mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-16 23:35:46 +00:00
Compare commits
12 Commits
v2.3.0-clo
...
initial-im
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0c13c9a106 | ||
|
|
24525ca3d8 | ||
|
|
8b8030a61f | ||
|
|
f4e8ac1dde | ||
|
|
ad4df04159 | ||
|
|
f5e28e0f54 | ||
|
|
091cb136c4 | ||
|
|
56052c5b4b | ||
|
|
617726207b | ||
|
|
1be58e74b3 | ||
|
|
a693c991d7 | ||
|
|
4b28686721 |
100
backend/danswer/agent_search/answer_query/graph_builder.py
Normal file
100
backend/danswer/agent_search/answer_query/graph_builder.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.answer_query.nodes.answer_check import answer_check
|
||||
from danswer.agent_search.answer_query.nodes.answer_generation import answer_generation
|
||||
from danswer.agent_search.answer_query.nodes.format_answer import format_answer
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryInput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryOutput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
|
||||
|
||||
def answer_query_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=AnswerQueryState,
|
||||
input=AnswerQueryInput,
|
||||
output=AnswerQueryOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
expanded_retrieval = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="expanded_retrieval_for_initial_decomp",
|
||||
action=expanded_retrieval,
|
||||
)
|
||||
graph.add_node(
|
||||
node="answer_check",
|
||||
action=answer_check,
|
||||
)
|
||||
graph.add_node(
|
||||
node="answer_generation",
|
||||
action=answer_generation,
|
||||
)
|
||||
graph.add_node(
|
||||
node="format_answer",
|
||||
action=format_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="expanded_retrieval_for_initial_decomp",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="expanded_retrieval_for_initial_decomp",
|
||||
end_key="answer_generation",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_generation",
|
||||
end_key="answer_check",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="answer_check",
|
||||
end_key="format_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="format_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = answer_query_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="Who made Excel and what other products did they make?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = AnswerQueryInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
query_to_answer="Who made Excel?",
|
||||
)
|
||||
output = compiled_graph.invoke(
|
||||
input=inputs,
|
||||
# debug=True,
|
||||
# subgraphs=True,
|
||||
)
|
||||
print(output)
|
||||
# for namespace, chunk in compiled_graph.stream(
|
||||
# input=inputs,
|
||||
# # debug=True,
|
||||
# subgraphs=True,
|
||||
# ):
|
||||
# print(namespace)
|
||||
# print(chunk)
|
||||
@@ -0,0 +1,30 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import QACheckOutput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
|
||||
|
||||
|
||||
def answer_check(state: AnswerQueryState) -> QACheckOutput:
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_CHECK_PROMPT.format(
|
||||
question=state["search_request"].query,
|
||||
base_answer=state["answer"],
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
response_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
|
||||
return QACheckOutput(
|
||||
answer_quality=response_str,
|
||||
)
|
||||
@@ -0,0 +1,32 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import QAGenerationOutput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def answer_generation(state: AnswerQueryState) -> QAGenerationOutput:
|
||||
query = state["query_to_answer"]
|
||||
docs = state["reordered_documents"]
|
||||
|
||||
print(f"Number of verified retrieval docs: {len(docs)}")
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_RAG_PROMPT.format(question=query, context=format_docs(docs))
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
answer_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
return QAGenerationOutput(
|
||||
answer=answer_str,
|
||||
)
|
||||
@@ -0,0 +1,16 @@
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryOutput
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryState
|
||||
from danswer.agent_search.answer_query.states import SearchAnswerResults
|
||||
|
||||
|
||||
def format_answer(state: AnswerQueryState) -> AnswerQueryOutput:
|
||||
return AnswerQueryOutput(
|
||||
decomp_answer_results=[
|
||||
SearchAnswerResults(
|
||||
query=state["query_to_answer"],
|
||||
quality=state["answer_quality"],
|
||||
answer=state["answer"],
|
||||
documents=state["reordered_documents"],
|
||||
)
|
||||
],
|
||||
)
|
||||
45
backend/danswer/agent_search/answer_query/states.py
Normal file
45
backend/danswer/agent_search/answer_query/states.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class SearchAnswerResults(BaseModel):
|
||||
query: str
|
||||
answer: str
|
||||
quality: str
|
||||
documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class QACheckOutput(TypedDict, total=False):
|
||||
answer_quality: str
|
||||
|
||||
|
||||
class QAGenerationOutput(TypedDict, total=False):
|
||||
answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalOutput(TypedDict):
|
||||
reordered_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class AnswerQueryState(
|
||||
PrimaryState,
|
||||
QACheckOutput,
|
||||
QAGenerationOutput,
|
||||
ExpandedRetrievalOutput,
|
||||
total=True,
|
||||
):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class AnswerQueryInput(PrimaryState, total=True):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class AnswerQueryOutput(TypedDict):
|
||||
decomp_answer_results: list[SearchAnswerResults]
|
||||
15
backend/danswer/agent_search/core_state.py
Normal file
15
backend/danswer/agent_search/core_state.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
class PrimaryState(TypedDict, total=False):
|
||||
search_request: SearchRequest
|
||||
primary_llm: LLM
|
||||
fast_llm: LLM
|
||||
# a single session for the entire agent search
|
||||
# is fine if we are only reading
|
||||
db_session: Session
|
||||
0
backend/danswer/agent_search/deep_answer/edges.py
Normal file
0
backend/danswer/agent_search/deep_answer/edges.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import COMBINED_CONTEXT
|
||||
from danswer.agent_search.shared_graph_utils.prompts import MODIFIED_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import normalize_whitespace
|
||||
|
||||
|
||||
# aggregate sub questions and answers
|
||||
def deep_answer_generation(state: MainState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---DEEP GENERATE---")
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
deep_answer_context = state["core_answer_dynamic_context"]
|
||||
|
||||
print(f"Number of verified retrieval docs - deep: {len(docs)}")
|
||||
|
||||
combined_context = normalize_whitespace(
|
||||
COMBINED_CONTEXT.format(
|
||||
deep_answer_context=deep_answer_context, formated_docs=format_docs(docs)
|
||||
)
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=MODIFIED_RAG_PROMPT.format(
|
||||
question=question, combined_context=combined_context
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
return {
|
||||
"deep_answer": response.content,
|
||||
}
|
||||
|
||||
|
||||
def final_stuff(state: MainState) -> dict[str, Any]:
|
||||
"""
|
||||
Invokes the agent model to generate a response based on the current state. Given
|
||||
the question, it will decide to retrieve using the retriever tool, or simply end.
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with the agent response appended to messages
|
||||
"""
|
||||
print("---FINAL---")
|
||||
|
||||
messages = state["log_messages"]
|
||||
time_ordered_messages = [x.pretty_repr() for x in messages]
|
||||
time_ordered_messages.sort()
|
||||
|
||||
print("Message Log:")
|
||||
print("\n".join(time_ordered_messages))
|
||||
|
||||
initial_sub_qas = state["initial_sub_qas"]
|
||||
initial_sub_qa_list = []
|
||||
for initial_sub_qa in initial_sub_qas:
|
||||
if initial_sub_qa["sub_answer_check"] == "yes":
|
||||
initial_sub_qa_list.append(
|
||||
f' Question:\n {initial_sub_qa["sub_question"]}\n --\n Answer:\n {initial_sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
initial_sub_qa_context = "\n".join(initial_sub_qa_list)
|
||||
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Initial Answered Sub Questions:\n{initial_sub_qa_context}")
|
||||
print("--------------------------------")
|
||||
|
||||
if not state.get("deep_answer"):
|
||||
print("No Deep Answer was required")
|
||||
return {}
|
||||
|
||||
deep_answer = state["deep_answer"]
|
||||
sub_qas = state["sub_qas"]
|
||||
sub_qa_list = []
|
||||
for sub_qa in sub_qas:
|
||||
if sub_qa["sub_answer_check"] == "yes":
|
||||
sub_qa_list.append(
|
||||
f' Question:\n {sub_qa["sub_question"]}\n --\n Answer:\n {sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
sub_qa_context = "\n".join(sub_qa_list)
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Final Deep Answer:\n{deep_answer}")
|
||||
print("--------------------------------")
|
||||
print("Sub Questions and Answers:")
|
||||
print(sub_qa_context)
|
||||
|
||||
return {}
|
||||
@@ -0,0 +1,78 @@
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_entity_term_extraction
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def decompose(state: MainState) -> dict[str, Any]:
|
||||
""" """
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
# get the entity term extraction dict and properly format it
|
||||
entity_term_extraction_dict = state["retrieved_entities_relationships"][
|
||||
"retrieved_entities_relationships"
|
||||
]
|
||||
|
||||
entity_term_extraction_str = format_entity_term_extraction(
|
||||
entity_term_extraction_dict
|
||||
)
|
||||
|
||||
initial_question_answers = state["initial_sub_qas"]
|
||||
|
||||
addressed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "yes"
|
||||
]
|
||||
failed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "no"
|
||||
]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=DEEP_DECOMPOSE_PROMPT.format(
|
||||
question=question,
|
||||
entity_term_extraction_str=entity_term_extraction_str,
|
||||
base_answer=base_answer,
|
||||
answered_sub_questions="\n - ".join(addressed_question_list),
|
||||
failed_sub_questions="\n - ".join(failed_question_list),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", response.pretty_repr())
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
sub_questions_dict = {}
|
||||
for sub_question_nr, sub_question_dict in enumerate(
|
||||
parsed_response["sub_questions"]
|
||||
):
|
||||
sub_question_dict["answered"] = False
|
||||
sub_question_dict["verified"] = False
|
||||
sub_questions_dict[sub_question_nr] = sub_question_dict
|
||||
|
||||
return {
|
||||
"decomposed_sub_questions_dict": sub_questions_dict,
|
||||
"log_messages": generate_log_message(
|
||||
message="deep - decompose",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -0,0 +1,40 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import ENTITY_TERM_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def entity_term_extraction(state: MainState) -> dict[str, Any]:
|
||||
"""Extract entities and terms from the question and context"""
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
doc_context = format_docs(docs)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
|
||||
)
|
||||
]
|
||||
fast_llm = state["fast_llm"]
|
||||
# Grader
|
||||
llm_response_list = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", llm_response)
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
return {
|
||||
"retrieved_entities_relationships": parsed_response,
|
||||
}
|
||||
@@ -0,0 +1,30 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
# aggregate sub questions and answers
|
||||
def sub_qa_level_aggregator(state: MainState) -> dict[str, Any]:
|
||||
sub_qas = state["sub_qas"]
|
||||
|
||||
dynamic_context_list = [
|
||||
"Below you will find useful information to answer the original question:"
|
||||
]
|
||||
checked_sub_qas = []
|
||||
|
||||
for core_answer_sub_qa in sub_qas:
|
||||
question = core_answer_sub_qa["sub_question"]
|
||||
answer = core_answer_sub_qa["sub_answer"]
|
||||
verified = core_answer_sub_qa["sub_answer_check"]
|
||||
|
||||
if verified == "yes":
|
||||
dynamic_context_list.append(
|
||||
f"Question:\n{question}\n\nAnswer:\n{answer}\n\n---\n\n"
|
||||
)
|
||||
checked_sub_qas.append({"sub_question": question, "sub_answer": answer})
|
||||
dynamic_context = "\n".join(dynamic_context_list)
|
||||
|
||||
return {
|
||||
"core_answer_dynamic_context": dynamic_context,
|
||||
"checked_sub_qas": checked_sub_qas,
|
||||
}
|
||||
@@ -0,0 +1,19 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def sub_qa_manager(state: MainState) -> dict[str, Any]:
|
||||
""" """
|
||||
|
||||
sub_questions_dict = state["decomposed_sub_questions_dict"]
|
||||
|
||||
sub_questions = {}
|
||||
|
||||
for sub_question_nr, sub_question_dict in sub_questions_dict.items():
|
||||
sub_questions[sub_question_nr] = sub_question_dict["sub_question"]
|
||||
|
||||
return {
|
||||
"sub_questions": sub_questions,
|
||||
"num_new_question_iterations": 0,
|
||||
}
|
||||
0
backend/danswer/agent_search/deep_answer/states.py
Normal file
0
backend/danswer/agent_search/deep_answer/states.py
Normal file
44
backend/danswer/agent_search/expanded_retrieval/edges.py
Normal file
44
backend/danswer/agent_search/expanded_retrieval/edges.py
Normal file
@@ -0,0 +1,44 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import RetrieveInput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
|
||||
from danswer.agent_search.shared_graph_utils.prompts import REWRITE_PROMPT_MULTI
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
def parallel_retrieval_edge(state: ExpandedRetrievalInput) -> list[Send | Hashable]:
|
||||
print(f"parallel_retrieval_edge state: {state.keys()}")
|
||||
|
||||
# This should be better...
|
||||
question = state.get("query_to_answer") or state["search_request"].query
|
||||
llm: LLM = state["fast_llm"]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REWRITE_PROMPT_MULTI.format(question=question),
|
||||
)
|
||||
]
|
||||
llm_response_list = list(
|
||||
llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
print(f"llm_response: {llm_response}")
|
||||
|
||||
rewritten_queries = llm_response.split("\n")
|
||||
|
||||
print(f"rewritten_queries: {rewritten_queries}")
|
||||
|
||||
return [
|
||||
Send(
|
||||
"doc_retrieval",
|
||||
RetrieveInput(query_to_retrieve=query, **state),
|
||||
)
|
||||
for query in rewritten_queries
|
||||
]
|
||||
@@ -0,0 +1,88 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.edges import parallel_retrieval_edge
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_reranking import doc_reranking
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import doc_retrieval
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
|
||||
doc_verification,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.nodes.verification_kickoff import (
|
||||
verification_kickoff,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def expanded_retrieval_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=ExpandedRetrievalState,
|
||||
input=ExpandedRetrievalInput,
|
||||
output=ExpandedRetrievalOutput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="doc_retrieval",
|
||||
action=doc_retrieval,
|
||||
)
|
||||
graph.add_node(
|
||||
node="verification_kickoff",
|
||||
action=verification_kickoff,
|
||||
)
|
||||
graph.add_node(
|
||||
node="doc_verification",
|
||||
action=doc_verification,
|
||||
)
|
||||
graph.add_node(
|
||||
node="doc_reranking",
|
||||
action=doc_reranking,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
|
||||
graph.add_conditional_edges(
|
||||
source=START,
|
||||
path=parallel_retrieval_edge,
|
||||
path_map=["doc_retrieval"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_retrieval",
|
||||
end_key="verification_kickoff",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_verification",
|
||||
end_key="doc_reranking",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="doc_reranking",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = expanded_retrieval_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="Who made Excel and what other products did they make?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = ExpandedRetrievalInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
query_to_answer="Who made Excel?",
|
||||
)
|
||||
for thing in compiled_graph.stream(inputs, debug=True):
|
||||
print(thing)
|
||||
@@ -0,0 +1,11 @@
|
||||
from danswer.agent_search.expanded_retrieval.states import DocRerankingOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def doc_reranking(state: ExpandedRetrievalState) -> DocRerankingOutput:
|
||||
print(f"doc_reranking state: {state.keys()}")
|
||||
|
||||
verified_documents = state["verified_documents"]
|
||||
reranked_documents = verified_documents
|
||||
|
||||
return DocRerankingOutput(reranked_documents=reranked_documents)
|
||||
@@ -0,0 +1,47 @@
|
||||
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.pipeline import SearchPipeline
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
|
||||
|
||||
class RetrieveInput(ExpandedRetrievalState):
|
||||
query_to_retrieve: str
|
||||
|
||||
|
||||
def doc_retrieval(state: RetrieveInput) -> DocRetrievalOutput:
|
||||
# def doc_retrieval(state: RetrieveInput) -> Command[Literal["doc_verification"]]:
|
||||
"""
|
||||
Retrieve documents
|
||||
|
||||
Args:
|
||||
state (dict): The current graph state
|
||||
|
||||
Returns:
|
||||
state (dict): New key added to state, documents, that contains retrieved documents
|
||||
"""
|
||||
print(f"doc_retrieval state: {state.keys()}")
|
||||
|
||||
state["query_to_retrieve"]
|
||||
|
||||
documents: list[InferenceSection] = []
|
||||
llm = state["primary_llm"]
|
||||
fast_llm = state["fast_llm"]
|
||||
# db_session = state["db_session"]
|
||||
query_to_retrieve = state["search_request"].query
|
||||
with get_session_context_manager() as db_session1:
|
||||
documents = SearchPipeline(
|
||||
search_request=SearchRequest(
|
||||
query=query_to_retrieve,
|
||||
),
|
||||
user=None,
|
||||
llm=llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session1,
|
||||
).reranked_sections
|
||||
|
||||
print(f"retrieved documents: {len(documents)}")
|
||||
return DocRetrievalOutput(
|
||||
retrieved_documents=documents,
|
||||
)
|
||||
@@ -0,0 +1,60 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.states import DocVerificationOutput
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
|
||||
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class DocVerificationInput(ExpandedRetrievalState, total=True):
|
||||
doc_to_verify: InferenceSection
|
||||
|
||||
|
||||
def doc_verification(state: DocVerificationInput) -> DocVerificationOutput:
|
||||
"""
|
||||
Check whether the document is relevant for the original user question
|
||||
|
||||
Args:
|
||||
state (VerifierState): The current state
|
||||
|
||||
Returns:
|
||||
dict: ict: The updated state with the final decision
|
||||
"""
|
||||
|
||||
print(f"doc_verification state: {state.keys()}")
|
||||
|
||||
original_query = state["search_request"].query
|
||||
doc_to_verify = state["doc_to_verify"]
|
||||
document_content = doc_to_verify.combined_content
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=VERIFIER_PROMPT.format(
|
||||
question=original_query, document_content=document_content
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
fast_llm = state["fast_llm"]
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
|
||||
response_string = merge_message_runs(response, chunk_separator="")[0].content
|
||||
# Convert string response to proper dictionary format
|
||||
decision_dict = {"decision": response_string.lower()}
|
||||
formatted_response = BinaryDecision.model_validate(decision_dict)
|
||||
|
||||
print(f"Verdict: {formatted_response.decision}")
|
||||
|
||||
verified_documents = []
|
||||
if formatted_response.decision == "yes":
|
||||
verified_documents.append(doc_to_verify)
|
||||
|
||||
return DocVerificationOutput(
|
||||
verified_documents=verified_documents,
|
||||
)
|
||||
@@ -0,0 +1,27 @@
|
||||
from typing import Literal
|
||||
|
||||
from langgraph.types import Command
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
|
||||
DocVerificationInput,
|
||||
)
|
||||
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
|
||||
|
||||
|
||||
def verification_kickoff(
|
||||
state: ExpandedRetrievalState,
|
||||
) -> Command[Literal["doc_verification"]]:
|
||||
print(f"verification_kickoff state: {state.keys()}")
|
||||
|
||||
documents = state["retrieved_documents"]
|
||||
return Command(
|
||||
update={},
|
||||
goto=[
|
||||
Send(
|
||||
node="doc_verification",
|
||||
arg=DocVerificationInput(doc_to_verify=doc, **state),
|
||||
)
|
||||
for doc in documents
|
||||
],
|
||||
)
|
||||
36
backend/danswer/agent_search/expanded_retrieval/states.py
Normal file
36
backend/danswer/agent_search/expanded_retrieval/states.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class DocRetrievalOutput(TypedDict, total=False):
|
||||
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class DocVerificationOutput(TypedDict, total=False):
|
||||
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class DocRerankingOutput(TypedDict, total=False):
|
||||
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
|
||||
|
||||
class ExpandedRetrievalState(
|
||||
PrimaryState,
|
||||
DocRetrievalOutput,
|
||||
DocVerificationOutput,
|
||||
DocRerankingOutput,
|
||||
total=True,
|
||||
):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalInput(PrimaryState, total=True):
|
||||
query_to_answer: str
|
||||
|
||||
|
||||
class ExpandedRetrievalOutput(TypedDict):
|
||||
reordered_documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
61
backend/danswer/agent_search/main/edges.py
Normal file
61
backend/danswer/agent_search/main/edges.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from collections.abc import Hashable
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.answer_query.states import AnswerQueryInput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def parallelize_decompozed_answer_queries(state: MainState) -> list[Send | Hashable]:
|
||||
return [
|
||||
Send(
|
||||
"answer_query",
|
||||
AnswerQueryInput(
|
||||
**state,
|
||||
query_to_answer=query,
|
||||
),
|
||||
)
|
||||
for query in state["initial_decomp_queries"]
|
||||
]
|
||||
|
||||
|
||||
# def continue_to_answer_sub_questions(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
# # Routes re-written queries to the (parallel) retrieval steps
|
||||
# # Notice the 'Send()' API that takes care of the parallelization
|
||||
# return [
|
||||
# Send(
|
||||
# "sub_answers_graph",
|
||||
# ResearchQAState(
|
||||
# sub_question=sub_question["sub_question_str"],
|
||||
# sub_question_nr=sub_question["sub_question_nr"],
|
||||
# graph_start_time=state["graph_start_time"],
|
||||
# primary_llm=state["primary_llm"],
|
||||
# fast_llm=state["fast_llm"],
|
||||
# ),
|
||||
# )
|
||||
# for sub_question in state["sub_questions"]
|
||||
# ]
|
||||
|
||||
|
||||
# def continue_to_deep_answer(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
# print("---GO TO DEEP ANSWER OR END---")
|
||||
|
||||
# base_answer = state["base_answer"]
|
||||
|
||||
# question = state["original_question"]
|
||||
|
||||
# BASE_CHECK_MESSAGE = [
|
||||
# HumanMessage(
|
||||
# content=BASE_CHECK_PROMPT.format(question=question, base_answer=base_answer)
|
||||
# )
|
||||
# ]
|
||||
|
||||
# model = state["fast_llm"]
|
||||
# response = model.invoke(BASE_CHECK_MESSAGE)
|
||||
|
||||
# print(f"CAN WE CONTINUE W/O GENERATING A DEEP ANSWER? - {response.pretty_repr()}")
|
||||
|
||||
# if response.pretty_repr() == "no":
|
||||
# return "decompose"
|
||||
# else:
|
||||
# return "end"
|
||||
98
backend/danswer/agent_search/main/graph_builder.py
Normal file
98
backend/danswer/agent_search/main/graph_builder.py
Normal file
@@ -0,0 +1,98 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.answer_query.graph_builder import answer_query_graph_builder
|
||||
from danswer.agent_search.expanded_retrieval.graph_builder import (
|
||||
expanded_retrieval_graph_builder,
|
||||
)
|
||||
from danswer.agent_search.main.edges import parallelize_decompozed_answer_queries
|
||||
from danswer.agent_search.main.nodes.base_decomp import main_decomp_base
|
||||
from danswer.agent_search.main.nodes.generate_initial_answer import (
|
||||
generate_initial_answer,
|
||||
)
|
||||
from danswer.agent_search.main.states import MainInput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
|
||||
|
||||
def main_graph_builder() -> StateGraph:
|
||||
graph = StateGraph(
|
||||
state_schema=MainState,
|
||||
input=MainInput,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
|
||||
graph.add_node(
|
||||
node="base_decomp",
|
||||
action=main_decomp_base,
|
||||
)
|
||||
answer_query_subgraph = answer_query_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="answer_query",
|
||||
action=answer_query_subgraph,
|
||||
)
|
||||
expanded_retrieval_subgraph = expanded_retrieval_graph_builder().compile()
|
||||
graph.add_node(
|
||||
node="expanded_retrieval",
|
||||
action=expanded_retrieval_subgraph,
|
||||
)
|
||||
graph.add_node(
|
||||
node="generate_initial_answer",
|
||||
action=generate_initial_answer,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="expanded_retrieval",
|
||||
)
|
||||
|
||||
graph.add_edge(
|
||||
start_key=START,
|
||||
end_key="base_decomp",
|
||||
)
|
||||
graph.add_conditional_edges(
|
||||
source="base_decomp",
|
||||
path=parallelize_decompozed_answer_queries,
|
||||
path_map=["answer_query"],
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key=["answer_query", "expanded_retrieval"],
|
||||
end_key="generate_initial_answer",
|
||||
)
|
||||
graph.add_edge(
|
||||
start_key="generate_initial_answer",
|
||||
end_key=END,
|
||||
)
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
from danswer.context.search.models import SearchRequest
|
||||
|
||||
graph = main_graph_builder()
|
||||
compiled_graph = graph.compile()
|
||||
primary_llm, fast_llm = get_default_llms()
|
||||
search_request = SearchRequest(
|
||||
query="If i am familiar with the function that I need, how can I type it into a cell?",
|
||||
)
|
||||
with get_session_context_manager() as db_session:
|
||||
inputs = MainInput(
|
||||
search_request=search_request,
|
||||
primary_llm=primary_llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
)
|
||||
for thing in compiled_graph.stream(
|
||||
input=inputs,
|
||||
# stream_mode="debug",
|
||||
# debug=True,
|
||||
subgraphs=True,
|
||||
):
|
||||
# print(thing)
|
||||
print()
|
||||
print()
|
||||
31
backend/danswer/agent_search/main/nodes/base_decomp.py
Normal file
31
backend/danswer/agent_search/main/nodes/base_decomp.py
Normal file
@@ -0,0 +1,31 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import BaseDecompOutput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_DECOMPOSITION_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import clean_and_parse_list_string
|
||||
|
||||
|
||||
def main_decomp_base(state: MainState) -> BaseDecompOutput:
|
||||
question = state["search_request"].query
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=INITIAL_DECOMPOSITION_PROMPT.format(question=question),
|
||||
)
|
||||
]
|
||||
|
||||
# Get the rewritten queries in a defined format
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
content = response.pretty_repr()
|
||||
list_of_subquestions = clean_and_parse_list_string(content)
|
||||
|
||||
decomp_list: list[str] = [
|
||||
sub_question["sub_question"].strip() for sub_question in list_of_subquestions
|
||||
]
|
||||
|
||||
return BaseDecompOutput(
|
||||
initial_decomp_queries=decomp_list,
|
||||
)
|
||||
@@ -0,0 +1,53 @@
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.main.states import InitialAnswerOutput
|
||||
from danswer.agent_search.main.states import MainState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
|
||||
|
||||
def generate_initial_answer(state: MainState) -> InitialAnswerOutput:
|
||||
print("---GENERATE INITIAL---")
|
||||
|
||||
question = state["search_request"].query
|
||||
docs = state["documents"]
|
||||
|
||||
decomp_answer_results = state["decomp_answer_results"]
|
||||
|
||||
good_qa_list: list[str] = []
|
||||
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE = """
|
||||
Sub-Question:\n - {sub_question}\n --\nAnswer:\n - {sub_answer}\n\n
|
||||
"""
|
||||
for decomp_answer_result in decomp_answer_results:
|
||||
if (
|
||||
decomp_answer_result.quality.lower() == "yes"
|
||||
and len(decomp_answer_result.answer) > 0
|
||||
and decomp_answer_result.answer != "I don't know"
|
||||
):
|
||||
good_qa_list.append(
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE.format(
|
||||
sub_question=decomp_answer_result.query,
|
||||
sub_answer=decomp_answer_result.answer,
|
||||
)
|
||||
)
|
||||
|
||||
sub_question_answer_str = "\n\n------\n\n".join(good_qa_list)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=INITIAL_RAG_PROMPT.format(
|
||||
question=question,
|
||||
context=format_docs(docs),
|
||||
answered_sub_questions=sub_question_answer_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
answer = response.pretty_repr()
|
||||
|
||||
print(answer)
|
||||
return InitialAnswerOutput(initial_answer=answer)
|
||||
37
backend/danswer/agent_search/main/states.py
Normal file
37
backend/danswer/agent_search/main/states.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from operator import add
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from danswer.agent_search.answer_query.states import SearchAnswerResults
|
||||
from danswer.agent_search.core_state import PrimaryState
|
||||
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
class BaseDecompOutput(TypedDict, total=False):
|
||||
initial_decomp_queries: list[str]
|
||||
|
||||
|
||||
class InitialAnswerOutput(TypedDict, total=False):
|
||||
initial_answer: str
|
||||
|
||||
|
||||
class MainState(
|
||||
PrimaryState,
|
||||
BaseDecompOutput,
|
||||
InitialAnswerOutput,
|
||||
total=True,
|
||||
):
|
||||
documents: Annotated[list[InferenceSection], dedup_inference_sections]
|
||||
decomp_answer_results: Annotated[list[SearchAnswerResults], add]
|
||||
|
||||
|
||||
class MainInput(PrimaryState, total=True):
|
||||
pass
|
||||
|
||||
|
||||
class MainOutput(TypedDict):
|
||||
"""
|
||||
This is not used because defining the output only matters for filtering the output of
|
||||
a .invoke() call but we are streaming so we just yield the entire state.
|
||||
"""
|
||||
27
backend/danswer/agent_search/run_graph.py
Normal file
27
backend/danswer/agent_search/run_graph.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from danswer.agent_search.primary_graph.graph_builder import build_core_graph
|
||||
from danswer.llm.answering.answer import AnswerStream
|
||||
from danswer.llm.interfaces import LLM
|
||||
from danswer.tools.tool import Tool
|
||||
|
||||
|
||||
def run_graph(
|
||||
query: str,
|
||||
llm: LLM,
|
||||
tools: list[Tool],
|
||||
) -> AnswerStream:
|
||||
graph = build_core_graph()
|
||||
|
||||
inputs = {
|
||||
"original_query": query,
|
||||
"messages": [],
|
||||
"tools": tools,
|
||||
"llm": llm,
|
||||
}
|
||||
compiled_graph = graph.compile()
|
||||
output = compiled_graph.invoke(input=inputs)
|
||||
yield from output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
# run_graph("What is the capital of France?", llm, [])
|
||||
12
backend/danswer/agent_search/shared_graph_utils/models.py
Normal file
12
backend/danswer/agent_search/shared_graph_utils/models.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Pydantic models for structured outputs
|
||||
class RewrittenQueries(BaseModel):
|
||||
rewritten_queries: list[str]
|
||||
|
||||
|
||||
class BinaryDecision(BaseModel):
|
||||
decision: Literal["yes", "no"]
|
||||
@@ -0,0 +1,9 @@
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.llm.answering.prune_and_merge import _merge_sections
|
||||
|
||||
|
||||
def dedup_inference_sections(
|
||||
list1: list[InferenceSection], list2: list[InferenceSection]
|
||||
) -> list[InferenceSection]:
|
||||
deduped = _merge_sections(list1 + list2)
|
||||
return deduped
|
||||
427
backend/danswer/agent_search/shared_graph_utils/prompts.py
Normal file
427
backend/danswer/agent_search/shared_graph_utils/prompts.py
Normal file
@@ -0,0 +1,427 @@
|
||||
REWRITE_PROMPT_MULTI_ORIGINAL = """ \n
|
||||
Please convert an initial user question into a 2-3 more appropriate short and pointed search queries for retrievel from a
|
||||
document store. Particularly, try to think about resolving ambiguities and make the search queries more specific,
|
||||
enabling the system to search more broadly.
|
||||
Also, try to make the search queries not redundant, i.e. not too similar! \n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Formulate the queries separated by '--' (Do not say 'Query 1: ...', just write the querytext): """
|
||||
|
||||
REWRITE_PROMPT_MULTI = """ \n
|
||||
Please create a list of 2-3 sample documents that could answer an original question. Each document
|
||||
should be about as long as the original question. \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Formulate the sample documents separated by '--' (Do not say 'Document 1: ...', just write the text): """
|
||||
|
||||
BASE_RAG_PROMPT = """ \n
|
||||
You are an assistant for question-answering tasks. Use the context provided below - and only the
|
||||
provided context - to answer the question. If you don't know the answer or if the provided context is
|
||||
empty, just say "I don't know". Do not use your internal knowledge!
|
||||
|
||||
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
|
||||
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
|
||||
use your internal knowledge, just the provided information!
|
||||
|
||||
Use three sentences maximum and keep the answer concise.
|
||||
answer concise.\nQuestion:\n {question} \nContext:\n {context} \n\n
|
||||
\n\n
|
||||
Answer:"""
|
||||
|
||||
BASE_CHECK_PROMPT = """ \n
|
||||
Please check whether 1) the suggested answer seems to fully address the original question AND 2)the
|
||||
original question requests a simple, factual answer, and there are no ambiguities, judgements,
|
||||
aggregations, or any other complications that may require extra context. (I.e., if the question is
|
||||
somewhat addressed, but the answer would benefit from more context, then answer with 'no'.)
|
||||
|
||||
Please only answer with 'yes' or 'no' \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Here is the proposed answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
Please answer with yes or no:"""
|
||||
|
||||
VERIFIER_PROMPT = """ \n
|
||||
Please check whether the document seems to be relevant for the answer of the question. Please
|
||||
only answer with 'yes' or 'no' \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Here is the document text:
|
||||
\n ------- \n
|
||||
{document_content}
|
||||
\n ------- \n
|
||||
Please answer with yes or no:"""
|
||||
|
||||
INITIAL_DECOMPOSITION_PROMPT_BASIC = """ \n
|
||||
Please decompose an initial user question into not more than 4 appropriate sub-questions that help to
|
||||
answer the original question. The purpose for this decomposition is to isolate individulal entities
|
||||
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
|
||||
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
|
||||
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
|
||||
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
|
||||
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Please formulate your answer as a list of subquestions:
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
REWRITE_PROMPT_SINGLE = """ \n
|
||||
Please convert an initial user question into a more appropriate search query for retrievel from a
|
||||
document store. \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Formulate the query: """
|
||||
|
||||
MODIFIED_RAG_PROMPT = """You are an assistant for question-answering tasks. Use the context provided below
|
||||
- and only this context - to answer the question. If you don't know the answer, just say "I don't know".
|
||||
Use three sentences maximum and keep the answer concise.
|
||||
Pay also particular attention to the sub-questions and their answers, at least it may enrich the answer.
|
||||
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
|
||||
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
|
||||
use your internal knowledge, just the provided information!
|
||||
|
||||
\nQuestion: {question}
|
||||
\nContext: {combined_context} \n
|
||||
|
||||
Answer:"""
|
||||
|
||||
ORIG_DEEP_DECOMPOSE_PROMPT = """ \n
|
||||
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
|
||||
good enough. Also, some sub-questions had been answered and this information has been used to provide
|
||||
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
|
||||
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
|
||||
you have an idea of how the avaiolable data looks like.
|
||||
|
||||
Your role is to generate 3-5 new sub-questions that would help to answer the initial question,
|
||||
considering:
|
||||
|
||||
1) The initial question
|
||||
2) The initial answer that was found to be unsatisfactory
|
||||
3) The sub-questions that were answered
|
||||
4) The sub-questions that were suggested but not answered
|
||||
5) The entities, relationships and terms that were extracted from the context
|
||||
|
||||
The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question, but in a way that does
|
||||
not duplicate questions that were already tried.
|
||||
|
||||
Additional Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
resolve ambiguities, or address shortcoming of the initial answer
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
|
||||
generate a list of dictionaries with the following format:
|
||||
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
|
||||
sub-question using as a search phrase for the document store>}}, ...]
|
||||
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Here is the initial sub-optimal answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were answered:
|
||||
\n ------- \n
|
||||
{answered_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were suggested but not answered:
|
||||
\n ------- \n
|
||||
{failed_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Again, please find questions that are NOT overlapping too much with the already answered
|
||||
sub-questions or those that already were suggested and failed.
|
||||
In other words - what can we try in addition to what has been tried so far?
|
||||
|
||||
Please think through it step by step and then generate the list of json dictionaries with the following
|
||||
format:
|
||||
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"explanation": <explanation>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
DEEP_DECOMPOSE_PROMPT = """ \n
|
||||
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
|
||||
good enough. Also, some sub-questions had been answered and this information has been used to provide
|
||||
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
|
||||
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
|
||||
you have an idea of how the avaiolable data looks like.
|
||||
|
||||
Your role is to generate 4-6 new sub-questions that would help to answer the initial question,
|
||||
considering:
|
||||
|
||||
1) The initial question
|
||||
2) The initial answer that was found to be unsatisfactory
|
||||
3) The sub-questions that were answered
|
||||
4) The sub-questions that were suggested but not answered
|
||||
5) The entities, relationships and terms that were extracted from the context
|
||||
|
||||
The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question, but in a way that does
|
||||
not duplicate questions that were already tried.
|
||||
|
||||
Additional Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
resolve ambiguities, or address shortcoming of the initial answer
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please also provide a search term that can be used to retrieve relevant
|
||||
documents from a document store.
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Here is the initial sub-optimal answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were answered:
|
||||
\n ------- \n
|
||||
{answered_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
Here are the sub-questions that were suggested but not answered:
|
||||
\n ------- \n
|
||||
{failed_sub_questions}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Again, please find questions that are NOT overlapping too much with the already answered
|
||||
sub-questions or those that already were suggested and failed.
|
||||
In other words - what can we try in addition to what has been tried so far?
|
||||
|
||||
Generate the list of json dictionaries with the following format:
|
||||
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
DECOMPOSE_PROMPT = """ \n
|
||||
For an initial user question, please generate at 5-10 individual sub-questions whose answers would help
|
||||
\n to answer the initial question. The individual questions should be answerable by a good RAG system.
|
||||
So a good idea would be to \n use the sub-questions to resolve ambiguities and/or to separate the
|
||||
question for different entities that may be involved in the original question.
|
||||
|
||||
In order to arrive at meaningful sub-questions, please also consider the context retrieved from the
|
||||
document store, expressed as entities, relationships and terms. You can also think about the types
|
||||
mentioned in brackets
|
||||
|
||||
Guidelines:
|
||||
- The sub-questions should be specific to the question and provide richer context for the question,
|
||||
and or resolve ambiguities
|
||||
- Each sub-question - when answered - should be relevant for the answer to the original question
|
||||
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
|
||||
other complications that may require extra context.
|
||||
- The sub-questions MUST have the full context of the original question so that it can be executed by
|
||||
a RAG system independently without the original question available
|
||||
(Example:
|
||||
- initial question: "What is the capital of France?"
|
||||
- bad sub-question: "What is the name of the river there?"
|
||||
- good sub-question: "What is the name of the river that flows through Paris?"
|
||||
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
|
||||
generate a list of dictionaries with the following format:
|
||||
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
|
||||
sub-question using as a search phrase for the document store>}}, ...]
|
||||
|
||||
\n\n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
And here are the entities, relationships and terms extracted from the context:
|
||||
\n ------- \n
|
||||
{entity_term_extraction_str}
|
||||
\n ------- \n
|
||||
|
||||
Please generate the list of good, fully contextualized sub-questions that would help to address the
|
||||
main question. Don't be too specific unless the original question is specific.
|
||||
Please think through it step by step and then generate the list of json dictionaries with the following
|
||||
format:
|
||||
{{"sub_questions": [{{"sub_question": <sub-question>,
|
||||
"explanation": <explanation>,
|
||||
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
|
||||
...]}} """
|
||||
|
||||
#### Consolidations
|
||||
COMBINED_CONTEXT = """-------
|
||||
Below you will find useful information to answer the original question. First, you see a number of
|
||||
sub-questions with their answers. This information should be considered to be more focussed and
|
||||
somewhat more specific to the original question as it tries to contextualized facts.
|
||||
After that will see the documents that were considered to be relevant to answer the original question.
|
||||
|
||||
Here are the sub-questions and their answers:
|
||||
\n\n {deep_answer_context} \n\n
|
||||
\n\n Here are the documents that were considered to be relevant to answer the original question:
|
||||
\n\n {formated_docs} \n\n
|
||||
----------------
|
||||
"""
|
||||
|
||||
SUB_QUESTION_EXPLANATION_RANKER_PROMPT = """-------
|
||||
Below you will find a question that we ultimately want to answer (the original question) and a list of
|
||||
motivations in arbitrary order for generated sub-questions that are supposed to help us answering the
|
||||
original question. The motivations are formatted as <motivation number>: <motivation explanation>.
|
||||
(Again, the numbering is arbitrary and does not necessarily mean that 1 is the most relevant
|
||||
motivation and 2 is less relevant.)
|
||||
|
||||
Please rank the motivations in order of relevance for answering the original question. Also, try to
|
||||
ensure that the top questions do not duplicate too much, i.e. that they are not too similar.
|
||||
Ultimately, create a list with the motivation numbers where the number of the most relevant
|
||||
motivations comes first.
|
||||
|
||||
Here is the original question:
|
||||
\n\n {original_question} \n\n
|
||||
\n\n Here is the list of sub-question motivations:
|
||||
\n\n {sub_question_explanations} \n\n
|
||||
----------------
|
||||
|
||||
Please think step by step and then generate the ranked list of motivations.
|
||||
|
||||
Please format your answer as a json object in the following format:
|
||||
{{"reasonning": <explain your reasoning for the ranking>,
|
||||
"ranked_motivations": <ranked list of motivation numbers>}}
|
||||
"""
|
||||
|
||||
|
||||
INITIAL_DECOMPOSITION_PROMPT = """ \n
|
||||
Please decompose an initial user question into 2 or 3 appropriate sub-questions that help to
|
||||
answer the original question. The purpose for this decomposition is to isolate individulal entities
|
||||
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
|
||||
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
|
||||
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
|
||||
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
|
||||
|
||||
For each sub-question, please also create one search term that can be used to retrieve relevant
|
||||
documents from a document store.
|
||||
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
|
||||
Please formulate your answer as a list of json objects with the following format:
|
||||
|
||||
[{{"sub_question": <sub-question>, "search_term": <search term>}}, ...]
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
INITIAL_RAG_PROMPT = """ \n
|
||||
You are an assistant for question-answering tasks. Use the information provided below - and only the
|
||||
provided information - to answer the provided question.
|
||||
|
||||
The information provided below consists of:
|
||||
1) a number of answered sub-questions - these are very important(!) and definitely should be
|
||||
considered to answer the question.
|
||||
2) a number of documents that were also deemed relevant for the question.
|
||||
|
||||
If you don't know the answer or if the provided information is empty or insufficient, just say
|
||||
"I don't know". Do not use your internal knowledge!
|
||||
|
||||
Again, only use the provided informationand do not use your internal knowledge! It is a matter of life
|
||||
and death that you do NOT use your internal knowledge, just the provided information!
|
||||
|
||||
Try to keep your answer concise.
|
||||
|
||||
And here is the question and the provided information:
|
||||
\n
|
||||
\nQuestion:\n {question}
|
||||
|
||||
\nAnswered Sub-questions:\n {answered_sub_questions}
|
||||
|
||||
\nContext:\n {context} \n\n
|
||||
\n\n
|
||||
|
||||
Answer:"""
|
||||
|
||||
ENTITY_TERM_PROMPT = """ \n
|
||||
Based on the original question and the context retieved from a dataset, please generate a list of
|
||||
entities (e.g. companies, organizations, industries, products, locations, etc.), terms and concepts
|
||||
(e.g. sales, revenue, etc.) that are relevant for the question, plus their relations to each other.
|
||||
|
||||
\n\n
|
||||
Here is the original question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
And here is the context retrieved:
|
||||
\n ------- \n
|
||||
{context}
|
||||
\n ------- \n
|
||||
|
||||
Please format your answer as a json object in the following format:
|
||||
|
||||
{{"retrieved_entities_relationships": {{
|
||||
"entities": [{{
|
||||
"entity_name": <assign a name for the entity>,
|
||||
"entity_type": <specify a short type name for the entity, such as 'company', 'location',...>
|
||||
}}],
|
||||
"relationships": [{{
|
||||
"name": <assign a name for the relationship>,
|
||||
"type": <specify a short type name for the relationship, such as 'sales_to', 'is_location_of',...>,
|
||||
"entities": [<related entity name 1>, <related entity name 2>]
|
||||
}}],
|
||||
"terms": [{{
|
||||
"term_name": <assign a name for the term>,
|
||||
"term_type": <specify a short type name for the term, such as 'revenue', 'market_share',...>,
|
||||
"similar_to": <list terms that are similar to this term>
|
||||
}}]
|
||||
}}
|
||||
}}
|
||||
"""
|
||||
101
backend/danswer/agent_search/shared_graph_utils/utils.py
Normal file
101
backend/danswer/agent_search/shared_graph_utils/utils.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import ast
|
||||
import json
|
||||
import re
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
from typing import Any
|
||||
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def normalize_whitespace(text: str) -> str:
|
||||
"""Normalize whitespace in text to single spaces and strip leading/trailing whitespace."""
|
||||
import re
|
||||
|
||||
return re.sub(r"\s+", " ", text.strip())
|
||||
|
||||
|
||||
# Post-processing
|
||||
def format_docs(docs: Sequence[InferenceSection]) -> str:
|
||||
return "\n\n".join(doc.combined_content for doc in docs)
|
||||
|
||||
|
||||
def clean_and_parse_list_string(json_string: str) -> list[dict]:
|
||||
# Remove any prefixes/labels before the actual JSON content
|
||||
json_string = re.sub(r"^.*?(?=\[)", "", json_string, flags=re.DOTALL)
|
||||
|
||||
# Remove markdown code block markers and any newline prefixes
|
||||
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
|
||||
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
|
||||
cleaned_string = " ".join(cleaned_string.split())
|
||||
|
||||
# Try parsing with json.loads first, fall back to ast.literal_eval
|
||||
try:
|
||||
return json.loads(cleaned_string)
|
||||
except json.JSONDecodeError:
|
||||
try:
|
||||
return ast.literal_eval(cleaned_string)
|
||||
except (ValueError, SyntaxError) as e:
|
||||
raise ValueError(f"Failed to parse JSON string: {cleaned_string}") from e
|
||||
|
||||
|
||||
def clean_and_parse_json_string(json_string: str) -> dict[str, Any]:
|
||||
# Remove markdown code block markers and any newline prefixes
|
||||
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
|
||||
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
|
||||
cleaned_string = " ".join(cleaned_string.split())
|
||||
# Parse the cleaned string into a Python dictionary
|
||||
return json.loads(cleaned_string)
|
||||
|
||||
|
||||
def format_entity_term_extraction(entity_term_extraction_dict: dict[str, Any]) -> str:
|
||||
entities = entity_term_extraction_dict["entities"]
|
||||
terms = entity_term_extraction_dict["terms"]
|
||||
relationships = entity_term_extraction_dict["relationships"]
|
||||
|
||||
entity_strs = ["\nEntities:\n"]
|
||||
for entity in entities:
|
||||
entity_str = f"{entity['entity_name']} ({entity['entity_type']})"
|
||||
entity_strs.append(entity_str)
|
||||
|
||||
entity_str = "\n - ".join(entity_strs)
|
||||
|
||||
relationship_strs = ["\n\nRelationships:\n"]
|
||||
for relationship in relationships:
|
||||
relationship_str = f"{relationship['name']} ({relationship['type']}): {relationship['entities']}"
|
||||
relationship_strs.append(relationship_str)
|
||||
|
||||
relationship_str = "\n - ".join(relationship_strs)
|
||||
|
||||
term_strs = ["\n\nTerms:\n"]
|
||||
for term in terms:
|
||||
term_str = f"{term['term_name']} ({term['term_type']}): similar to {term['similar_to']}"
|
||||
term_strs.append(term_str)
|
||||
|
||||
term_str = "\n - ".join(term_strs)
|
||||
|
||||
return "\n".join(entity_strs + relationship_strs + term_strs)
|
||||
|
||||
|
||||
def _format_time_delta(time: timedelta) -> str:
|
||||
seconds_from_start = f"{((time).seconds):03d}"
|
||||
microseconds_from_start = f"{((time).microseconds):06d}"
|
||||
return f"{seconds_from_start}.{microseconds_from_start}"
|
||||
|
||||
|
||||
def generate_log_message(
|
||||
message: str,
|
||||
node_start_time: datetime,
|
||||
graph_start_time: datetime | None = None,
|
||||
) -> str:
|
||||
current_time = datetime.now()
|
||||
|
||||
if graph_start_time is not None:
|
||||
graph_time_str = _format_time_delta(current_time - graph_start_time)
|
||||
else:
|
||||
graph_time_str = "N/A"
|
||||
|
||||
node_time_str = _format_time_delta(current_time - node_start_time)
|
||||
|
||||
return f"{graph_time_str} ({node_time_str} s): {message}"
|
||||
@@ -25,6 +25,9 @@ class ToolCallSummary(BaseModel__v1):
|
||||
tool_call_request: AIMessage
|
||||
tool_call_result: ToolMessage
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
def tool_call_tokens(
|
||||
tool_call_summary: ToolCallSummary, llm_tokenizer: BaseTokenizer
|
||||
|
||||
@@ -33,12 +33,12 @@ def log_function_time(
|
||||
elapsed_time_str = f"{elapsed_time:.3f}"
|
||||
log_name = func_name or func.__name__
|
||||
args_str = f" args={args} kwargs={kwargs}" if include_args else ""
|
||||
final_log = f"{log_name}{args_str} took {elapsed_time_str} seconds"
|
||||
if debug_only:
|
||||
logger.debug(final_log)
|
||||
else:
|
||||
# These are generally more important logs so the level is a bit higher
|
||||
logger.notice(final_log)
|
||||
f"{log_name}{args_str} took {elapsed_time_str} seconds"
|
||||
# if debug_only:
|
||||
# logger.debug(final_log)
|
||||
# else:
|
||||
# # These are generally more important logs so the level is a bit higher
|
||||
# logger.notice(final_log)
|
||||
|
||||
if not print_only:
|
||||
optional_telemetry(
|
||||
|
||||
@@ -26,9 +26,14 @@ huggingface-hub==0.20.1
|
||||
jira==3.5.1
|
||||
jsonref==1.1.0
|
||||
trafilatura==1.12.2
|
||||
langchain==0.1.17
|
||||
langchain-core==0.1.50
|
||||
langchain-text-splitters==0.0.1
|
||||
langchain==0.3.7
|
||||
langchain-core==0.3.24
|
||||
langchain-openai==0.2.9
|
||||
langchain-text-splitters==0.3.2
|
||||
langchainhub==0.1.21
|
||||
langgraph==0.2.59
|
||||
langgraph-checkpoint==2.0.5
|
||||
langgraph-sdk==0.1.44
|
||||
litellm==1.53.1
|
||||
lxml==5.3.0
|
||||
lxml_html_clean==0.2.2
|
||||
|
||||
Reference in New Issue
Block a user