Compare commits

..

13 Commits

Author SHA1 Message Date
pablodanswer
1be7c96732 k 2025-02-13 14:18:09 -08:00
pablodanswer
f80f59dbe7 quick nit 2025-02-13 14:09:40 -08:00
pablodanswer
ce9c38ca16 fully functional 2025-02-13 14:09:40 -08:00
pablodanswer
8d8bc2e878 mostly functional 2025-02-13 14:09:40 -08:00
pablodanswer
75ea486912 k 2025-02-13 12:53:58 -08:00
pablodanswer
ac252f7ba7 k 2025-02-13 12:53:44 -08:00
pablodanswer
eaf33d152b k 2025-02-13 12:52:16 -08:00
pablodanswer
f77481d7ba update 2025-02-13 12:52:16 -08:00
pablodanswer
53d81bd027 k 2025-02-13 12:52:16 -08:00
pablodanswer
0cf7c74ec5 quick nit 2025-02-13 12:52:16 -08:00
pablodanswer
e673eacbb6 improvements 2025-02-13 12:52:16 -08:00
pablodanswer
1f1b4af48b various billing updates 2025-02-13 12:52:16 -08:00
pablodanswer
42318710c6 misct billing_fixes
g
2025-02-13 12:52:16 -08:00
534 changed files with 8543 additions and 26305 deletions

1
.github/CODEOWNERS vendored
View File

@@ -1 +0,0 @@
* @onyx-dot-app/onyx-core-team

View File

@@ -65,7 +65,6 @@ jobs:
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
NEXT_PUBLIC_STRIPE_PUBLISHABLE_KEY=${{ secrets.STRIPE_PUBLISHABLE_KEY }}
NEXT_PUBLIC_GTM_ENABLED=true
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
NEXT_PUBLIC_INCLUDE_ERROR_POPUP_SUPPORT_LINK=true

View File

@@ -4,6 +4,9 @@ on:
push:
tags:
- "*"
paths:
- 'backend/model_server/**'
- 'backend/Dockerfile.model_server'
env:
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-model-server-cloud' || 'onyxdotapp/onyx-model-server' }}
@@ -12,32 +15,7 @@ env:
BUILDKIT_PROGRESS: plain
jobs:
# 1) Preliminary job to check if the changed files are relevant
check_model_server_changes:
runs-on: ubuntu-latest
outputs:
changed: ${{ steps.check.outputs.changed }}
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check if relevant files changed
id: check
run: |
# Default to "false"
echo "changed=false" >> $GITHUB_OUTPUT
# Compare the previous commit (github.event.before) to the current one (github.sha)
# If any file in backend/model_server/** or backend/Dockerfile.model_server is changed,
# set changed=true
if git diff --name-only ${{ github.event.before }} ${{ github.sha }} \
| grep -E '^backend/model_server/|^backend/Dockerfile.model_server'; then
echo "changed=true" >> $GITHUB_OUTPUT
fi
build-amd64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
steps:
@@ -77,8 +55,6 @@ jobs:
provenance: false
build-arm64:
needs: [check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
runs-on:
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
steps:
@@ -118,8 +94,7 @@ jobs:
provenance: false
merge-and-scan:
needs: [build-amd64, build-arm64, check_model_server_changes]
if: needs.check_model_server_changes.outputs.changed == 'true'
needs: [build-amd64, build-arm64]
runs-on: ubuntu-latest
steps:
- name: Login to Docker Hub

View File

@@ -53,90 +53,24 @@ jobs:
exclude: '(?i)^(pylint|aio[-_]*).*'
- name: Print report
if: always()
if: ${{ always() }}
run: echo "${{ steps.license_check_report.outputs.report }}"
- name: Install npm dependencies
working-directory: ./web
run: npm ci
- name: Run Trivy vulnerability scanner in repo mode
uses: aquasecurity/trivy-action@0.28.0
with:
scan-type: fs
scanners: license
format: table
# format: sarif
# output: trivy-results.sarif
severity: HIGH,CRITICAL
# be careful enabling the sarif and upload as it may spam the security tab
# with a huge amount of items. Work out the issues before enabling upload.
# - name: Run Trivy vulnerability scanner in repo mode
# if: always()
# uses: aquasecurity/trivy-action@0.29.0
# - name: Upload Trivy scan results to GitHub Security tab
# uses: github/codeql-action/upload-sarif@v3
# with:
# scan-type: fs
# scan-ref: .
# scanners: license
# format: table
# severity: HIGH,CRITICAL
# # format: sarif
# # output: trivy-results.sarif
#
# # - name: Upload Trivy scan results to GitHub Security tab
# # uses: github/codeql-action/upload-sarif@v3
# # with:
# # sarif_file: trivy-results.sarif
scan-trivy:
# See https://runs-on.com/runners/linux/
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# Backend
- name: Pull backend docker image
run: docker pull onyxdotapp/onyx-backend:latest
- name: Run Trivy vulnerability scanner on backend
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-backend:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0 # Set to 1 if we want a failed scan to fail the workflow
# Web server
- name: Pull web server docker image
run: docker pull onyxdotapp/onyx-web-server:latest
- name: Run Trivy vulnerability scanner on web server
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-web-server:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0
# Model server
- name: Pull model server docker image
run: docker pull onyxdotapp/onyx-model-server:latest
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@0.29.0
env:
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
with:
image-ref: onyxdotapp/onyx-model-server:latest
scanners: license
severity: HIGH,CRITICAL
vuln-type: library
exit-code: 0
# sarif_file: trivy-results.sarif

View File

@@ -1,6 +1,6 @@
name: Run Playwright Tests
name: Run Chromatic Tests
concurrency:
group: Run-Playwright-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
group: Run-Chromatic-Tests-${{ github.workflow }}-${{ github.head_ref || github.event.workflow_run.head_branch || github.run_id }}
cancel-in-progress: true
on: push
@@ -198,47 +198,43 @@ jobs:
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
# NOTE: Chromatic UI diff testing is currently disabled.
# We are using Playwright for local and CI testing without visual regression checks.
# Chromatic may be reintroduced in the future for UI diff testing if needed.
chromatic-tests:
name: Chromatic Tests
# chromatic-tests:
# name: Chromatic Tests
needs: playwright-tests
runs-on:
[
runs-on,
runner=32cpu-linux-x64,
disk=large,
"run-id=${{ github.run_id }}",
]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
# needs: playwright-tests
# runs-on:
# [
# runs-on,
# runner=32cpu-linux-x64,
# disk=large,
# "run-id=${{ github.run_id }}",
# ]
# steps:
# - name: Checkout code
# uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 22
# - name: Setup node
# uses: actions/setup-node@v4
# with:
# node-version: 22
- name: Install node dependencies
working-directory: ./web
run: npm ci
# - name: Install node dependencies
# working-directory: ./web
# run: npm ci
- name: Download Playwright test results
uses: actions/download-artifact@v4
with:
name: test-results
path: ./web/test-results
# - name: Download Playwright test results
# uses: actions/download-artifact@v4
# with:
# name: test-results
# path: ./web/test-results
# - name: Run Chromatic
# uses: chromaui/action@latest
# with:
# playwright: true
# projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
# workingDir: ./web
# env:
# CHROMATIC_ARCHIVE_LOCATION: ./test-results
- name: Run Chromatic
uses: chromaui/action@latest
with:
playwright: true
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
workingDir: ./web
env:
CHROMATIC_ARCHIVE_LOCATION: ./test-results

View File

@@ -99,7 +99,7 @@ jobs:
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
DEV_MODE=true \
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack up -d
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack up -d
id: start_docker_multi_tenant
# In practice, `cloud` Auth type would require OAUTH credentials to be set.
@@ -108,13 +108,12 @@ jobs:
echo "Waiting for 3 minutes to ensure API server is ready..."
sleep 180
echo "Running integration tests..."
docker run --rm --network onyx-stack_default \
docker run --rm --network danswer-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
@@ -144,28 +143,24 @@ jobs:
- name: Stop multi-tenant Docker containers
run: |
cd deployment/docker_compose
docker compose -f docker-compose.multitenant-dev.yml -p onyx-stack down -v
docker compose -f docker-compose.multitenant-dev.yml -p danswer-stack down -v
# NOTE: Use pre-ping/null pool to reduce flakiness due to dropped connections
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
POSTGRES_POOL_PRE_PING=true \
POSTGRES_USE_NULL_POOL=true \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
INTEGRATION_TESTS_MODE=true \
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
docker logs -f onyx-stack-api_server-1 &
docker logs -f danswer-stack-api_server-1 &
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
@@ -195,24 +190,15 @@ jobs:
done
echo "Finished waiting for service."
- name: Start Mock Services
run: |
cd backend/tests/integration/mock_services
docker compose -f docker-compose.mock-it-services.yml \
-p mock-it-services-stack up -d
# NOTE: Use pre-ping/null to reduce flakiness due to dropped connections
- name: Run Standard Integration Tests
run: |
echo "Running integration tests..."
docker run --rm --network onyx-stack_default \
docker run --rm --network danswer-stack_default \
--name test-runner \
-e POSTGRES_HOST=relational_db \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=password \
-e POSTGRES_DB=postgres \
-e POSTGRES_POOL_PRE_PING=true \
-e POSTGRES_USE_NULL_POOL=true \
-e VESPA_HOST=index \
-e REDIS_HOST=cache \
-e API_SERVER_HOST=api_server \
@@ -222,8 +208,6 @@ jobs:
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
-e TEST_WEB_HOSTNAME=test-runner \
-e MOCK_CONNECTOR_SERVER_HOST=mock_connector_server \
-e MOCK_CONNECTOR_SERVER_PORT=8001 \
onyxdotapp/onyx-integration:test \
/app/tests/integration/tests \
/app/tests/integration/connector_job_tests
@@ -245,13 +229,13 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color api_server > $GITHUB_WORKSPACE/api_server.log || true
- name: Dump all-container logs (optional)
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
docker compose -f docker-compose.dev.yml -p danswer-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
- name: Upload logs
if: always()
@@ -265,4 +249,4 @@ jobs:
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.dev.yml -p onyx-stack down -v
docker compose -f docker-compose.dev.yml -p danswer-stack down -v

View File

@@ -44,9 +44,6 @@ env:
SHAREPOINT_CLIENT_SECRET: ${{ secrets.SHAREPOINT_CLIENT_SECRET }}
SHAREPOINT_CLIENT_DIRECTORY_ID: ${{ secrets.SHAREPOINT_CLIENT_DIRECTORY_ID }}
SHAREPOINT_SITE: ${{ secrets.SHAREPOINT_SITE }}
# Gitbook
GITBOOK_SPACE_ID: ${{ secrets.GITBOOK_SPACE_ID }}
GITBOOK_API_KEY: ${{ secrets.GITBOOK_API_KEY }}
jobs:
connectors-check:
@@ -74,9 +71,7 @@ jobs:
python -m pip install --upgrade pip
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
playwright install chromium
playwright install-deps chromium
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: py.test -o junit_family=xunit2 -xv --ff backend/tests/daily/connectors

View File

@@ -1,29 +1,18 @@
name: Model Server Tests
name: Connector Tests
on:
schedule:
# This cron expression runs the job daily at 16:00 UTC (9am PT)
- cron: "0 16 * * *"
workflow_dispatch:
inputs:
branch:
description: 'Branch to run the workflow on'
required: false
default: 'main'
env:
# Bedrock
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_REGION_NAME: ${{ secrets.AWS_REGION_NAME }}
# API keys for testing
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
LITELLM_API_KEY: ${{ secrets.LITELLM_API_KEY }}
LITELLM_API_URL: ${{ secrets.LITELLM_API_URL }}
# OpenAI
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_API_KEY: ${{ secrets.AZURE_API_KEY }}
AZURE_API_URL: ${{ secrets.AZURE_API_URL }}
jobs:
model-check:
@@ -37,23 +26,6 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_TOKEN }}
# tag every docker image with "test" so that we can spin up the correct set
# of images during testing
# We don't need to build the Web Docker image since it's not yet used
# in the integration tests. We have a separate action to verify that it builds
# successfully.
- name: Pull Model Server Docker image
run: |
docker pull onyxdotapp/onyx-model-server:latest
docker tag onyxdotapp/onyx-model-server:latest onyxdotapp/onyx-model-server:test
- name: Set up Python
uses: actions/setup-python@v5
with:
@@ -69,49 +41,6 @@ jobs:
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
- name: Start Docker containers
run: |
cd deployment/docker_compose
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
AUTH_TYPE=basic \
REQUIRE_EMAIL_VERIFICATION=false \
DISABLE_TELEMETRY=true \
IMAGE_TAG=test \
docker compose -f docker-compose.model-server-test.yml -p onyx-stack up -d indexing_model_server
id: start_docker
- name: Wait for service to be ready
run: |
echo "Starting wait-for-service script..."
start_time=$(date +%s)
timeout=300 # 5 minutes in seconds
while true; do
current_time=$(date +%s)
elapsed_time=$((current_time - start_time))
if [ $elapsed_time -ge $timeout ]; then
echo "Timeout reached. Service did not become ready in 5 minutes."
exit 1
fi
# Use curl with error handling to ignore specific exit code 56
response=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:9000/api/health || echo "curl_error")
if [ "$response" = "200" ]; then
echo "Service is ready!"
break
elif [ "$response" = "curl_error" ]; then
echo "Curl encountered an error, possibly exit code 56. Continuing to retry..."
else
echo "Service not ready yet (HTTP status $response). Retrying in 5 seconds..."
fi
sleep 5
done
echo "Finished waiting for service."
- name: Run Tests
shell: script -q -e -c "bash --noprofile --norc -eo pipefail {0}"
run: |
@@ -127,23 +56,3 @@ jobs:
-H 'Content-type: application/json' \
--data '{"text":"Scheduled Model Tests failed! Check the run at: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}"}' \
$SLACK_WEBHOOK
- name: Dump all-container logs (optional)
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.model-server-test.yml -p onyx-stack logs --no-color > $GITHUB_WORKSPACE/docker-compose.log || true
- name: Upload logs
if: always()
uses: actions/upload-artifact@v4
with:
name: docker-all-logs
path: ${{ github.workspace }}/docker-compose.log
- name: Stop Docker containers
if: always()
run: |
cd deployment/docker_compose
docker compose -f docker-compose.model-server-test.yml -p onyx-stack down -v

View File

@@ -205,7 +205,7 @@
"--loglevel=INFO",
"--hostname=light@%n",
"-Q",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert,checkpoint_cleanup",
"vespa_metadata_sync,connector_deletion,doc_permissions_upsert",
],
"presentation": {
"group": "2",

124
README.md
View File

@@ -24,93 +24,113 @@
</a>
</p>
<strong>[Onyx](https://www.onyx.app/)</strong> (formerly Danswer) is the AI platform connected to your company's docs, apps, and people.
Onyx provides a feature rich Chat interface and plugs into any LLM of your choice.
Keep knowledge and access controls sync-ed across over 40 connectors like Google Drive, Slack, Confluence, Salesforce, etc.
Create custom AI agents with unique prompts, knowledge, and actions that the agents can take.
Onyx can be deployed securely anywhere and for any scale - on a laptop, on-premise, or to cloud.
<strong>[Onyx](https://www.onyx.app/)</strong> (formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
configuring AI Assistants.
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
supported?" or "Where's the pull request for feature Y?"
<h3>Feature Highlights</h3>
<h3>Usage</h3>
**Deep research over your team's knowledge:**
Onyx Web App:
https://private-user-images.githubusercontent.com/32520769/414509312-48392e83-95d0-4fb5-8650-a396e05e0a32.mp4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5Mjg2MzYsIm5iZiI6MTczOTkyODMzNiwicGF0aCI6Ii8zMjUyMDc2OS80MTQ1MDkzMTItNDgzOTJlODMtOTVkMC00ZmI1LTg2NTAtYTM5NmUwNWUwYTMyLm1wND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE5VDAxMjUzNlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWFhMzk5Njg2Y2Y5YjFmNDNiYTQ2YzM5ZTg5YWJiYTU2NWMyY2YwNmUyODE2NWUxMDRiMWQxZWJmODI4YTA0MTUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.a9D8A0sgKE9AoaoE-mfFbJ6_OKYeqaf7TZ4Han2JfW8
https://github.com/onyx-dot-app/onyx/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
**Use Onyx as a secure AI Chat with any LLM:**
![Onyx Chat Silent Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxChatSilentDemo.gif)
**Easily set up connectors to your apps:**
![Onyx Connector Silent Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxConnectorSilentDemo.gif)
**Access Onyx where your team already works:**
![Onyx Bot Demo](https://github.com/onyx-dot-app/onyx/releases/download/v0.21.1/OnyxBot.png)
https://github.com/onyx-dot-app/onyx/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
For more details on the Admin UI to manage connectors and users, check out our
<strong><a href="https://www.youtube.com/watch?v=geNzY1nbCnU">Full Video Demo</a></strong>!
## Deployment
**To try it out for free and get started in seconds, check out [Onyx Cloud](https://cloud.onyx.app/signup)**.
Onyx can also be run locally (even on a laptop) or deployed on a virtual machine with a single
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
We also have built-in support for high-availability/scalable deployment on Kubernetes.
References [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment).
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
## 💃 Main Features
## 🔍 Other Notable Benefits of Onyx
- Custom deep learning models for indexing and inference time, only through Onyx + learning from user feedback.
- Flexible security features like SSO (OIDC/SAML/OAuth2), RBAC, encryption of credentials, etc.
- Knowledge curation features like document-sets, query history, usage analytics, etc.
- Scalable deployment options tested up to many tens of thousands users and hundreds of millions of documents.
- Chat UI with the ability to select documents to chat with.
- Create custom AI Assistants with different prompts and backing knowledge sets.
- Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
- Document Search + AI Answers for natural language queries.
- Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
- Slack integration to get answers and search results directly in Slack.
## 🚧 Roadmap
- New methods in information retrieval (StructRAG, LightGraphRAG, etc.)
- Personalized Search
- Organizational understanding and ability to locate and suggest experts from your team.
- Code Search
- SQL and Structured Query Language
- Chat/Prompt sharing with specific teammates and user groups.
- Multimodal model support, chat with images, video etc.
- Choosing between LLMs and parameters during chat session.
- Tool calling and agent configurations options.
- Organizational understanding and ability to locate and suggest experts from your team.
## Other Notable Benefits of Onyx
- User Authentication with document level access management.
- Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
- Admin Dashboard to configure connectors, document-sets, access, etc.
- Custom deep learning models + learn from user feedback.
- Easy deployment and ability to host Onyx anywhere of your choosing.
## 🔌 Connectors
Keep knowledge and access up to sync across 40+ connectors:
Efficiently pulls the latest changes from:
- Slack
- GitHub
- Google Drive
- Confluence
- Slack
- Gmail
- Salesforce
- Microsoft Sharepoint
- Github
- Jira
- Zendesk
- Gmail
- Notion
- Gong
- Microsoft Teams
- Dropbox
- Slab
- Linear
- Productboard
- Guru
- Bookstack
- Document360
- Sharepoint
- Hubspot
- Local Files
- Websites
- And more ...
See the full list [here](https://docs.onyx.app/connectors).
## 📚 Editions
## 📚 Licensing
There are two editions of Onyx:
- Onyx Community Edition (CE) is available freely under the MIT Expat license. Simply follow the Deployment guide above.
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations.
For feature details, check out [our website](https://www.onyx.app/pricing).
- Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
- Single Sign-On (SSO), with support for both SAML and OIDC
- Role-based access control
- Document permission inheritance from connected sources
- Usage analytics and query history accessible to admins
- Whitelabeling
- API key authentication
- Encryption of secrets
- And many more! Checkout [our website](https://www.onyx.app/) for the latest.
To try the Onyx Enterprise Edition:
1. Checkout [Onyx Cloud](https://cloud.onyx.app/signup).
2. For self-hosting the Enterprise Edition, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/onyx/founders).
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/onyx/founders).
## 💡 Contributing
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
## ⭐Star History
[![Star History Chart](https://api.star-history.com/svg?repos=onyx-dot-app/onyx&type=Date)](https://star-history.com/#onyx-dot-app/onyx&Date)

View File

@@ -28,16 +28,14 @@ RUN apt-get update && \
curl \
zip \
ca-certificates \
libgnutls30 \
libblkid1 \
libmount1 \
libsmartcols1 \
libuuid1 \
libgnutls30=3.7.9-2+deb12u3 \
libblkid1=2.38.1-5+deb12u1 \
libmount1=2.38.1-5+deb12u1 \
libsmartcols1=2.38.1-5+deb12u1 \
libuuid1=2.38.1-5+deb12u1 \
libxmlsec1-dev \
pkg-config \
gcc \
nano \
vim && \
gcc && \
rm -rf /var/lib/apt/lists/* && \
apt-get clean

View File

@@ -1,27 +0,0 @@
"""Add indexes to document__tag
Revision ID: 1a03d2c2856b
Revises: 9c00a2bccb83
Create Date: 2025-02-18 10:45:13.957807
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "1a03d2c2856b"
down_revision = "9c00a2bccb83"
branch_labels: None = None
depends_on: None = None
def upgrade() -> None:
op.create_index(
op.f("ix_document__tag_tag_id"),
"document__tag",
["tag_id"],
unique=False,
)
def downgrade() -> None:
op.drop_index(op.f("ix_document__tag_tag_id"), table_name="document__tag")

View File

@@ -1,397 +0,0 @@
"""improved index
Revision ID: 3bd4c84fe72f
Revises: 8f43500ee275
Create Date: 2025-02-26 13:07:56.217791
"""
from alembic import op
import time
from sqlalchemy import text
# revision identifiers, used by Alembic.
revision = "3bd4c84fe72f"
down_revision = "8f43500ee275"
branch_labels = None
depends_on = None
# NOTE:
# This migration addresses issues with the previous migration (8f43500ee275) which caused
# an outage by creating an index without using CONCURRENTLY. This migration:
#
# 1. Creates more efficient full-text search capabilities using tsvector columns and GIN indexes
# 2. Uses CONCURRENTLY for all index creation to prevent table locking
# 3. Explicitly manages transactions with COMMIT statements to allow CONCURRENTLY to work
# (see: https://www.postgresql.org/docs/9.4/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY)
# (see: https://github.com/sqlalchemy/alembic/issues/277)
# 4. Adds indexes to both chat_message and chat_session tables for comprehensive search
def upgrade():
# --- PART 1: chat_message table ---
# Step 1: Add nullable column (quick, minimal locking)
# op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv")
# op.execute("DROP TRIGGER IF EXISTS chat_message_tsv_trigger ON chat_message")
# op.execute("DROP FUNCTION IF EXISTS update_chat_message_tsv()")
# op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv")
# # Drop chat_session tsv trigger if it exists
# op.execute("DROP TRIGGER IF EXISTS chat_session_tsv_trigger ON chat_session")
# op.execute("DROP FUNCTION IF EXISTS update_chat_session_tsv()")
# op.execute("ALTER TABLE chat_session DROP COLUMN IF EXISTS title_tsv")
# raise Exception("Stop here")
time.time()
op.execute("ALTER TABLE chat_message ADD COLUMN IF NOT EXISTS message_tsv tsvector")
# Step 2: Create function and trigger for new/updated rows
op.execute(
"""
CREATE OR REPLACE FUNCTION update_chat_message_tsv()
RETURNS TRIGGER AS $$
BEGIN
NEW.message_tsv = to_tsvector('english', NEW.message);
RETURN NEW;
END;
$$ LANGUAGE plpgsql
"""
)
# Create trigger in a separate execute call
op.execute(
"""
CREATE TRIGGER chat_message_tsv_trigger
BEFORE INSERT OR UPDATE ON chat_message
FOR EACH ROW EXECUTE FUNCTION update_chat_message_tsv()
"""
)
# Step 3: Update existing rows in batches using Python
time.time()
# Get connection and count total rows
connection = op.get_bind()
total_count_result = connection.execute(
text("SELECT COUNT(*) FROM chat_message")
).scalar()
total_count = total_count_result if total_count_result is not None else 0
batch_size = 5000
batches = 0
# Calculate total batches needed
total_batches = (
(total_count + batch_size - 1) // batch_size if total_count > 0 else 0
)
# Process in batches - properly handling UUIDs by using OFFSET/LIMIT approach
for batch_num in range(total_batches):
offset = batch_num * batch_size
# Execute update for this batch using OFFSET/LIMIT which works with UUIDs
connection.execute(
text(
"""
UPDATE chat_message
SET message_tsv = to_tsvector('english', message)
WHERE id IN (
SELECT id FROM chat_message
WHERE message_tsv IS NULL
ORDER BY id
LIMIT :batch_size OFFSET :offset
)
"""
).bindparams(batch_size=batch_size, offset=offset)
)
# Commit each batch
connection.execute(text("COMMIT"))
# Start a new transaction
connection.execute(text("BEGIN"))
batches += 1
# Final check for any remaining NULL values
connection.execute(
text(
"""
UPDATE chat_message SET message_tsv = to_tsvector('english', message)
WHERE message_tsv IS NULL
"""
)
)
# Create GIN index concurrently
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv
ON chat_message USING GIN (message_tsv)
"""
)
)
# First drop the trigger as it won't be needed anymore
connection.execute(
text(
"""
DROP TRIGGER IF EXISTS chat_message_tsv_trigger ON chat_message;
"""
)
)
connection.execute(
text(
"""
DROP FUNCTION IF EXISTS update_chat_message_tsv();
"""
)
)
# Add new generated column
time.time()
connection.execute(
text(
"""
ALTER TABLE chat_message
ADD COLUMN message_tsv_gen tsvector
GENERATED ALWAYS AS (to_tsvector('english', message)) STORED;
"""
)
)
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_message_tsv_gen
ON chat_message USING GIN (message_tsv_gen)
"""
)
)
# Drop old index and column
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
DROP INDEX CONCURRENTLY IF EXISTS idx_chat_message_tsv;
"""
)
)
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
ALTER TABLE chat_message DROP COLUMN message_tsv;
"""
)
)
# Rename new column to old name
connection.execute(
text(
"""
ALTER TABLE chat_message RENAME COLUMN message_tsv_gen TO message_tsv;
"""
)
)
# --- PART 2: chat_session table ---
# Step 1: Add nullable column (quick, minimal locking)
time.time()
connection.execute(
text(
"ALTER TABLE chat_session ADD COLUMN IF NOT EXISTS description_tsv tsvector"
)
)
# Step 2: Create function and trigger for new/updated rows - SPLIT INTO SEPARATE CALLS
connection.execute(
text(
"""
CREATE OR REPLACE FUNCTION update_chat_session_tsv()
RETURNS TRIGGER AS $$
BEGIN
NEW.description_tsv = to_tsvector('english', COALESCE(NEW.description, ''));
RETURN NEW;
END;
$$ LANGUAGE plpgsql
"""
)
)
# Create trigger in a separate execute call
connection.execute(
text(
"""
CREATE TRIGGER chat_session_tsv_trigger
BEFORE INSERT OR UPDATE ON chat_session
FOR EACH ROW EXECUTE FUNCTION update_chat_session_tsv()
"""
)
)
# Step 3: Update existing rows in batches using Python
time.time()
# Get the maximum ID to determine batch count
# Cast id to text for MAX function since it's a UUID
max_id_result = connection.execute(
text("SELECT COALESCE(MAX(id::text), '0') FROM chat_session")
).scalar()
max_id_result if max_id_result is not None else "0"
batch_size = 5000
batches = 0
# Get all IDs ordered to process in batches
rows = connection.execute(
text("SELECT id FROM chat_session ORDER BY id")
).fetchall()
total_rows = len(rows)
# Process in batches
for batch_num, batch_start in enumerate(range(0, total_rows, batch_size)):
batch_end = min(batch_start + batch_size, total_rows)
batch_ids = [row[0] for row in rows[batch_start:batch_end]]
if not batch_ids:
continue
# Use IN clause instead of BETWEEN for UUIDs
placeholders = ", ".join([f":id{i}" for i in range(len(batch_ids))])
params = {f"id{i}": id_val for i, id_val in enumerate(batch_ids)}
# Execute update for this batch
connection.execute(
text(
f"""
UPDATE chat_session
SET description_tsv = to_tsvector('english', COALESCE(description, ''))
WHERE id IN ({placeholders})
AND description_tsv IS NULL
"""
).bindparams(**params)
)
# Commit each batch
connection.execute(text("COMMIT"))
# Start a new transaction
connection.execute(text("BEGIN"))
batches += 1
# Final check for any remaining NULL values
connection.execute(
text(
"""
UPDATE chat_session SET description_tsv = to_tsvector('english', COALESCE(description, ''))
WHERE description_tsv IS NULL
"""
)
)
# Create GIN index concurrently
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv
ON chat_session USING GIN (description_tsv)
"""
)
)
# After Final check for chat_session
# First drop the trigger as it won't be needed anymore
connection.execute(
text(
"""
DROP TRIGGER IF EXISTS chat_session_tsv_trigger ON chat_session;
"""
)
)
connection.execute(
text(
"""
DROP FUNCTION IF EXISTS update_chat_session_tsv();
"""
)
)
# Add new generated column
time.time()
connection.execute(
text(
"""
ALTER TABLE chat_session
ADD COLUMN description_tsv_gen tsvector
GENERATED ALWAYS AS (to_tsvector('english', COALESCE(description, ''))) STORED;
"""
)
)
# Create new index on generated column
connection.execute(text("COMMIT"))
time.time()
connection.execute(
text(
"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_chat_session_desc_tsv_gen
ON chat_session USING GIN (description_tsv_gen)
"""
)
)
# Drop old index and column
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
DROP INDEX CONCURRENTLY IF EXISTS idx_chat_session_desc_tsv;
"""
)
)
connection.execute(text("COMMIT"))
connection.execute(
text(
"""
ALTER TABLE chat_session DROP COLUMN description_tsv;
"""
)
)
# Rename new column to old name
connection.execute(
text(
"""
ALTER TABLE chat_session RENAME COLUMN description_tsv_gen TO description_tsv;
"""
)
)
def downgrade() -> None:
# Drop the indexes first (use CONCURRENTLY for dropping too)
op.execute("COMMIT")
op.execute("DROP INDEX CONCURRENTLY IF EXISTS idx_chat_message_tsv;")
op.execute("COMMIT")
op.execute("DROP INDEX CONCURRENTLY IF EXISTS idx_chat_session_desc_tsv;")
# Then drop the columns
op.execute("ALTER TABLE chat_message DROP COLUMN IF EXISTS message_tsv;")
op.execute("ALTER TABLE chat_session DROP COLUMN IF EXISTS description_tsv;")
op.execute("DROP INDEX IF EXISTS idx_chat_message_message_lower;")

View File

@@ -1,32 +0,0 @@
"""add index
Revision ID: 8f43500ee275
Revises: da42808081e3
Create Date: 2025-02-24 17:35:33.072714
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "8f43500ee275"
down_revision = "da42808081e3"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Create a basic index on the lowercase message column for direct text matching
# Limit to 1500 characters to stay well under the 2856 byte limit of btree version 4
# op.execute(
# """
# CREATE INDEX idx_chat_message_message_lower
# ON chat_message (LOWER(substring(message, 1, 1500)))
# """
# )
pass
def downgrade() -> None:
# Drop the index
op.execute("DROP INDEX IF EXISTS idx_chat_message_message_lower;")

View File

@@ -1,43 +0,0 @@
"""chat_message_agentic
Revision ID: 9c00a2bccb83
Revises: b7a7eee5aa15
Create Date: 2025-02-17 11:15:43.081150
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9c00a2bccb83"
down_revision = "b7a7eee5aa15"
branch_labels = None
depends_on = None
def upgrade() -> None:
# First add the column as nullable
op.add_column("chat_message", sa.Column("is_agentic", sa.Boolean(), nullable=True))
# Update existing rows based on presence of SubQuestions
op.execute(
"""
UPDATE chat_message
SET is_agentic = EXISTS (
SELECT 1
FROM agent__sub_question
WHERE agent__sub_question.primary_question_id = chat_message.id
)
WHERE is_agentic IS NULL
"""
)
# Make the column non-nullable with a default value of False
op.alter_column(
"chat_message", "is_agentic", nullable=False, server_default=sa.text("false")
)
def downgrade() -> None:
op.drop_column("chat_message", "is_agentic")

View File

@@ -1,29 +0,0 @@
"""remove inactive ccpair status on downgrade
Revision ID: acaab4ef4507
Revises: b388730a2899
Create Date: 2025-02-16 18:21:41.330212
"""
from alembic import op
from onyx.db.models import ConnectorCredentialPair
from onyx.db.enums import ConnectorCredentialPairStatus
from sqlalchemy import update
# revision identifiers, used by Alembic.
revision = "acaab4ef4507"
down_revision = "b388730a2899"
branch_labels = None
depends_on = None
def upgrade() -> None:
pass
def downgrade() -> None:
op.execute(
update(ConnectorCredentialPair)
.where(ConnectorCredentialPair.status == ConnectorCredentialPairStatus.INVALID)
.values(status=ConnectorCredentialPairStatus.ACTIVE)
)

View File

@@ -1,31 +0,0 @@
"""nullable preferences
Revision ID: b388730a2899
Revises: 1a03d2c2856b
Create Date: 2025-02-17 18:49:22.643902
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "b388730a2899"
down_revision = "1a03d2c2856b"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("user", "temperature_override_enabled", nullable=True)
op.alter_column("user", "auto_scroll", nullable=True)
def downgrade() -> None:
# Ensure no null values before making columns non-nullable
op.execute(
'UPDATE "user" SET temperature_override_enabled = false WHERE temperature_override_enabled IS NULL'
)
op.execute('UPDATE "user" SET auto_scroll = false WHERE auto_scroll IS NULL')
op.alter_column("user", "temperature_override_enabled", nullable=False)
op.alter_column("user", "auto_scroll", nullable=False)

View File

@@ -1,124 +0,0 @@
"""Add checkpointing/failure handling
Revision ID: b7a7eee5aa15
Revises: f39c5794c10a
Create Date: 2025-01-24 15:17:36.763172
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = "b7a7eee5aa15"
down_revision = "f39c5794c10a"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"index_attempt",
sa.Column("checkpoint_pointer", sa.String(), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_start", sa.DateTime(timezone=True), nullable=True),
)
op.add_column(
"index_attempt",
sa.Column("poll_range_end", sa.DateTime(timezone=True), nullable=True),
)
op.create_index(
"ix_index_attempt_cc_pair_settings_poll",
"index_attempt",
[
"connector_credential_pair_id",
"search_settings_id",
"status",
sa.text("time_updated DESC"),
],
)
# Drop the old IndexAttemptError table
op.drop_index("index_attempt_id", table_name="index_attempt_errors")
op.drop_table("index_attempt_errors")
# Create the new version of the table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=False),
sa.Column("connector_credential_pair_id", sa.Integer(), nullable=False),
sa.Column("document_id", sa.String(), nullable=True),
sa.Column("document_link", sa.String(), nullable=True),
sa.Column("entity_id", sa.String(), nullable=True),
sa.Column("failed_time_range_start", sa.DateTime(timezone=True), nullable=True),
sa.Column("failed_time_range_end", sa.DateTime(timezone=True), nullable=True),
sa.Column("failure_message", sa.Text(), nullable=False),
sa.Column("is_resolved", sa.Boolean(), nullable=False, default=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
sa.ForeignKeyConstraint(
["connector_credential_pair_id"],
["connector_credential_pair.id"],
),
)
def downgrade() -> None:
op.execute("SET lock_timeout = '5s'")
# try a few times to drop the table, this has been observed to fail due to other locks
# blocking the drop
NUM_TRIES = 10
for i in range(NUM_TRIES):
try:
op.drop_table("index_attempt_errors")
break
except Exception as e:
if i == NUM_TRIES - 1:
raise e
print(f"Error dropping table: {e}. Retrying...")
op.execute("SET lock_timeout = DEFAULT")
# Recreate the old IndexAttemptError table
op.create_table(
"index_attempt_errors",
sa.Column("id", sa.Integer(), primary_key=True),
sa.Column("index_attempt_id", sa.Integer(), nullable=True),
sa.Column("batch", sa.Integer(), nullable=True),
sa.Column("doc_summaries", postgresql.JSONB(), nullable=False),
sa.Column("error_msg", sa.Text(), nullable=True),
sa.Column("traceback", sa.Text(), nullable=True),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
),
sa.ForeignKeyConstraint(
["index_attempt_id"],
["index_attempt.id"],
),
)
op.create_index(
"index_attempt_id",
"index_attempt_errors",
["time_created"],
)
op.drop_index("ix_index_attempt_cc_pair_settings_poll")
op.drop_column("index_attempt", "checkpoint_pointer")
op.drop_column("index_attempt", "poll_range_start")
op.drop_column("index_attempt", "poll_range_end")

View File

@@ -1,55 +0,0 @@
"""add background_reindex_enabled field
Revision ID: b7c2b63c4a03
Revises: f11b408e39d3
Create Date: 2024-03-26 12:34:56.789012
"""
from alembic import op
import sqlalchemy as sa
from onyx.db.enums import EmbeddingPrecision
# revision identifiers, used by Alembic.
revision = "b7c2b63c4a03"
down_revision = "f11b408e39d3"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add background_reindex_enabled column with default value of True
op.add_column(
"search_settings",
sa.Column(
"background_reindex_enabled",
sa.Boolean(),
nullable=False,
server_default="true",
),
)
# Add embedding_precision column with default value of FLOAT
op.add_column(
"search_settings",
sa.Column(
"embedding_precision",
sa.Enum(EmbeddingPrecision, native_enum=False),
nullable=False,
server_default=EmbeddingPrecision.FLOAT.name,
),
)
# Add reduced_dimension column with default value of None
op.add_column(
"search_settings",
sa.Column("reduced_dimension", sa.Integer(), nullable=True),
)
def downgrade() -> None:
# Remove the background_reindex_enabled column
op.drop_column("search_settings", "background_reindex_enabled")
op.drop_column("search_settings", "embedding_precision")
op.drop_column("search_settings", "reduced_dimension")

View File

@@ -1,120 +0,0 @@
"""migrate jira connectors to new format
Revision ID: da42808081e3
Revises: f13db29f3101
Create Date: 2025-02-24 11:24:54.396040
"""
from alembic import op
import sqlalchemy as sa
import json
from onyx.configs.constants import DocumentSource
from onyx.connectors.onyx_jira.utils import extract_jira_project
# revision identifiers, used by Alembic.
revision = "da42808081e3"
down_revision = "f13db29f3101"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Get all Jira connectors
conn = op.get_bind()
# First get all Jira connectors
jira_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = :source
"""
),
{"source": DocumentSource.JIRA.value.upper()},
).fetchall()
# Update each connector's config
for connector_id, old_config in jira_connectors:
if not old_config:
continue
# Extract project key from URL if it exists
new_config: dict[str, str | None] = {}
if project_url := old_config.get("jira_project_url"):
# Parse the URL to get base and project
try:
jira_base, project_key = extract_jira_project(project_url)
new_config = {"jira_base_url": jira_base, "project_key": project_key}
except ValueError:
# If URL parsing fails, just use the URL as the base
new_config = {
"jira_base_url": project_url.split("/projects/")[0],
"project_key": None,
}
else:
# For connectors without a project URL, we need admin intervention
# Mark these for review
print(
f"WARNING: Jira connector {connector_id} has no project URL configured"
)
continue
# Update the connector config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :new_config
WHERE id = :id
"""
),
{"id": connector_id, "new_config": json.dumps(new_config)},
)
def downgrade() -> None:
# Get all Jira connectors
conn = op.get_bind()
# First get all Jira connectors
jira_connectors = conn.execute(
sa.text(
"""
SELECT id, connector_specific_config
FROM connector
WHERE source = :source
"""
),
{"source": DocumentSource.JIRA.value.upper()},
).fetchall()
# Update each connector's config back to the old format
for connector_id, new_config in jira_connectors:
if not new_config:
continue
old_config = {}
base_url = new_config.get("jira_base_url")
project_key = new_config.get("project_key")
if base_url and project_key:
old_config = {"jira_project_url": f"{base_url}/projects/{project_key}"}
elif base_url:
old_config = {"jira_project_url": base_url}
else:
continue
# Update the connector config
conn.execute(
sa.text(
"""
UPDATE connector
SET connector_specific_config = :old_config
WHERE id = :id
"""
),
{"id": connector_id, "old_config": old_config},
)

View File

@@ -1,36 +0,0 @@
"""force lowercase all users
Revision ID: f11b408e39d3
Revises: 3bd4c84fe72f
Create Date: 2025-02-26 17:04:55.683500
"""
# revision identifiers, used by Alembic.
revision = "f11b408e39d3"
down_revision = "3bd4c84fe72f"
branch_labels = None
depends_on = None
def upgrade() -> None:
# 1) Convert all existing user emails to lowercase
from alembic import op
op.execute(
"""
UPDATE "user"
SET email = LOWER(email)
"""
)
# 2) Add a check constraint to ensure emails are always lowercase
op.create_check_constraint("ensure_lowercase_email", "user", "email = LOWER(email)")
def downgrade() -> None:
# Drop the check constraint
from alembic import op
op.drop_constraint("ensure_lowercase_email", "user", type_="check")

View File

@@ -1,27 +0,0 @@
"""Add composite index for last_modified and last_synced to document
Revision ID: f13db29f3101
Revises: b388730a2899
Create Date: 2025-02-18 22:48:11.511389
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "f13db29f3101"
down_revision = "acaab4ef4507"
branch_labels: str | None = None
depends_on: str | None = None
def upgrade() -> None:
op.create_index(
"ix_document_sync_status",
"document",
["last_modified", "last_synced"],
unique=False,
)
def downgrade() -> None:
op.drop_index("ix_document_sync_status", table_name="document")

View File

@@ -1,40 +0,0 @@
"""Add background errors table
Revision ID: f39c5794c10a
Revises: 2cdeff6d8c93
Create Date: 2025-02-12 17:11:14.527876
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "f39c5794c10a"
down_revision = "2cdeff6d8c93"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.create_table(
"background_error",
sa.Column("id", sa.Integer(), nullable=False),
sa.Column("message", sa.String(), nullable=False),
sa.Column(
"time_created",
sa.DateTime(timezone=True),
server_default=sa.text("now()"),
nullable=False,
),
sa.Column("cc_pair_id", sa.Integer(), nullable=True),
sa.PrimaryKeyConstraint("id"),
sa.ForeignKeyConstraint(
["cc_pair_id"],
["connector_credential_pair.id"],
ondelete="CASCADE",
),
)
def downgrade() -> None:
op.drop_table("background_error")

View File

@@ -1,42 +0,0 @@
"""lowercase multi-tenant user auth
Revision ID: 34e3630c7f32
Revises: a4f6ee863c47
Create Date: 2025-02-26 15:03:01.211894
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "34e3630c7f32"
down_revision = "a4f6ee863c47"
branch_labels = None
depends_on = None
def upgrade() -> None:
# 1) Convert all existing rows to lowercase
op.execute(
"""
UPDATE user_tenant_mapping
SET email = LOWER(email)
"""
)
# 2) Add a check constraint so that emails cannot be written in uppercase
op.create_check_constraint(
"ensure_lowercase_email",
"user_tenant_mapping",
"email = LOWER(email)",
schema="public",
)
def downgrade() -> None:
# Drop the check constraint
op.drop_constraint(
"ensure_lowercase_email",
"user_tenant_mapping",
schema="public",
type_="check",
)

View File

@@ -4,11 +4,12 @@ from ee.onyx.server.reporting.usage_export_generation import create_new_usage_re
from onyx.background.celery.apps.primary import celery_app
from onyx.background.task_utils import build_celery_task_wrapper
from onyx.configs.app_configs import JOB_TIMEOUT
from onyx.db.chat import delete_chat_session
from onyx.db.chat import get_chat_sessions_older_than
from onyx.db.engine import get_session_with_current_tenant
from onyx.db.chat import delete_chat_sessions_older_than
from onyx.db.engine import get_session_with_tenant
from onyx.server.settings.store import load_settings
from onyx.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
@@ -17,28 +18,11 @@ logger = setup_logger()
@build_celery_task_wrapper(name_chat_ttl_task)
@celery_app.task(soft_time_limit=JOB_TIMEOUT)
def perform_ttl_management_task(retention_limit_days: int, *, tenant_id: str) -> None:
with get_session_with_current_tenant() as db_session:
old_chat_sessions = get_chat_sessions_older_than(
retention_limit_days, db_session
)
for user_id, session_id in old_chat_sessions:
# one session per delete so that we don't blow up if a deletion fails.
with get_session_with_current_tenant() as db_session:
try:
delete_chat_session(
user_id,
session_id,
db_session,
include_deleted=True,
hard_delete=True,
)
except Exception:
logger.exception(
"delete_chat_session exceptioned. "
f"user_id={user_id} session_id={session_id}"
)
def perform_ttl_management_task(
retention_limit_days: int, *, tenant_id: str | None
) -> None:
with get_session_with_tenant(tenant_id) as db_session:
delete_chat_sessions_older_than(retention_limit_days, db_session)
#####
@@ -51,19 +35,24 @@ def perform_ttl_management_task(retention_limit_days: int, *, tenant_id: str) ->
ignore_result=True,
soft_time_limit=JOB_TIMEOUT,
)
def check_ttl_management_task(*, tenant_id: str) -> None:
def check_ttl_management_task(*, tenant_id: str | None) -> None:
"""Runs periodically to check if any ttl tasks should be run and adds them
to the queue"""
token = None
if MULTI_TENANT and tenant_id is not None:
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
settings = load_settings()
retention_limit_days = settings.maximum_chat_retention_days
with get_session_with_current_tenant() as db_session:
with get_session_with_tenant(tenant_id) as db_session:
if should_perform_chat_ttl_check(retention_limit_days, db_session):
perform_ttl_management_task.apply_async(
kwargs=dict(
retention_limit_days=retention_limit_days, tenant_id=tenant_id
),
)
if token is not None:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
@celery_app.task(
@@ -71,9 +60,9 @@ def check_ttl_management_task(*, tenant_id: str) -> None:
ignore_result=True,
soft_time_limit=JOB_TIMEOUT,
)
def autogenerate_usage_report_task(*, tenant_id: str) -> None:
def autogenerate_usage_report_task(*, tenant_id: str | None) -> None:
"""This generates usage report under the /admin/generate-usage/report endpoint"""
with get_session_with_current_tenant() as db_session:
with get_session_with_tenant(tenant_id) as db_session:
create_new_usage_report(
db_session=db_session,
user_id=None,

View File

@@ -1,10 +1,10 @@
from datetime import timedelta
from typing import Any
from onyx.background.celery.tasks.beat_schedule import (
beat_cloud_tasks as base_beat_system_tasks,
)
from onyx.background.celery.tasks.beat_schedule import BEAT_EXPIRES_DEFAULT
from onyx.background.celery.tasks.beat_schedule import (
beat_system_tasks as base_beat_system_tasks,
)
from onyx.background.celery.tasks.beat_schedule import (
beat_task_templates as base_beat_task_templates,
)

View File

@@ -18,7 +18,7 @@ logger = setup_logger()
def monitor_usergroup_taskset(
tenant_id: str, key_bytes: bytes, r: Redis, db_session: Session
tenant_id: str | None, key_bytes: bytes, r: Redis, db_session: Session
) -> None:
"""This function is likely to move in the worker refactor happening next."""
fence_key = key_bytes.decode("utf-8")

View File

@@ -59,14 +59,10 @@ SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
OAUTH_SLACK_CLIENT_ID = os.environ.get("OAUTH_SLACK_CLIENT_ID", "")
OAUTH_SLACK_CLIENT_SECRET = os.environ.get("OAUTH_SLACK_CLIENT_SECRET", "")
OAUTH_CONFLUENCE_CLOUD_CLIENT_ID = os.environ.get(
"OAUTH_CONFLUENCE_CLOUD_CLIENT_ID", ""
)
OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET = os.environ.get(
"OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET", ""
)
OAUTH_JIRA_CLOUD_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_ID", "")
OAUTH_JIRA_CLOUD_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLOUD_CLIENT_SECRET", "")
OAUTH_CONFLUENCE_CLIENT_ID = os.environ.get("OAUTH_CONFLUENCE_CLIENT_ID", "")
OAUTH_CONFLUENCE_CLIENT_SECRET = os.environ.get("OAUTH_CONFLUENCE_CLIENT_SECRET", "")
OAUTH_JIRA_CLIENT_ID = os.environ.get("OAUTH_JIRA_CLIENT_ID", "")
OAUTH_JIRA_CLIENT_SECRET = os.environ.get("OAUTH_JIRA_CLIENT_SECRET", "")
OAUTH_GOOGLE_DRIVE_CLIENT_ID = os.environ.get("OAUTH_GOOGLE_DRIVE_CLIENT_ID", "")
OAUTH_GOOGLE_DRIVE_CLIENT_SECRET = os.environ.get(
"OAUTH_GOOGLE_DRIVE_CLIENT_SECRET", ""

View File

@@ -4,7 +4,6 @@ from sqlalchemy.orm import Session
from onyx.configs.constants import DocumentSource
from onyx.db.connector_credential_pair import get_connector_credential_pair
from onyx.db.enums import AccessType
from onyx.db.enums import ConnectorCredentialPairStatus
from onyx.db.models import Connector
from onyx.db.models import ConnectorCredentialPair
from onyx.db.models import UserGroup__ConnectorCredentialPair
@@ -36,11 +35,10 @@ def _delete_connector_credential_pair_user_groups_relationship__no_commit(
def get_cc_pairs_by_source(
db_session: Session,
source_type: DocumentSource,
access_type: AccessType | None = None,
status: ConnectorCredentialPairStatus | None = None,
only_sync: bool,
) -> list[ConnectorCredentialPair]:
"""
Get all cc_pairs for a given source type with optional filtering by access_type and status
Get all cc_pairs for a given source type (and optionally only sync)
result is sorted by cc_pair id
"""
query = (
@@ -50,11 +48,8 @@ def get_cc_pairs_by_source(
.order_by(ConnectorCredentialPair.id)
)
if access_type is not None:
query = query.filter(ConnectorCredentialPair.access_type == access_type)
if status is not None:
query = query.filter(ConnectorCredentialPair.status == status)
if only_sync:
query = query.filter(ConnectorCredentialPair.access_type == AccessType.SYNC)
cc_pairs = query.all()
return cc_pairs

View File

@@ -134,9 +134,7 @@ def fetch_chat_sessions_eagerly_by_time(
limit: int | None = 500,
initial_time: datetime | None = None,
) -> list[ChatSession]:
"""Sorted by oldest to newest, then by message id"""
asc_time_order: UnaryExpression = asc(ChatSession.time_created)
time_order: UnaryExpression = desc(ChatSession.time_created)
message_order: UnaryExpression = asc(ChatMessage.id)
filters: list[ColumnElement | BinaryExpression] = [
@@ -149,7 +147,8 @@ def fetch_chat_sessions_eagerly_by_time(
subquery = (
db_session.query(ChatSession.id, ChatSession.time_created)
.filter(*filters)
.order_by(asc_time_order)
.order_by(ChatSession.id, time_order)
.distinct(ChatSession.id)
.limit(limit)
.subquery()
)
@@ -165,7 +164,7 @@ def fetch_chat_sessions_eagerly_by_time(
ChatMessage.chat_message_feedbacks
),
)
.order_by(asc_time_order, message_order)
.order_by(time_order, message_order)
)
chat_sessions = query.all()

View File

@@ -16,18 +16,13 @@ from onyx.db.models import UsageReport
from onyx.file_store.file_store import get_default_file_store
# Gets skeletons of all messages in the given range
# Gets skeletons of all message
def get_empty_chat_messages_entries__paginated(
db_session: Session,
period: tuple[datetime, datetime],
limit: int | None = 500,
initial_time: datetime | None = None,
) -> tuple[Optional[datetime], list[ChatMessageSkeleton]]:
"""Returns a tuple where:
first element is the most recent timestamp out of the sessions iterated
- this timestamp can be used to paginate forward in time
second element is a list of messages belonging to all the sessions iterated
"""
chat_sessions = fetch_chat_sessions_eagerly_by_time(
start=period[0],
end=period[1],
@@ -57,17 +52,18 @@ def get_empty_chat_messages_entries__paginated(
if len(chat_sessions) == 0:
return None, []
return chat_sessions[-1].time_created, message_skeletons
return chat_sessions[0].time_created, message_skeletons
def get_all_empty_chat_message_entries(
db_session: Session,
period: tuple[datetime, datetime],
) -> Generator[list[ChatMessageSkeleton], None, None]:
"""period is the range of time over which to fetch messages."""
initial_time: Optional[datetime] = period[0]
ind = 0
while True:
# iterate from oldest to newest
ind += 1
time_created, message_skeletons = get_empty_chat_messages_entries__paginated(
db_session,
period,

View File

@@ -424,7 +424,7 @@ def _validate_curator_status__no_commit(
)
# if the user is a curator in any of their groups, set their role to CURATOR
# otherwise, set their role to BASIC only if they were previously a CURATOR
# otherwise, set their role to BASIC
if curator_relationships:
user.role = UserRole.CURATOR
elif user.role == UserRole.CURATOR:
@@ -631,16 +631,7 @@ def update_user_group(
removed_users = db_session.scalars(
select(User).where(User.id.in_(removed_user_ids)) # type: ignore
).unique()
# Filter out admin and global curator users before validating curator status
users_to_validate = [
user
for user in removed_users
if user.role not in [UserRole.ADMIN, UserRole.GLOBAL_CURATOR]
]
if users_to_validate:
_validate_curator_status__no_commit(db_session, users_to_validate)
_validate_curator_status__no_commit(db_session, list(removed_users))
# update "time_updated" to now
db_user_group.time_last_modified_by_user = func.now()

View File

@@ -9,16 +9,12 @@ from ee.onyx.external_permissions.confluence.constants import ALL_CONF_EMAILS_GR
from onyx.access.models import DocExternalAccess
from onyx.access.models import ExternalAccess
from onyx.connectors.confluence.connector import ConfluenceConnector
from onyx.connectors.confluence.onyx_confluence import (
get_user_email_from_username__server,
)
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
from onyx.connectors.credentials_provider import OnyxDBCredentialsProvider
from onyx.connectors.confluence.utils import get_user_email_from_username__server
from onyx.connectors.models import SlimDocument
from onyx.db.models import ConnectorCredentialPair
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
@@ -346,8 +342,7 @@ def _fetch_all_page_restrictions(
def confluence_doc_sync(
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres
@@ -359,11 +354,7 @@ def confluence_doc_sync(
confluence_connector = ConfluenceConnector(
**cc_pair.connector.connector_specific_config
)
provider = OnyxDBCredentialsProvider(
get_current_tenant_id(), "confluence", cc_pair.credential_id
)
confluence_connector.set_credentials_provider(provider)
confluence_connector.load_credentials(cc_pair.credential.credential_json)
is_cloud = cc_pair.connector.connector_specific_config.get("is_cloud", False)

View File

@@ -1,11 +1,8 @@
from ee.onyx.db.external_perm import ExternalUserGroup
from ee.onyx.external_permissions.confluence.constants import ALL_CONF_EMAILS_GROUP_NAME
from onyx.background.error_logging import emit_background_error
from onyx.connectors.confluence.onyx_confluence import (
get_user_email_from_username__server,
)
from onyx.connectors.confluence.onyx_confluence import build_confluence_client
from onyx.connectors.confluence.onyx_confluence import OnyxConfluence
from onyx.connectors.credentials_provider import OnyxDBCredentialsProvider
from onyx.connectors.confluence.utils import get_user_email_from_username__server
from onyx.db.models import ConnectorCredentialPair
from onyx.utils.logger import setup_logger
@@ -13,81 +10,57 @@ logger = setup_logger()
def _build_group_member_email_map(
confluence_client: OnyxConfluence, cc_pair_id: int
confluence_client: OnyxConfluence,
) -> dict[str, set[str]]:
group_member_emails: dict[str, set[str]] = {}
for user in confluence_client.paginated_cql_user_retrieval():
logger.debug(f"Processing groups for user: {user}")
for user_result in confluence_client.paginated_cql_user_retrieval():
logger.debug(f"Processing groups for user: {user_result}")
email = user.email
user = user_result.get("user", {})
if not user:
logger.warning(f"user result missing user field: {user_result}")
continue
email = user.get("email")
if not email:
# This field is only present in Confluence Server
user_name = user.username
user_name = user.get("username")
# If it is present, try to get the email using a Server-specific method
if user_name:
email = get_user_email_from_username__server(
confluence_client=confluence_client,
user_name=user_name,
)
if not email:
# If we still don't have an email, skip this user
msg = f"user result missing email field: {user}"
if user.type == "app":
logger.warning(msg)
else:
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
logger.warning(f"user result missing email field: {user_result}")
continue
all_users_groups: set[str] = set()
for group in confluence_client.paginated_groups_by_user_retrieval(user.user_id):
for group in confluence_client.paginated_groups_by_user_retrieval(user):
# group name uniqueness is enforced by Confluence, so we can use it as a group ID
group_id = group["name"]
group_member_emails.setdefault(group_id, set()).add(email)
all_users_groups.add(group_id)
if not all_users_groups:
msg = f"No groups found for user with email: {email}"
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
if not group_member_emails:
logger.warning(f"No groups found for user with email: {email}")
else:
logger.debug(f"Found groups {all_users_groups} for user with email {email}")
if not group_member_emails:
msg = "No groups found for any users."
emit_background_error(msg, cc_pair_id=cc_pair_id)
logger.error(msg)
return group_member_emails
def confluence_group_sync(
tenant_id: str,
cc_pair: ConnectorCredentialPair,
) -> list[ExternalUserGroup]:
provider = OnyxDBCredentialsProvider(tenant_id, "confluence", cc_pair.credential_id)
is_cloud = cc_pair.connector.connector_specific_config.get("is_cloud", False)
wiki_base: str = cc_pair.connector.connector_specific_config["wiki_base"]
url = wiki_base.rstrip("/")
probe_kwargs = {
"max_backoff_retries": 6,
"max_backoff_seconds": 10,
}
final_kwargs = {
"max_backoff_retries": 10,
"max_backoff_seconds": 60,
}
confluence_client = OnyxConfluence(is_cloud, url, provider)
confluence_client._probe_connection(**probe_kwargs)
confluence_client._initialize_connection(**final_kwargs)
confluence_client = build_confluence_client(
credentials=cc_pair.credential.credential_json,
is_cloud=cc_pair.connector.connector_specific_config.get("is_cloud", False),
wiki_base=cc_pair.connector.connector_specific_config["wiki_base"],
)
group_member_email_map = _build_group_member_email_map(
confluence_client=confluence_client,
cc_pair_id=cc_pair.id,
)
onyx_groups: list[ExternalUserGroup] = []
all_found_emails = set()

View File

@@ -32,8 +32,7 @@ def _get_slim_doc_generator(
def gmail_doc_sync(
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres

View File

@@ -62,14 +62,12 @@ def _fetch_permissions_for_permission_ids(
user_email=(owner_email or google_drive_connector.primary_admin_email),
)
# We continue on 404 or 403 because the document may not exist or the user may not have access to it
fetched_permissions = execute_paginated_retrieval(
retrieval_function=drive_service.permissions().list,
list_key="permissions",
fileId=doc_id,
fields="permissions(id, emailAddress, type, domain)",
supportsAllDrives=True,
continue_on_404_or_403=True,
)
permissions_for_doc_id = []
@@ -106,13 +104,7 @@ def _get_permissions_from_slim_doc(
user_emails: set[str] = set()
group_emails: set[str] = set()
public = False
skipped_permissions = 0
for permission in permissions_list:
if not permission:
skipped_permissions += 1
continue
permission_type = permission["type"]
if permission_type == "user":
user_emails.add(permission["emailAddress"])
@@ -129,11 +121,6 @@ def _get_permissions_from_slim_doc(
elif permission_type == "anyone":
public = True
if skipped_permissions > 0:
logger.warning(
f"Skipped {skipped_permissions} permissions of {len(permissions_list)} for document {slim_doc.id}"
)
drive_id = permission_info.get("drive_id")
group_ids = group_emails | ({drive_id} if drive_id is not None else set())
@@ -145,8 +132,7 @@ def _get_permissions_from_slim_doc(
def gdrive_doc_sync(
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres

View File

@@ -119,7 +119,6 @@ def _build_onyx_groups(
def gdrive_group_sync(
tenant_id: str,
cc_pair: ConnectorCredentialPair,
) -> list[ExternalUserGroup]:
# Initialize connector and build credential/service objects

View File

@@ -5,7 +5,7 @@ from onyx.access.models import DocExternalAccess
from onyx.access.models import ExternalAccess
from onyx.connectors.slack.connector import get_channels
from onyx.connectors.slack.connector import make_paginated_slack_api_call_w_retries
from onyx.connectors.slack.connector import SlackConnector
from onyx.connectors.slack.connector import SlackPollConnector
from onyx.db.models import ConnectorCredentialPair
from onyx.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from onyx.utils.logger import setup_logger
@@ -17,7 +17,7 @@ logger = setup_logger()
def _get_slack_document_ids_and_channels(
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> dict[str, list[str]]:
slack_connector = SlackConnector(**cc_pair.connector.connector_specific_config)
slack_connector = SlackPollConnector(**cc_pair.connector.connector_specific_config)
slack_connector.load_credentials(cc_pair.credential.credential_json)
slim_doc_generator = slack_connector.retrieve_all_slim_documents(callback=callback)
@@ -123,8 +123,7 @@ def _fetch_channel_permissions(
def slack_doc_sync(
cc_pair: ConnectorCredentialPair,
callback: IndexingHeartbeatInterface | None,
cc_pair: ConnectorCredentialPair, callback: IndexingHeartbeatInterface | None
) -> list[DocExternalAccess]:
"""
Adds the external permissions to the documents in postgres

View File

@@ -28,7 +28,6 @@ DocSyncFuncType = Callable[
GroupSyncFuncType = Callable[
[
str,
ConnectorCredentialPair,
],
list[ExternalUserGroup],

View File

@@ -15,7 +15,7 @@ from ee.onyx.server.enterprise_settings.api import (
)
from ee.onyx.server.manage.standard_answer import router as standard_answer_router
from ee.onyx.server.middleware.tenant_tracking import add_tenant_id_middleware
from ee.onyx.server.oauth.api import router as oauth_router
from ee.onyx.server.oauth import router as oauth_router
from ee.onyx.server.query_and_chat.chat_backend import (
router as chat_router,
)
@@ -152,8 +152,4 @@ def get_application() -> FastAPI:
# environment variable. Used to automate deployment for multiple environments.
seed_db()
# for debugging discovered routes
# for route in application.router.routes:
# print(f"Path: {route.path}, Methods: {route.methods}")
return application

View File

@@ -22,7 +22,7 @@ from onyx.onyxbot.slack.blocks import get_restate_blocks
from onyx.onyxbot.slack.constants import GENERATE_ANSWER_BUTTON_ACTION_ID
from onyx.onyxbot.slack.handlers.utils import send_team_member_message
from onyx.onyxbot.slack.models import SlackMessageInfo
from onyx.onyxbot.slack.utils import respond_in_thread_or_channel
from onyx.onyxbot.slack.utils import respond_in_thread
from onyx.onyxbot.slack.utils import update_emote_react
from onyx.utils.logger import OnyxLoggingAdapter
from onyx.utils.logger import setup_logger
@@ -216,7 +216,7 @@ def _handle_standard_answers(
all_blocks = restate_question_blocks + answer_blocks
try:
respond_in_thread_or_channel(
respond_in_thread(
client=client,
channel=message_info.channel_to_respond,
receiver_ids=receiver_ids,
@@ -231,7 +231,6 @@ def _handle_standard_answers(
client=client,
channel=message_info.channel_to_respond,
thread_ts=slack_thread_id,
receiver_ids=receiver_ids,
)
return True

View File

@@ -33,7 +33,7 @@ def add_tenant_id_middleware(app: FastAPI, logger: logging.LoggerAdapter) -> Non
return await call_next(request)
except Exception as e:
logger.exception(f"Error in tenant ID middleware: {str(e)}")
logger.error(f"Error in tenant ID middleware: {str(e)}")
raise
@@ -49,7 +49,7 @@ async def _get_tenant_id_from_request(
"""
# Check for API key
tenant_id = extract_tenant_from_api_key_header(request)
if tenant_id is not None:
if tenant_id:
return tenant_id
# Check for anonymous user cookie

View File

@@ -0,0 +1,631 @@
import base64
import json
import uuid
from typing import Any
from typing import cast
import requests
from fastapi import APIRouter
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLIENT_SECRET
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_SECRET
from onyx.auth.users import current_user
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.google_utils.google_auth import get_google_oauth_creds
from onyx.connectors.google_utils.google_auth import sanitize_oauth_credentials
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_AUTHENTICATION_METHOD,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_TOKEN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
GoogleOAuthAuthenticationMethod,
)
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
from onyx.utils.logger import setup_logger
logger = setup_logger()
router = APIRouter(prefix="/oauth")
class SlackOAuth:
# https://knock.app/blog/how-to-authenticate-users-in-slack-using-oauth
# Example: https://api.slack.com/authentication/oauth-v2#exchanging
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_SLACK_CLIENT_ID
CLIENT_SECRET = OAUTH_SLACK_CLIENT_SECRET
TOKEN_URL = "https://slack.com/api/oauth.v2.access"
# SCOPE is per https://docs.onyx.app/connectors/slack
BOT_SCOPE = (
"channels:history,"
"channels:read,"
"groups:history,"
"groups:read,"
"channels:join,"
"im:history,"
"users:read,"
"users:read.email,"
"usergroups:read"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/slack/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = SlackOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
class ConfluenceCloudOAuth:
"""work in progress"""
# https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_CONFLUENCE_CLIENT_ID
CLIENT_SECRET = OAUTH_CONFLUENCE_CLIENT_SECRET
TOKEN_URL = "https://auth.atlassian.com/oauth/token"
# All read scopes per https://developer.atlassian.com/cloud/confluence/scopes-for-oauth-2-3LO-and-forge-apps/
CONFLUENCE_OAUTH_SCOPE = (
"read:confluence-props%20"
"read:confluence-content.all%20"
"read:confluence-content.summary%20"
"read:confluence-content.permission%20"
"read:confluence-user%20"
"read:confluence-groups%20"
"readonly:content.attachment:confluence"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
# eventually for Confluence Data Center
# oauth_url = (
# f"http://localhost:8090/rest/oauth/v2/authorize?client_id={CONFLUENCE_OAUTH_CLIENT_ID}"
# f"&scope={CONFLUENCE_OAUTH_SCOPE_2}"
# f"&redirect_uri={redirectme_uri}"
# )
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
"https://auth.atlassian.com/authorize"
f"?audience=api.atlassian.com"
f"&client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.CONFLUENCE_OAUTH_SCOPE}"
f"&state={state}"
"&response_type=code"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = ConfluenceCloudOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> SlackOAuth.OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
class GoogleDriveOAuth:
# https://developers.google.com/identity/protocols/oauth2
# https://developers.google.com/identity/protocols/oauth2/web-server
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_GOOGLE_DRIVE_CLIENT_ID
CLIENT_SECRET = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
TOKEN_URL = "https://oauth2.googleapis.com/token"
# SCOPE is per https://docs.onyx.app/connectors/google-drive
# TODO: Merge with or use google_utils.GOOGLE_SCOPES
SCOPE = (
"https://www.googleapis.com/auth/drive.readonly%20"
"https://www.googleapis.com/auth/drive.metadata.readonly%20"
"https://www.googleapis.com/auth/admin.directory.user.readonly%20"
"https://www.googleapis.com/auth/admin.directory.group.readonly"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/google-drive/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# without prompt=consent, a refresh token is only issued the first time the user approves
url = (
f"https://accounts.google.com/o/oauth2/v2/auth"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
"&response_type=code"
f"&scope={cls.SCOPE}"
"&access_type=offline"
f"&state={state}"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = GoogleDriveOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = GoogleDriveOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/prepare-authorization-request")
def prepare_authorization_request(
connector: DocumentSource,
redirect_on_success: str | None,
user: User = Depends(current_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Used by the frontend to generate the url for the user's browser during auth request.
Example: https://www.oauth.com/oauth2-servers/authorization/the-authorization-request/
"""
# create random oauth state param for security and to retrieve user data later
oauth_uuid = uuid.uuid4()
oauth_uuid_str = str(oauth_uuid)
# urlsafe b64 encode the uuid for the oauth url
oauth_state = (
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
)
session: str
if connector == DocumentSource.SLACK:
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
session = SlackOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.GOOGLE_DRIVE:
oauth_url = GoogleDriveOAuth.generate_oauth_url(oauth_state)
session = GoogleDriveOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
# elif connector == DocumentSource.CONFLUENCE:
# oauth_url = ConfluenceCloudOAuth.generate_oauth_url(oauth_state)
# session = ConfluenceCloudOAuth.session_dump_json(
# email=user.email, redirect_on_success=redirect_on_success
# )
# elif connector == DocumentSource.JIRA:
# oauth_url = JiraCloudOAuth.generate_dev_oauth_url(oauth_state)
else:
oauth_url = None
if not oauth_url:
raise HTTPException(
status_code=404,
detail=f"The document source type {connector} does not have OAuth implemented",
)
r = get_redis_client(tenant_id=tenant_id)
# store important session state to retrieve when the user is redirected back
# 10 min is the max we want an oauth flow to be valid
r.set(f"da_oauth:{oauth_uuid_str}", session, ex=600)
return JSONResponse(content={"url": oauth_url})
@router.post("/connector/slack/callback")
def handle_slack_oauth_callback(
code: str,
state: str,
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not SlackOAuth.CLIENT_ID or not SlackOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Slack client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = SlackOAuth.parse_session(session_json)
# Exchange the authorization code for an access token
response = requests.post(
SlackOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": SlackOAuth.CLIENT_ID,
"client_secret": SlackOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": SlackOAuth.REDIRECT_URI,
},
)
response_data = response.json()
if not response_data.get("ok"):
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed: {response_data.get('error')}",
)
# Extract token and team information
access_token: str = response_data.get("access_token")
team_id: str = response_data.get("team", {}).get("id")
authed_user_id: str = response_data.get("authed_user", {}).get("id")
credential_info = CredentialBase(
credential_json={"slack_bot_token": access_token},
admin_public=True,
source=DocumentSource.SLACK,
name="Slack OAuth",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Slack OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Slack OAuth completed successfully.",
"team_id": team_id,
"authed_user_id": authed_user_id,
"redirect_on_success": session.redirect_on_success,
}
)
# Work in progress
# @router.post("/connector/confluence/callback")
# def handle_confluence_oauth_callback(
# code: str,
# state: str,
# user: User = Depends(current_user),
# db_session: Session = Depends(get_session),
# tenant_id: str | None = Depends(get_current_tenant_id),
# ) -> JSONResponse:
# if not ConfluenceCloudOAuth.CLIENT_ID or not ConfluenceCloudOAuth.CLIENT_SECRET:
# raise HTTPException(
# status_code=500,
# detail="Confluence client ID or client secret is not configured."
# )
# r = get_redis_client(tenant_id=tenant_id)
# # recover the state
# padded_state = state + '=' * (-len(state) % 4) # Add padding back (Base64 decoding requires padding)
# uuid_bytes = base64.urlsafe_b64decode(padded_state) # Decode the Base64 string back to bytes
# # Convert bytes back to a UUID
# oauth_uuid = uuid.UUID(bytes=uuid_bytes)
# oauth_uuid_str = str(oauth_uuid)
# r_key = f"da_oauth:{oauth_uuid_str}"
# result = r.get(r_key)
# if not result:
# raise HTTPException(
# status_code=400,
# detail=f"Confluence OAuth failed - OAuth state key not found: key={r_key}"
# )
# try:
# session = ConfluenceCloudOAuth.parse_session(result)
# # Exchange the authorization code for an access token
# response = requests.post(
# ConfluenceCloudOAuth.TOKEN_URL,
# headers={"Content-Type": "application/x-www-form-urlencoded"},
# data={
# "client_id": ConfluenceCloudOAuth.CLIENT_ID,
# "client_secret": ConfluenceCloudOAuth.CLIENT_SECRET,
# "code": code,
# "redirect_uri": ConfluenceCloudOAuth.DEV_REDIRECT_URI,
# },
# )
# response_data = response.json()
# if not response_data.get("ok"):
# raise HTTPException(
# status_code=400,
# detail=f"ConfluenceCloudOAuth OAuth failed: {response_data.get('error')}"
# )
# # Extract token and team information
# access_token: str = response_data.get("access_token")
# team_id: str = response_data.get("team", {}).get("id")
# authed_user_id: str = response_data.get("authed_user", {}).get("id")
# credential_info = CredentialBase(
# credential_json={"slack_bot_token": access_token},
# admin_public=True,
# source=DocumentSource.CONFLUENCE,
# name="Confluence OAuth",
# )
# logger.info(f"Slack access token: {access_token}")
# credential = create_credential(credential_info, user, db_session)
# logger.info(f"new_credential_id={credential.id}")
# except Exception as e:
# return JSONResponse(
# status_code=500,
# content={
# "success": False,
# "message": f"An error occurred during Slack OAuth: {str(e)}",
# },
# )
# finally:
# r.delete(r_key)
# # return the result
# return JSONResponse(
# content={
# "success": True,
# "message": "Slack OAuth completed successfully.",
# "team_id": team_id,
# "authed_user_id": authed_user_id,
# "redirect_on_success": session.redirect_on_success,
# }
# )
@router.post("/connector/google-drive/callback")
def handle_google_drive_oauth_callback(
code: str,
state: str,
user: User = Depends(current_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not GoogleDriveOAuth.CLIENT_ID or not GoogleDriveOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Google Drive client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Google Drive OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
session: GoogleDriveOAuth.OAuthSession
try:
session = GoogleDriveOAuth.parse_session(session_json)
# Exchange the authorization code for an access token
response = requests.post(
GoogleDriveOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": GoogleDriveOAuth.CLIENT_ID,
"client_secret": GoogleDriveOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": GoogleDriveOAuth.REDIRECT_URI,
"grant_type": "authorization_code",
},
)
response.raise_for_status()
authorization_response: dict[str, Any] = response.json()
# the connector wants us to store the json in its authorized_user_info format
# returned from OAuthCredentials.get_authorized_user_info().
# So refresh immediately via get_google_oauth_creds with the params filled in
# from fields in authorization_response to get the json we need
authorized_user_info = {}
authorized_user_info["client_id"] = OAUTH_GOOGLE_DRIVE_CLIENT_ID
authorized_user_info["client_secret"] = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
authorized_user_info["refresh_token"] = authorization_response["refresh_token"]
token_json_str = json.dumps(authorized_user_info)
oauth_creds = get_google_oauth_creds(
token_json_str=token_json_str, source=DocumentSource.GOOGLE_DRIVE
)
if not oauth_creds:
raise RuntimeError("get_google_oauth_creds returned None.")
# save off the credentials
oauth_creds_sanitized_json_str = sanitize_oauth_credentials(oauth_creds)
credential_dict: dict[str, str] = {}
credential_dict[DB_CREDENTIALS_DICT_TOKEN_KEY] = oauth_creds_sanitized_json_str
credential_dict[DB_CREDENTIALS_PRIMARY_ADMIN_KEY] = session.email
credential_dict[
DB_CREDENTIALS_AUTHENTICATION_METHOD
] = GoogleOAuthAuthenticationMethod.OAUTH_INTERACTIVE.value
credential_info = CredentialBase(
credential_json=credential_dict,
admin_public=True,
source=DocumentSource.GOOGLE_DRIVE,
name="OAuth (interactive)",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Google Drive OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Google Drive OAuth completed successfully.",
"redirect_on_success": session.redirect_on_success,
}
)

View File

@@ -1,91 +0,0 @@
import base64
import uuid
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from ee.onyx.server.oauth.api_router import router
from ee.onyx.server.oauth.confluence_cloud import ConfluenceCloudOAuth
from ee.onyx.server.oauth.google_drive import GoogleDriveOAuth
from ee.onyx.server.oauth.slack import SlackOAuth
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.constants import DocumentSource
from onyx.db.engine import get_current_tenant_id
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.utils.logger import setup_logger
logger = setup_logger()
@router.post("/prepare-authorization-request")
def prepare_authorization_request(
connector: DocumentSource,
redirect_on_success: str | None,
user: User = Depends(current_admin_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Used by the frontend to generate the url for the user's browser during auth request.
Example: https://www.oauth.com/oauth2-servers/authorization/the-authorization-request/
"""
# create random oauth state param for security and to retrieve user data later
oauth_uuid = uuid.uuid4()
oauth_uuid_str = str(oauth_uuid)
# urlsafe b64 encode the uuid for the oauth url
oauth_state = (
base64.urlsafe_b64encode(oauth_uuid.bytes).rstrip(b"=").decode("utf-8")
)
session: str | None = None
if connector == DocumentSource.SLACK:
if not DEV_MODE:
oauth_url = SlackOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = SlackOAuth.generate_dev_oauth_url(oauth_state)
session = SlackOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.CONFLUENCE:
if not DEV_MODE:
oauth_url = ConfluenceCloudOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = ConfluenceCloudOAuth.generate_dev_oauth_url(oauth_state)
session = ConfluenceCloudOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
elif connector == DocumentSource.GOOGLE_DRIVE:
if not DEV_MODE:
oauth_url = GoogleDriveOAuth.generate_oauth_url(oauth_state)
else:
oauth_url = GoogleDriveOAuth.generate_dev_oauth_url(oauth_state)
session = GoogleDriveOAuth.session_dump_json(
email=user.email, redirect_on_success=redirect_on_success
)
else:
oauth_url = None
if not oauth_url:
raise HTTPException(
status_code=404,
detail=f"The document source type {connector} does not have OAuth implemented",
)
if not session:
raise HTTPException(
status_code=500,
detail=f"The document source type {connector} failed to generate an OAuth session.",
)
r = get_redis_client(tenant_id=tenant_id)
# store important session state to retrieve when the user is redirected back
# 10 min is the max we want an oauth flow to be valid
r.set(f"da_oauth:{oauth_uuid_str}", session, ex=600)
return JSONResponse(content={"url": oauth_url})

View File

@@ -1,3 +0,0 @@
from fastapi import APIRouter
router: APIRouter = APIRouter(prefix="/oauth")

View File

@@ -1,361 +0,0 @@
import base64
import uuid
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from pydantic import ValidationError
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLOUD_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.confluence.utils import CONFLUENCE_OAUTH_TOKEN_URL
from onyx.db.credentials import create_credential
from onyx.db.credentials import fetch_credential_by_id_for_user
from onyx.db.credentials import update_credential_json
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
from onyx.utils.logger import setup_logger
logger = setup_logger()
class ConfluenceCloudOAuth:
# https://developer.atlassian.com/cloud/confluence/oauth-2-3lo-apps/
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
class TokenResponse(BaseModel):
access_token: str
expires_in: int
token_type: str
refresh_token: str
scope: str
class AccessibleResources(BaseModel):
id: str
name: str
url: str
scopes: list[str]
avatarUrl: str
CLIENT_ID = OAUTH_CONFLUENCE_CLOUD_CLIENT_ID
CLIENT_SECRET = OAUTH_CONFLUENCE_CLOUD_CLIENT_SECRET
TOKEN_URL = CONFLUENCE_OAUTH_TOKEN_URL
ACCESSIBLE_RESOURCE_URL = (
"https://api.atlassian.com/oauth/token/accessible-resources"
)
# All read scopes per https://developer.atlassian.com/cloud/confluence/scopes-for-oauth-2-3LO-and-forge-apps/
CONFLUENCE_OAUTH_SCOPE = (
# classic scope
"read:confluence-space.summary%20"
"read:confluence-props%20"
"read:confluence-content.all%20"
"read:confluence-content.summary%20"
"read:confluence-content.permission%20"
"read:confluence-user%20"
"read:confluence-groups%20"
"readonly:content.attachment:confluence%20"
"search:confluence%20"
# granular scope
"read:attachment:confluence%20" # possibly unneeded unless calling v2 attachments api
"offline_access"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
# eventually for Confluence Data Center
# oauth_url = (
# f"http://localhost:8090/rest/oauth/v2/authorize?client_id={CONFLUENCE_OAUTH_CLIENT_ID}"
# f"&scope={CONFLUENCE_OAUTH_SCOPE_2}"
# f"&redirect_uri={redirectme_uri}"
# )
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# https://developer.atlassian.com/cloud/jira/platform/oauth-2-3lo-apps/#1--direct-the-user-to-the-authorization-url-to-get-an-authorization-code
url = (
"https://auth.atlassian.com/authorize"
f"?audience=api.atlassian.com"
f"&client_id={cls.CLIENT_ID}"
f"&scope={cls.CONFLUENCE_OAUTH_SCOPE}"
f"&redirect_uri={redirect_uri}"
f"&state={state}"
"&response_type=code"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = ConfluenceCloudOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = ConfluenceCloudOAuth.OAuthSession.model_validate_json(session_json)
return session
@classmethod
def generate_finalize_url(cls, credential_id: int) -> str:
return f"{WEB_DOMAIN}/admin/connectors/confluence/oauth/finalize?credential={credential_id}"
@router.post("/connector/confluence/callback")
def confluence_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Handles the backend logic for the frontend page that the user is redirected to
after visiting the oauth authorization url."""
if not ConfluenceCloudOAuth.CLIENT_ID or not ConfluenceCloudOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Confluence Cloud client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Confluence Cloud OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = ConfluenceCloudOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = ConfluenceCloudOAuth.REDIRECT_URI
else:
redirect_uri = ConfluenceCloudOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
ConfluenceCloudOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": ConfluenceCloudOAuth.CLIENT_ID,
"client_secret": ConfluenceCloudOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
"grant_type": "authorization_code",
},
)
token_response: ConfluenceCloudOAuth.TokenResponse | None = None
try:
token_response = ConfluenceCloudOAuth.TokenResponse.model_validate_json(
response.text
)
except Exception:
raise RuntimeError(
"Confluence Cloud OAuth failed during code/token exchange."
)
now = datetime.now(timezone.utc)
expires_at = now + timedelta(seconds=token_response.expires_in)
credential_info = CredentialBase(
credential_json={
"confluence_access_token": token_response.access_token,
"confluence_refresh_token": token_response.refresh_token,
"created_at": now.isoformat(),
"expires_at": expires_at.isoformat(),
"expires_in": token_response.expires_in,
"scope": token_response.scope,
},
admin_public=True,
source=DocumentSource.CONFLUENCE,
name="Confluence Cloud OAuth",
)
credential = create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Confluence Cloud OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud OAuth completed successfully.",
"finalize_url": ConfluenceCloudOAuth.generate_finalize_url(credential.id),
"redirect_on_success": session.redirect_on_success,
}
)
@router.get("/connector/confluence/accessible-resources")
def confluence_oauth_accessible_resources(
credential_id: int,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Atlassian's API is weird and does not supply us with enough info to be in a
usable state after authorizing. All API's require a cloud id. We have to list
the accessible resources/sites and let the user choose which site to use."""
credential = fetch_credential_by_id_for_user(credential_id, user, db_session)
if not credential:
raise HTTPException(400, f"Credential {credential_id} not found.")
credential_dict = credential.credential_json
access_token = credential_dict["confluence_access_token"]
try:
# Exchange the authorization code for an access token
response = requests.get(
ConfluenceCloudOAuth.ACCESSIBLE_RESOURCE_URL,
headers={
"Authorization": f"Bearer {access_token}",
"Accept": "application/json",
},
)
response.raise_for_status()
accessible_resources_data = response.json()
# Validate the list of AccessibleResources
try:
accessible_resources = [
ConfluenceCloudOAuth.AccessibleResources(**resource)
for resource in accessible_resources_data
]
except ValidationError as e:
raise RuntimeError(f"Failed to parse accessible resources: {e}")
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred retrieving Confluence Cloud accessible resources: {str(e)}",
},
)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud get accessible resources completed successfully.",
"accessible_resources": [
resource.model_dump() for resource in accessible_resources
],
}
)
@router.post("/connector/confluence/finalize")
def confluence_oauth_finalize(
credential_id: int,
cloud_id: str,
cloud_name: str,
cloud_url: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
"""Saves the info for the selected cloud site to the credential.
This is the final step in the confluence oauth flow where after the traditional
OAuth process, the user has to select a site to associate with the credentials.
After this, the credential is usable."""
credential = fetch_credential_by_id_for_user(credential_id, user, db_session)
if not credential:
raise HTTPException(
status_code=400,
detail=f"Confluence Cloud OAuth failed - credential {credential_id} not found.",
)
new_credential_json: dict[str, Any] = dict(credential.credential_json)
new_credential_json["cloud_id"] = cloud_id
new_credential_json["cloud_name"] = cloud_name
new_credential_json["wiki_base"] = cloud_url
try:
update_credential_json(credential_id, new_credential_json, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Confluence Cloud OAuth: {str(e)}",
},
)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Confluence Cloud OAuth finalized successfully.",
"redirect_url": f"{WEB_DOMAIN}/admin/connectors/confluence",
}
)

View File

@@ -1,229 +0,0 @@
import base64
import json
import uuid
from typing import Any
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.connectors.google_utils.google_auth import get_google_oauth_creds
from onyx.connectors.google_utils.google_auth import sanitize_oauth_credentials
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_AUTHENTICATION_METHOD,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_DICT_TOKEN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
DB_CREDENTIALS_PRIMARY_ADMIN_KEY,
)
from onyx.connectors.google_utils.shared_constants import (
GoogleOAuthAuthenticationMethod,
)
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
class GoogleDriveOAuth:
# https://developers.google.com/identity/protocols/oauth2
# https://developers.google.com/identity/protocols/oauth2/web-server
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_GOOGLE_DRIVE_CLIENT_ID
CLIENT_SECRET = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
TOKEN_URL = "https://oauth2.googleapis.com/token"
# SCOPE is per https://docs.danswer.dev/connectors/google-drive
# TODO: Merge with or use google_utils.GOOGLE_SCOPES
SCOPE = (
"https://www.googleapis.com/auth/drive.readonly%20"
"https://www.googleapis.com/auth/drive.metadata.readonly%20"
"https://www.googleapis.com/auth/admin.directory.user.readonly%20"
"https://www.googleapis.com/auth/admin.directory.group.readonly"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/google-drive/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
# without prompt=consent, a refresh token is only issued the first time the user approves
url = (
f"https://accounts.google.com/o/oauth2/v2/auth"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
"&response_type=code"
f"&scope={cls.SCOPE}"
"&access_type=offline"
f"&state={state}"
"&prompt=consent"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = GoogleDriveOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = GoogleDriveOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/connector/google-drive/callback")
def handle_google_drive_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not GoogleDriveOAuth.CLIENT_ID or not GoogleDriveOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Google Drive client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Google Drive OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = GoogleDriveOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = GoogleDriveOAuth.REDIRECT_URI
else:
redirect_uri = GoogleDriveOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
GoogleDriveOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": GoogleDriveOAuth.CLIENT_ID,
"client_secret": GoogleDriveOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
"grant_type": "authorization_code",
},
)
response.raise_for_status()
authorization_response: dict[str, Any] = response.json()
# the connector wants us to store the json in its authorized_user_info format
# returned from OAuthCredentials.get_authorized_user_info().
# So refresh immediately via get_google_oauth_creds with the params filled in
# from fields in authorization_response to get the json we need
authorized_user_info = {}
authorized_user_info["client_id"] = OAUTH_GOOGLE_DRIVE_CLIENT_ID
authorized_user_info["client_secret"] = OAUTH_GOOGLE_DRIVE_CLIENT_SECRET
authorized_user_info["refresh_token"] = authorization_response["refresh_token"]
token_json_str = json.dumps(authorized_user_info)
oauth_creds = get_google_oauth_creds(
token_json_str=token_json_str, source=DocumentSource.GOOGLE_DRIVE
)
if not oauth_creds:
raise RuntimeError("get_google_oauth_creds returned None.")
# save off the credentials
oauth_creds_sanitized_json_str = sanitize_oauth_credentials(oauth_creds)
credential_dict: dict[str, str] = {}
credential_dict[DB_CREDENTIALS_DICT_TOKEN_KEY] = oauth_creds_sanitized_json_str
credential_dict[DB_CREDENTIALS_PRIMARY_ADMIN_KEY] = session.email
credential_dict[
DB_CREDENTIALS_AUTHENTICATION_METHOD
] = GoogleOAuthAuthenticationMethod.OAUTH_INTERACTIVE.value
credential_info = CredentialBase(
credential_json=credential_dict,
admin_public=True,
source=DocumentSource.GOOGLE_DRIVE,
name="OAuth (interactive)",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Google Drive OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Google Drive OAuth completed successfully.",
"finalize_url": None,
"redirect_on_success": session.redirect_on_success,
}
)

View File

@@ -1,197 +0,0 @@
import base64
import uuid
from typing import cast
import requests
from fastapi import Depends
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from sqlalchemy.orm import Session
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_ID
from ee.onyx.configs.app_configs import OAUTH_SLACK_CLIENT_SECRET
from ee.onyx.server.oauth.api_router import router
from onyx.auth.users import current_admin_user
from onyx.configs.app_configs import DEV_MODE
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import DocumentSource
from onyx.db.credentials import create_credential
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.models import User
from onyx.redis.redis_pool import get_redis_client
from onyx.server.documents.models import CredentialBase
class SlackOAuth:
# https://knock.app/blog/how-to-authenticate-users-in-slack-using-oauth
# Example: https://api.slack.com/authentication/oauth-v2#exchanging
class OAuthSession(BaseModel):
"""Stored in redis to be looked up on callback"""
email: str
redirect_on_success: str | None # Where to send the user if OAuth flow succeeds
CLIENT_ID = OAUTH_SLACK_CLIENT_ID
CLIENT_SECRET = OAUTH_SLACK_CLIENT_SECRET
TOKEN_URL = "https://slack.com/api/oauth.v2.access"
# SCOPE is per https://docs.danswer.dev/connectors/slack
BOT_SCOPE = (
"channels:history,"
"channels:read,"
"groups:history,"
"groups:read,"
"channels:join,"
"im:history,"
"users:read,"
"users:read.email,"
"usergroups:read"
)
REDIRECT_URI = f"{WEB_DOMAIN}/admin/connectors/slack/oauth/callback"
DEV_REDIRECT_URI = f"https://redirectmeto.com/{REDIRECT_URI}"
@classmethod
def generate_oauth_url(cls, state: str) -> str:
return cls._generate_oauth_url_helper(cls.REDIRECT_URI, state)
@classmethod
def generate_dev_oauth_url(cls, state: str) -> str:
"""dev mode workaround for localhost testing
- https://www.nango.dev/blog/oauth-redirects-on-localhost-with-https
"""
return cls._generate_oauth_url_helper(cls.DEV_REDIRECT_URI, state)
@classmethod
def _generate_oauth_url_helper(cls, redirect_uri: str, state: str) -> str:
url = (
f"https://slack.com/oauth/v2/authorize"
f"?client_id={cls.CLIENT_ID}"
f"&redirect_uri={redirect_uri}"
f"&scope={cls.BOT_SCOPE}"
f"&state={state}"
)
return url
@classmethod
def session_dump_json(cls, email: str, redirect_on_success: str | None) -> str:
"""Temporary state to store in redis. to be looked up on auth response.
Returns a json string.
"""
session = SlackOAuth.OAuthSession(
email=email, redirect_on_success=redirect_on_success
)
return session.model_dump_json()
@classmethod
def parse_session(cls, session_json: str) -> OAuthSession:
session = SlackOAuth.OAuthSession.model_validate_json(session_json)
return session
@router.post("/connector/slack/callback")
def handle_slack_oauth_callback(
code: str,
state: str,
user: User = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> JSONResponse:
if not SlackOAuth.CLIENT_ID or not SlackOAuth.CLIENT_SECRET:
raise HTTPException(
status_code=500,
detail="Slack client ID or client secret is not configured.",
)
r = get_redis_client(tenant_id=tenant_id)
# recover the state
padded_state = state + "=" * (
-len(state) % 4
) # Add padding back (Base64 decoding requires padding)
uuid_bytes = base64.urlsafe_b64decode(
padded_state
) # Decode the Base64 string back to bytes
# Convert bytes back to a UUID
oauth_uuid = uuid.UUID(bytes=uuid_bytes)
oauth_uuid_str = str(oauth_uuid)
r_key = f"da_oauth:{oauth_uuid_str}"
session_json_bytes = cast(bytes, r.get(r_key))
if not session_json_bytes:
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed - OAuth state key not found: key={r_key}",
)
session_json = session_json_bytes.decode("utf-8")
try:
session = SlackOAuth.parse_session(session_json)
if not DEV_MODE:
redirect_uri = SlackOAuth.REDIRECT_URI
else:
redirect_uri = SlackOAuth.DEV_REDIRECT_URI
# Exchange the authorization code for an access token
response = requests.post(
SlackOAuth.TOKEN_URL,
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"client_id": SlackOAuth.CLIENT_ID,
"client_secret": SlackOAuth.CLIENT_SECRET,
"code": code,
"redirect_uri": redirect_uri,
},
)
response_data = response.json()
if not response_data.get("ok"):
raise HTTPException(
status_code=400,
detail=f"Slack OAuth failed: {response_data.get('error')}",
)
# Extract token and team information
access_token: str = response_data.get("access_token")
team_id: str = response_data.get("team", {}).get("id")
authed_user_id: str = response_data.get("authed_user", {}).get("id")
credential_info = CredentialBase(
credential_json={"slack_bot_token": access_token},
admin_public=True,
source=DocumentSource.SLACK,
name="Slack OAuth",
)
create_credential(credential_info, user, db_session)
except Exception as e:
return JSONResponse(
status_code=500,
content={
"success": False,
"message": f"An error occurred during Slack OAuth: {str(e)}",
},
)
finally:
r.delete(r_key)
# return the result
return JSONResponse(
content={
"success": True,
"message": "Slack OAuth completed successfully.",
"finalize_url": None,
"redirect_on_success": session.redirect_on_success,
"team_id": team_id,
"authed_user_id": authed_user_id,
}
)

View File

@@ -83,7 +83,6 @@ def handle_search_request(
user=user,
llm=llm,
fast_llm=fast_llm,
skip_query_analysis=False,
db_session=db_session,
bypass_acl=False,
)

View File

@@ -13,7 +13,7 @@ from sqlalchemy import select
from sqlalchemy.orm import Session
from onyx.db.api_key import is_api_key_email_address
from onyx.db.engine import get_session_with_current_tenant
from onyx.db.engine import get_session_with_tenant
from onyx.db.models import ChatMessage
from onyx.db.models import ChatSession
from onyx.db.models import TokenRateLimit
@@ -28,21 +28,21 @@ from onyx.server.query_and_chat.token_limit import _user_is_rate_limited_by_glob
from onyx.utils.threadpool_concurrency import run_functions_tuples_in_parallel
def _check_token_rate_limits(user: User | None) -> None:
def _check_token_rate_limits(user: User | None, tenant_id: str | None) -> None:
if user is None:
# Unauthenticated users are only rate limited by global settings
_user_is_rate_limited_by_global()
_user_is_rate_limited_by_global(tenant_id)
elif is_api_key_email_address(user.email):
# API keys are only rate limited by global settings
_user_is_rate_limited_by_global()
_user_is_rate_limited_by_global(tenant_id)
else:
run_functions_tuples_in_parallel(
[
(_user_is_rate_limited, (user.id,)),
(_user_is_rate_limited_by_group, (user.id,)),
(_user_is_rate_limited_by_global, ()),
(_user_is_rate_limited, (user.id, tenant_id)),
(_user_is_rate_limited_by_group, (user.id, tenant_id)),
(_user_is_rate_limited_by_global, (tenant_id,)),
]
)
@@ -52,8 +52,8 @@ User rate limits
"""
def _user_is_rate_limited(user_id: UUID) -> None:
with get_session_with_current_tenant() as db_session:
def _user_is_rate_limited(user_id: UUID, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
user_rate_limits = fetch_all_user_token_rate_limits(
db_session=db_session, enabled_only=True, ordered=False
)
@@ -93,8 +93,8 @@ User Group rate limits
"""
def _user_is_rate_limited_by_group(user_id: UUID) -> None:
with get_session_with_current_tenant() as db_session:
def _user_is_rate_limited_by_group(user_id: UUID, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
group_rate_limits = _fetch_all_user_group_rate_limits(user_id, db_session)
if group_rate_limits:

View File

@@ -2,7 +2,6 @@ import csv
import io
from datetime import datetime
from datetime import timezone
from http import HTTPStatus
from uuid import UUID
from fastapi import APIRouter
@@ -22,10 +21,8 @@ from ee.onyx.server.query_history.models import QuestionAnswerPairSnapshot
from onyx.auth.users import current_admin_user
from onyx.auth.users import get_display_email
from onyx.chat.chat_utils import create_chat_chain
from onyx.configs.app_configs import ONYX_QUERY_HISTORY_TYPE
from onyx.configs.constants import MessageType
from onyx.configs.constants import QAFeedbackType
from onyx.configs.constants import QueryHistoryType
from onyx.configs.constants import SessionType
from onyx.db.chat import get_chat_session_by_id
from onyx.db.chat import get_chat_sessions_by_user
@@ -38,8 +35,6 @@ from onyx.server.query_and_chat.models import ChatSessionsResponse
router = APIRouter()
ONYX_ANONYMIZED_EMAIL = "anonymous@anonymous.invalid"
def fetch_and_process_chat_session_history(
db_session: Session,
@@ -112,17 +107,6 @@ def get_user_chat_sessions(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> ChatSessionsResponse:
# we specifically don't allow this endpoint if "anonymized" since
# this is a direct query on the user id
if ONYX_QUERY_HISTORY_TYPE in [
QueryHistoryType.DISABLED,
QueryHistoryType.ANONYMIZED,
]:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Per user query history has been disabled by the administrator.",
)
try:
chat_sessions = get_chat_sessions_by_user(
user_id=user_id, deleted=False, db_session=db_session, limit=0
@@ -138,7 +122,6 @@ def get_user_chat_sessions(
name=chat.description,
persona_id=chat.persona_id,
time_created=chat.time_created.isoformat(),
time_updated=chat.time_updated.isoformat(),
shared_status=chat.shared_status,
folder_id=chat.folder_id,
current_alternate_model=chat.current_alternate_model,
@@ -158,12 +141,6 @@ def get_chat_session_history(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> PaginatedReturn[ChatSessionMinimal]:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
page_of_chat_sessions = get_page_of_chat_sessions(
page_num=page_num,
page_size=page_size,
@@ -180,16 +157,11 @@ def get_chat_session_history(
feedback_filter=feedback_type,
)
minimal_chat_sessions: list[ChatSessionMinimal] = []
for chat_session in page_of_chat_sessions:
minimal_chat_session = ChatSessionMinimal.from_chat_session(chat_session)
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
minimal_chat_session.user_email = ONYX_ANONYMIZED_EMAIL
minimal_chat_sessions.append(minimal_chat_session)
return PaginatedReturn(
items=minimal_chat_sessions,
items=[
ChatSessionMinimal.from_chat_session(chat_session)
for chat_session in page_of_chat_sessions
],
total_items=total_filtered_chat_sessions_count,
)
@@ -200,12 +172,6 @@ def get_chat_session_admin(
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> ChatSessionSnapshot:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
try:
chat_session = get_chat_session_by_id(
chat_session_id=chat_session_id,
@@ -227,9 +193,6 @@ def get_chat_session_admin(
f"Could not create snapshot for chat session with id '{chat_session_id}'",
)
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
snapshot.user_email = ONYX_ANONYMIZED_EMAIL
return snapshot
@@ -240,12 +203,6 @@ def get_query_history_as_csv(
end: datetime | None = None,
db_session: Session = Depends(get_session),
) -> StreamingResponse:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.DISABLED:
raise HTTPException(
status_code=HTTPStatus.FORBIDDEN,
detail="Query history has been disabled by the administrator.",
)
complete_chat_session_history = fetch_and_process_chat_session_history(
db_session=db_session,
start=start or datetime.fromtimestamp(0, tz=timezone.utc),
@@ -256,9 +213,6 @@ def get_query_history_as_csv(
question_answer_pairs: list[QuestionAnswerPairSnapshot] = []
for chat_session_snapshot in complete_chat_session_history:
if ONYX_QUERY_HISTORY_TYPE == QueryHistoryType.ANONYMIZED:
chat_session_snapshot.user_email = ONYX_ANONYMIZED_EMAIL
question_answer_pairs.extend(
QuestionAnswerPairSnapshot.from_chat_session_snapshot(chat_session_snapshot)
)

View File

@@ -41,15 +41,14 @@ from onyx.auth.users import User
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import FASTAPI_USERS_AUTH_COOKIE_NAME
from onyx.db.auth import get_user_count
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session
from onyx.db.engine import get_session_with_shared_schema
from onyx.db.engine import get_session_with_tenant
from onyx.db.users import delete_user_from_db
from onyx.db.users import get_user_by_email
from onyx.server.manage.models import UserByEmail
from onyx.utils.logger import setup_logger
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
from shared_configs.contextvars import get_current_tenant_id
stripe.api_key = STRIPE_SECRET_KEY
logger = setup_logger()
@@ -58,14 +57,13 @@ router = APIRouter(prefix="/tenants")
@router.get("/anonymous-user-path")
async def get_anonymous_user_path_api(
tenant_id: str | None = Depends(get_current_tenant_id),
_: User | None = Depends(current_admin_user),
) -> AnonymousUserPath:
tenant_id = get_current_tenant_id()
if tenant_id is None:
raise HTTPException(status_code=404, detail="Tenant not found")
with get_session_with_shared_schema() as db_session:
with get_session_with_tenant(tenant_id=None) as db_session:
current_path = get_anonymous_user_path(tenant_id, db_session)
return AnonymousUserPath(anonymous_user_path=current_path)
@@ -74,15 +72,15 @@ async def get_anonymous_user_path_api(
@router.post("/anonymous-user-path")
async def set_anonymous_user_path_api(
anonymous_user_path: str,
tenant_id: str = Depends(get_current_tenant_id),
_: User | None = Depends(current_admin_user),
) -> None:
tenant_id = get_current_tenant_id()
try:
validate_anonymous_user_path(anonymous_user_path)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
with get_session_with_shared_schema() as db_session:
with get_session_with_tenant(tenant_id=None) as db_session:
try:
modify_anonymous_user_path(tenant_id, anonymous_user_path, db_session)
except IntegrityError:
@@ -103,7 +101,7 @@ async def login_as_anonymous_user(
anonymous_user_path: str,
_: User | None = Depends(optional_user),
) -> Response:
with get_session_with_shared_schema() as db_session:
with get_session_with_tenant(tenant_id=None) as db_session:
tenant_id = get_tenant_id_for_anonymous_user_path(
anonymous_user_path, db_session
)
@@ -152,17 +150,14 @@ async def billing_information(
_: User = Depends(current_admin_user),
) -> BillingInformation | SubscriptionStatusResponse:
logger.info("Fetching billing information")
tenant_id = get_current_tenant_id()
return fetch_billing_information(tenant_id)
return fetch_billing_information(CURRENT_TENANT_ID_CONTEXTVAR.get())
@router.post("/create-customer-portal-session")
async def create_customer_portal_session(
_: User = Depends(current_admin_user),
) -> dict:
tenant_id = get_current_tenant_id()
async def create_customer_portal_session(_: User = Depends(current_admin_user)) -> dict:
try:
# Fetch tenant_id and current tenant's information
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
stripe_info = fetch_tenant_stripe_information(tenant_id)
stripe_customer_id = stripe_info.get("stripe_customer_id")
if not stripe_customer_id:
@@ -186,8 +181,6 @@ async def create_subscription_session(
) -> SubscriptionSessionResponse:
try:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
if not tenant_id:
raise HTTPException(status_code=400, detail="Tenant ID not found")
session_id = fetch_stripe_checkout_session(tenant_id)
return SubscriptionSessionResponse(sessionId=session_id)
@@ -204,7 +197,7 @@ async def impersonate_user(
"""Allows a cloud superuser to impersonate another user by generating an impersonation JWT token"""
tenant_id = get_tenant_id_for_email(impersonate_request.email)
with get_session_with_tenant(tenant_id=tenant_id) as tenant_session:
with get_session_with_tenant(tenant_id) as tenant_session:
user_to_impersonate = get_user_by_email(
impersonate_request.email, tenant_session
)
@@ -228,9 +221,8 @@ async def leave_organization(
user_email: UserByEmail,
current_user: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
tenant_id: str = Depends(get_current_tenant_id),
) -> None:
tenant_id = get_current_tenant_id()
if current_user is None or current_user.email != user_email.user_email:
raise HTTPException(
status_code=403, detail="You can only leave the organization as yourself"

View File

@@ -7,7 +7,6 @@ from ee.onyx.configs.app_configs import STRIPE_PRICE_ID
from ee.onyx.configs.app_configs import STRIPE_SECRET_KEY
from ee.onyx.server.tenants.access import generate_data_plane_token
from ee.onyx.server.tenants.models import BillingInformation
from ee.onyx.server.tenants.models import SubscriptionStatusResponse
from onyx.configs.app_configs import CONTROL_PLANE_API_BASE_URL
from onyx.utils.logger import setup_logger
@@ -42,9 +41,7 @@ def fetch_tenant_stripe_information(tenant_id: str) -> dict:
return response.json()
def fetch_billing_information(
tenant_id: str,
) -> BillingInformation | SubscriptionStatusResponse:
def fetch_billing_information(tenant_id: str) -> BillingInformation:
logger.info("Fetching billing information")
token = generate_data_plane_token()
headers = {
@@ -55,19 +52,8 @@ def fetch_billing_information(
params = {"tenant_id": tenant_id}
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
response_data = response.json()
# Check if the response indicates no subscription
if (
isinstance(response_data, dict)
and "subscribed" in response_data
and not response_data["subscribed"]
):
return SubscriptionStatusResponse(**response_data)
# Otherwise, parse as BillingInformation
return BillingInformation(**response_data)
billing_info = BillingInformation(**response.json())
return billing_info
def register_tenant_users(tenant_id: str, number_of_users: int) -> stripe.Subscription:

View File

@@ -1,8 +1,5 @@
from typing import cast
from ee.onyx.configs.app_configs import GATED_TENANTS_KEY
from onyx.configs.constants import ONYX_CLOUD_TENANT_ID
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_redis_replica_client
from onyx.server.settings.models import ApplicationStatus
from onyx.server.settings.store import load_settings
@@ -14,7 +11,7 @@ logger = setup_logger()
def update_tenant_gating(tenant_id: str, status: ApplicationStatus) -> None:
redis_client = get_redis_client(tenant_id=ONYX_CLOUD_TENANT_ID)
redis_client = get_redis_replica_client(tenant_id=ONYX_CLOUD_TENANT_ID)
# Store the full status
status_key = f"tenant:{tenant_id}:status"
@@ -48,4 +45,4 @@ def store_product_gating(tenant_id: str, application_status: ApplicationStatus)
def get_gated_tenants() -> set[str]:
redis_client = get_redis_replica_client(tenant_id=ONYX_CLOUD_TENANT_ID)
return cast(set[str], redis_client.smembers(GATED_TENANTS_KEY))
return set(redis_client.smembers(GATED_TENANTS_KEY))

View File

@@ -104,21 +104,21 @@ async def provision_tenant(tenant_id: str, email: str) -> None:
status_code=409, detail="User already belongs to an organization"
)
logger.debug(f"Provisioning tenant {tenant_id} for user {email}")
logger.info(f"Provisioning tenant: {tenant_id}")
token = None
try:
if not create_schema_if_not_exists(tenant_id):
logger.debug(f"Created schema for tenant {tenant_id}")
logger.info(f"Created schema for tenant {tenant_id}")
else:
logger.debug(f"Schema already exists for tenant {tenant_id}")
logger.info(f"Schema already exists for tenant {tenant_id}")
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
# Await the Alembic migrations
await asyncio.to_thread(run_alembic_migrations, tenant_id)
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
with get_session_with_tenant(tenant_id) as db_session:
configure_default_api_keys(db_session)
current_search_settings = (
@@ -134,7 +134,7 @@ async def provision_tenant(tenant_id: str, email: str) -> None:
add_users_to_tenant([email], tenant_id)
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
with get_session_with_tenant(tenant_id) as db_session:
create_milestone_and_report(
user=None,
distinct_id=tenant_id,
@@ -200,35 +200,14 @@ async def rollback_tenant_provisioning(tenant_id: str) -> None:
def configure_default_api_keys(db_session: Session) -> None:
if ANTHROPIC_DEFAULT_API_KEY:
anthropic_provider = LLMProviderUpsertRequest(
name="Anthropic",
provider=ANTHROPIC_PROVIDER_NAME,
api_key=ANTHROPIC_DEFAULT_API_KEY,
default_model_name="claude-3-7-sonnet-20250219",
fast_default_model_name="claude-3-5-sonnet-20241022",
model_names=ANTHROPIC_MODEL_NAMES,
display_model_names=["claude-3-5-sonnet-20241022"],
)
try:
full_provider = upsert_llm_provider(anthropic_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure Anthropic provider: {e}")
else:
logger.error(
"ANTHROPIC_DEFAULT_API_KEY not set, skipping Anthropic provider configuration"
)
if OPENAI_DEFAULT_API_KEY:
open_provider = LLMProviderUpsertRequest(
name="OpenAI",
provider=OPENAI_PROVIDER_NAME,
api_key=OPENAI_DEFAULT_API_KEY,
default_model_name="gpt-4o",
default_model_name="gpt-4",
fast_default_model_name="gpt-4o-mini",
model_names=OPEN_AI_MODEL_NAMES,
display_model_names=["o1", "o3-mini", "gpt-4o", "gpt-4o-mini"],
)
try:
full_provider = upsert_llm_provider(open_provider, db_session)
@@ -240,6 +219,25 @@ def configure_default_api_keys(db_session: Session) -> None:
"OPENAI_DEFAULT_API_KEY not set, skipping OpenAI provider configuration"
)
if ANTHROPIC_DEFAULT_API_KEY:
anthropic_provider = LLMProviderUpsertRequest(
name="Anthropic",
provider=ANTHROPIC_PROVIDER_NAME,
api_key=ANTHROPIC_DEFAULT_API_KEY,
default_model_name="claude-3-5-sonnet-20241022",
fast_default_model_name="claude-3-5-sonnet-20241022",
model_names=ANTHROPIC_MODEL_NAMES,
)
try:
full_provider = upsert_llm_provider(anthropic_provider, db_session)
update_default_provider(full_provider.id, db_session)
except Exception as e:
logger.error(f"Failed to configure Anthropic provider: {e}")
else:
logger.error(
"ANTHROPIC_DEFAULT_API_KEY not set, skipping Anthropic provider configuration"
)
if COHERE_DEFAULT_API_KEY:
cloud_embedding_provider = CloudEmbeddingProviderCreationRequest(
provider_type=EmbeddingProvider.COHERE,

View File

@@ -28,7 +28,7 @@ def get_tenant_id_for_email(email: str) -> str:
def user_owns_a_tenant(email: str) -> bool:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
result = (
db_session.query(UserTenantMapping)
.filter(UserTenantMapping.email == email)
@@ -38,7 +38,7 @@ def user_owns_a_tenant(email: str) -> bool:
def add_users_to_tenant(emails: list[str], tenant_id: str) -> None:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
try:
for email in emails:
db_session.add(UserTenantMapping(email=email, tenant_id=tenant_id))
@@ -48,7 +48,7 @@ def add_users_to_tenant(emails: list[str], tenant_id: str) -> None:
def remove_users_from_tenant(emails: list[str], tenant_id: str) -> None:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
try:
mappings_to_delete = (
db_session.query(UserTenantMapping)
@@ -71,7 +71,7 @@ def remove_users_from_tenant(emails: list[str], tenant_id: str) -> None:
def remove_all_users_from_tenant(tenant_id: str) -> None:
with get_session_with_tenant(tenant_id=POSTGRES_DEFAULT_SCHEMA) as db_session:
with get_session_with_tenant(POSTGRES_DEFAULT_SCHEMA) as db_session:
db_session.query(UserTenantMapping).filter(
UserTenantMapping.tenant_id == tenant_id
).delete()

View File

@@ -6,7 +6,7 @@ MODEL_WARM_UP_STRING = "hi " * 512
DEFAULT_OPENAI_MODEL = "text-embedding-3-small"
DEFAULT_COHERE_MODEL = "embed-english-light-v3.0"
DEFAULT_VOYAGE_MODEL = "voyage-large-2-instruct"
DEFAULT_VERTEX_MODEL = "text-embedding-005"
DEFAULT_VERTEX_MODEL = "text-embedding-004"
class EmbeddingModelTextType:

View File

@@ -5,7 +5,6 @@ from types import TracebackType
from typing import cast
from typing import Optional
import aioboto3 # type: ignore
import httpx
import openai
import vertexai # type: ignore
@@ -29,13 +28,11 @@ from model_server.constants import DEFAULT_VERTEX_MODEL
from model_server.constants import DEFAULT_VOYAGE_MODEL
from model_server.constants import EmbeddingModelTextType
from model_server.constants import EmbeddingProvider
from model_server.utils import pass_aws_key
from model_server.utils import simple_log_function_time
from onyx.utils.logger import setup_logger
from shared_configs.configs import API_BASED_EMBEDDING_TIMEOUT
from shared_configs.configs import INDEXING_ONLY
from shared_configs.configs import OPENAI_EMBEDDING_TIMEOUT
from shared_configs.configs import VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
from shared_configs.enums import EmbedTextType
from shared_configs.enums import RerankerProvider
from shared_configs.model_server_models import Embedding
@@ -81,7 +78,7 @@ class CloudEmbedding:
self._closed = False
async def _embed_openai(
self, texts: list[str], model: str | None, reduced_dimension: int | None
self, texts: list[str], model: str | None
) -> list[Embedding]:
if not model:
model = DEFAULT_OPENAI_MODEL
@@ -94,28 +91,19 @@ class CloudEmbedding:
final_embeddings: list[Embedding] = []
try:
for text_batch in batch_list(texts, _OPENAI_MAX_INPUT_LEN):
response = await client.embeddings.create(
input=text_batch,
model=model,
dimensions=reduced_dimension or openai.NOT_GIVEN,
)
response = await client.embeddings.create(input=text_batch, model=model)
final_embeddings.extend(
[embedding.embedding for embedding in response.data]
)
return final_embeddings
except Exception as e:
error_string = (
f"Exception embedding text with OpenAI - {type(e)}: "
f"Model: {model} "
f"Provider: {self.provider} "
f"Exception: {e}"
f"Error embedding text with OpenAI: {str(e)} \n"
f"Model: {model} \n"
f"Provider: {self.provider} \n"
f"Texts: {texts}"
)
logger.error(error_string)
# only log text when it's not an authentication error.
if not isinstance(e, openai.AuthenticationError):
logger.debug(f"Exception texts: {texts}")
raise RuntimeError(error_string)
async def _embed_cohere(
@@ -185,24 +173,17 @@ class CloudEmbedding:
vertexai.init(project=project_id, credentials=credentials)
client = TextEmbeddingModel.from_pretrained(model)
inputs = [TextEmbeddingInput(text, embedding_type) for text in texts]
# Split into batches of 25 texts
max_texts_per_batch = VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE
batches = [
inputs[i : i + max_texts_per_batch]
for i in range(0, len(inputs), max_texts_per_batch)
]
# Dispatch all embedding calls asynchronously at once
tasks = [
client.get_embeddings_async(batch, auto_truncate=True) for batch in batches
]
# Wait for all tasks to complete in parallel
results = await asyncio.gather(*tasks)
return [embedding.values for batch in results for embedding in batch]
embeddings = await client.get_embeddings_async(
[
TextEmbeddingInput(
text,
embedding_type,
)
for text in texts
],
auto_truncate=True, # This is the default
)
return [embedding.values for embedding in embeddings]
async def _embed_litellm_proxy(
self, texts: list[str], model_name: str | None
@@ -237,10 +218,9 @@ class CloudEmbedding:
text_type: EmbedTextType,
model_name: str | None = None,
deployment_name: str | None = None,
reduced_dimension: int | None = None,
) -> list[Embedding]:
if self.provider == EmbeddingProvider.OPENAI:
return await self._embed_openai(texts, model_name, reduced_dimension)
return await self._embed_openai(texts, model_name)
elif self.provider == EmbeddingProvider.AZURE:
return await self._embed_azure(texts, f"azure/{deployment_name}")
elif self.provider == EmbeddingProvider.LITELLM:
@@ -341,7 +321,6 @@ async def embed_text(
prefix: str | None,
api_url: str | None,
api_version: str | None,
reduced_dimension: int | None,
gpu_type: str = "UNKNOWN",
) -> list[Embedding]:
if not all(texts):
@@ -385,7 +364,6 @@ async def embed_text(
model_name=model_name,
deployment_name=deployment_name,
text_type=text_type,
reduced_dimension=reduced_dimension,
)
if any(embedding is None for embedding in embeddings):
@@ -457,7 +435,7 @@ async def local_rerank(query: str, docs: list[str], model_name: str) -> list[flo
)
async def cohere_rerank_api(
async def cohere_rerank(
query: str, docs: list[str], model_name: str, api_key: str
) -> list[float]:
cohere_client = CohereAsyncClient(api_key=api_key)
@@ -467,45 +445,6 @@ async def cohere_rerank_api(
return [result.relevance_score for result in sorted_results]
async def cohere_rerank_aws(
query: str,
docs: list[str],
model_name: str,
region_name: str,
aws_access_key_id: str,
aws_secret_access_key: str,
) -> list[float]:
session = aioboto3.Session(
aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key
)
async with session.client(
"bedrock-runtime", region_name=region_name
) as bedrock_client:
body = json.dumps(
{
"query": query,
"documents": docs,
"api_version": 2,
}
)
# Invoke the Bedrock model asynchronously
response = await bedrock_client.invoke_model(
modelId=model_name,
accept="application/json",
contentType="application/json",
body=body,
)
# Read the response asynchronously
response_body = json.loads(await response["body"].read())
# Extract and sort the results
results = response_body.get("results", [])
sorted_results = sorted(results, key=lambda item: item["index"])
return [result["relevance_score"] for result in sorted_results]
async def litellm_rerank(
query: str, docs: list[str], api_url: str, model_name: str, api_key: str | None
) -> list[float]:
@@ -564,7 +503,6 @@ async def process_embed_request(
text_type=embed_request.text_type,
api_url=embed_request.api_url,
api_version=embed_request.api_version,
reduced_dimension=embed_request.reduced_dimension,
prefix=prefix,
gpu_type=gpu_type,
)
@@ -621,32 +559,15 @@ async def process_rerank_request(rerank_request: RerankRequest) -> RerankRespons
elif rerank_request.provider_type == RerankerProvider.COHERE:
if rerank_request.api_key is None:
raise RuntimeError("Cohere Rerank Requires an API Key")
sim_scores = await cohere_rerank_api(
sim_scores = await cohere_rerank(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
api_key=rerank_request.api_key,
)
return RerankResponse(scores=sim_scores)
elif rerank_request.provider_type == RerankerProvider.BEDROCK:
if rerank_request.api_key is None:
raise RuntimeError("Bedrock Rerank Requires an API Key")
aws_access_key_id, aws_secret_access_key, aws_region = pass_aws_key(
rerank_request.api_key
)
sim_scores = await cohere_rerank_aws(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
region_name=aws_region,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
)
return RerankResponse(scores=sim_scores)
else:
raise ValueError(f"Unsupported provider: {rerank_request.provider_type}")
except Exception as e:
logger.exception(f"Error during reranking process:\n{str(e)}")
raise HTTPException(

View File

@@ -70,32 +70,3 @@ def get_gpu_type() -> str:
return GPUStatus.MAC_MPS
return GPUStatus.NONE
def pass_aws_key(api_key: str) -> tuple[str, str, str]:
"""Parse AWS API key string into components.
Args:
api_key: String in format 'aws_ACCESSKEY_SECRETKEY_REGION'
Returns:
Tuple of (access_key, secret_key, region)
Raises:
ValueError: If key format is invalid
"""
if not api_key.startswith("aws"):
raise ValueError("API key must start with 'aws' prefix")
parts = api_key.split("_")
if len(parts) != 4:
raise ValueError(
f"API key must be in format 'aws_ACCESSKEY_SECRETKEY_REGION', got {len(parts) - 1} parts"
"this is an onyx specific format for formatting the aws secrets for bedrock"
)
try:
_, aws_access_key_id, aws_secret_access_key, aws_region = parts
return aws_access_key_id, aws_secret_access_key, aws_region
except Exception as e:
raise ValueError(f"Failed to parse AWS key components: {str(e)}")

View File

@@ -5,14 +5,14 @@ from langgraph.graph import StateGraph
from onyx.agents.agent_search.basic.states import BasicInput
from onyx.agents.agent_search.basic.states import BasicOutput
from onyx.agents.agent_search.basic.states import BasicState
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.utils.logger import setup_logger
logger = setup_logger()
@@ -33,13 +33,13 @@ def basic_graph_builder() -> StateGraph:
)
graph.add_node(
node="choose_tool",
action=choose_tool,
node="llm_tool_choice",
action=llm_tool_choice,
)
graph.add_node(
node="call_tool",
action=call_tool,
node="tool_call",
action=tool_call,
)
graph.add_node(
@@ -51,12 +51,12 @@ def basic_graph_builder() -> StateGraph:
graph.add_edge(start_key=START, end_key="prepare_tool_input")
graph.add_edge(start_key="prepare_tool_input", end_key="choose_tool")
graph.add_edge(start_key="prepare_tool_input", end_key="llm_tool_choice")
graph.add_conditional_edges("choose_tool", should_continue, ["call_tool", END])
graph.add_conditional_edges("llm_tool_choice", should_continue, ["tool_call", END])
graph.add_edge(
start_key="call_tool",
start_key="tool_call",
end_key="basic_use_tool_response",
)
@@ -73,7 +73,7 @@ def should_continue(state: BasicState) -> str:
# If there are no tool calls, basic graph already streamed the answer
END
if state.tool_choice is None
else "call_tool"
else "tool_call"
)
@@ -85,7 +85,7 @@ if __name__ == "__main__":
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(unused=True)
input = BasicInput(_unused=True)
primary_llm, fast_llm = get_default_llms()
with get_session_context_manager() as db_session:
config, _ = get_test_config(

View File

@@ -17,7 +17,7 @@ from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
class BasicInput(BaseModel):
# Langgraph needs a nonempty input, but we pass in all static
# data through a RunnableConfig.
unused: bool = True
_unused: bool = True
## Graph Output State

View File

@@ -9,6 +9,7 @@ class CoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
base_question: str = ""
log_messages: Annotated[list[str], add] = []
@@ -17,4 +18,4 @@ class SubgraphCoreState(BaseModel):
This is the core state that is shared across all subgraphs.
"""
log_messages: Annotated[list[str], add] = []
log_messages: Annotated[list[str], add]

View File

@@ -1,8 +1,8 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langchain_core.runnables.config import RunnableConfig
from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer.states import (
@@ -12,45 +12,14 @@ from onyx.agents.agent_search.deep_search.initial.generate_individual_sub_answer
SubQuestionAnswerCheckUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AgentLLMErrorType
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_CHECK
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import SUB_ANSWER_CHECK_PROMPT
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The sub-answer will be treated as 'relevant'",
rate_limit="LLM Rate Limit Error. The sub-answer will be treated as 'relevant'",
general_error="General LLM Error. The sub-answer will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def check_sub_answer(
state: AnswerQuestionState, config: RunnableConfig
) -> SubQuestionAnswerCheckUpdate:
@@ -84,42 +53,14 @@ def check_sub_answer(
graph_config = cast(GraphConfig, config["metadata"]["config"])
fast_llm = graph_config.tooling.fast_llm
agent_error: AgentErrorLog | None = None
response: BaseMessage | None = None
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_CHECK,
fast_llm.invoke,
response = list(
fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_CHECK,
)
)
quality_str: str = cast(str, response.content)
answer_quality = binary_string_test(
text=quality_str, positive_value=AGENT_POSITIVE_VALUE_STR
)
log_result = f"Answer quality: {quality_str}"
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Timeout Error - check sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
answer_quality = True
log_result = agent_error.error_result
logger.error("LLM Rate Limit Error - check sub answer")
quality_str: str = merge_message_runs(response, chunk_separator="")[0].content
answer_quality = "yes" in quality_str.lower()
return SubQuestionAnswerCheckUpdate(
answer_quality=answer_quality,
@@ -128,7 +69,7 @@ def check_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="check sub answer",
node_start_time=node_start_time,
result=log_result,
result=f"Answer quality: {quality_str}",
)
],
)

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import merge_message_runs
@@ -15,23 +16,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_sub_question_answer_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
dedup_sort_inference_section_list,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
LLM_ANSWER_ERROR_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import get_answer_citation_ids
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -46,25 +30,12 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import NO_RECOVERED_DOCS
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. A sub-answer could not be constructed and the sub-question will be ignored.",
rate_limit="LLM Rate Limit Error. A sub-answer could not be constructed and the sub-question will be ignored.",
general_error="General LLM Error. A sub-answer could not be constructed and the sub-question will be ignored.",
)
@log_function_time(print_only=True)
def generate_sub_answer(
state: AnswerQuestionState,
config: RunnableConfig,
@@ -80,17 +51,12 @@ def generate_sub_answer(
state.verified_reranked_documents
level, question_num = parse_question_id(state.question_id)
context_docs = state.context_documents[:AGENT_MAX_ANSWER_CONTEXT_DOCS]
context_docs = dedup_sort_inference_section_list(context_docs)
persona_contextualized_prompt = get_persona_agent_prompt_expressions(
graph_config.inputs.search_request.persona
).contextualized_prompt
if len(context_docs) == 0:
answer_str = NO_RECOVERED_DOCS
cited_documents: list = []
log_results = "No documents retrieved"
write_custom_event(
"sub_answers",
AgentAnswerPiece(
@@ -111,75 +77,43 @@ def generate_sub_answer(
config=fast_llm.config,
)
response: list[str | list[str | dict[str, Any]]] = []
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
response: list[str] = []
def stream_sub_answer() -> list[str]:
for message in fast_llm.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
for message in fast_llm.stream(
prompt=msg,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBANSWER_GENERATION,
stream_sub_answer,
start_stream_token = datetime.now()
write_custom_event(
"sub_answers",
AgentAnswerPiece(
answer_piece=content,
level=level,
level_question_num=question_num,
answer_type="agent_sub_answer",
),
writer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
logger.error("LLM Timeout Error - generate sub answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate sub answer")
response.append(content)
if agent_error:
answer_str = LLM_ANSWER_ERROR_MESSAGE
cited_documents = []
log_results = (
agent_error.error_result
or "Sub-answer generation failed due to LLM error"
)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
logger.debug(
f"Average dispatch time: {sum(dispatch_timings) / len(dispatch_timings)}"
)
else:
answer_str = merge_message_runs(response, chunk_separator="")[0].content
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
log_results = None
answer_citation_ids = get_answer_citation_ids(answer_str)
cited_documents = [
context_docs[id] for id in answer_citation_ids if id < len(context_docs)
]
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
@@ -197,7 +131,7 @@ def generate_sub_answer(
graph_component="initial - generate individual sub answer",
node_name="generate sub answer",
node_start_time=node_start_time,
result=log_results or "",
result="",
)
],
)

View File

@@ -42,8 +42,10 @@ class SubQuestionRetrievalIngestionUpdate(LoggerUpdate, BaseModel):
class SubQuestionAnsweringInput(SubgraphCoreState):
question: str
question_id: str
question: str = ""
question_id: str = (
"" # 0_0 is original question, everything else is <level>_<question_num>.
)
# level 0 is original question and first decomposition, level 1 is follow up, etc
# question_num is a unique number per original question per level.

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -25,31 +26,14 @@ from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import InitialAgentResultStats
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -58,20 +42,12 @@ from onyx.agents.agent_search.shared_graph_utils.utils import remove_document_ci
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
from onyx.context.search.models import InferenceSection
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import INITIAL_ANSWER_PROMPT_W_SUB_QUESTIONS
from onyx.prompts.agent_search import (
INITIAL_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
@@ -80,17 +56,8 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. The initial answer could not be generated.",
rate_limit="LLM Rate Limit Error. The initial answer could not be generated.",
general_error="General LLM Error. The initial answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_initial_answer(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -106,19 +73,15 @@ def generate_initial_answer(
question = graph_config.inputs.search_request.query
prompt_enrichment_components = get_prompt_enrichment_components(graph_config)
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
sub_questions_cited_documents = state.cited_documents
orig_question_retrieval_documents = state.orig_question_retrieved_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
orig_question_retrieval_documents
):
if original_doc_number not in structured_subquestion_docs.cited_documents:
if original_doc_number not in sub_questions_cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs) < AGENT_MAX_ANSWER_CONTEXT_DOCS
@@ -127,18 +90,15 @@ def generate_initial_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
sub_questions: list[str] = []
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=orig_question_retrieval_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_INITIAL_ANSWER,
streamed_documents = (
relevant_docs
if len(relevant_docs) > 0
else state.orig_question_retrieved_documents[:15]
)
# Use the query info from the base document retrieval
@@ -148,13 +108,11 @@ def generate_initial_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
relevance_list = relevance_from_docs(relevant_docs)
for tool_response in yield_search_responses(
query=question,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
reranked_sections=streamed_documents,
final_context_sections=streamed_documents,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -170,7 +128,7 @@ def generate_initial_answer(
writer,
)
if len(answer_generation_documents.context_documents) == 0:
if len(relevant_docs) == 0:
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
@@ -234,13 +192,9 @@ def generate_initial_answer(
sub_questions = all_sub_questions # Replace the original assignment
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
model = graph_config.tooling.fast_llm
doc_context = format_docs(answer_generation_documents.context_documents)
doc_context = format_docs(relevant_docs)
doc_context = trim_prompt_piece(
config=model.config,
prompt_piece=doc_context,
@@ -268,92 +222,32 @@ def generate_initial_answer(
)
]
streamed_tokens: list[str] = [""]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
def stream_initial_answer() -> list[str]:
response: list[str] = []
for message in model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_INITIAL_ANSWER_GENERATION,
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
response.append(content)
return response
start_stream_token = datetime.now()
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_INITIAL_ANSWER_GENERATION,
stream_initial_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate initial answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate initial answer")
if agent_error:
write_custom_event(
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
AgentAnswerPiece(
answer_piece=content,
level=0,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
return InitialAnswerUpdate(
initial_answer=None,
answer_error=AgentErrorLog(
error_message=agent_error.error_message or "An LLM error occurred",
error_type=agent_error.error_type,
error_result=agent_error.error_result,
),
initial_agent_stats=None,
generated_sub_questions=sub_questions,
agent_base_end_time=None,
agent_base_metrics=None,
log_messages=[
get_langgraph_node_log_string(
graph_component="initial - generate initial answer",
node_name="generate initial answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for initial answer: {sum(dispatch_timings) / len(dispatch_timings)}"

View File

@@ -10,10 +10,8 @@ from onyx.agents.agent_search.deep_search.main.states import (
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def validate_initial_answer(
state: SubQuestionRetrievalState,
) -> InitialAnswerQualityUpdate:
@@ -27,7 +25,7 @@ def validate_initial_answer(
f"--------{node_start_time}--------Checking for base answer validity - for not set True/False manually"
)
verdict = True # not actually required as already streamed out. Refinement will do similar
verdict = True
return InitialAnswerQualityUpdate(
initial_answer_quality_eval=verdict,

View File

@@ -23,8 +23,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
@@ -35,34 +33,17 @@ from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.models import SubQuestionPiece
from onyx.configs.agent_configs import AGENT_NUM_DOCS_FOR_DECOMPOSITION
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT,
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH,
)
from onyx.prompts.agent_search import (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT,
INITIAL_QUESTION_DECOMPOSITION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="LLM Timeout Error. Sub-questions could not be generated.",
rate_limit="LLM Rate Limit Error. Sub-questions could not be generated.",
general_error="General LLM Error. Sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def decompose_orig_question(
state: SubQuestionRetrievalState,
config: RunnableConfig,
@@ -104,15 +85,15 @@ def decompose_orig_question(
]
)
decomposition_prompt = INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH_ASSUMING_REFINEMENT.format(
question=question, sample_doc_str=sample_doc_str, history=history
decomposition_prompt = (
INITIAL_DECOMPOSITION_PROMPT_QUESTIONS_AFTER_SEARCH.format(
question=question, sample_doc_str=sample_doc_str, history=history
)
)
else:
decomposition_prompt = (
INITIAL_QUESTION_DECOMPOSITION_PROMPT_ASSUMING_REFINEMENT.format(
question=question, history=history
)
decomposition_prompt = INITIAL_QUESTION_DECOMPOSITION_PROMPT.format(
question=question, history=history
)
# Start decomposition
@@ -131,44 +112,32 @@ def decompose_orig_question(
)
# dispatches custom events for subquestion tokens, adding in subquestion ids.
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
streamed_tokens: list[BaseMessage_Content] = []
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_SUBQUESTION_GENERATION,
),
dispatch_subquestion(0, writer),
sep_callback=dispatch_subquestion_sep(0, writer),
)
deomposition_response = merge_content(*streamed_tokens)
decomposition_response = merge_content(*streamed_tokens)
# this call should only return strings. Commenting out for efficiency
# assert [type(tok) == str for tok in streamed_tokens]
list_of_subqs = cast(str, decomposition_response).split("\n")
# use no-op cast() instead of str() which runs code
# list_of_subquestions = clean_and_parse_list_string(cast(str, response))
list_of_subqs = cast(str, deomposition_response).split("\n")
initial_sub_questions = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
log_result = f"decomposed original question into {len(initial_sub_questions)} subquestions"
stop_event = StreamStopInfo(
stop_reason=StreamStopReason.FINISHED,
stream_type=StreamType.SUB_QUESTIONS,
level=0,
)
write_custom_event("stream_finished", stop_event, writer)
except (LLMTimeoutError, TimeoutError) as e:
logger.error("LLM Timeout Error - decompose orig question")
raise e # fail loudly on this critical step
except LLMRateLimitError as e:
logger.error("LLM Rate Limit Error - decompose orig question")
raise e
decomp_list: list[str] = [sq.strip() for sq in list_of_subqs if sq.strip() != ""]
return InitialQuestionDecompositionUpdate(
initial_sub_questions=initial_sub_questions,
initial_sub_questions=decomp_list,
agent_start_time=agent_start_time,
agent_refined_start_time=None,
agent_refined_end_time=None,
@@ -182,7 +151,7 @@ def decompose_orig_question(
graph_component="initial - generate sub answers",
node_name="decompose original question",
node_start_time=node_start_time,
result=log_result,
result=f"decomposed original question into {len(decomp_list)} subquestions",
)
],
)

View File

@@ -25,7 +25,7 @@ logger = setup_logger()
def route_initial_tool_choice(
state: MainState, config: RunnableConfig
) -> Literal["call_tool", "start_agent_search", "logging_node"]:
) -> Literal["tool_call", "start_agent_search", "logging_node"]:
"""
LangGraph edge to route to agent search.
"""
@@ -38,7 +38,7 @@ def route_initial_tool_choice(
):
return "start_agent_search"
else:
return "call_tool"
return "tool_call"
else:
return "logging_node"

View File

@@ -26,8 +26,8 @@ from onyx.agents.agent_search.deep_search.main.nodes.decide_refinement_need impo
from onyx.agents.agent_search.deep_search.main.nodes.extract_entities_terms import (
extract_entities_terms,
)
from onyx.agents.agent_search.deep_search.main.nodes.generate_validate_refined_answer import (
generate_validate_refined_answer,
from onyx.agents.agent_search.deep_search.main.nodes.generate_refined_answer import (
generate_refined_answer,
)
from onyx.agents.agent_search.deep_search.main.nodes.ingest_refined_sub_answers import (
ingest_refined_sub_answers,
@@ -43,14 +43,14 @@ from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.refinement.consolidate_sub_answers.graph_builder import (
answer_refined_query_graph_builder,
)
from onyx.agents.agent_search.orchestration.nodes.call_tool import call_tool
from onyx.agents.agent_search.orchestration.nodes.choose_tool import choose_tool
from onyx.agents.agent_search.orchestration.nodes.basic_use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.llm_tool_choice import llm_tool_choice
from onyx.agents.agent_search.orchestration.nodes.prepare_tool_input import (
prepare_tool_input,
)
from onyx.agents.agent_search.orchestration.nodes.use_tool_response import (
basic_use_tool_response,
)
from onyx.agents.agent_search.orchestration.nodes.tool_call import tool_call
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
from onyx.utils.logger import setup_logger
@@ -77,13 +77,13 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Choose the initial tool
graph.add_node(
node="initial_tool_choice",
action=choose_tool,
action=llm_tool_choice,
)
# Call the tool, if required
graph.add_node(
node="call_tool",
action=call_tool,
node="tool_call",
action=tool_call,
)
# Use the tool response
@@ -126,8 +126,8 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
# Node to generate the refined answer
graph.add_node(
node="generate_validate_refined_answer",
action=generate_validate_refined_answer,
node="generate_refined_answer",
action=generate_refined_answer,
)
# Early node to extract the entities and terms from the initial answer,
@@ -168,11 +168,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_conditional_edges(
"initial_tool_choice",
route_initial_tool_choice,
["call_tool", "start_agent_search", "logging_node"],
["tool_call", "start_agent_search", "logging_node"],
)
graph.add_edge(
start_key="call_tool",
start_key="tool_call",
end_key="basic_use_tool_response",
)
graph.add_edge(
@@ -215,11 +215,11 @@ def main_graph_builder(test_mode: bool = False) -> StateGraph:
graph.add_edge(
start_key="ingest_refined_sub_answers",
end_key="generate_validate_refined_answer",
end_key="generate_refined_answer",
)
graph.add_edge(
start_key="generate_validate_refined_answer",
start_key="generate_refined_answer",
end_key="compare_answers",
)
graph.add_edge(
@@ -252,7 +252,9 @@ if __name__ == "__main__":
db_session, primary_llm, fast_llm, search_request
)
inputs = MainInput(log_messages=[])
inputs = MainInput(
base_question=graph_config.inputs.search_request.query, log_messages=[]
)
for thing in compiled_graph.stream(
input=inputs,

View File

@@ -1,7 +1,6 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableConfig
from langgraph.types import StreamWriter
@@ -11,53 +10,16 @@ from onyx.agents.agent_search.deep_search.main.states import (
)
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import RefinedAnswerImprovement
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_COMPARE_ANSWERS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
INITIAL_REFINED_ANSWER_COMPARISON_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out, and the answers could not be compared.",
rate_limit="The LLM encountered a rate limit, and the answers could not be compared.",
general_error="The LLM encountered an error, and the answers could not be compared.",
)
_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE = (
"Answer quality is not sufficient, so stay with the initial answer."
)
@log_function_time(print_only=True)
def compare_answers(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> InitialRefinedAnswerComparisonUpdate:
@@ -72,78 +34,21 @@ def compare_answers(
initial_answer = state.initial_answer
refined_answer = state.refined_answer
# if answer quality is not sufficient, then stay with the initial answer
if not state.refined_answer_quality:
write_custom_event(
"refined_answer_improvement",
RefinedAnswerImprovement(
refined_answer_improvement=False,
),
writer,
)
return InitialRefinedAnswerComparisonUpdate(
refined_answer_improvement_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=_ANSWER_QUALITY_NOT_SUFFICIENT_MESSAGE,
)
],
)
compare_answers_prompt = INITIAL_REFINED_ANSWER_COMPARISON_PROMPT.format(
question=question, initial_answer=initial_answer, refined_answer=refined_answer
)
msg = [HumanMessage(content=compare_answers_prompt)]
agent_error: AgentErrorLog | None = None
# Get the rewritten queries in a defined format
model = graph_config.tooling.fast_llm
resp: BaseMessage | None = None
refined_answer_improvement: bool | None = None
# no need to stream this
try:
resp = run_with_timeout(
AGENT_TIMEOUT_LLM_COMPARE_ANSWERS,
model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_COMPARE_ANSWERS,
)
resp = model.invoke(msg)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - compare answers")
# continue as True in this support step
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - compare answers")
# continue as True in this support step
if agent_error or resp is None:
refined_answer_improvement = True
if agent_error:
log_result = agent_error.error_result
else:
log_result = "An answer could not be generated."
else:
refined_answer_improvement = binary_string_test(
text=cast(str, resp.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
)
log_result = f"Answer comparison: {refined_answer_improvement}"
refined_answer_improvement = (
isinstance(resp.content, str) and "yes" in resp.content.lower()
)
write_custom_event(
"refined_answer_improvement",
@@ -160,7 +65,7 @@ def compare_answers(
graph_component="main",
node_name="compare answers",
node_start_time=node_start_time,
result=log_result,
result=f"Answer comparison: {refined_answer_improvement}",
)
],
)

View File

@@ -21,18 +21,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
build_history_prompt,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
format_entity_term_extraction,
@@ -42,35 +30,12 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
)
from onyx.agents.agent_search.shared_graph_utils.utils import make_question_id
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS,
REFINEMENT_QUESTION_DECOMPOSITION_PROMPT,
)
from onyx.tools.models import ToolCallKickoff
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_ANSWERED_SUBQUESTIONS_DIVIDER = "\n\n---\n\n"
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The sub-questions could not be generated.",
rate_limit="The LLM encountered a rate limit. The sub-questions could not be generated.",
general_error="The LLM encountered an error. The sub-questions could not be generated.",
)
@log_function_time(print_only=True)
def create_refined_sub_questions(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedQuestionDecompositionUpdate:
@@ -107,10 +72,8 @@ def create_refined_sub_questions(
initial_question_answers = state.sub_question_results
addressed_subquestions_with_answers = [
f"Subquestion: {x.question}\nSubanswer:\n{x.answer}"
for x in initial_question_answers
if x.verified_high_quality and x.answer
addressed_question_list = [
x.question for x in initial_question_answers if x.verified_high_quality
]
failed_question_list = [
@@ -119,14 +82,12 @@ def create_refined_sub_questions(
msg = [
HumanMessage(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT_W_INITIAL_SUBQUESTION_ANSWERS.format(
content=REFINEMENT_QUESTION_DECOMPOSITION_PROMPT.format(
question=question,
history=history,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_subquestions_with_answers=_ANSWERED_SUBQUESTIONS_DIVIDER.join(
addressed_subquestions_with_answers
),
answered_sub_questions="\n - ".join(addressed_question_list),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
@@ -135,67 +96,29 @@ def create_refined_sub_questions(
# Grader
model = graph_config.tooling.fast_llm
agent_error: AgentErrorLog | None = None
streamed_tokens: list[BaseMessage_Content] = []
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_SUBQUESTION_GENERATION,
dispatch_separated,
model.stream(
msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_SUBQUESTION_GENERATION,
),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - create refined sub questions")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - create refined sub questions")
if agent_error:
refined_sub_question_dict: dict[int, RefinementSubQuestion] = {}
log_result = agent_error.error_result
write_custom_event(
"refined_sub_question_creation_error",
StreamingError(
error="Your LLM was not able to create refined sub questions in time and timed out. Please try again.",
),
writer,
)
streamed_tokens = dispatch_separated(
model.stream(msg),
dispatch_subquestion(1, writer),
sep_callback=dispatch_subquestion_sep(1, writer),
)
response = merge_content(*streamed_tokens)
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
response = merge_content(*streamed_tokens)
raise ValueError("LLM response is not a string")
if isinstance(response, str):
parsed_response = [q for q in response.split("\n") if q.strip() != ""]
else:
raise ValueError("LLM response is not a string")
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict = {}
for sub_question_num, sub_question in enumerate(parsed_response):
refined_sub_question = RefinementSubQuestion(
sub_question=sub_question,
sub_question_id=make_question_id(1, sub_question_num + 1),
verified=False,
answered=False,
answer="",
)
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
log_result = f"Created {len(refined_sub_question_dict)} refined sub questions"
refined_sub_question_dict[sub_question_num + 1] = refined_sub_question
return RefinedQuestionDecompositionUpdate(
refined_sub_questions=refined_sub_question_dict,
@@ -205,7 +128,7 @@ def create_refined_sub_questions(
graph_component="main",
node_name="create refined sub questions",
node_start_time=node_start_time,
result=log_result,
result=f"Created {len(refined_sub_question_dict)} refined sub questions",
)
],
)

View File

@@ -11,10 +11,8 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def decide_refinement_need(
state: MainState, config: RunnableConfig
) -> RequireRefinemenEvalUpdate:
@@ -28,19 +26,6 @@ def decide_refinement_need(
decision = True # TODO: just for current testing purposes
if state.answer_error:
return RequireRefinemenEvalUpdate(
require_refined_answer_eval=False,
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="decide refinement need",
node_start_time=node_start_time,
result="Timeout Error",
)
],
)
log_messages = [
get_langgraph_node_log_string(
graph_component="main",

View File

@@ -21,22 +21,11 @@ from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
)
from onyx.configs.constants import NUM_EXPLORATORY_DOCS
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT
from onyx.prompts.agent_search import ENTITY_TERM_EXTRACTION_PROMPT_JSON_EXAMPLE
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def extract_entities_terms(
state: MainState, config: RunnableConfig
) -> EntityTermExtractionUpdate:
@@ -90,42 +79,29 @@ def extract_entities_terms(
]
fast_llm = graph_config.tooling.fast_llm
# Grader
llm_response = fast_llm.invoke(
prompt=msg,
)
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
llm_response = run_with_timeout(
AGENT_TIMEOUT_LLM_ENTITY_TERM_EXTRACTION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_ENTITY_TERM_EXTRACTION,
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
)
cleaned_response = (
str(llm_response.content).replace("```json\n", "").replace("\n```", "")
)
first_bracket = cleaned_response.find("{")
last_bracket = cleaned_response.rfind("}")
cleaned_response = cleaned_response[first_bracket : last_bracket + 1]
try:
entity_extraction_result = EntityExtractionResult.model_validate_json(
cleaned_response
)
except ValueError:
logger.error(
"Failed to parse LLM response as JSON in Entity-Term Extraction"
)
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - extract entities terms")
except ValueError:
logger.error("Failed to parse LLM response as JSON in Entity-Term Extraction")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - extract entities terms")
entity_extraction_result = EntityExtractionResult(
retrieved_entities_relationships=EntityRelationshipTermExtraction(),
retrieved_entities_relationships=EntityRelationshipTermExtraction(
entities=[],
relationships=[],
terms=[],
),
)
return EntityTermExtractionUpdate(

View File

@@ -1,4 +1,5 @@
from datetime import datetime
from typing import Any
from typing import cast
from langchain_core.messages import HumanMessage
@@ -10,49 +11,27 @@ from onyx.agents.agent_search.deep_search.main.models import (
AgentRefinedMetrics,
)
from onyx.agents.agent_search.deep_search.main.operations import get_query_info
from onyx.agents.agent_search.deep_search.main.operations import logger
from onyx.agents.agent_search.deep_search.main.states import MainState
from onyx.agents.agent_search.deep_search.main.states import (
RefinedAnswerUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test_after_answer_separator,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
get_prompt_enrichment_components,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.calculations import (
get_answer_generation_documents,
)
from onyx.agents.agent_search.shared_graph_utils.constants import AGENT_ANSWER_SEPARATOR
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.models import InferenceSection
from onyx.agents.agent_search.shared_graph_utils.models import RefinedAgentStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
dedup_inference_sections,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
dispatch_main_answer_stop_info,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_deduplicated_structured_subquestion_documents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
@@ -64,58 +43,26 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.agents.agent_search.shared_graph_utils.utils import write_custom_event
from onyx.chat.models import AgentAnswerPiece
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import StreamingError
from onyx.configs.agent_configs import AGENT_ANSWER_GENERATION_BY_FAST_LLM
from onyx.configs.agent_configs import AGENT_MAX_ANSWER_CONTEXT_DOCS
from onyx.configs.agent_configs import AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER
from onyx.configs.agent_configs import AGENT_MIN_ORIG_QUESTION_DOCS
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
)
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
)
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_W_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS,
)
from onyx.prompts.agent_search import (
REFINED_ANSWER_VALIDATION_PROMPT,
)
from onyx.prompts.agent_search import (
SUB_QUESTION_ANSWER_TEMPLATE_REFINED,
)
from onyx.prompts.agent_search import UNKNOWN_ANSWER
from onyx.tools.tool_implementations.search.search_tool import yield_search_responses
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The refined answer could not be generated.",
rate_limit="The LLM encountered a rate limit. The refined answer could not be generated.",
general_error="The LLM encountered an error. The refined answer could not be generated.",
)
@log_function_time(print_only=True)
def generate_validate_refined_answer(
def generate_refined_answer(
state: MainState, config: RunnableConfig, writer: StreamWriter = lambda _: None
) -> RefinedAnswerUpdate:
"""
LangGraph node to generate the refined answer and validate it.
LangGraph node to generate the refined answer.
"""
node_start_time = datetime.now()
@@ -129,24 +76,19 @@ def generate_validate_refined_answer(
)
verified_reranked_documents = state.verified_reranked_documents
# get all documents cited in sub-questions
structured_subquestion_docs = get_deduplicated_structured_subquestion_documents(
state.sub_question_results
)
sub_questions_cited_documents = state.cited_documents
original_question_verified_documents = (
state.orig_question_verified_reranked_documents
)
original_question_retrieved_documents = state.orig_question_retrieved_documents
consolidated_context_docs = structured_subquestion_docs.cited_documents
consolidated_context_docs: list[InferenceSection] = sub_questions_cited_documents
counter = 0
for original_doc_number, original_doc in enumerate(
original_question_verified_documents
):
if original_doc_number not in structured_subquestion_docs.cited_documents:
if original_doc_number not in sub_questions_cited_documents:
if (
counter <= AGENT_MIN_ORIG_QUESTION_DOCS
or len(consolidated_context_docs)
@@ -157,16 +99,14 @@ def generate_validate_refined_answer(
counter += 1
# sort docs by their scores - though the scores refer to different questions
relevant_docs = dedup_inference_section_list(consolidated_context_docs)
relevant_docs = dedup_inference_sections(
consolidated_context_docs, consolidated_context_docs
)
# Create the list of documents to stream out. Start with the
# ones that wil be in the context (or, if len == 0, use docs
# that were retrieved for the original question)
answer_generation_documents = get_answer_generation_documents(
relevant_docs=relevant_docs,
context_documents=structured_subquestion_docs.context_documents,
original_question_docs=original_question_retrieved_documents,
max_docs=AGENT_MAX_STREAMED_DOCS_FOR_REFINED_ANSWER,
streaming_docs = (
relevant_docs
if len(relevant_docs) > 0
else original_question_retrieved_documents[:15]
)
query_info = get_query_info(state.orig_question_sub_query_retrieval_results)
@@ -174,13 +114,11 @@ def generate_validate_refined_answer(
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
# stream refined answer docs, or original question docs if no relevant docs are found
relevance_list = relevance_from_docs(
answer_generation_documents.streaming_documents
)
relevance_list = relevance_from_docs(relevant_docs)
for tool_response in yield_search_responses(
query=question,
reranked_sections=answer_generation_documents.streaming_documents,
final_context_sections=answer_generation_documents.context_documents,
reranked_sections=streaming_docs,
final_context_sections=streaming_docs,
search_query_info=query_info,
get_section_relevance=lambda: relevance_list,
search_tool=graph_config.tooling.search_tool,
@@ -260,13 +198,8 @@ def generate_validate_refined_answer(
else REFINED_ANSWER_PROMPT_WO_SUB_QUESTIONS
)
model = (
graph_config.tooling.fast_llm
if AGENT_ANSWER_GENERATION_BY_FAST_LLM
else graph_config.tooling.primary_llm
)
relevant_docs_str = format_docs(answer_generation_documents.context_documents)
model = graph_config.tooling.fast_llm
relevant_docs_str = format_docs(relevant_docs)
relevant_docs_str = trim_prompt_piece(
model.config,
relevant_docs_str,
@@ -296,89 +229,30 @@ def generate_validate_refined_answer(
)
]
streamed_tokens: list[str] = [""]
streamed_tokens: list[str | list[str | dict[str, Any]]] = [""]
dispatch_timings: list[float] = []
agent_error: AgentErrorLog | None = None
def stream_refined_answer() -> list[str]:
for message in model.stream(
msg, timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_GENERATION
):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
start_stream_token = datetime.now()
write_custom_event(
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
for message in model.stream(msg):
# TODO: in principle, the answer here COULD contain images, but we don't support that yet
content = message.content
if not isinstance(content, str):
raise ValueError(
f"Expected content to be a string, but got {type(content)}"
)
end_stream_token = datetime.now()
dispatch_timings.append(
(end_stream_token - start_stream_token).microseconds
)
streamed_tokens.append(content)
return streamed_tokens
try:
streamed_tokens = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_GENERATION,
stream_refined_answer,
)
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - generate refined answer")
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - generate refined answer")
if agent_error:
start_stream_token = datetime.now()
write_custom_event(
"initial_agent_answer",
StreamingError(
error=AGENT_LLM_TIMEOUT_MESSAGE,
"refined_agent_answer",
AgentAnswerPiece(
answer_piece=content,
level=1,
level_question_num=0,
answer_type="agent_level_answer",
),
writer,
)
return RefinedAnswerUpdate(
refined_answer=None,
refined_answer_quality=False, # TODO: replace this with the actual check value
refined_agent_stats=None,
agent_refined_end_time=None,
agent_refined_metrics=AgentRefinedMetrics(
refined_doc_boost_factor=0.0,
refined_question_boost_factor=0.0,
duration_s=None,
),
log_messages=[
get_langgraph_node_log_string(
graph_component="main",
node_name="generate refined answer",
node_start_time=node_start_time,
result=agent_error.error_result or "An LLM error occurred",
)
],
)
end_stream_token = datetime.now()
dispatch_timings.append((end_stream_token - start_stream_token).microseconds)
streamed_tokens.append(content)
logger.debug(
f"Average dispatch time for refined answer: {sum(dispatch_timings) / len(dispatch_timings)}"
@@ -387,47 +261,54 @@ def generate_validate_refined_answer(
response = merge_content(*streamed_tokens)
answer = cast(str, response)
# run a validation step for the refined answer only
msg = [
HumanMessage(
content=REFINED_ANSWER_VALIDATION_PROMPT.format(
question=question,
history=prompt_enrichment_components.history,
answered_sub_questions=sub_question_answer_str,
relevant_docs=relevant_docs_str,
proposed_answer=answer,
persona_specification=persona_contextualized_prompt,
)
)
]
validation_model = graph_config.tooling.fast_llm
try:
validation_response = run_with_timeout(
AGENT_TIMEOUT_LLM_REFINED_ANSWER_VALIDATION,
validation_model.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_REFINED_ANSWER_VALIDATION,
)
refined_answer_quality = binary_string_test_after_answer_separator(
text=cast(str, validation_response.content),
positive_value=AGENT_POSITIVE_VALUE_STR,
separator=AGENT_ANSWER_SEPARATOR,
)
except (LLMTimeoutError, TimeoutError):
refined_answer_quality = True
logger.error("LLM Timeout Error - validate refined answer")
except LLMRateLimitError:
refined_answer_quality = True
logger.error("LLM Rate Limit Error - validate refined answer")
refined_agent_stats = RefinedAgentStats(
revision_doc_efficiency=refined_doc_effectiveness,
revision_question_efficiency=revision_question_efficiency,
)
logger.debug(f"\n\n---INITIAL ANSWER ---\n\n Answer:\n Agent: {initial_answer}")
logger.debug("-" * 10)
logger.debug(f"\n\n---REVISED AGENT ANSWER ---\n\n Answer:\n Agent: {answer}")
logger.debug("-" * 100)
if state.initial_agent_stats:
initial_doc_boost_factor = state.initial_agent_stats.agent_effectiveness.get(
"utilized_chunk_ratio", "--"
)
initial_support_boost_factor = (
state.initial_agent_stats.agent_effectiveness.get("support_ratio", "--")
)
num_initial_verified_docs = state.initial_agent_stats.original_question.get(
"num_verified_documents", "--"
)
initial_verified_docs_avg_score = (
state.initial_agent_stats.original_question.get("verified_avg_score", "--")
)
initial_sub_questions_verified_docs = (
state.initial_agent_stats.sub_questions.get("num_verified_documents", "--")
)
logger.debug("INITIAL AGENT STATS")
logger.debug(f"Document Boost Factor: {initial_doc_boost_factor}")
logger.debug(f"Support Boost Factor: {initial_support_boost_factor}")
logger.debug(f"Originally Verified Docs: {num_initial_verified_docs}")
logger.debug(
f"Originally Verified Docs Avg Score: {initial_verified_docs_avg_score}"
)
logger.debug(
f"Sub-Questions Verified Docs: {initial_sub_questions_verified_docs}"
)
if refined_agent_stats:
logger.debug("-" * 10)
logger.debug("REFINED AGENT STATS")
logger.debug(
f"Revision Doc Factor: {refined_agent_stats.revision_doc_efficiency}"
)
logger.debug(
f"Revision Question Factor: {refined_agent_stats.revision_question_efficiency}"
)
agent_refined_end_time = datetime.now()
if state.agent_refined_start_time:
agent_refined_duration = (
@@ -444,7 +325,7 @@ def generate_validate_refined_answer(
return RefinedAnswerUpdate(
refined_answer=answer,
refined_answer_quality=refined_answer_quality,
refined_answer_quality=True, # TODO: replace this with the actual check value
refined_agent_stats=refined_agent_stats,
agent_refined_end_time=agent_refined_end_time,
agent_refined_metrics=agent_refined_metrics,

View File

@@ -17,7 +17,6 @@ from onyx.agents.agent_search.orchestration.states import ToolCallUpdate
from onyx.agents.agent_search.orchestration.states import ToolChoiceInput
from onyx.agents.agent_search.orchestration.states import ToolChoiceUpdate
from onyx.agents.agent_search.shared_graph_utils.models import AgentChunkRetrievalStats
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
@@ -77,7 +76,6 @@ class InitialAnswerUpdate(LoggerUpdate):
"""
initial_answer: str | None = None
answer_error: AgentErrorLog | None = None
initial_agent_stats: InitialAgentResultStats | None = None
generated_sub_questions: list[str] = []
agent_base_end_time: datetime | None = None
@@ -90,7 +88,6 @@ class RefinedAnswerUpdate(RefinedAgentEndStats, LoggerUpdate):
"""
refined_answer: str | None = None
answer_error: AgentErrorLog | None = None
refined_agent_stats: RefinedAgentStats | None = None
refined_answer_quality: bool = False

View File

@@ -16,46 +16,16 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
QueryExpansionUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_RATELIMIT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_LLM_TIMEOUT_MESSAGE,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AgentLLMErrorType,
)
from onyx.agents.agent_search.shared_graph_utils.models import AgentErrorLog
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import dispatch_separated
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.agents.agent_search.shared_graph_utils.utils import parse_question_id
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
QUERY_REWRITING_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="Query rewriting failed due to LLM timeout - the original question will be used.",
rate_limit="Query rewriting failed due to LLM rate limit - the original question will be used.",
general_error="Query rewriting failed due to LLM error - the original question will be used.",
)
@log_function_time(print_only=True)
def expand_queries(
state: ExpandedRetrievalInput,
config: RunnableConfig,
@@ -71,7 +41,7 @@ def expand_queries(
node_start_time = datetime.now()
question = state.question
model = graph_config.tooling.fast_llm
llm = graph_config.tooling.fast_llm
sub_question_id = state.sub_question_id
if sub_question_id is None:
level, question_num = 0, 0
@@ -84,45 +54,13 @@ def expand_queries(
)
]
agent_error: AgentErrorLog | None = None
llm_response_list: list[BaseMessage_Content] = []
llm_response = ""
rewritten_queries = []
llm_response_list = dispatch_separated(
llm.stream(prompt=msg), dispatch_subquery(level, question_num, writer)
)
try:
llm_response_list = run_with_timeout(
AGENT_TIMEOUT_LLM_QUERY_REWRITING_GENERATION,
dispatch_separated,
model.stream(
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_QUERY_REWRITING_GENERATION,
),
dispatch_subquery(level, question_num, writer),
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[
0
].content
rewritten_queries = llm_response.split("\n")
log_result = f"Number of expanded queries: {len(rewritten_queries)}"
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
except (LLMTimeoutError, TimeoutError):
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.TIMEOUT,
error_message=AGENT_LLM_TIMEOUT_MESSAGE,
error_result=_llm_node_error_strings.timeout,
)
logger.error("LLM Timeout Error - expand queries")
log_result = agent_error.error_result
except LLMRateLimitError:
agent_error = AgentErrorLog(
error_type=AgentLLMErrorType.RATE_LIMIT,
error_message=AGENT_LLM_RATELIMIT_MESSAGE,
error_result=_llm_node_error_strings.rate_limit,
)
logger.error("LLM Rate Limit Error - expand queries")
log_result = agent_error.error_result
# use subquestion as query if query generation fails
rewritten_queries = llm_response.split("\n")
return QueryExpansionUpdate(
expanded_queries=rewritten_queries,
@@ -131,7 +69,7 @@ def expand_queries(
graph_component="shared - expanded retrieval",
node_name="expand queries",
node_start_time=node_start_time,
result=log_result,
result=f"Number of expanded queries: {len(rewritten_queries)}",
)
],
)

View File

@@ -21,15 +21,12 @@ from onyx.agents.agent_search.shared_graph_utils.utils import (
from onyx.configs.agent_configs import AGENT_RERANKING_MAX_QUERY_RETRIEVAL_RESULTS
from onyx.configs.agent_configs import AGENT_RERANKING_STATS
from onyx.context.search.models import InferenceSection
from onyx.context.search.models import RerankingDetails
from onyx.context.search.models import SearchRequest
from onyx.context.search.pipeline import retrieval_preprocessing
from onyx.context.search.postprocessing.postprocessing import rerank_sections
from onyx.context.search.postprocessing.postprocessing import should_rerank
from onyx.db.engine import get_session_context_manager
from onyx.db.search_settings import get_current_search_settings
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def rerank_documents(
state: ExpandedRetrievalState, config: RunnableConfig
) -> DocRerankingUpdate:
@@ -42,8 +39,6 @@ def rerank_documents(
# Rerank post retrieval and verification. First, create a search query
# then create the list of reranked sections
# If no question defined/question is None in the state, use the original
# question from the search request as query
graph_config = cast(GraphConfig, config["metadata"]["config"])
question = (
@@ -52,42 +47,44 @@ def rerank_documents(
assert (
graph_config.tooling.search_tool
), "search_tool must be provided for agentic search"
with get_session_context_manager() as db_session:
# we ignore some of the user specified fields since this search is
# internal to agentic search, but we still want to pass through
# persona (for stuff like document sets) and rerank settings
# (to not make an unnecessary db call).
search_request = SearchRequest(
query=question,
persona=graph_config.inputs.search_request.persona,
rerank_settings=graph_config.inputs.search_request.rerank_settings,
)
_search_query = retrieval_preprocessing(
search_request=search_request,
user=graph_config.tooling.search_tool.user, # bit of a hack
llm=graph_config.tooling.fast_llm,
db_session=db_session,
)
# Note that these are passed in values from the API and are overrides which are typically None
rerank_settings = graph_config.inputs.search_request.rerank_settings
allow_agent_reranking = graph_config.behavior.allow_agent_reranking
# skip section filtering
if rerank_settings is None:
with get_session_context_manager() as db_session:
search_settings = get_current_search_settings(db_session)
if not search_settings.disable_rerank_for_streaming:
rerank_settings = RerankingDetails.from_db_model(search_settings)
# Initial default: no reranking. Will be overwritten below if reranking is warranted
reranked_documents = verified_documents
if should_rerank(rerank_settings) and len(verified_documents) > 0:
if (
_search_query.rerank_settings
and _search_query.rerank_settings.rerank_model_name
and _search_query.rerank_settings.num_rerank > 0
and len(verified_documents) > 0
):
if len(verified_documents) > 1:
if not allow_agent_reranking:
logger.info("Use of local rerank model without GPU, skipping reranking")
# No reranking, stay with verified_documents as default
else:
# Reranking is warranted, use the rerank_sections functon
reranked_documents = rerank_sections(
query_str=question,
# if runnable, then rerank_settings is not None
rerank_settings=cast(RerankingDetails, rerank_settings),
sections_to_rerank=verified_documents,
)
else:
logger.warning(
f"{len(verified_documents)} verified document(s) found, skipping reranking"
reranked_documents = rerank_sections(
_search_query,
verified_documents,
)
# No reranking, stay with verified_documents as default
else:
num = "No" if len(verified_documents) == 0 else "One"
logger.warning(f"{num} verified document(s) found, skipping reranking")
reranked_documents = verified_documents
else:
logger.warning("No reranking settings found, using unranked documents")
# No reranking, stay with verified_documents as default
reranked_documents = verified_documents
if AGENT_RERANKING_STATS:
fit_scores = get_fit_scores(verified_documents, reranked_documents)
else:

View File

@@ -23,15 +23,12 @@ from onyx.configs.agent_configs import AGENT_RETRIEVAL_STATS
from onyx.context.search.models import InferenceSection
from onyx.db.engine import get_session_context_manager
from onyx.tools.models import SearchQueryInfo
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.utils.timing import log_function_time
@log_function_time(print_only=True)
def retrieve_documents(
state: RetrievalInput, config: RunnableConfig
) -> DocRetrievalUpdate:
@@ -70,12 +67,9 @@ def retrieve_documents(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=query_to_retrieve,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
skip_query_analysis=not state.base_search,
),
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=callback_container.append,
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:

View File

@@ -1,7 +1,5 @@
from datetime import datetime
from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.runnables.config import RunnableConfig
@@ -12,40 +10,14 @@ from onyx.agents.agent_search.deep_search.shared.expanded_retrieval.states impor
DocVerificationUpdate,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
binary_string_test,
)
from onyx.agents.agent_search.shared_graph_utils.agent_prompt_ops import (
trim_prompt_piece,
)
from onyx.agents.agent_search.shared_graph_utils.constants import (
AGENT_POSITIVE_VALUE_STR,
)
from onyx.agents.agent_search.shared_graph_utils.models import LLMNodeErrorStrings
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_langgraph_node_log_string,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.prompts.agent_search import (
DOCUMENT_VERIFICATION_PROMPT,
)
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
from onyx.utils.timing import log_function_time
logger = setup_logger()
_llm_node_error_strings = LLMNodeErrorStrings(
timeout="The LLM timed out. The document could not be verified. The document will be treated as 'relevant'",
rate_limit="The LLM encountered a rate limit. The document could not be verified. The document will be treated as 'relevant'",
general_error="The LLM encountered an error. The document could not be verified. The document will be treated as 'relevant'",
)
@log_function_time(print_only=True)
def verify_documents(
state: DocVerificationInput, config: RunnableConfig
) -> DocVerificationUpdate:
@@ -54,14 +26,12 @@ def verify_documents(
Args:
state (DocVerificationInput): The current state
config (RunnableConfig): Configuration containing AgentSearchConfig
config (RunnableConfig): Configuration containing ProSearchConfig
Updates:
verified_documents: list[InferenceSection]
"""
node_start_time = datetime.now()
question = state.question
retrieved_document_to_verify = state.retrieved_document_to_verify
document_content = retrieved_document_to_verify.combined_content
@@ -81,43 +51,12 @@ def verify_documents(
)
]
response: BaseMessage | None = None
response = fast_llm.invoke(msg)
verified_documents = [
retrieved_document_to_verify
] # default is to treat document as relevant
try:
response = run_with_timeout(
AGENT_TIMEOUT_LLM_DOCUMENT_VERIFICATION,
fast_llm.invoke,
prompt=msg,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_DOCUMENT_VERIFICATION,
)
assert isinstance(response.content, str)
if not binary_string_test(
text=response.content, positive_value=AGENT_POSITIVE_VALUE_STR
):
verified_documents = []
except (LLMTimeoutError, TimeoutError):
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Timeout Error - verify documents")
except LLMRateLimitError:
# In this case, we decide to continue and don't raise an error, as
# little harm in letting some docs through that are less relevant.
logger.error("LLM Rate Limit Error - verify documents")
verified_documents = []
if isinstance(response.content, str) and "yes" in response.content.lower():
verified_documents.append(retrieved_document_to_verify)
return DocVerificationUpdate(
verified_documents=verified_documents,
log_messages=[
get_langgraph_node_log_string(
graph_component="shared - expanded retrieval",
node_name="verify documents",
node_start_time=node_start_time,
)
],
)

View File

@@ -21,13 +21,9 @@ from onyx.context.search.models import InferenceSection
class ExpandedRetrievalInput(SubgraphCoreState):
# exception from 'no default value'for LangGraph input states
# Here, sub_question_id default None implies usage for the
# original question. This is sometimes needed for nested sub-graphs
question: str = ""
base_search: bool = False
sub_question_id: str | None = None
question: str
base_search: bool
## Update/Return States
@@ -38,7 +34,7 @@ class QueryExpansionUpdate(LoggerUpdate, BaseModel):
log_messages: list[str] = []
class DocVerificationUpdate(LoggerUpdate, BaseModel):
class DocVerificationUpdate(BaseModel):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections] = []
@@ -92,4 +88,4 @@ class DocVerificationInput(ExpandedRetrievalInput):
class RetrievalInput(ExpandedRetrievalInput):
query_to_retrieve: str
query_to_retrieve: str = ""

View File

@@ -67,7 +67,6 @@ class GraphSearchConfig(BaseModel):
# Whether to allow creation of refinement questions (and entity extraction, etc.)
allow_refinement: bool = True
skip_gen_ai_answer_generation: bool = False
allow_agent_reranking: bool = False
class GraphConfig(BaseModel):

View File

@@ -25,7 +25,7 @@ logger = setup_logger()
# and a function that handles extracting the necessary fields
# from the state and config
# TODO: fan-out to multiple tool call nodes? Make this configurable?
def choose_tool(
def llm_tool_choice(
state: ToolChoiceState,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,
@@ -98,16 +98,8 @@ def choose_tool(
# For tool calling LLMs, we want to insert the task prompt as part of this flow, this is because the LLM
# may choose to not call any tools and just generate the answer, in which case the task prompt is needed.
prompt=built_prompt,
tools=(
[tool.tool_definition() for tool in tools] or None
if using_tool_calling_llm
else None
),
tool_choice=(
"required"
if tools and force_use_tool.force_use and using_tool_calling_llm
else None
),
tools=[tool.tool_definition() for tool in tools] or None,
tool_choice=("required" if tools and force_use_tool.force_use else None),
structured_response_format=structured_response_format,
)

View File

@@ -28,7 +28,7 @@ def emit_packet(packet: AnswerPacket, writer: StreamWriter) -> None:
write_custom_event("basic_response", packet, writer)
def call_tool(
def tool_call(
state: ToolChoiceUpdate,
config: RunnableConfig,
writer: StreamWriter = lambda _: None,

View File

@@ -12,7 +12,7 @@ from onyx.agents.agent_search.deep_search.main.graph_builder import (
main_graph_builder as main_graph_builder_a,
)
from onyx.agents.agent_search.deep_search.main.states import (
MainInput as MainInput,
MainInput as MainInput_a,
)
from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.utils import get_test_config
@@ -21,7 +21,6 @@ from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStream
from onyx.chat.models import ExtendedToolResponse
from onyx.chat.models import RefinedAnswerImprovement
from onyx.chat.models import StreamingError
from onyx.chat.models import StreamStopInfo
from onyx.chat.models import SubQueryPiece
from onyx.chat.models import SubQuestionPiece
@@ -34,7 +33,6 @@ from onyx.llm.factory import get_default_llms
from onyx.tools.tool_runner import ToolCallKickoff
from onyx.utils.logger import setup_logger
logger = setup_logger()
_COMPILED_GRAPH: CompiledStateGraph | None = None
@@ -74,15 +72,13 @@ def _parse_agent_event(
return cast(AnswerPacket, event["data"])
elif event["name"] == "refined_answer_improvement":
return cast(RefinedAnswerImprovement, event["data"])
elif event["name"] == "refined_sub_question_creation_error":
return cast(StreamingError, event["data"])
return None
def manage_sync_streaming(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
graph_input: BasicInput | MainInput,
graph_input: BasicInput | MainInput_a,
) -> Iterable[StreamEvent]:
message_id = config.persistence.message_id if config.persistence else None
for event in compiled_graph.stream(
@@ -96,7 +92,7 @@ def manage_sync_streaming(
def run_graph(
compiled_graph: CompiledStateGraph,
config: GraphConfig,
input: BasicInput | MainInput,
input: BasicInput | MainInput_a,
) -> AnswerStream:
config.behavior.perform_initial_search_decomposition = (
INITIAL_SEARCH_DECOMPOSITION_ENABLED
@@ -127,7 +123,9 @@ def run_main_graph(
) -> AnswerStream:
compiled_graph = load_compiled_graph()
input = MainInput(log_messages=[])
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
# Agent search is not a Tool per se, but this is helpful for the frontend
yield ToolCallKickoff(
@@ -142,7 +140,7 @@ def run_basic_graph(
) -> AnswerStream:
graph = basic_graph_builder()
compiled_graph = graph.compile()
input = BasicInput(unused=True)
input = BasicInput()
return run_graph(compiled_graph, config, input)
@@ -174,7 +172,9 @@ if __name__ == "__main__":
# search_request.persona = get_persona_by_id(1, None, db_session)
# config.perform_initial_search_path_decision = False
config.behavior.perform_initial_search_decomposition = True
input = MainInput(log_messages=[])
input = MainInput_a(
base_question=config.inputs.search_request.query, log_messages=[]
)
tool_responses: list = []
for output in run_graph(compiled_graph, config, input):

View File

@@ -7,7 +7,6 @@ from onyx.agents.agent_search.models import GraphConfig
from onyx.agents.agent_search.shared_graph_utils.models import (
AgentPromptEnrichmentComponents,
)
from onyx.agents.agent_search.shared_graph_utils.utils import format_docs
from onyx.agents.agent_search.shared_graph_utils.utils import (
get_persona_agent_prompt_expressions,
)
@@ -41,7 +40,13 @@ def build_sub_question_answer_prompt(
date_str = build_date_time_string()
docs_str = format_docs(docs)
# TODO: This should include document metadata and title
docs_format_list = [
f"Document Number: [D{doc_num + 1}]\nContent: {doc.combined_content}\n\n"
for doc_num, doc in enumerate(docs)
]
docs_str = "\n\n".join(docs_format_list)
docs_str = trim_prompt_piece(
config,
@@ -145,38 +150,3 @@ def get_prompt_enrichment_components(
history=history,
date_str=date_str,
)
def binary_string_test(text: str, positive_value: str = "yes") -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
return positive_value.lower() in text.lower()
def binary_string_test_after_answer_separator(
text: str, positive_value: str = "yes", separator: str = "Answer:"
) -> bool:
"""
Tests if a string contains a positive value (case-insensitive).
Args:
text: The string to test
positive_value: The value to look for (defaults to "yes")
Returns:
True if the positive value is found in the text
"""
if separator not in text:
return False
relevant_text = text.split(f"{separator}")[-1]
return binary_string_test(relevant_text, positive_value)

View File

@@ -1,11 +1,7 @@
import numpy as np
from onyx.agents.agent_search.shared_graph_utils.models import AnswerGenerationDocuments
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitScoreMetrics
from onyx.agents.agent_search.shared_graph_utils.models import RetrievalFitStats
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import SectionRelevancePiece
from onyx.context.search.models import InferenceSection
from onyx.utils.logger import setup_logger
@@ -100,106 +96,3 @@ def get_fit_scores(
)
return fit_eval
def get_answer_generation_documents(
relevant_docs: list[InferenceSection],
context_documents: list[InferenceSection],
original_question_docs: list[InferenceSection],
max_docs: int,
) -> AnswerGenerationDocuments:
"""
Create a deduplicated list of documents to stream, prioritizing relevant docs.
Args:
relevant_docs: Primary documents to include
context_documents: Additional context documents to append
original_question_docs: Original question documents to append
max_docs: Maximum number of documents to return
Returns:
List of deduplicated documents, limited to max_docs
"""
# get relevant_doc ids
relevant_doc_ids = [doc.center_chunk.document_id for doc in relevant_docs]
# Start with relevant docs or fallback to original question docs
streaming_documents = relevant_docs.copy()
# Use a set for O(1) lookups of document IDs
seen_doc_ids = {doc.center_chunk.document_id for doc in streaming_documents}
# Combine additional documents to check in one iteration
additional_docs = context_documents + original_question_docs
for doc_idx, doc in enumerate(additional_docs):
doc_id = doc.center_chunk.document_id
if doc_id not in seen_doc_ids:
streaming_documents.append(doc)
seen_doc_ids.add(doc_id)
streaming_documents = dedup_inference_section_list(streaming_documents)
relevant_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id in relevant_doc_ids
]
relevant_streaming_docs = dedup_sort_inference_section_list(relevant_streaming_docs)
additional_streaming_docs = [
doc
for doc in streaming_documents
if doc.center_chunk.document_id not in relevant_doc_ids
]
additional_streaming_docs = dedup_sort_inference_section_list(
additional_streaming_docs
)
for doc in additional_streaming_docs:
if doc.center_chunk.score:
doc.center_chunk.score += -2.0
else:
doc.center_chunk.score = -2.0
sorted_streaming_documents = relevant_streaming_docs + additional_streaming_docs
return AnswerGenerationDocuments(
streaming_documents=sorted_streaming_documents[:max_docs],
context_documents=relevant_streaming_docs[:max_docs],
)
def dedup_sort_inference_section_list(
sections: list[InferenceSection],
) -> list[InferenceSection]:
"""Deduplicates InferenceSections by document_id and sorts by score.
Args:
sections: List of InferenceSections to deduplicate and sort
Returns:
Deduplicated list of InferenceSections sorted by score in descending order
"""
# dedupe/merge with existing framework
sections = dedup_inference_section_list(sections)
# Use dict to deduplicate by document_id, keeping highest scored version
unique_sections: dict[str, InferenceSection] = {}
for section in sections:
doc_id = section.center_chunk.document_id
if doc_id not in unique_sections:
unique_sections[doc_id] = section
continue
# Keep version with higher score
existing_score = unique_sections[doc_id].center_chunk.score or 0
new_score = section.center_chunk.score or 0
if new_score > existing_score:
unique_sections[doc_id] = section
# Sort by score in descending order, handling None scores
sorted_sections = sorted(
unique_sections.values(), key=lambda x: x.center_chunk.score or 0, reverse=True
)
return sorted_sections

View File

@@ -1,19 +0,0 @@
from enum import Enum
AGENT_LLM_TIMEOUT_MESSAGE = "The agent timed out. Please try again."
AGENT_LLM_ERROR_MESSAGE = "The agent encountered an error. Please try again."
AGENT_LLM_RATELIMIT_MESSAGE = (
"The agent encountered a rate limit error. Please try again."
)
LLM_ANSWER_ERROR_MESSAGE = "The question was not answered due to an LLM error."
AGENT_POSITIVE_VALUE_STR = "yes"
AGENT_NEGATIVE_VALUE_STR = "no"
AGENT_ANSWER_SEPARATOR = "Answer:"
class AgentLLMErrorType(str, Enum):
TIMEOUT = "timeout"
RATE_LIMIT = "rate_limit"
GENERAL_ERROR = "general_error"

View File

@@ -1,5 +1,3 @@
from typing import Any
from pydantic import BaseModel
from onyx.agents.agent_search.deep_search.main.models import (
@@ -58,12 +56,6 @@ class InitialAgentResultStats(BaseModel):
agent_effectiveness: dict[str, float | int | None]
class AgentErrorLog(BaseModel):
error_message: str
error_type: str
error_result: str
class RefinedAgentStats(BaseModel):
revision_doc_efficiency: float | None
revision_question_efficiency: float | None
@@ -118,11 +110,6 @@ class SubQuestionAnswerResults(BaseModel):
sub_question_retrieval_stats: AgentChunkRetrievalStats
class StructuredSubquestionDocuments(BaseModel):
cited_documents: list[InferenceSection]
context_documents: list[InferenceSection]
class CombinedAgentMetrics(BaseModel):
timings: AgentTimings
base_metrics: AgentBaseMetrics | None
@@ -139,17 +126,3 @@ class AgentPromptEnrichmentComponents(BaseModel):
persona_prompts: PersonaPromptExpressions
history: str
date_str: str
class LLMNodeErrorStrings(BaseModel):
timeout: str = "LLM Timeout Error"
rate_limit: str = "LLM Rate Limit Error"
general_error: str = "General LLM Error"
class AnswerGenerationDocuments(BaseModel):
streaming_documents: list[InferenceSection]
context_documents: list[InferenceSection]
BaseMessage_Content = str | list[str | dict[str, Any]]

View File

@@ -12,13 +12,6 @@ def dedup_inference_sections(
return deduped
def dedup_inference_section_list(
list: list[InferenceSection],
) -> list[InferenceSection]:
deduped = _merge_sections(list)
return deduped
def dedup_question_answer_results(
question_answer_results_1: list[SubQuestionAnswerResults],
question_answer_results_2: list[SubQuestionAnswerResults],

View File

@@ -20,18 +20,10 @@ from onyx.agents.agent_search.models import GraphInputs
from onyx.agents.agent_search.models import GraphPersistence
from onyx.agents.agent_search.models import GraphSearchConfig
from onyx.agents.agent_search.models import GraphTooling
from onyx.agents.agent_search.shared_graph_utils.models import BaseMessage_Content
from onyx.agents.agent_search.shared_graph_utils.models import (
EntityRelationshipTermExtraction,
)
from onyx.agents.agent_search.shared_graph_utils.models import PersonaPromptExpressions
from onyx.agents.agent_search.shared_graph_utils.models import (
StructuredSubquestionDocuments,
)
from onyx.agents.agent_search.shared_graph_utils.models import SubQuestionAnswerResults
from onyx.agents.agent_search.shared_graph_utils.operators import (
dedup_inference_section_list,
)
from onyx.chat.models import AnswerPacket
from onyx.chat.models import AnswerStyleConfig
from onyx.chat.models import CitationConfig
@@ -42,10 +34,6 @@ from onyx.chat.models import StreamStopInfo
from onyx.chat.models import StreamStopReason
from onyx.chat.models import StreamType
from onyx.chat.prompt_builder.answer_prompt_builder import AnswerPromptBuilder
from onyx.configs.agent_configs import (
AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
from onyx.configs.agent_configs import AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION
from onyx.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from onyx.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from onyx.configs.constants import DEFAULT_PERSONA_ID
@@ -58,8 +46,6 @@ from onyx.context.search.models import SearchRequest
from onyx.db.engine import get_session_context_manager
from onyx.db.persona import get_persona_by_id
from onyx.db.persona import Persona
from onyx.llm.chat_llm import LLMRateLimitError
from onyx.llm.chat_llm import LLMTimeoutError
from onyx.llm.interfaces import LLM
from onyx.prompts.agent_search import (
ASSISTANT_SYSTEM_PROMPT_DEFAULT,
@@ -72,7 +58,6 @@ from onyx.prompts.agent_search import (
)
from onyx.prompts.prompt_utils import handle_onyx_date_awareness
from onyx.tools.force import ForceUseTool
from onyx.tools.models import SearchToolOverrideKwargs
from onyx.tools.tool_constructor import SearchToolConfig
from onyx.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
@@ -80,10 +65,8 @@ from onyx.tools.tool_implementations.search.search_tool import (
from onyx.tools.tool_implementations.search.search_tool import SearchResponseSummary
from onyx.tools.tool_implementations.search.search_tool import SearchTool
from onyx.tools.utils import explicit_tool_calling_supported
from onyx.utils.logger import setup_logger
from onyx.utils.threadpool_concurrency import run_with_timeout
logger = setup_logger()
BaseMessage_Content = str | list[str | dict[str, Any]]
# Post-processing
@@ -235,10 +218,7 @@ def get_test_config(
using_tool_calling_llm=using_tool_calling_llm,
)
chat_session_id = (
os.environ.get("ONYX_AS_CHAT_SESSION_ID")
or "00000000-0000-0000-0000-000000000000"
)
chat_session_id = os.environ.get("ONYX_AS_CHAT_SESSION_ID")
assert (
chat_session_id is not None
), "ONYX_AS_CHAT_SESSION_ID must be set for backend tests"
@@ -361,12 +341,8 @@ def retrieve_search_docs(
with get_session_context_manager() as db_session:
for tool_response in search_tool.run(
query=question,
override_kwargs=SearchToolOverrideKwargs(
force_no_rerank=True,
alternate_db_session=db_session,
retrieved_sections_callback=None,
skip_query_analysis=False,
),
force_no_rerank=True,
alternate_db_session=db_session,
):
# get retrieved docs to send to the rest of the graph
if tool_response.id == SEARCH_RESPONSE_SUMMARY_ID:
@@ -396,26 +372,8 @@ def summarize_history(
)
)
try:
history_response = run_with_timeout(
AGENT_TIMEOUT_LLM_HISTORY_SUMMARY_GENERATION,
llm.invoke,
history_context_prompt,
timeout_override=AGENT_TIMEOUT_CONNECT_LLM_HISTORY_SUMMARY_GENERATION,
)
except (LLMTimeoutError, TimeoutError):
logger.error("LLM Timeout Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
except LLMRateLimitError:
logger.error("LLM Rate Limit Error - summarize history")
return (
history # this is what is done at this point anyway, so we default to this
)
history_response = llm.invoke(history_context_prompt)
assert isinstance(history_response.content, str)
return history_response.content
@@ -481,27 +439,3 @@ def remove_document_citations(text: str) -> str:
# \d+ - one or more digits
# \] - literal ] character
return re.sub(r"\[(?:D|Q)?\d+\]", "", text)
def get_deduplicated_structured_subquestion_documents(
sub_question_results: list[SubQuestionAnswerResults],
) -> StructuredSubquestionDocuments:
"""
Extract and deduplicate all cited documents from sub-question results.
Args:
sub_question_results: List of sub-question results containing cited documents
Returns:
Deduplicated list of cited documents
"""
cited_docs = [
doc for result in sub_question_results for doc in result.cited_documents
]
context_docs = [
doc for result in sub_question_results for doc in result.context_documents
]
return StructuredSubquestionDocuments(
cited_documents=dedup_inference_section_list(cited_docs),
context_documents=dedup_inference_section_list(context_docs),
)

View File

@@ -10,7 +10,6 @@ from pydantic import BaseModel
from onyx.auth.schemas import UserRole
from onyx.configs.app_configs import API_KEY_HASH_ROUNDS
from shared_configs.configs import MULTI_TENANT
_API_KEY_HEADER_NAME = "Authorization"
@@ -36,7 +35,8 @@ class ApiKeyDescriptor(BaseModel):
def generate_api_key(tenant_id: str | None = None) -> str:
if not MULTI_TENANT or not tenant_id:
# For backwards compatibility, if no tenant_id, generate old style key
if not tenant_id:
return _API_KEY_PREFIX + secrets.token_urlsafe(_API_KEY_LEN)
encoded_tenant = quote(tenant_id) # URL encode the tenant ID

View File

@@ -1,9 +1,7 @@
import smtplib
from datetime import datetime
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.utils import formatdate
from email.utils import make_msgid
from textwrap import dedent
from onyx.configs.app_configs import EMAIL_CONFIGURED
from onyx.configs.app_configs import EMAIL_FROM
@@ -12,156 +10,26 @@ from onyx.configs.app_configs import SMTP_PORT
from onyx.configs.app_configs import SMTP_SERVER
from onyx.configs.app_configs import SMTP_USER
from onyx.configs.app_configs import WEB_DOMAIN
from onyx.configs.constants import AuthType
from onyx.configs.constants import TENANT_ID_COOKIE_NAME
from onyx.db.models import User
from shared_configs.configs import MULTI_TENANT
HTML_EMAIL_TEMPLATE = """\
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width" />
<title>{title}</title>
<style>
body, table, td, a {{
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
text-size-adjust: 100%;
margin: 0;
padding: 0;
-webkit-font-smoothing: antialiased;
-webkit-text-size-adjust: none;
}}
body {{
background-color: #f7f7f7;
color: #333;
}}
.body-content {{
color: #333;
}}
.email-container {{
width: 100%;
max-width: 600px;
margin: 0 auto;
background-color: #ffffff;
border-radius: 6px;
overflow: hidden;
border: 1px solid #eaeaea;
}}
.header {{
background-color: #000000;
padding: 20px;
text-align: center;
}}
.header img {{
max-width: 140px;
}}
.body-content {{
padding: 20px 30px;
}}
.title {{
font-size: 20px;
font-weight: bold;
margin: 0 0 10px;
}}
.message {{
font-size: 16px;
line-height: 1.5;
margin: 0 0 20px;
}}
.cta-button {{
display: inline-block;
padding: 12px 20px;
background-color: #000000;
color: #ffffff !important;
text-decoration: none;
border-radius: 4px;
font-weight: 500;
}}
.footer {{
font-size: 13px;
color: #6A7280;
text-align: center;
padding: 20px;
}}
.footer a {{
color: #6b7280;
text-decoration: underline;
}}
</style>
</head>
<body>
<table role="presentation" class="email-container" cellpadding="0" cellspacing="0">
<tr>
<td class="header">
<img
style="background-color: #ffffff; border-radius: 8px;"
src="https://www.onyx.app/logos/customer/onyx.png"
alt="Onyx Logo"
>
</td>
</tr>
<tr>
<td class="body-content">
<h1 class="title">{heading}</h1>
<div class="message">
{message}
</div>
{cta_block}
</td>
</tr>
<tr>
<td class="footer">
© {year} Onyx. All rights reserved.
<br>
Have questions? Join our Slack community <a href="https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA">here</a>.
</td>
</tr>
</table>
</body>
</html>
"""
def build_html_email(
heading: str, message: str, cta_text: str | None = None, cta_link: str | None = None
) -> str:
if cta_text and cta_link:
cta_block = f'<a class="cta-button" href="{cta_link}">{cta_text}</a>'
else:
cta_block = ""
return HTML_EMAIL_TEMPLATE.format(
title=heading,
heading=heading,
message=message,
cta_block=cta_block,
year=datetime.now().year,
)
def send_email(
user_email: str,
subject: str,
html_body: str,
text_body: str,
body: str,
mail_from: str = EMAIL_FROM,
) -> None:
if not EMAIL_CONFIGURED:
raise ValueError("Email is not configured.")
msg = MIMEMultipart("alternative")
msg = MIMEMultipart()
msg["Subject"] = subject
msg["To"] = user_email
msg["From"] = mail_from
msg["Date"] = formatdate(localtime=True)
msg["Message-ID"] = make_msgid(domain="onyx.app")
if mail_from:
msg["From"] = mail_from
part_text = MIMEText(text_body, "plain")
part_html = MIMEText(html_body, "html")
msg.attach(part_text)
msg.attach(part_html)
msg.attach(MIMEText(body))
try:
with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as s:
@@ -172,89 +40,41 @@ def send_email(
raise e
def send_subscription_cancellation_email(user_email: str) -> None:
# Example usage of the reusable HTML
subject = "Your Onyx Subscription Has Been Canceled"
heading = "Subscription Canceled"
message = (
"<p>We're sorry to see you go.</p>"
"<p>Your subscription has been canceled and will end on your next billing date.</p>"
"<p>If you change your mind, you can always come back!</p>"
)
cta_text = "Renew Subscription"
cta_link = "https://www.onyx.app/pricing"
html_content = build_html_email(heading, message, cta_text, cta_link)
text_content = (
"We're sorry to see you go.\n"
"Your subscription has been canceled and will end on your next billing date.\n"
"If you change your mind, visit https://www.onyx.app/pricing"
)
send_email(user_email, subject, html_content, text_content)
def send_user_email_invite(
user_email: str, current_user: User, auth_type: AuthType
) -> None:
def send_user_email_invite(user_email: str, current_user: User) -> None:
subject = "Invitation to Join Onyx Organization"
heading = "You've Been Invited!"
body = dedent(
f"""\
Hello,
# the exact action taken by the user, and thus the message, depends on the auth type
message = f"<p>You have been invited by {current_user.email} to join an organization on Onyx.</p>"
if auth_type == AuthType.CLOUD:
message += (
"<p>To join the organization, please click the button below to set a password "
"or login with Google and complete your registration.</p>"
)
elif auth_type == AuthType.BASIC:
message += (
"<p>To join the organization, please click the button below to set a password "
"and complete your registration.</p>"
)
elif auth_type == AuthType.GOOGLE_OAUTH:
message += (
"<p>To join the organization, please click the button below to login with Google "
"and complete your registration.</p>"
)
elif auth_type == AuthType.OIDC or auth_type == AuthType.SAML:
message += (
"<p>To join the organization, please click the button below to"
" complete your registration.</p>"
)
else:
raise ValueError(f"Invalid auth type: {auth_type}")
You have been invited to join an organization on Onyx.
cta_text = "Join Organization"
cta_link = f"{WEB_DOMAIN}/auth/signup?email={user_email}"
html_content = build_html_email(heading, message, cta_text, cta_link)
To join the organization, please visit the following link:
# text content is the fallback for clients that don't support HTML
# not as critical, so not having special cases for each auth type
text_content = (
f"You have been invited by {current_user.email} to join an organization on Onyx.\n"
"To join the organization, please visit the following link:\n"
f"{WEB_DOMAIN}/auth/signup?email={user_email}\n"
{WEB_DOMAIN}/auth/signup?email={user_email}
You'll be asked to set a password or login with Google to complete your registration.
Best regards,
The Onyx Team
"""
)
if auth_type == AuthType.CLOUD:
text_content += "You'll be asked to set a password or login with Google to complete your registration."
send_email(user_email, subject, html_content, text_content)
send_email(user_email, subject, body, current_user.email)
def send_forgot_password_email(
user_email: str,
token: str,
tenant_id: str,
mail_from: str = EMAIL_FROM,
tenant_id: str | None = None,
) -> None:
# Builds a forgot password email with or without fancy HTML
subject = "Onyx Forgot Password"
link = f"{WEB_DOMAIN}/auth/reset-password?token={token}"
if MULTI_TENANT:
if tenant_id:
link += f"&{TENANT_ID_COOKIE_NAME}={tenant_id}"
message = f"<p>Click the following link to reset your password:</p><p>{link}</p>"
html_content = build_html_email("Reset Your Password", message)
text_content = f"Click the following link to reset your password: {link}"
send_email(user_email, subject, html_content, text_content, mail_from)
# Keep search param same name as cookie for simplicity
body = f"Click the following link to reset your password: {link}"
send_email(user_email, subject, body, mail_from)
def send_user_verification_email(
@@ -262,12 +82,7 @@ def send_user_verification_email(
token: str,
mail_from: str = EMAIL_FROM,
) -> None:
# Builds a verification email
subject = "Onyx Email Verification"
link = f"{WEB_DOMAIN}/auth/verify-email?token={token}"
message = (
f"<p>Click the following link to verify your email address:</p><p>{link}</p>"
)
html_content = build_html_email("Verify Your Email", message)
text_content = f"Click the following link to verify your email address: {link}"
send_email(user_email, subject, html_content, text_content, mail_from)
body = f"Click the following link to verify your email address: {link}"
send_email(user_email, subject, body, mail_from)

View File

@@ -42,5 +42,4 @@ def fetch_no_auth_user(
role=UserRole.BASIC if anonymous_user_enabled else UserRole.ADMIN,
preferences=load_no_auth_user_preferences(store),
is_anonymous_user=anonymous_user_enabled,
password_configured=False,
)

View File

@@ -1,7 +1,5 @@
import json
import random
import secrets
import string
import uuid
from collections.abc import AsyncGenerator
from datetime import datetime
@@ -88,6 +86,7 @@ from onyx.db.auth import get_user_db
from onyx.db.auth import SQLAlchemyUserAdminDB
from onyx.db.engine import get_async_session
from onyx.db.engine import get_async_session_with_tenant
from onyx.db.engine import get_current_tenant_id
from onyx.db.engine import get_session_with_tenant
from onyx.db.models import AccessToken
from onyx.db.models import OAuthAccount
@@ -95,7 +94,6 @@ from onyx.db.models import User
from onyx.db.users import get_user_by_email
from onyx.redis.redis_pool import get_async_redis_connection
from onyx.redis.redis_pool import get_redis_client
from onyx.server.utils import BasicAuthenticationError
from onyx.utils.logger import setup_logger
from onyx.utils.telemetry import create_milestone_and_report
from onyx.utils.telemetry import optional_telemetry
@@ -105,11 +103,15 @@ from onyx.utils.variable_functionality import fetch_versioned_implementation
from shared_configs.configs import async_return_default_schema
from shared_configs.configs import MULTI_TENANT
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
from shared_configs.contextvars import get_current_tenant_id
logger = setup_logger()
class BasicAuthenticationError(HTTPException):
def __init__(self, detail: str):
super().__init__(status_code=status.HTTP_403_FORBIDDEN, detail=detail)
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True
@@ -141,30 +143,6 @@ def get_display_email(email: str | None, space_less: bool = False) -> str:
return email or ""
def generate_password() -> str:
lowercase_letters = string.ascii_lowercase
uppercase_letters = string.ascii_uppercase
digits = string.digits
special_characters = string.punctuation
# Ensure at least one of each required character type
password = [
secrets.choice(uppercase_letters),
secrets.choice(digits),
secrets.choice(special_characters),
]
# Fill the rest with a mix of characters
remaining_length = 12 - len(password)
all_characters = lowercase_letters + uppercase_letters + digits + special_characters
password.extend(secrets.choice(all_characters) for _ in range(remaining_length))
# Shuffle the password to randomize the position of the required characters
random.shuffle(password)
return "".join(password)
def user_needs_to_be_verified() -> bool:
if AUTH_TYPE == AuthType.BASIC or AUTH_TYPE == AuthType.CLOUD:
return REQUIRE_EMAIL_VERIFICATION
@@ -214,8 +192,8 @@ def verify_email_is_invited(email: str) -> None:
raise PermissionError("User not on allowed user whitelist")
def verify_email_in_whitelist(email: str, tenant_id: str) -> None:
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
def verify_email_in_whitelist(email: str, tenant_id: str | None = None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
if not get_user_by_email(email, db_session):
verify_email_is_invited(email)
@@ -411,7 +389,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
"refresh_token": refresh_token,
}
user: User | None = None
user: User
try:
# Attempt to get user by OAuth account
@@ -420,20 +398,15 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
except exceptions.UserNotExists:
try:
# Attempt to get user by email
user = await self.user_db.get_by_email(account_email)
user = await self.get_by_email(account_email)
if not associate_by_email:
raise exceptions.UserAlreadyExists()
# Make sure user is not None before adding OAuth account
if user is not None:
user = await self.user_db.add_oauth_account(
user, oauth_account_dict
)
else:
# This shouldn't happen since get_by_email would raise UserNotExists
# but adding as a safeguard
raise exceptions.UserNotExists()
user = await self.user_db.add_oauth_account(
user, oauth_account_dict
)
# If user not found by OAuth account or email, create a new user
except exceptions.UserNotExists:
password = self.password_helper.generate()
user_dict = {
@@ -444,36 +417,26 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
user = await self.user_db.create(user_dict)
# Add OAuth account only if user creation was successful
if user is not None:
await self.user_db.add_oauth_account(user, oauth_account_dict)
await self.on_after_register(user, request)
else:
raise HTTPException(
status_code=500, detail="Failed to create user account"
)
# Explicitly set the Postgres schema for this session to ensure
# OAuth account creation happens in the correct tenant schema
# Add OAuth account
await self.user_db.add_oauth_account(user, oauth_account_dict)
await self.on_after_register(user, request)
else:
# User exists, update OAuth account if needed
if user is not None: # Add explicit check
for existing_oauth_account in user.oauth_accounts:
if (
existing_oauth_account.account_id == account_id
and existing_oauth_account.oauth_name == oauth_name
):
user = await self.user_db.update_oauth_account(
user,
# NOTE: OAuthAccount DOES implement the OAuthAccountProtocol
# but the type checker doesn't know that :(
existing_oauth_account, # type: ignore
oauth_account_dict,
)
# Ensure user is not None before proceeding
if user is None:
raise HTTPException(
status_code=500, detail="Failed to authenticate or create user"
)
for existing_oauth_account in user.oauth_accounts:
if (
existing_oauth_account.account_id == account_id
and existing_oauth_account.oauth_name == oauth_name
):
user = await self.user_db.update_oauth_account(
user,
# NOTE: OAuthAccount DOES implement the OAuthAccountProtocol
# but the type checker doesn't know that :(
existing_oauth_account, # type: ignore
oauth_account_dict,
)
# NOTE: Most IdPs have very short expiry times, and we don't want to force the user to
# re-authenticate that frequently, so by default this is disabled
@@ -523,7 +486,6 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
token = CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
try:
user_count = await get_user_count()
logger.debug(f"Current tenant user count: {user_count}")
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
if user_count == 1:
@@ -545,7 +507,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
finally:
CURRENT_TENANT_ID_CONTEXTVAR.reset(token)
logger.debug(f"User {user.id} has registered.")
logger.notice(f"User {user.id} has registered.")
optional_telemetry(
record_type=RecordType.SIGN_UP,
data={"action": "create"},
@@ -569,7 +531,7 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
async_return_default_schema,
)(email=user.email)
send_forgot_password_email(user.email, tenant_id=tenant_id, token=token)
send_forgot_password_email(user.email, token, tenant_id=tenant_id)
async def on_after_request_verify(
self, user: User, token: str, request: Optional[Request] = None
@@ -633,39 +595,6 @@ class UserManager(UUIDIDMixin, BaseUserManager[User, uuid.UUID]):
return user
async def reset_password_as_admin(self, user_id: uuid.UUID) -> str:
"""Admin-only. Generate a random password for a user and return it."""
user = await self.get(user_id)
new_password = generate_password()
await self._update(user, {"password": new_password})
return new_password
async def change_password_if_old_matches(
self, user: User, old_password: str, new_password: str
) -> None:
"""
For normal users to change password if they know the old one.
Raises 400 if old password doesn't match.
"""
verified, updated_password_hash = self.password_helper.verify_and_update(
old_password, user.hashed_password
)
if not verified:
# Raise some HTTPException (or your custom exception) if old password is invalid:
from fastapi import HTTPException, status
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid current password",
)
# If the hash was upgraded behind the scenes, we can keep it before setting the new password:
if updated_password_hash:
user.hashed_password = updated_password_hash
# Now apply and validate the new password
await self._update(user, {"password": new_password})
async def get_user_manager(
user_db: SQLAlchemyUserDatabase = Depends(get_user_db),
@@ -890,9 +819,8 @@ async def current_limited_user(
async def current_chat_accesssible_user(
user: User | None = Depends(optional_user),
tenant_id: str | None = Depends(get_current_tenant_id),
) -> User | None:
tenant_id = get_current_tenant_id()
return await double_check_user(
user, allow_anonymous_access=anonymous_user_enabled(tenant_id=tenant_id)
)

View File

@@ -2,7 +2,6 @@ import logging
import multiprocessing
import time
from typing import Any
from typing import cast
import sentry_sdk
from celery import Task
@@ -34,7 +33,6 @@ from onyx.redis.redis_connector_ext_group_sync import RedisConnectorExternalGrou
from onyx.redis.redis_connector_prune import RedisConnectorPrune
from onyx.redis.redis_document_set import RedisDocumentSet
from onyx.redis.redis_pool import get_redis_client
from onyx.redis.redis_pool import get_shared_redis_client
from onyx.redis.redis_usergroup import RedisUserGroup
from onyx.utils.logger import ColoredFormatter
from onyx.utils.logger import PlainFormatter
@@ -60,35 +58,13 @@ else:
logger.debug("Sentry DSN not provided, skipping Sentry initialization")
class TenantAwareTask(Task):
"""A custom base Task that sets tenant_id in a contextvar before running."""
abstract = True # So Celery knows not to register this as a real task.
def __call__(self, *args: Any, **kwargs: Any) -> Any:
# Grab tenant_id from the kwargs, or fallback to default if missing.
tenant_id = kwargs.get("tenant_id", None) or POSTGRES_DEFAULT_SCHEMA
# Set the context var
CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
# Actually run the task now
try:
return super().__call__(*args, **kwargs)
finally:
# Clear or reset after the task runs
# so it does not leak into any subsequent tasks on the same worker process
CURRENT_TENANT_ID_CONTEXTVAR.set(None)
@task_prerun.connect
def on_task_prerun(
sender: Any | None = None,
task_id: str | None = None,
task: Task | None = None,
args: tuple[Any, ...] | None = None,
kwargs: dict[str, Any] | None = None,
**other_kwargs: Any,
**kwds: Any,
) -> None:
pass
@@ -132,9 +108,9 @@ def on_task_postrun(
# Get tenant_id directly from kwargs- each celery task has a tenant_id kwarg
if not kwargs:
logger.error(f"Task {task.name} (ID: {task_id}) is missing kwargs")
tenant_id = POSTGRES_DEFAULT_SCHEMA
tenant_id = None
else:
tenant_id = cast(str, kwargs.get("tenant_id", POSTGRES_DEFAULT_SCHEMA))
tenant_id = kwargs.get("tenant_id")
task_logger.debug(
f"Task {task.name} (ID: {task_id}) completed with state: {state} "
@@ -225,7 +201,7 @@ def wait_for_redis(sender: Any, **kwargs: Any) -> None:
Will raise WorkerShutdown to kill the celery worker if the timeout
is reached."""
r = get_shared_redis_client()
r = get_redis_client(tenant_id=None)
WAIT_INTERVAL = 5
WAIT_LIMIT = 60
@@ -311,7 +287,7 @@ def on_secondary_worker_init(sender: Any, **kwargs: Any) -> None:
# Set up variables for waiting on primary worker
WAIT_INTERVAL = 5
WAIT_LIMIT = 60
r = get_shared_redis_client()
r = get_redis_client(tenant_id=None)
time_start = time.monotonic()
logger.info("Waiting for primary worker to be ready...")
@@ -463,6 +439,24 @@ class TenantContextFilter(logging.Filter):
return True
@task_prerun.connect
def set_tenant_id(
sender: Any | None = None,
task_id: str | None = None,
task: Task | None = None,
args: tuple[Any, ...] | None = None,
kwargs: dict[str, Any] | None = None,
**other_kwargs: Any,
) -> None:
"""Signal handler to set tenant ID in context var before task starts."""
tenant_id = (
kwargs.get("tenant_id", POSTGRES_DEFAULT_SCHEMA)
if kwargs
else POSTGRES_DEFAULT_SCHEMA
)
CURRENT_TENANT_ID_CONTEXTVAR.set(tenant_id)
@task_postrun.connect
def reset_tenant_id(
sender: Any | None = None,

View File

@@ -132,7 +132,6 @@ class DynamicTenantScheduler(PersistentScheduler):
f"Adding options to task {tenant_task_name}: {options}"
)
tenant_task["options"] = options
new_schedule[tenant_task_name] = tenant_task
return new_schedule
@@ -257,4 +256,3 @@ def on_setup_logging(
celery_app.conf.beat_scheduler = DynamicTenantScheduler
celery_app.conf.task_default_base = app_base.TenantAwareTask

View File

@@ -20,7 +20,6 @@ logger = setup_logger()
celery_app = Celery(__name__)
celery_app.config_from_object("onyx.background.celery.configs.heavy")
celery_app.Task = app_base.TenantAwareTask # type: ignore [misc]
@signals.task_prerun.connect

View File

@@ -21,7 +21,6 @@ logger = setup_logger()
celery_app = Celery(__name__)
celery_app.config_from_object("onyx.background.celery.configs.indexing")
celery_app.Task = app_base.TenantAwareTask # type: ignore [misc]
@signals.task_prerun.connect

Some files were not shown because too many files have changed in this diff Show More