Compare commits

..

31 Commits

Author SHA1 Message Date
hagen-danswer
4f96954bcf clarity 2024-12-06 13:29:45 -08:00
hagen-danswer
6219f311bb made refresh frequency for confluence syncs configurable 2024-12-06 13:26:58 -08:00
hagen-danswer
b25c10a51a Fixed edge case where some spaces were not being fetched 2024-12-06 13:04:54 -08:00
hagen-danswer
1bcfa28fda More logging for external group syncing 2024-12-06 12:51:08 -08:00
pablodanswer
7a0d823c89 Improved file handling (#3353)
* update props

* update documents

* nit

* update chat processing

* k

* k

* nit

* minor nit

* minor nits

* k

* nits
2024-12-06 19:16:54 +00:00
Yuhong Sun
db69e445d6 k (#3358) 2024-12-06 18:08:44 +00:00
Weves
18e63889b7 Change default log level back to info 2024-12-06 10:07:14 -08:00
Weves
738e60c8ed Increase vespa attempts on startup 2024-12-06 09:46:33 -08:00
hagen-danswer
8aec873e66 Merge pull request #3359 from danswer-ai/conf-logging-filter
Added filter to slim connector and logging for space permissions
2024-12-06 09:03:07 -08:00
hagen-danswer
7c57dde8ab fixed test 2024-12-06 08:33:12 -08:00
hagen-danswer
f30adab853 Merge remote-tracking branch 'origin/main' into conf-logging-filter 2024-12-06 08:30:07 -08:00
hagen-danswer
601687a522 Add test for Confluence permissions 2024-12-06 08:28:42 -08:00
hagen-danswer
350cf407c9 explicitly set page and attachment restrictions and space keys 2024-12-06 08:12:07 -08:00
hagen-danswer
32ec4efc7a tygod for tests 2024-12-06 08:03:34 -08:00
hagen-danswer
7c6981e052 Added filter to slim connector and logging for space permissions 2024-12-06 07:55:54 -08:00
Yuhong Sun
c50cd20156 Fix SlackBot Page Bugs (#3354) 2024-12-05 13:17:04 -08:00
hagen-danswer
14772dee71 Add persona stats (#3282)
* Added a chart to display persona message stats

* polish

* k

* hope this works

* cleanup
2024-12-05 17:15:56 +00:00
pablodanswer
c81e704c95 various niceties (#3348) 2024-12-05 17:12:52 +00:00
Chris Weaver
3266ef6321 Improve chat page performance (#3347)
* Simplify /manage/indexing-status

* Rename endpoint
2024-12-04 20:28:30 -08:00
pablodanswer
c89b98b4f2 update email invites (#3349) 2024-12-05 03:29:07 +00:00
rkuo-danswer
e70e0ab859 Merge pull request #3346 from danswer-ai/bugfix/chromatic-tests-2
Bugfix/chromatic tests 2
2024-12-04 19:44:05 -08:00
Richard Kuo (Danswer)
69b6e9321e Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/chromatic-tests-2
# Conflicts:
#	web/tests/e2e/home.spec.ts
2024-12-04 19:10:25 -08:00
Chris Weaver
7e53af18b6 Add b64 image support for image generation (#3342)
* Add b64 image support

* Fix

* enhance

* Fix mypy

* Fix imports
2024-12-05 02:24:54 +00:00
Richard Kuo (Danswer)
b9eb1ca2ba wait for whole placeholder string 2024-12-04 18:23:06 -08:00
rkuo-danswer
91d44c83d2 fixing chromatic tests (#3344)
* wait for the page to load

* fix up tests

* make sure "Initializing Danswer" is gone
2024-12-05 02:19:43 +00:00
Richard Kuo (Danswer)
4dbc6bb4d1 make sure "Initializing Danswer" is gone 2024-12-04 17:49:59 -08:00
Richard Kuo (Danswer)
4b6a4c6bbf fix up tests 2024-12-04 17:19:16 -08:00
pablodanswer
fd1999454a ensure we can order by doc id (#3343) 2024-12-05 01:10:37 +00:00
Richard Kuo (Danswer)
0a35422d1d wait for the page to load 2024-12-04 16:47:42 -08:00
pablodanswer
69b99056b2 Redirect to chat (#3341)
* k

* nit
2024-12-05 00:08:52 +00:00
Yuhong Sun
2a55696545 Move Answer (#3339) 2024-12-04 16:30:47 -08:00
139 changed files with 1400 additions and 2599 deletions

View File

@@ -1,100 +0,0 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.answer_query.nodes.answer_check import answer_check
from danswer.agent_search.answer_query.nodes.answer_generation import answer_generation
from danswer.agent_search.answer_query.nodes.format_answer import format_answer
from danswer.agent_search.answer_query.states import AnswerQueryInput
from danswer.agent_search.answer_query.states import AnswerQueryOutput
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
def answer_query_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=AnswerQueryState,
input=AnswerQueryInput,
output=AnswerQueryOutput,
)
### Add nodes ###
expanded_retrieval = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="expanded_retrieval_for_initial_decomp",
action=expanded_retrieval,
)
graph.add_node(
node="answer_check",
action=answer_check,
)
graph.add_node(
node="answer_generation",
action=answer_generation,
)
graph.add_node(
node="format_answer",
action=format_answer,
)
### Add edges ###
graph.add_edge(
start_key=START,
end_key="expanded_retrieval_for_initial_decomp",
)
graph.add_edge(
start_key="expanded_retrieval_for_initial_decomp",
end_key="answer_generation",
)
graph.add_edge(
start_key="answer_generation",
end_key="answer_check",
)
graph.add_edge(
start_key="answer_check",
end_key="format_answer",
)
graph.add_edge(
start_key="format_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = answer_query_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = AnswerQueryInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
query_to_answer="Who made Excel?",
)
output = compiled_graph.invoke(
input=inputs,
# debug=True,
# subgraphs=True,
)
print(output)
# for namespace, chunk in compiled_graph.stream(
# input=inputs,
# # debug=True,
# subgraphs=True,
# ):
# print(namespace)
# print(chunk)

View File

@@ -1,30 +0,0 @@
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import QACheckOutput
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
def answer_check(state: AnswerQueryState) -> QACheckOutput:
msg = [
HumanMessage(
content=BASE_CHECK_PROMPT.format(
question=state["search_request"].query,
base_answer=state["answer"],
)
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
response_str = merge_message_runs(response, chunk_separator="")[0].content
return QACheckOutput(
answer_quality=response_str,
)

View File

@@ -1,32 +0,0 @@
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import QAGenerationOutput
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def answer_generation(state: AnswerQueryState) -> QAGenerationOutput:
query = state["query_to_answer"]
docs = state["reranked_documents"]
print(f"Number of verified retrieval docs: {len(docs)}")
msg = [
HumanMessage(
content=BASE_RAG_PROMPT.format(question=query, context=format_docs(docs))
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
return QAGenerationOutput(
answer=answer_str,
)

View File

@@ -1,16 +0,0 @@
from danswer.agent_search.answer_query.states import AnswerQueryOutput
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import SearchAnswerResults
def format_answer(state: AnswerQueryState) -> AnswerQueryOutput:
return AnswerQueryOutput(
decomp_answer_results=[
SearchAnswerResults(
query=state["query_to_answer"],
quality=state["answer_quality"],
answer=state["answer"],
documents=state["reranked_documents"],
)
],
)

View File

@@ -1,48 +0,0 @@
from typing import Annotated
from typing import TypedDict
from pydantic import BaseModel
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class SearchAnswerResults(BaseModel):
query: str
answer: str
quality: str
documents: Annotated[list[InferenceSection], dedup_inference_sections]
class QACheckOutput(TypedDict, total=False):
answer_quality: str
class QAGenerationOutput(TypedDict, total=False):
answer: str
class ExpandedRetrievalOutput(TypedDict):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class AnswerQueryState(
PrimaryState,
QACheckOutput,
QAGenerationOutput,
ExpandedRetrievalOutput,
total=True,
):
query_to_answer: str
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class AnswerQueryInput(PrimaryState, total=True):
query_to_answer: str
class AnswerQueryOutput(TypedDict):
decomp_answer_results: list[SearchAnswerResults]

View File

@@ -1,15 +0,0 @@
from typing import TypedDict
from sqlalchemy.orm import Session
from danswer.context.search.models import SearchRequest
from danswer.llm.interfaces import LLM
class PrimaryState(TypedDict, total=False):
search_request: SearchRequest
primary_llm: LLM
fast_llm: LLM
# a single session for the entire agent search
# is fine if we are only reading
db_session: Session

View File

@@ -1,114 +0,0 @@
from typing import Any
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import COMBINED_CONTEXT
from danswer.agent_search.shared_graph_utils.prompts import MODIFIED_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
from danswer.agent_search.shared_graph_utils.utils import normalize_whitespace
# aggregate sub questions and answers
def deep_answer_generation(state: MainState) -> dict[str, Any]:
"""
Generate answer
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---DEEP GENERATE---")
question = state["original_question"]
docs = state["deduped_retrieval_docs"]
deep_answer_context = state["core_answer_dynamic_context"]
print(f"Number of verified retrieval docs - deep: {len(docs)}")
combined_context = normalize_whitespace(
COMBINED_CONTEXT.format(
deep_answer_context=deep_answer_context, formated_docs=format_docs(docs)
)
)
msg = [
HumanMessage(
content=MODIFIED_RAG_PROMPT.format(
question=question, combined_context=combined_context
)
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
return {
"deep_answer": response.content,
}
def final_stuff(state: MainState) -> dict[str, Any]:
"""
Invokes the agent model to generate a response based on the current state. Given
the question, it will decide to retrieve using the retriever tool, or simply end.
Args:
state (messages): The current state
Returns:
dict: The updated state with the agent response appended to messages
"""
print("---FINAL---")
messages = state["log_messages"]
time_ordered_messages = [x.pretty_repr() for x in messages]
time_ordered_messages.sort()
print("Message Log:")
print("\n".join(time_ordered_messages))
initial_sub_qas = state["initial_sub_qas"]
initial_sub_qa_list = []
for initial_sub_qa in initial_sub_qas:
if initial_sub_qa["sub_answer_check"] == "yes":
initial_sub_qa_list.append(
f' Question:\n {initial_sub_qa["sub_question"]}\n --\n Answer:\n {initial_sub_qa["sub_answer"]}\n -----'
)
initial_sub_qa_context = "\n".join(initial_sub_qa_list)
base_answer = state["base_answer"]
print(f"Final Base Answer:\n{base_answer}")
print("--------------------------------")
print(f"Initial Answered Sub Questions:\n{initial_sub_qa_context}")
print("--------------------------------")
if not state.get("deep_answer"):
print("No Deep Answer was required")
return {}
deep_answer = state["deep_answer"]
sub_qas = state["sub_qas"]
sub_qa_list = []
for sub_qa in sub_qas:
if sub_qa["sub_answer_check"] == "yes":
sub_qa_list.append(
f' Question:\n {sub_qa["sub_question"]}\n --\n Answer:\n {sub_qa["sub_answer"]}\n -----'
)
sub_qa_context = "\n".join(sub_qa_list)
print(f"Final Base Answer:\n{base_answer}")
print("--------------------------------")
print(f"Final Deep Answer:\n{deep_answer}")
print("--------------------------------")
print("Sub Questions and Answers:")
print(sub_qa_context)
return {}

View File

@@ -1,78 +0,0 @@
import json
import re
from datetime import datetime
from typing import Any
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_entity_term_extraction
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
def decompose(state: MainState) -> dict[str, Any]:
""" """
node_start_time = datetime.now()
question = state["original_question"]
base_answer = state["base_answer"]
# get the entity term extraction dict and properly format it
entity_term_extraction_dict = state["retrieved_entities_relationships"][
"retrieved_entities_relationships"
]
entity_term_extraction_str = format_entity_term_extraction(
entity_term_extraction_dict
)
initial_question_answers = state["initial_sub_qas"]
addressed_question_list = [
x["sub_question"]
for x in initial_question_answers
if x["sub_answer_check"] == "yes"
]
failed_question_list = [
x["sub_question"]
for x in initial_question_answers
if x["sub_answer_check"] == "no"
]
msg = [
HumanMessage(
content=DEEP_DECOMPOSE_PROMPT.format(
question=question,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_sub_questions="\n - ".join(addressed_question_list),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
cleaned_response = re.sub(r"```json\n|\n```", "", response.pretty_repr())
parsed_response = json.loads(cleaned_response)
sub_questions_dict = {}
for sub_question_nr, sub_question_dict in enumerate(
parsed_response["sub_questions"]
):
sub_question_dict["answered"] = False
sub_question_dict["verified"] = False
sub_questions_dict[sub_question_nr] = sub_question_dict
return {
"decomposed_sub_questions_dict": sub_questions_dict,
"log_messages": generate_log_message(
message="deep - decompose",
node_start_time=node_start_time,
graph_start_time=state["graph_start_time"],
),
}

View File

@@ -1,40 +0,0 @@
import json
import re
from typing import Any
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import ENTITY_TERM_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def entity_term_extraction(state: MainState) -> dict[str, Any]:
"""Extract entities and terms from the question and context"""
question = state["original_question"]
docs = state["deduped_retrieval_docs"]
doc_context = format_docs(docs)
msg = [
HumanMessage(
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
)
]
fast_llm = state["fast_llm"]
# Grader
llm_response_list = list(
fast_llm.stream(
prompt=msg,
)
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
cleaned_response = re.sub(r"```json\n|\n```", "", llm_response)
parsed_response = json.loads(cleaned_response)
return {
"retrieved_entities_relationships": parsed_response,
}

View File

@@ -1,30 +0,0 @@
from typing import Any
from danswer.agent_search.main.states import MainState
# aggregate sub questions and answers
def sub_qa_level_aggregator(state: MainState) -> dict[str, Any]:
sub_qas = state["sub_qas"]
dynamic_context_list = [
"Below you will find useful information to answer the original question:"
]
checked_sub_qas = []
for core_answer_sub_qa in sub_qas:
question = core_answer_sub_qa["sub_question"]
answer = core_answer_sub_qa["sub_answer"]
verified = core_answer_sub_qa["sub_answer_check"]
if verified == "yes":
dynamic_context_list.append(
f"Question:\n{question}\n\nAnswer:\n{answer}\n\n---\n\n"
)
checked_sub_qas.append({"sub_question": question, "sub_answer": answer})
dynamic_context = "\n".join(dynamic_context_list)
return {
"core_answer_dynamic_context": dynamic_context,
"checked_sub_qas": checked_sub_qas,
}

View File

@@ -1,19 +0,0 @@
from typing import Any
from danswer.agent_search.main.states import MainState
def sub_qa_manager(state: MainState) -> dict[str, Any]:
""" """
sub_questions_dict = state["decomposed_sub_questions_dict"]
sub_questions = {}
for sub_question_nr, sub_question_dict in sub_questions_dict.items():
sub_questions[sub_question_nr] = sub_question_dict["sub_question"]
return {
"sub_questions": sub_questions,
"num_new_question_iterations": 0,
}

View File

@@ -1,83 +0,0 @@
from collections.abc import Hashable
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langgraph.types import Send
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import RetrieveInput
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import DocVerificationInput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
from danswer.agent_search.shared_graph_utils.prompts import (
REWRITE_PROMPT_MULTI_ORIGINAL,
)
from danswer.llm.interfaces import LLM
def parallel_retrieval_edge(state: ExpandedRetrievalInput) -> list[Send | Hashable]:
# print(f"parallel_retrieval_edge state: {state.keys()}")
print("parallel_retrieval_edge state")
# This should be better...
question = state.get("query_to_answer") or state["search_request"].query
llm: LLM = state["fast_llm"]
"""
msg = [
HumanMessage(
content=REWRITE_PROMPT_MULTI.format(question=question),
)
]
"""
msg = [
HumanMessage(
content=REWRITE_PROMPT_MULTI_ORIGINAL.format(question=question),
)
]
llm_response_list = list(
llm.stream(
prompt=msg,
)
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
# print(f"llm_response: {llm_response}")
rewritten_queries = [
rewritten_query.strip() for rewritten_query in llm_response.split("--")
]
# Add the original sub-question as one of the 'rewritten' queries
rewritten_queries = [question] + rewritten_queries
print(f"rewritten_queries: {rewritten_queries}")
return [
Send(
"doc_retrieval",
RetrieveInput(query_to_retrieve=query, **state),
)
for query in rewritten_queries
]
def parallel_verification_edge(state: DocRetrievalOutput) -> list[Send | Hashable]:
# print(f"parallel_retrieval_edge state: {state.keys()}")
print("parallel_retrieval_edge state")
retrieved_docs = state["retrieved_documents"]
return [
Send(
"doc_verification",
DocVerificationInput(doc_to_verify=doc, **state),
)
for doc in retrieved_docs
]
# this is not correct - remove
# def conditionally_rerank_edge(state: ExpandedRetrievalState) -> bool:
# print(f"conditionally_rerank_edge state: {state.keys()}")
# return bool(state["search_request"].rerank_settings)

View File

@@ -1,129 +0,0 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.expanded_retrieval.edges import parallel_retrieval_edge
from danswer.agent_search.expanded_retrieval.edges import parallel_verification_edge
from danswer.agent_search.expanded_retrieval.nodes.doc_reranking import doc_reranking
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import doc_retrieval
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
doc_verification,
)
from danswer.agent_search.expanded_retrieval.nodes.dummy_node import dummy_node
from danswer.agent_search.expanded_retrieval.nodes.verification_kickoff import (
verification_kickoff,
)
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
# from danswer.agent_search.expanded_retrieval.edges import conditionally_rerank_edge
def expanded_retrieval_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=ExpandedRetrievalState,
input=ExpandedRetrievalInput,
output=ExpandedRetrievalOutput,
)
### Add nodes ###
graph.add_node(
node="doc_retrieval",
action=doc_retrieval,
)
graph.add_node(
node="verification_kickoff",
action=verification_kickoff,
)
graph.add_node(
node="doc_verification",
action=doc_verification,
)
graph.add_node(
node="doc_reranking",
action=doc_reranking,
)
graph.add_node(
node="post_retrieval_dummy_node",
action=dummy_node,
)
graph.add_node(
node="dummy_node",
action=dummy_node,
)
### Add edges ###
graph.add_conditional_edges(
source=START,
path=parallel_retrieval_edge,
path_map=["doc_retrieval"],
)
graph.add_edge(
start_key="doc_retrieval",
end_key="verification_kickoff",
)
graph.add_conditional_edges(
source="verification_kickoff",
path=parallel_verification_edge,
path_map=["doc_verification"],
)
# graph.add_edge(
# start_key="doc_verification",
# end_key="post_retrieval_dummy_node",
# )
graph.add_edge(
start_key="doc_verification",
end_key="doc_reranking",
)
graph.add_edge(
start_key="doc_reranking",
end_key="dummy_node",
)
# graph.add_conditional_edges(
# source="doc_verification",
# path=conditionally_rerank_edge,
# path_map={
# True: "doc_reranking",
# False: END,
# },
# )
graph.add_edge(
start_key="dummy_node",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = expanded_retrieval_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = ExpandedRetrievalInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
query_to_answer="Who made Excel?",
)
for thing in compiled_graph.stream(inputs, debug=True):
print(thing)

View File

@@ -1,13 +0,0 @@
import datetime
from danswer.agent_search.expanded_retrieval.states import DocRerankingOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
def doc_reranking(state: ExpandedRetrievalState) -> DocRerankingOutput:
print(f"doc_reranking state: {datetime.datetime.now()}")
verified_documents = state["verified_documents"]
reranked_documents = verified_documents
return DocRerankingOutput(reranked_documents=reranked_documents)

View File

@@ -1,75 +0,0 @@
import datetime
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
class RetrieveInput(ExpandedRetrievalState):
query_to_retrieve: str
def doc_retrieval(state: RetrieveInput) -> DocRetrievalOutput:
# def doc_retrieval(state: RetrieveInput) -> Command[Literal["doc_verification"]]:
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
# print(f"doc_retrieval state: {state.keys()}")
if "query_to_answer" in state.keys():
query_question = state["query_to_answer"]
else:
query_question = state["search_request"].query
query_to_retrieve = state["query_to_retrieve"]
print(f"\ndoc_retrieval state: {datetime.datetime.now()}")
print(f" -- search_request: {query_question[:100]}")
# print(f" -- query_to_retrieve: {query_to_retrieve[:100]}")
documents: list[InferenceSection] = []
llm = state["primary_llm"]
fast_llm = state["fast_llm"]
# db_session = state["db_session"]
documents = SearchPipeline(
search_request=SearchRequest(
query=query_to_retrieve,
),
user=None,
llm=llm,
fast_llm=fast_llm,
db_session=state["db_session"],
).reranked_sections
top_1_score = documents[0].center_chunk.score
top_5_score = sum([doc.center_chunk.score for doc in documents[:5]]) / 5
top_10_score = sum([doc.center_chunk.score for doc in documents[:10]]) / 10
fit_score = 1 / 3 * (top_1_score + top_5_score + top_10_score)
# temp - limit the number of documents to 5
documents = documents[:5]
"""
chunk_ids = {
"query": query_to_retrieve,
"chunk_ids": [doc.center_chunk.chunk_id for doc in documents],
}
"""
print(f"sub_query: {query_to_retrieve[:50]}")
print(f"retrieved documents: {len(documents)}")
print(f"fit score: {fit_score}")
print()
return DocRetrievalOutput(
retrieved_documents=documents,
)

View File

@@ -1,63 +0,0 @@
import datetime
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import DocVerificationOutput
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
def doc_verification(state: DocRetrievalOutput) -> DocVerificationOutput:
"""
Check whether the document is relevant for the original user question
Args:
state (VerifierState): The current state
Returns:
dict: ict: The updated state with the final decision
"""
# print(f"--- doc_verification state ---")
if "query_to_answer" in state.keys():
query_to_answer = state["query_to_answer"]
else:
query_to_answer = state["search_request"].query
doc_to_verify = state["doc_to_verify"]
document_content = doc_to_verify.combined_content
msg = [
HumanMessage(
content=VERIFIER_PROMPT.format(
question=query_to_answer, document_content=document_content
)
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
response_string = merge_message_runs(response, chunk_separator="")[0].content
# Convert string response to proper dictionary format
decision_dict = {"decision": response_string.lower()}
formatted_response = BinaryDecision.model_validate(decision_dict)
verified_documents = []
if formatted_response.decision == "yes":
verified_documents.append(doc_to_verify)
print(
f"Verdict & Completion: {formatted_response.decision} -- {datetime.datetime.now()}"
)
return DocVerificationOutput(
verified_documents=verified_documents,
)

View File

@@ -1,9 +0,0 @@
def dummy_node(state):
"""
This node is a dummy node that does not change the state but allows to inspect the state.
"""
print(f"doc_reranking state: {state.keys()}")
state["verified_documents"]
return {}

View File

@@ -1,28 +0,0 @@
import datetime
from typing import Literal
from langgraph.types import Command
from langgraph.types import Send
from danswer.agent_search.expanded_retrieval.states import (
DocVerificationInput,
)
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
def verification_kickoff(
state: ExpandedRetrievalState,
) -> Command[Literal["doc_verification"]]:
print(f"verification_kickoff state: {datetime.datetime.now()}")
documents = state["retrieved_documents"]
return Command(
update={},
goto=[
Send(
node="doc_verification",
arg=DocVerificationInput(doc_to_verify=doc, **state),
)
for doc in documents
],
)

View File

@@ -1,42 +0,0 @@
from typing import Annotated
from typing import TypedDict
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class DocRetrievalOutput(TypedDict, total=False):
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
query_to_answer: str
class DocVerificationInput(TypedDict, total=True):
query_to_answer: str
doc_to_verify: InferenceSection
class DocVerificationOutput(TypedDict, total=False):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class DocRerankingOutput(TypedDict, total=False):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class ExpandedRetrievalState(
PrimaryState,
DocRetrievalOutput,
DocVerificationOutput,
DocRerankingOutput,
total=True,
):
query_to_answer: str
class ExpandedRetrievalInput(PrimaryState, total=True):
query_to_answer: str
class ExpandedRetrievalOutput(TypedDict):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]

View File

@@ -1,61 +0,0 @@
from collections.abc import Hashable
from langgraph.types import Send
from danswer.agent_search.answer_query.states import AnswerQueryInput
from danswer.agent_search.main.states import MainState
def parallelize_decompozed_answer_queries(state: MainState) -> list[Send | Hashable]:
return [
Send(
"answer_query",
AnswerQueryInput(
**state,
query_to_answer=query,
),
)
for query in state["initial_decomp_queries"]
]
# def continue_to_answer_sub_questions(state: QAState) -> Union[Hashable, list[Hashable]]:
# # Routes re-written queries to the (parallel) retrieval steps
# # Notice the 'Send()' API that takes care of the parallelization
# return [
# Send(
# "sub_answers_graph",
# ResearchQAState(
# sub_question=sub_question["sub_question_str"],
# sub_question_nr=sub_question["sub_question_nr"],
# graph_start_time=state["graph_start_time"],
# primary_llm=state["primary_llm"],
# fast_llm=state["fast_llm"],
# ),
# )
# for sub_question in state["sub_questions"]
# ]
# def continue_to_deep_answer(state: QAState) -> Union[Hashable, list[Hashable]]:
# print("---GO TO DEEP ANSWER OR END---")
# base_answer = state["base_answer"]
# question = state["original_question"]
# BASE_CHECK_MESSAGE = [
# HumanMessage(
# content=BASE_CHECK_PROMPT.format(question=question, base_answer=base_answer)
# )
# ]
# model = state["fast_llm"]
# response = model.invoke(BASE_CHECK_MESSAGE)
# print(f"CAN WE CONTINUE W/O GENERATING A DEEP ANSWER? - {response.pretty_repr()}")
# if response.pretty_repr() == "no":
# return "decompose"
# else:
# return "end"

View File

@@ -1,125 +0,0 @@
import datetime
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.answer_query.graph_builder import answer_query_graph_builder
from danswer.agent_search.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
from danswer.agent_search.main.edges import parallelize_decompozed_answer_queries
from danswer.agent_search.main.nodes.base_decomp import main_decomp_base
from danswer.agent_search.main.nodes.dummy_node import dummy_node
from danswer.agent_search.main.nodes.generate_initial_answer import (
generate_initial_answer,
)
from danswer.agent_search.main.states import MainInput
from danswer.agent_search.main.states import MainState
def main_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=MainState,
input=MainInput,
)
### Add nodes ###
graph.add_node(
node="dummy_node_start",
action=dummy_node,
)
graph.add_node(
node="dummy_node_right",
action=dummy_node,
)
graph.add_node(
node="base_decomp",
action=main_decomp_base,
)
answer_query_subgraph = answer_query_graph_builder().compile()
graph.add_node(
node="answer_query",
action=answer_query_subgraph,
)
expanded_retrieval_subgraph = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="expanded_retrieval",
action=expanded_retrieval_subgraph,
)
graph.add_node(
node="generate_initial_answer",
action=generate_initial_answer,
)
### Add edges ###
graph.add_edge(
start_key=START,
end_key="dummy_node_start",
)
graph.add_edge(
start_key="dummy_node_start",
end_key="dummy_node_right",
)
graph.add_edge(
start_key="dummy_node_right",
end_key="expanded_retrieval",
)
# graph.add_edge(
# start_key="expanded_retrieval",
# end_key="generate_initial_answer",
# )
graph.add_edge(
start_key="dummy_node_start",
end_key="base_decomp",
)
graph.add_conditional_edges(
source="base_decomp",
path=parallelize_decompozed_answer_queries,
path_map=["answer_query"],
)
graph.add_edge(
start_key=["answer_query", "expanded_retrieval"],
end_key="generate_initial_answer",
)
graph.add_edge(
start_key="generate_initial_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = main_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = MainInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
)
print(f"START: {datetime.datetime.now()}")
output = compiled_graph.invoke(
input=inputs,
# debug=True,
# subgraphs=True,
)
print(output)

View File

@@ -1,35 +0,0 @@
import datetime
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import BaseDecompOutput
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_DECOMPOSITION_PROMPT
from danswer.agent_search.shared_graph_utils.utils import clean_and_parse_list_string
def main_decomp_base(state: MainState) -> BaseDecompOutput:
print(f"main_decomp_base state: {datetime.datetime.now()}")
question = state["search_request"].query
msg = [
HumanMessage(
content=INITIAL_DECOMPOSITION_PROMPT.format(question=question),
)
]
# Get the rewritten queries in a defined format
model = state["fast_llm"]
response = model.invoke(msg)
content = response.pretty_repr()
list_of_subquestions = clean_and_parse_list_string(content)
decomp_list: list[str] = [
sub_question["sub_question"].strip() for sub_question in list_of_subquestions
]
print(f"Decomp Questions: {decomp_list}")
return BaseDecompOutput(
initial_decomp_queries=decomp_list,
)

View File

@@ -1,10 +0,0 @@
import datetime
def dummy_node(state):
"""
This node is a dummy node that does not change the state but allows to inspect the state.
"""
print(f"DUMMY NODE: {datetime.datetime.now()}")
return {}

View File

@@ -1,51 +0,0 @@
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import InitialAnswerOutput
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def generate_initial_answer(state: MainState) -> InitialAnswerOutput:
print("---GENERATE INITIAL---")
question = state["search_request"].query
docs = state["documents"]
decomp_answer_results = state["decomp_answer_results"]
good_qa_list: list[str] = []
_SUB_QUESTION_ANSWER_TEMPLATE = """
Sub-Question:\n - {sub_question}\n --\nAnswer:\n - {sub_answer}\n\n
"""
for decomp_answer_result in decomp_answer_results:
if (
decomp_answer_result.quality == "yes"
and len(decomp_answer_result.answer) > 0
and decomp_answer_result.answer != "I don't know"
):
good_qa_list.append(
_SUB_QUESTION_ANSWER_TEMPLATE.format(
sub_question=decomp_answer_result.query,
sub_answer=decomp_answer_result.answer,
)
)
sub_question_answer_str = "\n\n------\n\n".join(good_qa_list)
msg = [
HumanMessage(
content=INITIAL_RAG_PROMPT.format(
question=question,
context=format_docs(docs),
answered_sub_questions=sub_question_answer_str,
)
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
return InitialAnswerOutput(initial_answer=response.pretty_repr())

View File

@@ -1,37 +0,0 @@
from operator import add
from typing import Annotated
from typing import TypedDict
from danswer.agent_search.answer_query.states import SearchAnswerResults
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class BaseDecompOutput(TypedDict, total=False):
initial_decomp_queries: list[str]
class InitialAnswerOutput(TypedDict, total=False):
initial_answer: str
class MainState(
PrimaryState,
BaseDecompOutput,
InitialAnswerOutput,
total=True,
):
documents: Annotated[list[InferenceSection], dedup_inference_sections]
decomp_answer_results: Annotated[list[SearchAnswerResults], add]
class MainInput(PrimaryState, total=True):
pass
class MainOutput(TypedDict):
"""
This is not used because defining the output only matters for filtering the output of
a .invoke() call but we are streaming so we just yield the entire state.
"""

View File

@@ -1,27 +0,0 @@
from danswer.agent_search.primary_graph.graph_builder import build_core_graph
from danswer.llm.answering.answer import AnswerStream
from danswer.llm.interfaces import LLM
from danswer.tools.tool import Tool
def run_graph(
query: str,
llm: LLM,
tools: list[Tool],
) -> AnswerStream:
graph = build_core_graph()
inputs = {
"original_query": query,
"messages": [],
"tools": tools,
"llm": llm,
}
compiled_graph = graph.compile()
output = compiled_graph.invoke(input=inputs)
yield from output
if __name__ == "__main__":
pass
# run_graph("What is the capital of France?", llm, [])

View File

@@ -1,12 +0,0 @@
from typing import Literal
from pydantic import BaseModel
# Pydantic models for structured outputs
class RewrittenQueries(BaseModel):
rewritten_queries: list[str]
class BinaryDecision(BaseModel):
decision: Literal["yes", "no"]

View File

@@ -1,9 +0,0 @@
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.prune_and_merge import _merge_sections
def dedup_inference_sections(
list1: list[InferenceSection], list2: list[InferenceSection]
) -> list[InferenceSection]:
deduped = _merge_sections(list1 + list2)
return deduped

View File

@@ -1,427 +0,0 @@
REWRITE_PROMPT_MULTI_ORIGINAL = """ \n
Please convert an initial user question into a 2-3 more appropriate short and pointed search queries for retrievel from a
document store. Particularly, try to think about resolving ambiguities and make the search queries more specific,
enabling the system to search more broadly.
Also, try to make the search queries not redundant, i.e. not too similar! \n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the queries separated by '--' (Do not say 'Query 1: ...', just write the querytext): """
REWRITE_PROMPT_MULTI = """ \n
Please create a list of 2-3 sample documents that could answer an original question. Each document
should be about as long as the original question. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the sample documents separated by '--' (Do not say 'Document 1: ...', just write the text): """
BASE_RAG_PROMPT = """ \n
You are an assistant for question-answering tasks. Use the context provided below - and only the
provided context - to answer the question. If you don't know the answer or if the provided context is
empty, just say "I don't know". Do not use your internal knowledge!
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
use your internal knowledge, just the provided information!
Use three sentences maximum and keep the answer concise.
answer concise.\nQuestion:\n {question} \nContext:\n {context} \n\n
\n\n
Answer:"""
BASE_CHECK_PROMPT = """ \n
Please check whether 1) the suggested answer seems to fully address the original question AND 2)the
original question requests a simple, factual answer, and there are no ambiguities, judgements,
aggregations, or any other complications that may require extra context. (I.e., if the question is
somewhat addressed, but the answer would benefit from more context, then answer with 'no'.)
Please only answer with 'yes' or 'no' \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the proposed answer:
\n ------- \n
{base_answer}
\n ------- \n
Please answer with yes or no:"""
VERIFIER_PROMPT = """ \n
Please check whether the document seems to be relevant for the answer of the question. Please
only answer with 'yes' or 'no' \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the document text:
\n ------- \n
{document_content}
\n ------- \n
Please answer with yes or no:"""
INITIAL_DECOMPOSITION_PROMPT_BASIC = """ \n
Please decompose an initial user question into not more than 4 appropriate sub-questions that help to
answer the original question. The purpose for this decomposition is to isolate individulal entities
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Please formulate your answer as a list of subquestions:
Answer:
"""
REWRITE_PROMPT_SINGLE = """ \n
Please convert an initial user question into a more appropriate search query for retrievel from a
document store. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the query: """
MODIFIED_RAG_PROMPT = """You are an assistant for question-answering tasks. Use the context provided below
- and only this context - to answer the question. If you don't know the answer, just say "I don't know".
Use three sentences maximum and keep the answer concise.
Pay also particular attention to the sub-questions and their answers, at least it may enrich the answer.
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
use your internal knowledge, just the provided information!
\nQuestion: {question}
\nContext: {combined_context} \n
Answer:"""
ORIG_DEEP_DECOMPOSE_PROMPT = """ \n
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
good enough. Also, some sub-questions had been answered and this information has been used to provide
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
you have an idea of how the avaiolable data looks like.
Your role is to generate 3-5 new sub-questions that would help to answer the initial question,
considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered
4) The sub-questions that were suggested but not answered
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system.
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question, but in a way that does
not duplicate questions that were already tried.
Additional Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
resolve ambiguities, or address shortcoming of the initial answer
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
generate a list of dictionaries with the following format:
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
sub-question using as a search phrase for the document store>}}, ...]
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the initial sub-optimal answer:
\n ------- \n
{base_answer}
\n ------- \n
Here are the sub-questions that were answered:
\n ------- \n
{answered_sub_questions}
\n ------- \n
Here are the sub-questions that were suggested but not answered:
\n ------- \n
{failed_sub_questions}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Again, please find questions that are NOT overlapping too much with the already answered
sub-questions or those that already were suggested and failed.
In other words - what can we try in addition to what has been tried so far?
Please think through it step by step and then generate the list of json dictionaries with the following
format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"explanation": <explanation>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
DEEP_DECOMPOSE_PROMPT = """ \n
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
good enough. Also, some sub-questions had been answered and this information has been used to provide
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
you have an idea of how the avaiolable data looks like.
Your role is to generate 4-6 new sub-questions that would help to answer the initial question,
considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered
4) The sub-questions that were suggested but not answered
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system.
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question, but in a way that does
not duplicate questions that were already tried.
Additional Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
resolve ambiguities, or address shortcoming of the initial answer
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please also provide a search term that can be used to retrieve relevant
documents from a document store.
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the initial sub-optimal answer:
\n ------- \n
{base_answer}
\n ------- \n
Here are the sub-questions that were answered:
\n ------- \n
{answered_sub_questions}
\n ------- \n
Here are the sub-questions that were suggested but not answered:
\n ------- \n
{failed_sub_questions}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Again, please find questions that are NOT overlapping too much with the already answered
sub-questions or those that already were suggested and failed.
In other words - what can we try in addition to what has been tried so far?
Generate the list of json dictionaries with the following format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
DECOMPOSE_PROMPT = """ \n
For an initial user question, please generate at 5-10 individual sub-questions whose answers would help
\n to answer the initial question. The individual questions should be answerable by a good RAG system.
So a good idea would be to \n use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question.
In order to arrive at meaningful sub-questions, please also consider the context retrieved from the
document store, expressed as entities, relationships and terms. You can also think about the types
mentioned in brackets
Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
and or resolve ambiguities
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
generate a list of dictionaries with the following format:
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
sub-question using as a search phrase for the document store>}}, ...]
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Don't be too specific unless the original question is specific.
Please think through it step by step and then generate the list of json dictionaries with the following
format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"explanation": <explanation>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
#### Consolidations
COMBINED_CONTEXT = """-------
Below you will find useful information to answer the original question. First, you see a number of
sub-questions with their answers. This information should be considered to be more focussed and
somewhat more specific to the original question as it tries to contextualized facts.
After that will see the documents that were considered to be relevant to answer the original question.
Here are the sub-questions and their answers:
\n\n {deep_answer_context} \n\n
\n\n Here are the documents that were considered to be relevant to answer the original question:
\n\n {formated_docs} \n\n
----------------
"""
SUB_QUESTION_EXPLANATION_RANKER_PROMPT = """-------
Below you will find a question that we ultimately want to answer (the original question) and a list of
motivations in arbitrary order for generated sub-questions that are supposed to help us answering the
original question. The motivations are formatted as <motivation number>: <motivation explanation>.
(Again, the numbering is arbitrary and does not necessarily mean that 1 is the most relevant
motivation and 2 is less relevant.)
Please rank the motivations in order of relevance for answering the original question. Also, try to
ensure that the top questions do not duplicate too much, i.e. that they are not too similar.
Ultimately, create a list with the motivation numbers where the number of the most relevant
motivations comes first.
Here is the original question:
\n\n {original_question} \n\n
\n\n Here is the list of sub-question motivations:
\n\n {sub_question_explanations} \n\n
----------------
Please think step by step and then generate the ranked list of motivations.
Please format your answer as a json object in the following format:
{{"reasonning": <explain your reasoning for the ranking>,
"ranked_motivations": <ranked list of motivation numbers>}}
"""
INITIAL_DECOMPOSITION_PROMPT = """ \n
Please decompose an initial user question into 2 or 3 appropriate sub-questions that help to
answer the original question. The purpose for this decomposition is to isolate individulal entities
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
For each sub-question, please also create one search term that can be used to retrieve relevant
documents from a document store.
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Please formulate your answer as a list of json objects with the following format:
[{{"sub_question": <sub-question>, "search_term": <search term>}}, ...]
Answer:
"""
INITIAL_RAG_PROMPT = """ \n
You are an assistant for question-answering tasks. Use the information provided below - and only the
provided information - to answer the provided question.
The information provided below consists of:
1) a number of answered sub-questions - these are very important(!) and definitely should be
considered to answer the question.
2) a number of documents that were also deemed relevant for the question.
If you don't know the answer or if the provided information is empty or insufficient, just say
"I don't know". Do not use your internal knowledge!
Again, only use the provided informationand do not use your internal knowledge! It is a matter of life
and death that you do NOT use your internal knowledge, just the provided information!
Try to keep your answer concise.
And here is the question and the provided information:
\n
\nQuestion:\n {question}
\nAnswered Sub-questions:\n {answered_sub_questions}
\nContext:\n {context} \n\n
\n\n
Answer:"""
ENTITY_TERM_PROMPT = """ \n
Based on the original question and the context retieved from a dataset, please generate a list of
entities (e.g. companies, organizations, industries, products, locations, etc.), terms and concepts
(e.g. sales, revenue, etc.) that are relevant for the question, plus their relations to each other.
\n\n
Here is the original question:
\n ------- \n
{question}
\n ------- \n
And here is the context retrieved:
\n ------- \n
{context}
\n ------- \n
Please format your answer as a json object in the following format:
{{"retrieved_entities_relationships": {{
"entities": [{{
"entity_name": <assign a name for the entity>,
"entity_type": <specify a short type name for the entity, such as 'company', 'location',...>
}}],
"relationships": [{{
"name": <assign a name for the relationship>,
"type": <specify a short type name for the relationship, such as 'sales_to', 'is_location_of',...>,
"entities": [<related entity name 1>, <related entity name 2>]
}}],
"terms": [{{
"term_name": <assign a name for the term>,
"term_type": <specify a short type name for the term, such as 'revenue', 'market_share',...>,
"similar_to": <list terms that are similar to this term>
}}]
}}
}}
"""

View File

@@ -1,101 +0,0 @@
import ast
import json
import re
from collections.abc import Sequence
from datetime import datetime
from datetime import timedelta
from typing import Any
from danswer.context.search.models import InferenceSection
def normalize_whitespace(text: str) -> str:
"""Normalize whitespace in text to single spaces and strip leading/trailing whitespace."""
import re
return re.sub(r"\s+", " ", text.strip())
# Post-processing
def format_docs(docs: Sequence[InferenceSection]) -> str:
return "\n\n".join(doc.combined_content for doc in docs)
def clean_and_parse_list_string(json_string: str) -> list[dict]:
# Remove any prefixes/labels before the actual JSON content
json_string = re.sub(r"^.*?(?=\[)", "", json_string, flags=re.DOTALL)
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Try parsing with json.loads first, fall back to ast.literal_eval
try:
return json.loads(cleaned_string)
except json.JSONDecodeError:
try:
return ast.literal_eval(cleaned_string)
except (ValueError, SyntaxError) as e:
raise ValueError(f"Failed to parse JSON string: {cleaned_string}") from e
def clean_and_parse_json_string(json_string: str) -> dict[str, Any]:
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Parse the cleaned string into a Python dictionary
return json.loads(cleaned_string)
def format_entity_term_extraction(entity_term_extraction_dict: dict[str, Any]) -> str:
entities = entity_term_extraction_dict["entities"]
terms = entity_term_extraction_dict["terms"]
relationships = entity_term_extraction_dict["relationships"]
entity_strs = ["\nEntities:\n"]
for entity in entities:
entity_str = f"{entity['entity_name']} ({entity['entity_type']})"
entity_strs.append(entity_str)
entity_str = "\n - ".join(entity_strs)
relationship_strs = ["\n\nRelationships:\n"]
for relationship in relationships:
relationship_str = f"{relationship['name']} ({relationship['type']}): {relationship['entities']}"
relationship_strs.append(relationship_str)
relationship_str = "\n - ".join(relationship_strs)
term_strs = ["\n\nTerms:\n"]
for term in terms:
term_str = f"{term['term_name']} ({term['term_type']}): similar to {term['similar_to']}"
term_strs.append(term_str)
term_str = "\n - ".join(term_strs)
return "\n".join(entity_strs + relationship_strs + term_strs)
def _format_time_delta(time: timedelta) -> str:
seconds_from_start = f"{((time).seconds):03d}"
microseconds_from_start = f"{((time).microseconds):06d}"
return f"{seconds_from_start}.{microseconds_from_start}"
def generate_log_message(
message: str,
node_start_time: datetime,
graph_start_time: datetime | None = None,
) -> str:
current_time = datetime.now()
if graph_start_time is not None:
graph_time_str = _format_time_delta(current_time - graph_start_time)
else:
graph_time_str = "N/A"
node_time_str = _format_time_delta(current_time - node_start_time)
return f"{graph_time_str} ({node_time_str} s): {message}"

View File

@@ -58,7 +58,6 @@ from danswer.auth.schemas import UserRole
from danswer.auth.schemas import UserUpdate
from danswer.configs.app_configs import AUTH_TYPE
from danswer.configs.app_configs import DISABLE_AUTH
from danswer.configs.app_configs import DISABLE_VERIFICATION
from danswer.configs.app_configs import EMAIL_FROM
from danswer.configs.app_configs import REQUIRE_EMAIL_VERIFICATION
from danswer.configs.app_configs import SESSION_EXPIRE_TIME_SECONDS
@@ -132,11 +131,12 @@ def get_display_email(email: str | None, space_less: bool = False) -> str:
def user_needs_to_be_verified() -> bool:
# all other auth types besides basic should require users to be
# verified
return not DISABLE_VERIFICATION and (
AUTH_TYPE != AuthType.BASIC or REQUIRE_EMAIL_VERIFICATION
)
if AUTH_TYPE == AuthType.BASIC:
return REQUIRE_EMAIL_VERIFICATION
# For other auth types, if the user is authenticated it's assumed that
# the user is already verified via the external IDP
return False
def verify_email_is_invited(email: str) -> None:

View File

@@ -6,27 +6,27 @@ from langchain.schema.messages import BaseMessage
from langchain_core.messages import AIMessageChunk
from langchain_core.messages import ToolCall
from danswer.chat.llm_response_handler import LLMResponseHandlerManager
from danswer.chat.models import AnswerQuestionPossibleReturn
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import LLMResponseHandlerManager
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.build import default_build_system_message
from danswer.llm.answering.prompts.build import default_build_user_message
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import default_build_system_message
from danswer.chat.prompt_builder.build import default_build_user_message
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import (
CitationResponseHandler,
)
from danswer.llm.answering.stream_processing.answer_response_handler import (
from danswer.chat.stream_processing.answer_response_handler import (
DummyAnswerResponseHandler,
)
from danswer.llm.answering.stream_processing.utils import map_document_id_order
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
from danswer.chat.stream_processing.utils import map_document_id_order
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
from danswer.file_store.utils import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolResponse

View File

@@ -26,7 +26,7 @@ from danswer.db.models import Prompt
from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.persona import get_prompts_by_ids
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.models import PreviousMessage
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.tools.tool_implementations.custom.custom_tool import (

View File

@@ -1,58 +1,22 @@
from collections.abc import Callable
from collections.abc import Generator
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain_core.messages import BaseMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import ResponsePart
from danswer.chat.models import StreamStopInfo
from danswer.chat.models import StreamStopReason
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.stream_processing.answer_response_handler import (
AnswerResponseHandler,
)
from danswer.llm.answering.tool.tool_response_handler import ToolResponseHandler
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True
from danswer.chat.prompt_builder.build import LLMCall
from danswer.chat.stream_processing.answer_response_handler import AnswerResponseHandler
from danswer.chat.tool_handling.tool_response_handler import ToolResponseHandler
class LLMResponseHandlerManager:
def __init__(
self,
tool_handler: "ToolResponseHandler",
answer_handler: "AnswerResponseHandler",
tool_handler: ToolResponseHandler,
answer_handler: AnswerResponseHandler,
is_cancelled: Callable[[], bool],
):
self.tool_handler = tool_handler

View File

@@ -1,10 +1,14 @@
from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from typing import TYPE_CHECKING
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
@@ -12,8 +16,15 @@ from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.context.search.models import RetrievalDocs
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
if TYPE_CHECKING:
from danswer.db.models import Prompt
class LlmDoc(BaseModel):
"""This contains the minimal set information for the LLM portion including citations"""
@@ -210,3 +221,109 @@ AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
class LLMMetricsContainer(BaseModel):
prompt_tokens: int
response_tokens: int
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)
ResponsePart = (
DanswerAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)

View File

@@ -6,19 +6,24 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.answer import Answer
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import create_temporary_persona
from danswer.chat.models import AllCitations
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.models import CitationConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import FileChatDisplay
from danswer.chat.models import FinalUsedContextDocsResponse
from danswer.chat.models import LLMRelevanceFilterResponse
from danswer.chat.models import MessageResponseIDInfo
from danswer.chat.models import MessageSpecificCitations
from danswer.chat.models import PromptConfig
from danswer.chat.models import QADocsResponse
from danswer.chat.models import StreamingError
from danswer.chat.models import StreamStopInfo
@@ -57,16 +62,11 @@ from danswer.document_index.factory import get_default_document_index
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.file_store.utils import load_all_chat_files
from danswer.file_store.utils import save_files_from_urls
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.file_store.utils import save_files
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.server.query_and_chat.models import ChatMessageDetail
@@ -119,6 +119,7 @@ from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
from danswer.utils.timing import log_function_time
from danswer.utils.timing import log_generator_function_time
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
@@ -302,6 +303,7 @@ def stream_chat_message_objects(
3. [always] A set of streamed LLM tokens or an error anywhere along the line if something fails
4. [always] Details on the final AI response message that is created
"""
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
use_existing_user_message = new_msg_req.use_existing_user_message
existing_assistant_message_id = new_msg_req.existing_assistant_message_id
@@ -678,7 +680,8 @@ def stream_chat_message_objects(
reference_db_search_docs = None
qa_docs_response = None
ai_message_files = None # any files to associate with the AI message e.g. dall-e generated images
# any files to associate with the AI message e.g. dall-e generated images
ai_message_files = []
dropped_indices = None
tool_result = None
@@ -733,8 +736,14 @@ def stream_chat_message_objects(
list[ImageGenerationResponse], packet.response
)
file_ids = save_files_from_urls(
[img.url for img in img_generation_response]
file_ids = save_files(
urls=[img.url for img in img_generation_response if img.url],
base64_files=[
img.image_data
for img in img_generation_response
if img.image_data
],
tenant_id=tenant_id,
)
ai_message_files = [
FileDescriptor(id=str(file_id), type=ChatFileType.IMAGE)
@@ -760,15 +769,19 @@ def stream_chat_message_objects(
or custom_tool_response.response_type == "csv"
):
file_ids = custom_tool_response.tool_result.file_ids
ai_message_files = [
FileDescriptor(
id=str(file_id),
type=ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV,
)
for file_id in file_ids
]
ai_message_files.extend(
[
FileDescriptor(
id=str(file_id),
type=(
ChatFileType.IMAGE
if custom_tool_response.response_type == "image"
else ChatFileType.CSV
),
)
for file_id in file_ids
]
)
yield FileChatDisplay(
file_ids=[str(file_id) for file_id in file_ids]
)
@@ -818,7 +831,8 @@ def stream_chat_message_objects(
citations_list=answer.citations,
db_docs=reference_db_search_docs,
)
yield AllCitations(citations=answer.citations)
if not answer.is_cancelled():
yield AllCitations(citations=answer.citations)
# Saving Gen AI answer and responding with message info
tool_name_to_tool_id: dict[str, int] = {}

View File

@@ -4,20 +4,26 @@ from typing import cast
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import SystemMessage
from pydantic.v1 import BaseModel as BaseModel__v1
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prompt_builder.utils import translate_history_to_basemessages
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import check_message_tokens
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.llm.utils import translate_history_to_basemessages
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.prompts.chat_prompts import CHAT_USER_CONTEXT_FREE_PROMPT
from danswer.prompts.prompt_utils import add_date_time_to_prompt
from danswer.prompts.prompt_utils import drop_messages_history_overflow
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from danswer.tools.tool import Tool
def default_build_system_message(
@@ -139,3 +145,15 @@ class AnswerPromptBuilder:
return drop_messages_history_overflow(
final_messages_with_tokens, self.max_tokens
)
class LLMCall(BaseModel__v1):
prompt_builder: AnswerPromptBuilder
tools: list[Tool]
force_use_tool: ForceUseTool
files: list[InMemoryChatFile]
tool_call_info: list[ToolCallKickoff | ToolResponse | ToolCallFinalResult]
using_tool_calling_llm: bool
class Config:
arbitrary_types_allowed = True

View File

@@ -2,12 +2,12 @@ from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.model_configs import GEN_AI_SINGLE_USER_MESSAGE_EXPECTED_MAX_TOKENS
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Persona
from danswer.db.persona import get_default_prompt__read_only
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.interfaces import LLMConfig

View File

@@ -1,10 +1,10 @@
from langchain.schema.messages import HumanMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.context.search.models import InferenceChunk
from danswer.db.search_settings import get_multilingual_expansion
from danswer.llm.answering.models import PromptConfig
from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.prompts.direct_qa_prompts import CONTEXT_BLOCK
from danswer.prompts.direct_qa_prompts import HISTORY_BLOCK

View File

@@ -0,0 +1,62 @@
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from danswer.configs.constants import MessageType
from danswer.db.models import ChatMessage
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
def translate_danswer_msg_to_langchain(
msg: ChatMessage | PreviousMessage,
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts

View File

@@ -5,16 +5,16 @@ from typing import TypeVar
from pydantic import BaseModel
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import (
LlmDoc,
)
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.citations_prompt import compute_max_document_tokens
from danswer.configs.constants import IGNORE_FOR_QA
from danswer.configs.model_configs import DOC_EMBEDDING_CONTEXT_SIZE
from danswer.context.search.models import InferenceChunk
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.citations_prompt import compute_max_document_tokens
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.natural_language_processing.utils import tokenizer_trim_content

View File

@@ -3,13 +3,11 @@ from collections.abc import Generator
from langchain_core.messages import BaseMessage
from danswer.chat.llm_response_handler import ResponsePart
from danswer.chat.models import CitationInfo
from danswer.chat.models import LlmDoc
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.llm.answering.stream_processing.citation_processing import (
CitationProcessor,
)
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.chat.stream_processing.citation_processing import CitationProcessor
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.utils.logger import setup_logger
logger = setup_logger()

View File

@@ -4,8 +4,8 @@ from collections.abc import Generator
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import LlmDoc
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.configs.chat_configs import STOP_STREAM_PAT
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
from danswer.prompts.constants import TRIPLE_BACKTICK
from danswer.utils.logger import setup_logger

View File

@@ -4,8 +4,8 @@ from langchain_core.messages import AIMessageChunk
from langchain_core.messages import BaseMessage
from langchain_core.messages import ToolCall
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.llm_response_handler import ResponsePart
from danswer.chat.models import ResponsePart
from danswer.chat.prompt_builder.build import LLMCall
from danswer.llm.interfaces import LLM
from danswer.tools.force import ForceUseTool
from danswer.tools.message import build_tool_message

View File

@@ -43,9 +43,6 @@ WEB_DOMAIN = os.environ.get("WEB_DOMAIN") or "http://localhost:3000"
AUTH_TYPE = AuthType((os.environ.get("AUTH_TYPE") or AuthType.DISABLED.value).lower())
DISABLE_AUTH = AUTH_TYPE == AuthType.DISABLED
# Necessary for cloud integration tests
DISABLE_VERIFICATION = os.environ.get("DISABLE_VERIFICATION", "").lower() == "true"
# Encryption key secret is used to encrypt connector credentials, api keys, and other sensitive
# information. This provides an extra layer of security on top of Postgres access controls
# and is available in Danswer EE
@@ -85,6 +82,7 @@ OAUTH_CLIENT_SECRET = (
)
USER_AUTH_SECRET = os.environ.get("USER_AUTH_SECRET", "")
# for basic auth
REQUIRE_EMAIL_VERIFICATION = (
os.environ.get("REQUIRE_EMAIL_VERIFICATION", "").lower() == "true"
@@ -118,6 +116,8 @@ VESPA_HOST = os.environ.get("VESPA_HOST") or "localhost"
VESPA_CONFIG_SERVER_HOST = os.environ.get("VESPA_CONFIG_SERVER_HOST") or VESPA_HOST
VESPA_PORT = os.environ.get("VESPA_PORT") or "8081"
VESPA_TENANT_PORT = os.environ.get("VESPA_TENANT_PORT") or "19071"
# the number of times to try and connect to vespa on startup before giving up
VESPA_NUM_ATTEMPTS_ON_STARTUP = int(os.environ.get("NUM_RETRIES_ON_STARTUP") or 10)
VESPA_CLOUD_URL = os.environ.get("VESPA_CLOUD_URL", "")

View File

@@ -2,6 +2,8 @@ import json
import os
IMAGE_GENERATION_OUTPUT_FORMAT = os.environ.get("IMAGE_GENERATION_OUTPUT_FORMAT", "url")
# if specified, will pass through request headers to the call to API calls made by custom tools
CUSTOM_TOOL_PASS_THROUGH_HEADERS: list[str] | None = None
_CUSTOM_TOOL_PASS_THROUGH_HEADERS_RAW = os.environ.get(

View File

@@ -15,6 +15,7 @@ from danswer.connectors.confluence.utils import attachment_to_content
from danswer.connectors.confluence.utils import build_confluence_document_id
from danswer.connectors.confluence.utils import datetime_from_string
from danswer.connectors.confluence.utils import extract_text_from_confluence_html
from danswer.connectors.confluence.utils import validate_attachment_filetype
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
from danswer.connectors.interfaces import LoadConnector
@@ -276,9 +277,11 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
):
# If the page has restrictions, add them to the perm_sync_data
# These will be used by doc_sync.py to sync permissions
perm_sync_data = {
"restrictions": page.get("restrictions", {}),
"space_key": page.get("space", {}).get("key"),
page_restrictions = page.get("restrictions")
page_space_key = page.get("space", {}).get("key")
page_perm_sync_data = {
"restrictions": page_restrictions or {},
"space_key": page_space_key,
}
doc_metadata_list.append(
@@ -288,7 +291,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
page["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=page_perm_sync_data,
)
)
attachment_cql = f"type=attachment and container='{page['id']}'"
@@ -298,6 +301,21 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
expand=restrictions_expand,
limit=_SLIM_DOC_BATCH_SIZE,
):
if not validate_attachment_filetype(attachment):
continue
attachment_restrictions = attachment.get("restrictions")
if not attachment_restrictions:
attachment_restrictions = page_restrictions
attachment_space_key = attachment.get("space", {}).get("key")
if not attachment_space_key:
attachment_space_key = page_space_key
attachment_perm_sync_data = {
"restrictions": attachment_restrictions or {},
"space_key": attachment_space_key,
}
doc_metadata_list.append(
SlimDocument(
id=build_confluence_document_id(
@@ -305,7 +323,7 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
attachment["_links"]["webui"],
self.is_cloud,
),
perm_sync_data=perm_sync_data,
perm_sync_data=attachment_perm_sync_data,
)
)
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:

View File

@@ -177,19 +177,23 @@ def extract_text_from_confluence_html(
return format_document_soup(soup)
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if attachment["metadata"]["mediaType"] in [
def validate_attachment_filetype(attachment: dict[str, Any]) -> bool:
return attachment["metadata"]["mediaType"] not in [
"image/jpeg",
"image/png",
"image/gif",
"image/svg+xml",
"video/mp4",
"video/quicktime",
]:
]
def attachment_to_content(
confluence_client: OnyxConfluence,
attachment: dict[str, Any],
) -> str | None:
"""If it returns None, assume that we should skip this attachment."""
if not validate_attachment_filetype(attachment):
return None
download_link = confluence_client.url + attachment["_links"]["download"]
@@ -245,7 +249,7 @@ def build_confluence_document_id(
return f"{base_url}{content_url}"
def extract_referenced_attachment_names(page_text: str) -> list[str]:
def _extract_referenced_attachment_names(page_text: str) -> list[str]:
"""Parse a Confluence html page to generate a list of current
attachments in use

View File

@@ -5,7 +5,11 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prune_and_merge import _merge_sections
from danswer.chat.prune_and_merge import ChunkRange
from danswer.chat.prune_and_merge import merge_chunk_intervals
from danswer.configs.chat_configs import DISABLE_LLM_DOC_RELEVANCE
from danswer.context.search.enums import LLMEvaluationType
from danswer.context.search.enums import QueryFlow
@@ -27,10 +31,6 @@ from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import VespaChunkRequest
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prune_and_merge import _merge_sections
from danswer.llm.answering.prune_and_merge import ChunkRange
from danswer.llm.answering.prune_and_merge import merge_chunk_intervals
from danswer.llm.interfaces import LLM
from danswer.secondary_llm_flows.agentic_evaluation import evaluate_inference_section
from danswer.utils.logger import setup_logger

View File

@@ -4,6 +4,8 @@ schema DANSWER_CHUNK_NAME {
# Not to be confused with the UUID generated for this chunk which is called documentid by default
field document_id type string {
indexing: summary | attribute
attribute: fast-search
rank: filter
}
field chunk_id type int {
indexing: summary | attribute

View File

@@ -6,6 +6,7 @@ import zipfile
from collections.abc import Callable
from collections.abc import Iterator
from email.parser import Parser as EmailParser
from io import BytesIO
from pathlib import Path
from typing import Any
from typing import Dict
@@ -15,13 +16,17 @@ import chardet
import docx # type: ignore
import openpyxl # type: ignore
import pptx # type: ignore
from docx import Document
from fastapi import UploadFile
from pypdf import PdfReader
from pypdf.errors import PdfStreamError
from danswer.configs.constants import DANSWER_METADATA_FILENAME
from danswer.configs.constants import FileOrigin
from danswer.file_processing.html_utils import parse_html_page_basic
from danswer.file_processing.unstructured import get_unstructured_api_key
from danswer.file_processing.unstructured import unstructured_to_text
from danswer.file_store.file_store import FileStore
from danswer.utils.logger import setup_logger
logger = setup_logger()
@@ -375,3 +380,35 @@ def extract_file_text(
) from e
logger.warning(f"Failed to process file {file_name or 'Unknown'}: {str(e)}")
return ""
def convert_docx_to_txt(
file: UploadFile, file_store: FileStore, file_path: str
) -> None:
file.file.seek(0)
docx_content = file.file.read()
doc = Document(BytesIO(docx_content))
# Extract text from the document
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
# Join the extracted text
text_content = "\n".join(full_text)
txt_file_path = docx_to_txt_filename(file_path)
file_store.save_file(
file_name=txt_file_path,
content=BytesIO(text_content.encode("utf-8")),
display_name=file.filename,
file_origin=FileOrigin.CONNECTOR,
file_type="text/plain",
)
def docx_to_txt_filename(file_path: str) -> str:
"""
Convert a .docx file path to its corresponding .txt file path.
"""
return file_path.rsplit(".", 1)[0] + ".txt"

View File

@@ -1,6 +1,6 @@
import base64
from collections.abc import Callable
from io import BytesIO
from typing import Any
from typing import cast
from uuid import uuid4
@@ -13,8 +13,8 @@ from danswer.db.models import ChatMessage
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import FileDescriptor
from danswer.file_store.models import InMemoryChatFile
from danswer.utils.b64 import get_image_type
from danswer.utils.threadpool_concurrency import run_functions_tuples_in_parallel
from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
def load_chat_file(
@@ -75,11 +75,58 @@ def save_file_from_url(url: str, tenant_id: str) -> str:
return unique_id
def save_files_from_urls(urls: list[str]) -> list[str]:
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
def save_file_from_base64(base64_string: str, tenant_id: str) -> str:
with get_session_with_tenant(tenant_id) as db_session:
unique_id = str(uuid4())
file_store = get_default_file_store(db_session)
file_store.save_file(
file_name=unique_id,
content=BytesIO(base64.b64decode(base64_string)),
display_name="GeneratedImage",
file_origin=FileOrigin.CHAT_IMAGE_GEN,
file_type=get_image_type(base64_string),
)
return unique_id
funcs: list[tuple[Callable[..., Any], tuple[Any, ...]]] = [
(save_file_from_url, (url, tenant_id)) for url in urls
def save_file(
tenant_id: str,
url: str | None = None,
base64_data: str | None = None,
) -> str:
"""Save a file from either a URL or base64 encoded string.
Args:
tenant_id: The tenant ID to save the file under
url: URL to download file from
base64_data: Base64 encoded file data
Returns:
The unique ID of the saved file
Raises:
ValueError: If neither url nor base64_data is provided, or if both are provided
"""
if url is not None and base64_data is not None:
raise ValueError("Cannot specify both url and base64_data")
if url is not None:
return save_file_from_url(url, tenant_id)
elif base64_data is not None:
return save_file_from_base64(base64_data, tenant_id)
else:
raise ValueError("Must specify either url or base64_data")
def save_files(urls: list[str], base64_files: list[str], tenant_id: str) -> list[str]:
# NOTE: be explicit about typing so that if we change things, we get notified
funcs: list[
tuple[
Callable[[str, str | None, str | None], str],
tuple[str, str | None, str | None],
]
] = [(save_file, (tenant_id, url, None)) for url in urls] + [
(save_file, (tenant_id, None, base64_file)) for base64_file in base64_files
]
# Must pass in tenant_id here, since this is called by multithreading
return run_functions_tuples_in_parallel(funcs)

View File

@@ -1,163 +0,0 @@
from collections.abc import Callable
from collections.abc import Iterator
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from danswer.chat.models import AnswerQuestionStreamReturn
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.override_models import PromptOverride
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
from danswer.db.models import Prompt
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)

View File

@@ -1,20 +0,0 @@
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT
from danswer.prompts.direct_qa_prompts import PARAMATERIZED_PROMPT_WITHOUT_CONTEXT
def build_dummy_prompt(
system_prompt: str, task_prompt: str, retrieval_disabled: bool
) -> str:
if retrieval_disabled:
return PARAMATERIZED_PROMPT_WITHOUT_CONTEXT.format(
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()
return PARAMATERIZED_PROMPT.format(
context_docs_str="<CONTEXT_DOCS>",
user_query="<USER_QUERY>",
system_prompt=system_prompt,
task_prompt=task_prompt,
).strip()

View File

@@ -0,0 +1,59 @@
from typing import TYPE_CHECKING
from langchain.schema.messages import AIMessage
from langchain.schema.messages import BaseMessage
from langchain.schema.messages import HumanMessage
from langchain.schema.messages import SystemMessage
from pydantic import BaseModel
from danswer.configs.constants import MessageType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.utils import build_content_with_imgs
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
from danswer.db.models import ChatMessage
class PreviousMessage(BaseModel):
"""Simplified version of `ChatMessage`"""
message: str
token_count: int
message_type: MessageType
files: list[InMemoryChatFile]
tool_call: ToolCallFinalResult | None
@classmethod
def from_chat_message(
cls, chat_message: "ChatMessage", available_files: list[InMemoryChatFile]
) -> "PreviousMessage":
message_file_ids = (
[file["id"] for file in chat_message.files] if chat_message.files else []
)
return cls(
message=chat_message.message,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
files=[
file
for file in available_files
if str(file.file_id) in message_file_ids
],
tool_call=ToolCallFinalResult(
tool_name=chat_message.tool_call.tool_name,
tool_args=chat_message.tool_call.tool_arguments,
tool_result=chat_message.tool_call.tool_result,
)
if chat_message.tool_call
else None,
)
def to_langchain_msg(self) -> BaseMessage:
content = build_content_with_imgs(self.message, self.files)
if self.message_type == MessageType.USER:
return HumanMessage(content=content)
elif self.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
else:
return SystemMessage(content=content)

View File

@@ -5,8 +5,6 @@ from collections.abc import Callable
from collections.abc import Iterator
from typing import Any
from typing import cast
from typing import TYPE_CHECKING
from typing import Union
import litellm # type: ignore
import pandas as pd
@@ -36,17 +34,15 @@ from danswer.configs.constants import MessageType
from danswer.configs.model_configs import GEN_AI_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
from danswer.configs.model_configs import GEN_AI_NUM_RESERVED_OUTPUT_TOKENS
from danswer.db.models import ChatMessage
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.interfaces import LLM
from danswer.prompts.constants import CODE_BLOCK_PAT
from danswer.utils.b64 import get_image_type
from danswer.utils.b64 import get_image_type_from_bytes
from danswer.utils.logger import setup_logger
from shared_configs.configs import LOG_LEVEL
if TYPE_CHECKING:
from danswer.llm.answering.models import PreviousMessage
logger = setup_logger()
@@ -104,39 +100,6 @@ def litellm_exception_to_error_msg(
return error_msg
def translate_danswer_msg_to_langchain(
msg: Union[ChatMessage, "PreviousMessage"],
) -> BaseMessage:
files: list[InMemoryChatFile] = []
# If the message is a `ChatMessage`, it doesn't have the downloaded files
# attached. Just ignore them for now.
if not isinstance(msg, ChatMessage):
files = msg.files
content = build_content_with_imgs(msg.message, files, message_type=msg.message_type)
if msg.message_type == MessageType.SYSTEM:
raise ValueError("System messages are not currently part of history")
if msg.message_type == MessageType.ASSISTANT:
return AIMessage(content=content)
if msg.message_type == MessageType.USER:
return HumanMessage(content=content)
raise ValueError(f"New message type {msg.message_type} not handled")
def translate_history_to_basemessages(
history: list[ChatMessage] | list["PreviousMessage"],
) -> tuple[list[BaseMessage], list[int]]:
history_basemessages = [
translate_danswer_msg_to_langchain(msg)
for msg in history
if msg.token_count != 0
]
history_token_counts = [msg.token_count for msg in history if msg.token_count != 0]
return history_basemessages, history_token_counts
# Processes CSV files to show the first 5 rows and max_columns (default 40) columns
def _process_csv_file(file: InMemoryChatFile, max_columns: int = 40) -> str:
df = pd.read_csv(io.StringIO(file.content.decode("utf-8")))
@@ -190,6 +153,7 @@ def build_content_with_imgs(
message: str,
files: list[InMemoryChatFile] | None = None,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
message_type: MessageType = MessageType.USER,
) -> str | list[str | dict[str, Any]]: # matching Langchain's BaseMessage content type
files = files or []
@@ -202,6 +166,7 @@ def build_content_with_imgs(
)
img_urls = img_urls or []
b64_imgs = b64_imgs or []
message_main_content = _build_content(message, files)
@@ -220,11 +185,22 @@ def build_content_with_imgs(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{file.to_base64()}",
"url": (
f"data:{get_image_type_from_bytes(file.content)};"
f"base64,{file.to_base64()}"
),
},
}
for file in files
if file.file_type == "image"
for file in img_files
]
+ [
{
"type": "image_url",
"image_url": {
"url": f"data:{get_image_type(b64_img)};base64,{b64_img}",
},
}
for b64_img in b64_imgs
]
+ [
{

View File

@@ -5,11 +5,11 @@ from typing import cast
from langchain_core.messages import BaseMessage
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.configs.chat_configs import LANGUAGE_HINT
from danswer.configs.constants import DocumentSource
from danswer.context.search.models import InferenceChunk
from danswer.db.models import Prompt
from danswer.llm.answering.models import PromptConfig
from danswer.prompts.chat_prompts import ADDITIONAL_INFO
from danswer.prompts.chat_prompts import CITATION_REMINDER
from danswer.prompts.constants import CODE_BLOCK_PAT

View File

@@ -3,14 +3,14 @@ from langchain.schema import HumanMessage
from langchain.schema import SystemMessage
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.utils import translate_danswer_msg_to_langchain
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.llm.utils import translate_danswer_msg_to_langchain
from danswer.prompts.chat_prompts import AGGRESSIVE_SEARCH_TEMPLATE
from danswer.prompts.chat_prompts import NO_SEARCH
from danswer.prompts.chat_prompts import REQUIRE_SEARCH_HINT

View File

@@ -4,10 +4,10 @@ from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.chat_configs import DISABLE_LLM_QUERY_REPHRASE
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.db.models import ChatMessage
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import HISTORY_QUERY_REPHRASE

View File

@@ -86,6 +86,7 @@ from danswer.db.models import SearchSettings
from danswer.db.models import User
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.file_processing.extract_file_text import convert_docx_to_txt
from danswer.file_store.file_store import get_default_file_store
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.redis.redis_connector import RedisConnector
@@ -393,6 +394,12 @@ def upload_files(
file_origin=FileOrigin.CONNECTOR,
file_type=file.content_type or "text/plain",
)
if file.content_type and file.content_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
convert_docx_to_txt(file, file_store, file_path)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return FileUploadResponse(file_paths=deduped_file_paths)
@@ -1010,37 +1017,18 @@ def get_connector_by_id(
class BasicCCPairInfo(BaseModel):
docs_indexed: int
has_successful_run: bool
source: DocumentSource
@router.get("/indexing-status")
@router.get("/connector-status")
def get_basic_connector_indexing_status(
_: User = Depends(current_user),
db_session: Session = Depends(get_session),
) -> list[BasicCCPairInfo]:
cc_pairs = get_connector_credential_pairs(db_session)
cc_pair_identifiers = [
ConnectorCredentialPairIdentifier(
connector_id=cc_pair.connector_id, credential_id=cc_pair.credential_id
)
for cc_pair in cc_pairs
]
document_count_info = get_document_counts_for_cc_pairs(
db_session=db_session,
cc_pair_identifiers=cc_pair_identifiers,
)
cc_pair_to_document_cnt = {
(connector_id, credential_id): cnt
for connector_id, credential_id, cnt in document_count_info
}
return [
BasicCCPairInfo(
docs_indexed=cc_pair_to_document_cnt.get(
(cc_pair.connector_id, cc_pair.credential_id)
)
or 0,
has_successful_run=cc_pair.last_successful_index_time is not None,
source=cc_pair.connector.source,
)

View File

@@ -13,6 +13,7 @@ from danswer.auth.users import current_admin_user
from danswer.auth.users import current_curator_or_admin_user
from danswer.auth.users import current_limited_user
from danswer.auth.users import current_user
from danswer.chat.prompt_builder.utils import build_dummy_prompt
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import NotificationType
from danswer.db.engine import get_session
@@ -33,7 +34,6 @@ from danswer.db.persona import update_persona_shared_users
from danswer.db.persona import update_persona_visibility
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.llm.answering.prompts.utils import build_dummy_prompt
from danswer.server.features.persona.models import CreatePersonaRequest
from danswer.server.features.persona.models import ImageGenerationToolStatus
from danswer.server.features.persona.models import PersonaCategoryCreate

View File

@@ -194,11 +194,11 @@ def bulk_invite_users(
)
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
normalized_emails = []
new_invited_emails = []
try:
for email in emails:
email_info = validate_email(email)
normalized_emails.append(email_info.normalized) # type: ignore
new_invited_emails.append(email_info.normalized)
except (EmailUndeliverableError, EmailNotValidError) as e:
raise HTTPException(
@@ -210,7 +210,7 @@ def bulk_invite_users(
try:
fetch_ee_implementation_or_noop(
"danswer.server.tenants.provisioning", "add_users_to_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
except IntegrityError as e:
if isinstance(e.orig, UniqueViolation):
@@ -224,7 +224,7 @@ def bulk_invite_users(
initial_invited_users = get_invited_users()
all_emails = list(set(normalized_emails) | set(initial_invited_users))
all_emails = list(set(new_invited_emails) | set(initial_invited_users))
number_of_invited_users = write_invited_users(all_emails)
if not MULTI_TENANT:
@@ -236,7 +236,7 @@ def bulk_invite_users(
)(CURRENT_TENANT_ID_CONTEXTVAR.get(), get_total_users_count(db_session))
if ENABLE_EMAIL_INVITES:
try:
for email in all_emails:
for email in new_invited_emails:
send_user_email_invite(email, current_user)
except Exception as e:
logger.error(f"Error sending email invite to invited users: {e}")
@@ -250,7 +250,7 @@ def bulk_invite_users(
write_invited_users(initial_invited_users) # Reset to original state
fetch_ee_implementation_or_noop(
"danswer.server.tenants.user_mapping", "remove_users_from_tenant", None
)(normalized_emails, tenant_id)
)(new_invited_emails, tenant_id)
raise e

View File

@@ -1,6 +1,7 @@
import asyncio
import io
import json
import os
import uuid
from collections.abc import Callable
from collections.abc import Generator
@@ -23,6 +24,9 @@ from danswer.auth.users import current_user
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import extract_headers
from danswer.chat.process_message import stream_chat_message
from danswer.chat.prompt_builder.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import MessageType
@@ -47,13 +51,11 @@ from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.file_processing.extract_file_text import docx_to_txt_filename
from danswer.file_processing.extract_file_text import extract_file_text
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import FileDescriptor
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.factory import get_llms_for_persona
@@ -718,6 +720,18 @@ def fetch_chat_file(
if not file_record:
raise HTTPException(status_code=404, detail="File not found")
original_file_name = file_record.display_name
if file_record.file_type.startswith(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
# Check if a converted text file exists for .docx files
txt_file_name = docx_to_txt_filename(original_file_name)
txt_file_id = os.path.join(os.path.dirname(file_id), txt_file_name)
txt_file_record = file_store.read_file_record(txt_file_id)
if txt_file_record:
file_record = txt_file_record
file_id = txt_file_id
media_type = file_record.file_type
file_io = file_store.read_file(file_id, mode="b")

View File

@@ -1,5 +1,6 @@
from datetime import datetime
from typing import Any
from typing import TYPE_CHECKING
from uuid import UUID
from pydantic import BaseModel
@@ -22,6 +23,9 @@ from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
from danswer.tools.models import ToolCallFinalResult
if TYPE_CHECKING:
pass
class SourceTag(Tag):
source: DocumentSource

View File

@@ -4,6 +4,7 @@ from sqlalchemy.orm import Session
from danswer.configs.app_configs import DISABLE_INDEX_UPDATE_ON_SWAP
from danswer.configs.app_configs import MANAGED_VESPA
from danswer.configs.app_configs import VESPA_NUM_ATTEMPTS_ON_STARTUP
from danswer.configs.constants import KV_REINDEX_KEY
from danswer.configs.constants import KV_SEARCH_SETTINGS
from danswer.configs.model_configs import FAST_GEN_AI_MODEL_VERSION
@@ -221,13 +222,13 @@ def setup_vespa(
document_index: DocumentIndex,
index_setting: IndexingSetting,
secondary_index_setting: IndexingSetting | None,
num_attempts: int = VESPA_NUM_ATTEMPTS_ON_STARTUP,
) -> bool:
# Vespa startup is a bit slow, so give it a few seconds
WAIT_SECONDS = 5
VESPA_ATTEMPTS = 5
for x in range(VESPA_ATTEMPTS):
for x in range(num_attempts):
try:
logger.notice(f"Setting up Vespa (attempt {x+1}/{VESPA_ATTEMPTS})...")
logger.notice(f"Setting up Vespa (attempt {x+1}/{num_attempts})...")
document_index.ensure_indices_exist(
index_embedding_dim=index_setting.model_dim,
secondary_index_embedding_dim=secondary_index_setting.model_dim
@@ -244,7 +245,7 @@ def setup_vespa(
time.sleep(WAIT_SECONDS)
logger.error(
f"Vespa setup did not succeed. Attempt limit reached. ({VESPA_ATTEMPTS})"
f"Vespa setup did not succeed. Attempt limit reached. ({num_attempts})"
)
return False

View File

@@ -7,7 +7,7 @@ from danswer.llm.utils import message_to_prompt_and_imgs
from danswer.tools.tool import Tool
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.tool_implementations.custom.custom_tool import (
CustomToolCallSummary,
)

View File

@@ -25,9 +25,6 @@ class ToolCallSummary(BaseModel__v1):
tool_call_request: AIMessage
tool_call_result: ToolMessage
class Config:
arbitrary_types_allowed = True
def tool_call_tokens(
tool_call_summary: ToolCallSummary, llm_tokenizer: BaseTokenizer

View File

@@ -3,13 +3,13 @@ from collections.abc import Generator
from typing import Any
from typing import TYPE_CHECKING
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.utils.special_types import JSON_ro
if TYPE_CHECKING:
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse

View File

@@ -5,6 +5,10 @@ from pydantic import BaseModel
from pydantic import Field
from sqlalchemy.orm import Session
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationConfig
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import PromptConfig
from danswer.configs.app_configs import AZURE_DALLE_API_BASE
from danswer.configs.app_configs import AZURE_DALLE_API_KEY
from danswer.configs.app_configs import AZURE_DALLE_API_VERSION
@@ -19,10 +23,6 @@ from danswer.db.llm import fetch_existing_llm_providers
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.interfaces import LLM
from danswer.llm.interfaces import LLMConfig
from danswer.natural_language_processing.utils import get_tokenizer

View File

@@ -15,14 +15,14 @@ from langchain_core.messages import SystemMessage
from pydantic import BaseModel
from requests import JSONDecodeError
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import FileOrigin
from danswer.db.engine import get_session_with_default_tenant
from danswer.file_store.file_store import get_default_file_store
from danswer.file_store.models import ChatFileType
from danswer.file_store.models import InMemoryChatFile
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.base_tool import BaseTool
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import CHAT_SESSION_ID_PLACEHOLDER

View File

@@ -4,14 +4,16 @@ from enum import Enum
from typing import Any
from typing import cast
import requests
from litellm import image_generation # type: ignore
from pydantic import BaseModel
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.configs.tool_configs import IMAGE_GENERATION_OUTPUT_FORMAT
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import build_content_with_imgs
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
@@ -56,9 +58,18 @@ Follow Up Input:
""".strip()
class ImageFormat(str, Enum):
URL = "url"
BASE64 = "b64_json"
_DEFAULT_OUTPUT_FORMAT = ImageFormat(IMAGE_GENERATION_OUTPUT_FORMAT)
class ImageGenerationResponse(BaseModel):
revised_prompt: str
url: str
url: str | None
image_data: str | None
class ImageShape(str, Enum):
@@ -80,6 +91,7 @@ class ImageGenerationTool(Tool):
model: str = "dall-e-3",
num_imgs: int = 2,
additional_headers: dict[str, str] | None = None,
output_format: ImageFormat = _DEFAULT_OUTPUT_FORMAT,
) -> None:
self.api_key = api_key
self.api_base = api_base
@@ -89,6 +101,7 @@ class ImageGenerationTool(Tool):
self.num_imgs = num_imgs
self.additional_headers = additional_headers
self.output_format = output_format
@property
def name(self) -> str:
@@ -168,7 +181,7 @@ class ImageGenerationTool(Tool):
)
return build_content_with_imgs(
json.dumps(
message=json.dumps(
[
{
"revised_prompt": image_generation.revised_prompt,
@@ -177,13 +190,10 @@ class ImageGenerationTool(Tool):
for image_generation in image_generations
]
),
# NOTE: we can't pass in the image URLs here, since OpenAI doesn't allow
# Tool messages to contain images
# img_urls=[image_generation.url for image_generation in image_generations],
)
def _generate_image(
self, prompt: str, shape: ImageShape
self, prompt: str, shape: ImageShape, format: ImageFormat
) -> ImageGenerationResponse:
if shape == ImageShape.LANDSCAPE:
size = "1792x1024"
@@ -197,20 +207,32 @@ class ImageGenerationTool(Tool):
prompt=prompt,
model=self.model,
api_key=self.api_key,
# need to pass in None rather than empty str
api_base=self.api_base or None,
api_version=self.api_version or None,
size=size,
n=1,
response_format=format,
extra_headers=build_llm_extra_headers(self.additional_headers),
)
if format == ImageFormat.URL:
url = response.data[0]["url"]
image_data = None
else:
url = None
image_data = response.data[0]["b64_json"]
return ImageGenerationResponse(
revised_prompt=response.data[0]["revised_prompt"],
url=response.data[0]["url"],
url=url,
image_data=image_data,
)
except requests.RequestException as e:
logger.error(f"Error fetching or converting image: {e}")
raise ValueError("Failed to fetch or convert the generated image")
except Exception as e:
logger.debug(f"Error occured during image generation: {e}")
logger.debug(f"Error occurred during image generation: {e}")
error_message = str(e)
if "OpenAIException" in str(type(e)):
@@ -235,9 +257,8 @@ class ImageGenerationTool(Tool):
def run(self, **kwargs: str) -> Generator[ToolResponse, None, None]:
prompt = cast(str, kwargs["prompt"])
shape = ImageShape(kwargs.get("shape", ImageShape.SQUARE))
format = self.output_format
# dalle3 only supports 1 image at a time, which is why we have to
# parallelize this via threading
results = cast(
list[ImageGenerationResponse],
run_functions_tuples_in_parallel(
@@ -247,6 +268,7 @@ class ImageGenerationTool(Tool):
(
prompt,
shape,
format,
),
)
for _ in range(self.num_imgs)
@@ -288,11 +310,17 @@ class ImageGenerationTool(Tool):
if img_generation_response is None:
raise ValueError("No image generation response found")
img_urls = [img.url for img in img_generation_response]
img_urls = [img.url for img in img_generation_response if img.url is not None]
b64_imgs = [
img.image_data
for img in img_generation_response
if img.image_data is not None
]
prompt_builder.update_user_prompt(
build_image_generation_user_prompt(
query=prompt_builder.get_user_message_content(),
img_urls=img_urls,
b64_imgs=b64_imgs,
)
)

View File

@@ -11,11 +11,14 @@ Can you please summarize them in a sentence or two? Do NOT include image urls or
def build_image_generation_user_prompt(
query: str, img_urls: list[str] | None = None
query: str,
img_urls: list[str] | None = None,
b64_imgs: list[str] | None = None,
) -> HumanMessage:
return HumanMessage(
content=build_content_with_imgs(
message=IMG_GENERATION_SUMMARY_PROMPT.format(query=query).strip(),
b64_imgs=b64_imgs,
img_urls=img_urls,
)
)

View File

@@ -7,15 +7,15 @@ from typing import cast
import httpx
from danswer.chat.chat_utils import combine_message_chain
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import DocumentSource
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.context.search.models import SearchDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.chat_prompts import INTERNET_SEARCH_QUERY_REPHRASE
from danswer.prompts.constants import GENERAL_SEP_PAT

View File

@@ -7,10 +7,19 @@ from pydantic import BaseModel
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import llm_doc_from_inference_section
from danswer.chat.llm_response_handler import LLMCall
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import ContextualPruningConfig
from danswer.chat.models import DanswerContext
from danswer.chat.models import DanswerContexts
from danswer.chat.models import DocumentPruningConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.models import SectionRelevancePiece
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import compute_max_llm_input_tokens
from danswer.chat.prune_and_merge import prune_and_merge_sections
from danswer.chat.prune_and_merge import prune_sections
from danswer.configs.chat_configs import CONTEXT_CHUNKS_ABOVE
from danswer.configs.chat_configs import CONTEXT_CHUNKS_BELOW
from danswer.configs.model_configs import GEN_AI_MODEL_FALLBACK_MAX_TOKENS
@@ -25,17 +34,8 @@ from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
from danswer.db.models import Persona
from danswer.db.models import User
from danswer.llm.answering.llm_response_handler import LLMCall
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import ContextualPruningConfig
from danswer.llm.answering.models import DocumentPruningConfig
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import compute_max_llm_input_tokens
from danswer.llm.answering.prune_and_merge import prune_and_merge_sections
from danswer.llm.answering.prune_and_merge import prune_sections
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.secondary_llm_flows.choose_search import check_if_need_search
from danswer.secondary_llm_flows.query_expansion import history_based_query_rephrase
from danswer.tools.message import ToolCallSummary

View File

@@ -2,15 +2,15 @@ from typing import cast
from langchain_core.messages import HumanMessage
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import LlmDoc
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.answering.prompts.citations_prompt import (
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.chat.prompt_builder.citations_prompt import (
build_citations_system_message,
)
from danswer.llm.answering.prompts.citations_prompt import build_citations_user_message
from danswer.llm.answering.prompts.quotes_prompt import build_quotes_user_message
from danswer.chat.prompt_builder.citations_prompt import build_citations_user_message
from danswer.chat.prompt_builder.quotes_prompt import build_quotes_user_message
from danswer.tools.message import ToolCallSummary
from danswer.tools.models import ToolResponse

View File

@@ -2,8 +2,8 @@ from collections.abc import Callable
from collections.abc import Generator
from typing import Any
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse

View File

@@ -3,8 +3,8 @@ from typing import Any
from danswer.chat.chat_utils import combine_message_chain
from danswer.configs.model_configs import GEN_AI_HISTORY_CUTOFF
from danswer.llm.answering.models import PreviousMessage
from danswer.llm.interfaces import LLM
from danswer.llm.models import PreviousMessage
from danswer.llm.utils import message_to_string
from danswer.prompts.constants import GENERAL_SEP_PAT
from danswer.tools.tool import Tool

View File

@@ -0,0 +1,25 @@
import base64
def get_image_type_from_bytes(raw_b64_bytes: bytes) -> str:
magic_number = raw_b64_bytes[:4]
if magic_number.startswith(b"\x89PNG"):
mime_type = "image/png"
elif magic_number.startswith(b"\xFF\xD8"):
mime_type = "image/jpeg"
elif magic_number.startswith(b"GIF8"):
mime_type = "image/gif"
elif magic_number.startswith(b"RIFF") and raw_b64_bytes[8:12] == b"WEBP":
mime_type = "image/webp"
else:
raise ValueError(
"Unsupported image format - only PNG, JPEG, " "GIF, and WEBP are supported."
)
return mime_type
def get_image_type(raw_b64_string: str) -> str:
binary_data = base64.b64decode(raw_b64_string)
return get_image_type_from_bytes(binary_data)

View File

@@ -33,12 +33,12 @@ def log_function_time(
elapsed_time_str = f"{elapsed_time:.3f}"
log_name = func_name or func.__name__
args_str = f" args={args} kwargs={kwargs}" if include_args else ""
f"{log_name}{args_str} took {elapsed_time_str} seconds"
# if debug_only:
# logger.debug(final_log)
# else:
# # These are generally more important logs so the level is a bit higher
# logger.notice(final_log)
final_log = f"{log_name}{args_str} took {elapsed_time_str} seconds"
if debug_only:
logger.debug(final_log)
else:
# These are generally more important logs so the level is a bit higher
logger.notice(final_log)
if not print_only:
optional_telemetry(

View File

@@ -11,6 +11,14 @@ SAML_CONF_DIR = os.environ.get("SAML_CONF_DIR") or "/app/ee/danswer/configs/saml
#####
# Auto Permission Sync
#####
# In seconds, default is 5 minutes
CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY = int(
os.environ.get("CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY") or 5 * 60
)
# In seconds, default is 5 minutes
CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY = int(
os.environ.get("CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY") or 5 * 60
)
NUM_PERMISSION_WORKERS = int(os.environ.get("NUM_PERMISSION_WORKERS") or 2)

View File

@@ -170,3 +170,67 @@ def fetch_danswerbot_analytics(
)
return results
def fetch_persona_message_analytics(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily message counts for a specific persona within the given time range."""
query = (
select(
func.count(ChatMessage.id),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]
def fetch_persona_unique_users(
db_session: Session,
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
) -> list[tuple[int, datetime.date]]:
"""Gets the daily unique user counts for a specific persona within the given time range."""
query = (
select(
func.count(func.distinct(ChatSession.user_id)),
cast(ChatMessage.time_sent, Date),
)
.join(
ChatSession,
ChatMessage.chat_session_id == ChatSession.id,
)
.where(
or_(
ChatMessage.alternate_assistant_id == persona_id,
ChatSession.persona_id == persona_id,
),
ChatMessage.time_sent >= start,
ChatMessage.time_sent <= end,
ChatMessage.message_type == MessageType.ASSISTANT,
)
.group_by(cast(ChatMessage.time_sent, Date))
.order_by(cast(ChatMessage.time_sent, Date))
)
return [tuple(row) for row in db_session.execute(query).all()]

View File

@@ -10,6 +10,9 @@ from danswer.access.utils import prefix_group_w_source
from danswer.configs.constants import DocumentSource
from danswer.db.models import User__ExternalUserGroupId
from danswer.db.users import batch_add_ext_perm_user_if_not_exists
from danswer.utils.logger import setup_logger
logger = setup_logger()
class ExternalUserGroup(BaseModel):
@@ -73,7 +76,13 @@ def replace_user__ext_group_for_cc_pair(
new_external_permissions = []
for external_group in group_defs:
for user_email in external_group.user_emails:
user_id = email_id_map[user_email]
user_id = email_id_map.get(user_email)
if user_id is None:
logger.warning(
f"User in group {external_group.id}"
f" with email {user_email} not found"
)
continue
new_external_permissions.append(
User__ExternalUserGroupId(
user_id=user_id,

View File

@@ -195,6 +195,7 @@ def _fetch_all_page_restrictions_for_space(
confluence_client: OnyxConfluence,
slim_docs: list[SlimDocument],
space_permissions_by_space_key: dict[str, ExternalAccess],
is_cloud: bool,
) -> list[DocExternalAccess]:
"""
For all pages, if a page has restrictions, then use those restrictions.
@@ -222,27 +223,50 @@ def _fetch_all_page_restrictions_for_space(
continue
space_key = slim_doc.perm_sync_data.get("space_key")
if space_permissions := space_permissions_by_space_key.get(space_key):
# If there are no restrictions, then use the space's restrictions
document_restrictions.append(
DocExternalAccess(
doc_id=slim_doc.id,
external_access=space_permissions,
)
if not (space_permissions := space_permissions_by_space_key.get(space_key)):
logger.debug(
f"Individually fetching space permissions for space {space_key}"
)
if (
not space_permissions.is_public
and not space_permissions.external_user_emails
and not space_permissions.external_user_group_ids
):
try:
# If the space permissions are not in the cache, then fetch them
if is_cloud:
retrieved_space_permissions = _get_cloud_space_permissions(
confluence_client=confluence_client, space_key=space_key
)
else:
retrieved_space_permissions = _get_server_space_permissions(
confluence_client=confluence_client, space_key=space_key
)
space_permissions_by_space_key[space_key] = retrieved_space_permissions
space_permissions = retrieved_space_permissions
except Exception as e:
logger.warning(
f"Permissions are empty for document: {slim_doc.id}\n"
"This means space permissions are may be wrong for"
f" Space key: {space_key}"
f"Error fetching space permissions for space {space_key}: {e}"
)
if not space_permissions:
logger.warning(
f"No permissions found for document {slim_doc.id} in space {space_key}"
)
continue
logger.warning(f"No permissions found for document {slim_doc.id}")
# If there are no restrictions, then use the space's restrictions
document_restrictions.append(
DocExternalAccess(
doc_id=slim_doc.id,
external_access=space_permissions,
)
)
if (
not space_permissions.is_public
and not space_permissions.external_user_emails
and not space_permissions.external_user_group_ids
):
logger.warning(
f"Permissions are empty for document: {slim_doc.id}\n"
"This means space permissions are may be wrong for"
f" Space key: {space_key}"
)
logger.debug("Finished fetching all page restrictions for space")
return document_restrictions
@@ -281,4 +305,5 @@ def confluence_doc_sync(
confluence_client=confluence_connector.confluence_client,
slim_docs=slim_docs,
space_permissions_by_space_key=space_permissions_by_space_key,
is_cloud=is_cloud,
)

View File

@@ -3,6 +3,8 @@ from collections.abc import Callable
from danswer.access.models import DocExternalAccess
from danswer.configs.constants import DocumentSource
from danswer.db.models import ConnectorCredentialPair
from ee.danswer.configs.app_configs import CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY
from ee.danswer.configs.app_configs import CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY
from ee.danswer.db.external_perm import ExternalUserGroup
from ee.danswer.external_permissions.confluence.doc_sync import confluence_doc_sync
from ee.danswer.external_permissions.confluence.group_sync import confluence_group_sync
@@ -56,7 +58,7 @@ GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC: set[DocumentSource] = {
# If nothing is specified here, we run the doc_sync every time the celery beat runs
DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all doc permissions every 5 minutes
DocumentSource.CONFLUENCE: 5 * 60,
DocumentSource.CONFLUENCE: CONFLUENCE_PERMISSION_DOC_SYNC_FREQUENCY,
DocumentSource.SLACK: 5 * 60,
}
@@ -64,7 +66,7 @@ DOC_PERMISSION_SYNC_PERIODS: dict[DocumentSource, int] = {
EXTERNAL_GROUP_SYNC_PERIODS: dict[DocumentSource, int] = {
# Polling is not supported so we fetch all group permissions every 30 minutes
DocumentSource.GOOGLE_DRIVE: 5 * 60,
DocumentSource.CONFLUENCE: 30 * 60,
DocumentSource.CONFLUENCE: CONFLUENCE_PERMISSION_GROUP_SYNC_FREQUENCY,
}

View File

@@ -11,11 +11,16 @@ from danswer.db.engine import get_session
from danswer.db.models import User
from ee.danswer.db.analytics import fetch_danswerbot_analytics
from ee.danswer.db.analytics import fetch_per_user_query_analytics
from ee.danswer.db.analytics import fetch_persona_message_analytics
from ee.danswer.db.analytics import fetch_persona_unique_users
from ee.danswer.db.analytics import fetch_query_analytics
router = APIRouter(prefix="/analytics")
_DEFAULT_LOOKBACK_DAYS = 30
class QueryAnalyticsResponse(BaseModel):
total_queries: int
total_likes: int
@@ -33,7 +38,7 @@ def get_query_analytics(
daily_query_usage_info = fetch_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -64,7 +69,7 @@ def get_user_analytics(
daily_query_usage_info_per_user = fetch_per_user_query_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -98,7 +103,7 @@ def get_danswerbot_analytics(
daily_danswerbot_info = fetch_danswerbot_analytics(
start=start
or (
datetime.datetime.utcnow() - datetime.timedelta(days=30)
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
), # default is 30d lookback
end=end or datetime.datetime.utcnow(),
db_session=db_session,
@@ -115,3 +120,74 @@ def get_danswerbot_analytics(
]
return resolution_results
class PersonaMessageAnalyticsResponse(BaseModel):
total_messages: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/messages")
def get_persona_messages(
persona_id: int,
start: datetime.datetime | None = None,
end: datetime.datetime | None = None,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaMessageAnalyticsResponse]:
"""Fetch daily message counts for a single persona within the given time range."""
start = start or (
datetime.datetime.utcnow() - datetime.timedelta(days=_DEFAULT_LOOKBACK_DAYS)
)
end = end or datetime.datetime.utcnow()
persona_message_counts = []
for count, date in fetch_persona_message_analytics(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
):
persona_message_counts.append(
PersonaMessageAnalyticsResponse(
total_messages=count,
date=date,
persona_id=persona_id,
)
)
return persona_message_counts
class PersonaUniqueUsersResponse(BaseModel):
unique_users: int
date: datetime.date
persona_id: int
@router.get("/admin/persona/unique-users")
def get_persona_unique_users(
persona_id: int,
start: datetime.datetime,
end: datetime.datetime,
_: User | None = Depends(current_admin_user),
db_session: Session = Depends(get_session),
) -> list[PersonaUniqueUsersResponse]:
"""Get unique users per day for a single persona."""
unique_user_counts = []
daily_counts = fetch_persona_unique_users(
db_session=db_session,
persona_id=persona_id,
start=start,
end=end,
)
for count, date in daily_counts:
unique_user_counts.append(
PersonaUniqueUsersResponse(
unique_users=count,
date=date,
persona_id=persona_id,
)
)
return unique_user_counts

View File

@@ -26,14 +26,9 @@ huggingface-hub==0.20.1
jira==3.5.1
jsonref==1.1.0
trafilatura==1.12.2
langchain==0.3.7
langchain-core==0.3.24
langchain-openai==0.2.9
langchain-text-splitters==0.3.2
langchainhub==0.1.21
langgraph==0.2.59
langgraph-checkpoint==2.0.5
langgraph-sdk==0.1.44
langchain==0.1.17
langchain-core==0.1.50
langchain-text-splitters==0.0.1
litellm==1.53.1
lxml==5.3.0
lxml_html_clean==0.2.2

View File

@@ -61,7 +61,7 @@ LOG_FILE_NAME = os.environ.get("LOG_FILE_NAME") or "danswer"
# Enable generating persistent log files for local dev environments
DEV_LOGGING_ENABLED = os.environ.get("DEV_LOGGING_ENABLED", "").lower() == "true"
# notset, debug, info, notice, warning, error, or critical
LOG_LEVEL = os.environ.get("LOG_LEVEL", "notice")
LOG_LEVEL = os.environ.get("LOG_LEVEL", "info")
# Timeout for API-based embedding models
# NOTE: does not apply for Google VertexAI, since the python client doesn't

View File

@@ -0,0 +1,39 @@
import os
import pytest
from danswer.connectors.confluence.connector import ConfluenceConnector
@pytest.fixture
def confluence_connector() -> ConfluenceConnector:
connector = ConfluenceConnector(
wiki_base="https://danswerai.atlassian.net",
is_cloud=True,
)
connector.load_credentials(
{
"confluence_access_token": os.environ["CONFLUENCE_ACCESS_TOKEN"],
"confluence_username": os.environ["CONFLUENCE_USER_NAME"],
}
)
return connector
# This should never fail because even if the docs in the cloud change,
# the full doc ids retrieved should always be a subset of the slim doc ids
def test_confluence_connector_permissions(
confluence_connector: ConfluenceConnector,
) -> None:
# Get all doc IDs from the full connector
all_full_doc_ids = set()
for doc_batch in confluence_connector.load_from_state():
all_full_doc_ids.update([doc.id for doc in doc_batch])
# Get all doc IDs from the slim connector
all_slim_doc_ids = set()
for slim_doc_batch in confluence_connector.retrieve_all_slim_documents():
all_slim_doc_ids.update([doc.id for doc in slim_doc_batch])
# The set of full doc IDs should be always be a subset of the slim doc IDs
assert all_full_doc_ids.issubset(all_slim_doc_ids)

View File

@@ -5,12 +5,12 @@ from unittest.mock import MagicMock
import pytest
from langchain_core.messages import SystemMessage
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationConfig
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.prompt_builder.build import AnswerPromptBuilder
from danswer.configs.constants import DocumentSource
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import CitationConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.answering.prompts.build import AnswerPromptBuilder
from danswer.llm.interfaces import LLMConfig
from danswer.tools.models import ToolResponse
from danswer.tools.tool_implementations.search.search_tool import SearchTool

View File

@@ -5,11 +5,9 @@ import pytest
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import LlmDoc
from danswer.chat.stream_processing.citation_processing import CitationProcessor
from danswer.chat.stream_processing.utils import DocumentIdOrderMapping
from danswer.configs.constants import DocumentSource
from danswer.llm.answering.stream_processing.citation_processing import (
CitationProcessor,
)
from danswer.llm.answering.stream_processing.utils import DocumentIdOrderMapping
"""

View File

@@ -2,14 +2,10 @@ import textwrap
import pytest
from danswer.chat.stream_processing.quotes_processing import match_quotes_to_docs
from danswer.chat.stream_processing.quotes_processing import separate_answer_quotes
from danswer.configs.constants import DocumentSource
from danswer.context.search.models import InferenceChunk
from danswer.llm.answering.stream_processing.quotes_processing import (
match_quotes_to_docs,
)
from danswer.llm.answering.stream_processing.quotes_processing import (
separate_answer_quotes,
)
def test_passed_in_quotes() -> None:

View File

@@ -11,21 +11,21 @@ from langchain_core.messages import SystemMessage
from langchain_core.messages import ToolCall
from langchain_core.messages import ToolCallChunk
from danswer.chat.answer import Answer
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import CitationInfo
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import LlmDoc
from danswer.chat.models import PromptConfig
from danswer.chat.models import StreamStopInfo
from danswer.chat.models import StreamStopReason
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PromptConfig
from danswer.llm.interfaces import LLM
from danswer.tools.force import ForceUseTool
from danswer.tools.models import ToolCallFinalResult
from danswer.tools.models import ToolCallKickoff
from danswer.tools.models import ToolResponse
from tests.unit.danswer.llm.answering.conftest import DEFAULT_SEARCH_ARGS
from tests.unit.danswer.llm.answering.conftest import QUERY
from tests.unit.danswer.chat.conftest import DEFAULT_SEARCH_ARGS
from tests.unit.danswer.chat.conftest import QUERY
@pytest.fixture

View File

@@ -1,9 +1,9 @@
import pytest
from danswer.chat.prune_and_merge import _merge_sections
from danswer.configs.constants import DocumentSource
from danswer.context.search.models import InferenceChunk
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.prune_and_merge import _merge_sections
# This large test accounts for all of the following:

View File

@@ -5,10 +5,10 @@ from unittest.mock import Mock
import pytest
from pytest_mock import MockerFixture
from danswer.llm.answering.answer import Answer
from danswer.llm.answering.answer import AnswerStream
from danswer.llm.answering.models import AnswerStyleConfig
from danswer.llm.answering.models import PromptConfig
from danswer.chat.answer import Answer
from danswer.chat.answer import AnswerStream
from danswer.chat.models import AnswerStyleConfig
from danswer.chat.models import PromptConfig
from danswer.tools.force import ForceUseTool
from danswer.tools.tool_implementations.search.search_tool import SearchTool
from tests.regression.answer_quality.run_qa import _process_and_write_query_results

Some files were not shown because too many files have changed in this diff Show More