Rerankers (#2093) 2024-08-08 21:33:49 -07:00
Yuhong Sun
7dcc42aa95 Intent Model Update (#2069) 2024-08-08 20:45:53 -07:00
pablodanswer
e59d1a0294 fix edge case with simpler code block + python formatting (#2092) 2024-08-08 20:44:32 -07:00
pablodanswer
384e61f4b0 add new gpt-4o model 2024-08-08 16:32:57 -07:00
pablodanswer
f28b930475 Image -> img (#2087) 2024-08-08 21:46:42 +00:00
pablodanswer
1d989f5343 Fix model override for persisting default assistant (#2081)
* fix model override for persisting default assistant

* run pretty

* don't modify

* Update ChatPage.tsx
2024-08-08 21:22:19 +00:00
pablodanswer
c1e3a1b3e7 Select proper assistant override (#2068)
* encode images properly

* proper assistant default model updates

* remove now unneeded image encoding update

* update naming of persona llm option gathering
2024-08-08 21:02:11 +00:00
rkuo-danswer
be9ed319d5 add unit test for quotes (#2085)
* add unit test for quotes

* test answer and quotes together
2024-08-08 18:20:07 +00:00
pablodanswer
c630fcffee Improve code block formatting (#2084)
* initial update to styling

* fix chat input bar padding

* improve color choices
2024-08-08 17:12:35 +00:00
josvdw
f411b9cb55 quality of life improvements for the launch.json template (#2082)
Co-authored-by: Jos Van der westhuizen <jos@danser.ai>
2024-08-08 06:39:30 +00:00
Richard Kuo (Danswer)
bdaaebe955 use re.search instead of re.match (which searches from start of string only) 2024-08-07 20:55:18 -07:00
pablodanswer
9eb48ca2c3 account for empty links + fix quote processing 2024-08-07 20:55:18 -07:00
rkuo-danswer
509fa3a994 add postgres configuration (#2076) 2024-08-08 00:13:59 +00:00
pablodanswer
5097c7f284 Handle saved search docs in eval flow (#2075) 2024-08-07 16:18:34 -07:00
pablodanswer
c4e1c62c00 Admin UX updates (#2057) 2024-08-07 14:55:16 -07:00
pablodanswer
eab82782ca Add proper delay for assistant switching (#2070)
* add proper delay for assistant switching

* persist input if possible
2024-08-07 14:46:15 -07:00
pablodanswer
53d976234a proper new chat button redirects (#2074) 2024-08-07 14:44:42 -07:00
pablodanswer
44d8e34b5a Improve seeding (includes all enterprise features) (#2065) 2024-08-07 10:44:33 -07:00
pablodanswer
d2e16a599d Improve shared chat page (#2066)
* improve look of shared chat page

* remove log

* cleaner display

* add initializing loader to shared chat page

* updated danswer loaders (for prism)

* remove default share
2024-08-07 16:13:55 +00:00
pablodanswer
291e6c4198 somewhat clearer API errors (#2064) 2024-08-07 03:04:26 +00:00
Chris Weaver
bb7e1d6e55 Add integration tests for document set syncing (#1904) 2024-08-06 18:00:19 -07:00
rkuo-danswer
fcc4c30ead don't skip the start of the json answer value (#2067) 2024-08-06 23:59:13 +00:00
pablodanswer
f20984ea1d Don't persist error perennially (#2061)
* don't persist error perennially

* proper functionality

* remove logs

* remove another log

* add comments for clarity + reverse conditional

* add comment back

* remove comment
2024-08-06 23:09:25 +00:00
pablodanswer
e0f0cfd92e Ensure relevance functions for selected docs (#2063)
* ensure relevance functions for selected docs

* remove logs

* remove log
2024-08-06 21:06:44 +00:00
pablodanswer
57aec7d02a doc sidebar width fix 2024-08-06 13:48:47 -07:00
pablodanswer
6350219143 Add proper default temperature + overrides (#2059)
* add proper default temperature + overrides

* remove unclear commment

* ammend defaults + include internet serach
2024-08-06 19:57:14 +00:00
pablodanswer
3bc2cf9946 update tool display bubbles to have cursor-dfeault 2024-08-06 12:49:42 -07:00
pablodanswer
7f7452dc98 Whitelabelling consistency (#2058)
* add white labelling to admin sidebar

* even more consistency
2024-08-06 19:45:38 +00:00
pablodanswer
dc2a50034d Clean chat banner (#2056)
* fully functional

* formatting

* ensure consistency with large logos

* ensure mobile support
2024-08-06 19:44:14 +00:00
pablodanswer
ab564a9ec8 Add cleaner loading / streaming for image loading (#2055)
* add image loading

* clean

* add loading skeleton

* clean up

* clearer comments
2024-08-06 19:28:48 +00:00
rkuo-danswer
cc3856ef6d enforce index attempt deduping on secondary indexing. (#2054)
* enforce index attempt deduping on secondary indexing.

* black fix

* typo fixes

---------

Co-authored-by: Richard Kuo <rkuo@rkuo.com>
2024-08-06 17:45:16 +00:00
Yuhong Sun
a8a4ad9546 Chunk Filter Metadata Format (#2053) 2024-08-05 15:12:36 -07:00
pablodanswer
5bfdecacad fix assistant drag transform effect (#2052) 2024-08-05 14:53:38 -07:00
pablodanswer
0bde66a888 remove "quotes" section (#2049) 2024-08-05 18:51:43 +00:00
pablodanswer
5825d01d53 Better assistant interactions + UI (#2029)
* add assistnat re-ordering, selections, etc.

* squash

* remove unnecessary comment

* squash

* adapt dragging for all IDs + smoother animation + consistency

* fix minor typing issue

* fix minor typing issue

* remove logs
2024-08-05 18:22:57 +00:00
pablodanswer
cd22cca4e8 remove non-EE public connector options 2024-08-05 11:14:20 -07:00
pablodanswer
a3ea217f40 ensure consistency of answers + update llm relevance prompting (#2045) 2024-08-05 08:27:15 -07:00
pablodanswer
66e4dded91 Add properly random icons to assistant creation page (#2044) 2024-08-04 23:30:17 -07:00
pablodanswer
6d67d472cd Add answers to search (#2020) 2024-08-04 23:02:55 -07:00
Weves
76b7792e69 Harden embedding calls 2024-08-04 15:11:45 -07:00
Chris Weaver
9d7100a287 Fix secondary index attempts showing up as the primary index status + scheduling while in-progress (#2039) 2024-08-04 13:29:44 -07:00
pablodanswer
876feecd6f Fix code pasting formatting (#2033)
* fix pasting formatting

* add back small comments
2024-08-04 09:56:48 -07:00
pablodanswer
0261d689dc Various Admin Page + User Flow Improvements (#1987) 2024-08-03 18:09:46 -07:00
pablodanswer
aa4a00cbc2 fix minor html error (#2034) 2024-08-03 12:40:07 -07:00
Nathan Schwerdfeger
52c505c210 Remove partially implemented reply cancellation (#2031)
* fix: remove partially implemented response cancellation

* feat: notify user when unsupported chat cancellation is requested

* fix: correct ChatInputBar streaming detection logic
2024-08-03 18:12:04 +00:00
pablodanswer
ed455394fc detect foreign key composition sessions (#2024) 2024-08-02 17:26:57 +00:00
hagen-danswer
57cc53ab94 Added content tags to zendesk connector (#2017) 2024-08-02 10:09:53 -07:00
rkuo-danswer
6a61331cba Feature/log despam (#2022)
* move a lot of log spam to debug level. Consolidate some info level logging

* reformat more indexing logging
2024-08-02 15:28:53 +00:00
Weves
51731ad0dd Fix issue where large docs/batches break openai embedding 2024-08-02 01:07:09 -07:00
rkuo-danswer
f280586e68 pass function to Process correctly instead of running it inline (#2018)
* pass function to Process correctly instead of running it inline

* mypy fixes and pass back return result (even tho we don't use it right now)
2024-08-02 00:06:35 +00:00
hagen-danswer
e31d6be4ce Switched build to use a larger runner (#2019) 2024-08-01 14:29:45 -07:00
hagen-danswer
e6a92aa936 support confluence single page only indexing (#2008)
* added index recursively checkbox

* mypy fixes

* added migration to not break existing connectors
2024-08-01 20:32:46 +00:00
pablodanswer
a54ea9f9fa Fix cartesian issue with index attempts (#2015) 2024-08-01 10:25:25 -07:00
Yuhong Sun
73a92c046d Fix chunker (#2014) 2024-08-01 10:18:02 -07:00
pablodanswer
459bd46846 Add Prompt library (#1990) 2024-08-01 08:40:35 -07:00
Chris Weaver
445f7e70ba Fix image generation (#2009) 2024-08-01 00:27:02 -07:00
Yuhong Sun
ca893f9918 Rerank Handle Null (#2010) 2024-07-31 22:59:02 -07:00
hagen-danswer
1be1959d80 Changed default local model to nomic (#1943) 2024-07-31 18:54:02 -07:00
Chris Weaver
1654378850 Fix user dropdown font (#2007) 2024-08-01 00:29:14 +00:00
Chris Weaver
d6d391d244 Fix not_applicable (#2003) 2024-07-31 21:30:07 +00:00
rkuo-danswer
7c283b090d Feature/postgres connection names (#1998)
* avoid reindexing secondary indexes after they succeed

* use postgres application names to facilitate connection debugging

* centralize all postgres application_name constants in the constants file

* missed a couple of files

* mypy fixes

* update dev background script
2024-07-31 20:36:30 +00:00
pablodanswer
40226678af Add proper default values for assistant editing / creation (#2001) 2024-07-31 13:34:42 -07:00
rkuo-danswer
288e6fa606 Bugfix/pg connections (#2002)
* increase max_connections to 150 in all docker files

* lower celery worker concurrency to 6
2024-07-31 19:49:20 +00:00
hagen-danswer
5307d38472 Fixed tokenizer logic (#1986) 2024-07-31 09:59:45 -07:00
Yuhong Sun
d619602a6f Skip shortcut docs (#1999) 2024-07-31 09:51:01 -07:00
Yuhong Sun
348a2176f0 Fix Dropped Documents (#1997) 2024-07-31 09:33:36 -07:00
pablodanswer
89b6da36a6 process files with null title (#1989) 2024-07-31 08:18:50 -07:00
Yuhong Sun
036d5c737e No Null Embeddings (#1982) 2024-07-30 19:54:49 -07:00
pablodanswer
60a87d9472 Add back modals on chat page (#1983) 2024-07-30 17:42:59 -07:00
pablodanswer
eb9bb56829 Add initial mobile support (#1962) 2024-07-30 17:13:50 -07:00
hagen-danswer
d151082871 Moved warmup_encoders into scope (#1978) 2024-07-30 16:37:32 +00:00
pablodanswer
e4b1f5b963 fix index attempt migration where no credential ID 2024-07-30 08:57:57 -07:00
752 changed files with 44587 additions and 17411 deletions

View File

@@ -0,0 +1,76 @@
name: 'Build and Push Docker Image with Retry'
description: 'Attempts to build and push a Docker image, with a retry on failure'
inputs:
context:
description: 'Build context'
required: true
file:
description: 'Dockerfile location'
required: true
platforms:
description: 'Target platforms'
required: true
pull:
description: 'Always attempt to pull a newer version of the image'
required: false
default: 'true'
push:
description: 'Push the image to registry'
required: false
default: 'true'
load:
description: 'Load the image into Docker daemon'
required: false
default: 'true'
tags:
description: 'Image tags'
required: true
cache-from:
description: 'Cache sources'
required: false
cache-to:
description: 'Cache destinations'
required: false
retry-wait-time:
description: 'Time to wait before retry in seconds'
required: false
default: '5'
runs:
using: "composite"
steps:
- name: Build and push Docker image (First Attempt)
id: buildx1
uses: docker/build-push-action@v5
continue-on-error: true
with:
context: ${{ inputs.context }}
file: ${{ inputs.file }}
platforms: ${{ inputs.platforms }}
pull: ${{ inputs.pull }}
push: ${{ inputs.push }}
load: ${{ inputs.load }}
tags: ${{ inputs.tags }}
cache-from: ${{ inputs.cache-from }}
cache-to: ${{ inputs.cache-to }}
- name: Wait to retry
if: steps.buildx1.outcome != 'success'
run: |
echo "First attempt failed. Waiting ${{ inputs.retry-wait-time }} seconds before retry..."
sleep ${{ inputs.retry-wait-time }}
shell: bash
- name: Build and push Docker image (Retry Attempt)
if: steps.buildx1.outcome != 'success'
uses: docker/build-push-action@v5
with:
context: ${{ inputs.context }}
file: ${{ inputs.file }}
platforms: ${{ inputs.platforms }}
pull: ${{ inputs.pull }}
push: ${{ inputs.push }}
load: ${{ inputs.load }}
tags: ${{ inputs.tags }}
cache-from: ${{ inputs.cache-from }}
cache-to: ${{ inputs.cache-to }}

View File

@@ -1,33 +0,0 @@
name: Build Backend Image on Merge Group
on:
merge_group:
types: [checks_requested]
env:
REGISTRY_IMAGE: danswer/danswer-backend
jobs:
build:
# TODO: make this a matrix build like the web containers
runs-on:
group: amd64-image-builders
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Backend Image Docker Build
uses: docker/build-push-action@v5
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64,linux/arm64
push: false
tags: |
${{ env.REGISTRY_IMAGE }}:latest
build-args: |
DANSWER_VERSION=v0.0.1

View File

@@ -27,6 +27,11 @@ jobs:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
- name: Install build-essential
run: |
sudo apt-get update
sudo apt-get install -y build-essential
- name: Backend Image Docker Build and Push
uses: docker/build-push-action@v5
with:

View File

@@ -7,7 +7,8 @@ on:
jobs:
build-and-push:
runs-on: ubuntu-latest
runs-on:
group: amd64-image-builders
steps:
- name: Checkout code

View File

@@ -1,53 +0,0 @@
name: Build Web Image on Merge Group
on:
merge_group:
types: [checks_requested]
env:
REGISTRY_IMAGE: danswer/danswer-web-server
jobs:
build:
runs-on:
group: ${{ matrix.platform == 'linux/amd64' && 'amd64-image-builders' || 'arm64-image-builders' }}
strategy:
fail-fast: false
matrix:
platform:
- linux/amd64
- linux/arm64
steps:
- name: Prepare
run: |
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY_IMAGE }}
tags: |
type=raw,value=${{ env.REGISTRY_IMAGE }}:latest
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Build by digest
id: build
uses: docker/build-push-action@v5
with:
context: ./web
file: ./web/Dockerfile
platforms: ${{ matrix.platform }}
push: false
build-args: |
DANSWER_VERSION=v0.0.1
# needed due to weird interactions with the builds for different platforms
no-cache: true
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -0,0 +1,67 @@
# This workflow is intentionally disabled while we're still working on it
# It's close to ready, but a race condition needs to be fixed with
# API server and Vespa startup, and it needs to have a way to build/test against
# local containers
name: Helm - Lint and Test Charts
on:
merge_group:
pull_request:
branches: [ main ]
jobs:
lint-test:
runs-on: Amd64
# fetch-depth 0 is required for helm/chart-testing-action
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Set up Helm
uses: azure/setup-helm@v4.2.0
with:
version: v3.14.4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.11'
cache: 'pip'
cache-dependency-path: |
backend/requirements/default.txt
backend/requirements/dev.txt
backend/requirements/model_server.txt
- run: |
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
- name: Set up chart-testing
uses: helm/chart-testing-action@v2.6.1
- name: Run chart-testing (list-changed)
id: list-changed
run: |
changed=$(ct list-changed --target-branch ${{ github.event.repository.default_branch }})
if [[ -n "$changed" ]]; then
echo "changed=true" >> "$GITHUB_OUTPUT"
fi
- name: Run chart-testing (lint)
# if: steps.list-changed.outputs.changed == 'true'
run: ct lint --all --config ct.yaml --target-branch ${{ github.event.repository.default_branch }}
- name: Create kind cluster
# if: steps.list-changed.outputs.changed == 'true'
uses: helm/kind-action@v1.10.0
- name: Run chart-testing (install)
# if: steps.list-changed.outputs.changed == 'true'
run: ct install --all --config ct.yaml
# run: ct install --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -1,6 +1,7 @@
name: Python Checks
on:
merge_group:
pull_request:
branches: [ main ]
@@ -23,9 +24,9 @@ jobs:
backend/requirements/model_server.txt
- run: |
python -m pip install --upgrade pip
pip install -r backend/requirements/default.txt
pip install -r backend/requirements/dev.txt
pip install -r backend/requirements/model_server.txt
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
- name: Run MyPy
run: |

View File

@@ -0,0 +1,57 @@
name: Connector Tests
on:
pull_request:
branches: [main]
schedule:
# This cron expression runs the job daily at 16:00 UTC (9am PT)
- cron: "0 16 * * *"
env:
# Confluence
CONFLUENCE_TEST_SPACE_URL: ${{ secrets.CONFLUENCE_TEST_SPACE_URL }}
CONFLUENCE_TEST_SPACE: ${{ secrets.CONFLUENCE_TEST_SPACE }}
CONFLUENCE_IS_CLOUD: ${{ secrets.CONFLUENCE_IS_CLOUD }}
CONFLUENCE_TEST_PAGE_ID: ${{ secrets.CONFLUENCE_TEST_PAGE_ID }}
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
jobs:
connectors-check:
runs-on: ubuntu-latest
env:
PYTHONPATH: ./backend
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
cache: "pip"
cache-dependency-path: |
backend/requirements/default.txt
backend/requirements/dev.txt
- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/connectors
- name: Alert on Failure
if: failure() && github.event_name == 'schedule'
env:
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
run: |
curl -X POST \
-H 'Content-type: application/json' \
--data '{"text":"Scheduled Connector Tests failed! Check the run at: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}"}' \
$SLACK_WEBHOOK

View File

@@ -1,6 +1,7 @@
name: Python Unit Tests
on:
merge_group:
pull_request:
branches: [ main ]
@@ -10,7 +11,8 @@ jobs:
env:
PYTHONPATH: ./backend
REDIS_CLOUD_PYTEST_PASSWORD: ${{ secrets.REDIS_CLOUD_PYTEST_PASSWORD }}
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -27,8 +29,8 @@ jobs:
- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pip install -r backend/requirements/default.txt
pip install -r backend/requirements/dev.txt
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"

View File

@@ -4,18 +4,19 @@ concurrency:
cancel-in-progress: true
on:
merge_group:
pull_request: null
jobs:
quality-checks:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-python@v5
with:
python-version: '3.11'
- uses: pre-commit/action@v3.0.0
with:
extra_args: --from-ref ${{ github.event.pull_request.base.sha }} --to-ref ${{ github.event.pull_request.head.sha }}
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: pre-commit/action@v3.0.0
with:
extra_args: ${{ github.event_name == 'pull_request' && format('--from-ref {0} --to-ref {1}', github.event.pull_request.base.sha, github.event.pull_request.head.sha) || '' }}

161
.github/workflows/run-it.yml vendored Normal file
View File

@@ -0,0 +1,161 @@
name: Run Integration Tests
concurrency:
group: Run-Integration-Tests-${{ github.head_ref }}
cancel-in-progress: true
on:
merge_group:
pull_request:
branches: [ main ]
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
jobs:
integration-tests:
runs-on: Amd64
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# NOTE: we don't need to build the Web Docker image since it's not used
# during the IT for now. We have a separate action to verify it builds
# succesfully
- name: Pull Web Docker image
run: |
docker pull danswer/danswer-web-server:latest
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:it
- name: Build Backend Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/Dockerfile
platforms: linux/amd64
tags: danswer/danswer-backend:it
cache-from: type=registry,ref=danswer/danswer-backend:it
cache-to: |
type=registry,ref=danswer/danswer-backend:it,mode=max
type=inline
- name: Build Model Server Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/Dockerfile.model_server
platforms: linux/amd64
tags: danswer/danswer-model-server:it
cache-from: type=registry,ref=danswer/danswer-model-server:it
cache-to: |
type=registry,ref=danswer/danswer-model-server:it,mode=max
type=inline
- name: Build integration test Docker image
uses: ./.github/actions/custom-build-and-push
with:
context: ./backend
file: ./backend/tests/integration/Dockerfile
platforms: linux/amd64
tags: danswer/integration-test-runner:it
cache-from: type=registry,ref=danswer/integration-test-runner:it
cache-to: |
type=registry,ref=danswer/integration-test-runner:it,mode=max
type=inline
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=it \
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f danswer-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
while true; do
current_time=$(date +%s)
elapsed_time=$((current_time - start_time))
if [ $elapsed_time -ge $timeout ]; then
echo "Timeout reached. Service did not become ready in 5 minutes."
exit 1
fi
# Use curl with error handling to ignore specific exit code 56
response=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8080/health || echo "curl_error")
if [ "$response" = "200" ]; then
echo "Service is ready!"
break
elif [ "$response" = "curl_error" ]; then
echo "Curl encountered an error, possibly exit code 56. Continuing to retry..."
else
echo "Service not ready yet (HTTP status $response). Retrying in 5 seconds..."
fi
sleep 5
done
echo "Finished waiting for service."
- name: Run integration tests
run: |
echo "Running integration tests..."
docker run --rm --network danswer-stack_default \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
-e OPENAI_API_KEY=${OPENAI_API_KEY} \
danswer/integration-test-runner:it
continue-on-error: true
id: run_tests
- name: Check test results
run: |
if [ ${{ steps.run_tests.outcome }} == 'failure' ]; then
echo "Integration tests failed. Exiting with error."
exit 1
else
echo "All integration tests passed successfully."
fi
- name: Save Docker logs
if: success() || failure()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack logs > docker-compose.log
mv docker-compose.log ${{ github.workspace }}/docker-compose.log
- name: Upload logs
if: success() || failure()
uses: actions/upload-artifact@v3
with:
name: docker-logs
path: ${{ github.workspace }}/docker-compose.log
- name: Stop Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v

2
.gitignore vendored
View File

@@ -4,6 +4,6 @@
.mypy_cache
.idea
/deployment/data/nginx/app.conf
.vscode/launch.json
.vscode/
*.sw?
/backend/tests/regression/answer_quality/search_test_config.yaml

View File

@@ -1,5 +1,5 @@
# Copy this file to .env at the base of the repo and fill in the <REPLACE THIS> values
# This will help with development iteration speed and reduce repeat tasks for dev
# Copy this file to .env in the .vscode folder
# Fill in the <REPLACE THIS> values as needed, it is recommended to set the GEN_AI_API_KEY value to avoid having to set up an LLM in the UI
# Also check out danswer/backend/scripts/restart_containers.sh for a script to restart the containers which Danswer relies on outside of VSCode/Cursor processes
# For local dev, often user Authentication is not needed
@@ -15,7 +15,7 @@ LOG_LEVEL=debug
# This passes top N results to LLM an additional time for reranking prior to answer generation
# This step is quite heavy on token usage so we disable it for dev generally
DISABLE_LLM_CHUNK_FILTER=True
DISABLE_LLM_DOC_RELEVANCE=False
# Useful if you want to toggle auth on/off (google_oauth/OIDC specifically)
@@ -27,9 +27,9 @@ REQUIRE_EMAIL_VERIFICATION=False
# Set these so if you wipe the DB, you don't end up having to go through the UI every time
GEN_AI_API_KEY=<REPLACE THIS>
# If answer quality isn't important for dev, use 3.5 turbo due to it being cheaper
GEN_AI_MODEL_VERSION=gpt-3.5-turbo
FAST_GEN_AI_MODEL_VERSION=gpt-3.5-turbo
# If answer quality isn't important for dev, use gpt-4o-mini since it's cheaper
GEN_AI_MODEL_VERSION=gpt-4o
FAST_GEN_AI_MODEL_VERSION=gpt-4o
# For Danswer Slack Bot, overrides the UI values so no need to set this up via UI every time
# Only needed if using DanswerBot
@@ -38,7 +38,7 @@ FAST_GEN_AI_MODEL_VERSION=gpt-3.5-turbo
# Python stuff
PYTHONPATH=./backend
PYTHONPATH=../backend
PYTHONUNBUFFERED=1
@@ -49,4 +49,3 @@ BING_API_KEY=<REPLACE THIS>
# Enable the full set of Danswer Enterprise Edition features
# NOTE: DO NOT ENABLE THIS UNLESS YOU HAVE A PAID ENTERPRISE LICENSE (or if you are using this for local testing/development)
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=False

View File

@@ -1,15 +1,23 @@
/*
Copy this file into '.vscode/launch.json' or merge its
contents into your existing configurations.
*/
/* Copy this file into '.vscode/launch.json' or merge its contents into your existing configurations. */
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"compounds": [
{
"name": "Run All Danswer Services",
"configurations": [
"Web Server",
"Model Server",
"API Server",
"Indexing",
"Background Jobs",
"Slack Bot"
]
}
],
"configurations": [
{
"name": "Web Server",
@@ -17,7 +25,7 @@
"request": "launch",
"cwd": "${workspaceRoot}/web",
"runtimeExecutable": "npm",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"runtimeArgs": [
"run", "dev"
],
@@ -25,11 +33,12 @@
},
{
"name": "Model Server",
"type": "python",
"consoleName": "Model Server",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1"
@@ -43,11 +52,12 @@
},
{
"name": "API Server",
"type": "python",
"consoleName": "API Server",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"LOG_DANSWER_MODEL_INTERACTIONS": "True",
"LOG_LEVEL": "DEBUG",
@@ -62,13 +72,14 @@
},
{
"name": "Indexing",
"type": "python",
"consoleName": "Indexing",
"type": "debugpy",
"request": "launch",
"program": "danswer/background/update.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"ENABLE_MINI_CHUNK": "false",
"ENABLE_MULTIPASS_INDEXING": "false",
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "."
@@ -77,11 +88,12 @@
// Celery and all async jobs, usually would include indexing as well but this is handled separately above for dev
{
"name": "Background Jobs",
"type": "python",
"consoleName": "Background Jobs",
"type": "debugpy",
"request": "launch",
"program": "scripts/dev_run_background_jobs.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"LOG_DANSWER_MODEL_INTERACTIONS": "True",
"LOG_LEVEL": "DEBUG",
@@ -96,11 +108,12 @@
// DANSWER_BOT_SLACK_APP_TOKEN & DANSWER_BOT_SLACK_BOT_TOKEN need to be set in .env file located in the root of the project
{
"name": "Slack Bot",
"type": "python",
"consoleName": "Slack Bot",
"type": "debugpy",
"request": "launch",
"program": "danswer/danswerbot/slack/listener.py",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
@@ -109,11 +122,12 @@
},
{
"name": "Pytest",
"type": "python",
"consoleName": "Pytest",
"type": "debugpy",
"request": "launch",
"module": "pytest",
"cwd": "${workspaceFolder}/backend",
"envFile": "${workspaceFolder}/.env",
"envFile": "${workspaceFolder}/.vscode/.env",
"env": {
"LOG_LEVEL": "DEBUG",
"PYTHONUNBUFFERED": "1",
@@ -124,6 +138,16 @@
// Specify a sepcific module/test to run or provide nothing to run all tests
//"tests/unit/danswer/llm/answering/test_prune_and_merge.py"
]
},
{
"name": "Clear and Restart External Volumes and Containers",
"type": "node",
"request": "launch",
"runtimeExecutable": "bash",
"runtimeArgs": ["${workspaceFolder}/backend/scripts/restart_containers.sh"],
"cwd": "${workspaceFolder}",
"console": "integratedTerminal",
"stopOnEntry": true
}
]
}

View File

@@ -48,23 +48,26 @@ We would love to see you there!
## Get Started 🚀
Danswer being a fully functional app, relies on some external pieces of software, specifically:
Danswer being a fully functional app, relies on some external software, specifically:
- [Postgres](https://www.postgresql.org/) (Relational DB)
- [Vespa](https://vespa.ai/) (Vector DB/Search Engine)
- [Redis](https://redis.io/) (Cache)
- [Nginx](https://nginx.org/) (Not needed for development flows generally)
This guide provides instructions to set up the Danswer specific services outside of Docker because it's easier for
development purposes but also feel free to just use the containers and update with local changes by providing the
`--build` flag.
> **Note:**
> This guide provides instructions to build and run Danswer locally from source with Docker containers providing the above external software. We believe this combination is easier for
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Danswer stack within Docker below.
### Local Set Up
It is recommended to use Python version 3.11
Be sure to use Python version 3.11. For instructions on installing Python 3.11 on macOS, refer to the [CONTRIBUTING_MACOS.md](./CONTRIBUTING_MACOS.md) readme.
If using a lower version, modifications will have to be made to the code.
If using a higher version, the version of Tensorflow we use may not be available for your platform.
If using a higher version, sometimes some libraries will not be available (i.e. we had problems with Tensorflow in the past with higher versions of python).
#### Installing Requirements
#### Backend: Python requirements
Currently, we use pip and recommend creating a virtual environment.
For convenience here's a command for it:
@@ -73,8 +76,9 @@ python -m venv .venv
source .venv/bin/activate
```
--> Note that this virtual environment MUST NOT be set up WITHIN the danswer
directory
> **Note:**
> This virtual environment MUST NOT be set up WITHIN the danswer directory if you plan on using mypy within certain IDEs.
> For simplicity, we recommend setting up the virtual environment outside of the danswer directory.
_For Windows, activate the virtual environment using Command Prompt:_
```bash
@@ -89,34 +93,38 @@ Install the required python dependencies:
```bash
pip install -r danswer/backend/requirements/default.txt
pip install -r danswer/backend/requirements/dev.txt
pip install -r danswer/backend/requirements/ee.txt
pip install -r danswer/backend/requirements/model_server.txt
```
Install Playwright for Python (headless browser required by the Web Connector)
In the activated Python virtualenv, install Playwright for Python by running:
```bash
playwright install
```
You may have to deactivate and reactivate your virtualenv for `playwright` to appear on your path.
#### Frontend: Node dependencies
Install [Node.js and npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) for the frontend.
Once the above is done, navigate to `danswer/web` run:
```bash
npm i
```
Install Playwright (required by the Web Connector)
#### Docker containers for external software
You will need Docker installed to run these containers.
> Note: If you have just done the pip install, open a new terminal and source the python virtual-env again.
This will update the path to include playwright
Then install Playwright by running:
First navigate to `danswer/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
```bash
playwright install
docker compose -f docker-compose.dev.yml -p danswer-stack up -d index relational_db cache
```
(index refers to Vespa, relational_db refers to Postgres, and cache refers to Redis)
#### Dependent Docker Containers
First navigate to `danswer/deployment/docker_compose`, then start up Vespa and Postgres with:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d index relational_db
```
(index refers to Vespa and relational_db refers to Postgres)
#### Running Danswer
#### Running Danswer locally
To start the frontend, navigate to `danswer/web` and run:
```bash
npm run dev
@@ -127,11 +135,10 @@ Navigate to `danswer/backend` and run:
```bash
uvicorn model_server.main:app --reload --port 9000
```
_For Windows (for compatibility with both PowerShell and Command Prompt):_
```bash
powershell -Command "
uvicorn model_server.main:app --reload --port 9000
"
powershell -Command "uvicorn model_server.main:app --reload --port 9000"
```
The first time running Danswer, you will need to run the DB migrations for Postgres.
@@ -154,6 +161,7 @@ To run the backend API server, navigate back to `danswer/backend` and run:
```bash
AUTH_TYPE=disabled uvicorn danswer.main:app --reload --port 8080
```
_For Windows (for compatibility with both PowerShell and Command Prompt):_
```bash
powershell -Command "
@@ -162,20 +170,58 @@ powershell -Command "
"
```
Note: if you need finer logging, add the additional environment variable `LOG_LEVEL=DEBUG` to the relevant services.
> **Note:**
> If you need finer logging, add the additional environment variable `LOG_LEVEL=DEBUG` to the relevant services.
#### Wrapping up
You should now have 4 servers running:
- Web server
- Backend API
- Model server
- Background jobs
Now, visit `http://localhost:3000` in your browser. You should see the Danswer onboarding wizard where you can connect your external LLM provider to Danswer.
You've successfully set up a local Danswer instance! 🏁
#### Running the Danswer application in a container
You can run the full Danswer application stack from pre-built images including all external software dependencies.
Navigate to `danswer/deployment/docker_compose` and run:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
```
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Danswer.
If you want to make changes to Danswer and run those changes in Docker, you can also build a local version of the Danswer container images that incorporates your changes like so:
```bash
docker compose -f docker-compose.dev.yml -p danswer-stack up -d --build
```
### Formatting and Linting
#### Backend
For the backend, you'll need to setup pre-commit hooks (black / reorder-python-imports).
First, install pre-commit (if you don't have it already) following the instructions
[here](https://pre-commit.com/#installation).
With the virtual environment active, install the pre-commit library with:
```bash
pip install pre-commit
```
Then, from the `danswer/backend` directory, run:
```bash
pre-commit install
```
Additionally, we use `mypy` for static type checking.
Danswer is fully type-annotated, and we would like to keep it that way!
Danswer is fully type-annotated, and we want to keep it that way!
To run the mypy checks manually, run `python -m mypy .` from the `danswer/backend` directory.
@@ -186,6 +232,7 @@ Please double check that prettier passes before creating a pull request.
### Release Process
Danswer follows the semver versioning standard.
Danswer loosely follows the SemVer versioning standard.
Major changes are released with a "minor" version bump. Currently we use patch release versions to indicate small feature changes.
A set of Docker containers will be pushed automatically to DockerHub with every tag.
You can see the containers [here](https://hub.docker.com/search?q=danswer%2F).

31
CONTRIBUTING_MACOS.md Normal file
View File

@@ -0,0 +1,31 @@
## Some additional notes for Mac Users
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md).
### Setting up Python
Ensure [Homebrew](https://brew.sh/) is already set up.
Then install python 3.11.
```bash
brew install python@3.11
```
Add python 3.11 to your path: add the following line to ~/.zshrc
```
export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
```
> **Note:**
> You will need to open a new terminal for the path change above to take effect.
### Setting up Docker
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
ensure it is running before continuing with the docker commands.
### Formatting and Linting
MacOS will likely require you to remove some quarantine attributes on some of the hooks for them to execute properly.
After installing pre-commit, run the following command:
```bash
sudo xattr -r -d com.apple.quarantine ~/.cache/pre-commit
```

View File

@@ -9,7 +9,8 @@ founders@danswer.ai for more information. Please visit https://github.com/danswe
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.3-dev
ENV DANSWER_VERSION=${DANSWER_VERSION}
ENV DANSWER_VERSION=${DANSWER_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
# Install system dependencies
@@ -40,6 +41,8 @@ RUN apt-get update && \
COPY ./requirements/default.txt /tmp/requirements.txt
COPY ./requirements/ee.txt /tmp/ee-requirements.txt
RUN pip install --no-cache-dir --upgrade \
--retries 5 \
--timeout 30 \
-r /tmp/requirements.txt \
-r /tmp/ee-requirements.txt && \
pip uninstall -y py && \
@@ -68,13 +71,15 @@ RUN apt-get update && \
rm -f /usr/local/lib/python3.11/site-packages/tornado/test/test.key
# Pre-downloading models for setups with limited egress
RUN python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('intfloat/e5-base-v2')"
RUN python -c "from tokenizers import Tokenizer; \
Tokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1')"
# Pre-downloading NLTK for setups with limited egress
RUN python -c "import nltk; \
nltk.download('stopwords', quiet=True); \
nltk.download('wordnet', quiet=True); \
nltk.download('punkt', quiet=True);"
# nltk.download('wordnet', quiet=True); introduce this back if lemmatization is needed
# Set up application files
WORKDIR /app

View File

@@ -8,24 +8,38 @@ visit https://github.com/danswer-ai/danswer."
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
ARG DANSWER_VERSION=0.3-dev
ENV DANSWER_VERSION=${DANSWER_VERSION}
ENV DANSWER_VERSION=${DANSWER_VERSION} \
DANSWER_RUNNING_IN_DOCKER="true"
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
COPY ./requirements/model_server.txt /tmp/requirements.txt
RUN pip install --no-cache-dir --upgrade -r /tmp/requirements.txt
RUN pip install --no-cache-dir --upgrade \
--retries 5 \
--timeout 30 \
-r /tmp/requirements.txt
RUN apt-get remove -y --allow-remove-essential perl-base && \
apt-get autoremove -y
# Pre-downloading models for setups with limited egress
RUN python -c "from transformers import AutoModel, AutoTokenizer, TFDistilBertForSequenceClassification; \
from huggingface_hub import snapshot_download; \
AutoTokenizer.from_pretrained('danswer/intent-model'); \
AutoTokenizer.from_pretrained('intfloat/e5-base-v2'); \
# Download tokenizers, distilbert for the Danswer model
# Download model weights
# Run Nomic to pull in the custom architecture and have it cached locally
RUN python -c "from transformers import AutoTokenizer; \
AutoTokenizer.from_pretrained('distilbert-base-uncased'); \
AutoTokenizer.from_pretrained('mixedbread-ai/mxbai-rerank-xsmall-v1'); \
snapshot_download('danswer/intent-model'); \
snapshot_download('intfloat/e5-base-v2'); \
snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1')"
from huggingface_hub import snapshot_download; \
snapshot_download(repo_id='danswer/hybrid-intent-token-classifier', revision='v1.0.3'); \
snapshot_download('nomic-ai/nomic-embed-text-v1'); \
snapshot_download('mixedbread-ai/mxbai-rerank-xsmall-v1'); \
from sentence_transformers import SentenceTransformer; \
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True);"
# In case the user has volumes mounted to /root/.cache/huggingface that they've downloaded while
# running Danswer, don't overwrite it with the built in cache folder
RUN mv /root/.cache/huggingface /root/.cache/temp_huggingface
WORKDIR /app

View File

@@ -8,6 +8,7 @@ from sqlalchemy import pool
from sqlalchemy.engine import Connection
from sqlalchemy.ext.asyncio import create_async_engine
from celery.backends.database.session import ResultModelBase # type: ignore
from sqlalchemy.schema import SchemaItem
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
@@ -15,7 +16,9 @@ config = context.config
# Interpret the config file for Python logging.
# This line sets up loggers basically.
if config.config_file_name is not None:
if config.config_file_name is not None and config.attributes.get(
"configure_logger", True
):
fileConfig(config.config_file_name)
# add your model's MetaData object here
@@ -29,6 +32,20 @@ target_metadata = [Base.metadata, ResultModelBase.metadata]
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
def include_object(
object: SchemaItem,
name: str,
type_: str,
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:
if type_ == "table" and name in EXCLUDE_TABLES:
return False
return True
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
@@ -55,7 +72,11 @@ def run_migrations_offline() -> None:
def do_run_migrations(connection: Connection) -> None:
context.configure(connection=connection, target_metadata=target_metadata) # type: ignore
context.configure(
connection=connection,
target_metadata=target_metadata, # type: ignore
include_object=include_object,
) # type: ignore
with context.begin_transaction():
context.run_migrations()

View File

@@ -12,8 +12,8 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "08a1eda20fe1"
down_revision = "8a87bd6ec550"
branch_labels = None
depends_on = None
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:

View File

@@ -0,0 +1,27 @@
"""add ccpair deletion failure message
Revision ID: 0ebb1d516877
Revises: 52a219fb5233
Create Date: 2024-09-10 15:03:48.233926
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "0ebb1d516877"
down_revision = "52a219fb5233"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column("deletion_failure_message", sa.String(), nullable=True),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "deletion_failure_message")

View File

@@ -0,0 +1,102 @@
"""add_user_delete_cascades
Revision ID: 1b8206b29c5d
Revises: 35e6853a51d5
Create Date: 2024-09-18 11:48:59.418726
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "1b8206b29c5d"
down_revision = "35e6853a51d5"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.drop_constraint("credential_user_id_fkey", "credential", type_="foreignkey")
op.create_foreign_key(
"credential_user_id_fkey",
"credential",
"user",
["user_id"],
["id"],
ondelete="CASCADE",
)
op.drop_constraint("chat_session_user_id_fkey", "chat_session", type_="foreignkey")
op.create_foreign_key(
"chat_session_user_id_fkey",
"chat_session",
"user",
["user_id"],
["id"],
ondelete="CASCADE",
)
op.drop_constraint("chat_folder_user_id_fkey", "chat_folder", type_="foreignkey")
op.create_foreign_key(
"chat_folder_user_id_fkey",
"chat_folder",
"user",
["user_id"],
["id"],
ondelete="CASCADE",
)
op.drop_constraint("prompt_user_id_fkey", "prompt", type_="foreignkey")
op.create_foreign_key(
"prompt_user_id_fkey", "prompt", "user", ["user_id"], ["id"], ondelete="CASCADE"
)
op.drop_constraint("notification_user_id_fkey", "notification", type_="foreignkey")
op.create_foreign_key(
"notification_user_id_fkey",
"notification",
"user",
["user_id"],
["id"],
ondelete="CASCADE",
)
op.drop_constraint("inputprompt_user_id_fkey", "inputprompt", type_="foreignkey")
op.create_foreign_key(
"inputprompt_user_id_fkey",
"inputprompt",
"user",
["user_id"],
["id"],
ondelete="CASCADE",
)
def downgrade() -> None:
op.drop_constraint("credential_user_id_fkey", "credential", type_="foreignkey")
op.create_foreign_key(
"credential_user_id_fkey", "credential", "user", ["user_id"], ["id"]
)
op.drop_constraint("chat_session_user_id_fkey", "chat_session", type_="foreignkey")
op.create_foreign_key(
"chat_session_user_id_fkey", "chat_session", "user", ["user_id"], ["id"]
)
op.drop_constraint("chat_folder_user_id_fkey", "chat_folder", type_="foreignkey")
op.create_foreign_key(
"chat_folder_user_id_fkey", "chat_folder", "user", ["user_id"], ["id"]
)
op.drop_constraint("prompt_user_id_fkey", "prompt", type_="foreignkey")
op.create_foreign_key("prompt_user_id_fkey", "prompt", "user", ["user_id"], ["id"])
op.drop_constraint("notification_user_id_fkey", "notification", type_="foreignkey")
op.create_foreign_key(
"notification_user_id_fkey", "notification", "user", ["user_id"], ["id"]
)
op.drop_constraint("inputprompt_user_id_fkey", "inputprompt", type_="foreignkey")
op.create_foreign_key(
"inputprompt_user_id_fkey", "inputprompt", "user", ["user_id"], ["id"]
)

View File

@@ -0,0 +1,135 @@
"""embedding model -> search settings
Revision ID: 1f60f60c3401
Revises: f17bf3b0d9f1
Create Date: 2024-08-25 12:39:51.731632
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from danswer.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
# revision identifiers, used by Alembic.
revision = "1f60f60c3401"
down_revision = "f17bf3b0d9f1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.drop_constraint(
"index_attempt__embedding_model_fk", "index_attempt", type_="foreignkey"
)
# Rename the table
op.rename_table("embedding_model", "search_settings")
# Add new columns
op.add_column(
"search_settings",
sa.Column(
"multipass_indexing", sa.Boolean(), nullable=False, server_default="false"
),
)
op.add_column(
"search_settings",
sa.Column(
"multilingual_expansion",
postgresql.ARRAY(sa.String()),
nullable=False,
server_default="{}",
),
)
op.add_column(
"search_settings",
sa.Column(
"disable_rerank_for_streaming",
sa.Boolean(),
nullable=False,
server_default="false",
),
)
op.add_column(
"search_settings", sa.Column("rerank_model_name", sa.String(), nullable=True)
)
op.add_column(
"search_settings", sa.Column("rerank_provider_type", sa.String(), nullable=True)
)
op.add_column(
"search_settings", sa.Column("rerank_api_key", sa.String(), nullable=True)
)
op.add_column(
"search_settings",
sa.Column(
"num_rerank",
sa.Integer(),
nullable=False,
server_default=str(NUM_POSTPROCESSED_RESULTS),
),
)
# Add the new column as nullable initially
op.add_column(
"index_attempt", sa.Column("search_settings_id", sa.Integer(), nullable=True)
)
# Populate the new column with data from the existing embedding_model_id
op.execute("UPDATE index_attempt SET search_settings_id = embedding_model_id")
# Create the foreign key constraint
op.create_foreign_key(
"fk_index_attempt_search_settings",
"index_attempt",
"search_settings",
["search_settings_id"],
["id"],
)
# Make the new column non-nullable
op.alter_column("index_attempt", "search_settings_id", nullable=False)
# Drop the old embedding_model_id column
op.drop_column("index_attempt", "embedding_model_id")
def downgrade() -> None:
# Add back the embedding_model_id column
op.add_column(
"index_attempt", sa.Column("embedding_model_id", sa.Integer(), nullable=True)
)
# Populate the old column with data from search_settings_id
op.execute("UPDATE index_attempt SET embedding_model_id = search_settings_id")
# Make the old column non-nullable
op.alter_column("index_attempt", "embedding_model_id", nullable=False)
# Drop the foreign key constraint
op.drop_constraint(
"fk_index_attempt_search_settings", "index_attempt", type_="foreignkey"
)
# Drop the new search_settings_id column
op.drop_column("index_attempt", "search_settings_id")
# Rename the table back
op.rename_table("search_settings", "embedding_model")
# Remove added columns
op.drop_column("embedding_model", "num_rerank")
op.drop_column("embedding_model", "rerank_api_key")
op.drop_column("embedding_model", "rerank_provider_type")
op.drop_column("embedding_model", "rerank_model_name")
op.drop_column("embedding_model", "disable_rerank_for_streaming")
op.drop_column("embedding_model", "multilingual_expansion")
op.drop_column("embedding_model", "multipass_indexing")
op.create_foreign_key(
"index_attempt__embedding_model_fk",
"index_attempt",
"embedding_model",
["embedding_model_id"],
["id"],
)

View File

@@ -0,0 +1,44 @@
"""notifications
Revision ID: 213fd978c6d8
Revises: 5fc1f54cc252
Create Date: 2024-08-10 11:13:36.070790
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "213fd978c6d8"
down_revision = "5fc1f54cc252"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"notification",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column(
"notif_type",
sa.String(),
nullable=False,
),
sa.Column(
"user_id",
sa.UUID(),
nullable=True,
),
sa.Column("dismissed", sa.Boolean(), nullable=False),
sa.Column("last_shown", sa.DateTime(timezone=True), nullable=False),
sa.Column("first_shown", sa.DateTime(timezone=True), nullable=False),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
def downgrade() -> None:
op.drop_table("notification")

View File

@@ -79,7 +79,7 @@ def downgrade() -> None:
)
op.create_foreign_key(
"document_retrieval_feedback__chat_message_fk",
"document_retrieval",
"document_retrieval_feedback",
"chat_message",
["chat_message_id"],
["id"],

View File

@@ -160,12 +160,28 @@ def downgrade() -> None:
nullable=False,
),
)
op.drop_constraint(
"fk_index_attempt_credential_id", "index_attempt", type_="foreignkey"
)
op.drop_constraint(
"fk_index_attempt_connector_id", "index_attempt", type_="foreignkey"
)
# Check if the constraint exists before dropping
conn = op.get_bind()
inspector = sa.inspect(conn)
constraints = inspector.get_foreign_keys("index_attempt")
if any(
constraint["name"] == "fk_index_attempt_credential_id"
for constraint in constraints
):
op.drop_constraint(
"fk_index_attempt_credential_id", "index_attempt", type_="foreignkey"
)
if any(
constraint["name"] == "fk_index_attempt_connector_id"
for constraint in constraints
):
op.drop_constraint(
"fk_index_attempt_connector_id", "index_attempt", type_="foreignkey"
)
op.drop_column("index_attempt", "credential_id")
op.drop_column("index_attempt", "connector_id")
op.drop_table("connector_credential_pair")

View File

@@ -0,0 +1,32 @@
"""Add Above Below to Persona
Revision ID: 2d2304e27d8c
Revises: 4b08d97e175a
Create Date: 2024-08-21 19:15:15.762948
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "2d2304e27d8c"
down_revision = "4b08d97e175a"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column("persona", sa.Column("chunks_above", sa.Integer(), nullable=True))
op.add_column("persona", sa.Column("chunks_below", sa.Integer(), nullable=True))
op.execute(
"UPDATE persona SET chunks_above = 1, chunks_below = 1 WHERE chunks_above IS NULL AND chunks_below IS NULL"
)
op.alter_column("persona", "chunks_above", nullable=False)
op.alter_column("persona", "chunks_below", nullable=False)
def downgrade() -> None:
op.drop_column("persona", "chunks_below")
op.drop_column("persona", "chunks_above")

View File

@@ -0,0 +1,90 @@
"""Add curator fields
Revision ID: 351faebd379d
Revises: ee3f4b47fad5
Create Date: 2024-08-15 22:37:08.397052
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "351faebd379d"
down_revision = "ee3f4b47fad5"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
# Add is_curator column to User__UserGroup table
op.add_column(
"user__user_group",
sa.Column("is_curator", sa.Boolean(), nullable=False, server_default="false"),
)
# Use batch mode to modify the enum type
with op.batch_alter_table("user", schema=None) as batch_op:
batch_op.alter_column( # type: ignore[attr-defined]
"role",
type_=sa.Enum(
"BASIC",
"ADMIN",
"CURATOR",
"GLOBAL_CURATOR",
name="userrole",
native_enum=False,
),
existing_type=sa.Enum("BASIC", "ADMIN", name="userrole", native_enum=False),
existing_nullable=False,
)
# Create the association table
op.create_table(
"credential__user_group",
sa.Column("credential_id", sa.Integer(), nullable=False),
sa.Column("user_group_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["credential_id"],
["credential.id"],
),
sa.ForeignKeyConstraint(
["user_group_id"],
["user_group.id"],
),
sa.PrimaryKeyConstraint("credential_id", "user_group_id"),
)
op.add_column(
"credential",
sa.Column(
"curator_public", sa.Boolean(), nullable=False, server_default="false"
),
)
def downgrade() -> None:
# Update existing records to ensure they fit within the BASIC/ADMIN roles
op.execute(
"UPDATE \"user\" SET role = 'ADMIN' WHERE role IN ('CURATOR', 'GLOBAL_CURATOR')"
)
# Remove is_curator column from User__UserGroup table
op.drop_column("user__user_group", "is_curator")
with op.batch_alter_table("user", schema=None) as batch_op:
batch_op.alter_column( # type: ignore[attr-defined]
"role",
type_=sa.Enum(
"BASIC", "ADMIN", name="userrole", native_enum=False, length=20
),
existing_type=sa.Enum(
"BASIC",
"ADMIN",
"CURATOR",
"GLOBAL_CURATOR",
name="userrole",
native_enum=False,
),
existing_nullable=False,
)
# Drop the association table
op.drop_table("credential__user_group")
op.drop_column("credential", "curator_public")

View File

@@ -0,0 +1,64 @@
"""server default chosen assistants
Revision ID: 35e6853a51d5
Revises: c99d76fcd298
Create Date: 2024-09-13 13:20:32.885317
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "35e6853a51d5"
down_revision = "c99d76fcd298"
branch_labels = None
depends_on = None
DEFAULT_ASSISTANTS = [-2, -1, 0]
def upgrade() -> None:
# Step 1: Update any NULL values to the default value
# This upgrades existing users without ordered assistant
# to have default assistants set to visible assistants which are
# accessible by them.
op.execute(
"""
UPDATE "user" u
SET chosen_assistants = (
SELECT jsonb_agg(
p.id ORDER BY
COALESCE(p.display_priority, 2147483647) ASC,
p.id ASC
)
FROM persona p
LEFT JOIN persona__user pu ON p.id = pu.persona_id AND pu.user_id = u.id
WHERE p.is_visible = true
AND (p.is_public = true OR pu.user_id IS NOT NULL)
)
WHERE chosen_assistants IS NULL
OR chosen_assistants = 'null'
OR jsonb_typeof(chosen_assistants) = 'null'
OR (jsonb_typeof(chosen_assistants) = 'string' AND chosen_assistants = '"null"')
"""
)
# Step 2: Alter the column to make it non-nullable
op.alter_column(
"user",
"chosen_assistants",
type_=postgresql.JSONB(astext_type=sa.Text()),
nullable=False,
server_default=sa.text(f"'{DEFAULT_ASSISTANTS}'::jsonb"),
)
def downgrade() -> None:
op.alter_column(
"user",
"chosen_assistants",
type_=postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
server_default=None,
)

View File

@@ -0,0 +1,42 @@
"""Rename index_origin to index_recursively
Revision ID: 1d6ad76d1f37
Revises: e1392f05e840
Create Date: 2024-08-01 12:38:54.466081
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "1d6ad76d1f37"
down_revision = "e1392f05e840"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE connector
SET connector_specific_config = jsonb_set(
connector_specific_config,
'{index_recursively}',
'true'::jsonb
) - 'index_origin'
WHERE connector_specific_config ? 'index_origin'
"""
)
def downgrade() -> None:
op.execute(
"""
UPDATE connector
SET connector_specific_config = jsonb_set(
connector_specific_config,
'{index_origin}',
connector_specific_config->'index_recursively'
) - 'index_recursively'
WHERE connector_specific_config ? 'index_recursively'
"""
)

View File

@@ -13,8 +13,8 @@ from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "473a1a7ca408"
down_revision = "325975216eb3"
branch_labels = None
depends_on = None
branch_labels: None = None
depends_on: None = None
default_models_by_provider = {
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini"],

View File

@@ -0,0 +1,80 @@
"""Moved status to connector credential pair
Revision ID: 4a951134c801
Revises: 7477a5f5d728
Create Date: 2024-08-10 19:20:34.527559
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4a951134c801"
down_revision = "7477a5f5d728"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"status",
sa.Enum(
"ACTIVE",
"PAUSED",
"DELETING",
name="connectorcredentialpairstatus",
native_enum=False,
),
nullable=True,
),
)
# Update status of connector_credential_pair based on connector's disabled status
op.execute(
"""
UPDATE connector_credential_pair
SET status = CASE
WHEN (
SELECT disabled
FROM connector
WHERE connector.id = connector_credential_pair.connector_id
) = FALSE THEN 'ACTIVE'
ELSE 'PAUSED'
END
"""
)
# Make the status column not nullable after setting values
op.alter_column("connector_credential_pair", "status", nullable=False)
op.drop_column("connector", "disabled")
def downgrade() -> None:
op.add_column(
"connector",
sa.Column("disabled", sa.BOOLEAN(), autoincrement=False, nullable=True),
)
# Update disabled status of connector based on connector_credential_pair's status
op.execute(
"""
UPDATE connector
SET disabled = CASE
WHEN EXISTS (
SELECT 1
FROM connector_credential_pair
WHERE connector_credential_pair.connector_id = connector.id
AND connector_credential_pair.status = 'ACTIVE'
) THEN FALSE
ELSE TRUE
END
"""
)
# Make the disabled column not nullable after setting values
op.alter_column("connector", "disabled", nullable=False)
op.drop_column("connector_credential_pair", "status")

View File

@@ -0,0 +1,34 @@
"""change default prune_freq
Revision ID: 4b08d97e175a
Revises: d9ec13955951
Create Date: 2024-08-20 15:28:52.993827
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "4b08d97e175a"
down_revision = "d9ec13955951"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE connector
SET prune_freq = 2592000
WHERE prune_freq = 86400
"""
)
def downgrade() -> None:
op.execute(
"""
UPDATE connector
SET prune_freq = 86400
WHERE prune_freq = 2592000
"""
)

View File

@@ -12,8 +12,8 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "4ea2c93919c1"
down_revision = "473a1a7ca408"
branch_labels = None
depends_on = None
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:

View File

@@ -0,0 +1,66 @@
"""Add last synced and last modified to document table
Revision ID: 52a219fb5233
Revises: f7e58d357687
Create Date: 2024-08-28 17:40:46.077470
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.sql import func
# revision identifiers, used by Alembic.
revision = "52a219fb5233"
down_revision = "f7e58d357687"
branch_labels = None
depends_on = None
def upgrade() -> None:
# last modified represents the last time anything needing syncing to vespa changed
# including row metadata and the document itself. This obviously does not include
# the last_synced column.
op.add_column(
"document",
sa.Column(
"last_modified",
sa.DateTime(timezone=True),
nullable=False,
server_default=func.now(),
),
)
# last synced represents the last time this document was synced to Vespa
op.add_column(
"document",
sa.Column("last_synced", sa.DateTime(timezone=True), nullable=True),
)
# Set last_synced to the same value as last_modified for existing rows
op.execute(
"""
UPDATE document
SET last_synced = last_modified
"""
)
op.create_index(
op.f("ix_document_last_modified"),
"document",
["last_modified"],
unique=False,
)
op.create_index(
op.f("ix_document_last_synced"),
"document",
["last_synced"],
unique=False,
)
def downgrade() -> None:
op.drop_index(op.f("ix_document_last_synced"), table_name="document")
op.drop_index(op.f("ix_document_last_modified"), table_name="document")
op.drop_column("document", "last_synced")
op.drop_column("document", "last_modified")

View File

@@ -0,0 +1,79 @@
"""assistant_rework
Revision ID: 55546a7967ee
Revises: 61ff3651add4
Create Date: 2024-09-18 17:00:23.755399
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "55546a7967ee"
down_revision = "61ff3651add4"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Reworking persona and user tables for new assistant features
# keep track of user's chosen assistants separate from their `ordering`
op.add_column("persona", sa.Column("builtin_persona", sa.Boolean(), nullable=True))
op.execute("UPDATE persona SET builtin_persona = default_persona")
op.alter_column("persona", "builtin_persona", nullable=False)
op.drop_index("_default_persona_name_idx", table_name="persona")
op.create_index(
"_builtin_persona_name_idx",
"persona",
["name"],
unique=True,
postgresql_where=sa.text("builtin_persona = true"),
)
op.add_column(
"user", sa.Column("visible_assistants", postgresql.JSONB(), nullable=True)
)
op.add_column(
"user", sa.Column("hidden_assistants", postgresql.JSONB(), nullable=True)
)
op.execute(
"UPDATE \"user\" SET visible_assistants = '[]'::jsonb, hidden_assistants = '[]'::jsonb"
)
op.alter_column(
"user",
"visible_assistants",
nullable=False,
server_default=sa.text("'[]'::jsonb"),
)
op.alter_column(
"user",
"hidden_assistants",
nullable=False,
server_default=sa.text("'[]'::jsonb"),
)
op.drop_column("persona", "default_persona")
op.add_column(
"persona", sa.Column("is_default_persona", sa.Boolean(), nullable=True)
)
def downgrade() -> None:
# Reverting changes made in upgrade
op.drop_column("user", "hidden_assistants")
op.drop_column("user", "visible_assistants")
op.drop_index("_builtin_persona_name_idx", table_name="persona")
op.drop_column("persona", "is_default_persona")
op.add_column("persona", sa.Column("default_persona", sa.Boolean(), nullable=True))
op.execute("UPDATE persona SET default_persona = builtin_persona")
op.alter_column("persona", "default_persona", nullable=False)
op.drop_column("persona", "builtin_persona")
op.create_index(
"_default_persona_name_idx",
"persona",
["name"],
unique=True,
postgresql_where=sa.text("default_persona = true"),
)

View File

@@ -0,0 +1,35 @@
"""match_any_keywords flag for standard answers
Revision ID: 5c7fdadae813
Revises: efb35676026c
Create Date: 2024-09-13 18:52:59.256478
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "5c7fdadae813"
down_revision = "efb35676026c"
branch_labels = None
depends_on = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.add_column(
"standard_answer",
sa.Column(
"match_any_keywords",
sa.Boolean(),
nullable=False,
server_default=sa.false(),
),
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.drop_column("standard_answer", "match_any_keywords")
# ### end Alembic commands ###

View File

@@ -0,0 +1,25 @@
"""hybrid-enum
Revision ID: 5fc1f54cc252
Revises: 1d6ad76d1f37
Create Date: 2024-08-06 15:35:40.278485
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "5fc1f54cc252"
down_revision = "1d6ad76d1f37"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.drop_column("persona", "search_type")
def downgrade() -> None:
op.add_column("persona", sa.Column("search_type", sa.String(), nullable=True))
op.execute("UPDATE persona SET search_type = 'SEMANTIC'")
op.alter_column("persona", "search_type", nullable=False)

View File

@@ -0,0 +1,162 @@
"""Add Permission Syncing
Revision ID: 61ff3651add4
Revises: 1b8206b29c5d
Create Date: 2024-09-05 13:57:11.770413
"""
import fastapi_users_db_sqlalchemy
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "61ff3651add4"
down_revision = "1b8206b29c5d"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Admin user who set up connectors will lose access to the docs temporarily
# only way currently to give back access is to rerun from beginning
op.add_column(
"connector_credential_pair",
sa.Column(
"access_type",
sa.String(),
nullable=True,
),
)
op.execute(
"UPDATE connector_credential_pair SET access_type = 'PUBLIC' WHERE is_public = true"
)
op.execute(
"UPDATE connector_credential_pair SET access_type = 'PRIVATE' WHERE is_public = false"
)
op.alter_column("connector_credential_pair", "access_type", nullable=False)
op.add_column(
"connector_credential_pair",
sa.Column(
"auto_sync_options",
postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
),
)
op.add_column(
"connector_credential_pair",
sa.Column("last_time_perm_sync", sa.DateTime(timezone=True), nullable=True),
)
op.drop_column("connector_credential_pair", "is_public")
op.add_column(
"document",
sa.Column("external_user_emails", postgresql.ARRAY(sa.String()), nullable=True),
)
op.add_column(
"document",
sa.Column(
"external_user_group_ids", postgresql.ARRAY(sa.String()), nullable=True
),
)
op.add_column(
"document",
sa.Column("is_public", sa.Boolean(), nullable=True),
)
op.create_table(
"user__external_user_group_id",
sa.Column(
"user_id", fastapi_users_db_sqlalchemy.generics.GUID(), nullable=False
),
sa.Column("external_user_group_id", sa.String(), nullable=False),
sa.Column("cc_pair_id", sa.Integer(), nullable=False),
sa.PrimaryKeyConstraint("user_id"),
)
op.drop_column("external_permission", "user_id")
op.drop_column("email_to_external_user_cache", "user_id")
op.drop_table("permission_sync_run")
op.drop_table("external_permission")
op.drop_table("email_to_external_user_cache")
def downgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column("is_public", sa.BOOLEAN(), nullable=True),
)
op.execute(
"UPDATE connector_credential_pair SET is_public = (access_type = 'PUBLIC')"
)
op.alter_column("connector_credential_pair", "is_public", nullable=False)
op.drop_column("connector_credential_pair", "auto_sync_options")
op.drop_column("connector_credential_pair", "access_type")
op.drop_column("connector_credential_pair", "last_time_perm_sync")
op.drop_column("document", "external_user_emails")
op.drop_column("document", "external_user_group_ids")
op.drop_column("document", "is_public")
op.drop_table("user__external_user_group_id")
# Drop the enum type at the end of the downgrade
op.create_table(
"permission_sync_run",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column(
"source_type",
sa.String(),
nullable=False,
),
sa.Column("update_type", sa.String(), nullable=False),
sa.Column("cc_pair_id", sa.Integer(), nullable=True),
sa.Column(
"status",
sa.String(),
nullable=False,
),
sa.Column("error_msg", sa.Text(), nullable=True),
sa.Column(
"updated_at",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(
["cc_pair_id"],
["connector_credential_pair.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"external_permission",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("user_id", sa.UUID(), nullable=True),
sa.Column("user_email", sa.String(), nullable=False),
sa.Column(
"source_type",
sa.String(),
nullable=False,
),
sa.Column("external_permission_group", sa.String(), nullable=False),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"email_to_external_user_cache",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("external_user_id", sa.String(), nullable=False),
sa.Column("user_id", sa.UUID(), nullable=True),
sa.Column("user_email", sa.String(), nullable=False),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)

View File

@@ -0,0 +1,24 @@
"""Added model defaults for users
Revision ID: 7477a5f5d728
Revises: 213fd978c6d8
Create Date: 2024-08-04 19:00:04.512634
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "7477a5f5d728"
down_revision = "213fd978c6d8"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column("user", sa.Column("default_model", sa.Text(), nullable=True))
def downgrade() -> None:
op.drop_column("user", "default_model")

View File

@@ -28,5 +28,9 @@ def upgrade() -> None:
def downgrade() -> None:
# This wasn't really required by the code either, no good reason to make it unique again
pass
op.create_unique_constraint(
"connector_credential_pair__name__key", "connector_credential_pair", ["name"]
)
op.alter_column(
"connector_credential_pair", "name", existing_type=sa.String(), nullable=True
)

View File

@@ -10,7 +10,7 @@ import sqlalchemy as sa
from danswer.db.models import IndexModelStatus
from danswer.search.enums import RecencyBiasSetting
from danswer.search.models import SearchType
from danswer.search.enums import SearchType
# revision identifiers, used by Alembic.
revision = "776b3bbe9092"

View File

@@ -0,0 +1,27 @@
"""persona_start_date
Revision ID: 797089dfb4d2
Revises: 55546a7967ee
Create Date: 2024-09-11 14:51:49.785835
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "797089dfb4d2"
down_revision = "55546a7967ee"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"persona",
sa.Column("search_start_date", sa.DateTime(timezone=True), nullable=True),
)
def downgrade() -> None:
op.drop_column("persona", "search_start_date")

View File

@@ -11,8 +11,8 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "8a87bd6ec550"
down_revision = "4ea2c93919c1"
branch_labels = None
depends_on = None
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
@@ -35,9 +35,22 @@ def upgrade() -> None:
op.execute(
"""
UPDATE index_attempt ia
SET connector_credential_pair_id = ccp.id
FROM connector_credential_pair ccp
WHERE ia.connector_id = ccp.connector_id AND ia.credential_id = ccp.credential_id
SET connector_credential_pair_id = (
SELECT id FROM connector_credential_pair ccp
WHERE
(ia.connector_id IS NULL OR ccp.connector_id = ia.connector_id)
AND (ia.credential_id IS NULL OR ccp.credential_id = ia.credential_id)
LIMIT 1
)
WHERE ia.connector_id IS NOT NULL OR ia.credential_id IS NOT NULL
"""
)
# For good measure
op.execute(
"""
DELETE FROM index_attempt
WHERE connector_credential_pair_id IS NULL
"""
)

View File

@@ -0,0 +1,158 @@
"""migration confluence to be explicit
Revision ID: a3795dce87be
Revises: 1f60f60c3401
Create Date: 2024-09-01 13:52:12.006740
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
from sqlalchemy.sql import table, column
revision = "a3795dce87be"
down_revision = "1f60f60c3401"
branch_labels: None = None
depends_on: None = None
def extract_confluence_keys_from_url(wiki_url: str) -> tuple[str, str, str, bool]:
from urllib.parse import urlparse
def _extract_confluence_keys_from_cloud_url(wiki_url: str) -> tuple[str, str, str]:
parsed_url = urlparse(wiki_url)
wiki_base = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.split('/spaces')[0]}"
path_parts = parsed_url.path.split("/")
space = path_parts[3]
page_id = path_parts[5] if len(path_parts) > 5 else ""
return wiki_base, space, page_id
def _extract_confluence_keys_from_datacenter_url(
wiki_url: str,
) -> tuple[str, str, str]:
DISPLAY = "/display/"
PAGE = "/pages/"
parsed_url = urlparse(wiki_url)
wiki_base = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.split(DISPLAY)[0]}"
space = DISPLAY.join(parsed_url.path.split(DISPLAY)[1:]).split("/")[0]
page_id = ""
if (content := parsed_url.path.split(PAGE)) and len(content) > 1:
page_id = content[1]
return wiki_base, space, page_id
is_confluence_cloud = (
".atlassian.net/wiki/spaces/" in wiki_url
or ".jira.com/wiki/spaces/" in wiki_url
)
if is_confluence_cloud:
wiki_base, space, page_id = _extract_confluence_keys_from_cloud_url(wiki_url)
else:
wiki_base, space, page_id = _extract_confluence_keys_from_datacenter_url(
wiki_url
)
return wiki_base, space, page_id, is_confluence_cloud
def reconstruct_confluence_url(
wiki_base: str, space: str, page_id: str, is_cloud: bool
) -> str:
if is_cloud:
url = f"{wiki_base}/spaces/{space}"
if page_id:
url += f"/pages/{page_id}"
else:
url = f"{wiki_base}/display/{space}"
if page_id:
url += f"/pages/{page_id}"
return url
def upgrade() -> None:
connector = table(
"connector",
column("id", sa.Integer),
column("source", sa.String()),
column("input_type", sa.String()),
column("connector_specific_config", postgresql.JSONB),
)
# Fetch all Confluence connectors
connection = op.get_bind()
confluence_connectors = connection.execute(
sa.select(connector).where(
sa.and_(
connector.c.source == "CONFLUENCE", connector.c.input_type == "POLL"
)
)
).fetchall()
for row in confluence_connectors:
config = row.connector_specific_config
wiki_page_url = config["wiki_page_url"]
wiki_base, space, page_id, is_cloud = extract_confluence_keys_from_url(
wiki_page_url
)
new_config = {
"wiki_base": wiki_base,
"space": space,
"page_id": page_id,
"is_cloud": is_cloud,
}
for key, value in config.items():
if key not in ["wiki_page_url"]:
new_config[key] = value
op.execute(
connector.update()
.where(connector.c.id == row.id)
.values(connector_specific_config=new_config)
)
def downgrade() -> None:
connector = table(
"connector",
column("id", sa.Integer),
column("source", sa.String()),
column("input_type", sa.String()),
column("connector_specific_config", postgresql.JSONB),
)
confluence_connectors = (
op.get_bind()
.execute(
sa.select(connector).where(
connector.c.source == "CONFLUENCE", connector.c.input_type == "POLL"
)
)
.fetchall()
)
for row in confluence_connectors:
config = row.connector_specific_config
if all(key in config for key in ["wiki_base", "space", "is_cloud"]):
wiki_page_url = reconstruct_confluence_url(
config["wiki_base"],
config["space"],
config.get("page_id", ""),
config["is_cloud"],
)
new_config = {"wiki_page_url": wiki_page_url}
new_config.update(
{
k: v
for k, v in config.items()
if k not in ["wiki_base", "space", "page_id", "is_cloud"]
}
)
op.execute(
connector.update()
.where(connector.c.id == row.id)
.values(connector_specific_config=new_config)
)

View File

@@ -0,0 +1,26 @@
"""add support for litellm proxy in reranking
Revision ID: ba98eba0f66a
Revises: bceb1e139447
Create Date: 2024-09-06 10:36:04.507332
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "ba98eba0f66a"
down_revision = "bceb1e139447"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"search_settings", sa.Column("rerank_api_url", sa.String(), nullable=True)
)
def downgrade() -> None:
op.drop_column("search_settings", "rerank_api_url")

View File

@@ -0,0 +1,26 @@
"""Add base_url to CloudEmbeddingProvider
Revision ID: bceb1e139447
Revises: a3795dce87be
Create Date: 2024-08-28 17:00:52.554580
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "bceb1e139447"
down_revision = "a3795dce87be"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"embedding_provider", sa.Column("api_url", sa.String(), nullable=True)
)
def downgrade() -> None:
op.drop_column("embedding_provider", "api_url")

View File

@@ -0,0 +1,43 @@
"""non nullable default persona
Revision ID: bd2921608c3a
Revises: 797089dfb4d2
Create Date: 2024-09-20 10:28:37.992042
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "bd2921608c3a"
down_revision = "797089dfb4d2"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Set existing NULL values to False
op.execute(
"UPDATE persona SET is_default_persona = FALSE WHERE is_default_persona IS NULL"
)
# Alter the column to be not nullable with a default value of False
op.alter_column(
"persona",
"is_default_persona",
existing_type=sa.Boolean(),
nullable=False,
server_default=sa.text("false"),
)
def downgrade() -> None:
# Revert the changes
op.alter_column(
"persona",
"is_default_persona",
existing_type=sa.Boolean(),
nullable=True,
server_default=None,
)

View File

@@ -0,0 +1,57 @@
"""Add index_attempt_errors table
Revision ID: c5b692fa265c
Revises: 4a951134c801
Create Date: 2024-08-08 14:06:39.581972
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "c5b692fa265c"
down_revision = "4a951134c801"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("index_attempt_id", sa.Integer(), nullable=True),
sa.Column("batch", sa.Integer(), nullable=True),
sa.Column(
"doc_summaries",
postgresql.JSONB(astext_type=sa.Text()),
nullable=False,
),
sa.Column("error_msg", sa.Text(), nullable=True),
sa.Column("traceback", sa.Text(), nullable=True),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_index(
"index_attempt_id",
"index_attempt_errors",
["time_created"],
unique=False,
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.drop_index("index_attempt_id", table_name="index_attempt_errors")
op.drop_table("index_attempt_errors")
# ### end Alembic commands ###

View File

@@ -0,0 +1,31 @@
"""add nullable to persona id in Chat Session
Revision ID: c99d76fcd298
Revises: 5c7fdadae813
Create Date: 2024-07-09 19:27:01.579697
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "c99d76fcd298"
down_revision = "5c7fdadae813"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column(
"chat_session", "persona_id", existing_type=sa.INTEGER(), nullable=True
)
def downgrade() -> None:
op.alter_column(
"chat_session",
"persona_id",
existing_type=sa.INTEGER(),
nullable=False,
)

View File

@@ -19,6 +19,9 @@ depends_on: None = None
def upgrade() -> None:
op.drop_table("deletion_attempt")
# Remove the DeletionStatus enum
op.execute("DROP TYPE IF EXISTS deletionstatus;")
def downgrade() -> None:
op.create_table(

View File

@@ -0,0 +1,31 @@
"""Remove _alt suffix from model_name
Revision ID: d9ec13955951
Revises: da4c21c69164
Create Date: 2024-08-20 16:31:32.955686
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "d9ec13955951"
down_revision = "da4c21c69164"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.execute(
"""
UPDATE embedding_model
SET model_name = regexp_replace(model_name, '__danswer_alt_index$', '')
WHERE model_name LIKE '%__danswer_alt_index'
"""
)
def downgrade() -> None:
# We can't reliably add the __danswer_alt_index suffix back, so we'll leave this empty
pass

View File

@@ -0,0 +1,65 @@
"""chosen_assistants changed to jsonb
Revision ID: da4c21c69164
Revises: c5b692fa265c
Create Date: 2024-08-18 19:06:47.291491
"""
import json
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "da4c21c69164"
down_revision = "c5b692fa265c"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
conn = op.get_bind()
existing_ids_and_chosen_assistants = conn.execute(
sa.text("select id, chosen_assistants from public.user")
)
op.drop_column(
"user",
"chosen_assistants",
)
op.add_column(
"user",
sa.Column(
"chosen_assistants",
postgresql.JSONB(astext_type=sa.Text()),
nullable=True,
),
)
for id, chosen_assistants in existing_ids_and_chosen_assistants:
conn.execute(
sa.text(
"update public.user set chosen_assistants = :chosen_assistants where id = :id"
),
{"chosen_assistants": json.dumps(chosen_assistants), "id": id},
)
def downgrade() -> None:
conn = op.get_bind()
existing_ids_and_chosen_assistants = conn.execute(
sa.text("select id, chosen_assistants from public.user")
)
op.drop_column(
"user",
"chosen_assistants",
)
op.add_column(
"user",
sa.Column("chosen_assistants", postgresql.ARRAY(sa.Integer()), nullable=True),
)
for id, chosen_assistants in existing_ids_and_chosen_assistants:
conn.execute(
sa.text(
"update public.user set chosen_assistants = :chosen_assistants where id = :id"
),
{"chosen_assistants": chosen_assistants, "id": id},
)

View File

@@ -9,7 +9,7 @@ from alembic import op
import sqlalchemy as sa
from sqlalchemy import table, column, String, Integer, Boolean
from danswer.db.embedding_model import (
from danswer.db.search_settings import (
get_new_default_embedding_model,
get_old_default_embedding_model,
user_has_overridden_embedding_model,
@@ -71,14 +71,14 @@ def upgrade() -> None:
"query_prefix": old_embedding_model.query_prefix,
"passage_prefix": old_embedding_model.passage_prefix,
"index_name": old_embedding_model.index_name,
"status": old_embedding_model.status,
"status": IndexModelStatus.PRESENT,
}
],
)
# if the user has not overridden the default embedding model via env variables,
# insert the new default model into the database to auto-upgrade them
if not user_has_overridden_embedding_model():
new_embedding_model = get_new_default_embedding_model(is_present=False)
new_embedding_model = get_new_default_embedding_model()
op.bulk_insert(
EmbeddingModel,
[
@@ -136,4 +136,4 @@ def downgrade() -> None:
)
op.drop_column("index_attempt", "embedding_model_id")
op.drop_table("embedding_model")
op.execute("DROP TYPE indexmodelstatus;")
op.execute("DROP TYPE IF EXISTS indexmodelstatus;")

View File

@@ -0,0 +1,58 @@
"""Added input prompts
Revision ID: e1392f05e840
Revises: 08a1eda20fe1
Create Date: 2024-07-13 19:09:22.556224
"""
import fastapi_users_db_sqlalchemy
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "e1392f05e840"
down_revision = "08a1eda20fe1"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_table(
"inputprompt",
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
sa.Column("prompt", sa.String(), nullable=False),
sa.Column("content", sa.String(), nullable=False),
sa.Column("active", sa.Boolean(), nullable=False),
sa.Column("is_public", sa.Boolean(), nullable=False),
sa.Column(
"user_id",
fastapi_users_db_sqlalchemy.generics.GUID(),
nullable=True,
),
sa.ForeignKeyConstraint(
["user_id"],
["user.id"],
),
sa.PrimaryKeyConstraint("id"),
)
op.create_table(
"inputprompt__user",
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
sa.Column("user_id", sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(
["input_prompt_id"],
["inputprompt.id"],
),
sa.ForeignKeyConstraint(
["user_id"],
["inputprompt.id"],
),
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
)
def downgrade() -> None:
op.drop_table("inputprompt__user")
op.drop_table("inputprompt")

View File

@@ -0,0 +1,28 @@
"""Added alternate model to chat message
Revision ID: ee3f4b47fad5
Revises: 2d2304e27d8c
Create Date: 2024-08-12 00:11:50.915845
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "ee3f4b47fad5"
down_revision = "2d2304e27d8c"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"chat_message",
sa.Column("overridden_model", sa.String(length=255), nullable=True),
)
def downgrade() -> None:
op.drop_column("chat_message", "overridden_model")

View File

@@ -0,0 +1,32 @@
"""standard answer match_regex flag
Revision ID: efb35676026c
Revises: 0ebb1d516877
Create Date: 2024-09-11 13:55:46.101149
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "efb35676026c"
down_revision = "0ebb1d516877"
branch_labels = None
depends_on = None
def upgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.add_column(
"standard_answer",
sa.Column(
"match_regex", sa.Boolean(), nullable=False, server_default=sa.false()
),
)
# ### end Alembic commands ###
def downgrade() -> None:
# ### commands auto generated by Alembic - please adjust! ###
op.drop_column("standard_answer", "match_regex")
# ### end Alembic commands ###

View File

@@ -0,0 +1,172 @@
"""embedding provider by provider type
Revision ID: f17bf3b0d9f1
Revises: 351faebd379d
Create Date: 2024-08-21 13:13:31.120460
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f17bf3b0d9f1"
down_revision = "351faebd379d"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
# Add provider_type column to embedding_provider
op.add_column(
"embedding_provider",
sa.Column("provider_type", sa.String(50), nullable=True),
)
# Update provider_type with existing name values
op.execute("UPDATE embedding_provider SET provider_type = UPPER(name)")
# Make provider_type not nullable
op.alter_column("embedding_provider", "provider_type", nullable=False)
# Drop the foreign key constraint in embedding_model table
op.drop_constraint(
"fk_embedding_model_cloud_provider", "embedding_model", type_="foreignkey"
)
# Drop the existing primary key constraint
op.drop_constraint("embedding_provider_pkey", "embedding_provider", type_="primary")
# Create a new primary key constraint on provider_type
op.create_primary_key(
"embedding_provider_pkey", "embedding_provider", ["provider_type"]
)
# Add provider_type column to embedding_model
op.add_column(
"embedding_model",
sa.Column("provider_type", sa.String(50), nullable=True),
)
# Update provider_type for existing embedding models
op.execute(
"""
UPDATE embedding_model
SET provider_type = (
SELECT provider_type
FROM embedding_provider
WHERE embedding_provider.id = embedding_model.cloud_provider_id
)
"""
)
# Drop the old id column from embedding_provider
op.drop_column("embedding_provider", "id")
# Drop the name column from embedding_provider
op.drop_column("embedding_provider", "name")
# Drop the default_model_id column from embedding_provider
op.drop_column("embedding_provider", "default_model_id")
# Drop the old cloud_provider_id column from embedding_model
op.drop_column("embedding_model", "cloud_provider_id")
# Create the new foreign key constraint
op.create_foreign_key(
"fk_embedding_model_cloud_provider",
"embedding_model",
"embedding_provider",
["provider_type"],
["provider_type"],
)
def downgrade() -> None:
# Drop the foreign key constraint in embedding_model table
op.drop_constraint(
"fk_embedding_model_cloud_provider", "embedding_model", type_="foreignkey"
)
# Add back the cloud_provider_id column to embedding_model
op.add_column(
"embedding_model", sa.Column("cloud_provider_id", sa.Integer(), nullable=True)
)
op.add_column("embedding_provider", sa.Column("id", sa.Integer(), nullable=True))
# Assign incrementing IDs to embedding providers
op.execute(
"""
CREATE SEQUENCE IF NOT EXISTS embedding_provider_id_seq;"""
)
op.execute(
"""
UPDATE embedding_provider SET id = nextval('embedding_provider_id_seq');
"""
)
# Update cloud_provider_id based on provider_type
op.execute(
"""
UPDATE embedding_model
SET cloud_provider_id = CASE
WHEN provider_type IS NULL THEN NULL
ELSE (
SELECT id
FROM embedding_provider
WHERE embedding_provider.provider_type = embedding_model.provider_type
)
END
"""
)
# Drop the provider_type column from embedding_model
op.drop_column("embedding_model", "provider_type")
# Add back the columns to embedding_provider
op.add_column("embedding_provider", sa.Column("name", sa.String(50), nullable=True))
op.add_column(
"embedding_provider", sa.Column("default_model_id", sa.Integer(), nullable=True)
)
# Drop the existing primary key constraint on provider_type
op.drop_constraint("embedding_provider_pkey", "embedding_provider", type_="primary")
# Create the original primary key constraint on id
op.create_primary_key("embedding_provider_pkey", "embedding_provider", ["id"])
# Update name with existing provider_type values
op.execute(
"""
UPDATE embedding_provider
SET name = CASE
WHEN provider_type = 'OPENAI' THEN 'OpenAI'
WHEN provider_type = 'COHERE' THEN 'Cohere'
WHEN provider_type = 'GOOGLE' THEN 'Google'
WHEN provider_type = 'VOYAGE' THEN 'Voyage'
ELSE provider_type
END
"""
)
# Drop the provider_type column from embedding_provider
op.drop_column("embedding_provider", "provider_type")
# Recreate the foreign key constraint in embedding_model table
op.create_foreign_key(
"fk_embedding_model_cloud_provider",
"embedding_model",
"embedding_provider",
["cloud_provider_id"],
["id"],
)
# Recreate the foreign key constraint in embedding_model table
op.create_foreign_key(
"fk_embedding_provider_default_model",
"embedding_provider",
"embedding_model",
["default_model_id"],
["id"],
)

View File

@@ -0,0 +1,26 @@
"""add custom headers to tools
Revision ID: f32615f71aeb
Revises: bd2921608c3a
Create Date: 2024-09-12 20:26:38.932377
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "f32615f71aeb"
down_revision = "bd2921608c3a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"tool", sa.Column("custom_headers", postgresql.JSONB(), nullable=True)
)
def downgrade() -> None:
op.drop_column("tool", "custom_headers")

View File

@@ -0,0 +1,26 @@
"""add has_web_login column to user
Revision ID: f7e58d357687
Revises: ba98eba0f66a
Create Date: 2024-09-07 20:20:54.522620
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f7e58d357687"
down_revision = "ba98eba0f66a"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.add_column(
"user",
sa.Column("has_web_login", sa.Boolean(), nullable=False, server_default="true"),
)
def downgrade() -> None:
op.drop_column("user", "has_web_login")

View File

@@ -1,41 +1,92 @@
from sqlalchemy.orm import Session
from danswer.access.models import DocumentAccess
from danswer.access.utils import prefix_user
from danswer.access.utils import prefix_user_email
from danswer.configs.constants import PUBLIC_DOC_PAT
from danswer.db.document import get_acccess_info_for_documents
from danswer.db.document import get_access_info_for_document
from danswer.db.document import get_access_info_for_documents
from danswer.db.models import User
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
from danswer.utils.variable_functionality import fetch_versioned_implementation
def _get_access_for_document(
document_id: str,
db_session: Session,
) -> DocumentAccess:
info = get_access_info_for_document(
db_session=db_session,
document_id=document_id,
)
return DocumentAccess.build(
user_emails=info[1] if info and info[1] else [],
user_groups=[],
external_user_emails=[],
external_user_group_ids=[],
is_public=info[2] if info else False,
)
def get_access_for_document(
document_id: str,
db_session: Session,
) -> DocumentAccess:
versioned_get_access_for_document_fn = fetch_versioned_implementation(
"danswer.access.access", "_get_access_for_document"
)
return versioned_get_access_for_document_fn(document_id, db_session) # type: ignore
def get_null_document_access() -> DocumentAccess:
return DocumentAccess(
user_emails=set(),
user_groups=set(),
is_public=False,
external_user_emails=set(),
external_user_group_ids=set(),
)
def _get_access_for_documents(
document_ids: list[str],
db_session: Session,
cc_pair_to_delete: ConnectorCredentialPairIdentifier | None = None,
) -> dict[str, DocumentAccess]:
document_access_info = get_acccess_info_for_documents(
document_access_info = get_access_info_for_documents(
db_session=db_session,
document_ids=document_ids,
cc_pair_to_delete=cc_pair_to_delete,
)
return {
document_id: DocumentAccess.build(user_ids, [], is_public)
for document_id, user_ids, is_public in document_access_info
doc_access = {
document_id: DocumentAccess(
user_emails=set([email for email in user_emails if email]),
# MIT version will wipe all groups and external groups on update
user_groups=set(),
is_public=is_public,
external_user_emails=set(),
external_user_group_ids=set(),
)
for document_id, user_emails, is_public in document_access_info
}
# Sometimes the document has not be indexed by the indexing job yet, in those cases
# the document does not exist and so we use least permissive. Specifically the EE version
# checks the MIT version permissions and creates a superset. This ensures that this flow
# does not fail even if the Document has not yet been indexed.
for doc_id in document_ids:
if doc_id not in doc_access:
doc_access[doc_id] = get_null_document_access()
return doc_access
def get_access_for_documents(
document_ids: list[str],
db_session: Session,
cc_pair_to_delete: ConnectorCredentialPairIdentifier | None = None,
) -> dict[str, DocumentAccess]:
"""Fetches all access information for the given documents."""
versioned_get_access_for_documents_fn = fetch_versioned_implementation(
"danswer.access.access", "_get_access_for_documents"
)
return versioned_get_access_for_documents_fn(
document_ids, db_session, cc_pair_to_delete
document_ids, db_session
) # type: ignore
@@ -46,7 +97,7 @@ def _get_acl_for_user(user: User | None, db_session: Session) -> set[str]:
matches one entry in the returned set.
"""
if user:
return {prefix_user(str(user.id)), PUBLIC_DOC_PAT}
return {prefix_user_email(user.email), PUBLIC_DOC_PAT}
return {PUBLIC_DOC_PAT}

View File

@@ -1,30 +1,72 @@
from dataclasses import dataclass
from uuid import UUID
from danswer.access.utils import prefix_user
from danswer.access.utils import prefix_external_group
from danswer.access.utils import prefix_user_email
from danswer.access.utils import prefix_user_group
from danswer.configs.constants import PUBLIC_DOC_PAT
@dataclass(frozen=True)
class DocumentAccess:
user_ids: set[str] # stringified UUIDs
user_groups: set[str] # names of user groups associated with this document
class ExternalAccess:
# Emails of external users with access to the doc externally
external_user_emails: set[str]
# Names or external IDs of groups with access to the doc
external_user_group_ids: set[str]
# Whether the document is public in the external system or Danswer
is_public: bool
def to_acl(self) -> list[str]:
return (
[prefix_user(user_id) for user_id in self.user_ids]
@dataclass(frozen=True)
class DocumentAccess(ExternalAccess):
# User emails for Danswer users, None indicates admin
user_emails: set[str | None]
# Names of user groups associated with this document
user_groups: set[str]
def to_acl(self) -> set[str]:
return set(
[
prefix_user_email(user_email)
for user_email in self.user_emails
if user_email
]
+ [prefix_user_group(group_name) for group_name in self.user_groups]
+ [
prefix_user_email(user_email)
for user_email in self.external_user_emails
]
+ [
# The group names are already prefixed by the source type
# This adds an additional prefix of "external_group:"
prefix_external_group(group_name)
for group_name in self.external_user_group_ids
]
+ ([PUBLIC_DOC_PAT] if self.is_public else [])
)
@classmethod
def build(
cls, user_ids: list[UUID | None], user_groups: list[str], is_public: bool
cls,
user_emails: list[str | None],
user_groups: list[str],
external_user_emails: list[str],
external_user_group_ids: list[str],
is_public: bool,
) -> "DocumentAccess":
return cls(
user_ids={str(user_id) for user_id in user_ids if user_id},
external_user_emails={
prefix_user_email(external_email)
for external_email in external_user_emails
},
external_user_group_ids={
prefix_external_group(external_group_id)
for external_group_id in external_user_group_ids
},
user_emails={
prefix_user_email(user_email)
for user_email in user_emails
if user_email
},
user_groups=set(user_groups),
is_public=is_public,
)

View File

@@ -1,10 +1,24 @@
def prefix_user(user_id: str) -> str:
"""Prefixes a user ID to eliminate collision with group names.
This assumes that groups are prefixed with a different prefix."""
return f"user_id:{user_id}"
from danswer.configs.constants import DocumentSource
def prefix_user_email(user_email: str) -> str:
"""Prefixes a user email to eliminate collision with group names.
This applies to both a Danswer user and an External user, this is to make the query time
more efficient"""
return f"user_email:{user_email}"
def prefix_user_group(user_group_name: str) -> str:
"""Prefixes a user group name to eliminate collision with user IDs.
"""Prefixes a user group name to eliminate collision with user emails.
This assumes that user ids are prefixed with a different prefix."""
return f"group:{user_group_name}"
def prefix_external_group(ext_group_name: str) -> str:
"""Prefixes an external group name to eliminate collision with user emails / Danswer groups."""
return f"external_group:{ext_group_name}"
def prefix_group_w_source(ext_group_name: str, source: DocumentSource) -> str:
"""External groups may collide across sources, every source needs its own prefix."""
return f"{source.value.upper()}_{ext_group_name}"

View File

@@ -1,21 +1,20 @@
from typing import cast
from danswer.configs.constants import KV_USER_STORE_KEY
from danswer.dynamic_configs.factory import get_dynamic_config_store
from danswer.dynamic_configs.interface import ConfigNotFoundError
from danswer.dynamic_configs.interface import JSON_ro
USER_STORE_KEY = "INVITED_USERS"
def get_invited_users() -> list[str]:
try:
store = get_dynamic_config_store()
return cast(list, store.load(USER_STORE_KEY))
return cast(list, store.load(KV_USER_STORE_KEY))
except ConfigNotFoundError:
return list()
def write_invited_users(emails: list[str]) -> int:
store = get_dynamic_config_store()
store.store(USER_STORE_KEY, cast(JSON_ro, emails))
store.store(KV_USER_STORE_KEY, cast(JSON_ro, emails))
return len(emails)

View File

@@ -3,29 +3,27 @@ from typing import Any
from typing import cast
from danswer.auth.schemas import UserRole
from danswer.configs.constants import KV_NO_AUTH_USER_PREFERENCES_KEY
from danswer.dynamic_configs.store import ConfigNotFoundError
from danswer.dynamic_configs.store import DynamicConfigStore
from danswer.server.manage.models import UserInfo
from danswer.server.manage.models import UserPreferences
NO_AUTH_USER_PREFERENCES_KEY = "no_auth_user_preferences"
def set_no_auth_user_preferences(
store: DynamicConfigStore, preferences: UserPreferences
) -> None:
store.store(NO_AUTH_USER_PREFERENCES_KEY, preferences.dict())
store.store(KV_NO_AUTH_USER_PREFERENCES_KEY, preferences.model_dump())
def load_no_auth_user_preferences(store: DynamicConfigStore) -> UserPreferences:
try:
preferences_data = cast(
Mapping[str, Any], store.load(NO_AUTH_USER_PREFERENCES_KEY)
Mapping[str, Any], store.load(KV_NO_AUTH_USER_PREFERENCES_KEY)
)
return UserPreferences(**preferences_data)
except ConfigNotFoundError:
return UserPreferences(chosen_assistants=None)
return UserPreferences(chosen_assistants=None, default_model=None)
def fetch_no_auth_user(store: DynamicConfigStore) -> UserInfo:

View File

@@ -5,8 +5,20 @@ from fastapi_users import schemas
class UserRole(str, Enum):
"""
User roles
- Basic can't perform any admin actions
- Admin can perform all admin actions
- Curator can perform admin actions for
groups they are curators of
- Global Curator can perform admin actions
for all groups they are a member of
"""
BASIC = "basic"
ADMIN = "admin"
CURATOR = "curator"
GLOBAL_CURATOR = "global_curator"
class UserStatus(str, Enum):
@@ -21,7 +33,9 @@ class UserRead(schemas.BaseUser[uuid.UUID]):
class UserCreate(schemas.BaseUserCreate):
role: UserRole = UserRole.BASIC
has_web_login: bool | None = True
class UserUpdate(schemas.BaseUserUpdate):
role: UserRole
has_web_login: bool | None = True

View File

@@ -8,13 +8,17 @@ from email.mime.text import MIMEText
from typing import Optional
from typing import Tuple
from email_validator import EmailNotValidError
from email_validator import validate_email
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi import Request
from fastapi import Response
from fastapi import status
from fastapi.security import OAuth2PasswordRequestForm
from fastapi_users import BaseUserManager
from fastapi_users import exceptions
from fastapi_users import FastAPIUsers
from fastapi_users import models
from fastapi_users import schemas
@@ -31,6 +35,7 @@ from sqlalchemy.orm import Session
from danswer.auth.invited_users import get_invited_users
from danswer.auth.schemas import UserCreate
from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import EMAIL_FROM
@@ -40,6 +45,7 @@ from danswer.configs.app_configs import SMTP_PASS
from danswer.configs.app_configs import SMTP_PORT
from danswer.configs.app_configs import SMTP_SERVER
from danswer.configs.app_configs import SMTP_USER
from danswer.configs.app_configs import TRACK_EXTERNAL_IDP_EXPIRY
from danswer.configs.app_configs import USER_AUTH_SECRET
from danswer.configs.app_configs import VALID_EMAIL_DOMAINS
from danswer.configs.app_configs import WEB_DOMAIN
@@ -59,21 +65,26 @@ from danswer.db.users import get_user_by_email
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
from danswer.utils.telemetry import RecordType
from danswer.utils.variable_functionality import (
fetch_versioned_implementation,
)
from danswer.utils.variable_functionality import fetch_versioned_implementation
logger = setup_logger()
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True
if user and user.role == UserRole.ADMIN:
return True
return False
def verify_auth_setting() -> None:
if AUTH_TYPE not in [AuthType.DISABLED, AuthType.BASIC, AuthType.GOOGLE_OAUTH]:
raise ValueError(
"User must choose a valid user authentication method: "
"disabled, basic, or google_oauth"
)
logger.info(f"Using Auth Type: {AUTH_TYPE.value}")
logger.notice(f"Using Auth Type: {AUTH_TYPE.value}")
def get_display_email(email: str | None, space_less: bool = False) -> str:
@@ -98,8 +109,28 @@ def user_needs_to_be_verified() -> bool:
def verify_email_is_invited(email: str) -> None:
whitelist = get_invited_users()
if (whitelist and email not in whitelist) or not email:
raise PermissionError("User not on allowed user whitelist")
if not whitelist:
return
if not email:
raise PermissionError("Email must be specified")
email_info = validate_email(email) # can raise EmailNotValidError
for email_whitelist in whitelist:
try:
# normalized emails are now being inserted into the db
# we can remove this normalization on read after some time has passed
email_info_whitelist = validate_email(email_whitelist)
except EmailNotValidError:
continue
# oddly, normalization does not include lowercasing the user part of the
# email address ... which we want to allow
if email_info.normalized.lower() == email_info_whitelist.normalized.lower():
return
raise PermissionError("User not on allowed user whitelist")
def verify_email_in_whitelist(email: str) -> None:
@@ -156,7 +187,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
user_create: schemas.UC | UserCreate,
safe: bool = False,
request: Optional[Request] = None,
) -> models.UP:
) -> User:
verify_email_is_invited(user_create.email)
verify_email_domain(user_create.email)
if hasattr(user_create, "role"):
@@ -165,7 +196,27 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
user_create.role = UserRole.ADMIN
else:
user_create.role = UserRole.BASIC
return await super().create(user_create, safe=safe, request=request) # type: ignore
user = None
try:
user = await super().create(user_create, safe=safe, request=request) # type: ignore
except exceptions.UserAlreadyExists:
user = await self.get_by_email(user_create.email)
# Handle case where user has used product outside of web and is now creating an account through web
if (
not user.has_web_login
and hasattr(user_create, "has_web_login")
and user_create.has_web_login
):
user_update = UserUpdate(
password=user_create.password,
has_web_login=True,
role=user_create.role,
is_verified=user_create.is_verified,
)
user = await self.update(user_update, user)
else:
raise exceptions.UserAlreadyExists()
return user
async def oauth_callback(
self: "BaseUserManager[models.UOAP, models.ID]",
@@ -195,18 +246,35 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
is_verified_by_default=is_verified_by_default,
)
# NOTE: google oauth expires after 1hr. We don't want to force the user to
# re-authenticate that frequently, so for now we'll just ignore this for
# google oauth users
if expires_at and AUTH_TYPE != AuthType.GOOGLE_OAUTH:
# NOTE: Most IdPs have very short expiry times, and we don't want to force the user to
# re-authenticate that frequently, so by default this is disabled
if expires_at and TRACK_EXTERNAL_IDP_EXPIRY:
oidc_expiry = datetime.fromtimestamp(expires_at, tz=timezone.utc)
await self.user_db.update(user, update_dict={"oidc_expiry": oidc_expiry})
# this is needed if an organization goes from `TRACK_EXTERNAL_IDP_EXPIRY=true` to `false`
# otherwise, the oidc expiry will always be old, and the user will never be able to login
if user.oidc_expiry and not TRACK_EXTERNAL_IDP_EXPIRY:
await self.user_db.update(user, update_dict={"oidc_expiry": None})
# Handle case where user has used product outside of web and is now creating an account through web
if not user.has_web_login:
await self.user_db.update(
user,
update_dict={
"is_verified": is_verified_by_default,
"has_web_login": True,
},
)
user.is_verified = is_verified_by_default
user.has_web_login = True
return user
async def on_after_register(
self, user: User, request: Optional[Request] = None
) -> None:
logger.info(f"User {user.id} has registered.")
logger.notice(f"User {user.id} has registered.")
optional_telemetry(
record_type=RecordType.SIGN_UP,
data={"action": "create"},
@@ -216,19 +284,45 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
async def on_after_forgot_password(
self, user: User, token: str, request: Optional[Request] = None
) -> None:
logger.info(f"User {user.id} has forgot their password. Reset token: {token}")
logger.notice(f"User {user.id} has forgot their password. Reset token: {token}")
async def on_after_request_verify(
self, user: User, token: str, request: Optional[Request] = None
) -> None:
verify_email_domain(user.email)
logger.info(
logger.notice(
f"Verification requested for user {user.id}. Verification token: {token}"
)
send_user_verification_email(user.email, token)
async def authenticate(
self, credentials: OAuth2PasswordRequestForm
) -> Optional[User]:
try:
user = await self.get_by_email(credentials.username)
except exceptions.UserNotExists:
self.password_helper.hash(credentials.password)
return None
if not user.has_web_login:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="NO_WEB_LOGIN_AND_HAS_NO_PASSWORD",
)
verified, updated_password_hash = self.password_helper.verify_and_update(
credentials.password, user.hashed_password
)
if not verified:
return None
if updated_password_hash is not None:
await self.user_db.update(user, {"hashed_password": updated_password_hash})
return user
async def get_user_manager(
user_db: SQLAlchemyUserDatabase = Depends(get_user_db),
@@ -331,6 +425,7 @@ async def optional_user(
async def double_check_user(
user: User | None,
optional: bool = DISABLE_AUTH,
include_expired: bool = False,
) -> User | None:
if optional:
return None
@@ -347,7 +442,11 @@ async def double_check_user(
detail="Access denied. User is not verified.",
)
if user.oidc_expiry and user.oidc_expiry < datetime.now(timezone.utc):
if (
user.oidc_expiry
and user.oidc_expiry < datetime.now(timezone.utc)
and not include_expired
):
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User's OIDC token has expired.",
@@ -356,12 +455,40 @@ async def double_check_user(
return user
async def current_user_with_expired_token(
user: User | None = Depends(optional_user),
) -> User | None:
return await double_check_user(user, include_expired=True)
async def current_user(
user: User | None = Depends(optional_user),
) -> User | None:
return await double_check_user(user)
async def current_curator_or_admin_user(
user: User | None = Depends(current_user),
) -> User | None:
if DISABLE_AUTH:
return None
if not user or not hasattr(user, "role"):
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User is not authenticated or lacks role information.",
)
allowed_roles = {UserRole.GLOBAL_CURATOR, UserRole.CURATOR, UserRole.ADMIN}
if user.role not in allowed_roles:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User is not a curator or admin.",
)
return user
async def current_admin_user(user: User | None = Depends(current_user)) -> User | None:
if DISABLE_AUTH:
return None
@@ -369,6 +496,12 @@ async def current_admin_user(user: User | None = Depends(current_user)) -> User
if not user or not hasattr(user, "role") or user.role != UserRole.ADMIN:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Access denied. User is not an admin.",
detail="Access denied. User must be an admin to perform this action.",
)
return user
def get_default_admin_user_emails_() -> list[str]:
# No default seeding available for Danswer MIT
return []

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,361 @@
# These are helper objects for tracking the keys we need to write in redis
import time
from abc import ABC
from abc import abstractmethod
from typing import cast
from uuid import uuid4
import redis
from celery import Celery
from redis import Redis
from sqlalchemy.orm import Session
from danswer.background.celery.celeryconfig import CELERY_SEPARATOR
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.document import construct_document_select_for_connector_credential_pair
from danswer.db.document import (
construct_document_select_for_connector_credential_pair_by_needs_sync,
)
from danswer.db.document_set import construct_document_select_by_docset
from danswer.utils.variable_functionality import fetch_versioned_implementation
class RedisObjectHelper(ABC):
PREFIX = "base"
FENCE_PREFIX = PREFIX + "_fence"
TASKSET_PREFIX = PREFIX + "_taskset"
def __init__(self, id: int):
self._id: int = id
@property
def task_id_prefix(self) -> str:
return f"{self.PREFIX}_{self._id}"
@property
def fence_key(self) -> str:
# example: documentset_fence_1
return f"{self.FENCE_PREFIX}_{self._id}"
@property
def taskset_key(self) -> str:
# example: documentset_taskset_1
return f"{self.TASKSET_PREFIX}_{self._id}"
@staticmethod
def get_id_from_fence_key(key: str) -> int | None:
"""
Extracts the object ID from a fence key in the format `PREFIX_fence_X`.
Args:
key (str): The fence key string.
Returns:
Optional[int]: The extracted ID if the key is in the correct format, otherwise None.
"""
parts = key.split("_")
if len(parts) != 3:
return None
try:
object_id = int(parts[2])
except ValueError:
return None
return object_id
@staticmethod
def get_id_from_task_id(task_id: str) -> int | None:
"""
Extracts the object ID from a task ID string.
This method assumes the task ID is formatted as `prefix_objectid_suffix`, where:
- `prefix` is an arbitrary string (e.g., the name of the task or entity),
- `objectid` is the ID you want to extract,
- `suffix` is another arbitrary string (e.g., a UUID).
Example:
If the input `task_id` is `documentset_1_cbfdc96a-80ca-4312-a242-0bb68da3c1dc`,
this method will return the string `"1"`.
Args:
task_id (str): The task ID string from which to extract the object ID.
Returns:
str | None: The extracted object ID if the task ID is in the correct format, otherwise None.
"""
# example: task_id=documentset_1_cbfdc96a-80ca-4312-a242-0bb68da3c1dc
parts = task_id.split("_")
if len(parts) != 3:
return None
try:
object_id = int(parts[1])
except ValueError:
return None
return object_id
@abstractmethod
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
) -> int | None:
pass
class RedisDocumentSet(RedisObjectHelper):
PREFIX = "documentset"
FENCE_PREFIX = PREFIX + "_fence"
TASKSET_PREFIX = PREFIX + "_taskset"
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
stmt = construct_document_select_by_docset(self._id, current_only=False)
for doc in db_session.scalars(stmt).yield_per(1):
current_time = time.monotonic()
if current_time - last_lock_time >= (
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT / 4
):
lock.reacquire()
last_lock_time = current_time
# celery's default task id format is "dd32ded3-00aa-4884-8b21-42f8332e7fac"
# the key for the result is "celery-task-meta-dd32ded3-00aa-4884-8b21-42f8332e7fac"
# we prefix the task id so it's easier to keep track of who created the task
# aka "documentset_1_6dd32ded3-00aa-4884-8b21-42f8332e7fac"
custom_task_id = f"{self.task_id_prefix}_{uuid4()}"
# add to the set BEFORE creating the task.
redis_client.sadd(self.taskset_key, custom_task_id)
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.LOW,
)
async_results.append(result)
return len(async_results)
class RedisUserGroup(RedisObjectHelper):
PREFIX = "usergroup"
FENCE_PREFIX = PREFIX + "_fence"
TASKSET_PREFIX = PREFIX + "_taskset"
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
try:
construct_document_select_by_usergroup = fetch_versioned_implementation(
"danswer.db.user_group",
"construct_document_select_by_usergroup",
)
except ModuleNotFoundError:
return 0
stmt = construct_document_select_by_usergroup(self._id)
for doc in db_session.scalars(stmt).yield_per(1):
current_time = time.monotonic()
if current_time - last_lock_time >= (
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT / 4
):
lock.reacquire()
last_lock_time = current_time
# celery's default task id format is "dd32ded3-00aa-4884-8b21-42f8332e7fac"
# the key for the result is "celery-task-meta-dd32ded3-00aa-4884-8b21-42f8332e7fac"
# we prefix the task id so it's easier to keep track of who created the task
# aka "documentset_1_6dd32ded3-00aa-4884-8b21-42f8332e7fac"
custom_task_id = f"{self.task_id_prefix}_{uuid4()}"
# add to the set BEFORE creating the task.
redis_client.sadd(self.taskset_key, custom_task_id)
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.LOW,
)
async_results.append(result)
return len(async_results)
class RedisConnectorCredentialPair(RedisObjectHelper):
"""This class differs from the default in that the taskset used spans
all connectors and is not per connector."""
PREFIX = "connectorsync"
FENCE_PREFIX = PREFIX + "_fence"
TASKSET_PREFIX = PREFIX + "_taskset"
@classmethod
def get_fence_key(cls) -> str:
return RedisConnectorCredentialPair.FENCE_PREFIX
@classmethod
def get_taskset_key(cls) -> str:
return RedisConnectorCredentialPair.TASKSET_PREFIX
@property
def taskset_key(self) -> str:
"""Notice that this is intentionally reusing the same taskset for all
connector syncs"""
# example: connector_taskset
return f"{self.TASKSET_PREFIX}"
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
cc_pair = get_connector_credential_pair_from_id(self._id, db_session)
if not cc_pair:
return None
stmt = construct_document_select_for_connector_credential_pair_by_needs_sync(
cc_pair.connector_id, cc_pair.credential_id
)
for doc in db_session.scalars(stmt).yield_per(1):
current_time = time.monotonic()
if current_time - last_lock_time >= (
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT / 4
):
lock.reacquire()
last_lock_time = current_time
# celery's default task id format is "dd32ded3-00aa-4884-8b21-42f8332e7fac"
# the key for the result is "celery-task-meta-dd32ded3-00aa-4884-8b21-42f8332e7fac"
# we prefix the task id so it's easier to keep track of who created the task
# aka "documentset_1_6dd32ded3-00aa-4884-8b21-42f8332e7fac"
custom_task_id = f"{self.task_id_prefix}_{uuid4()}"
# add to the tracking taskset in redis BEFORE creating the celery task.
# note that for the moment we are using a single taskset key, not differentiated by cc_pair id
redis_client.sadd(
RedisConnectorCredentialPair.get_taskset_key(), custom_task_id
)
# Priority on sync's triggered by new indexing should be medium
result = celery_app.send_task(
"vespa_metadata_sync_task",
kwargs=dict(document_id=doc.id),
queue=DanswerCeleryQueues.VESPA_METADATA_SYNC,
task_id=custom_task_id,
priority=DanswerCeleryPriority.MEDIUM,
)
async_results.append(result)
return len(async_results)
class RedisConnectorDeletion(RedisObjectHelper):
PREFIX = "connectordeletion"
FENCE_PREFIX = PREFIX + "_fence"
TASKSET_PREFIX = PREFIX + "_taskset"
def generate_tasks(
self,
celery_app: Celery,
db_session: Session,
redis_client: Redis,
lock: redis.lock.Lock,
) -> int | None:
last_lock_time = time.monotonic()
async_results = []
cc_pair = get_connector_credential_pair_from_id(self._id, db_session)
if not cc_pair:
return None
stmt = construct_document_select_for_connector_credential_pair(
cc_pair.connector_id, cc_pair.credential_id
)
for doc in db_session.scalars(stmt).yield_per(1):
current_time = time.monotonic()
if current_time - last_lock_time >= (
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT / 4
):
lock.reacquire()
last_lock_time = current_time
# celery's default task id format is "dd32ded3-00aa-4884-8b21-42f8332e7fac"
# the actual redis key is "celery-task-meta-dd32ded3-00aa-4884-8b21-42f8332e7fac"
# we prefix the task id so it's easier to keep track of who created the task
# aka "documentset_1_6dd32ded3-00aa-4884-8b21-42f8332e7fac"
custom_task_id = f"{self.task_id_prefix}_{uuid4()}"
# add to the tracking taskset in redis BEFORE creating the celery task.
# note that for the moment we are using a single taskset key, not differentiated by cc_pair id
redis_client.sadd(self.taskset_key, custom_task_id)
# Priority on sync's triggered by new indexing should be medium
result = celery_app.send_task(
"document_by_cc_pair_cleanup_task",
kwargs=dict(
document_id=doc.id,
connector_id=cc_pair.connector_id,
credential_id=cc_pair.credential_id,
),
queue=DanswerCeleryQueues.CONNECTOR_DELETION,
task_id=custom_task_id,
priority=DanswerCeleryPriority.MEDIUM,
)
async_results.append(result)
return len(async_results)
def celery_get_queue_length(queue: str, r: Redis) -> int:
"""This is a redis specific way to get the length of a celery queue.
It is priority aware and knows how to count across the multiple redis lists
used to implement task prioritization.
This operation is not atomic."""
total_length = 0
for i in range(len(DanswerCeleryPriority)):
queue_name = queue
if i > 0:
queue_name += CELERY_SEPARATOR
queue_name += str(i)
length = r.llen(queue_name)
total_length += cast(int, length)
return total_length

View File

@@ -3,9 +3,8 @@ from datetime import timezone
from sqlalchemy.orm import Session
from danswer.background.task_utils import name_cc_cleanup_task
from danswer.background.celery.celery_redis import RedisConnectorDeletion
from danswer.background.task_utils import name_cc_prune_task
from danswer.background.task_utils import name_document_set_sync_task
from danswer.configs.app_configs import ALLOW_SIMULTANEOUS_PRUNING
from danswer.configs.app_configs import MAX_PRUNING_DOCUMENT_RETRIEVAL_PER_MINUTE
from danswer.connectors.cross_connector_utils.rate_limit_wrapper import (
@@ -16,52 +15,60 @@ from danswer.connectors.interfaces import IdConnector
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.models import Document
from danswer.db.connector_credential_pair import get_connector_credential_pair
from danswer.db.engine import get_db_current_time
from danswer.db.enums import TaskStatus
from danswer.db.models import Connector
from danswer.db.models import Credential
from danswer.db.models import DocumentSet
from danswer.db.models import TaskQueueState
from danswer.db.tasks import check_task_is_live_and_not_timed_out
from danswer.db.tasks import get_latest_task
from danswer.db.tasks import get_latest_task_by_type
from danswer.redis.redis_pool import RedisPool
from danswer.server.documents.models import DeletionAttemptSnapshot
from danswer.utils.logger import setup_logger
logger = setup_logger()
redis_pool = RedisPool()
def get_deletion_status(
def _get_deletion_status(
connector_id: int, credential_id: int, db_session: Session
) -> TaskQueueState | None:
"""We no longer store TaskQueueState in the DB for a deletion attempt.
This function populates TaskQueueState by just checking redis.
"""
cc_pair = get_connector_credential_pair(
connector_id=connector_id, credential_id=credential_id, db_session=db_session
)
if not cc_pair:
return None
rcd = RedisConnectorDeletion(cc_pair.id)
r = redis_pool.get_client()
if not r.exists(rcd.fence_key):
return None
return TaskQueueState(
task_id="", task_name=rcd.fence_key, status=TaskStatus.STARTED
)
def get_deletion_attempt_snapshot(
connector_id: int, credential_id: int, db_session: Session
) -> DeletionAttemptSnapshot | None:
cleanup_task_name = name_cc_cleanup_task(
connector_id=connector_id, credential_id=credential_id
)
task_state = get_latest_task(task_name=cleanup_task_name, db_session=db_session)
if not task_state:
deletion_task = _get_deletion_status(connector_id, credential_id, db_session)
if not deletion_task:
return None
return DeletionAttemptSnapshot(
connector_id=connector_id,
credential_id=credential_id,
status=task_state.status,
status=deletion_task.status,
)
def should_sync_doc_set(document_set: DocumentSet, db_session: Session) -> bool:
if document_set.is_up_to_date:
return False
task_name = name_document_set_sync_task(document_set.id)
latest_sync = get_latest_task(task_name, db_session)
if latest_sync and check_task_is_live_and_not_timed_out(latest_sync, db_session):
logger.info(f"Document set '{document_set.id}' is already syncing. Skipping.")
return False
logger.info(f"Document set {document_set.id} syncing now!")
return True
def should_prune_cc_pair(
connector: Connector, credential: Credential, db_session: Session
) -> bool:

View File

@@ -0,0 +1,76 @@
# docs: https://docs.celeryq.dev/en/stable/userguide/configuration.html
from danswer.configs.app_configs import CELERY_RESULT_EXPIRES
from danswer.configs.app_configs import REDIS_DB_NUMBER_CELERY
from danswer.configs.app_configs import REDIS_DB_NUMBER_CELERY_RESULT_BACKEND
from danswer.configs.app_configs import REDIS_HOST
from danswer.configs.app_configs import REDIS_PASSWORD
from danswer.configs.app_configs import REDIS_PORT
from danswer.configs.app_configs import REDIS_SSL
from danswer.configs.app_configs import REDIS_SSL_CA_CERTS
from danswer.configs.app_configs import REDIS_SSL_CERT_REQS
from danswer.configs.constants import DanswerCeleryPriority
CELERY_SEPARATOR = ":"
CELERY_PASSWORD_PART = ""
if REDIS_PASSWORD:
CELERY_PASSWORD_PART = f":{REDIS_PASSWORD}@"
REDIS_SCHEME = "redis"
# SSL-specific query parameters for Redis URL
SSL_QUERY_PARAMS = ""
if REDIS_SSL:
REDIS_SCHEME = "rediss"
SSL_QUERY_PARAMS = f"?ssl_cert_reqs={REDIS_SSL_CERT_REQS}"
if REDIS_SSL_CA_CERTS:
SSL_QUERY_PARAMS += f"&ssl_ca_certs={REDIS_SSL_CA_CERTS}"
# example celery_broker_url: "redis://:password@localhost:6379/15"
broker_url = f"{REDIS_SCHEME}://{CELERY_PASSWORD_PART}{REDIS_HOST}:{REDIS_PORT}/{REDIS_DB_NUMBER_CELERY}{SSL_QUERY_PARAMS}"
result_backend = f"{REDIS_SCHEME}://{CELERY_PASSWORD_PART}{REDIS_HOST}:{REDIS_PORT}/{REDIS_DB_NUMBER_CELERY_RESULT_BACKEND}{SSL_QUERY_PARAMS}"
# NOTE: prefetch 4 is significantly faster than prefetch 1 for small tasks
# however, prefetching is bad when tasks are lengthy as those tasks
# can stall other tasks.
worker_prefetch_multiplier = 4
broker_transport_options = {
"priority_steps": list(range(len(DanswerCeleryPriority))),
"sep": CELERY_SEPARATOR,
"queue_order_strategy": "priority",
}
task_default_priority = DanswerCeleryPriority.MEDIUM
task_acks_late = True
# It's possible we don't even need celery's result backend, in which case all of the optimization below
# might be irrelevant
result_expires = CELERY_RESULT_EXPIRES # 86400 seconds is the default
# Option 0: Defaults (json serializer, no compression)
# about 1.5 KB per queued task. 1KB in queue, 400B for result, 100 as a child entry in generator result
# Option 1: Reduces generator task result sizes by roughly 20%
# task_compression = "bzip2"
# task_serializer = "pickle"
# result_compression = "bzip2"
# result_serializer = "pickle"
# accept_content=["pickle"]
# Option 2: this significantly reduces the size of the result for generator tasks since the list of children
# can be large. small tasks change very little
# def pickle_bz2_encoder(data):
# return bz2.compress(pickle.dumps(data))
# def pickle_bz2_decoder(data):
# return pickle.loads(bz2.decompress(data))
# from kombu import serialization # To register custom serialization with Celery/Kombu
# serialization.register('pickle-bzip2', pickle_bz2_encoder, pickle_bz2_decoder, 'application/x-pickle-bz2', 'binary')
# task_serializer = "pickle-bzip2"
# result_serializer = "pickle-bzip2"
# accept_content=["pickle", "pickle-bzip2"]

View File

@@ -10,27 +10,15 @@ are multiple connector / credential pairs that have indexed it
connector / credential pair from the access list
(6) delete all relevant entries from postgres
"""
import time
from sqlalchemy.orm import Session
from danswer.access.access import get_access_for_documents
from danswer.db.connector import fetch_connector_by_id
from danswer.db.connector_credential_pair import (
delete_connector_credential_pair__no_commit,
)
from danswer.db.document import delete_document_by_connector_credential_pair__no_commit
from danswer.db.document import delete_documents_by_connector_credential_pair__no_commit
from danswer.db.document import delete_documents_complete__no_commit
from danswer.db.document import get_document_connector_cnts
from danswer.db.document import get_documents_for_connector_credential_pair
from danswer.db.document import get_document_connector_counts
from danswer.db.document import prepare_to_modify_documents
from danswer.db.document_set import get_document_sets_by_ids
from danswer.db.document_set import (
mark_cc_pair__document_set_relationships_to_be_deleted__no_commit,
)
from danswer.db.document_set import fetch_document_sets_for_documents
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.index_attempt import delete_index_attempts
from danswer.db.models import ConnectorCredentialPair
from danswer.document_index.interfaces import DocumentIndex
from danswer.document_index.interfaces import UpdateRequest
from danswer.server.documents.models import ConnectorCredentialPairIdentifier
@@ -57,13 +45,15 @@ def delete_connector_credential_pair_batch(
with prepare_to_modify_documents(
db_session=db_session, document_ids=document_ids
):
document_connector_cnts = get_document_connector_cnts(
document_connector_counts = get_document_connector_counts(
db_session=db_session, document_ids=document_ids
)
# figure out which docs need to be completely deleted
document_ids_to_delete = [
document_id for document_id, cnt in document_connector_cnts if cnt == 1
document_id
for document_id, cnt in document_connector_counts
if cnt == 1
]
logger.debug(f"Deleting documents: {document_ids_to_delete}")
@@ -76,28 +66,40 @@ def delete_connector_credential_pair_batch(
# figure out which docs need to be updated
document_ids_to_update = [
document_id for document_id, cnt in document_connector_cnts if cnt > 1
document_id for document_id, cnt in document_connector_counts if cnt > 1
]
# maps document id to list of document set names
new_doc_sets_for_documents: dict[str, set[str]] = {
document_id_and_document_set_names_tuple[0]: set(
document_id_and_document_set_names_tuple[1]
)
for document_id_and_document_set_names_tuple in fetch_document_sets_for_documents(
db_session=db_session,
document_ids=document_ids_to_update,
)
}
# determine future ACLs for documents in batch
access_for_documents = get_access_for_documents(
document_ids=document_ids_to_update,
db_session=db_session,
cc_pair_to_delete=ConnectorCredentialPairIdentifier(
connector_id=connector_id,
credential_id=credential_id,
),
)
# update Vespa
logger.debug(f"Updating documents: {document_ids_to_update}")
update_requests = [
UpdateRequest(
document_ids=[document_id],
access=access,
document_sets=new_doc_sets_for_documents[document_id],
)
for document_id, access in access_for_documents.items()
]
logger.debug(f"Updating documents: {document_ids_to_update}")
document_index.update(update_requests=update_requests)
delete_document_by_connector_credential_pair__no_commit(
# clean up Postgres
delete_documents_by_connector_credential_pair__no_commit(
db_session=db_session,
document_ids=document_ids_to_update,
connector_credential_pair_identifier=ConnectorCredentialPairIdentifier(
@@ -106,105 +108,3 @@ def delete_connector_credential_pair_batch(
),
)
db_session.commit()
def cleanup_synced_entities(
cc_pair: ConnectorCredentialPair, db_session: Session
) -> None:
"""Updates the document sets associated with the connector / credential pair,
then relies on the document set sync script to kick off Celery jobs which will
sync these updates to Vespa.
Waits until the document sets are synced before returning."""
logger.info(f"Cleaning up Document Sets for CC Pair with ID: '{cc_pair.id}'")
document_sets_ids_to_sync = list(
mark_cc_pair__document_set_relationships_to_be_deleted__no_commit(
cc_pair_id=cc_pair.id,
db_session=db_session,
)
)
db_session.commit()
# wait till all document sets are synced before continuing
while True:
all_synced = True
document_sets = get_document_sets_by_ids(
db_session=db_session, document_set_ids=document_sets_ids_to_sync
)
for document_set in document_sets:
if not document_set.is_up_to_date:
all_synced = False
if all_synced:
break
# wait for 30 seconds before checking again
db_session.commit() # end transaction
logger.info(
f"Document sets '{document_sets_ids_to_sync}' not synced yet, waiting 30s"
)
time.sleep(30)
logger.info(
f"Finished cleaning up Document Sets for CC Pair with ID: '{cc_pair.id}'"
)
def delete_connector_credential_pair(
db_session: Session,
document_index: DocumentIndex,
cc_pair: ConnectorCredentialPair,
) -> int:
connector_id = cc_pair.connector_id
credential_id = cc_pair.credential_id
num_docs_deleted = 0
while True:
documents = get_documents_for_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
limit=_DELETION_BATCH_SIZE,
)
if not documents:
break
delete_connector_credential_pair_batch(
document_ids=[document.id for document in documents],
connector_id=connector_id,
credential_id=credential_id,
document_index=document_index,
)
num_docs_deleted += len(documents)
# Clean up document sets / access information from Postgres
# and sync these updates to Vespa
# TODO: add user group cleanup with `fetch_versioned_implementation`
cleanup_synced_entities(cc_pair, db_session)
# clean up the rest of the related Postgres entities
delete_index_attempts(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
delete_connector_credential_pair__no_commit(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
)
# if there are no credentials left, delete the connector
connector = fetch_connector_by_id(
db_session=db_session,
connector_id=connector_id,
)
if not connector or not len(connector.credentials):
logger.debug("Found no credentials left for connector, deleting connector")
db_session.delete(connector)
db_session.commit()
logger.info(
"Successfully deleted connector_credential_pair with connector_id:"
f" '{connector_id}' and credential_id: '{credential_id}'. Deleted {num_docs_deleted} docs."
)
return num_docs_deleted

View File

@@ -41,6 +41,12 @@ def _initializer(
return func(*args, **kwargs)
def _run_in_process(
func: Callable, args: list | tuple, kwargs: dict[str, Any] | None = None
) -> None:
_initializer(func, args, kwargs)
@dataclass
class SimpleJob:
"""Drop in replacement for `dask.distributed.Future`"""
@@ -113,7 +119,7 @@ class SimpleJobClient:
job_id = self.job_id_counter
self.job_id_counter += 1
process = Process(target=_initializer(func=func, args=args), daemon=True)
process = Process(target=_run_in_process, args=(func, args), daemon=True)
job = SimpleJob(id=job_id, process=process)
process.start()

View File

@@ -7,20 +7,21 @@ from datetime import timezone
from sqlalchemy.orm import Session
from danswer.background.indexing.checkpointing import get_time_windows_for_index_attempt
from danswer.background.indexing.tracer import DanswerTracer
from danswer.configs.app_configs import INDEXING_SIZE_WARNING_THRESHOLD
from danswer.configs.app_configs import INDEXING_TRACER_INTERVAL
from danswer.configs.app_configs import POLL_CONNECTOR_OFFSET
from danswer.connectors.connector_runner import ConnectorRunner
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.models import IndexAttemptMetadata
from danswer.connectors.models import InputType
from danswer.db.connector import disable_connector
from danswer.db.connector_credential_pair import get_last_successful_attempt_time
from danswer.db.connector_credential_pair import update_connector_credential_pair
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.index_attempt import mark_attempt_in_progress
from danswer.db.index_attempt import mark_attempt_partially_succeeded
from danswer.db.index_attempt import mark_attempt_succeeded
from danswer.db.index_attempt import update_docs_indexed
from danswer.db.models import IndexAttempt
@@ -35,13 +36,15 @@ from danswer.utils.variable_functionality import global_version
logger = setup_logger()
INDEXING_TRACER_NUM_PRINT_ENTRIES = 5
def _get_document_generator(
def _get_connector_runner(
db_session: Session,
attempt: IndexAttempt,
start_time: datetime,
end_time: datetime,
) -> GenerateDocumentsOutput:
) -> ConnectorRunner:
"""
NOTE: `start_time` and `end_time` are only used for poll connectors
@@ -53,42 +56,27 @@ def _get_document_generator(
try:
runnable_connector = instantiate_connector(
attempt.connector_credential_pair.connector.source,
task,
attempt.connector_credential_pair.connector.connector_specific_config,
attempt.connector_credential_pair.credential,
db_session,
db_session=db_session,
source=attempt.connector_credential_pair.connector.source,
input_type=task,
connector_specific_config=attempt.connector_credential_pair.connector.connector_specific_config,
credential=attempt.connector_credential_pair.credential,
)
except Exception as e:
logger.exception(f"Unable to instantiate connector due to {e}")
disable_connector(attempt.connector_credential_pair.connector.id, db_session)
# since we failed to even instantiate the connector, we pause the CCPair since
# it will never succeed
update_connector_credential_pair(
db_session=db_session,
connector_id=attempt.connector_credential_pair.connector.id,
credential_id=attempt.connector_credential_pair.credential.id,
status=ConnectorCredentialPairStatus.PAUSED,
)
raise e
if task == InputType.LOAD_STATE:
assert isinstance(runnable_connector, LoadConnector)
doc_batch_generator = runnable_connector.load_from_state()
elif task == InputType.POLL:
assert isinstance(runnable_connector, PollConnector)
if (
attempt.connector_credential_pair.connector_id is None
or attempt.connector_credential_pair.connector_id is None
):
raise ValueError(
f"Polling attempt {attempt.id} is missing connector_id or credential_id, "
f"can't fetch time range."
)
logger.info(f"Polling for updates between {start_time} and {end_time}")
doc_batch_generator = runnable_connector.poll_source(
start=start_time.timestamp(), end=end_time.timestamp()
)
else:
# Event types cannot be handled by a background type
raise RuntimeError(f"Invalid task type: {task}")
return doc_batch_generator
return ConnectorRunner(
connector=runnable_connector, time_range=(start_time, end_time)
)
def _run_indexing(
@@ -101,53 +89,63 @@ def _run_indexing(
3. Updates Postgres to record the indexed documents + the outcome of this run
"""
start_time = time.time()
db_embedding_model = index_attempt.embedding_model
index_name = db_embedding_model.index_name
search_settings = index_attempt.search_settings
index_name = search_settings.index_name
# Only update cc-pair status for primary index jobs
# Secondary index syncs at the end when swapping
is_primary = index_attempt.embedding_model.status == IndexModelStatus.PRESENT
is_primary = search_settings.status == IndexModelStatus.PRESENT
# Indexing is only done into one index at a time
document_index = get_default_document_index(
primary_index_name=index_name, secondary_index_name=None
)
embedding_model = DefaultIndexingEmbedder(
model_name=db_embedding_model.model_name,
normalize=db_embedding_model.normalize,
query_prefix=db_embedding_model.query_prefix,
passage_prefix=db_embedding_model.passage_prefix,
api_key=db_embedding_model.api_key,
provider_type=db_embedding_model.provider_type,
embedding_model = DefaultIndexingEmbedder.from_db_search_settings(
search_settings=search_settings
)
indexing_pipeline = build_indexing_pipeline(
attempt_id=index_attempt.id,
embedder=embedding_model,
document_index=document_index,
ignore_time_skip=index_attempt.from_beginning
or (db_embedding_model.status == IndexModelStatus.FUTURE),
or (search_settings.status == IndexModelStatus.FUTURE),
db_session=db_session,
)
db_cc_pair = index_attempt.connector_credential_pair
db_connector = index_attempt.connector_credential_pair.connector
db_credential = index_attempt.connector_credential_pair.credential
earliest_index_time = (
db_connector.indexing_start.timestamp() if db_connector.indexing_start else 0
)
last_successful_index_time = (
db_connector.indexing_start.timestamp()
if index_attempt.from_beginning and db_connector.indexing_start is not None
else (
0.0
if index_attempt.from_beginning
else get_last_successful_attempt_time(
connector_id=db_connector.id,
credential_id=db_credential.id,
embedding_model=index_attempt.embedding_model,
db_session=db_session,
)
earliest_index_time
if index_attempt.from_beginning
else get_last_successful_attempt_time(
connector_id=db_connector.id,
credential_id=db_credential.id,
earliest_index=earliest_index_time,
search_settings=index_attempt.search_settings,
db_session=db_session,
)
)
if INDEXING_TRACER_INTERVAL > 0:
logger.debug(f"Memory tracer starting: interval={INDEXING_TRACER_INTERVAL}")
tracer = DanswerTracer()
tracer.start()
tracer.snap()
index_attempt_md = IndexAttemptMetadata(
connector_id=db_connector.id,
credential_id=db_credential.id,
)
batch_num = 0
net_doc_change = 0
document_count = 0
chunk_count = 0
@@ -166,7 +164,7 @@ def _run_indexing(
datetime(1970, 1, 1, tzinfo=timezone.utc),
)
doc_batch_generator = _get_document_generator(
connector_runner = _get_connector_runner(
db_session=db_session,
attempt=index_attempt,
start_time=window_start,
@@ -174,15 +172,23 @@ def _run_indexing(
)
all_connector_doc_ids: set[str] = set()
for doc_batch in doc_batch_generator:
tracer_counter = 0
if INDEXING_TRACER_INTERVAL > 0:
tracer.snap()
for doc_batch in connector_runner.run():
# Check if connector is disabled mid run and stop if so unless it's the secondary
# index being built. We want to populate it even for paused connectors
# Often paused connectors are sources that aren't updated frequently but the
# contents still need to be initially pulled.
db_session.refresh(db_connector)
if (
db_connector.disabled
and db_embedding_model.status != IndexModelStatus.FUTURE
(
db_cc_pair.status == ConnectorCredentialPairStatus.PAUSED
and search_settings.status != IndexModelStatus.FUTURE
)
# if it's deleting, we don't care if this is a secondary index
or db_cc_pair.status == ConnectorCredentialPairStatus.DELETING
):
# let the `except` block handle this
raise RuntimeError("Connector was disabled mid run")
@@ -192,17 +198,30 @@ def _run_indexing(
# Likely due to user manually disabling it or model swap
raise RuntimeError("Index Attempt was canceled")
logger.debug(
f"Indexing batch of documents: {[doc.to_short_descriptor() for doc in doc_batch]}"
batch_description = []
for doc in doc_batch:
batch_description.append(doc.to_short_descriptor())
doc_size = 0
for section in doc.sections:
doc_size += len(section.text)
if doc_size > INDEXING_SIZE_WARNING_THRESHOLD:
logger.warning(
f"Document size: doc='{doc.to_short_descriptor()}' "
f"size={doc_size} "
f"threshold={INDEXING_SIZE_WARNING_THRESHOLD}"
)
logger.debug(f"Indexing batch of documents: {batch_description}")
index_attempt_md.batch_num = batch_num + 1 # use 1-index for this
new_docs, total_batch_chunks = indexing_pipeline(
document_batch=doc_batch,
index_attempt_metadata=index_attempt_md,
)
new_docs, total_batch_chunks = indexing_pipeline(
documents=doc_batch,
index_attempt_metadata=IndexAttemptMetadata(
connector_id=db_connector.id,
credential_id=db_credential.id,
),
)
batch_num += 1
net_doc_change += new_docs
chunk_count += total_batch_chunks
document_count += len(doc_batch)
@@ -224,6 +243,17 @@ def _run_indexing(
docs_removed_from_index=0,
)
tracer_counter += 1
if (
INDEXING_TRACER_INTERVAL > 0
and tracer_counter % INDEXING_TRACER_INTERVAL == 0
):
logger.debug(
f"Running trace comparison for batch {tracer_counter}. interval={INDEXING_TRACER_INTERVAL}"
)
tracer.snap()
tracer.log_previous_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
run_end_dt = window_end
if is_primary:
update_connector_credential_pair(
@@ -234,7 +264,7 @@ def _run_indexing(
run_dt=run_end_dt,
)
except Exception as e:
logger.info(
logger.exception(
f"Connector run ran into exception after elapsed time: {time.time() - start_time} seconds"
)
# Only mark the attempt as a complete failure if this is the first indexing window.
@@ -246,7 +276,7 @@ def _run_indexing(
# to give better clarity in the UI, as the next run will never happen.
if (
ind == 0
or db_connector.disabled
or not db_cc_pair.status.is_active()
or index_attempt.status != IndexingStatus.IN_PROGRESS
):
mark_attempt_failed(
@@ -258,17 +288,66 @@ def _run_indexing(
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=index_attempt.connector_credential_pair.connector.id,
credential_id=index_attempt.connector_credential_pair.credential.id,
connector_id=db_connector.id,
credential_id=db_credential.id,
net_docs=net_doc_change,
)
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
# break => similar to success case. As mentioned above, if the next run fails for the same
# reason it will then be marked as a failure
break
mark_attempt_succeeded(index_attempt, db_session)
if INDEXING_TRACER_INTERVAL > 0:
logger.debug(
f"Running trace comparison between start and end of indexing. {tracer_counter} batches processed."
)
tracer.snap()
tracer.log_first_diff(INDEXING_TRACER_NUM_PRINT_ENTRIES)
tracer.stop()
logger.debug("Memory tracer stopped.")
if (
index_attempt_md.num_exceptions > 0
and index_attempt_md.num_exceptions >= batch_num
):
mark_attempt_failed(
index_attempt,
db_session,
failure_reason="All batches exceptioned.",
)
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=index_attempt.connector_credential_pair.connector.id,
credential_id=index_attempt.connector_credential_pair.credential.id,
)
raise Exception(
f"Connector failed - All batches exceptioned: batches={batch_num}"
)
elapsed_time = time.time() - start_time
if index_attempt_md.num_exceptions == 0:
mark_attempt_succeeded(index_attempt, db_session)
logger.info(
f"Connector succeeded: "
f"docs={document_count} chunks={chunk_count} elapsed={elapsed_time:.2f}s"
)
else:
mark_attempt_partially_succeeded(index_attempt, db_session)
logger.info(
f"Connector completed with some errors: "
f"exceptions={index_attempt_md.num_exceptions} "
f"batches={batch_num} "
f"docs={document_count} "
f"chunks={chunk_count} "
f"elapsed={elapsed_time:.2f}s"
)
if is_primary:
update_connector_credential_pair(
db_session=db_session,
@@ -277,13 +356,6 @@ def _run_indexing(
run_dt=run_end_dt,
)
logger.info(
f"Indexed or refreshed {document_count} total documents for a total of {chunk_count} indexed chunks"
)
logger.info(
f"Connector successfully finished, elapsed time: {time.time() - start_time} seconds"
)
def _prepare_index_attempt(db_session: Session, index_attempt_id: int) -> IndexAttempt:
# make sure that the index attempt can't change in between checking the
@@ -312,17 +384,22 @@ def _prepare_index_attempt(db_session: Session, index_attempt_id: int) -> IndexA
return attempt
def run_indexing_entrypoint(index_attempt_id: int, is_ee: bool = False) -> None:
def run_indexing_entrypoint(
index_attempt_id: int, connector_credential_pair_id: int, is_ee: bool = False
) -> None:
"""Entrypoint for indexing run when using dask distributed.
Wraps the actual logic in a `try` block so that we can catch any exceptions
and mark the attempt as failed."""
try:
if is_ee:
global_version.set_ee()
# set the indexing attempt ID so that all log messages from this process
# will have it added as a prefix
IndexAttemptSingleton.set_index_attempt_id(index_attempt_id)
IndexAttemptSingleton.set_cc_and_index_id(
index_attempt_id, connector_credential_pair_id
)
with Session(get_sqlalchemy_engine()) as db_session:
# make sure that it is valid to run this indexing attempt + mark it
@@ -330,17 +407,19 @@ def run_indexing_entrypoint(index_attempt_id: int, is_ee: bool = False) -> None:
attempt = _prepare_index_attempt(db_session, index_attempt_id)
logger.info(
f"Running indexing attempt for connector: '{attempt.connector_credential_pair.connector.name}', "
f"with config: '{attempt.connector_credential_pair.connector.connector_specific_config}', and "
f"with credentials: '{attempt.connector_credential_pair.connector_id}'"
f"Indexing starting: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
)
_run_indexing(db_session, attempt)
logger.info(
f"Completed indexing attempt for connector: '{attempt.connector_credential_pair.connector.name}', "
f"with config: '{attempt.connector_credential_pair.connector.connector_specific_config}', and "
f"with credentials: '{attempt.connector_credential_pair.connector_id}'"
f"Indexing finished: "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.connector_id}'"
)
except Exception as e:
logger.exception(f"Indexing job with ID '{index_attempt_id}' failed due to {e}")

View File

@@ -0,0 +1,77 @@
import tracemalloc
from danswer.utils.logger import setup_logger
logger = setup_logger()
DANSWER_TRACEMALLOC_FRAMES = 10
class DanswerTracer:
def __init__(self) -> None:
self.snapshot_first: tracemalloc.Snapshot | None = None
self.snapshot_prev: tracemalloc.Snapshot | None = None
self.snapshot: tracemalloc.Snapshot | None = None
def start(self) -> None:
tracemalloc.start(DANSWER_TRACEMALLOC_FRAMES)
def stop(self) -> None:
tracemalloc.stop()
def snap(self) -> None:
snapshot = tracemalloc.take_snapshot()
# Filter out irrelevant frames (e.g., from tracemalloc itself or importlib)
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, tracemalloc.__file__), # Exclude tracemalloc
tracemalloc.Filter(
False, "<frozen importlib._bootstrap>"
), # Exclude importlib
tracemalloc.Filter(
False, "<frozen importlib._bootstrap_external>"
), # Exclude external importlib
)
)
if not self.snapshot_first:
self.snapshot_first = snapshot
if self.snapshot:
self.snapshot_prev = self.snapshot
self.snapshot = snapshot
def log_snapshot(self, numEntries: int) -> None:
if not self.snapshot:
return
stats = self.snapshot.statistics("traceback")
for s in stats[:numEntries]:
logger.debug(f"Tracer snap: {s}")
for line in s.traceback:
logger.debug(f"* {line}")
@staticmethod
def log_diff(
snap_current: tracemalloc.Snapshot,
snap_previous: tracemalloc.Snapshot,
numEntries: int,
) -> None:
stats = snap_current.compare_to(snap_previous, "traceback")
for s in stats[:numEntries]:
logger.debug(f"Tracer diff: {s}")
for line in s.traceback.format():
logger.debug(f"* {line}")
def log_previous_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_prev:
return
DanswerTracer.log_diff(self.snapshot, self.snapshot_prev, numEntries)
def log_first_diff(self, numEntries: int) -> None:
if not self.snapshot or not self.snapshot_first:
return
DanswerTracer.log_diff(self.snapshot, self.snapshot_first, numEntries)

View File

@@ -14,14 +14,6 @@ from danswer.db.tasks import mark_task_start
from danswer.db.tasks import register_task
def name_cc_cleanup_task(connector_id: int, credential_id: int) -> str:
return f"cleanup_connector_credential_pair_{connector_id}_{credential_id}"
def name_document_set_sync_task(document_set_id: int) -> str:
return f"sync_doc_set_{document_set_id}"
def name_cc_prune_task(
connector_id: int | None = None, credential_id: int | None = None
) -> str:
@@ -93,9 +85,16 @@ def build_apply_async_wrapper(build_name_fn: Callable[..., str]) -> Callable[[AA
kwargs_for_build_name = kwargs or {}
task_name = build_name_fn(*args_for_build_name, **kwargs_for_build_name)
with Session(get_sqlalchemy_engine()) as db_session:
# mark the task as started
# register_task must come before fn = apply_async or else the task
# might run mark_task_start (and crash) before the task row exists
db_task = register_task(task_name, db_session)
task = fn(args, kwargs, *other_args, **other_kwargs)
register_task(task.id, task_name, db_session)
# we update the celery task id for diagnostic purposes
# but it isn't currently used by any code
db_task.task_id = task.id
db_session.commit()
return task

View File

@@ -17,25 +17,29 @@ from danswer.configs.app_configs import DASK_JOB_CLIENT_ENABLED
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import NUM_INDEXING_WORKERS
from danswer.configs.app_configs import NUM_SECONDARY_INDEXING_WORKERS
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import POSTGRES_INDEXER_APP_NAME
from danswer.db.connector import fetch_connectors
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
from danswer.db.embedding_model import get_current_db_embedding_model
from danswer.db.embedding_model import get_secondary_db_embedding_model
from danswer.db.engine import get_db_current_time
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.engine import init_sqlalchemy_engine
from danswer.db.index_attempt import create_index_attempt
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import get_inprogress_index_attempts
from danswer.db.index_attempt import get_last_attempt_for_cc_pair
from danswer.db.index_attempt import get_not_started_index_attempts
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.models import Connector
from danswer.db.models import EmbeddingModel
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import IndexAttempt
from danswer.db.models import IndexingStatus
from danswer.db.models import IndexModelStatus
from danswer.db.models import SearchSettings
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.db.swap_index import check_index_swap
from danswer.natural_language_processing.search_nlp_models import warm_up_encoders
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import global_version
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
@@ -55,47 +59,68 @@ _UNEXPECTED_STATE_FAILURE_REASON = (
def _should_create_new_indexing(
connector: Connector,
cc_pair: ConnectorCredentialPair,
last_index: IndexAttempt | None,
model: EmbeddingModel,
search_settings_instance: SearchSettings,
secondary_index_building: bool,
db_session: Session,
) -> bool:
connector = cc_pair.connector
# don't kick off indexing for `NOT_APPLICABLE` sources
if connector.source == DocumentSource.NOT_APPLICABLE:
return False
# User can still manually create single indexing attempts via the UI for the
# currently in use index
if DISABLE_INDEX_UPDATE_ON_SWAP:
if model.status == IndexModelStatus.PRESENT and secondary_index_building:
if (
search_settings_instance.status == IndexModelStatus.PRESENT
and secondary_index_building
):
return False
# When switching over models, always index at least once
if model.status == IndexModelStatus.FUTURE:
if search_settings_instance.status == IndexModelStatus.FUTURE:
if last_index:
# secondary indexes should not index again after success
# or else the model will never be able to swap
# No new index if the last index attempt succeeded
# Once is enough. The model will never be able to swap otherwise.
if last_index.status == IndexingStatus.SUCCESS:
return False
# No new index if the last index attempt is waiting to start
if last_index.status == IndexingStatus.NOT_STARTED:
return False
# No new index if the last index attempt is running
if last_index.status == IndexingStatus.IN_PROGRESS:
return False
else:
if connector.id == 0: # Ingestion API
return False
return True
# If the connector is disabled, don't index
# If the connector is paused or is the ingestion API, don't index
# NOTE: during an embedding model switch over, the following logic
# is bypassed by the above check for a future model
if connector.disabled:
return False
if connector.refresh_freq is None:
if not cc_pair.status.is_active() or connector.id == 0:
return False
if not last_index:
return True
# Only one scheduled job per connector at a time
# Can schedule another one if the current one is already running however
# Because the currently running one will not be until the latest time
# Note, this last index is for the given embedding model
if last_index.status == IndexingStatus.NOT_STARTED:
if connector.refresh_freq is None:
return False
# Only one scheduled/ongoing job per connector at a time
# this prevents cases where
# (1) the "latest" index_attempt is scheduled so we show
# that in the UI despite another index_attempt being in-progress
# (2) multiple scheduled index_attempts at a time
if (
last_index.status == IndexingStatus.NOT_STARTED
or last_index.status == IndexingStatus.IN_PROGRESS
):
return False
current_db_time = get_db_current_time(db_session)
@@ -103,16 +128,6 @@ def _should_create_new_indexing(
return time_since_index.total_seconds() >= connector.refresh_freq
def _is_indexing_job_marked_as_finished(index_attempt: IndexAttempt | None) -> bool:
if index_attempt is None:
return False
return (
index_attempt.status == IndexingStatus.FAILED
or index_attempt.status == IndexingStatus.SUCCESS
)
def _mark_run_failed(
db_session: Session, index_attempt: IndexAttempt, failure_reason: str
) -> None:
@@ -153,35 +168,42 @@ def create_indexing_jobs(existing_jobs: dict[int, Future | SimpleJob]) -> None:
ongoing.add(
(
attempt.connector_credential_pair_id,
attempt.embedding_model_id,
attempt.search_settings_id,
)
)
embedding_models = [get_current_db_embedding_model(db_session)]
secondary_embedding_model = get_secondary_db_embedding_model(db_session)
if secondary_embedding_model is not None:
embedding_models.append(secondary_embedding_model)
# Get the primary search settings
primary_search_settings = get_current_search_settings(db_session)
search_settings = [primary_search_settings]
# Check for secondary search settings
secondary_search_settings = get_secondary_search_settings(db_session)
if secondary_search_settings is not None:
# If secondary settings exist, add them to the list
search_settings.append(secondary_search_settings)
all_connector_credential_pairs = fetch_connector_credential_pairs(db_session)
for cc_pair in all_connector_credential_pairs:
for model in embedding_models:
for search_settings_instance in search_settings:
# Check if there is an ongoing indexing attempt for this connector credential pair
if (cc_pair.id, model.id) in ongoing:
if (cc_pair.id, search_settings_instance.id) in ongoing:
continue
last_attempt = get_last_attempt_for_cc_pair(
cc_pair.id, model.id, db_session
cc_pair.id, search_settings_instance.id, db_session
)
if not _should_create_new_indexing(
connector=cc_pair.connector,
cc_pair=cc_pair,
last_index=last_attempt,
model=model,
secondary_index_building=len(embedding_models) > 1,
search_settings_instance=search_settings_instance,
secondary_index_building=len(search_settings) > 1,
db_session=db_session,
):
continue
create_index_attempt(cc_pair.id, model.id, db_session)
create_index_attempt(
cc_pair.id, search_settings_instance.id, db_session
)
def cleanup_indexing_jobs(
@@ -189,7 +211,6 @@ def cleanup_indexing_jobs(
timeout_hours: int = CLEANUP_INDEXING_JOBS_TIMEOUT,
) -> dict[int, Future | SimpleJob]:
existing_jobs_copy = existing_jobs.copy()
# clean up completed jobs
with Session(get_sqlalchemy_engine()) as db_session:
for attempt_id, job in existing_jobs.items():
@@ -198,10 +219,12 @@ def cleanup_indexing_jobs(
)
# do nothing for ongoing jobs that haven't been stopped
if not job.done() and not _is_indexing_job_marked_as_finished(
index_attempt
):
continue
if not job.done():
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
if job.status == "error":
logger.error(job.exception())
@@ -276,20 +299,27 @@ def kickoff_indexing_jobs(
# get_not_started_index_attempts orders its returned results from oldest to newest
# we must process attempts in a FIFO manner to prevent connector starvation
new_indexing_attempts = [
(attempt, attempt.embedding_model)
(attempt, attempt.search_settings)
for attempt in get_not_started_index_attempts(db_session)
if attempt.id not in existing_jobs
]
logger.info(f"Found {len(new_indexing_attempts)} new indexing tasks.")
logger.debug(f"Found {len(new_indexing_attempts)} new indexing task(s).")
if not new_indexing_attempts:
return existing_jobs
for attempt, embedding_model in new_indexing_attempts:
indexing_attempt_count = 0
primary_client_full = False
secondary_client_full = False
for attempt, search_settings in new_indexing_attempts:
if primary_client_full and secondary_client_full:
break
use_secondary_index = (
embedding_model.status == IndexModelStatus.FUTURE
if embedding_model is not None
search_settings.status == IndexModelStatus.FUTURE
if search_settings is not None
else False
)
if attempt.connector_credential_pair.connector is None:
@@ -311,31 +341,54 @@ def kickoff_indexing_jobs(
)
continue
if use_secondary_index:
run = secondary_client.submit(
run_indexing_entrypoint,
attempt.id,
global_version.get_is_ee_version(),
pure=False,
)
if not use_secondary_index:
if not primary_client_full:
run = client.submit(
run_indexing_entrypoint,
attempt.id,
attempt.connector_credential_pair_id,
global_version.get_is_ee_version(),
pure=False,
)
if not run:
primary_client_full = True
else:
run = client.submit(
run_indexing_entrypoint,
attempt.id,
global_version.get_is_ee_version(),
pure=False,
)
if not secondary_client_full:
run = secondary_client.submit(
run_indexing_entrypoint,
attempt.id,
attempt.connector_credential_pair_id,
global_version.get_is_ee_version(),
pure=False,
)
if not run:
secondary_client_full = True
if run:
secondary_str = "(secondary index) " if use_secondary_index else ""
if indexing_attempt_count == 0:
logger.info(
f"Indexing dispatch starts: pending={len(new_indexing_attempts)}"
)
indexing_attempt_count += 1
secondary_str = " (secondary index)" if use_secondary_index else ""
logger.info(
f"Kicked off {secondary_str}"
f"indexing attempt for connector: '{attempt.connector_credential_pair.connector.name}', "
f"with config: '{attempt.connector_credential_pair.connector.connector_specific_config}', and "
f"with credentials: '{attempt.connector_credential_pair.credential_id}'"
f"Indexing dispatched{secondary_str}: "
f"attempt_id={attempt.id} "
f"connector='{attempt.connector_credential_pair.connector.name}' "
f"config='{attempt.connector_credential_pair.connector.connector_specific_config}' "
f"credentials='{attempt.connector_credential_pair.credential_id}'"
)
existing_jobs_copy[attempt.id] = run
if indexing_attempt_count > 0:
logger.info(
f"Indexing dispatch results: "
f"initial_pending={len(new_indexing_attempts)} "
f"started={indexing_attempt_count} "
f"remaining={len(new_indexing_attempts) - indexing_attempt_count}"
)
return existing_jobs_copy
@@ -347,18 +400,22 @@ def update_loop(
engine = get_sqlalchemy_engine()
with Session(engine) as db_session:
check_index_swap(db_session=db_session)
db_embedding_model = get_current_db_embedding_model(db_session)
search_settings = get_current_search_settings(db_session)
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
# So that the first time users aren't surprised by really slow speed of first
# batch of documents indexed
if db_embedding_model.cloud_provider_id is None:
logger.info("Running a first inference to warm up embedding model")
warm_up_encoders(
embedding_model=db_embedding_model,
model_server_host=INDEXING_MODEL_SERVER_HOST,
model_server_port=MODEL_SERVER_PORT,
)
if search_settings.provider_type is None:
logger.notice("Running a first inference to warm up embedding model")
embedding_model = EmbeddingModel.from_db_model(
search_settings=search_settings,
server_host=INDEXING_MODEL_SERVER_HOST,
server_port=MODEL_SERVER_PORT,
)
warm_up_bi_encoder(
embedding_model=embedding_model,
)
client_primary: Client | SimpleJobClient
client_secondary: Client | SimpleJobClient
@@ -390,11 +447,11 @@ def update_loop(
while True:
start = time.time()
start_time_utc = datetime.utcfromtimestamp(start).strftime("%Y-%m-%d %H:%M:%S")
logger.info(f"Running update, current UTC time: {start_time_utc}")
logger.debug(f"Running update, current UTC time: {start_time_utc}")
if existing_jobs:
# TODO: make this debug level once the "no jobs are being scheduled" issue is resolved
logger.info(
logger.debug(
"Found existing indexing jobs: "
f"{[(attempt_id, job.status) for attempt_id, job in existing_jobs.items()]}"
)
@@ -418,8 +475,9 @@ def update_loop(
def update__main() -> None:
set_is_ee_based_on_env_variable()
init_sqlalchemy_engine(POSTGRES_INDEXER_APP_NAME)
logger.info("Starting Indexing Loop")
logger.notice("Starting indexing service")
update_loop()

View File

@@ -36,9 +36,12 @@ def create_chat_chain(
chat_session_id: int,
db_session: Session,
prefetch_tool_calls: bool = True,
# Optional id at which we finish processing
stop_at_message_id: int | None = None,
) -> tuple[ChatMessage, list[ChatMessage]]:
"""Build the linear chain of messages without including the root message"""
mainline_messages: list[ChatMessage] = []
all_chat_messages = get_chat_messages_by_session(
chat_session_id=chat_session_id,
user_id=None,
@@ -60,7 +63,12 @@ def create_chat_chain(
current_message: ChatMessage | None = root_message
while current_message is not None:
child_msg = current_message.latest_child_message
if not child_msg:
# Break if at the end of the chain
# or have reached the `final_id` of the submitted message
if not child_msg or (
stop_at_message_id and current_message.id == stop_at_message_id
):
break
current_message = id_to_msg.get(child_msg)

View File

@@ -0,0 +1,24 @@
input_prompts:
- id: -5
prompt: "Elaborate"
content: "Elaborate on the above, give me a more in depth explanation."
active: true
is_public: true
- id: -4
prompt: "Reword"
content: "Help me rewrite the following politely and concisely for professional communication:\n"
active: true
is_public: true
- id: -3
prompt: "Email"
content: "Write a professional email for me including a subject line, signature, etc. Template the parts that need editing with [ ]. The email should cover the following points:\n"
active: true
is_public: true
- id: -2
prompt: "Debug"
content: "Provide step-by-step troubleshooting instructions for the following issue:\n"
active: true
is_public: true

View File

@@ -1,13 +1,17 @@
import yaml
from sqlalchemy.orm import Session
from danswer.configs.chat_configs import INPUT_PROMPT_YAML
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
from danswer.db.models import Persona
from danswer.db.models import Prompt as PromptDBModel
from danswer.db.models import Tool as ToolDBModel
from danswer.db.persona import get_prompt_by_name
from danswer.db.persona import upsert_persona
from danswer.db.persona import upsert_prompt
@@ -76,9 +80,31 @@ def load_personas_from_yaml(
prompt_ids = [prompt.id for prompt in prompts if prompt is not None]
p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)
.filter(ToolDBModel.name == "ImageGenerationTool")
.first()
)
if image_gen_tool:
tool_ids.append(image_gen_tool.id)
llm_model_provider_override = persona.get("llm_model_provider_override")
llm_model_version_override = persona.get("llm_model_version_override")
# Set specific overrides for image generation persona
if persona.get("image_generation"):
llm_model_version_override = "gpt-4o"
existing_persona = (
db_session.query(Persona)
.filter(Persona.name == persona["name"])
.first()
)
upsert_persona(
user=None,
# Negative to not conflict with existing personas
persona_id=(-1 * p_id) if p_id is not None else None,
name=persona["name"],
description=persona["description"],
@@ -90,20 +116,50 @@ def load_personas_from_yaml(
llm_filter_extraction=persona.get("llm_filter_extraction"),
icon_shape=persona.get("icon_shape"),
icon_color=persona.get("icon_color"),
llm_model_provider_override=None,
llm_model_version_override=None,
llm_model_provider_override=llm_model_provider_override,
llm_model_version_override=llm_model_version_override,
recency_bias=RecencyBiasSetting(persona["recency_bias"]),
prompt_ids=prompt_ids,
document_set_ids=doc_set_ids,
default_persona=True,
tool_ids=tool_ids,
builtin_persona=True,
is_public=True,
display_priority=existing_persona.display_priority
if existing_persona is not None
else persona.get("display_priority"),
is_visible=existing_persona.is_visible
if existing_persona is not None
else persona.get("is_visible"),
db_session=db_session,
)
def load_input_prompts_from_yaml(input_prompts_yaml: str = INPUT_PROMPT_YAML) -> None:
with open(input_prompts_yaml, "r") as file:
data = yaml.safe_load(file)
all_input_prompts = data.get("input_prompts", [])
with Session(get_sqlalchemy_engine()) as db_session:
for input_prompt in all_input_prompts:
# If these prompts are deleted (which is a hard delete in the DB), on server startup
# they will be recreated, but the user can always just deactivate them, just a light inconvenience
insert_input_prompt_if_not_exists(
user=None,
input_prompt_id=input_prompt.get("id"),
prompt=input_prompt["prompt"],
content=input_prompt["content"],
is_public=input_prompt["is_public"],
active=input_prompt.get("active", True),
db_session=db_session,
commit=True,
)
def load_chat_yamls(
prompt_yaml: str = PROMPTS_YAML,
personas_yaml: str = PERSONAS_YAML,
input_prompts_yaml: str = INPUT_PROMPT_YAML,
) -> None:
load_prompts_from_yaml(prompt_yaml)
load_personas_from_yaml(personas_yaml)
load_input_prompts_from_yaml(input_prompts_yaml)

View File

@@ -1,5 +1,6 @@
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from pydantic import BaseModel
@@ -9,6 +10,7 @@ from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
from danswer.search.models import RetrievalDocs
from danswer.search.models import SearchResponse
from danswer.tools.custom.base_tool_types import ToolResultType
class LlmDoc(BaseModel):
@@ -34,27 +36,53 @@ class QADocsResponse(RetrievalDocs):
applied_time_cutoff: datetime | None
recency_bias_multiplier: float
def dict(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
initial_dict = super().dict(*args, **kwargs) # type: ignore
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
initial_dict = super().model_dump(mode="json", *args, **kwargs) # type: ignore
initial_dict["applied_time_cutoff"] = (
self.applied_time_cutoff.isoformat() if self.applied_time_cutoff else None
)
return initial_dict
class StreamStopReason(Enum):
CONTEXT_LENGTH = "context_length"
CANCELLED = "cancelled"
class StreamStopInfo(BaseModel):
stop_reason: StreamStopReason
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
data = super().model_dump(mode="json", *args, **kwargs) # type: ignore
data["stop_reason"] = self.stop_reason.name
return data
class LLMRelevanceFilterResponse(BaseModel):
relevant_chunk_indices: list[int]
llm_selected_doc_indices: list[int]
class RelevanceChunk(BaseModel):
# TODO make this document level. Also slight misnomer here as this is actually
# done at the section level currently rather than the chunk
relevant: bool | None = None
class FinalUsedContextDocsResponse(BaseModel):
final_context_docs: list[LlmDoc]
class RelevanceAnalysis(BaseModel):
relevant: bool
content: str | None = None
class LLMRelevanceSummaryResponse(BaseModel):
relevance_summaries: dict[str, RelevanceChunk]
class SectionRelevancePiece(RelevanceAnalysis):
"""LLM analysis mapped to an Inference Section"""
document_id: str
chunk_id: int # ID of the center chunk for a given inference section
class DocumentRelevance(BaseModel):
"""Contains all relevance information for a given search"""
relevance_summaries: dict[str, RelevanceAnalysis]
class DanswerAnswerPiece(BaseModel):
@@ -69,8 +97,24 @@ class CitationInfo(BaseModel):
document_id: str
class AllCitations(BaseModel):
citations: list[CitationInfo]
# This is a mapping of the citation number to the document index within
# the result search doc set
class MessageSpecificCitations(BaseModel):
citation_map: dict[int, int]
class MessageResponseIDInfo(BaseModel):
user_message_id: int | None
reserved_assistant_message_id: int
class StreamingError(BaseModel):
error: str
stack_trace: str | None = None
class DanswerQuote(BaseModel):
@@ -108,7 +152,7 @@ class QAResponse(SearchResponse, DanswerAnswer):
predicted_flow: QueryFlow
predicted_search: SearchType
eval_res_valid: bool | None = None
llm_chunks_indices: list[int] | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
@@ -117,7 +161,7 @@ class ImageGenerationDisplay(BaseModel):
class CustomToolResponse(BaseModel):
response: dict
response: ToolResultType
tool_name: str
@@ -129,6 +173,7 @@ AnswerQuestionPossibleReturn = (
| ImageGenerationDisplay
| CustomToolResponse
| StreamingError
| StreamStopInfo
)

View File

@@ -5,7 +5,7 @@ personas:
# this is for DanswerBot to use when tagged in a non-configured channel
# Careful setting specific IDs, this won't autoincrement the next ID value for postgres
- id: 0
name: "Danswer"
name: "Knowledge"
description: >
Assistant with access to documents from your Connected Sources.
# Default Prompt objects attached to the persona, see prompts.yaml
@@ -17,7 +17,7 @@ personas:
num_chunks: 10
# Enable/Disable usage of the LLM chunk filter feature whereby each chunk is passed to the LLM to determine
# if the chunk is useful or not towards the latest user query
# This feature can be overriden for all personas via DISABLE_LLM_CHUNK_FILTER env variable
# This feature can be overriden for all personas via DISABLE_LLM_DOC_RELEVANCE env variable
llm_relevance_filter: true
# Enable/Disable usage of the LLM to extract query time filters including source type and time range filters
llm_filter_extraction: true
@@ -39,11 +39,13 @@ personas:
document_sets: []
icon_shape: 23013
icon_color: "#6FB1FF"
display_priority: 1
is_visible: true
- id: 1
name: "GPT"
name: "General"
description: >
Assistant with no access to documents. Chat with just the Language Model.
Assistant with no access to documents. Chat with just the Large Language Model.
prompts:
- "OnlyLLM"
num_chunks: 0
@@ -53,7 +55,8 @@ personas:
document_sets: []
icon_shape: 50910
icon_color: "#FF6F6F"
display_priority: 0
is_visible: true
- id: 2
name: "Paraphrase"
@@ -68,4 +71,23 @@ personas:
document_sets: []
icon_shape: 45519
icon_color: "#6FFF8D"
display_priority: 2
is_visible: false
- id: 3
name: "Art"
description: >
Assistant for generating images based on descriptions.
prompts:
- "ImageGeneration"
num_chunks: 0
llm_relevance_filter: false
llm_filter_extraction: false
recency_bias: "no_decay"
document_sets: []
icon_shape: 234124
icon_color: "#9B59B6"
image_generation: true
display_priority: 3
is_visible: true

View File

@@ -1,3 +1,4 @@
import traceback
from collections.abc import Callable
from collections.abc import Iterator
from functools import partial
@@ -6,11 +7,15 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.models import AllCitations
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import FinalUsedContextDocsResponse
from danswer.chat.models import ImageGenerationDisplay
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import MessageSpecificCitations
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.configs.chat_configs import BING_API_KEY
@@ -27,15 +32,16 @@ from danswer.db.chat import get_chat_session_by_id
from danswer.db.chat import get_db_search_doc_by_id
from danswer.db.chat import get_doc_query_identifiers_from_model
from danswer.db.chat import get_or_create_root_message
from danswer.db.chat import reserve_message_id
from danswer.db.chat import translate_db_message_to_chat_message_detail
from danswer.db.chat import translate_db_search_doc_to_server_search_doc
from danswer.db.embedding_model import get_current_db_embedding_model
from danswer.db.engine import get_session_context_manager
from danswer.db.llm import fetch_existing_llm_providers
from danswer.db.models import SearchDoc as DbSearchDoc
from danswer.db.models import ToolCall
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.db.search_settings import get_current_search_settings
from danswer.document_index.factory import get_default_document_index
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
@@ -51,7 +57,9 @@ from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.interfaces import LLMConfig
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.search.enums import LLMEvaluationType
from danswer.search.enums import OptionalSearchSetting
from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
@@ -60,11 +68,14 @@ from danswer.search.retrieval.search_runner import inference_sections_from_ids
from danswer.search.utils import chunks_or_sections_to_search_docs
from danswer.search.utils import dedupe_documents
from danswer.search.utils import drop_llm_indices
from danswer.search.utils import relevant_sections_to_indices
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.server.utils import get_json_line
from danswer.tools.built_in_tools import get_built_in_tool_by_id
from danswer.tools.custom.custom_tool import build_custom_tools_from_openapi_schema
from danswer.tools.custom.custom_tool import (
build_custom_tools_from_openapi_schema_and_headers,
)
from danswer.tools.custom.custom_tool import CUSTOM_TOOL_RESPONSE_ID
from danswer.tools.custom.custom_tool import CustomToolCallSummary
from danswer.tools.force import ForceUseTool
@@ -79,6 +90,8 @@ from danswer.tools.internet_search.internet_search_tool import (
)
from danswer.tools.internet_search.internet_search_tool import InternetSearchResponse
from danswer.tools.internet_search.internet_search_tool import InternetSearchTool
from danswer.tools.models import DynamicSchemaInfo
from danswer.tools.search.search_tool import FINAL_CONTEXT_DOCUMENTS_ID
from danswer.tools.search.search_tool import SEARCH_RESPONSE_SUMMARY_ID
from danswer.tools.search.search_tool import SearchResponseSummary
from danswer.tools.search.search_tool import SearchTool
@@ -94,9 +107,9 @@ from danswer.utils.timing import log_generator_function_time
logger = setup_logger()
def translate_citations(
def _translate_citations(
citations_list: list[CitationInfo], db_docs: list[DbSearchDoc]
) -> dict[int, int]:
) -> MessageSpecificCitations:
"""Always cites the first instance of the document_id, assumes the db_docs
are sorted in the order displayed in the UI"""
doc_id_to_saved_doc_id_map: dict[str, int] = {}
@@ -111,7 +124,7 @@ def translate_citations(
citation.citation_num
] = doc_id_to_saved_doc_id_map[citation.document_id]
return citation_to_saved_doc_id_map
return MessageSpecificCitations(citation_map=citation_to_saved_doc_id_map)
def _handle_search_tool_response_summary(
@@ -178,7 +191,7 @@ def _handle_internet_search_tool_response_summary(
rephrased_query=internet_search_response.revised_query,
top_documents=response_docs,
predicted_flow=QueryFlow.QUESTION_ANSWER,
predicted_search=SearchType.HYBRID,
predicted_search=SearchType.SEMANTIC,
applied_source_filters=[],
applied_time_cutoff=None,
recency_bias_multiplier=1.0,
@@ -233,11 +246,15 @@ ChatPacket = (
StreamingError
| QADocsResponse
| LLMRelevanceFilterResponse
| FinalUsedContextDocsResponse
| ChatMessageDetail
| DanswerAnswerPiece
| AllCitations
| CitationInfo
| ImageGenerationDisplay
| CustomToolResponse
| MessageSpecificCitations
| MessageResponseIDInfo
)
ChatPacketStream = Iterator[ChatPacket]
@@ -253,9 +270,10 @@ def stream_chat_message_objects(
max_document_percentage: float = CHAT_TARGET_CHUNK_PERCENTAGE,
# if specified, uses the last user message and does not create a new user message based
# on the `new_msg_req.message`. Currently, requires a state where the last message is a
# user message (e.g. this can only be used for the chat-seeding flow).
use_existing_user_message: bool = False,
litellm_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
enforce_chat_session_id_for_search_docs: bool = True,
) -> ChatPacketStream:
"""Streams in order:
1. [conditional] Retrieved documents if a search needs to be run
@@ -263,6 +281,11 @@ def stream_chat_message_objects(
3. [always] A set of streamed LLM tokens or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
# Currently surrounding context is not supported for chat
# Chat is already token heavy and harder for the model to process plus it would roll history over much faster
new_msg_req.chunks_above = 0
new_msg_req.chunks_below = 0
try:
user_id = user.id if user is not None else None
@@ -319,9 +342,9 @@ def stream_chat_message_objects(
Callable[[str], list[int]], llm_tokenizer.encode
)
embedding_model = get_current_db_embedding_model(db_session)
search_settings = get_current_search_settings(db_session)
document_index = get_default_document_index(
primary_index_name=embedding_model.index_name, secondary_index_name=None
primary_index_name=search_settings.index_name, secondary_index_name=None
)
# Every chat Session begins with an empty root message
@@ -339,7 +362,15 @@ def stream_chat_message_objects(
parent_message = root_message
user_message = None
if not use_existing_user_message:
if new_msg_req.regenerate:
final_msg, history_msgs = create_chat_chain(
stop_at_message_id=parent_id,
chat_session_id=chat_session_id,
db_session=db_session,
)
elif not use_existing_user_message:
# Create new message at the right place in the tree and update the parent's child pointer
# Don't commit yet until we verify the chat message chain
user_message = create_new_chat_message(
@@ -414,6 +445,7 @@ def stream_chat_message_objects(
chat_session=chat_session,
user_id=user_id,
db_session=db_session,
enforce_chat_session_id_for_search_docs=enforce_chat_session_id_for_search_docs,
)
# Generates full documents currently
@@ -445,9 +477,23 @@ def stream_chat_message_objects(
else default_num_chunks
),
max_window_percentage=max_document_percentage,
use_sections=new_msg_req.chunks_above > 0
or new_msg_req.chunks_below > 0,
)
reserved_message_id = reserve_message_id(
db_session=db_session,
chat_session_id=chat_session_id,
parent_message=user_message.id
if user_message is not None
else parent_message.id,
message_type=MessageType.ASSISTANT,
)
yield MessageResponseIDInfo(
user_message_id=user_message.id if user_message else None,
reserved_assistant_message_id=reserved_message_id,
)
overridden_model = (
new_msg_req.llm_override.model_version if new_msg_req.llm_override else None
)
# Cannot determine these without the LLM step or breaking out early
partial_response = partial(
@@ -455,6 +501,7 @@ def stream_chat_message_objects(
chat_session_id=chat_session_id,
parent_message=final_msg,
prompt_id=prompt_id,
overridden_model=overridden_model,
# message=,
# rephrased_query=,
# token_count=,
@@ -501,6 +548,9 @@ def stream_chat_message_objects(
chunks_above=new_msg_req.chunks_above,
chunks_below=new_msg_req.chunks_below,
full_doc=new_msg_req.full_doc,
evaluation_type=LLMEvaluationType.BASIC
if persona.llm_relevance_filter
else LLMEvaluationType.SKIP,
)
tool_dict[db_tool_model.id] = [search_tool]
elif tool_cls.__name__ == ImageGenerationTool.__name__:
@@ -559,8 +609,13 @@ def stream_chat_message_objects(
if db_tool_model.openapi_schema:
tool_dict[db_tool_model.id] = cast(
list[Tool],
build_custom_tools_from_openapi_schema(
db_tool_model.openapi_schema
build_custom_tools_from_openapi_schema_and_headers(
db_tool_model.openapi_schema,
dynamic_schema_info=DynamicSchemaInfo(
chat_session_id=chat_session_id,
message_id=user_message.id if user_message else None,
),
custom_headers=db_tool_model.custom_headers,
),
)
@@ -578,6 +633,7 @@ def stream_chat_message_objects(
# LLM prompt building, response capturing, etc.
answer = Answer(
is_connected=is_connected,
question=final_msg.message,
latest_query_files=latest_query_files,
answer_style_config=AnswerStyleConfig(
@@ -611,6 +667,7 @@ def stream_chat_message_objects(
ai_message_files = None # any files to associate with the AI message e.g. dall-e generated images
dropped_indices = None
tool_result = None
for packet in answer.processed_streamed_output:
if isinstance(packet, ToolResponse):
if packet.id == SEARCH_RESPONSE_SUMMARY_ID:
@@ -623,24 +680,41 @@ def stream_chat_message_objects(
db_session=db_session,
selected_search_docs=selected_db_search_docs,
# Deduping happens at the last step to avoid harming quality by dropping content early on
dedupe_docs=retrieval_options.dedupe_docs
if retrieval_options
else False,
dedupe_docs=(
retrieval_options.dedupe_docs
if retrieval_options
else False
),
)
yield qa_docs_response
elif packet.id == SECTION_RELEVANCE_LIST_ID:
chunk_indices = packet.response
relevance_sections = packet.response
if reference_db_search_docs is not None and dropped_indices:
chunk_indices = drop_llm_indices(
llm_indices=chunk_indices,
search_docs=reference_db_search_docs,
dropped_indices=dropped_indices,
if reference_db_search_docs is not None:
llm_indices = relevant_sections_to_indices(
relevance_sections=relevance_sections,
items=[
translate_db_search_doc_to_server_search_doc(doc)
for doc in reference_db_search_docs
],
)
yield LLMRelevanceFilterResponse(
relevant_chunk_indices=chunk_indices
if dropped_indices:
llm_indices = drop_llm_indices(
llm_indices=llm_indices,
search_docs=reference_db_search_docs,
dropped_indices=dropped_indices,
)
yield LLMRelevanceFilterResponse(
llm_selected_doc_indices=llm_indices
)
elif packet.id == FINAL_CONTEXT_DOCUMENTS_ID:
yield FinalUsedContextDocsResponse(
final_context_docs=packet.response
)
elif packet.id == IMAGE_GENERATION_RESPONSE_ID:
img_generation_response = cast(
list[ImageGenerationResponse], packet.response
@@ -676,31 +750,38 @@ def stream_chat_message_objects(
if isinstance(packet, ToolCallFinalResult):
tool_result = packet
yield cast(ChatPacket, packet)
logger.debug("Reached end of stream")
except ValueError as e:
logger.exception("Failed to process chat message.")
error_msg = str(e)
yield StreamingError(error=error_msg)
db_session.rollback()
return
except Exception as e:
logger.exception("Failed to process chat message")
logger.exception("Failed to process chat message.")
# Don't leak the API key
error_msg = str(e)
if llm.config.api_key and llm.config.api_key.lower() in error_msg.lower():
error_msg = (
f"LLM failed to respond. Invalid API "
f"key error from '{llm.config.model_provider}'."
)
stack_trace = traceback.format_exc()
client_error_msg = litellm_exception_to_error_msg(e, llm)
if llm.config.api_key and len(llm.config.api_key) > 2:
error_msg = error_msg.replace(llm.config.api_key, "[REDACTED_API_KEY]")
stack_trace = stack_trace.replace(llm.config.api_key, "[REDACTED_API_KEY]")
yield StreamingError(error=error_msg)
# Cancel the transaction so that no messages are saved
yield StreamingError(error=client_error_msg, stack_trace=stack_trace)
db_session.rollback()
return
# Post-LLM answer processing
try:
db_citations = None
message_specific_citations: MessageSpecificCitations | None = None
if reference_db_search_docs:
db_citations = translate_citations(
message_specific_citations = _translate_citations(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
yield AllCitations(citations=answer.citations)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id: dict[str, int] = {}
@@ -709,6 +790,7 @@ def stream_chat_message_objects(
tool_name_to_tool_id[tool.name] = tool_id
gen_ai_response_message = partial_response(
reserved_message_id=reserved_message_id,
message=answer.llm_answer,
rephrased_query=(
qa_docs_response.rephrased_query if qa_docs_response else None
@@ -716,19 +798,25 @@ def stream_chat_message_objects(
reference_docs=reference_db_search_docs,
files=ai_message_files,
token_count=len(llm_tokenizer_encode_func(answer.llm_answer)),
citations=db_citations,
citations=message_specific_citations.citation_map
if message_specific_citations
else None,
error=None,
tool_calls=[
ToolCall(
tool_id=tool_name_to_tool_id[tool_result.tool_name],
tool_name=tool_result.tool_name,
tool_arguments=tool_result.tool_args,
tool_result=tool_result.tool_result,
)
]
if tool_result
else [],
tool_calls=(
[
ToolCall(
tool_id=tool_name_to_tool_id[tool_result.tool_name],
tool_name=tool_result.tool_name,
tool_arguments=tool_result.tool_args,
tool_result=tool_result.tool_result,
)
]
if tool_result
else []
),
)
logger.debug("Committing messages")
db_session.commit() # actually save user / assistant message
msg_detail_response = translate_db_message_to_chat_message_detail(
@@ -737,7 +825,8 @@ def stream_chat_message_objects(
yield msg_detail_response
except Exception as e:
logger.exception(e)
error_msg = str(e)
logger.exception(error_msg)
# Frontend will erase whatever answer and show this instead
yield StreamingError(error="Failed to parse LLM output")
@@ -749,6 +838,7 @@ def stream_chat_message(
user: User | None,
use_existing_user_message: bool = False,
litellm_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
) -> Iterator[str]:
with get_session_context_manager() as db_session:
objects = stream_chat_message_objects(
@@ -757,6 +847,7 @@ def stream_chat_message(
db_session=db_session,
use_existing_user_message=use_existing_user_message,
litellm_additional_headers=litellm_additional_headers,
is_connected=is_connected,
)
for obj in objects:
yield get_json_line(obj.dict())
yield get_json_line(obj.model_dump())

View File

@@ -30,7 +30,23 @@ prompts:
# Prompts the LLM to include citations in the for [1], [2] etc.
# which get parsed to match the passed in sources
include_citations: true
- name: "ImageGeneration"
description: "Generates images based on user prompts!"
system: >
You are an advanced image generation system capable of creating diverse and detailed images.
You can interpret user prompts and generate high-quality, creative images that match their descriptions.
You always strive to create safe and appropriate content, avoiding any harmful or offensive imagery.
task: >
Generate an image based on the user's description.
Provide a detailed description of the generated image, including key elements, colors, and composition.
If the request is not possible or appropriate, explain why and suggest alternatives.
datetime_aware: true
include_citations: false
- name: "OnlyLLM"
description: "Chat directly with the LLM!"

View File

@@ -1,4 +1,4 @@
from typing import TypedDict
from typing_extensions import TypedDict # noreorder
from pydantic import BaseModel

View File

@@ -93,6 +93,14 @@ SMTP_USER = os.environ.get("SMTP_USER", "your-email@gmail.com")
SMTP_PASS = os.environ.get("SMTP_PASS", "your-gmail-password")
EMAIL_FROM = os.environ.get("EMAIL_FROM") or SMTP_USER
# If set, Danswer will listen to the `expires_at` returned by the identity
# provider (e.g. Okta, Google, etc.) and force the user to re-authenticate
# after this time has elapsed. Disabled since by default many auth providers
# have very short expiry times (e.g. 1 hour) which provide a poor user experience
TRACK_EXTERNAL_IDP_EXPIRY = (
os.environ.get("TRACK_EXTERNAL_IDP_EXPIRY", "").lower() == "true"
)
#####
# DB Configs
@@ -118,6 +126,7 @@ try:
except ValueError:
INDEX_BATCH_SIZE = 16
# Below are intended to match the env variables names used by the official postgres docker image
# https://hub.docker.com/_/postgres
POSTGRES_USER = os.environ.get("POSTGRES_USER") or "postgres"
@@ -129,6 +138,38 @@ POSTGRES_HOST = os.environ.get("POSTGRES_HOST") or "localhost"
POSTGRES_PORT = os.environ.get("POSTGRES_PORT") or "5432"
POSTGRES_DB = os.environ.get("POSTGRES_DB") or "postgres"
# defaults to False
POSTGRES_POOL_PRE_PING = os.environ.get("POSTGRES_POOL_PRE_PING", "").lower() == "true"
# recycle timeout in seconds
POSTGRES_POOL_RECYCLE_DEFAULT = 60 * 20 # 20 minutes
try:
POSTGRES_POOL_RECYCLE = int(
os.environ.get("POSTGRES_POOL_RECYCLE", POSTGRES_POOL_RECYCLE_DEFAULT)
)
except ValueError:
POSTGRES_POOL_RECYCLE = POSTGRES_POOL_RECYCLE_DEFAULT
REDIS_SSL = os.getenv("REDIS_SSL", "").lower() == "true"
REDIS_HOST = os.environ.get("REDIS_HOST") or "localhost"
REDIS_PORT = int(os.environ.get("REDIS_PORT", 6379))
REDIS_PASSWORD = os.environ.get("REDIS_PASSWORD") or ""
# Used for general redis things
REDIS_DB_NUMBER = int(os.environ.get("REDIS_DB_NUMBER", 0))
# Used by celery as broker and backend
REDIS_DB_NUMBER_CELERY_RESULT_BACKEND = int(
os.environ.get("REDIS_DB_NUMBER_CELERY_RESULT_BACKEND", 14)
)
REDIS_DB_NUMBER_CELERY = int(os.environ.get("REDIS_DB_NUMBER_CELERY", 15)) # broker
# https://docs.celeryq.dev/en/stable/userguide/configuration.html#redis-backend-settings
# should be one of "required", "optional", or "none"
REDIS_SSL_CERT_REQS = os.getenv("REDIS_SSL_CERT_REQS", "none")
REDIS_SSL_CA_CERTS = os.getenv("REDIS_SSL_CA_CERTS", "")
CELERY_RESULT_EXPIRES = int(os.environ.get("CELERY_RESULT_EXPIRES", 86400)) # seconds
#####
# Connector Configs
@@ -181,8 +222,8 @@ CONFLUENCE_CONNECTOR_LABELS_TO_SKIP = [
]
# Avoid to get archived pages
CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES = (
os.environ.get("CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES", "").lower() == "true"
CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES = (
os.environ.get("CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES", "").lower() == "true"
)
# Save pages labels as Danswer metadata tags
@@ -191,6 +232,16 @@ CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING = (
os.environ.get("CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING", "").lower() == "true"
)
# Attachments exceeding this size will not be retrieved (in bytes)
CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD = int(
os.environ.get("CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
# Attachments with more chars than this will not be indexed. This is to prevent extremely
# large files from freezing indexing. 200,000 is ~100 google doc pages.
CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD = int(
os.environ.get("CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD", 200_000)
)
JIRA_CONNECTOR_LABELS_TO_SKIP = [
ignored_tag
for ignored_tag in os.environ.get("JIRA_CONNECTOR_LABELS_TO_SKIP", "").split(",")
@@ -212,6 +263,7 @@ EXPERIMENTAL_CHECKPOINTING_ENABLED = (
os.environ.get("EXPERIMENTAL_CHECKPOINTING_ENABLED", "").lower() == "true"
)
PRUNING_DISABLED = -1
DEFAULT_PRUNING_FREQ = 60 * 60 * 24 # Once a day
ALLOW_SIMULTANEOUS_PRUNING = (
@@ -252,17 +304,35 @@ NUM_SECONDARY_INDEXING_WORKERS = int(
os.environ.get("NUM_SECONDARY_INDEXING_WORKERS") or NUM_INDEXING_WORKERS
)
# More accurate results at the expense of indexing speed and index size (stores additional 4 MINI_CHUNK vectors)
ENABLE_MINI_CHUNK = os.environ.get("ENABLE_MINI_CHUNK", "").lower() == "true"
ENABLE_MULTIPASS_INDEXING = (
os.environ.get("ENABLE_MULTIPASS_INDEXING", "").lower() == "true"
)
# Finer grained chunking for more detail retention
# Slightly larger since the sentence aware split is a max cutoff so most minichunks will be under MINI_CHUNK_SIZE
# tokens. But we need it to be at least as big as 1/4th chunk size to avoid having a tiny mini-chunk at the end
MINI_CHUNK_SIZE = 150
# This is the number of regular chunks per large chunk
LARGE_CHUNK_RATIO = 4
# Include the document level metadata in each chunk. If the metadata is too long, then it is thrown out
# We don't want the metadata to overwhelm the actual contents of the chunk
SKIP_METADATA_IN_CHUNK = os.environ.get("SKIP_METADATA_IN_CHUNK", "").lower() == "true"
# Timeout to wait for job's last update before killing it, in hours
CLEANUP_INDEXING_JOBS_TIMEOUT = int(os.environ.get("CLEANUP_INDEXING_JOBS_TIMEOUT", 3))
# The indexer will warn in the logs whenver a document exceeds this threshold (in bytes)
INDEXING_SIZE_WARNING_THRESHOLD = int(
os.environ.get("INDEXING_SIZE_WARNING_THRESHOLD", 100 * 1024 * 1024)
)
# during indexing, will log verbose memory diff stats every x batches and at the end.
# 0 disables this behavior and is the default.
INDEXING_TRACER_INTERVAL = int(os.environ.get("INDEXING_TRACER_INTERVAL", 0))
# During an indexing attempt, specifies the number of batches which are allowed to
# exception without aborting the attempt.
INDEXING_EXCEPTION_LIMIT = int(os.environ.get("INDEXING_EXCEPTION_LIMIT", 0))
#####
# Miscellaneous
@@ -290,6 +360,10 @@ LOG_VESPA_TIMING_INFORMATION = (
os.environ.get("LOG_VESPA_TIMING_INFORMATION", "").lower() == "true"
)
LOG_ENDPOINT_LATENCY = os.environ.get("LOG_ENDPOINT_LATENCY", "").lower() == "true"
LOG_POSTGRES_LATENCY = os.environ.get("LOG_POSTGRES_LATENCY", "").lower() == "true"
LOG_POSTGRES_CONN_COUNTS = (
os.environ.get("LOG_POSTGRES_CONN_COUNTS", "").lower() == "true"
)
# Anonymous usage telemetry
DISABLE_TELEMETRY = os.environ.get("DISABLE_TELEMETRY", "").lower() == "true"

View File

@@ -3,12 +3,13 @@ import os
PROMPTS_YAML = "./danswer/chat/prompts.yaml"
PERSONAS_YAML = "./danswer/chat/personas.yaml"
INPUT_PROMPT_YAML = "./danswer/chat/input_prompts.yaml"
NUM_RETURNED_HITS = 50
# Used for LLM filtering and reranking
# We want this to be approximately the number of results we want to show on the first page
# It cannot be too large due to cost and latency implications
NUM_RERANKED_RESULTS = 20
NUM_POSTPROCESSED_RESULTS = 20
# May be less depending on model
MAX_CHUNKS_FED_TO_CHAT = float(os.environ.get("MAX_CHUNKS_FED_TO_CHAT") or 10.0)
@@ -30,13 +31,9 @@ FAVOR_RECENT_DECAY_MULTIPLIER = 2.0
DISABLE_LLM_QUERY_ANSWERABILITY = QA_PROMPT_OVERRIDE == "weak"
# For the highest matching base size chunk, how many chunks above and below do we pull in by default
# Note this is not in any of the deployment configs yet
CONTEXT_CHUNKS_ABOVE = int(os.environ.get("CONTEXT_CHUNKS_ABOVE") or 0)
CONTEXT_CHUNKS_BELOW = int(os.environ.get("CONTEXT_CHUNKS_BELOW") or 0)
# Whether the LLM should evaluate all of the document chunks passed in for usefulness
# in relation to the user query
DISABLE_LLM_CHUNK_FILTER = (
os.environ.get("DISABLE_LLM_CHUNK_FILTER", "").lower() == "true"
)
# Currently only applies to search flow not chat
CONTEXT_CHUNKS_ABOVE = int(os.environ.get("CONTEXT_CHUNKS_ABOVE") or 1)
CONTEXT_CHUNKS_BELOW = int(os.environ.get("CONTEXT_CHUNKS_BELOW") or 1)
# Whether the LLM should be used to decide if a search would help given the chat history
DISABLE_LLM_CHOOSE_SEARCH = (
os.environ.get("DISABLE_LLM_CHOOSE_SEARCH", "").lower() == "true"
@@ -47,22 +44,19 @@ DISABLE_LLM_QUERY_REPHRASE = (
# 1 edit per 20 characters, currently unused due to fuzzy match being too slow
QUOTE_ALLOWED_ERROR_PERCENT = 0.05
QA_TIMEOUT = int(os.environ.get("QA_TIMEOUT") or "60") # 60 seconds
# Keyword Search Drop Stopwords
# If user has changed the default model, would most likely be to use a multilingual
# model, the stopwords are NLTK english stopwords so then we would want to not drop the keywords
if os.environ.get("EDIT_KEYWORD_QUERY"):
EDIT_KEYWORD_QUERY = os.environ.get("EDIT_KEYWORD_QUERY", "").lower() == "true"
else:
EDIT_KEYWORD_QUERY = not os.environ.get("DOCUMENT_ENCODER_MODEL")
# Weighting factor between Vector and Keyword Search, 1 for completely vector search
HYBRID_ALPHA = max(0, min(1, float(os.environ.get("HYBRID_ALPHA") or 0.62)))
HYBRID_ALPHA = max(0, min(1, float(os.environ.get("HYBRID_ALPHA") or 0.5)))
HYBRID_ALPHA_KEYWORD = max(
0, min(1, float(os.environ.get("HYBRID_ALPHA_KEYWORD") or 0.4))
)
# Weighting factor between Title and Content of documents during search, 1 for completely
# Title based. Default heavily favors Content because Title is also included at the top of
# Content. This is to avoid cases where the Content is very relevant but it may not be clear
# if the title is separated out. Title is most of a "boost" than a separate field.
TITLE_CONTENT_RATIO = max(
0, min(1, float(os.environ.get("TITLE_CONTENT_RATIO") or 0.20))
0, min(1, float(os.environ.get("TITLE_CONTENT_RATIO") or 0.10))
)
# A list of languages passed to the LLM to rephase the query
# For example "English,French,Spanish", be sure to use the "," separator
MULTILINGUAL_QUERY_EXPANSION = os.environ.get("MULTILINGUAL_QUERY_EXPANSION") or None
@@ -75,22 +69,29 @@ LANGUAGE_CHAT_NAMING_HINT = (
or "The name of the conversation must be in the same language as the user query."
)
# Agentic search takes significantly more tokens and therefore has much higher cost.
# This configuration allows users to get a search-only experience with instant results
# and no involvement from the LLM.
# Additionally, some LLM providers have strict rate limits which may prohibit
# sending many API requests at once (as is done in agentic search).
DISABLE_AGENTIC_SEARCH = (
os.environ.get("DISABLE_AGENTIC_SEARCH") or "false"
).lower() == "true"
# Whether the LLM should evaluate all of the document chunks passed in for usefulness
# in relation to the user query
DISABLE_LLM_DOC_RELEVANCE = (
os.environ.get("DISABLE_LLM_DOC_RELEVANCE", "").lower() == "true"
)
# Stops streaming answers back to the UI if this pattern is seen:
STOP_STREAM_PAT = os.environ.get("STOP_STREAM_PAT") or None
# The backend logic for this being True isn't fully supported yet
HARD_DELETE_CHATS = False
# Set this to "true" to hard delete chats
# This will make chats unviewable by admins after a user deletes them
# As opposed to soft deleting them, which just hides them from non-admin users
HARD_DELETE_CHATS = os.environ.get("HARD_DELETE_CHATS", "").lower() == "true"
# Internet Search
BING_API_KEY = os.environ.get("BING_API_KEY") or None
# Enable in-house model for detecting connector-based filtering in queries
ENABLE_CONNECTOR_CLASSIFIER = os.environ.get("ENABLE_CONNECTOR_CLASSIFIER", False)
VESPA_SEARCHER_THREADS = int(os.environ.get("VESPA_SEARCHER_THREADS") or 2)

View File

@@ -1,26 +1,7 @@
from enum import auto
from enum import Enum
DOCUMENT_ID = "document_id"
CHUNK_ID = "chunk_id"
BLURB = "blurb"
CONTENT = "content"
SOURCE_TYPE = "source_type"
SOURCE_LINKS = "source_links"
SOURCE_LINK = "link"
SEMANTIC_IDENTIFIER = "semantic_identifier"
TITLE = "title"
SKIP_TITLE_EMBEDDING = "skip_title"
SECTION_CONTINUATION = "section_continuation"
EMBEDDINGS = "embeddings"
TITLE_EMBEDDING = "title_embedding"
ALLOWED_USERS = "allowed_users"
ACCESS_CONTROL_LIST = "access_control_list"
DOCUMENT_SETS = "document_sets"
TIME_FILTER = "time_filter"
METADATA = "metadata"
METADATA_LIST = "metadata_list"
METADATA_SUFFIX = "metadata_suffix"
MATCH_HIGHLIGHTS = "match_highlights"
# stored in the `metadata` of a chunk. Used to signify that this chunk should
# not be used for QA. For example, Google Drive file types which can't be parsed
# are still useful as a search result but not for QA.
@@ -28,20 +9,9 @@ IGNORE_FOR_QA = "ignore_for_qa"
# NOTE: deprecated, only used for porting key from old system
GEN_AI_API_KEY_STORAGE_KEY = "genai_api_key"
PUBLIC_DOC_PAT = "PUBLIC"
PUBLIC_DOCUMENT_SET = "__PUBLIC"
QUOTE = "quote"
BOOST = "boost"
DOC_UPDATED_AT = "doc_updated_at" # Indexed as seconds since epoch
PRIMARY_OWNERS = "primary_owners"
SECONDARY_OWNERS = "secondary_owners"
RECENCY_BIAS = "recency_bias"
HIDDEN = "hidden"
SCORE = "score"
ID_SEPARATOR = ":;:"
DEFAULT_BOOST = 0
SESSION_KEY = "session"
QUERY_EVENT_ID = "query_event_id"
LLM_CHUNKS = "llm_chunks"
# For chunking/processing chunks
RETURN_SEPARATOR = "\n\r\n"
@@ -59,12 +29,40 @@ DISABLED_GEN_AI_MSG = (
"You can still use Danswer as a search engine."
)
# Postgres connection constants for application_name
POSTGRES_WEB_APP_NAME = "web"
POSTGRES_INDEXER_APP_NAME = "indexer"
POSTGRES_CELERY_APP_NAME = "celery"
POSTGRES_CELERY_BEAT_APP_NAME = "celery_beat"
POSTGRES_CELERY_WORKER_APP_NAME = "celery_worker"
POSTGRES_PERMISSIONS_APP_NAME = "permissions"
POSTGRES_UNKNOWN_APP_NAME = "unknown"
# API Keys
DANSWER_API_KEY_PREFIX = "API_KEY__"
DANSWER_API_KEY_DUMMY_EMAIL_DOMAIN = "danswerapikey.ai"
UNNAMED_KEY_PLACEHOLDER = "Unnamed"
# Key-Value store keys
KV_REINDEX_KEY = "needs_reindexing"
KV_SEARCH_SETTINGS = "search_settings"
KV_USER_STORE_KEY = "INVITED_USERS"
KV_NO_AUTH_USER_PREFERENCES_KEY = "no_auth_user_preferences"
KV_CRED_KEY = "credential_id_{}"
KV_GMAIL_CRED_KEY = "gmail_app_credential"
KV_GMAIL_SERVICE_ACCOUNT_KEY = "gmail_service_account_key"
KV_GOOGLE_DRIVE_CRED_KEY = "google_drive_app_credential"
KV_GOOGLE_DRIVE_SERVICE_ACCOUNT_KEY = "google_drive_service_account_key"
KV_SLACK_BOT_TOKENS_CONFIG_KEY = "slack_bot_tokens_config_key"
KV_GEN_AI_KEY_CHECK_TIME = "genai_api_key_last_check_time"
KV_SETTINGS_KEY = "danswer_settings"
KV_CUSTOMER_UUID_KEY = "customer_uuid"
KV_INSTANCE_DOMAIN_KEY = "instance_domain"
KV_ENTERPRISE_SETTINGS_KEY = "danswer_enterprise_settings"
KV_CUSTOM_ANALYTICS_SCRIPT_KEY = "__custom_analytics_script__"
CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT = 60
class DocumentSource(str, Enum):
# Special case, document passed in via Danswer APIs without specifying a source type
@@ -101,6 +99,7 @@ class DocumentSource(str, Enum):
CLICKUP = "clickup"
MEDIAWIKI = "mediawiki"
WIKIPEDIA = "wikipedia"
ASANA = "asana"
S3 = "s3"
R2 = "r2"
GOOGLE_CLOUD_STORAGE = "google_cloud_storage"
@@ -108,6 +107,10 @@ class DocumentSource(str, Enum):
NOT_APPLICABLE = "not_applicable"
class NotificationType(str, Enum):
REINDEX = "reindex"
class BlobType(str, Enum):
R2 = "r2"
S3 = "s3"
@@ -131,6 +134,12 @@ class AuthType(str, Enum):
SAML = "saml"
class SessionType(str, Enum):
CHAT = "Chat"
SEARCH = "Search"
SLACK = "Slack"
class QAFeedbackType(str, Enum):
LIKE = "like" # User likes the answer, used for metrics
DISLIKE = "dislike" # User dislikes the answer, used for metrics
@@ -163,3 +172,29 @@ class FileOrigin(str, Enum):
CONNECTOR = "connector"
GENERATED_REPORT = "generated_report"
OTHER = "other"
class PostgresAdvisoryLocks(Enum):
KOMBU_MESSAGE_CLEANUP_LOCK_ID = auto()
class DanswerCeleryQueues:
VESPA_DOCSET_SYNC_GENERATOR = "vespa_docset_sync_generator"
VESPA_USERGROUP_SYNC_GENERATOR = "vespa_usergroup_sync_generator"
VESPA_METADATA_SYNC = "vespa_metadata_sync"
CONNECTOR_DELETION = "connector_deletion"
class DanswerRedisLocks:
CHECK_VESPA_SYNC_BEAT_LOCK = "da_lock:check_vespa_sync_beat"
MONITOR_VESPA_SYNC_BEAT_LOCK = "da_lock:monitor_vespa_sync_beat"
CHECK_CONNECTOR_DELETION_BEAT_LOCK = "da_lock:check_connector_deletion_beat"
MONITOR_CONNECTOR_DELETION_BEAT_LOCK = "da_lock:monitor_connector_deletion_beat"
class DanswerCeleryPriority(int, Enum):
HIGHEST = 0
HIGH = auto()
MEDIUM = auto()
LOW = auto()
LOWEST = auto()

View File

@@ -73,3 +73,15 @@ DANSWER_BOT_FEEDBACK_REMINDER = int(
DANSWER_BOT_REPHRASE_MESSAGE = (
os.environ.get("DANSWER_BOT_REPHRASE_MESSAGE", "").lower() == "true"
)
# DANSWER_BOT_RESPONSE_LIMIT_PER_TIME_PERIOD is the number of
# responses DanswerBot can send in a given time period.
# Set to 0 to disable the limit.
DANSWER_BOT_RESPONSE_LIMIT_PER_TIME_PERIOD = int(
os.environ.get("DANSWER_BOT_RESPONSE_LIMIT_PER_TIME_PERIOD", "5000")
)
# DANSWER_BOT_RESPONSE_LIMIT_TIME_PERIOD_SECONDS is the number
# of seconds until the response limit is reset.
DANSWER_BOT_RESPONSE_LIMIT_TIME_PERIOD_SECONDS = int(
os.environ.get("DANSWER_BOT_RESPONSE_LIMIT_TIME_PERIOD_SECONDS", "86400")
)

View File

@@ -12,13 +12,15 @@ import os
# The useable models configured as below must be SentenceTransformer compatible
# NOTE: DO NOT CHANGE SET THESE UNLESS YOU KNOW WHAT YOU ARE DOING
# IDEALLY, YOU SHOULD CHANGE EMBEDDING MODELS VIA THE UI
DEFAULT_DOCUMENT_ENCODER_MODEL = "intfloat/e5-base-v2"
DEFAULT_DOCUMENT_ENCODER_MODEL = "nomic-ai/nomic-embed-text-v1"
DOCUMENT_ENCODER_MODEL = (
os.environ.get("DOCUMENT_ENCODER_MODEL") or DEFAULT_DOCUMENT_ENCODER_MODEL
)
# If the below is changed, Vespa deployment must also be changed
DOC_EMBEDDING_DIM = int(os.environ.get("DOC_EMBEDDING_DIM") or 768)
# Model should be chosen with 512 context size, ideally don't change this
# If multipass_indexing is enabled, the max context size would be set to
# DOC_EMBEDDING_CONTEXT_SIZE * LARGE_CHUNK_RATIO
DOC_EMBEDDING_CONTEXT_SIZE = 512
NORMALIZE_EMBEDDINGS = (
os.environ.get("NORMALIZE_EMBEDDINGS") or "true"
@@ -34,53 +36,42 @@ OLD_DEFAULT_MODEL_NORMALIZE_EMBEDDINGS = False
SIM_SCORE_RANGE_LOW = float(os.environ.get("SIM_SCORE_RANGE_LOW") or 0.0)
SIM_SCORE_RANGE_HIGH = float(os.environ.get("SIM_SCORE_RANGE_HIGH") or 1.0)
# Certain models like e5, BGE, etc use a prefix for asymmetric retrievals (query generally shorter than docs)
ASYM_QUERY_PREFIX = os.environ.get("ASYM_QUERY_PREFIX", "query: ")
ASYM_PASSAGE_PREFIX = os.environ.get("ASYM_PASSAGE_PREFIX", "passage: ")
ASYM_QUERY_PREFIX = os.environ.get("ASYM_QUERY_PREFIX", "search_query: ")
ASYM_PASSAGE_PREFIX = os.environ.get("ASYM_PASSAGE_PREFIX", "search_document: ")
# Purely an optimization, memory limitation consideration
BATCH_SIZE_ENCODE_CHUNKS = 8
# User's set embedding batch size overrides the default encoding batch sizes
EMBEDDING_BATCH_SIZE = int(os.environ.get("EMBEDDING_BATCH_SIZE") or 0) or None
BATCH_SIZE_ENCODE_CHUNKS = EMBEDDING_BATCH_SIZE or 8
# don't send over too many chunks at once, as sending too many could cause timeouts
BATCH_SIZE_ENCODE_CHUNKS_FOR_API_EMBEDDING_SERVICES = EMBEDDING_BATCH_SIZE or 512
# For score display purposes, only way is to know the expected ranges
CROSS_ENCODER_RANGE_MAX = 1
CROSS_ENCODER_RANGE_MIN = 0
# Unused currently, can't be used with the current default encoder model due to its output range
SEARCH_DISTANCE_CUTOFF = 0
#####
# Generative AI Model Configs
#####
# If changing GEN_AI_MODEL_PROVIDER or GEN_AI_MODEL_VERSION from the default,
# be sure to use one that is LiteLLM compatible:
# https://litellm.vercel.app/docs/providers/azure#completion---using-env-variables
# The provider is the prefix before / in the model argument
# Additionally Danswer supports GPT4All and custom request library based models
# Set GEN_AI_MODEL_PROVIDER to "custom" to use the custom requests approach
# Set GEN_AI_MODEL_PROVIDER to "gpt4all" to use gpt4all models running locally
GEN_AI_MODEL_PROVIDER = os.environ.get("GEN_AI_MODEL_PROVIDER") or "openai"
# If using Azure, it's the engine name, for example: Danswer
# NOTE: the 3 below should only be used for dev.
GEN_AI_API_KEY = os.environ.get("GEN_AI_API_KEY")
GEN_AI_MODEL_VERSION = os.environ.get("GEN_AI_MODEL_VERSION")
# For secondary flows like extracting filters or deciding if a chunk is useful, we don't need
# as powerful of a model as say GPT-4 so we can use an alternative that is faster and cheaper
FAST_GEN_AI_MODEL_VERSION = os.environ.get("FAST_GEN_AI_MODEL_VERSION")
# If the Generative AI model requires an API key for access, otherwise can leave blank
GEN_AI_API_KEY = (
os.environ.get("GEN_AI_API_KEY", os.environ.get("OPENAI_API_KEY")) or None
)
# API Base, such as (for Azure): https://danswer.openai.azure.com/
GEN_AI_API_ENDPOINT = os.environ.get("GEN_AI_API_ENDPOINT") or None
# API Version, such as (for Azure): 2023-09-15-preview
GEN_AI_API_VERSION = os.environ.get("GEN_AI_API_VERSION") or None
# LiteLLM custom_llm_provider
GEN_AI_LLM_PROVIDER_TYPE = os.environ.get("GEN_AI_LLM_PROVIDER_TYPE") or None
# Override the auto-detection of LLM max context length
GEN_AI_MAX_TOKENS = int(os.environ.get("GEN_AI_MAX_TOKENS") or 0) or None
# Set this to be enough for an answer + quotes. Also used for Chat
GEN_AI_MAX_OUTPUT_TOKENS = int(os.environ.get("GEN_AI_MAX_OUTPUT_TOKENS") or 1024)
# This is the minimum token context we will leave for the LLM to generate an answer
GEN_AI_NUM_RESERVED_OUTPUT_TOKENS = int(
os.environ.get("GEN_AI_NUM_RESERVED_OUTPUT_TOKENS") or 1024
)
# Typically, GenAI models nowadays are at least 4K tokens
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = 4096
# Number of tokens from chat history to include at maximum
# 3000 should be enough context regardless of use, no need to include as much as possible
# as this drives up the cost unnecessarily

View File

@@ -59,6 +59,8 @@ if __name__ == "__main__":
latest_docs = test_connector.poll_source(one_day_ago, current)
```
> Note: Be sure to set PYTHONPATH to danswer/backend before running the above main.
### Additional Required Changes:
#### Backend Changes
@@ -68,17 +70,16 @@ if __name__ == "__main__":
[here](https://github.com/danswer-ai/danswer/blob/main/backend/danswer/connectors/factory.py#L33)
#### Frontend Changes
- Create the new connector directory and admin page under `danswer/web/src/app/admin/connectors/`
- Create the new icon, type, source, and filter changes
(refer to existing [PR](https://github.com/danswer-ai/danswer/pull/139))
- Add the new Connector definition to the `SOURCE_METADATA_MAP` [here](https://github.com/danswer-ai/danswer/blob/main/web/src/lib/sources.ts#L59).
- Add the definition for the new Form to the `connectorConfigs` object [here](https://github.com/danswer-ai/danswer/blob/main/web/src/lib/connectors/connectors.ts#L79).
#### Docs Changes
Create the new connector page (with guiding images!) with how to get the connector credentials and how to set up the
connector in Danswer. Then create a Pull Request in https://github.com/danswer-ai/danswer-docs
connector in Danswer. Then create a Pull Request in https://github.com/danswer-ai/danswer-docs.
### Before opening PR
1. Be sure to fully test changes end to end with setting up the connector and updating the index with new docs from the
new connector.
2. Be sure to run the linting/formatting, refer to the formatting and linting section in
new connector. To make it easier to review, please attach a video showing the successful creation of the connector via the UI (starting from the `Add Connector` page).
2. Add a folder + tests under `backend/tests/daily/connectors` director. For an example, checkout the [test for Confluence](https://github.com/danswer-ai/danswer/blob/main/backend/tests/daily/connectors/confluence/test_confluence_basic.py). In the PR description, include a guide on how to setup the new source to pass the test. Before merging, we will re-create the environment and make sure the test(s) pass.
3. Be sure to run the linting/formatting, refer to the formatting and linting section in
[CONTRIBUTING.md](https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md#formatting-and-linting)

View File

@@ -0,0 +1,233 @@
import time
from collections.abc import Iterator
from datetime import datetime
from typing import Dict
import asana # type: ignore
from danswer.utils.logger import setup_logger
logger = setup_logger()
# https://github.com/Asana/python-asana/tree/master?tab=readme-ov-file#documentation-for-api-endpoints
class AsanaTask:
def __init__(
self,
id: str,
title: str,
text: str,
link: str,
last_modified: datetime,
project_gid: str,
project_name: str,
) -> None:
self.id = id
self.title = title
self.text = text
self.link = link
self.last_modified = last_modified
self.project_gid = project_gid
self.project_name = project_name
def __str__(self) -> str:
return f"ID: {self.id}\nTitle: {self.title}\nLast modified: {self.last_modified}\nText: {self.text}"
class AsanaAPI:
def __init__(
self, api_token: str, workspace_gid: str, team_gid: str | None
) -> None:
self._user = None # type: ignore
self.workspace_gid = workspace_gid
self.team_gid = team_gid
self.configuration = asana.Configuration()
self.api_client = asana.ApiClient(self.configuration)
self.tasks_api = asana.TasksApi(self.api_client)
self.stories_api = asana.StoriesApi(self.api_client)
self.users_api = asana.UsersApi(self.api_client)
self.project_api = asana.ProjectsApi(self.api_client)
self.workspaces_api = asana.WorkspacesApi(self.api_client)
self.api_error_count = 0
self.configuration.access_token = api_token
self.task_count = 0
def get_tasks(
self, project_gids: list[str] | None, start_date: str
) -> Iterator[AsanaTask]:
"""Get all tasks from the projects with the given gids that were modified since the given date.
If project_gids is None, get all tasks from all projects in the workspace."""
logger.info("Starting to fetch Asana projects")
projects = self.project_api.get_projects(
opts={
"workspace": self.workspace_gid,
"opt_fields": "gid,name,archived,modified_at",
}
)
start_seconds = int(time.mktime(datetime.now().timetuple()))
projects_list = []
project_count = 0
for project_info in projects:
project_gid = project_info["gid"]
if project_gids is None or project_gid in project_gids:
projects_list.append(project_gid)
else:
logger.debug(
f"Skipping project: {project_gid} - not in accepted project_gids"
)
project_count += 1
if project_count % 100 == 0:
logger.info(f"Processed {project_count} projects")
logger.info(f"Found {len(projects_list)} projects to process")
for project_gid in projects_list:
for task in self._get_tasks_for_project(
project_gid, start_date, start_seconds
):
yield task
logger.info(f"Completed fetching {self.task_count} tasks from Asana")
if self.api_error_count > 0:
logger.warning(
f"Encountered {self.api_error_count} API errors during task fetching"
)
def _get_tasks_for_project(
self, project_gid: str, start_date: str, start_seconds: int
) -> Iterator[AsanaTask]:
project = self.project_api.get_project(project_gid, opts={})
if project["archived"]:
logger.info(f"Skipping archived project: {project['name']} ({project_gid})")
return []
if not project["team"] or not project["team"]["gid"]:
logger.info(
f"Skipping project without a team: {project['name']} ({project_gid})"
)
return []
if project["privacy_setting"] == "private":
if self.team_gid and project["team"]["gid"] != self.team_gid:
logger.info(
f"Skipping private project not in configured team: {project['name']} ({project_gid})"
)
return []
else:
logger.info(
f"Processing private project in configured team: {project['name']} ({project_gid})"
)
simple_start_date = start_date.split(".")[0].split("+")[0]
logger.info(
f"Fetching tasks modified since {simple_start_date} for project: {project['name']} ({project_gid})"
)
opts = {
"opt_fields": "name,memberships,memberships.project,completed_at,completed_by,created_at,"
"created_by,custom_fields,dependencies,due_at,due_on,external,html_notes,liked,likes,"
"modified_at,notes,num_hearts,parent,projects,resource_subtype,resource_type,start_on,"
"workspace,permalink_url",
"modified_since": start_date,
}
tasks_from_api = self.tasks_api.get_tasks_for_project(project_gid, opts)
for data in tasks_from_api:
self.task_count += 1
if self.task_count % 10 == 0:
end_seconds = time.mktime(datetime.now().timetuple())
runtime_seconds = end_seconds - start_seconds
if runtime_seconds > 0:
logger.info(
f"Processed {self.task_count} tasks in {runtime_seconds:.0f} seconds "
f"({self.task_count / runtime_seconds:.2f} tasks/second)"
)
logger.debug(f"Processing Asana task: {data['name']}")
text = self._construct_task_text(data)
try:
text += self._fetch_and_add_comments(data["gid"])
last_modified_date = self.format_date(data["modified_at"])
text += f"Last modified: {last_modified_date}\n"
task = AsanaTask(
id=data["gid"],
title=data["name"],
text=text,
link=data["permalink_url"],
last_modified=datetime.fromisoformat(data["modified_at"]),
project_gid=project_gid,
project_name=project["name"],
)
yield task
except Exception:
logger.error(
f"Error processing task {data['gid']} in project {project_gid}",
exc_info=True,
)
self.api_error_count += 1
def _construct_task_text(self, data: Dict) -> str:
text = f"{data['name']}\n\n"
if data["notes"]:
text += f"{data['notes']}\n\n"
if data["created_by"] and data["created_by"]["gid"]:
creator = self.get_user(data["created_by"]["gid"])["name"]
created_date = self.format_date(data["created_at"])
text += f"Created by: {creator} on {created_date}\n"
if data["due_on"]:
due_date = self.format_date(data["due_on"])
text += f"Due date: {due_date}\n"
if data["completed_at"]:
completed_date = self.format_date(data["completed_at"])
text += f"Completed on: {completed_date}\n"
text += "\n"
return text
def _fetch_and_add_comments(self, task_gid: str) -> str:
text = ""
stories_opts: Dict[str, str] = {}
story_start = time.time()
stories = self.stories_api.get_stories_for_task(task_gid, stories_opts)
story_count = 0
comment_count = 0
for story in stories:
story_count += 1
if story["resource_subtype"] == "comment_added":
comment = self.stories_api.get_story(
story["gid"], opts={"opt_fields": "text,created_by,created_at"}
)
commenter = self.get_user(comment["created_by"]["gid"])["name"]
text += f"Comment by {commenter}: {comment['text']}\n\n"
comment_count += 1
story_duration = time.time() - story_start
logger.debug(
f"Processed {story_count} stories (including {comment_count} comments) in {story_duration:.2f} seconds"
)
return text
def get_user(self, user_gid: str) -> Dict:
if self._user is not None:
return self._user
self._user = self.users_api.get_user(user_gid, {"opt_fields": "name,email"})
if not self._user:
logger.warning(f"Unable to fetch user information for user_gid: {user_gid}")
return {"name": "Unknown"}
return self._user
def format_date(self, date_str: str) -> str:
date = datetime.fromisoformat(date_str)
return time.strftime("%Y-%m-%d", date.timetuple())
def get_time(self) -> str:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

View File

@@ -0,0 +1,120 @@
import datetime
from typing import Any
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.asana import asana_api
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.utils.logger import setup_logger
logger = setup_logger()
class AsanaConnector(LoadConnector, PollConnector):
def __init__(
self,
asana_workspace_id: str,
asana_project_ids: str | None = None,
asana_team_id: str | None = None,
batch_size: int = INDEX_BATCH_SIZE,
continue_on_failure: bool = CONTINUE_ON_CONNECTOR_FAILURE,
) -> None:
self.workspace_id = asana_workspace_id
self.project_ids_to_index: list[str] | None = (
asana_project_ids.split(",") if asana_project_ids is not None else None
)
self.asana_team_id = asana_team_id
self.batch_size = batch_size
self.continue_on_failure = continue_on_failure
logger.info(
f"AsanaConnector initialized with workspace_id: {asana_workspace_id}"
)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self.api_token = credentials["asana_api_token_secret"]
self.asana_client = asana_api.AsanaAPI(
api_token=self.api_token,
workspace_gid=self.workspace_id,
team_gid=self.asana_team_id,
)
logger.info("Asana credentials loaded and API client initialized")
return None
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch | None
) -> GenerateDocumentsOutput:
start_time = datetime.datetime.fromtimestamp(start).isoformat()
logger.info(f"Starting Asana poll from {start_time}")
asana = asana_api.AsanaAPI(
api_token=self.api_token,
workspace_gid=self.workspace_id,
team_gid=self.asana_team_id,
)
docs_batch: list[Document] = []
tasks = asana.get_tasks(self.project_ids_to_index, start_time)
for task in tasks:
doc = self._message_to_doc(task)
docs_batch.append(doc)
if len(docs_batch) >= self.batch_size:
logger.info(f"Yielding batch of {len(docs_batch)} documents")
yield docs_batch
docs_batch = []
if docs_batch:
logger.info(f"Yielding final batch of {len(docs_batch)} documents")
yield docs_batch
logger.info("Asana poll completed")
def load_from_state(self) -> GenerateDocumentsOutput:
logger.notice("Starting full index of all Asana tasks")
return self.poll_source(start=0, end=None)
def _message_to_doc(self, task: asana_api.AsanaTask) -> Document:
logger.debug(f"Converting Asana task {task.id} to Document")
return Document(
id=task.id,
sections=[Section(link=task.link, text=task.text)],
doc_updated_at=task.last_modified,
source=DocumentSource.ASANA,
semantic_identifier=task.title,
metadata={
"group": task.project_gid,
"project": task.project_name,
},
)
if __name__ == "__main__":
import time
import os
logger.notice("Starting Asana connector test")
connector = AsanaConnector(
os.environ["WORKSPACE_ID"],
os.environ["PROJECT_IDS"],
os.environ["TEAM_ID"],
)
connector.load_credentials(
{
"asana_api_token_secret": os.environ["API_TOKEN"],
}
)
logger.info("Loading all documents from Asana")
all_docs = connector.load_from_state()
current = time.time()
one_day_ago = current - 24 * 60 * 60 # 1 day
logger.info("Polling for documents updated in the last 24 hours")
latest_docs = connector.poll_source(one_day_ago, current)
for docs in latest_docs:
for doc in docs:
print(doc.id)
logger.notice("Asana connector test completed")

View File

@@ -56,7 +56,7 @@ class BlobStorageConnector(LoadConnector, PollConnector):
Raises ValueError for unsupported bucket types.
"""
logger.info(
logger.debug(
f"Loading credentials for {self.bucket_name} or type {self.bucket_type}"
)
@@ -169,7 +169,7 @@ class BlobStorageConnector(LoadConnector, PollConnector):
end: datetime,
) -> GenerateDocumentsOutput:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blog storage")
raise ConnectorMissingCredentialError("Blob storage")
paginator = self.s3_client.get_paginator("list_objects_v2")
pages = paginator.paginate(Bucket=self.bucket_name, Prefix=self.prefix)
@@ -220,7 +220,7 @@ class BlobStorageConnector(LoadConnector, PollConnector):
yield batch
def load_from_state(self) -> GenerateDocumentsOutput:
logger.info("Loading blob objects")
logger.debug("Loading blob objects")
return self._yield_blob_objects(
start=datetime(1970, 1, 1, tzinfo=timezone.utc),
end=datetime.now(timezone.utc),
@@ -230,7 +230,7 @@ class BlobStorageConnector(LoadConnector, PollConnector):
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
if self.s3_client is None:
raise ConnectorMissingCredentialError("Blog storage")
raise ConnectorMissingCredentialError("Blob storage")
start_datetime = datetime.fromtimestamp(start, tz=timezone.utc)
end_datetime = datetime.fromtimestamp(end, tz=timezone.utc)

View File

@@ -7,13 +7,16 @@ from datetime import timezone
from functools import lru_cache
from typing import Any
from typing import cast
from urllib.parse import urlparse
import bs4
from atlassian import Confluence # type:ignore
from requests import HTTPError
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
from danswer.configs.app_configs import (
CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD,
)
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_LABELS_TO_SKIP
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
@@ -41,77 +44,12 @@ logger = setup_logger()
# 2. Segment into Sections for more accurate linking, can split by headers but make sure no text/ordering is lost
def _extract_confluence_keys_from_cloud_url(wiki_url: str) -> tuple[str, str, str]:
"""Sample
URL w/ page: https://danswer.atlassian.net/wiki/spaces/1234abcd/pages/5678efgh/overview
URL w/o page: https://danswer.atlassian.net/wiki/spaces/ASAM/overview
wiki_base is https://danswer.atlassian.net/wiki
space is 1234abcd
page_id is 5678efgh
"""
parsed_url = urlparse(wiki_url)
wiki_base = (
parsed_url.scheme
+ "://"
+ parsed_url.netloc
+ parsed_url.path.split("/spaces")[0]
)
path_parts = parsed_url.path.split("/")
space = path_parts[3]
page_id = path_parts[5] if len(path_parts) > 5 else ""
return wiki_base, space, page_id
def _extract_confluence_keys_from_datacenter_url(wiki_url: str) -> tuple[str, str, str]:
"""Sample
URL w/ page https://danswer.ai/confluence/display/1234abcd/pages/5678efgh/overview
URL w/o page https://danswer.ai/confluence/display/1234abcd/overview
wiki_base is https://danswer.ai/confluence
space is 1234abcd
page_id is 5678efgh
"""
# /display/ is always right before the space and at the end of the base print()
DISPLAY = "/display/"
PAGE = "/pages/"
parsed_url = urlparse(wiki_url)
wiki_base = (
parsed_url.scheme
+ "://"
+ parsed_url.netloc
+ parsed_url.path.split(DISPLAY)[0]
)
space = DISPLAY.join(parsed_url.path.split(DISPLAY)[1:]).split("/")[0]
page_id = ""
if (content := parsed_url.path.split(PAGE)) and len(content) > 1:
page_id = content[1]
return wiki_base, space, page_id
def extract_confluence_keys_from_url(wiki_url: str) -> tuple[str, str, str, bool]:
is_confluence_cloud = (
".atlassian.net/wiki/spaces/" in wiki_url
or ".jira.com/wiki/spaces/" in wiki_url
)
try:
if is_confluence_cloud:
wiki_base, space, page_id = _extract_confluence_keys_from_cloud_url(
wiki_url
)
else:
wiki_base, space, page_id = _extract_confluence_keys_from_datacenter_url(
wiki_url
)
except Exception as e:
error_msg = f"Not a valid Confluence Wiki Link, unable to extract wiki base, space, and page id. Exception: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
return wiki_base, space, page_id, is_confluence_cloud
NO_PERMISSIONS_TO_VIEW_ATTACHMENTS_ERROR_STR = (
"User not permitted to view attachments on content"
)
NO_PARENT_OR_NO_PERMISSIONS_ERROR_STR = (
"No parent or not permitted to view content with id"
)
@lru_cache()
@@ -199,34 +137,56 @@ def _comment_dfs(
comments_str += "\nComment:\n" + parse_html_page(
comment_html, confluence_client
)
child_comment_pages = get_page_child_by_type(
comment_page["id"],
type="comment",
start=None,
limit=None,
expand="body.storage.value",
)
comments_str = _comment_dfs(
comments_str, child_comment_pages, confluence_client
)
try:
child_comment_pages = get_page_child_by_type(
comment_page["id"],
type="comment",
start=None,
limit=None,
expand="body.storage.value",
)
comments_str = _comment_dfs(
comments_str, child_comment_pages, confluence_client
)
except HTTPError as e:
# not the cleanest, but I'm not aware of a nicer way to check the error
if NO_PARENT_OR_NO_PERMISSIONS_ERROR_STR not in str(e):
raise
return comments_str
def _datetime_from_string(datetime_string: str) -> datetime:
datetime_object = datetime.fromisoformat(datetime_string)
if datetime_object.tzinfo is None:
# If no timezone info, assume it is UTC
datetime_object = datetime_object.replace(tzinfo=timezone.utc)
else:
# If not in UTC, translate it
datetime_object = datetime_object.astimezone(timezone.utc)
return datetime_object
class RecursiveIndexer:
def __init__(
self,
batch_size: int,
confluence_client: Confluence,
index_origin: bool,
index_recursively: bool,
origin_page_id: str,
) -> None:
self.batch_size = 1
# batch_size
self.confluence_client = confluence_client
self.index_origin = index_origin
self.index_recursively = index_recursively
self.origin_page_id = origin_page_id
self.pages = self.recurse_children_pages(0, self.origin_page_id)
def get_origin_page(self) -> list[dict[str, Any]]:
return [self._fetch_origin_page()]
def get_pages(self, ind: int, size: int) -> list[dict]:
if ind * size > len(self.pages):
return []
@@ -282,12 +242,11 @@ class RecursiveIndexer:
current_level_pages = next_level_pages
next_level_pages = []
if self.index_origin:
try:
origin_page = self._fetch_origin_page()
pages.append(origin_page)
except Exception as e:
logger.warning(f"Appending origin page with id {page_id} failed: {e}")
try:
origin_page = self._fetch_origin_page()
pages.append(origin_page)
except Exception as e:
logger.warning(f"Appending origin page with id {page_id} failed: {e}")
return pages
@@ -339,8 +298,11 @@ class RecursiveIndexer:
class ConfluenceConnector(LoadConnector, PollConnector):
def __init__(
self,
wiki_page_url: str,
index_origin: bool = True,
wiki_base: str,
space: str,
is_cloud: bool,
page_id: str = "",
index_recursively: bool = True,
batch_size: int = INDEX_BATCH_SIZE,
continue_on_failure: bool = CONTINUE_ON_CONNECTOR_FAILURE,
# if a page has one of the labels specified in this list, we will just
@@ -352,16 +314,16 @@ class ConfluenceConnector(LoadConnector, PollConnector):
self.continue_on_failure = continue_on_failure
self.labels_to_skip = set(labels_to_skip)
self.recursive_indexer: RecursiveIndexer | None = None
self.index_origin = index_origin
(
self.wiki_base,
self.space,
self.page_id,
self.is_cloud,
) = extract_confluence_keys_from_url(wiki_page_url)
self.index_recursively = index_recursively
# Remove trailing slash from wiki_base if present
self.wiki_base = wiki_base.rstrip("/")
self.space = space
self.page_id = page_id
self.is_cloud = is_cloud
self.space_level_scan = False
self.confluence_client: Confluence | None = None
if self.page_id is None or self.page_id == "":
@@ -369,7 +331,7 @@ class ConfluenceConnector(LoadConnector, PollConnector):
logger.info(
f"wiki_base: {self.wiki_base}, space: {self.space}, page_id: {self.page_id},"
+ f" space_level_scan: {self.space_level_scan}, origin: {self.index_origin}"
+ f" space_level_scan: {self.space_level_scan}, index_recursively: {self.index_recursively}"
)
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
@@ -381,7 +343,6 @@ class ConfluenceConnector(LoadConnector, PollConnector):
username=username if self.is_cloud else None,
password=access_token if self.is_cloud else None,
token=access_token if not self.is_cloud else None,
cloud=self.is_cloud,
)
return None
@@ -400,9 +361,7 @@ class ConfluenceConnector(LoadConnector, PollConnector):
start=start_ind,
limit=batch_size,
status=(
"current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None
None if CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES else "current"
),
expand="body.storage.value,version",
)
@@ -423,9 +382,9 @@ class ConfluenceConnector(LoadConnector, PollConnector):
start=start_ind + i,
limit=1,
status=(
"current"
if CONFLUENCE_CONNECTOR_INDEX_ONLY_ACTIVE_PAGES
else None
None
if CONFLUENCE_CONNECTOR_INDEX_ARCHIVED_PAGES
else "current"
),
expand="body.storage.value,version",
)
@@ -453,10 +412,13 @@ class ConfluenceConnector(LoadConnector, PollConnector):
origin_page_id=self.page_id,
batch_size=self.batch_size,
confluence_client=self.confluence_client,
index_origin=self.index_origin,
index_recursively=self.index_recursively,
)
return self.recursive_indexer.get_pages(start_ind, batch_size)
if self.index_recursively:
return self.recursive_indexer.get_pages(start_ind, batch_size)
else:
return self.recursive_indexer.get_origin_page()
pages: list[dict[str, Any]] = []
@@ -529,134 +491,249 @@ class ConfluenceConnector(LoadConnector, PollConnector):
logger.exception("Ran into exception when fetching labels from Confluence")
return []
@classmethod
def _attachment_to_download_link(
cls, confluence_client: Confluence, attachment: dict[str, Any]
) -> str:
return confluence_client.url + attachment["_links"]["download"]
@classmethod
def _attachment_to_content(
cls,
confluence_client: Confluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if attachment["metadata"]["mediaType"] in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
return None
download_link = cls._attachment_to_download_link(confluence_client, attachment)
attachment_size = attachment["extensions"]["fileSize"]
if attachment_size > CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD:
logger.warning(
f"Skipping {download_link} due to size. "
f"size={attachment_size} "
f"threshold={CONFLUENCE_CONNECTOR_ATTACHMENT_SIZE_THRESHOLD}"
)
return None
response = confluence_client._session.get(download_link)
if response.status_code != 200:
logger.warning(
f"Failed to fetch {download_link} with invalid status code {response.status_code}"
)
return None
extracted_text = extract_file_text(
attachment["title"], io.BytesIO(response.content), False
)
if len(extracted_text) > CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD:
logger.warning(
f"Skipping {download_link} due to char count. "
f"char count={len(extracted_text)} "
f"threshold={CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD}"
)
return None
return extracted_text
def _fetch_attachments(
self, confluence_client: Confluence, page_id: str, files_in_used: list[str]
) -> str:
) -> tuple[str, list[dict[str, Any]]]:
unused_attachments: list = []
get_attachments_from_content = make_confluence_call_handle_rate_limit(
confluence_client.get_attachments_from_content
)
files_attachment_content: list = []
try:
expand = "history.lastUpdated,metadata.labels"
attachments_container = get_attachments_from_content(
page_id, start=0, limit=500
page_id, start=0, limit=500, expand=expand
)
for attachment in attachments_container["results"]:
if attachment["metadata"]["mediaType"] in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
continue
if attachment["title"] not in files_in_used:
unused_attachments.append(attachment)
continue
download_link = confluence_client.url + attachment["_links"]["download"]
response = confluence_client._session.get(download_link)
if response.status_code == 200:
extract = extract_file_text(
attachment["title"], io.BytesIO(response.content), False
)
files_attachment_content.append(extract)
attachment_content = self._attachment_to_content(
confluence_client, attachment
)
if attachment_content:
files_attachment_content.append(attachment_content)
except Exception as e:
if isinstance(
e, HTTPError
) and NO_PERMISSIONS_TO_VIEW_ATTACHMENTS_ERROR_STR in str(e):
logger.warning(
f"User does not have access to attachments on page '{page_id}'"
)
return "", []
if not self.continue_on_failure:
raise e
logger.exception(
f"Ran into exception when fetching attachments from Confluence: {e}"
)
return "\n".join(files_attachment_content)
return "\n".join(files_attachment_content), unused_attachments
def _get_doc_batch(
self, start_ind: int, time_filter: Callable[[datetime], bool] | None = None
) -> tuple[list[Document], int]:
) -> tuple[list[Document], list[dict[str, Any]], int]:
doc_batch: list[Document] = []
unused_attachments: list[dict[str, Any]] = []
if self.confluence_client is None:
raise ConnectorMissingCredentialError("Confluence")
batch = self._fetch_pages(self.confluence_client, start_ind)
for page in batch:
last_modified_str = page["version"]["when"]
last_modified = _datetime_from_string(page["version"]["when"])
author = cast(str | None, page["version"].get("by", {}).get("email"))
last_modified = datetime.fromisoformat(last_modified_str)
if last_modified.tzinfo is None:
# If no timezone info, assume it is UTC
last_modified = last_modified.replace(tzinfo=timezone.utc)
else:
# If not in UTC, translate it
last_modified = last_modified.astimezone(timezone.utc)
if time_filter and not time_filter(last_modified):
continue
if time_filter is None or time_filter(last_modified):
page_id = page["id"]
page_id = page["id"]
if self.labels_to_skip or not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING:
page_labels = self._fetch_labels(self.confluence_client, page_id)
if self.labels_to_skip or not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING:
page_labels = self._fetch_labels(self.confluence_client, page_id)
# check disallowed labels
if self.labels_to_skip:
label_intersection = self.labels_to_skip.intersection(page_labels)
if label_intersection:
logger.info(
f"Page with ID '{page_id}' has a label which has been "
f"designated as disallowed: {label_intersection}. Skipping."
)
continue
page_html = (
page["body"]
.get("storage", page["body"].get("view", {}))
.get("value")
)
page_url = self.wiki_base + page["_links"]["webui"]
if not page_html:
logger.debug("Page is empty, skipping: %s", page_url)
continue
page_text = parse_html_page(page_html, self.confluence_client)
files_in_used = get_used_attachments(page_html, self.confluence_client)
attachment_text = self._fetch_attachments(
self.confluence_client, page_id, files_in_used
)
page_text += attachment_text
comments_text = self._fetch_comments(self.confluence_client, page_id)
page_text += comments_text
doc_metadata: dict[str, str | list[str]] = {
"Wiki Space Name": self.space
}
if not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING and page_labels:
doc_metadata["labels"] = page_labels
doc_batch.append(
Document(
id=page_url,
sections=[Section(link=page_url, text=page_text)],
source=DocumentSource.CONFLUENCE,
semantic_identifier=page["title"],
doc_updated_at=last_modified,
primary_owners=(
[BasicExpertInfo(email=author)] if author else None
),
metadata=doc_metadata,
# check disallowed labels
if self.labels_to_skip:
label_intersection = self.labels_to_skip.intersection(page_labels)
if label_intersection:
logger.info(
f"Page with ID '{page_id}' has a label which has been "
f"designated as disallowed: {label_intersection}. Skipping."
)
continue
page_html = (
page["body"].get("storage", page["body"].get("view", {})).get("value")
)
page_url = self.wiki_base + page["_links"]["webui"]
if not page_html:
logger.debug("Page is empty, skipping: %s", page_url)
continue
page_text = parse_html_page(page_html, self.confluence_client)
files_in_used = get_used_attachments(page_html, self.confluence_client)
attachment_text, unused_page_attachments = self._fetch_attachments(
self.confluence_client, page_id, files_in_used
)
unused_attachments.extend(unused_page_attachments)
page_text += attachment_text
comments_text = self._fetch_comments(self.confluence_client, page_id)
page_text += comments_text
doc_metadata: dict[str, str | list[str]] = {"Wiki Space Name": self.space}
if not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING and page_labels:
doc_metadata["labels"] = page_labels
doc_batch.append(
Document(
id=page_url,
sections=[Section(link=page_url, text=page_text)],
source=DocumentSource.CONFLUENCE,
semantic_identifier=page["title"],
doc_updated_at=last_modified,
primary_owners=(
[BasicExpertInfo(email=author)] if author else None
),
metadata=doc_metadata,
)
return doc_batch, len(batch)
)
return (
doc_batch,
unused_attachments,
len(batch),
)
def _get_attachment_batch(
self,
start_ind: int,
attachments: list[dict[str, Any]],
time_filter: Callable[[datetime], bool] | None = None,
) -> tuple[list[Document], int]:
doc_batch: list[Document] = []
if self.confluence_client is None:
raise ConnectorMissingCredentialError("Confluence")
end_ind = min(start_ind + self.batch_size, len(attachments))
for attachment in attachments[start_ind:end_ind]:
last_updated = _datetime_from_string(
attachment["history"]["lastUpdated"]["when"]
)
if time_filter and not time_filter(last_updated):
continue
attachment_url = self._attachment_to_download_link(
self.confluence_client, attachment
)
attachment_content = self._attachment_to_content(
self.confluence_client, attachment
)
if attachment_content is None:
continue
creator_email = attachment["history"]["createdBy"].get("email")
comment = attachment["metadata"].get("comment", "")
doc_metadata: dict[str, str | list[str]] = {"comment": comment}
attachment_labels: list[str] = []
if not CONFLUENCE_CONNECTOR_SKIP_LABEL_INDEXING:
for label in attachment["metadata"]["labels"]["results"]:
attachment_labels.append(label["name"])
doc_metadata["labels"] = attachment_labels
doc_batch.append(
Document(
id=attachment_url,
sections=[Section(link=attachment_url, text=attachment_content)],
source=DocumentSource.CONFLUENCE,
semantic_identifier=attachment["title"],
doc_updated_at=last_updated,
primary_owners=(
[BasicExpertInfo(email=creator_email)]
if creator_email
else None
),
metadata=doc_metadata,
)
)
return doc_batch, end_ind - start_ind
def load_from_state(self) -> GenerateDocumentsOutput:
unused_attachments = []
if self.confluence_client is None:
raise ConnectorMissingCredentialError("Confluence")
start_ind = 0
while True:
doc_batch, num_pages = self._get_doc_batch(start_ind)
doc_batch, unused_attachments_batch, num_pages = self._get_doc_batch(
start_ind
)
unused_attachments.extend(unused_attachments_batch)
start_ind += num_pages
if doc_batch:
yield doc_batch
@@ -664,9 +741,23 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if num_pages < self.batch_size:
break
start_ind = 0
while True:
attachment_batch, num_attachments = self._get_attachment_batch(
start_ind, unused_attachments
)
start_ind += num_attachments
if attachment_batch:
yield attachment_batch
if num_attachments < self.batch_size:
break
def poll_source(
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
) -> GenerateDocumentsOutput:
unused_attachments = []
if self.confluence_client is None:
raise ConnectorMissingCredentialError("Confluence")
@@ -675,9 +766,11 @@ class ConfluenceConnector(LoadConnector, PollConnector):
start_ind = 0
while True:
doc_batch, num_pages = self._get_doc_batch(
doc_batch, unused_attachments_batch, num_pages = self._get_doc_batch(
start_ind, time_filter=lambda t: start_time <= t <= end_time
)
unused_attachments.extend(unused_attachments_batch)
start_ind += num_pages
if doc_batch:
yield doc_batch
@@ -685,9 +778,29 @@ class ConfluenceConnector(LoadConnector, PollConnector):
if num_pages < self.batch_size:
break
start_ind = 0
while True:
attachment_batch, num_attachments = self._get_attachment_batch(
start_ind,
unused_attachments,
time_filter=lambda t: start_time <= t <= end_time,
)
start_ind += num_attachments
if attachment_batch:
yield attachment_batch
if num_attachments < self.batch_size:
break
if __name__ == "__main__":
connector = ConfluenceConnector(os.environ["CONFLUENCE_TEST_SPACE_URL"])
connector = ConfluenceConnector(
wiki_base=os.environ["CONFLUENCE_TEST_SPACE_URL"],
space=os.environ["CONFLUENCE_TEST_SPACE"],
is_cloud=os.environ.get("CONFLUENCE_IS_CLOUD", "true").lower() == "true",
page_id=os.environ.get("CONFLUENCE_TEST_PAGE_ID", ""),
index_recursively=True,
)
connector.load_credentials(
{
"confluence_username": os.environ["CONFLUENCE_USER_NAME"],

View File

@@ -23,25 +23,33 @@ class ConfluenceRateLimitError(Exception):
def make_confluence_call_handle_rate_limit(confluence_call: F) -> F:
def wrapped_call(*args: list[Any], **kwargs: Any) -> Any:
max_retries = 5
starting_delay = 5
backoff = 2
max_delay = 600
for attempt in range(10):
for attempt in range(max_retries):
try:
return confluence_call(*args, **kwargs)
except HTTPError as e:
# Check if the response or headers are None to avoid potential AttributeError
if e.response is None or e.response.headers is None:
logger.warning("HTTPError with `None` as response or as headers")
raise e
retry_after_header = e.response.headers.get("Retry-After")
if (
e.response.status_code == 429
or RATE_LIMIT_MESSAGE_LOWERCASE in e.response.text.lower()
):
retry_after = None
try:
retry_after = int(e.response.headers.get("Retry-After"))
except (ValueError, TypeError):
pass
if retry_after_header is not None:
try:
retry_after = int(retry_after_header)
except ValueError:
pass
if retry_after:
if retry_after is not None:
logger.warning(
f"Rate limit hit. Retrying after {retry_after} seconds..."
)
@@ -55,5 +63,14 @@ def make_confluence_call_handle_rate_limit(confluence_call: F) -> F:
else:
# re-raise, let caller handle
raise
except AttributeError as e:
# Some error within the Confluence library, unclear why it fails.
# Users reported it to be intermittent, so just retry
logger.warning(f"Confluence Internal Error, retrying... {e}")
delay = min(starting_delay * (backoff**attempt), max_delay)
time.sleep(delay)
if attempt == max_retries - 1:
raise e
return cast(F, wrapped_call)

View File

@@ -0,0 +1,70 @@
import sys
from datetime import datetime
from danswer.connectors.interfaces import BaseConnector
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.utils.logger import setup_logger
logger = setup_logger()
TimeRange = tuple[datetime, datetime]
class ConnectorRunner:
def __init__(
self,
connector: BaseConnector,
time_range: TimeRange | None = None,
fail_loudly: bool = False,
):
self.connector = connector
if isinstance(self.connector, PollConnector):
if time_range is None:
raise ValueError("time_range is required for PollConnector")
self.doc_batch_generator = self.connector.poll_source(
time_range[0].timestamp(), time_range[1].timestamp()
)
elif isinstance(self.connector, LoadConnector):
if time_range and fail_loudly:
raise ValueError(
"time_range specified, but passed in connector is not a PollConnector"
)
self.doc_batch_generator = self.connector.load_from_state()
else:
raise ValueError(f"Invalid connector. type: {type(self.connector)}")
def run(self) -> GenerateDocumentsOutput:
"""Adds additional exception logging to the connector."""
try:
yield from self.doc_batch_generator
except Exception:
exc_type, _, exc_traceback = sys.exc_info()
# Traverse the traceback to find the last frame where the exception was raised
tb = exc_traceback
if tb is None:
logger.error("No traceback found for exception")
raise
while tb.tb_next:
tb = tb.tb_next # Move to the next frame in the traceback
# Get the local variables from the frame where the exception occurred
local_vars = tb.tb_frame.f_locals
local_vars_str = "\n".join(
f"{key}: {value}" for key, value in local_vars.items()
)
logger.error(
f"Error in connector. type: {exc_type};\n"
f"local_vars below -> \n{local_vars_str}"
)
raise

View File

@@ -56,7 +56,7 @@ class _RateLimitDecorator:
sleep_cnt = 0
while len(self.call_history) == self.max_calls:
sleep_time = self.sleep_time * (self.sleep_backoff**sleep_cnt)
logger.info(
logger.notice(
f"Rate limit exceeded for function {func.__name__}. "
f"Waiting {sleep_time} seconds before retrying."
)

View File

@@ -45,10 +45,15 @@ def extract_jira_project(url: str) -> tuple[str, str]:
return jira_base, jira_project
def extract_text_from_content(content: dict) -> str:
def extract_text_from_adf(adf: dict | None) -> str:
"""Extracts plain text from Atlassian Document Format:
https://developer.atlassian.com/cloud/jira/platform/apis/document/structure/
WARNING: This function is incomplete and will e.g. skip lists!
"""
texts = []
if "content" in content:
for block in content["content"]:
if adf is not None and "content" in adf:
for block in adf["content"]:
if "content" in block:
for item in block["content"]:
if item["type"] == "text":
@@ -72,18 +77,15 @@ def _get_comment_strs(
comment_strs = []
for comment in jira.fields.comment.comments:
try:
if hasattr(comment, "body"):
body_text = extract_text_from_content(comment.raw["body"])
elif hasattr(comment, "raw"):
body = comment.raw.get("body", "No body content available")
body_text = (
extract_text_from_content(body) if isinstance(body, dict) else body
)
else:
body_text = "No body attribute found"
body_text = (
comment.body
if JIRA_API_VERSION == "2"
else extract_text_from_adf(comment.raw["body"])
)
if (
hasattr(comment, "author")
and hasattr(comment.author, "emailAddress")
and comment.author.emailAddress in comment_email_blacklist
):
continue # Skip adding comment if author's email is in blacklist
@@ -126,11 +128,14 @@ def fetch_jira_issues_batch(
)
continue
description = (
jira.fields.description
if JIRA_API_VERSION == "2"
else extract_text_from_adf(jira.raw["fields"]["description"])
)
comments = _get_comment_strs(jira, comment_email_blacklist)
semantic_rep = (
f"{jira.fields.description}\n"
if jira.fields.description
else "" + "\n".join([f"Comment: {comment}" for comment in comments])
semantic_rep = f"{description}\n" + "\n".join(
[f"Comment: {comment}" for comment in comments if comment]
)
page_url = f"{jira_client.client_info()}/browse/{jira.key}"

Some files were not shown because too many files have changed in this diff Show More