Compare commits

..

7 Commits

Author SHA1 Message Date
Richard Kuo (Danswer)
f6225fa8fc fix linting 2025-03-05 12:03:06 -08:00
Richard Kuo (Danswer)
1feb812724 Merge branch 'helm-updates' of https://github.com/geohacker/onyx into feature/helm-updates 2025-03-05 11:22:20 -08:00
Sajjad Anwar
dcaa634b7f fix backend labels. configure nginx routes. update annotations 2025-03-05 08:59:02 +05:30
Sajjad Anwar
63bd1253e7 use pathType ImplementationSpecific as Prefix is deprecated 2025-03-05 08:09:19 +05:30
Sajjad Anwar
64f9178746 add letsencrypt. close blocks 2025-03-05 08:07:09 +05:30
Sajjad Anwar
01a0ce3ced helm setup docs 2025-03-05 07:56:04 +05:30
Sajjad Anwar
092728271c add ingress for api and web 2025-02-21 17:32:23 -05:00
20 changed files with 150 additions and 624 deletions

View File

@@ -6,8 +6,7 @@ Create Date: 2025-02-26 13:07:56.217791
"""
from alembic import op
import time
from sqlalchemy import text
# revision identifiers, used by Alembic.
revision = "3bd4c84fe72f"
@@ -28,357 +27,45 @@ depends_on = None
# 4. Adds indexes to both chat_message and chat_session tables for comprehensive search
def upgrade():
# --- PART 1: chat_message table ---
# Step 1: Add nullable column (quick, minimal locking)
# op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv")
# op.execute("DROP TRIGGER IF EXISTS chat_message_tsv_trigger ON chat_message")
# op.execute("DROP FUNCTION IF EXISTS update_chat_message_tsv()")
# op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv")
# # Drop chat_session tsv trigger if it exists
# op.execute("DROP TRIGGER IF EXISTS chat_session_tsv_trigger ON chat_session")
# op.execute("DROP FUNCTION IF EXISTS update_chat_session_tsv()")
# op.execute("ALTER TABLE chat_session DROP COLUMN IF EXISTS title_tsv")
# raise Exception("Stop here")
time.time()
op.execute("ALTER TABLE chat_message ADD COLUMN IF NOT EXISTS message_tsv tsvector")
# Step 2: Create function and trigger for new/updated rows
def upgrade() -> None:
# Create a GIN index for full-text search on chat_message.message
op.execute(
"""
CREATE OR REPLACE FUNCTION update_chat_message_tsv()
RETURNS TRIGGER AS $$
BEGIN
NEW.message_tsv = to_tsvector('english', NEW.message);
RETURN NEW;
END;
$$ LANGUAGE plpgsql
"""
ALTER TABLE chat_message
ADD COLUMN message_tsv tsvector
GENERATED ALWAYS AS (to_tsvector('english', message)) STORED;
"""
)
# Create trigger in a separate execute call
# Commit the current transaction before creating concurrent indexes
op.execute("COMMIT")
op.execute(
"""
CREATE TRIGGER chat_message_tsv_trigger
BEFORE INSERT OR UPDATE ON chat_message
FOR EACH ROW EXECUTE FUNCTION update_chat_message_tsv()
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv
ON chat_message
USING GIN (message_tsv)
"""
)
# Step 3: Update existing rows in batches using Python
time.time()
# Get connection and count total rows
connection = op.get_bind()
total_count_result = connection.execute(
text("SELECT COUNT(*) FROM chat_message")
).scalar()
total_count = total_count_result if total_count_result is not None else 0
batch_size = 5000
batches = 0
# Calculate total batches needed
total_batches = (
(total_count + batch_size - 1) // batch_size if total_count > 0 else 0
# Also add a stored tsvector column for chat_session.description
op.execute(
"""
ALTER TABLE chat_session
ADD COLUMN description_tsv tsvector
GENERATED ALWAYS AS (to_tsvector('english', coalesce(description, ''))) STORED;
"""
)
# Process in batches - properly handling UUIDs by using OFFSET/LIMIT approach
for batch_num in range(total_batches):
offset = batch_num * batch_size
# Commit again before creating the second concurrent index
op.execute("COMMIT")
# Execute update for this batch using OFFSET/LIMIT which works with UUIDs
connection.execute(
text(
"""
UPDATE chat_message
SET message_tsv = to_tsvector('english', message)
WHERE id IN (
SELECT id FROM chat_message
WHERE message_tsv IS NULL
ORDER BY id
LIMIT :batch_size OFFSET :offset
)
"""
).bindparams(batch_size=batch_size, offset=offset)
)
# Commit each batch
connection.execute(text("COMMIT"))
# Start a new transaction
connection.execute(text("BEGIN"))
batches += 1
# Final check for any remaining NULL values
connection.execute(
text(
"""
UPDATE chat_message SET message_tsv = to_tsvector('english', message)
WHERE message_tsv IS NULL
"""
)
)
# Create GIN index concurrently
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv
ON chat_message USING GIN (message_tsv)
"""
)
)
# First drop the trigger as it won't be needed anymore
connection.execute(
text(
"""
DROP TRIGGER IF EXISTS chat_message_tsv_trigger ON chat_message;
"""
)
)
connection.execute(
text(
"""
DROP FUNCTION IF EXISTS update_chat_message_tsv();
"""
)
)
# Add new generated column
time.time()
connection.execute(
text(
"""
ALTER TABLE chat_message
ADD COLUMN message_tsv_gen tsvector
GENERATED ALWAYS AS (to_tsvector('english', message)) STORED;
"""
)
)
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv_gen
ON chat_message USING GIN (message_tsv_gen)
"""
)
)
# Drop old index and column
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
DROP INDEX CONCURRENTLY IF EXISTS idx_chat_message_tsv;
"""
)
)
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
ALTER TABLE chat_message DROP COLUMN message_tsv;
"""
)
)
# Rename new column to old name
connection.execute(
text(
"""
ALTER TABLE chat_message RENAME COLUMN message_tsv_gen TO message_tsv;
"""
)
)
# --- PART 2: chat_session table ---
# Step 1: Add nullable column (quick, minimal locking)
time.time()
connection.execute(
text(
"ALTER TABLE chat_session ADD COLUMN IF NOT EXISTS description_tsv tsvector"
)
)
# Step 2: Create function and trigger for new/updated rows - SPLIT INTO SEPARATE CALLS
connection.execute(
text(
"""
CREATE OR REPLACE FUNCTION update_chat_session_tsv()
RETURNS TRIGGER AS $$
BEGIN
NEW.description_tsv = to_tsvector('english', COALESCE(NEW.description, ''));
RETURN NEW;
END;
$$ LANGUAGE plpgsql
"""
)
)
# Create trigger in a separate execute call
connection.execute(
text(
"""
CREATE TRIGGER chat_session_tsv_trigger
BEFORE INSERT OR UPDATE ON chat_session
FOR EACH ROW EXECUTE FUNCTION update_chat_session_tsv()
"""
)
)
# Step 3: Update existing rows in batches using Python
time.time()
# Get the maximum ID to determine batch count
# Cast id to text for MAX function since it's a UUID
max_id_result = connection.execute(
text("SELECT COALESCE(MAX(id::text), '0') FROM chat_session")
).scalar()
max_id_result if max_id_result is not None else "0"
batch_size = 5000
batches = 0
# Get all IDs ordered to process in batches
rows = connection.execute(
text("SELECT id FROM chat_session ORDER BY id")
).fetchall()
total_rows = len(rows)
# Process in batches
for batch_num, batch_start in enumerate(range(0, total_rows, batch_size)):
batch_end = min(batch_start + batch_size, total_rows)
batch_ids = [row[0] for row in rows[batch_start:batch_end]]
if not batch_ids:
continue
# Use IN clause instead of BETWEEN for UUIDs
placeholders = ", ".join([f":id{i}" for i in range(len(batch_ids))])
params = {f"id{i}": id_val for i, id_val in enumerate(batch_ids)}
# Execute update for this batch
connection.execute(
text(
f"""
UPDATE chat_session
SET description_tsv = to_tsvector('english', COALESCE(description, ''))
WHERE id IN ({placeholders})
AND description_tsv IS NULL
"""
).bindparams(**params)
)
# Commit each batch
connection.execute(text("COMMIT"))
# Start a new transaction
connection.execute(text("BEGIN"))
batches += 1
# Final check for any remaining NULL values
connection.execute(
text(
"""
UPDATE chat_session SET description_tsv = to_tsvector('english', COALESCE(description, ''))
WHERE description_tsv IS NULL
"""
)
)
# Create GIN index concurrently
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv
ON chat_session USING GIN (description_tsv)
"""
)
)
# After Final check for chat_session
# First drop the trigger as it won't be needed anymore
connection.execute(
text(
"""
DROP TRIGGER IF EXISTS chat_session_tsv_trigger ON chat_session;
"""
)
)
connection.execute(
text(
"""
DROP FUNCTION IF EXISTS update_chat_session_tsv();
"""
)
)
# Add new generated column
time.time()
connection.execute(
text(
"""
ALTER TABLE chat_session
ADD COLUMN description_tsv_gen tsvector
GENERATED ALWAYS AS (to_tsvector('english', COALESCE(description, ''))) STORED;
"""
)
)
# Create new index on generated column
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv_gen
ON chat_session USING GIN (description_tsv_gen)
"""
)
)
# Drop old index and column
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
DROP INDEX CONCURRENTLY IF EXISTS idx_chat_session_desc_tsv;
"""
)
)
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
ALTER TABLE chat_session DROP COLUMN description_tsv;
"""
)
)
# Rename new column to old name
connection.execute(
text(
"""
ALTER TABLE chat_session RENAME COLUMN description_tsv_gen TO description_tsv;
"""
)
op.execute(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv
ON chat_session
USING GIN (description_tsv)
"""
)

View File

@@ -134,9 +134,7 @@ def fetch_chat_sessions_eagerly_by_time(
limit: int | None = 500,
initial_time: datetime | None = None,
) -> list[ChatSession]:
"""Sorted by oldest to newest, then by message id"""
asc_time_order: UnaryExpression = asc(ChatSession.time_created)
time_order: UnaryExpression = desc(ChatSession.time_created)
message_order: UnaryExpression = asc(ChatMessage.id)
filters: list[ColumnElement | BinaryExpression] = [
@@ -149,7 +147,8 @@ def fetch_chat_sessions_eagerly_by_time(
subquery = (
db_session.query(ChatSession.id, ChatSession.time_created)
.filter(*filters)
.order_by(asc_time_order)
.order_by(ChatSession.id, time_order)
.distinct(ChatSession.id)
.limit(limit)
.subquery()
)
@@ -165,7 +164,7 @@ def fetch_chat_sessions_eagerly_by_time(
ChatMessage.chat_message_feedbacks
),
)
.order_by(asc_time_order, message_order)
.order_by(time_order, message_order)
)
chat_sessions = query.all()

View File

@@ -16,18 +16,13 @@ from onyx.db.models import UsageReport
from onyx.file_store.file_store import get_default_file_store
# Gets skeletons of all messages in the given range
# Gets skeletons of all message
def get_empty_chat_messages_entries__paginated(
db_session: Session,
period: tuple[datetime, datetime],
limit: int | None = 500,
initial_time: datetime | None = None,
) -> tuple[Optional[datetime], list[ChatMessageSkeleton]]:
"""Returns a tuple where:
first element is the most recent timestamp out of the sessions iterated
- this timestamp can be used to paginate forward in time
second element is a list of messages belonging to all the sessions iterated
"""
chat_sessions = fetch_chat_sessions_eagerly_by_time(
start=period[0],
end=period[1],
@@ -57,17 +52,18 @@ def get_empty_chat_messages_entries__paginated(
if len(chat_sessions) == 0:
return None, []
return chat_sessions[-1].time_created, message_skeletons
return chat_sessions[0].time_created, message_skeletons
def get_all_empty_chat_message_entries(
db_session: Session,
period: tuple[datetime, datetime],
) -> Generator[list[ChatMessageSkeleton], None, None]:
"""period is the range of time over which to fetch messages."""
initial_time: Optional[datetime] = period[0]
ind = 0
while True:
# iterate from oldest to newest
ind += 1
time_created, message_skeletons = get_empty_chat_messages_entries__paginated(
db_session,
period,

View File

@@ -642,4 +642,14 @@ MOCK_LLM_RESPONSE = (
)
DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB = 20
# Image processing configurations
ENABLE_IMAGE_EXTRACTION = (
os.environ.get("ENABLE_IMAGE_EXTRACTION", "true").lower() == "true"
)
ENABLE_INDEXING_TIME_IMAGE_ANALYSIS = not (
os.environ.get("DISABLE_INDEXING_TIME_IMAGE_ANALYSIS", "false").lower() == "true"
)
ENABLE_SEARCH_TIME_IMAGE_ANALYSIS = not (
os.environ.get("DISABLE_SEARCH_TIME_IMAGE_ANALYSIS", "false").lower() == "true"
)
IMAGE_ANALYSIS_MAX_SIZE_MB = int(os.environ.get("IMAGE_ANALYSIS_MAX_SIZE_MB", "20"))

View File

@@ -1,38 +0,0 @@
from onyx.configs.app_configs import DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB
from onyx.server.settings.store import load_settings
def get_image_extraction_and_analysis_enabled() -> bool:
"""Get image extraction and analysis enabled setting from workspace settings or fallback to False"""
try:
settings = load_settings()
if settings.image_extraction_and_analysis_enabled is not None:
return settings.image_extraction_and_analysis_enabled
except Exception:
pass
return False
def get_search_time_image_analysis_enabled() -> bool:
"""Get search time image analysis enabled setting from workspace settings or fallback to False"""
try:
settings = load_settings()
if settings.search_time_image_analysis_enabled is not None:
return settings.search_time_image_analysis_enabled
except Exception:
pass
return False
def get_image_analysis_max_size_mb() -> int:
"""Get image analysis max size MB setting from workspace settings or fallback to environment variable"""
try:
settings = load_settings()
if settings.image_analysis_max_size_mb is not None:
return settings.image_analysis_max_size_mb
except Exception:
pass
return DEFAULT_IMAGE_ANALYSIS_MAX_SIZE_MB

View File

@@ -144,12 +144,6 @@ class OnyxConfluence:
self.static_credentials = credential_json
return credential_json, False
if not OAUTH_CONFLUENCE_CLOUD_CLIENT_ID:
raise RuntimeError("OAUTH_CONFLUENCE_CLOUD_CLIENT_ID must be set!")
if not OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET:
raise RuntimeError("OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET must be set!")
# check if we should refresh tokens. we're deciding to refresh halfway
# to expiration
now = datetime.now(timezone.utc)

View File

@@ -1,7 +1,7 @@
"""
Mixin for connectors that need vision capabilities.
"""
from onyx.configs.llm_configs import get_image_extraction_and_analysis_enabled
from onyx.configs.app_configs import ENABLE_INDEXING_TIME_IMAGE_ANALYSIS
from onyx.llm.factory import get_default_llm_with_vision
from onyx.llm.interfaces import LLM
from onyx.utils.logger import setup_logger
@@ -30,7 +30,7 @@ class VisionEnabledConnector:
Sets self.image_analysis_llm to the LLM instance or None if disabled.
"""
self.image_analysis_llm: LLM | None = None
if get_image_extraction_and_analysis_enabled():
if ENABLE_INDEXING_TIME_IMAGE_ANALYSIS:
try:
self.image_analysis_llm = get_default_llm_with_vision()
if self.image_analysis_llm is None:

View File

@@ -10,8 +10,8 @@ from langchain_core.messages import SystemMessage
from onyx.chat.models import SectionRelevancePiece
from onyx.configs.app_configs import BLURB_SIZE
from onyx.configs.app_configs import ENABLE_SEARCH_TIME_IMAGE_ANALYSIS
from onyx.configs.constants import RETURN_SEPARATOR
from onyx.configs.llm_configs import get_search_time_image_analysis_enabled
from onyx.configs.model_configs import CROSS_ENCODER_RANGE_MAX
from onyx.configs.model_configs import CROSS_ENCODER_RANGE_MIN
from onyx.context.search.enums import LLMEvaluationType
@@ -413,7 +413,7 @@ def search_postprocessing(
# NOTE: if we don't rerank, we can return the chunks immediately
# since we know this is the final order.
# This way the user experience isn't delayed by the LLM step
if get_search_time_image_analysis_enabled():
if ENABLE_SEARCH_TIME_IMAGE_ANALYSIS:
update_image_sections_with_query(
retrieved_sections, search_query.query, llm
)
@@ -456,7 +456,7 @@ def search_postprocessing(
_log_top_section_links(search_query.search_type.value, reranked_sections)
# Add the image processing step here
if get_search_time_image_analysis_enabled():
if ENABLE_SEARCH_TIME_IMAGE_ANALYSIS:
update_image_sections_with_query(
reranked_sections, search_query.query, llm
)

View File

@@ -1,53 +0,0 @@
import random
from datetime import datetime
from datetime import timedelta
from onyx.configs.constants import MessageType
from onyx.db.chat import create_chat_session
from onyx.db.chat import create_new_chat_message
from onyx.db.chat import get_or_create_root_message
from onyx.db.engine import get_session_with_current_tenant
from onyx.db.models import ChatSession
def seed_chat_history(num_sessions: int, num_messages: int, days: int) -> None:
"""Utility function to seed chat history for testing.
num_sessions: the number of sessions to seed
num_messages: the number of messages to seed per sessions
days: the number of days looking backwards from the current time over which to randomize
the times.
"""
with get_session_with_current_tenant() as db_session:
for y in range(0, num_sessions):
create_chat_session(db_session, f"pytest_session_{y}", None, None)
# randomize all session times
rows = db_session.query(ChatSession).all()
for row in rows:
row.time_created = datetime.utcnow() - timedelta(
days=random.randint(0, days)
)
row.time_updated = row.time_created + timedelta(
minutes=random.randint(0, 10)
)
root_message = get_or_create_root_message(row.id, db_session)
for x in range(0, num_messages):
chat_message = create_new_chat_message(
row.id,
root_message,
f"pytest_message_{x}",
None,
0,
MessageType.USER,
db_session,
)
chat_message.time_sent = row.time_created + timedelta(
minutes=random.randint(0, 10)
)
db_session.commit()
db_session.commit()

View File

@@ -53,11 +53,6 @@ class Settings(BaseModel):
auto_scroll: bool | None = False
query_history_type: QueryHistoryType | None = None
# Image processing settings
image_extraction_and_analysis_enabled: bool | None = False
search_time_image_analysis_enabled: bool | None = False
image_analysis_max_size_mb: int | None = 20
class UserSettings(Settings):
notifications: list[Notification]

View File

@@ -47,7 +47,6 @@ def load_settings() -> Settings:
settings.anonymous_user_enabled = anonymous_user_enabled
settings.query_history_type = ONYX_QUERY_HISTORY_TYPE
return settings

View File

@@ -1,45 +0,0 @@
import argparse
import logging
from logging import getLogger
from onyx.db.seeding.chat_history_seeding import seed_chat_history
# Configure the logger
logging.basicConfig(
level=logging.INFO, # Set the log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", # Log format
handlers=[logging.StreamHandler()], # Output logs to console
)
logger = getLogger(__name__)
def go_main(num_sessions: int, num_messages: int, num_days: int) -> None:
seed_chat_history(num_sessions, num_messages, num_days)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Seed chat history")
parser.add_argument(
"--sessions",
type=int,
default=2048,
help="Number of chat sessions to seed",
)
parser.add_argument(
"--messages",
type=int,
default=4,
help="Number of chat messages to seed per session",
)
parser.add_argument(
"--days",
type=int,
default=90,
help="Number of days looking backwards over which to seed the timestamps with",
)
args = parser.parse_args()
go_main(args.sessions, args.messages, args.days)

View File

@@ -1,46 +0,0 @@
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from ee.onyx.db.usage_export import get_all_empty_chat_message_entries
from onyx.db.engine import get_session_with_current_tenant
from onyx.db.seeding.chat_history_seeding import seed_chat_history
def test_usage_reports(reset: None) -> None:
EXPECTED_SESSIONS = 2048
MESSAGES_PER_SESSION = 4
EXPECTED_MESSAGES = EXPECTED_SESSIONS * MESSAGES_PER_SESSION
seed_chat_history(EXPECTED_SESSIONS, MESSAGES_PER_SESSION, 90)
with get_session_with_current_tenant() as db_session:
# count of all entries should be exact
period = (
datetime.fromtimestamp(0, tz=timezone.utc),
datetime.now(tz=timezone.utc),
)
count = 0
for entry_batch in get_all_empty_chat_message_entries(db_session, period):
for entry in entry_batch:
count += 1
assert count == EXPECTED_MESSAGES
# count in a one month time range should be within a certain range statistically
# this can be improved if we seed the chat history data deterministically
period = (
datetime.now(tz=timezone.utc) - timedelta(days=30),
datetime.now(tz=timezone.utc),
)
count = 0
for entry_batch in get_all_empty_chat_message_entries(db_session, period):
for entry in entry_batch:
count += 1
lower = EXPECTED_MESSAGES // 3 - (EXPECTED_MESSAGES // (3 * 3))
upper = EXPECTED_MESSAGES // 3 + (EXPECTED_MESSAGES // (3 * 3))
assert count > lower
assert count < upper

View File

@@ -80,3 +80,13 @@ prod cluster**
- `kubectl delete -f .`
- To not delete the persistent volumes (Document indexes and Users), specify the specific `.yaml` files instead of
`.` without specifying delete on persistent-volumes.yaml.
### Using Helm to deploy to an existing cluster
Onyx has a helm chart that is convenient to install all services to an existing Kubernetes cluster. To install:
* Currently the helm chart is not published so to install, clone the repo.
* Configure access to the cluster via kubectl. Ensure the kubectl context is set to the cluster that you want to use
* The default secrets, environment variables and other service level configuration are stored in `deployment/helm/charts/onyx/values.yml`. You may create another `override.yml`
* `cd deployment/helm/charts/onyx` and run `helm install onyx -n onyx -f override.yaml .`. This will install onyx on the cluster under the `onyx` namespace.
* Check the status of the deploy using `kubectl get pods -n onyx`

View File

@@ -0,0 +1,27 @@
{{- if .Values.ingress.enabled -}}
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: {{ include "onyx-stack.fullname" . }}-ingress-api
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/rewrite-target: /$2
nginx.ingress.kubernetes.io/use-regex: "true"
cert-manager.io/cluster-issuer: {{ include "onyx-stack.fullname" . }}-letsencrypt
spec:
rules:
- host: {{ .Values.ingress.api.host }}
http:
paths:
- path: /api(/|$)(.*)
pathType: Prefix
backend:
service:
name: {{ include "onyx-stack.fullname" . }}-api-service
port:
number: {{ .Values.api.service.servicePort }}
tls:
- hosts:
- {{ .Values.ingress.api.host }}
secretName: {{ include "onyx-stack.fullname" . }}-ingress-api-tls
{{- end }}

View File

@@ -0,0 +1,26 @@
{{- if .Values.ingress.enabled -}}
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: {{ include "onyx-stack.fullname" . }}-ingress-webserver
annotations:
kubernetes.io/ingress.class: nginx
cert-manager.io/cluster-issuer: {{ include "onyx-stack.fullname" . }}-letsencrypt
kubernetes.io/tls-acme: "true"
spec:
rules:
- host: {{ .Values.ingress.webserver.host }}
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: {{ include "onyx-stack.fullname" . }}-webserver
port:
number: {{ .Values.webserver.service.servicePort }}
tls:
- hosts:
- {{ .Values.ingress.webserver.host }}
secretName: {{ include "onyx-stack.fullname" . }}-ingress-webserver-tls
{{- end }}

View File

@@ -0,0 +1,20 @@
{{- if .Values.letsencrypt.enabled -}}
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
name: {{ include "onyx-stack.fullname" . }}-letsencrypt
spec:
acme:
# The ACME server URL
server: https://acme-v02.api.letsencrypt.org/directory
# Email address used for ACME registration
email: {{ .Values.letsencrypt.email }}
# Name of a secret used to store the ACME account private key
privateKeySecretRef:
name: {{ include "onyx-stack.fullname" . }}-letsencrypt
# Enable the HTTP-01 challenge provider
solvers:
- http01:
ingress:
class: nginx
{{- end }}

View File

@@ -376,22 +376,17 @@ redis:
existingSecret: onyx-secrets
existingSecretPasswordKey: redis_password
# ingress:
# enabled: false
# className: ""
# annotations: {}
# # kubernetes.io/ingress.class: nginx
# # kubernetes.io/tls-acme: "true"
# hosts:
# - host: chart-example.local
# paths:
# - path: /
# pathType: ImplementationSpecific
# tls: []
# # - secretName: chart-example-tls
# # hosts:
# # - chart-example.local
ingress:
enabled: false
className: ""
api:
host: onyx.local
webserver:
host: onyx.local
letsencrypt:
enabled: false
email: "abc@abc.com"
auth:
# existingSecret onyx-secret for storing smtp, oauth, slack, and other secrets

View File

@@ -26,7 +26,7 @@ export function Checkbox({
onChange: (e: React.ChangeEvent<HTMLInputElement>) => void;
}) {
return (
<label className="flex text-xs cursor-pointer">
<label className="flex text-sm cursor-pointer">
<input
checked={checked}
onChange={onChange}
@@ -34,7 +34,7 @@ export function Checkbox({
className="mr-2 w-3.5 h-3.5 my-auto"
/>
<div>
<Label small>{label}</Label>
<Label>{label}</Label>
{sublabel && <SubLabel>{sublabel}</SubLabel>}
</div>
</label>
@@ -208,7 +208,7 @@ export function SettingsForm() {
}
return (
<div className="flex flex-col pb-8">
<div>
{popup}
<Title className="mb-4">Workspace Settings</Title>
<Checkbox
@@ -307,51 +307,6 @@ export function SettingsForm() {
</Button>
</>
)}
{/* Image Processing Settings */}
<Title className="mt-8 mb-4">Image Processing</Title>
<div className="flex flex-col gap-2">
<Checkbox
label="Enable Image Extraction and Analysis"
sublabel="Extract and analyze images from documents during indexing. This allows the system to process images and create searchable descriptions of them."
checked={settings.image_extraction_and_analysis_enabled ?? false}
onChange={(e) =>
handleToggleSettingsField(
"image_extraction_and_analysis_enabled",
e.target.checked
)
}
/>
<Checkbox
label="Enable Search-time Image Analysis"
sublabel="Analyze images at search time when a user asks about images. This provides more detailed and query-specific image analysis but may increase search-time latency."
checked={settings.search_time_image_analysis_enabled ?? false}
onChange={(e) =>
handleToggleSettingsField(
"search_time_image_analysis_enabled",
e.target.checked
)
}
/>
<IntegerInput
label="Maximum Image Size for Analysis (MB)"
sublabel="Images larger than this size will not be analyzed to prevent excessive resource usage."
value={settings.image_analysis_max_size_mb ?? null}
onChange={(e) => {
const value = e.target.value ? parseInt(e.target.value) : null;
if (value !== null && !isNaN(value) && value > 0) {
updateSettingField([
{ fieldName: "image_analysis_max_size_mb", newValue: value },
]);
}
}}
id="image-analysis-max-size"
placeholder="Enter maximum size in MB"
/>
</div>
</div>
);
}

View File

@@ -21,11 +21,6 @@ export interface Settings {
auto_scroll: boolean;
temperature_override_enabled: boolean;
query_history_type: QueryHistoryType;
// Image processing settings
image_extraction_and_analysis_enabled?: boolean;
search_time_image_analysis_enabled?: boolean;
image_analysis_max_size_mb?: number;
}
export enum NotificationType {