Compare commits

..

14 Commits

Author SHA1 Message Date
pablodanswer
857bd07dff cleaned up refresh logic 2024-11-24 11:06:44 -08:00
pablodanswer
21471566d6 address comments 2024-11-24 10:53:08 -08:00
pablodanswer
4d2ab5be85 update toggling 2024-11-23 11:32:28 -08:00
pablodanswer
129503b86f improved header 2024-11-23 10:51:54 -08:00
pablodanswer
3862df6691 update config 2024-11-22 18:09:04 -08:00
pablodanswer
86ae7c55fb minor user icon cleanup 2024-11-22 18:02:29 -08:00
pablodanswer
2405eb48ca v1 ready 2024-11-22 17:49:35 -08:00
pablodanswer
6ebd4e224f build fixed 2024-11-22 17:07:36 -08:00
pablodanswer
afc8075cc3 add filters to chat 2024-11-22 13:09:17 -08:00
pablodanswer
71123f54a7 several steps 2024-11-22 12:02:50 -08:00
pablodanswer
6061adb114 remove chat / search toggle 2024-11-22 09:57:58 -08:00
pablodanswer
35300f6569 update 2024-11-22 09:55:57 -08:00
pablodanswer
fe49e35ca4 ensure added 2024-11-22 09:54:08 -08:00
pablodanswer
804887fd31 update 2024-11-21 18:37:20 -08:00
375 changed files with 6859 additions and 8945 deletions

View File

@@ -24,8 +24,6 @@ env:
GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR: ${{ secrets.GOOGLE_DRIVE_OAUTH_CREDENTIALS_JSON_STR }}
GOOGLE_GMAIL_SERVICE_ACCOUNT_JSON_STR: ${{ secrets.GOOGLE_GMAIL_SERVICE_ACCOUNT_JSON_STR }}
GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR: ${{ secrets.GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR }}
# Slab
SLAB_BOT_TOKEN: ${{ secrets.SLAB_BOT_TOKEN }}
jobs:
connectors-check:

View File

@@ -32,7 +32,7 @@ To contribute to this project, please follow the
When opening a pull request, mention related issues and feel free to tag relevant maintainers.
Before creating a pull request please make sure that the new changes conform to the formatting and linting requirements.
See the [Formatting and Linting](#formatting-and-linting) section for how to run these checks locally.
See the [Formatting and Linting](#-formatting-and-linting) section for how to run these checks locally.
### Getting Help 🙋

View File

@@ -73,7 +73,6 @@ RUN apt-get update && \
rm -rf /var/lib/apt/lists/* && \
rm -f /usr/local/lib/python3.11/site-packages/tornado/test/test.key
# Pre-downloading models for setups with limited egress
RUN python -c "from tokenizers import Tokenizer; \
Tokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1')"

View File

@@ -1,5 +1,5 @@
from sqlalchemy.engine.base import Connection
from typing import Literal
from typing import Any
import asyncio
from logging.config import fileConfig
import logging
@@ -8,7 +8,6 @@ from alembic import context
from sqlalchemy import pool
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.sql import text
from sqlalchemy.sql.schema import SchemaItem
from shared_configs.configs import MULTI_TENANT
from danswer.db.engine import build_connection_string
@@ -36,18 +35,7 @@ logger = logging.getLogger(__name__)
def include_object(
object: SchemaItem,
name: str | None,
type_: Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
reflected: bool,
compare_to: SchemaItem | None,
object: Any, name: str, type_: str, reflected: bool, compare_to: Any
) -> bool:
"""
Determines whether a database object should be included in migrations.

View File

@@ -1,45 +0,0 @@
"""remove default bot
Revision ID: 6d562f86c78b
Revises: 177de57c21c9
Create Date: 2024-11-22 11:51:29.331336
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "6d562f86c78b"
down_revision = "177de57c21c9"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.execute(
sa.text(
"""
DELETE FROM slack_bot
WHERE name = 'Default Bot'
AND bot_token = ''
AND app_token = ''
AND NOT EXISTS (
SELECT 1 FROM slack_channel_config
WHERE slack_channel_config.slack_bot_id = slack_bot.id
)
"""
)
)
def downgrade() -> None:
op.execute(
sa.text(
"""
INSERT INTO slack_bot (name, enabled, bot_token, app_token)
SELECT 'Default Bot', true, '', ''
WHERE NOT EXISTS (SELECT 1 FROM slack_bot)
RETURNING id;
"""
)
)

View File

@@ -9,8 +9,8 @@ from alembic import op
import sqlalchemy as sa
from danswer.db.models import IndexModelStatus
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.search.enums import RecencyBiasSetting
from danswer.search.enums import SearchType
# revision identifiers, used by Alembic.
revision = "776b3bbe9092"

View File

@@ -1,35 +0,0 @@
"""add web ui option to slack config
Revision ID: 93560ba1b118
Revises: 6d562f86c78b
Create Date: 2024-11-24 06:36:17.490612
"""
from alembic import op
# revision identifiers, used by Alembic.
revision = "93560ba1b118"
down_revision = "6d562f86c78b"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add show_continue_in_web_ui with default False to all existing channel_configs
op.execute(
"""
UPDATE slack_channel_config
SET channel_config = channel_config || '{"show_continue_in_web_ui": false}'::jsonb
WHERE NOT channel_config ? 'show_continue_in_web_ui'
"""
)
def downgrade() -> None:
# Remove show_continue_in_web_ui from all channel_configs
op.execute(
"""
UPDATE slack_channel_config
SET channel_config = channel_config - 'show_continue_in_web_ui'
"""
)

View File

@@ -1,36 +0,0 @@
"""Combine Search and Chat
Revision ID: 9f696734098f
Revises: a8c2065484e6
Create Date: 2024-11-27 15:32:19.694972
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "9f696734098f"
down_revision = "a8c2065484e6"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.alter_column("chat_session", "description", nullable=True)
op.drop_column("chat_session", "one_shot")
op.drop_column("slack_channel_config", "response_type")
def downgrade() -> None:
op.execute("UPDATE chat_session SET description = '' WHERE description IS NULL")
op.alter_column("chat_session", "description", nullable=False)
op.add_column(
"chat_session",
sa.Column("one_shot", sa.Boolean(), nullable=False, server_default=sa.false()),
)
op.add_column(
"slack_channel_config",
sa.Column(
"response_type", sa.String(), nullable=False, server_default="citations"
),
)

View File

@@ -1,7 +1,7 @@
"""add auto scroll to user model
Revision ID: a8c2065484e6
Revises: abe7378b8217
Revises: 177de57c21c9
Create Date: 2024-11-22 17:34:09.690295
"""
@@ -11,12 +11,13 @@ import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "a8c2065484e6"
down_revision = "abe7378b8217"
down_revision = "177de57c21c9"
branch_labels = None
depends_on = None
def upgrade() -> None:
# Add the auto_scroll column with a default value of True
op.add_column(
"user",
sa.Column("auto_scroll", sa.Boolean(), nullable=True, server_default=None),
@@ -24,4 +25,5 @@ def upgrade() -> None:
def downgrade() -> None:
# Remove the auto_scroll column
op.drop_column("user", "auto_scroll")

View File

@@ -1,30 +0,0 @@
"""add indexing trigger to cc_pair
Revision ID: abe7378b8217
Revises: 6d562f86c78b
Create Date: 2024-11-26 19:09:53.481171
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = "abe7378b8217"
down_revision = "93560ba1b118"
branch_labels = None
depends_on = None
def upgrade() -> None:
op.add_column(
"connector_credential_pair",
sa.Column(
"indexing_trigger",
sa.Enum("UPDATE", "REINDEX", name="indexingmode", native_enum=False),
nullable=True,
),
)
def downgrade() -> None:
op.drop_column("connector_credential_pair", "indexing_trigger")

View File

@@ -1,6 +1,5 @@
import asyncio
from logging.config import fileConfig
from typing import Literal
from sqlalchemy import pool
from sqlalchemy.engine import Connection
@@ -38,15 +37,8 @@ EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
def include_object(
object: SchemaItem,
name: str | None,
type_: Literal[
"schema",
"table",
"column",
"index",
"unique_constraint",
"foreign_key_constraint",
],
name: str,
type_: str,
reflected: bool,
compare_to: SchemaItem | None,
) -> bool:

551
backend/branch_commits.csv Normal file
View File

@@ -0,0 +1,551 @@
Branch,Commit Hash,Author,Date,Subject
DAN-108,548c081fd6515c2e8b912d145c135e292db4613e,pablodanswer,2024-11-20,k
DAN-108,0d4abfdc85fdb62c347d0f649744f1b7c12e8011,pablodanswer,2024-11-20,folder clarity
a,36eee45a03c3227a9b070e18a043e16fe5179cb9,pablodanswer,2024-11-21,llm provider causing re render in effect
account_for_json,b37d0b91e6a6596af91e1fa32786591b76e05a67,pablodanswer,2024-11-14,fix single quote block in llm answer
account_for_json,4e0c048acba88f4c83d7c83af52bb0932234ddad,pablodanswer,2024-11-14,nit
account_for_json,a0371a6750476fccc3b9892a7c58d72182c92507,pablodanswer,2024-11-14,minor logic update
account_for_json,4f1c4baa80f7b747633bb3d528aed6de5b11f639,pablodanswer,2024-11-14,minor cosmetic update
account_for_json,b6ef7e713a4eca3d65aa411604e8f67ad5efdd87,pablodanswer,2024-11-14,k
account_for_json,66df9b6f7dae8bce61e35615d715ddefc6406614,pablodanswer,2024-11-14,improved fallback logic
account_for_json,0473888ccdb5219cc39f275652bfeb72a420b5d9,pablodanswer,2024-11-13,silence warning
accurate_user_counting,06f3a4590c05665b04851b30860aa431ad4b7217,pablodanswer,2024-11-02,ensure we remove users in time
accurate_user_counting,6e75ba007302ce9adc4469b86695aee4b4b5c513,pablodanswer,2024-11-02,validate
accurate_user_counting,11f3729ebb9f67b8e568c01a9ce1d098560033cf,pablodanswer,2024-11-02,update register
add_csv_display,e7b044cf38cd3e25fdbe17ea8fcac3e8c17d9570,pablodanswer,2024-11-03,nit
add_csv_display,93ec944a01ec87d87a4bf2b85c1164b7625a1259,pablodanswer,2024-11-02,update requirements
add_csv_display,00f8e431ff81d7980c8d2c166bdad5f899752379,pablodanswer,2024-11-02,create portal for modal
add_csv_display,a019a812bef27a20bd2e94d558974c55ded63035,pablodanswer,2024-11-02,restructure
add_csv_display,eabc519f062b5e0fec3b2c29e89f109606e747bc,pablodanswer,2024-11-01,add downloading
add_csv_display,4dbd74cacb350ebbf5ce0554239f999503a14d8f,pablodanswer,2024-11-01,add CSV display
add_tool_formats,e7361dcb17a1d205627e46c87861f5be4dc06a03,pablodanswer,2024-11-03,add multiple formats to tools
add_tool_formats,00f8e431ff81d7980c8d2c166bdad5f899752379,pablodanswer,2024-11-02,create portal for modal
add_tool_formats,a019a812bef27a20bd2e94d558974c55ded63035,pablodanswer,2024-11-02,restructure
add_tool_formats,eabc519f062b5e0fec3b2c29e89f109606e747bc,pablodanswer,2024-11-01,add downloading
add_tool_formats,4dbd74cacb350ebbf5ce0554239f999503a14d8f,pablodanswer,2024-11-01,add CSV display
admin_wonkiness,8a7f032acb35fca9260f1f15e48a6114279a1dc0,pablodanswer,2024-11-20,valid props
api_keys_are_not_users,39c3e3f84b56f2b1d661f723fe9650503d8602ad,pablodanswer,2024-11-01,typing
api_keys_are_not_users,cab9c925cc09b636e026f36057795a775d6a8289,pablodanswer,2024-11-01,don't count api keys as users
assistant_categories,425da2250c6cade36e9dfe4aa9eaca9f60ad7c1f,pablodanswer,2024-11-18,alembic (once again)
assistant_categories,c079165c60d58d781bb399220f0041a57dd27cde,pablodanswer,2024-11-18,alembic
assistant_categories,dc5f9e5aa2fbf1a502474bc56cbe9a5eaa34ed91,pablodanswer,2024-11-11,nit
assistant_categories,7ed84cf536aa5be737f4eff25e244def9987cfb3,pablodanswer,2024-11-11,typing
assistant_categories,30a58ad86d96f841103f9bf5ef92355ba7550e72,pablodanswer,2024-11-11,finalize
assistant_categories,4c5d0a45fd07dffa42717c78f4b20025ca7c67ad,pablodanswer,2024-11-11,update typing
assistant_categories,ed7c62b450dd1b42a8e399c8abcaac8ccb006b1d,pablodanswer,2024-11-11,minor update to tests
assistant_categories,501c6afdd0a8e4c67ee8ae864392549a19f68b85,pablodanswer,2024-11-11,post rebase update
assistant_categories,8cd7e50b26d8ac5d5311c1ffc4517c35c2a9a6b6,pablodanswer,2024-11-08,add tests
assistant_categories,ca0eb6f03344cf833b2aba45c5fbe4d01a112c6f,pablodanswer,2024-11-07,nit
assistant_categories,2041484a515ebaedaf05dc0e19e3cb5095b34018,pablodanswer,2024-11-07,update assistant category display
assistant_categories,a124d4e2229bcb9a9f1caf269c444357e4749700,pablodanswer,2024-11-07,finalize
assistant_categories,59fa1d07f10b7f44010207d54547b947ca789fe1,pablodanswer,2024-11-05,functionality finalized
assistant_categories,0a226b47e55dc6767dde8f478729616d1b4870f1,pablodanswer,2024-11-05,add assistant categories v1
assistant_clarity,71c60c52dd37ccebd2d4f8862676d5f21a64acf1,pablodanswer,2024-11-12,minor update
assistant_clarity,72f05a13485dab5a8ddd0d0e5ac7d4e98aed01a2,pablodanswer,2024-11-12,delete code
assistant_clarity,0c22f8ab20c32043c9e1f5f991989a07ecbd6387,pablodanswer,2024-11-12,delete code!
assistant_clarity,e376032f14621d645fda23f058b5712c33224e82,pablodanswer,2024-11-12,update paradigm
assistant_clarity,3f2738006951ffcf58ea59473da3070e8023a9d0,pablodanswer,2024-11-12,alembic fix
assistant_clarity,233f186fecb9eba7eefd6aa493ce70b299f68ac6,pablodanswer,2024-11-12,slight rejigger
assistant_clarity,0582306d9be29f7c3daff7b7d5a2c1ef1517e033,pablodanswer,2024-11-12,k
assistant_clarity,4f699b2591fe190abf1d68fefb3f2841c0f7f68e,pablodanswer,2024-11-12,add minor clarity
assistant_clarity,bc6d47a6c5702d102cc04c16e56426a1561fe3e5,pablodanswer,2024-11-12,minor clean up
assistant_clarity,09ec137a5f6fb230a0c39a67b19e9f772d3441ca,pablodanswer,2024-11-12,update organization
auth_categories,f51d87833e591bdcb9a650aa762060387a96a292,pablodanswer,2024-11-07,nit
auth_categories,01f93bab2f698bb0dc84bddb705de40a9a18e660,pablodanswer,2024-11-07,update assistant category display
auth_categories,b162e9f4c4c9ff4b9cd718f548cc20ab0e60be0f,pablodanswer,2024-11-07,finalize
auth_categories,c7097dffbd73e1b2d9b34ad67bbd8aa6e072c3b5,pablodanswer,2024-11-05,functionality finalized
auth_categories,653bbffb3cda5cbc41f61917e5634e22d70d5e26,pablodanswer,2024-11-05,add assistant categories v1
auto_prompts,06bc8f1f92e33af2c6bb1750936407ad8e29d3c0,pablodanswer,2024-10-28,base functionality
auto_prompts,8093ceeb45088c813fbb117302738b3d225c2f8b,pablodanswer,2024-10-28,formatting
auto_prompts,3d0ace1e450ac6d7271ddedc2ec122a2647be7df,pablodanswer,2024-10-28,minor nits
auto_prompts,553aba79dc41b928c163a83481b202ad56805aae,pablodanswer,2024-10-28,update based on feedback
auto_prompts,da038b317a0b5185ccc32297b01fcaa97ffbb429,pablodanswer,2024-09-21,remove logs
auto_prompts,6769dc373faf7576c2d0ac212735b88eae755293,pablodanswer,2024-09-21,minor udpate to ui
auto_prompts,b35e05315c4c506da87524fe788a9cf5aacb7375,pablodanswer,2024-09-20,use display name + minor updates to models
auto_prompts,7cfd3d2d442255616ec5c477dc4b3eb0b2cad1ed,pablodanswer,2024-09-20,cleaner cards
auto_prompts,b2aa1c864b20274386a1bbe699a3ef7e094bd858,pablodanswer,2024-09-20,slightly cleaner animation
auto_prompts,d2f8177b8f1b9be8eebce520204018e6be59b03c,pablodanswer,2024-09-20,cleaner initial chat screen
back_to_danswer,262a405195e1b1b07c96e1ae4a39df76b690ed69,pablodanswer,2024-11-06,update redirect
beat_robustification,63959454df29709c149b71f82672c8752c646cfa,pablodanswer,2024-11-03,Remove locks (#3017)
beat_robustification,96027f1d732f26b407afd2b52641615a96d5402b,pablodanswer,2024-11-02,ensure versioned apps capture
beat_robustification,80ea6a36610775a0e57ec236f9a2bdaf419a51e5,pablodanswer,2024-11-01,typing
beat_robustification,527c409f81a7d31c8ff6ebd2be465418476eba74,pablodanswer,2024-11-01,update
beat_robustification,19ab457d926a05a0d61ada33684918a5d427e619,pablodanswer,2024-11-01,address comments
beat_robustification,f5b38cd9362b4c7b84357a6fcf2bbeb4c1e7c8a8,pablodanswer,2024-10-30,nit
beat_robustification,63d1cc56acdeba0430d5da9f8b752cd470df865f,pablodanswer,2024-10-30,reorg
beat_robustification,4436bec97019893c256ee1750e28e3061edfd771,pablodanswer,2024-10-30,validate
beat_robustification,90b7198d53ec8b383051925de16a2818653c4fe3,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
better_image_assistant_prompt,e9abbcdefdf21eef2000fc61342e4129bfd1498f,pablodanswer,2024-11-03,nit
better_image_assistant_prompt,89f51078690bed44b2809aa5229f39b4d543d88e,pablodanswer,2024-11-02,k
better_image_assistant_prompt,6972874aac31dcccd4ff739484b6a5b563e62405,pablodanswer,2024-11-02,slight upgrade to prompts
bg_processing_improvements,48d24860e6f5401a265951b8e49e900ed6e40f63,pablodanswer,2024-11-03,improvements
branding_update,12bbf2ad972a1f8887e5f5eb427b88261ef5097c,pablodanswer,2024-10-28,add additional configuration options
bugfix/async,8b9e1a07d55b3f090d168768a74d09d60ba19649,pablodanswer,2024-11-11,typing
bugfix/async,b6301ffcb9bb35f6d73c28ffd502bfb01f49272a,pablodanswer,2024-11-11,spacing
bugfix/async,490ce0db18df25625446a4abe163790b96431645,pablodanswer,2024-11-11,cleaner approach
bugfix/async,b2ca13eaae905af768519a62a38d3d84c239cba8,pablodanswer,2024-11-11,treat async values differently
bugfix/curator_interface,a7312f62366cff5243e4b85c5c47e33e5da29f5c,pablodanswer,2024-11-21,remove values
bugfix/curator_interface,85e08df5219f0e2e793beb65a1ce4dc36f2481d4,pablodanswer,2024-11-21,update user role
bugfix/curator_interface,937a07d705a8620f47336c1c6c125ae6b025a950,pablodanswer,2024-11-21,update
bugfix/curator_interface,1130d456aaa6ea38aeeacd234ab82504e3c5fc68,pablodanswer,2024-11-21,update
bugfix/curator_interface,cf4cda235ce02bfdea1f1cd17ad4f6a2e0f7f9f7,pablodanswer,2024-11-21,update config
bugfix/curator_interface,5a07f727c0563061398f50ed253f1efc2f83c176,pablodanswer,2024-11-21,mystery solved
bugfix/index_attempt_logging_2,209514815547074a31b3121bf47e7b1e350e817d,Richard Kuo (Danswer),2024-11-21,Move unfenced check to check_for_indexing. implement a double check pattern for all indexing error checks
bugfix/indexing_redux,0c068c47c2cb729a0450910f0f6b6d04b340b131,Richard Kuo (Danswer),2024-11-17,Merge branch 'main' of https://github.com/danswer-ai/danswer into bugfix/indexing_redux
bugfix/indexing_redux,1dfde97a5a52a8c4c3996d14348e9fffe6073743,Richard Kuo (Danswer),2024-11-14,refactor unknown index attempts and redis lock
bugfix/indexing_redux,5d95976bf1bc13caaa21655777e8e84efb682cd2,Richard Kuo (Danswer),2024-11-14,raise indexing lock timeout
bugfix/pagination,1a009c6b6a3d52302e5bbdec20c75ce15a678f5c,pablodanswer,2024-11-07,minor update
bugfix/pagination,e8cd2630e2bee96496b30f637a169df863e11495,pablodanswer,2024-11-06,minor update
bugfix/pagination,d835de1f5219248f164221464b257b5a44c6ed8f,pablodanswer,2024-11-06,fixed query history
bugfix/pagination,c6d35a8ad6be86c28ba8d3645d171d22390cc9fa,pablodanswer,2024-11-06,update side
bugfix/pagination,a5641e5a5e001dc3a4740bfcdd53c9fafb64c20a,pablodanswer,2024-11-06,fix pagination
bugfix/pruning,c27308c812f536a5e7410a73b0940f63330fb3fb,pablodanswer,2024-10-30,clarity
calendar_clarity,7edb205a6837d0328062ecbb9a9318dd6e27f9d5,pablodanswer,2024-11-22,minor calendar cleanup
callout_clarity,a8787b7be8e66d06edeaa997390ca118d1abaaac,pablodanswer,2024-11-04,k
callout_clarity,585e6b7b2fec35e17f91d55354c48631cb773ca7,pablodanswer,2024-11-04,k
callout_clarity,bdbfb62946b644ddf011a2e03a1a9b2158899f36,pablodanswer,2024-11-04,ensure props aligned
cascade_search,9c975d829d0b67d245da18e905781c22578f413f,pablodanswer,2024-10-30,minor foreign key update
clean-jira-pr,1eec84a6693add96e571eca96cf181bd32ab42f4,hagen-danswer,2024-11-20,cleanup
clean-jira-pr,658951f66dfe2cb97e20f590f71f46bcb8b1f1ef,hagen-danswer,2024-11-20,more cleanup of Jira connector
clean-jira-pr,da153ef5179592cfa11f9ce271c187739e242432,hagen-danswer,2024-11-20,fixed testing
clean-jira-pr,82118e0837d486e8d66fb7eb26d523c4fa79f8a2,hagen-danswer,2024-11-20,Added Slim connector for Jira
cloud_auth,bcce7733aa5bb2f3af2842d8e9938af6c5597c9c,pablodanswer,2024-11-11,typing
cloud_auth,eeeb84c66bf1d5aefd16ad20f9727a61b2ddc5f3,pablodanswer,2024-11-11,minor modification to be best practice
cloud_auth,a7b13762264b67ac720db21552c3a6c0f42e7c9d,pablodanswer,2024-11-11,k
cloud_auth,1c020d11c4d4257732a7fca17eecbde979e42804,pablodanswer,2024-11-11,minor clarity
cloud_auth,cb6fad26b8ec9f77a7bc82a94da8e6748bbc20f0,pablodanswer,2024-11-11,cloud auth referral source
cohere,444ad36c0801810fadfcc4a0c1f355004f59e317,pablodanswer,2024-11-13,config
cohere,227faf87c690ef9b30fbe79b1582ad36a4ec95b2,pablodanswer,2024-11-11,update config
cohere,1bf33a6b7ae5fc84a779c3c6d9d8c514523b5af9,pablodanswer,2024-11-11,ensure we properly expose name(space) for slackbot
cohere,15bd1d0ca6461ba7a9a1d2f468aea5f981e8750e,pablodanswer,2024-11-11,update configs
cohere,ce48d189aa6f9f83a6a62b353ea04bd16659d0e2,pablodanswer,2024-11-11,update
cohere,43b82e50cfdf9a1a260bde312a7e7e4f2929425b,pablodanswer,2024-11-11,update
cohere,1d06787e1d5734c25e703ba4f4b2d7df6c8bac01,pablodanswer,2024-11-11,minor improvement
cohere,8386d30f9230565136d2133b7c5cbcb623980761,pablodanswer,2024-11-11,finalize
cohere,374e51221881fcd722876efa9f53080342f3dcbd,pablodanswer,2024-11-10,add cohere default
cohere_default,8f67dc310fa1177430b8a47cfa685b4de4af105c,pablodanswer,2024-11-11,update
cohere_default,ad7d18968075a932a4539ac37d5432fa99fe99f4,pablodanswer,2024-11-11,minor improvement
cohere_default,72730a5ba3cef93523bfba9ee63994e5a1c0d63f,pablodanswer,2024-11-11,finalize
cohere_default,df8bd6daf46c1fce951efb50aaeff5e7cbc4b74a,pablodanswer,2024-11-10,add cohere default
cohere_default,6b78ab0a99bb5727df35c1dfc23c5e39008211ae,pablodanswer,2024-11-11,Cleaner EE fallback for no op (#3106)
cohere_default,e97bf1d4e28bcbf32080c3a339d0e2ac3d6d0253,Chris Weaver,2024-11-11,New assistants api (#3097)
cohere_default,293dbfb8eb7b3ac4d2878b7a72068b829b9e3469,rkuo-danswer,2024-11-09,re-enable helm (#3053)
cohere_default,f4a61202a7b6de8a011d67896b16e14f94eb981a,pablodanswer,2024-11-09,Silence auth logs (#3098)
cohere_default,53f9d94ceb7a6a8da2a0c2d94fee6971adb29bbf,pablodanswer,2024-11-11,revert
cohere_default,5058d898b8532881c517e14c22ca5c32784288fe,pablodanswer,2024-11-11,update some configs
cohere_default,bc7de4ec1b9832059426ed74f2755c9548852459,pablodanswer,2024-11-11,moderate slackbot switch
cohere_default,3ad98078f5205c2df5a3ea96cc165b982256a975,pablodanswer,2024-11-10,finalized keda
cohere_default,0fb12b42f10bae3d8633717f763fa42271349442,pablodanswer,2024-11-10,minor update
cohere_default,158329a3cc659d666328dac36bac7c5ffa87e084,pablodanswer,2024-11-10,finalize slackbot improvements
cohere_default,7f1a50823baf0f5bbab89587e7df6f03fe552e27,pablodanswer,2024-11-10,fix typing
cohere_default,0e76bcef454e0c09cb83ce91834730fdd084d930,pablodanswer,2024-11-10,add improved cloud configuration
csv_limits,45be7156c52d3b32799d67139998de7892c3490e,pablodanswer,2024-11-11,minor enforcement of CSV length for internal processing
custom_llm_display_fix,01efa818bcc82eef92457cbe4acd6c3c2fab60f0,pablodanswer,2024-11-21,Revert "clean horizontal scrollbar"
custom_llm_display_fix,dec279a9602825243ed7df4b7a5592ccd267bddd,pablodanswer,2024-11-21,update migration
custom_llm_display_fix,4b03c0e6e24b36725f4501edb81f46dc2812ff4f,pablodanswer,2024-11-21,k
custom_llm_display_fix,17eb0d3086b6249c806f51a0a45c78c927249bcd,pablodanswer,2024-11-21,ensure proper migration
custom_llm_display_fix,0f638229f56966e480d3479de5f9a3108750afc8,pablodanswer,2024-11-20,provider fix
custom_llm_display_fix,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
danswer_authorization_header,856c2debd98187b28e341940dafeb97eed81cad9,pablodanswer,2024-10-29,add danswer api key header
default_keys,4907d2271950fb2f45c56c21e6d641b616c02ad7,pablodanswer,2024-11-03,naming
default_keys,8766502f6dd125a43ef6cc9e9a20cec1c8f3ae8a,pablodanswer,2024-11-03,add cohere as well
default_keys,589e141bc9d2ed30c467257596f346c4824934a7,pablodanswer,2024-11-03,add default api keys for cloud users
default_prompts,d1926d47b5b65aeb01c103d7c44fa5bb63e4fb1c,pablodanswer,2024-11-06,update default live assistant logic
default_prompts,f457bdb49128b010da04612f598ef0e0810dcf7c,pablodanswer,2024-11-06,update starter message
default_prompts,00adc2d0e0cd23d7c9664b68f4caa7859bdb4eeb,Yuhong Sun,2024-11-06,touchup
default_prompts,f56b139d8dbcc44248080719fa9f3c81afdf1e81,pablodanswer,2024-11-06,nit
default_prompts,09cd3c6c2792b94e7db220a921095f0af8054e0c,pablodanswer,2024-11-06,minor update to refresh
default_prompts,32a688b6277b918afd7497f483ef457b85dc9d05,pablodanswer,2024-11-06,udpate refresh logic
default_prompts,719fb914f5094f3a35095cbb8e0c75aa4f0d0c45,pablodanswer,2024-11-06,update ux + spacing
default_prompts,7c5df1cf69e8c890cc02e27b2ba2edeac9c3c22a,pablodanswer,2024-11-05,fallback to all assistants
default_prompts,8a900b732dd67215718e07273cc62c881b6786e4,pablodanswer,2024-11-03,formating nits
default_prompts,eab00d7247cf0853b6a83888ae581c63c8c59981,pablodanswer,2024-11-03,nit
default_prompts,9460009ed306a135110bc88cc6b75f3779df96d0,pablodanswer,2024-11-03,update typing
default_prompts,4f1aa7f1ff04debb39b6ea8ea79de3d01254f4a5,pablodanswer,2024-11-03,validate
default_prompts,c97b8938920b4406477f252b01a1e561b3b24f31,pablodanswer,2024-11-03,k
default_prompts,074334e20d2208f52bbf00bda76e3e79494977c2,pablodanswer,2024-11-03,update user preferences
default_prompts,85b50855c0778fb34fc32441e7c3791b905485fa,pablodanswer,2024-11-03,update persona defaults
default_schema_slack,87931b759feb1431ce96090bd390e3e28cb30208,pablodanswer,2024-11-08,adjust default postgres schema for slack listener
detailed_filters,bde4b4029af5334699e226afbd77ba0753a04797,pablodanswer,2024-11-18,update date range filter
detailed_filters,d77629fc318db896c5b9f53c45c33dfad5038e6b,pablodanswer,2024-11-05,clarity updates
detailed_filters,0038c32213681db3dab29dee2f21324743fc6d94,pablodanswer,2024-11-05,add new complicated filters
double_auth,a7173eb689100c9abd1b68aeab890a992da32cbc,pablodanswer,2024-10-27,ports
double_auth,45170a28fc8417b6f0de7ac97c643a36e4c03284,pablodanswer,2024-10-27,fix nagging double auth issue
dropdown,c29beaf403a7722e1ee638cc50c8551931f8c5d9,pablodanswer,2024-11-13,combobox
dropdown,46f84d15f8af635123557056542829a14d5fca60,pablodanswer,2024-11-13,content scroll differences
dropdown,e8c93199f24cac94b73e8ac923b43b3159af74c9,pablodanswer,2024-11-13,minor dropdown fix
fallback_context,3734e683e1719d9f6abe9e80e475a4c2c275cdaf,pablodanswer,2024-11-07,ensure proper attribution
fallback_context,886e8c7b6e30328c1d95277f22dde48af2cb1a99,pablodanswer,2024-11-07,update comments
fallback_context,4916d66df0ec3d348caafe6c40c5e16fb28381b1,pablodanswer,2024-11-07,clearer
fallback_context,6ae512fc4e909a52e90c548f9674b60d536bdc54,pablodanswer,2024-11-06,update typing
fallback_context,159c8ee22df75036d3db59c292fa13632982b427,pablodanswer,2024-11-06,add sentinel value
feat/cert_clarity,35307d4f384039ef0df8f979e34912ab1cd4e201,pablodanswer,2024-10-30,first pass
feat/cert_clarity,e6b9ebc198973a84dc9412302e6b98a24b0a2ce3,pablodanswer,2024-10-29,ensure functionality
feat/cert_mount,a32e34b5571d60a4b8b8a1d62328b9a77fb0ad27,pablodanswer,2024-10-30,simplify
feat/cert_mount,2dc7b08a9cb73164479c03dfd4b4fed162029399,pablodanswer,2024-10-30,first pass
feat/cert_mount,e6b9ebc198973a84dc9412302e6b98a24b0a2ce3,pablodanswer,2024-10-29,ensure functionality
feat/certificate,152e8c422bb9c6bf7b08221dcfe44a60d7a2de22,pablodanswer,2024-11-01,nit
feat/certificate,45498a5f51a8efa9955c18fe5cb53b2d0f41ebd3,pablodanswer,2024-10-31,k
feat/certificate,9ecf237435cd8a5b0ac60ebaca8d26840ab0abed,pablodanswer,2024-10-31,minor clean up
feat/certificate,fed2c5666cb54d3edcfe14319e3f7d7befbed78e,pablodanswer,2024-10-30,remove now unneeded COPY command
feat/certificate,56b3f2fa999db64aec3fd069b1de2bc77d00a6b6,pablodanswer,2024-10-30,simplify
feat/certificate,7d03f3aa8cb8a4ada9af8551db62364eb8e2c217,pablodanswer,2024-10-30,first pass
feat/silence_unauth_logs,d2ba35ca45ca77701075813fd64858b04c4e9eb2,pablodanswer,2024-11-09,k
feat/silence_unauth_logs,923176ef6e1e1941f8dc461d1d7b1d76f88c4e1b,pablodanswer,2024-11-09,remove unnecessary line
feat/silence_unauth_logs,888ce3e0ced3a63c57f7ec2221059d0012e772c2,pablodanswer,2024-11-09,silence auth logs
feat/tenant_posthog,35ed1d2108dd1a28cf63ba45f776d8a25b91b5d7,pablodanswer,2024-10-27,nit
feat/tenant_posthog,d1a9e0f6c4618aa4a7e5029dbbeb6179a40ff5c7,pablodanswer,2024-10-27,distinguish tenants in posthog
fix-answer-with-specified-doc-ids,5fbcc70518bd5d1be00d6595f3fc690f81c52f21,pablodanswer,2024-11-01,minor logging updates for clarity
fix-answer-with-specified-doc-ids,7db0de9505c3510a4db76e98a47d5b079056dc93,pablodanswer,2024-10-31,minor typo
fix-answer-with-specified-doc-ids,18b4a8a26331bc013b49e486e2bf82c5ce4bfe73,pablodanswer,2024-10-31,fix stop generating
fix-answer-with-specified-doc-ids,98660be16459038b438d12616bd6f00dde418b95,Weves,2024-10-31,Fix UT
fix-answer-with-specified-doc-ids,3620266bddfbf1fca309ff2fe97f72bda7462979,Weves,2024-10-31,Remove unused exception
fix-answer-with-specified-doc-ids,2132a430cc64abd869632c0f55a35bdc42b30be9,Weves,2024-10-31,Fix image generation slowness
fix-answer-with-specified-doc-ids,24e34019ce25314c5e749d38dd0895a1c3d5141e,Weves,2024-10-31,More testing
fix-answer-with-specified-doc-ids,3cd4ed5052277428dc06343f53e0e6486af26208,Weves,2024-10-31,Testing
fix-answer-with-specified-doc-ids,200bb96853d6d96a99093f6e915fe9721ab5c6b3,Weves,2024-10-31,Add quote support
fix-answer-with-specified-doc-ids,5a0c6d003607dfb9a7445a6a87df9a6062b73bc6,Weves,2024-10-02,Fix
fix-openai-tokenizer,566e4cfd0f39db0a1fbc7c7fae040bcf98482f62,pablodanswer,2024-11-08,minor updates
fix-openai-tokenizer,3b09f3e53e7a8f948cd36255fd53423d7b5827d0,pablodanswer,2024-11-07,minor organizational update
fix-openai-tokenizer,75d5e6b8b6e81c77063fd79b4cfe532366da723a,pablodanswer,2024-11-07,minor update to ensure consistency
fix-openai-tokenizer,362bb3557246e86de131c223acdf2adf17fb14e4,pablodanswer,2024-11-06,nit
fix-openai-tokenizer,6d100d81d284dc98143bb8c94c16c25d64c56633,pablodanswer,2024-11-06,clean up test embeddings
fix-openai-tokenizer,c5be5dc4c9710b684d0954a5224a75c090befe94,Yuhong Sun,2024-11-05,k
fix_missing_json,1f6cc578c425f8bbe3b320f65f191f09c8fcfa0b,pablodanswer,2024-11-20,k
fix_missing_json,d95b7d6695ba087f0b9da9bdf245f7c34e503499,pablodanswer,2024-11-20,k
fix_missing_json,b75d4af102739a2b9e3ec2dff301f4affd08b3e5,pablodanswer,2024-11-20,remove logs
fix_missing_json,559d9ed6d4fd27de8941a104c9c83322a75abea6,pablodanswer,2024-11-20,k
fix_missing_json,9c900d658979341ce0d8c3c2eb87e7cfafd8ccf9,pablodanswer,2024-11-20,initial steps
formatting_niceties,e2b47fa84c828e1c9f6ab0dd510e2eb83faeb877,pablodanswer,2024-11-20,update styling
formatting_niceties,e4916209d6c9f4ed5765d7ae20f77903ffd93e9b,pablodanswer,2024-11-20,search bar formatting
graceful_failure,03245a4366adeb1668a337b37d070d09922f5531,pablodanswer,2024-10-28,fail gracefully on provider fetch
gtm,acff050f6b2bec0368571e0936f9342b7bcd3919,pablodanswer,2024-11-20,update github workflow
gtm,b96260442d02c9298ed110ba97f5e9eff1ed9100,pablodanswer,2024-11-20,add gtm for cloud build
gtm_v2,4f96ddf9e69923ef1209c5586c73eb40b0418aaa,pablodanswer,2024-11-21,quick fix
horizontal_scrollbar,fa82e8c74cac273563badadec0c04176575ffbbb,pablodanswer,2024-11-21,account for additional edge case
horizontal_scrollbar,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
improved_cert,3b19c075ad6e8930d785943b24e46b2c08555c3a,pablodanswer,2024-11-07,minor improvements
improved_cloud,379d569c61801f0c093b7474f888392aa2cb1249,pablodanswer,2024-11-11,include reset engine!
improved_cloud,53f9d94ceb7a6a8da2a0c2d94fee6971adb29bbf,pablodanswer,2024-11-11,revert
improved_cloud,5058d898b8532881c517e14c22ca5c32784288fe,pablodanswer,2024-11-11,update some configs
improved_cloud,bc7de4ec1b9832059426ed74f2755c9548852459,pablodanswer,2024-11-11,moderate slackbot switch
improved_cloud,3ad98078f5205c2df5a3ea96cc165b982256a975,pablodanswer,2024-11-10,finalized keda
improved_cloud,0fb12b42f10bae3d8633717f763fa42271349442,pablodanswer,2024-11-10,minor update
improved_cloud,158329a3cc659d666328dac36bac7c5ffa87e084,pablodanswer,2024-11-10,finalize slackbot improvements
improved_cloud,7f1a50823baf0f5bbab89587e7df6f03fe552e27,pablodanswer,2024-11-10,fix typing
improved_cloud,0e76bcef454e0c09cb83ce91834730fdd084d930,pablodanswer,2024-11-10,add improved cloud configuration
indent,95ded1611c7d2199438b863c54f327eba632a5b0,pablodanswer,2024-10-27,add indent to scan_iter
indexing_improvements,ff8e5612c9cd67a642314632658f5a55814f7c5e,pablodanswer,2024-11-05,minor
individual_deployments,fe83d549a356d802ee1e693c8739db7563ed5ddc,pablodanswer,2024-11-02,add k8s configs
individual_deployments,0e42bb64579328d18ff01049a7aaa2a0b49be142,pablodanswer,2024-10-31,remove unecessary locks
individual_deployments,41ec9b23309a3bbfe598018832fbf5d3fe91c5e1,pablodanswer,2024-10-31,minor
individual_deployments,9e4e848b98f35056dcf3df6f0815651e9fe56eba,pablodanswer,2024-10-30,initial removal of locks!
individual_deployments,1407652e3b5825fae7a90a0d5818ef67ec44f50d,pablodanswer,2024-10-30,nit
individual_deployments,2758ff7efd4dd47e891ef77c05985d6407e4cbd7,pablodanswer,2024-10-30,reorg
individual_deployments,0718d5740b714a0222eb2520c6c2f0e70c095aa1,pablodanswer,2024-10-30,validate
individual_deployments,922f3487fbd7585ce6a7251ff0644cbeca921133,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
json_account,f4b3f8356a5911cb4a0610773b824bc6e6eb8c73,pablodanswer,2024-11-14,fix single quote block in llm answer
k8s_jobs,7124ce0b9a56f0b5dc45a733fe95cd581f9894a4,pablodanswer,2024-11-02,improve workers
k8s_jobs,10ab08420479ab056d807cbf0942c67a1dd6e7c7,pablodanswer,2024-11-02,improved timeouts + worker configs
k8s_jobs,9bc478fa1b7f1418fadfbd067383d67b417472aa,pablodanswer,2024-11-02,k
k8s_jobs,930e392d69ecd1058a73c0dfb0e2e021232921fc,pablodanswer,2024-11-02,update config
k8s_jobs,6d14ceeadf958cd1e7600b667b69ce0f3bf86830,pablodanswer,2024-11-02,k
k8s_jobs,efdf95eb232870f83677b2b424ffaa117463649a,pablodanswer,2024-11-02,add k8s configs
k8s_jobs,f687d3987cd9514f9fe587e563729ce27b8ff224,pablodanswer,2024-11-02,k
k8s_jobs,af4c9361a926867a992239daa283900300d7247e,pablodanswer,2024-11-02,nit
k8s_jobs,f74366bbd8699f9987ed8229e3368a5d7be71a53,pablodanswer,2024-11-01,update
k8s_jobs,734fcdca98aa5eeaa99d9936fa8db716eda93ad7,pablodanswer,2024-10-31,remove unecessary locks
k8s_jobs,dbc44315ad3cbf79509bd14a4025c2ecc4a6f86e,pablodanswer,2024-10-31,minor
k8s_jobs,d80049262406a0c30e9ad0fc647bddb23cbfbad9,pablodanswer,2024-10-30,initial removal of locks!
k8s_jobs,5646675ae094f39f3e7ead937cbcfd3fb7c7f24f,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
k8s_jobs,01bdcad4f038c5d4c642ca14680593988c28bf96,pablodanswer,2024-11-02,ensure versioned apps capture
k8s_jobs,0994ac396612855ecac9afbce6ef9b8bd7e54742,pablodanswer,2024-11-01,typing
k8s_jobs,8ff8a88d5b6ad2d02a653f959c39cfeeda9ef54c,pablodanswer,2024-11-01,update
k8s_jobs,e11aee38ba5946a1453693fdc3bbd20d703d9e10,pablodanswer,2024-11-01,address comments
k8s_jobs,53c6d16c3cdc7ffb3eebd3e7b73474025ef6cafc,pablodanswer,2024-10-30,nit
k8s_jobs,a85b2a9745587c4e783e040496dee1ac83e492c9,pablodanswer,2024-10-30,reorg
k8s_jobs,4ace16c905b47b97990de0ab0ef3c029870f9be0,pablodanswer,2024-10-30,validate
k8s_jobs,89293ecc730387a864be6efc01230fedffdc7b82,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
lenient_counting,4836a74e1e2789051b6d1454b7f2bd22daced61a,pablodanswer,2024-11-13,nit
lenient_counting,f7514011ef4cf62d80ab9afe170320b2e4135da2,pablodanswer,2024-11-13,lenient counting
max_height_scroll,c354912c704b0aa31737bfd41d4bd8f0c7d85769,pablodanswer,2024-11-20,ensure everythigng has a default max height in selectorformfield
migrate_tenant_upgrades_to_data_plane,572298aa8920d51320db5fff518f66fee6e42117,pablodanswer,2024-11-05,nit
migrate_tenant_upgrades_to_data_plane,40b55197ac8336e6ef081074ea65fc4b0cbeb27c,pablodanswer,2024-11-05,minor config update
migrate_tenant_upgrades_to_data_plane,4b9d868ecb78dedd3816ae7bc28e8f856881c6f4,pablodanswer,2024-11-04,minor pydantic update
migrate_tenant_upgrades_to_data_plane,1295c3a38e827024d89ba56fe3c846fcbe204bc0,pablodanswer,2024-11-04,ensure proper conditional
migrate_tenant_upgrades_to_data_plane,f2ac56d80213125f1f5d465b21a6a2e4b47566a2,pablodanswer,2024-11-04,improve import logic
migrate_tenant_upgrades_to_data_plane,fcdb3891bf196ef7e1f10e9d7a0a77512c752710,pablodanswer,2024-11-04,update provisioning
migrate_tenant_upgrades_to_data_plane,9a5d60c9a3df0891a769615e540af8332c0b416c,pablodanswer,2024-11-04,simplify
migrate_tenant_upgrades_to_data_plane,b512f35521bcb8c8ee9e748dae493028093f05bb,pablodanswer,2024-11-04,k
migrate_tenant_upgrades_to_data_plane,b872b7e778f7e0bd92e6eac9317e74e3157c12e1,pablodanswer,2024-11-04,minor clean up
migrate_tenant_upgrades_to_data_plane,b7847d16686419fe024d361cfaf2212a4decc397,pablodanswer,2024-11-04,minor cleanup
migrate_tenant_upgrades_to_data_plane,2f03ddb1bedada32576cb52bfa2cf36074fbb9fe,pablodanswer,2024-11-04,functional but scrappy
migrate_tenant_upgrades_to_data_plane,dc001a3b7b48df659bc64c2486ceded5eea3ed0f,pablodanswer,2024-11-04,add provisioning on data plane
minor,c7d58616b5943768e2e581751f4ede7a4f3292da,pablodanswer,2024-11-22,k
minor,351ee543a0773ecb6acf99f3888dd648091d7f85,pablodanswer,2024-11-22,k
minor_fixes,ea58c3259505aaa53c66343243667959ca79ecb8,pablodanswer,2024-11-05,minor changes
minor_fixes,cbf577cf4623c8352664058d21b1a80ae7ab4299,pablodanswer,2024-11-05,nit
minor_fixes,20d2301a7e594ad803c0486d63d056653c5b8c83,pablodanswer,2024-11-05,minor config update
minor_fixes,fdf9601375464f3e7f49d4472dbc3eeacd1eab8f,pablodanswer,2024-11-05,form
minor_fixes,7421328695641e943c7083639483fa36e4e9cfdb,pablodanswer,2024-11-04,minor pydantic update
minor_fixes,d600d63876e7100894c47a7dc9120b689a55521f,pablodanswer,2024-11-04,ensure proper conditional
minor_fixes,e7cae46867207789088df6611dbafc78650c8ace,pablodanswer,2024-11-04,improve import logic
minor_fixes,b0894320f99fea9cb13a94a5fbb5a1e9523ef460,pablodanswer,2024-11-04,update provisioning
minor_fixes,e623b494568d0bcc74937628984b6cc574aed9a6,pablodanswer,2024-11-04,simplify
minor_fixes,99d91bd658e812996bcc03d0be29e57277b8fb67,pablodanswer,2024-11-04,k
minor_fixes,77c180be0f8e91b9f997b90f631e18d41ba8fde2,pablodanswer,2024-11-04,minor clean up
minor_fixes,baaed72297ef248dc5dc422f0e5adcdff7599416,pablodanswer,2024-11-04,minor cleanup
minor_fixes,ab7fa7f6d0c3f1a59d97b5450262cb4ef6f8481d,pablodanswer,2024-11-04,functional but scrappy
minor_fixes,acf3ede8b4baf044391176aacd3bba6f80bb4b3f,pablodanswer,2024-11-04,add provisioning on data plane
minor_nits,bfcd418ecd9523376c605263565a9714ceeb3a18,pablodanswer,2024-11-09,k
minor_nits,5dfcb94964f977bb603865858e1e6aa6582454fd,pablodanswer,2024-11-09,update colors
minor_nits,a287cd94cd8090fefee7c1d20cc494b894bf39c1,pablodanswer,2024-11-09,nit
minor_nits,2d9586b059cfb1cb8e1f6c0fccc696af6ba8873d,pablodanswer,2024-11-08,nit
minor_nits,5dcc3692a7748ed20d49adef5f7672d45f600a4a,pablodanswer,2024-11-08,moderate component fixes
minor_slack_fixes,425a678a5350ad5716c3efd6a60c78f6a9c2738e,pablodanswer,2024-11-20,reset time
minor_slack_fixes,14adbcb497365f9e93c21aeb0476cffc72cab643,pablodanswer,2024-11-20,update slack redirect + token missing check
misc_color_cleanup,83c8f04e5a183a289f76b809d9aabdd4ea0e664b,pablodanswer,2024-11-03,formatting
misc_color_cleanup,334ff6fb5ab2e450e1e0709be16870b1ed07dae3,pablodanswer,2024-11-03,ensure tool call renders
misc_color_cleanup,94262264e768cdc28ffe4fc31b2947c0cf3774a3,pablodanswer,2024-11-03,ensure tailwind config evaluates properly + update textarea -> input
misc_color_cleanup,40cb9e9cdb4561eac777ede08ace88219d12ad96,pablodanswer,2024-11-02,additional minor nits
misc_color_cleanup,2e81962a74567c0c510d911a22aee385c56b3207,pablodanswer,2024-11-02,nit
misc_color_cleanup,76ca7eb3f2cf2408fee330f540987e6238cd632e,pablodanswer,2024-11-01,nit
misc_color_cleanup,7269b7a4aa986dbba654be4b375bea1d9334fe01,pablodanswer,2024-11-01,additional nits
misc_color_cleanup,4726a10fd7503882554d1dfaf1541657ffb45a04,pablodanswer,2024-11-01,misc color clean up
mobile_scroll,eca41cc514446a2c0b2c756add3164462fb2c49d,pablodanswer,2024-11-11,improved mobile scroll
modals,8093ceeb45088c813fbb117302738b3d225c2f8b,pablodanswer,2024-10-28,formatting
modals,3d0ace1e450ac6d7271ddedc2ec122a2647be7df,pablodanswer,2024-10-28,minor nits
modals,553aba79dc41b928c163a83481b202ad56805aae,pablodanswer,2024-10-28,update based on feedback
modals,da038b317a0b5185ccc32297b01fcaa97ffbb429,pablodanswer,2024-09-21,remove logs
modals,6769dc373faf7576c2d0ac212735b88eae755293,pablodanswer,2024-09-21,minor udpate to ui
modals,b35e05315c4c506da87524fe788a9cf5aacb7375,pablodanswer,2024-09-20,use display name + minor updates to models
modals,7cfd3d2d442255616ec5c477dc4b3eb0b2cad1ed,pablodanswer,2024-09-20,cleaner cards
modals,b2aa1c864b20274386a1bbe699a3ef7e094bd858,pablodanswer,2024-09-20,slightly cleaner animation
modals,d2f8177b8f1b9be8eebce520204018e6be59b03c,pablodanswer,2024-09-20,cleaner initial chat screen
more_theming,1744d29bd6f6740fb20bbbf8b5651cd60edbf127,pablodanswer,2024-11-21,k
more_theming,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
multi_api_key,67e347a47fd2e4aa9efe7b17c7b177166c893d10,pablodanswer,2024-10-31,clean
multi_api_key,3fb6e9bef96da888fa366a16f102358eb8e990e0,pablodanswer,2024-10-31,nit
multi_api_key,c4514fe68f58a03da0c3c3efae78ad23e2eb88c9,pablodanswer,2024-10-30,organization
multi_api_key,5b19209129542b885e123a51ce3da93b741d49d2,pablodanswer,2024-10-30,basic multi tenant api key
new_seq_tool_calling,59e9a33b30ece8d41340787d9d9a82e9a07a8f24,pablodanswer,2024-11-18,k
new_seq_tool_calling,6e60437c565a185475c715efbbef6caca1cfc2fb,pablodanswer,2024-11-17,quick nits
new_seq_tool_calling,9cde51f1a2ca1df2f753c9b6d7910b8f9623d8a4,pablodanswer,2024-11-07,scalable but not formalized
new_seq_tool_calling,8b8952f117e4d05bb484bc5dec1c12d4fbbafcca,pablodanswer,2024-11-07,k
new_seq_tool_calling,dc01eea610817ab821ded6e5ce584f81fe1ba065,pablodanswer,2024-11-07,add logs
new_seq_tool_calling,c89d8318c093c860037a839494876eff649f5d26,pablodanswer,2024-11-07,add image prompt citations
new_seq_tool_calling,3f2d6557dcb5964dbb9ed88ade743f74a4285411,pablodanswer,2024-11-07,functioning albeit janky
new_seq_tool_calling,b3818877afc406f9500e7bef1f2b7e233faf76fa,pablodanswer,2024-11-07,initial functioning update
new_theming_updates,102c264fd06232bbc4c7a23615add5cf7c0618be,pablodanswer,2024-11-21,minor updates
new_theming_updates,1744d29bd6f6740fb20bbbf8b5651cd60edbf127,pablodanswer,2024-11-21,k
new_theming_updates,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
nit,c68602f456c66279e760bd25067cfdfe03841f8a,pablodanswer,2024-11-10,specifically apply flex none to in progress!
nit_mx,c5147db1ae5387e8fd5672779689485142fb1b1d,pablodanswer,2024-11-20,formatting
nit_mx,3a6a74569544ee7d74c6b62a5a56730331838095,pablodanswer,2024-11-20,ensure margin properly applied
nit_redis,85843632c5fe61a425d425feef6480c639471af7,pablodanswer,2024-10-28,add srem and sadd to tenant wrapper
no_locks!,f687d3987cd9514f9fe587e563729ce27b8ff224,pablodanswer,2024-11-02,k
no_locks!,af4c9361a926867a992239daa283900300d7247e,pablodanswer,2024-11-02,nit
no_locks!,f74366bbd8699f9987ed8229e3368a5d7be71a53,pablodanswer,2024-11-01,update
no_locks!,734fcdca98aa5eeaa99d9936fa8db716eda93ad7,pablodanswer,2024-10-31,remove unecessary locks
no_locks!,dbc44315ad3cbf79509bd14a4025c2ecc4a6f86e,pablodanswer,2024-10-31,minor
no_locks!,d80049262406a0c30e9ad0fc647bddb23cbfbad9,pablodanswer,2024-10-30,initial removal of locks!
no_locks!,5646675ae094f39f3e7ead937cbcfd3fb7c7f24f,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
no_locks!,01bdcad4f038c5d4c642ca14680593988c28bf96,pablodanswer,2024-11-02,ensure versioned apps capture
no_locks!,0994ac396612855ecac9afbce6ef9b8bd7e54742,pablodanswer,2024-11-01,typing
no_locks!,8ff8a88d5b6ad2d02a653f959c39cfeeda9ef54c,pablodanswer,2024-11-01,update
no_locks!,e11aee38ba5946a1453693fdc3bbd20d703d9e10,pablodanswer,2024-11-01,address comments
no_locks!,53c6d16c3cdc7ffb3eebd3e7b73474025ef6cafc,pablodanswer,2024-10-30,nit
no_locks!,a85b2a9745587c4e783e040496dee1ac83e492c9,pablodanswer,2024-10-30,reorg
no_locks!,4ace16c905b47b97990de0ab0ef3c029870f9be0,pablodanswer,2024-10-30,validate
no_locks!,89293ecc730387a864be6efc01230fedffdc7b82,pablodanswer,2024-10-30,add validated + reformatted dynamic beat acquisition
pinned,233713cde3516c05b857f878ff452c7714a91c48,pablodanswer,2024-11-20,hide animations
pinned,c0b17b4c51376d99685976430b9c4153c35e2ffa,Yuhong Sun,2024-11-20,k
pinned,15f30b00507e337ec9ee85624fc0cc574eb7b952,Yuhong Sun,2024-11-20,k
pinned,39d9df9b1b58dd2621bd575fa6c7ec720864d3bb,pablodanswer,2024-11-18,k
point_to_proper_docker_repository,9893301f113691111669bc2ab05a7c3abf19ae32,pablodanswer,2024-11-09,raise exits
point_to_proper_docker_repository,2344327112c01db8b2226dea0e02b2a8aa9ca875,pablodanswer,2024-11-09,ensure .github changes are passed
point_to_proper_docker_repository,caa2966ebc607fb8d2899ee78573ed2454983efb,pablodanswer,2024-11-09,robustify cloud deployment + include initial KEDA configuration
prev_doc,44f82fa928b79e7f51b41a0ee67cc93067880be3,pablodanswer,2024-11-22,k
prev_doc,2c7c9fbc130b8f0c717fa9fa4e5d2f6073f92be5,pablodanswer,2024-11-22,revert to previous doc select logic
prompting,4d8edad71ace767917a612dc628e266bd267d7d5,pablodanswer,2024-11-17,k
prompting,b1265619a27a849f2fbb9ba85b440a8b1b698d7d,pablodanswer,2024-11-16,add proper category delineation
prompting,dfe2c305866ad414143ce479b0601f8a61e615ea,pablodanswer,2024-11-05,post rebase cleanup
prompting,236c19230f5165e24ef557db53d863953faa714a,pablodanswer,2024-11-05,add auto-generated starter messages
proper_tenant_reset,4376bf773a81278ab92846673f193207be96052a,pablodanswer,2024-10-31,minor formatting
proper_tenant_reset,95f660db67b1327208fde82ae043511f2187452f,pablodanswer,2024-10-31,clear comment
proper_tenant_reset,1cdb5af9a1519ef8d63c94bf39256b00d4a8bdd2,pablodanswer,2024-10-31,add proper tenant reset
proper_token_default,4e0c048acba88f4c83d7c83af52bb0932234ddad,pablodanswer,2024-11-14,nit
proper_token_default,a0371a6750476fccc3b9892a7c58d72182c92507,pablodanswer,2024-11-14,minor logic update
proper_token_default,4f1c4baa80f7b747633bb3d528aed6de5b11f639,pablodanswer,2024-11-14,minor cosmetic update
proper_token_default,b6ef7e713a4eca3d65aa411604e8f67ad5efdd87,pablodanswer,2024-11-14,k
proper_token_default,66df9b6f7dae8bce61e35615d715ddefc6406614,pablodanswer,2024-11-14,improved fallback logic
proper_token_default,0473888ccdb5219cc39f275652bfeb72a420b5d9,pablodanswer,2024-11-13,silence warning
regenerate_clarity,3e232c39193b1c67bda9d732c1c2ee77ee14c721,pablodanswer,2024-10-29,minor udpate
regenerate_clarity,49e2da1c5c4fa34a8568ba0b3f08e79cd17cec93,pablodanswer,2024-10-29,add regeneration clarity
remove_ee,132802b295b805292f427039617a00e04dca2ae9,pablodanswer,2024-11-09,k
remove_ee,23883441f87ac3cd4e2ee717d2b033c3e7da9398,pablodanswer,2024-11-09,ensure callable
remove_ee,f43ed0b6b9391e66e210c5d90acf7a2409c3300b,pablodanswer,2024-11-09,finalize
remove_ee,fa42e5fa470e340e9b17fed5a3bd0e7976c6255e,pablodanswer,2024-11-08,finalize
remove_ee,625b5c52a044027b3d469286910a3cdd1c6bee02,pablodanswer,2024-11-08,update
remove_ee,239200dfc46f6cf18d7e689341b56a8baecdc0f6,pablodanswer,2024-11-08,update
remove_ee,5b70a8fa6f65d8513670c3bbbfd6cec13c76d530,pablodanswer,2024-11-08,general cleanup
remove_ee,14dfd6d29e178af9cfeb79ae20b7a846c5958966,pablodanswer,2024-11-08,move token rate limit to non-ee
remove_ee,dc4fdbb312881585fbc860b7aaff5adb9af4d8c5,pablodanswer,2024-11-08,finalize previous migration
remove_ee,cfd3d90493fad0af75569c98b6cfc9effa37b471,pablodanswer,2024-11-08,move api key to non-ee
remove_empty_directory,81e1ac918364467e3009eae376930199e3e2943f,pablodanswer,2024-10-28,remove empty directory
remove_endpoint,14f57d6475d835da6dfacc4ebd254e25618b3100,pablodanswer,2024-10-31,remove endpoint
rerender,1392f2454061914ac8c5f6302318a24064034a5b,pablodanswer,2024-11-21,k
rerender,617e6d905363cc91ca154bba0f6f2a11888b35e6,pablodanswer,2024-11-21,unused
rerender,da36e208cd53ae25a2c89a4cf0c598333898387a,pablodanswer,2024-11-21,clean
rerender,36eee45a03c3227a9b070e18a043e16fe5179cb9,pablodanswer,2024-11-21,llm provider causing re render in effect
reset_all,bde1510923d69ca0eb57340da6b59f9035e3de0a,pablodanswer,2024-11-04,ensure we reset all
search_chat_rework,931461bc8404fc51f15f0b75ae77e3a772a05989,pablodanswer,2024-11-21,v1
sequential_messages,5fbcc70518bd5d1be00d6595f3fc690f81c52f21,pablodanswer,2024-11-01,minor logging updates for clarity
sequential_messages,7db0de9505c3510a4db76e98a47d5b079056dc93,pablodanswer,2024-10-31,minor typo
sequential_messages,18b4a8a26331bc013b49e486e2bf82c5ce4bfe73,pablodanswer,2024-10-31,fix stop generating
sequential_messages,98660be16459038b438d12616bd6f00dde418b95,Weves,2024-10-31,Fix UT
sequential_messages,3620266bddfbf1fca309ff2fe97f72bda7462979,Weves,2024-10-31,Remove unused exception
sequential_messages,2132a430cc64abd869632c0f55a35bdc42b30be9,Weves,2024-10-31,Fix image generation slowness
sequential_messages,24e34019ce25314c5e749d38dd0895a1c3d5141e,Weves,2024-10-31,More testing
sequential_messages,3cd4ed5052277428dc06343f53e0e6486af26208,Weves,2024-10-31,Testing
sequential_messages,200bb96853d6d96a99093f6e915fe9721ab5c6b3,Weves,2024-10-31,Add quote support
sequential_messages,5a0c6d003607dfb9a7445a6a87df9a6062b73bc6,Weves,2024-10-02,Fix
shadcn,fe9be6669538db406a0c67959dcf4c91e8d4858b,pablodanswer,2024-10-28,button + input updates
shadcn,7cccb775c1f1385bc50131f7d548519d95ac64cd,pablodanswer,2024-10-28,initialization
sheet_update,98aa32055203d32a6d25eb1266deab6c58a176fb,pablodanswer,2024-11-21,update configuration
sheet_update,026134805a1418f32b61973f55571756ba102c09,pablodanswer,2024-11-21,finalized
sheet_update,36c1fc23d087f41db06e2680233a1ade7e65e594,pablodanswer,2024-11-21,k
sheet_update,3a4804b4b7d54fd3db576b698b5187d8dc0aa5ca,pablodanswer,2024-11-20,add multiple sheet stuff
sheet_update,5e326bcd08d019103f78da1c8a4a45ba4e401353,pablodanswer,2024-11-20,update sheet
sheet_update,d7f2a3e112c00bda2813933d673fb18080d6de6d,pablodanswer,2024-11-20,k
sheet_update,3eaf2a883a5fb52169af2ba2e0571189fb3712eb,pablodanswer,2024-11-20,quick pass
show_logs,189d62b72e0a2183ac3b25ea62eaea1b4db4366b,pablodanswer,2024-11-08,k
show_logs,89cb3b503cf219d90338110cec34d288892c27ed,pablodanswer,2024-11-08,minor updates
show_logs,cdda24f9ea4bc54f6a6c49d7848b63b2b5dacc9e,pablodanswer,2024-11-08,remove log
show_logs,6dc4ca344c927b5e9c02b28662252a4067a2f7da,pablodanswer,2024-11-08,k
show_logs,f91bac1cd90da5070247e70682e38adbe2722ce2,pablodanswer,2024-11-08,improved logging
show_logs,5e25488d0af1e1939a366fe12ab42949daaa77f1,pablodanswer,2024-11-08,add additional logs
silence_log,7400652fe70f86da3c8aab2a41f26103e395d739,pablodanswer,2024-11-20,silence small error
single_tool_call,0230920240fa46e06e1cc66fb67fa42f5caf81b3,pablodanswer,2024-11-01,finalize migration
single_tool_call,e7859e8bb4ea8409657cf0a7464724a5192e953e,pablodanswer,2024-11-01,single tool call per message
single_tool_call,fd3937179f14968b4103c634a83430f7ae9303bc,pablodanswer,2024-11-01,minor logging updates for clarity
single_tool_call,7a5a8f68a6e663d2b91badd47847193c92b523d0,pablodanswer,2024-10-31,minor typo
single_tool_call,122cd2082e4ddd4a56992f5f8c36b9853057581a,pablodanswer,2024-10-31,fix stop generating
single_tool_call,7384874e54a8ebc136b41efbe0842a327262b738,Weves,2024-10-31,Fix UT
single_tool_call,2b06789d5133029d99763037ded18766e8d04d74,Weves,2024-10-31,Remove unused exception
single_tool_call,4bdfd117370ac126e1bdc6e32f0192d59c51dd57,Weves,2024-10-31,Fix image generation slowness
single_tool_call,6d4ccc354514ff328473a1c35974521c465aa2f5,Weves,2024-10-31,More testing
single_tool_call,ef0ad8f8fce4eebc38cc9291047b84e5162572f3,Weves,2024-10-31,Testing
single_tool_call,99b076412aa3501cbff75d7521c4cedb8f793c34,Weves,2024-10-31,Add quote support
single_tool_call,499272ef25961ddb0861ee2a6ff6d978ea1e7772,Weves,2024-10-02,Fix
slack_scaling,dd958cff6b0999190c5116e0354497207231d5d6,pablodanswer,2024-10-30,minor foreign key update
super_user,0cc09c8b4d9ba0dca350a799ddc265fca38f4b90,pablodanswer,2024-11-02,nits
super_user,ec8ae2b5f4491e3de0701ba31ae3124d8f549e66,pablodanswer,2024-11-02,add super user
swap_buttons_cards,e6ce503bbbbed4d70734d11ebccc0db4994f69e0,pablodanswer,2024-11-01,nits
swap_buttons_cards,680a160b2560594c3c99d4f1e8cffc3bfea66064,pablodanswer,2024-11-01,update colors
swap_buttons_cards,748c99d655739c1bb7da0a25e2829c0d706ff810,pablodanswer,2024-10-31,clean build
swap_buttons_cards,a222b9d3e7819e9a7e525b6994248caa167c8ac1,pablodanswer,2024-10-30,list item + configuration updates
swap_buttons_cards,df38bde21a0f457fb6be4c1b66fae196ae32ec20,pablodanswer,2024-10-30,nits
swap_buttons_cards,ddb22e659d1fb4cd8f30ec952e68db683f5a746e,pablodanswer,2024-10-29,fully swapped
swap_buttons_cards,d91e54759a022acf478467b0906ee1a2867aa2ca,pablodanswer,2024-10-29,remove tremor
swap_buttons_cards,f6117b0f16581bac8fbd181e13a5dbc061c5debb,pablodanswer,2024-10-29,begin date picker + badge transfer
swap_buttons_cards,a8a73590bb24a59371c985931ac5dde96674f5b0,pablodanswer,2024-10-29,fix compiling
swap_buttons_cards,5f4f0c0ebb3f12e9de996661eb722561a048311b,pablodanswer,2024-10-29,migrate cards
swap_buttons_cards,8b8173bef0f05997c04ef9899d557d0f0a205767,pablodanswer,2024-10-29,minor updates
swap_buttons_cards,92b7fe45b1bd1ea39252cd8a4ac6a323a548f518,pablodanswer,2024-10-28,migrate badges
swap_buttons_cards,74091415c43c39080bd07c1ef9fc683ecc9742e2,pablodanswer,2024-10-28,migrate dividers + buttons
swap_buttons_cards,80f9af73d0adcb06c8228b868632bdecc362d616,pablodanswer,2024-10-28,button + input updates
swap_buttons_cards,efbeb2716536ea6b08fac40c1e074698a534ea11,pablodanswer,2024-10-28,initialization
switch-to-turbopack,09f5fea799633152f59fb9a54451d922eb4914e0,pablodanswer,2024-11-02,slight modification
switch-to-turbopack,f7ac9ae034605ac59a9c97650ebd6956d5628ed6,Weves,2024-11-02,Fix prettier
switch-to-turbopack,e42f4c98c487f671887de0c43680a659a9132753,Weves,2024-11-01,Style
switch-to-turbopack,f800017b21c2618ae51f16ef4f5d9b5e930f01fc,Weves,2024-11-01,Style
switch-to-turbopack,7f5744974644d6cbbcf41815e27f9017de76d738,Weves,2024-11-01,Fix charts
switch-to-turbopack,2b6514e75489842c8de0aae99d705e22daee9461,Weves,2024-11-01,Upgrade react
switch-to-turbopack,85d5857dbcbbf353a883abf7681c85a48dc4f724,Weves,2024-11-01,Remove override
switch-to-turbopack,7760230bf771cb6d3b0fca46b6e0bb35677ad5ee,Weves,2024-11-01,Update nextjs version
switch-to-turbopack,a3be5be8c6c2bf653de9df48e6a3dfc01144f849,Weves,2024-11-01,Remove unintended change
switch-to-turbopack,4d3fdba81ee2ccace76380b0b7318a5a5ed0ab79,Chris Weaver,2024-10-26,Upgrade to NextJS 15 + use turbopacK
temp/include_file61,20d29eb51cca799b9cc04552dd083bf202c760bc,pablodanswer,2024-11-03,temporary update
tenant_task_logger,02251aab75bad74647ba526654950b131748eb45,pablodanswer,2024-11-21,update
tenant_task_logger,805575ef183348ce55a7d8749db477422d0b30de,pablodanswer,2024-11-09,don't prevent seeding
tenant_task_logger,7146d02d553c568d99e7efd97a3b185f783a219a,pablodanswer,2024-11-06,update app base
tenant_task_logger,6c360ccc483de4ce42fc88724a55f793398a1445,pablodanswer,2024-11-05,remove logs from beat
tenant_task_logger,8773f215688e6775ebdf65bb5edda0f1e6080787,pablodanswer,2024-11-05,append
tenant_task_logger,d715c8be8a0465551e4d5670a43bf52d1d4635de,pablodanswer,2024-11-05,remove tenant id logs
tenant_task_logger,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
text_view,5d1a664fdc8c712aa644452b061e76b3302f714a,pablodanswer,2024-11-20,nit
text_view,b13a1d1d851b924f7b8f402894526d92712b09fa,pablodanswer,2024-11-18,k
text_view,77ab27f982af152818dcb9b4390da80113f17e72,pablodanswer,2024-11-15,update
text_view,61135ed7db5168d5517b8f11aed05e14b1aba471,pablodanswer,2024-11-14,basic log
text_view,7c13ca547fc42988ef9ca10bd4a354a0fd4473cc,pablodanswer,2024-11-14,minor testing update
text_view,46f9f0dc947da29271b16e893152402421cc1c85,pablodanswer,2024-11-14,update tests
text_view,756b56d2cd63b7792de532d05a03bbaac2c80960,pablodanswer,2024-11-13,wip tests
text_view,180c176136b46424021d4f0ca84052afae4946dd,pablodanswer,2024-11-13,minor docker file update
text_view,fa8a92875bc8c3637c7aa0eac937bc3a0818e66a,pablodanswer,2024-11-13,remove left over string
text_view,c6907ebebe9391140e272ebe0e89b6b6d207f8f5,pablodanswer,2024-11-13,finalize
text_view,709b87d56d0e770c1ee6240cfbd4bc76743eb521,pablodanswer,2024-11-13,finalized
text_view,b8df6e22d2d15a099aea2bc3b2e7d4c67b446ae8,pablodanswer,2024-11-13,k
text_view,ba977e3f5dae439f4ec6b62edc717ada5f49e1f5,pablodanswer,2024-11-12,minor typing update
text_view,ed5ed616efd0dceee374b2de5bec69adb4553a62,pablodanswer,2024-11-12,typing
text_view,ff4f3bb211485274250eed299247631cc2f1d9a3,pablodanswer,2024-11-12,update text view
text_view,e38fd6f7c76f3133fc407d99428a7286328843b6,pablodanswer,2024-11-12,update text view
text_view,c76602b7be9968643726f2a8818d27d290d400dd,pablodanswer,2024-11-12,k
text_view,62abe2511b8975ce050c4712a095372bf1d1ddc7,pablodanswer,2024-11-11,initial display
theming,e1eff26216e42897db4e49a02cb7bb13e9425422,pablodanswer,2024-11-18,nit
theming,4b1d428f71fd8993c516f35d8c4fa502c40baaae,pablodanswer,2024-11-18,add additional theming options
theming_updated,f95813e381acf7590e094f774c0811f375cde670,pablodanswer,2024-11-21,update neutral
theming_updated,804887fd311a783306f160591bc273866388a9f0,pablodanswer,2024-11-21,update
theming_updates,c6556857cceacce98b8a90f9a42c4ddfac3b7884,pablodanswer,2024-10-30,update our tailwind config
theming_updates,592394caeae4414bd87108ef9f8de65b77226e37,pablodanswer,2024-10-30,enforce colors
theming_updates,8f2b0eb72d55347091339c9ba39e2c12f238a776,pablodanswer,2024-10-30,remove pr
theming_updates,f92f8e7a73c238fc44ccca746d6fb597c5ad5cb8,pablodanswer,2024-10-30,nit
theming_updates,5c6fc34d6316e033b5e258b9a469fa1bd8ea3167,pablodanswer,2024-10-30,add comments
theming_updates,3472fb27371f59b454a4b27a699e2160b801ab46,pablodanswer,2024-10-30,ensure tailwind theme updated
theming_updates,8210c8930b005cfe6248618373a708b150e412f2,pablodanswer,2024-10-29,naming
theming_updates,e6b9ebc198973a84dc9412302e6b98a24b0a2ce3,pablodanswer,2024-10-29,ensure functionality
tool_call_per_message,bd0259c05ff9364a99670582ff1cd804fc1b12b7,pablodanswer,2024-11-03,validated
tool_call_per_message,381aadd24e897e28215964404048c84d7aeaa1df,pablodanswer,2024-11-03,remove print
tool_call_per_message,90c711322dc19a6c4092a60beb5905ded89079d6,pablodanswer,2024-11-01,k
tool_call_per_message,20a36e5f46755a55c022dd422c4d31e9abc24d46,pablodanswer,2024-11-01,validate simplify
tool_call_per_message,9b3a008ef42d31227290f0ddfbc5b37daa82f360,pablodanswer,2024-11-01,minor image generation fix
tool_call_per_message,a958903bd74c78457ef487debfb6084cd8ab6b2b,pablodanswer,2024-11-01,finalize migration
tool_call_per_message,4ea0aceca97734ddca8d1f60da930668e0561694,pablodanswer,2024-11-01,single tool call per message
tool_csv_image,8015e84531263cda72d7ca281ed0f790c0d0bb3f,pablodanswer,2024-11-03,add multiple formats to tools
tool_search,04be3fcbf7e128136f38760845f5d39197c94a5e,pablodanswer,2024-11-15,k
tool_search,601d497ed7acd05709384098a3132e1240d32932,pablodanswer,2024-11-15,add tests
tool_search,4de18b2e23222fc2c628982db8659d17c136adfa,pablodanswer,2024-11-07,update
tool_search,30e6e9b6dc8bebcc98fcf430fbd77af62faffd1a,pablodanswer,2024-11-07,somewhat cleaner
tool_search,ac64d4aa71cca26898a0eeb8d849a15a60945e69,pablodanswer,2024-11-06,remove logs
tool_search,1fd949ccfc6984904020ee50a845b119acd1f0be,pablodanswer,2024-11-06,finish functionality
tool_search,1253eb27f62c81780def9e37e5498b42321d6f49,pablodanswer,2024-11-06,k
tool_search,7dafd72d8c37ab505b35596fb3630c738b58688b,pablodanswer,2024-11-06,first pass
tooltips,5fe453e18565a9c2f3b8f20520fb7868b5e08675,pablodanswer,2024-11-04,nit: fix delay duration
tooltips,4bb9c461ef4c81543690f51c29c6c39949d3e882,pablodanswer,2024-11-04,clean up tooltips
typo,4f2f4e6534605287678fa046524a3ffd705e8ab4,pablodanswer,2024-11-18,(minor) typo
uf_theming,fe49e35ca476c494d0a9f36eb6cfea3e99ed0427,pablodanswer,2024-11-22,ensure added
uf_theming,804887fd311a783306f160591bc273866388a9f0,pablodanswer,2024-11-21,update
undo_temporary_fix,59fcdbaf5a096cc1bcd4599a1c0d7a256ca744f0,pablodanswer,2024-11-03,nit
undo_temporary_fix,c3118f91b9958e736704277b5d3f98a10e3943c2,pablodanswer,2024-11-03,Revert temporary modifications
update-confluence-behaviour,cc769b8bb9b47da9c955e70174bd498fb0b3231a,hagen-danswer,2024-11-15,has issue with boolean form
update-confluence-behaviour,e44646dd799c7f95db1df9616e83241344ef0035,hagen-danswer,2024-11-15,fixed mnore treljsertjoslijt
update-confluence-behaviour,b623630934171868c815b62e30be055fc6f06ec8,hagen-danswer,2024-11-15,whoops!
update-confluence-behaviour,790db4f8ea6bcb02df170d2892c57ccb50aaa119,hagen-danswer,2024-11-15,so good
update-confluence-behaviour,ccd6b8f38113b70ba3acf3beda199fa8ee6e3bab,hagen-danswer,2024-11-15,added key
update-confluence-behaviour,4beffa4be3ed029fe23c95ce08c5d18c9314e54e,hagen-danswer,2024-11-15,details!
update-confluence-behaviour,dacb1870dc98c986e1105fc797603957a2de4b5a,hagen-danswer,2024-11-15,copy change
update-confluence-behaviour,008d6cac8e86429884bd38bbe21a23dac96be123,hagen-danswer,2024-11-15,frontend cleanup
update-confluence-behaviour,f3310fbc73c45773dc19c2ef8da9f2fe4336b559,hagen-danswer,2024-11-15,fixed service account tests
update-confluence-behaviour,c7819a2c5735f812e150718a3620e4bf90ca6a1e,hagen-danswer,2024-11-15,fixed oauth admin tests
update-confluence-behaviour,f3fa6f1442910969f24ec4193b8cea3744f5847d,hagen-danswer,2024-11-15,reworked drive+confluence frontend and implied backend changes
user_defaults,fff98ddc15d8a94b44ffbaf2225545bc2c4c01b6,pablodanswer,2024-11-12,minor clarity
heads/v0.13.0-cloud.beta.0,102c264fd06232bbc4c7a23615add5cf7c0618be,pablodanswer,2024-11-21,minor updates
heads/v0.13.0-cloud.beta.0,1744d29bd6f6740fb20bbbf8b5651cd60edbf127,pablodanswer,2024-11-21,k
heads/v0.13.0-cloud.beta.0,fa592a1b7a69897110a928a222b19eaef3b7267a,pablodanswer,2024-11-21,clean horizontal scrollbar
validate,afc8075cc3076261c8b98a4fe30822641fb9d2cf,pablodanswer,2024-11-22,add filters to chat
validate,71123f54a753f243015f7f6bac62c3b8d1e6d05b,pablodanswer,2024-11-22,several steps
validate,6061adb114ef20c4bf6567c9450ae51a2938c927,pablodanswer,2024-11-22,remove chat / search toggle
validate,35300f65699862f982016284567ef12974ae05c2,pablodanswer,2024-11-22,update
validate,fe49e35ca476c494d0a9f36eb6cfea3e99ed0427,pablodanswer,2024-11-22,ensure added
validate,804887fd311a783306f160591bc273866388a9f0,pablodanswer,2024-11-21,update
vespa_improvements,7c27de6fdcc6172bc1ff4e9522711210f2113e86,pablodanswer,2024-11-14,minor configuration updates
Can't render this file because it contains an unexpected character in line 143 and column 96.

View File

@@ -18,11 +18,6 @@ class ExternalAccess:
@dataclass(frozen=True)
class DocExternalAccess:
"""
This is just a class to wrap the external access and the document ID
together. It's used for syncing document permissions to Redis.
"""
external_access: ExternalAccess
# The document ID
doc_id: str

View File

@@ -1,100 +0,0 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.answer_query.nodes.answer_check import answer_check
from danswer.agent_search.answer_query.nodes.answer_generation import answer_generation
from danswer.agent_search.answer_query.nodes.format_answer import format_answer
from danswer.agent_search.answer_query.states import AnswerQueryInput
from danswer.agent_search.answer_query.states import AnswerQueryOutput
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
def answer_query_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=AnswerQueryState,
input=AnswerQueryInput,
output=AnswerQueryOutput,
)
### Add nodes ###
expanded_retrieval = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="expanded_retrieval_for_initial_decomp",
action=expanded_retrieval,
)
graph.add_node(
node="answer_check",
action=answer_check,
)
graph.add_node(
node="answer_generation",
action=answer_generation,
)
graph.add_node(
node="format_answer",
action=format_answer,
)
### Add edges ###
graph.add_edge(
start_key=START,
end_key="expanded_retrieval_for_initial_decomp",
)
graph.add_edge(
start_key="expanded_retrieval_for_initial_decomp",
end_key="answer_generation",
)
graph.add_edge(
start_key="answer_generation",
end_key="answer_check",
)
graph.add_edge(
start_key="answer_check",
end_key="format_answer",
)
graph.add_edge(
start_key="format_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = answer_query_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = AnswerQueryInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
query_to_answer="Who made Excel?",
)
output = compiled_graph.invoke(
input=inputs,
# debug=True,
# subgraphs=True,
)
print(output)
# for namespace, chunk in compiled_graph.stream(
# input=inputs,
# # debug=True,
# subgraphs=True,
# ):
# print(namespace)
# print(chunk)

View File

@@ -1,30 +0,0 @@
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import QACheckOutput
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
def answer_check(state: AnswerQueryState) -> QACheckOutput:
msg = [
HumanMessage(
content=BASE_CHECK_PROMPT.format(
question=state["search_request"].query,
base_answer=state["answer"],
)
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
response_str = merge_message_runs(response, chunk_separator="")[0].content
return QACheckOutput(
answer_quality=response_str,
)

View File

@@ -1,32 +0,0 @@
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import QAGenerationOutput
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def answer_generation(state: AnswerQueryState) -> QAGenerationOutput:
query = state["query_to_answer"]
docs = state["reranked_documents"]
print(f"Number of verified retrieval docs: {len(docs)}")
msg = [
HumanMessage(
content=BASE_RAG_PROMPT.format(question=query, context=format_docs(docs))
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
answer_str = merge_message_runs(response, chunk_separator="")[0].content
return QAGenerationOutput(
answer=answer_str,
)

View File

@@ -1,16 +0,0 @@
from danswer.agent_search.answer_query.states import AnswerQueryOutput
from danswer.agent_search.answer_query.states import AnswerQueryState
from danswer.agent_search.answer_query.states import SearchAnswerResults
def format_answer(state: AnswerQueryState) -> AnswerQueryOutput:
return AnswerQueryOutput(
decomp_answer_results=[
SearchAnswerResults(
query=state["query_to_answer"],
quality=state["answer_quality"],
answer=state["answer"],
documents=state["reranked_documents"],
)
],
)

View File

@@ -1,48 +0,0 @@
from typing import Annotated
from typing import TypedDict
from pydantic import BaseModel
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class SearchAnswerResults(BaseModel):
query: str
answer: str
quality: str
documents: Annotated[list[InferenceSection], dedup_inference_sections]
class QACheckOutput(TypedDict, total=False):
answer_quality: str
class QAGenerationOutput(TypedDict, total=False):
answer: str
class ExpandedRetrievalOutput(TypedDict):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class AnswerQueryState(
PrimaryState,
QACheckOutput,
QAGenerationOutput,
ExpandedRetrievalOutput,
total=True,
):
query_to_answer: str
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class AnswerQueryInput(PrimaryState, total=True):
query_to_answer: str
class AnswerQueryOutput(TypedDict):
decomp_answer_results: list[SearchAnswerResults]

View File

@@ -1,15 +0,0 @@
from typing import TypedDict
from sqlalchemy.orm import Session
from danswer.context.search.models import SearchRequest
from danswer.llm.interfaces import LLM
class PrimaryState(TypedDict, total=False):
search_request: SearchRequest
primary_llm: LLM
fast_llm: LLM
# a single session for the entire agent search
# is fine if we are only reading
db_session: Session

View File

@@ -1,114 +0,0 @@
from typing import Any
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import COMBINED_CONTEXT
from danswer.agent_search.shared_graph_utils.prompts import MODIFIED_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
from danswer.agent_search.shared_graph_utils.utils import normalize_whitespace
# aggregate sub questions and answers
def deep_answer_generation(state: MainState) -> dict[str, Any]:
"""
Generate answer
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---DEEP GENERATE---")
question = state["original_question"]
docs = state["deduped_retrieval_docs"]
deep_answer_context = state["core_answer_dynamic_context"]
print(f"Number of verified retrieval docs - deep: {len(docs)}")
combined_context = normalize_whitespace(
COMBINED_CONTEXT.format(
deep_answer_context=deep_answer_context, formated_docs=format_docs(docs)
)
)
msg = [
HumanMessage(
content=MODIFIED_RAG_PROMPT.format(
question=question, combined_context=combined_context
)
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
return {
"deep_answer": response.content,
}
def final_stuff(state: MainState) -> dict[str, Any]:
"""
Invokes the agent model to generate a response based on the current state. Given
the question, it will decide to retrieve using the retriever tool, or simply end.
Args:
state (messages): The current state
Returns:
dict: The updated state with the agent response appended to messages
"""
print("---FINAL---")
messages = state["log_messages"]
time_ordered_messages = [x.pretty_repr() for x in messages]
time_ordered_messages.sort()
print("Message Log:")
print("\n".join(time_ordered_messages))
initial_sub_qas = state["initial_sub_qas"]
initial_sub_qa_list = []
for initial_sub_qa in initial_sub_qas:
if initial_sub_qa["sub_answer_check"] == "yes":
initial_sub_qa_list.append(
f' Question:\n {initial_sub_qa["sub_question"]}\n --\n Answer:\n {initial_sub_qa["sub_answer"]}\n -----'
)
initial_sub_qa_context = "\n".join(initial_sub_qa_list)
base_answer = state["base_answer"]
print(f"Final Base Answer:\n{base_answer}")
print("--------------------------------")
print(f"Initial Answered Sub Questions:\n{initial_sub_qa_context}")
print("--------------------------------")
if not state.get("deep_answer"):
print("No Deep Answer was required")
return {}
deep_answer = state["deep_answer"]
sub_qas = state["sub_qas"]
sub_qa_list = []
for sub_qa in sub_qas:
if sub_qa["sub_answer_check"] == "yes":
sub_qa_list.append(
f' Question:\n {sub_qa["sub_question"]}\n --\n Answer:\n {sub_qa["sub_answer"]}\n -----'
)
sub_qa_context = "\n".join(sub_qa_list)
print(f"Final Base Answer:\n{base_answer}")
print("--------------------------------")
print(f"Final Deep Answer:\n{deep_answer}")
print("--------------------------------")
print("Sub Questions and Answers:")
print(sub_qa_context)
return {}

View File

@@ -1,78 +0,0 @@
import json
import re
from datetime import datetime
from typing import Any
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_entity_term_extraction
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
def decompose(state: MainState) -> dict[str, Any]:
""" """
node_start_time = datetime.now()
question = state["original_question"]
base_answer = state["base_answer"]
# get the entity term extraction dict and properly format it
entity_term_extraction_dict = state["retrieved_entities_relationships"][
"retrieved_entities_relationships"
]
entity_term_extraction_str = format_entity_term_extraction(
entity_term_extraction_dict
)
initial_question_answers = state["initial_sub_qas"]
addressed_question_list = [
x["sub_question"]
for x in initial_question_answers
if x["sub_answer_check"] == "yes"
]
failed_question_list = [
x["sub_question"]
for x in initial_question_answers
if x["sub_answer_check"] == "no"
]
msg = [
HumanMessage(
content=DEEP_DECOMPOSE_PROMPT.format(
question=question,
entity_term_extraction_str=entity_term_extraction_str,
base_answer=base_answer,
answered_sub_questions="\n - ".join(addressed_question_list),
failed_sub_questions="\n - ".join(failed_question_list),
),
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
cleaned_response = re.sub(r"```json\n|\n```", "", response.pretty_repr())
parsed_response = json.loads(cleaned_response)
sub_questions_dict = {}
for sub_question_nr, sub_question_dict in enumerate(
parsed_response["sub_questions"]
):
sub_question_dict["answered"] = False
sub_question_dict["verified"] = False
sub_questions_dict[sub_question_nr] = sub_question_dict
return {
"decomposed_sub_questions_dict": sub_questions_dict,
"log_messages": generate_log_message(
message="deep - decompose",
node_start_time=node_start_time,
graph_start_time=state["graph_start_time"],
),
}

View File

@@ -1,40 +0,0 @@
import json
import re
from typing import Any
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import ENTITY_TERM_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def entity_term_extraction(state: MainState) -> dict[str, Any]:
"""Extract entities and terms from the question and context"""
question = state["original_question"]
docs = state["deduped_retrieval_docs"]
doc_context = format_docs(docs)
msg = [
HumanMessage(
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
)
]
fast_llm = state["fast_llm"]
# Grader
llm_response_list = list(
fast_llm.stream(
prompt=msg,
)
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
cleaned_response = re.sub(r"```json\n|\n```", "", llm_response)
parsed_response = json.loads(cleaned_response)
return {
"retrieved_entities_relationships": parsed_response,
}

View File

@@ -1,30 +0,0 @@
from typing import Any
from danswer.agent_search.main.states import MainState
# aggregate sub questions and answers
def sub_qa_level_aggregator(state: MainState) -> dict[str, Any]:
sub_qas = state["sub_qas"]
dynamic_context_list = [
"Below you will find useful information to answer the original question:"
]
checked_sub_qas = []
for core_answer_sub_qa in sub_qas:
question = core_answer_sub_qa["sub_question"]
answer = core_answer_sub_qa["sub_answer"]
verified = core_answer_sub_qa["sub_answer_check"]
if verified == "yes":
dynamic_context_list.append(
f"Question:\n{question}\n\nAnswer:\n{answer}\n\n---\n\n"
)
checked_sub_qas.append({"sub_question": question, "sub_answer": answer})
dynamic_context = "\n".join(dynamic_context_list)
return {
"core_answer_dynamic_context": dynamic_context,
"checked_sub_qas": checked_sub_qas,
}

View File

@@ -1,19 +0,0 @@
from typing import Any
from danswer.agent_search.main.states import MainState
def sub_qa_manager(state: MainState) -> dict[str, Any]:
""" """
sub_questions_dict = state["decomposed_sub_questions_dict"]
sub_questions = {}
for sub_question_nr, sub_question_dict in sub_questions_dict.items():
sub_questions[sub_question_nr] = sub_question_dict["sub_question"]
return {
"sub_questions": sub_questions,
"num_new_question_iterations": 0,
}

View File

@@ -1,83 +0,0 @@
from collections.abc import Hashable
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from langgraph.types import Send
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import RetrieveInput
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import DocVerificationInput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
from danswer.agent_search.shared_graph_utils.prompts import (
REWRITE_PROMPT_MULTI_ORIGINAL,
)
from danswer.llm.interfaces import LLM
def parallel_retrieval_edge(state: ExpandedRetrievalInput) -> list[Send | Hashable]:
# print(f"parallel_retrieval_edge state: {state.keys()}")
print("parallel_retrieval_edge state")
# This should be better...
question = state.get("query_to_answer") or state["search_request"].query
llm: LLM = state["fast_llm"]
"""
msg = [
HumanMessage(
content=REWRITE_PROMPT_MULTI.format(question=question),
)
]
"""
msg = [
HumanMessage(
content=REWRITE_PROMPT_MULTI_ORIGINAL.format(question=question),
)
]
llm_response_list = list(
llm.stream(
prompt=msg,
)
)
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
# print(f"llm_response: {llm_response}")
rewritten_queries = [
rewritten_query.strip() for rewritten_query in llm_response.split("--")
]
# Add the original sub-question as one of the 'rewritten' queries
rewritten_queries = [question] + rewritten_queries
print(f"rewritten_queries: {rewritten_queries}")
return [
Send(
"doc_retrieval",
RetrieveInput(query_to_retrieve=query, **state),
)
for query in rewritten_queries
]
def parallel_verification_edge(state: DocRetrievalOutput) -> list[Send | Hashable]:
# print(f"parallel_retrieval_edge state: {state.keys()}")
print("parallel_retrieval_edge state")
retrieved_docs = state["retrieved_documents"]
return [
Send(
"doc_verification",
DocVerificationInput(doc_to_verify=doc, **state),
)
for doc in retrieved_docs
]
# this is not correct - remove
# def conditionally_rerank_edge(state: ExpandedRetrievalState) -> bool:
# print(f"conditionally_rerank_edge state: {state.keys()}")
# return bool(state["search_request"].rerank_settings)

View File

@@ -1,129 +0,0 @@
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.expanded_retrieval.edges import parallel_retrieval_edge
from danswer.agent_search.expanded_retrieval.edges import parallel_verification_edge
from danswer.agent_search.expanded_retrieval.nodes.doc_reranking import doc_reranking
from danswer.agent_search.expanded_retrieval.nodes.doc_retrieval import doc_retrieval
from danswer.agent_search.expanded_retrieval.nodes.doc_verification import (
doc_verification,
)
from danswer.agent_search.expanded_retrieval.nodes.dummy_node import dummy_node
from danswer.agent_search.expanded_retrieval.nodes.verification_kickoff import (
verification_kickoff,
)
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalInput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
# from danswer.agent_search.expanded_retrieval.edges import conditionally_rerank_edge
def expanded_retrieval_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=ExpandedRetrievalState,
input=ExpandedRetrievalInput,
output=ExpandedRetrievalOutput,
)
### Add nodes ###
graph.add_node(
node="doc_retrieval",
action=doc_retrieval,
)
graph.add_node(
node="verification_kickoff",
action=verification_kickoff,
)
graph.add_node(
node="doc_verification",
action=doc_verification,
)
graph.add_node(
node="doc_reranking",
action=doc_reranking,
)
graph.add_node(
node="post_retrieval_dummy_node",
action=dummy_node,
)
graph.add_node(
node="dummy_node",
action=dummy_node,
)
### Add edges ###
graph.add_conditional_edges(
source=START,
path=parallel_retrieval_edge,
path_map=["doc_retrieval"],
)
graph.add_edge(
start_key="doc_retrieval",
end_key="verification_kickoff",
)
graph.add_conditional_edges(
source="verification_kickoff",
path=parallel_verification_edge,
path_map=["doc_verification"],
)
# graph.add_edge(
# start_key="doc_verification",
# end_key="post_retrieval_dummy_node",
# )
graph.add_edge(
start_key="doc_verification",
end_key="doc_reranking",
)
graph.add_edge(
start_key="doc_reranking",
end_key="dummy_node",
)
# graph.add_conditional_edges(
# source="doc_verification",
# path=conditionally_rerank_edge,
# path_map={
# True: "doc_reranking",
# False: END,
# },
# )
graph.add_edge(
start_key="dummy_node",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = expanded_retrieval_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = ExpandedRetrievalInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
query_to_answer="Who made Excel?",
)
for thing in compiled_graph.stream(inputs, debug=True):
print(thing)

View File

@@ -1,13 +0,0 @@
import datetime
from danswer.agent_search.expanded_retrieval.states import DocRerankingOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
def doc_reranking(state: ExpandedRetrievalState) -> DocRerankingOutput:
print(f"doc_reranking state: {datetime.datetime.now()}")
verified_documents = state["verified_documents"]
reranked_documents = verified_documents
return DocRerankingOutput(reranked_documents=reranked_documents)

View File

@@ -1,75 +0,0 @@
import datetime
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import SearchRequest
from danswer.context.search.pipeline import SearchPipeline
class RetrieveInput(ExpandedRetrievalState):
query_to_retrieve: str
def doc_retrieval(state: RetrieveInput) -> DocRetrievalOutput:
# def doc_retrieval(state: RetrieveInput) -> Command[Literal["doc_verification"]]:
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
# print(f"doc_retrieval state: {state.keys()}")
if "query_to_answer" in state.keys():
query_question = state["query_to_answer"]
else:
query_question = state["search_request"].query
query_to_retrieve = state["query_to_retrieve"]
print(f"\ndoc_retrieval state: {datetime.datetime.now()}")
print(f" -- search_request: {query_question[:100]}")
# print(f" -- query_to_retrieve: {query_to_retrieve[:100]}")
documents: list[InferenceSection] = []
llm = state["primary_llm"]
fast_llm = state["fast_llm"]
# db_session = state["db_session"]
documents = SearchPipeline(
search_request=SearchRequest(
query=query_to_retrieve,
),
user=None,
llm=llm,
fast_llm=fast_llm,
db_session=state["db_session"],
).reranked_sections
top_1_score = documents[0].center_chunk.score
top_5_score = sum([doc.center_chunk.score for doc in documents[:5]]) / 5
top_10_score = sum([doc.center_chunk.score for doc in documents[:10]]) / 10
fit_score = 1 / 3 * (top_1_score + top_5_score + top_10_score)
# temp - limit the number of documents to 5
documents = documents[:5]
"""
chunk_ids = {
"query": query_to_retrieve,
"chunk_ids": [doc.center_chunk.chunk_id for doc in documents],
}
"""
print(f"sub_query: {query_to_retrieve[:50]}")
print(f"retrieved documents: {len(documents)}")
print(f"fit score: {fit_score}")
print()
return DocRetrievalOutput(
retrieved_documents=documents,
)

View File

@@ -1,63 +0,0 @@
import datetime
from langchain_core.messages import HumanMessage
from langchain_core.messages import merge_message_runs
from danswer.agent_search.expanded_retrieval.states import DocRetrievalOutput
from danswer.agent_search.expanded_retrieval.states import DocVerificationOutput
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
def doc_verification(state: DocRetrievalOutput) -> DocVerificationOutput:
"""
Check whether the document is relevant for the original user question
Args:
state (VerifierState): The current state
Returns:
dict: ict: The updated state with the final decision
"""
# print(f"--- doc_verification state ---")
if "query_to_answer" in state.keys():
query_to_answer = state["query_to_answer"]
else:
query_to_answer = state["search_request"].query
doc_to_verify = state["doc_to_verify"]
document_content = doc_to_verify.combined_content
msg = [
HumanMessage(
content=VERIFIER_PROMPT.format(
question=query_to_answer, document_content=document_content
)
)
]
fast_llm = state["fast_llm"]
response = list(
fast_llm.stream(
prompt=msg,
)
)
response_string = merge_message_runs(response, chunk_separator="")[0].content
# Convert string response to proper dictionary format
decision_dict = {"decision": response_string.lower()}
formatted_response = BinaryDecision.model_validate(decision_dict)
verified_documents = []
if formatted_response.decision == "yes":
verified_documents.append(doc_to_verify)
print(
f"Verdict & Completion: {formatted_response.decision} -- {datetime.datetime.now()}"
)
return DocVerificationOutput(
verified_documents=verified_documents,
)

View File

@@ -1,9 +0,0 @@
def dummy_node(state):
"""
This node is a dummy node that does not change the state but allows to inspect the state.
"""
print(f"doc_reranking state: {state.keys()}")
state["verified_documents"]
return {}

View File

@@ -1,28 +0,0 @@
import datetime
from typing import Literal
from langgraph.types import Command
from langgraph.types import Send
from danswer.agent_search.expanded_retrieval.states import (
DocVerificationInput,
)
from danswer.agent_search.expanded_retrieval.states import ExpandedRetrievalState
def verification_kickoff(
state: ExpandedRetrievalState,
) -> Command[Literal["doc_verification"]]:
print(f"verification_kickoff state: {datetime.datetime.now()}")
documents = state["retrieved_documents"]
return Command(
update={},
goto=[
Send(
node="doc_verification",
arg=DocVerificationInput(doc_to_verify=doc, **state),
)
for doc in documents
],
)

View File

@@ -1,42 +0,0 @@
from typing import Annotated
from typing import TypedDict
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class DocRetrievalOutput(TypedDict, total=False):
retrieved_documents: Annotated[list[InferenceSection], dedup_inference_sections]
query_to_answer: str
class DocVerificationInput(TypedDict, total=True):
query_to_answer: str
doc_to_verify: InferenceSection
class DocVerificationOutput(TypedDict, total=False):
verified_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class DocRerankingOutput(TypedDict, total=False):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]
class ExpandedRetrievalState(
PrimaryState,
DocRetrievalOutput,
DocVerificationOutput,
DocRerankingOutput,
total=True,
):
query_to_answer: str
class ExpandedRetrievalInput(PrimaryState, total=True):
query_to_answer: str
class ExpandedRetrievalOutput(TypedDict):
reranked_documents: Annotated[list[InferenceSection], dedup_inference_sections]

View File

@@ -1,61 +0,0 @@
from collections.abc import Hashable
from langgraph.types import Send
from danswer.agent_search.answer_query.states import AnswerQueryInput
from danswer.agent_search.main.states import MainState
def parallelize_decompozed_answer_queries(state: MainState) -> list[Send | Hashable]:
return [
Send(
"answer_query",
AnswerQueryInput(
**state,
query_to_answer=query,
),
)
for query in state["initial_decomp_queries"]
]
# def continue_to_answer_sub_questions(state: QAState) -> Union[Hashable, list[Hashable]]:
# # Routes re-written queries to the (parallel) retrieval steps
# # Notice the 'Send()' API that takes care of the parallelization
# return [
# Send(
# "sub_answers_graph",
# ResearchQAState(
# sub_question=sub_question["sub_question_str"],
# sub_question_nr=sub_question["sub_question_nr"],
# graph_start_time=state["graph_start_time"],
# primary_llm=state["primary_llm"],
# fast_llm=state["fast_llm"],
# ),
# )
# for sub_question in state["sub_questions"]
# ]
# def continue_to_deep_answer(state: QAState) -> Union[Hashable, list[Hashable]]:
# print("---GO TO DEEP ANSWER OR END---")
# base_answer = state["base_answer"]
# question = state["original_question"]
# BASE_CHECK_MESSAGE = [
# HumanMessage(
# content=BASE_CHECK_PROMPT.format(question=question, base_answer=base_answer)
# )
# ]
# model = state["fast_llm"]
# response = model.invoke(BASE_CHECK_MESSAGE)
# print(f"CAN WE CONTINUE W/O GENERATING A DEEP ANSWER? - {response.pretty_repr()}")
# if response.pretty_repr() == "no":
# return "decompose"
# else:
# return "end"

View File

@@ -1,125 +0,0 @@
import datetime
from langgraph.graph import END
from langgraph.graph import START
from langgraph.graph import StateGraph
from danswer.agent_search.answer_query.graph_builder import answer_query_graph_builder
from danswer.agent_search.expanded_retrieval.graph_builder import (
expanded_retrieval_graph_builder,
)
from danswer.agent_search.main.edges import parallelize_decompozed_answer_queries
from danswer.agent_search.main.nodes.base_decomp import main_decomp_base
from danswer.agent_search.main.nodes.dummy_node import dummy_node
from danswer.agent_search.main.nodes.generate_initial_answer import (
generate_initial_answer,
)
from danswer.agent_search.main.states import MainInput
from danswer.agent_search.main.states import MainState
def main_graph_builder() -> StateGraph:
graph = StateGraph(
state_schema=MainState,
input=MainInput,
)
### Add nodes ###
graph.add_node(
node="dummy_node_start",
action=dummy_node,
)
graph.add_node(
node="dummy_node_right",
action=dummy_node,
)
graph.add_node(
node="base_decomp",
action=main_decomp_base,
)
answer_query_subgraph = answer_query_graph_builder().compile()
graph.add_node(
node="answer_query",
action=answer_query_subgraph,
)
expanded_retrieval_subgraph = expanded_retrieval_graph_builder().compile()
graph.add_node(
node="expanded_retrieval",
action=expanded_retrieval_subgraph,
)
graph.add_node(
node="generate_initial_answer",
action=generate_initial_answer,
)
### Add edges ###
graph.add_edge(
start_key=START,
end_key="dummy_node_start",
)
graph.add_edge(
start_key="dummy_node_start",
end_key="dummy_node_right",
)
graph.add_edge(
start_key="dummy_node_right",
end_key="expanded_retrieval",
)
# graph.add_edge(
# start_key="expanded_retrieval",
# end_key="generate_initial_answer",
# )
graph.add_edge(
start_key="dummy_node_start",
end_key="base_decomp",
)
graph.add_conditional_edges(
source="base_decomp",
path=parallelize_decompozed_answer_queries,
path_map=["answer_query"],
)
graph.add_edge(
start_key=["answer_query", "expanded_retrieval"],
end_key="generate_initial_answer",
)
graph.add_edge(
start_key="generate_initial_answer",
end_key=END,
)
return graph
if __name__ == "__main__":
from danswer.db.engine import get_session_context_manager
from danswer.llm.factory import get_default_llms
from danswer.context.search.models import SearchRequest
graph = main_graph_builder()
compiled_graph = graph.compile()
primary_llm, fast_llm = get_default_llms()
search_request = SearchRequest(
query="Who made Excel and what other products did they make?",
)
with get_session_context_manager() as db_session:
inputs = MainInput(
search_request=search_request,
primary_llm=primary_llm,
fast_llm=fast_llm,
db_session=db_session,
)
print(f"START: {datetime.datetime.now()}")
output = compiled_graph.invoke(
input=inputs,
# debug=True,
# subgraphs=True,
)
print(output)

View File

@@ -1,35 +0,0 @@
import datetime
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import BaseDecompOutput
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_DECOMPOSITION_PROMPT
from danswer.agent_search.shared_graph_utils.utils import clean_and_parse_list_string
def main_decomp_base(state: MainState) -> BaseDecompOutput:
print(f"main_decomp_base state: {datetime.datetime.now()}")
question = state["search_request"].query
msg = [
HumanMessage(
content=INITIAL_DECOMPOSITION_PROMPT.format(question=question),
)
]
# Get the rewritten queries in a defined format
model = state["fast_llm"]
response = model.invoke(msg)
content = response.pretty_repr()
list_of_subquestions = clean_and_parse_list_string(content)
decomp_list: list[str] = [
sub_question["sub_question"].strip() for sub_question in list_of_subquestions
]
print(f"Decomp Questions: {decomp_list}")
return BaseDecompOutput(
initial_decomp_queries=decomp_list,
)

View File

@@ -1,10 +0,0 @@
import datetime
def dummy_node(state):
"""
This node is a dummy node that does not change the state but allows to inspect the state.
"""
print(f"DUMMY NODE: {datetime.datetime.now()}")
return {}

View File

@@ -1,51 +0,0 @@
from langchain_core.messages import HumanMessage
from danswer.agent_search.main.states import InitialAnswerOutput
from danswer.agent_search.main.states import MainState
from danswer.agent_search.shared_graph_utils.prompts import INITIAL_RAG_PROMPT
from danswer.agent_search.shared_graph_utils.utils import format_docs
def generate_initial_answer(state: MainState) -> InitialAnswerOutput:
print("---GENERATE INITIAL---")
question = state["search_request"].query
docs = state["documents"]
decomp_answer_results = state["decomp_answer_results"]
good_qa_list: list[str] = []
_SUB_QUESTION_ANSWER_TEMPLATE = """
Sub-Question:\n - {sub_question}\n --\nAnswer:\n - {sub_answer}\n\n
"""
for decomp_answer_result in decomp_answer_results:
if (
decomp_answer_result.quality == "yes"
and len(decomp_answer_result.answer) > 0
and decomp_answer_result.answer != "I don't know"
):
good_qa_list.append(
_SUB_QUESTION_ANSWER_TEMPLATE.format(
sub_question=decomp_answer_result.query,
sub_answer=decomp_answer_result.answer,
)
)
sub_question_answer_str = "\n\n------\n\n".join(good_qa_list)
msg = [
HumanMessage(
content=INITIAL_RAG_PROMPT.format(
question=question,
context=format_docs(docs),
answered_sub_questions=sub_question_answer_str,
)
)
]
# Grader
model = state["fast_llm"]
response = model.invoke(msg)
return InitialAnswerOutput(initial_answer=response.pretty_repr())

View File

@@ -1,37 +0,0 @@
from operator import add
from typing import Annotated
from typing import TypedDict
from danswer.agent_search.answer_query.states import SearchAnswerResults
from danswer.agent_search.core_state import PrimaryState
from danswer.agent_search.shared_graph_utils.operators import dedup_inference_sections
from danswer.context.search.models import InferenceSection
class BaseDecompOutput(TypedDict, total=False):
initial_decomp_queries: list[str]
class InitialAnswerOutput(TypedDict, total=False):
initial_answer: str
class MainState(
PrimaryState,
BaseDecompOutput,
InitialAnswerOutput,
total=True,
):
documents: Annotated[list[InferenceSection], dedup_inference_sections]
decomp_answer_results: Annotated[list[SearchAnswerResults], add]
class MainInput(PrimaryState, total=True):
pass
class MainOutput(TypedDict):
"""
This is not used because defining the output only matters for filtering the output of
a .invoke() call but we are streaming so we just yield the entire state.
"""

View File

@@ -1,27 +0,0 @@
from danswer.agent_search.primary_graph.graph_builder import build_core_graph
from danswer.llm.answering.answer import AnswerStream
from danswer.llm.interfaces import LLM
from danswer.tools.tool import Tool
def run_graph(
query: str,
llm: LLM,
tools: list[Tool],
) -> AnswerStream:
graph = build_core_graph()
inputs = {
"original_query": query,
"messages": [],
"tools": tools,
"llm": llm,
}
compiled_graph = graph.compile()
output = compiled_graph.invoke(input=inputs)
yield from output
if __name__ == "__main__":
pass
# run_graph("What is the capital of France?", llm, [])

View File

@@ -1,12 +0,0 @@
from typing import Literal
from pydantic import BaseModel
# Pydantic models for structured outputs
class RewrittenQueries(BaseModel):
rewritten_queries: list[str]
class BinaryDecision(BaseModel):
decision: Literal["yes", "no"]

View File

@@ -1,9 +0,0 @@
from danswer.context.search.models import InferenceSection
from danswer.llm.answering.prune_and_merge import _merge_sections
def dedup_inference_sections(
list1: list[InferenceSection], list2: list[InferenceSection]
) -> list[InferenceSection]:
deduped = _merge_sections(list1 + list2)
return deduped

View File

@@ -1,427 +0,0 @@
REWRITE_PROMPT_MULTI_ORIGINAL = """ \n
Please convert an initial user question into a 2-3 more appropriate short and pointed search queries for retrievel from a
document store. Particularly, try to think about resolving ambiguities and make the search queries more specific,
enabling the system to search more broadly.
Also, try to make the search queries not redundant, i.e. not too similar! \n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the queries separated by '--' (Do not say 'Query 1: ...', just write the querytext): """
REWRITE_PROMPT_MULTI = """ \n
Please create a list of 2-3 sample documents that could answer an original question. Each document
should be about as long as the original question. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the sample documents separated by '--' (Do not say 'Document 1: ...', just write the text): """
BASE_RAG_PROMPT = """ \n
You are an assistant for question-answering tasks. Use the context provided below - and only the
provided context - to answer the question. If you don't know the answer or if the provided context is
empty, just say "I don't know". Do not use your internal knowledge!
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
use your internal knowledge, just the provided information!
Use three sentences maximum and keep the answer concise.
answer concise.\nQuestion:\n {question} \nContext:\n {context} \n\n
\n\n
Answer:"""
BASE_CHECK_PROMPT = """ \n
Please check whether 1) the suggested answer seems to fully address the original question AND 2)the
original question requests a simple, factual answer, and there are no ambiguities, judgements,
aggregations, or any other complications that may require extra context. (I.e., if the question is
somewhat addressed, but the answer would benefit from more context, then answer with 'no'.)
Please only answer with 'yes' or 'no' \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the proposed answer:
\n ------- \n
{base_answer}
\n ------- \n
Please answer with yes or no:"""
VERIFIER_PROMPT = """ \n
Please check whether the document seems to be relevant for the answer of the question. Please
only answer with 'yes' or 'no' \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the document text:
\n ------- \n
{document_content}
\n ------- \n
Please answer with yes or no:"""
INITIAL_DECOMPOSITION_PROMPT_BASIC = """ \n
Please decompose an initial user question into not more than 4 appropriate sub-questions that help to
answer the original question. The purpose for this decomposition is to isolate individulal entities
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Please formulate your answer as a list of subquestions:
Answer:
"""
REWRITE_PROMPT_SINGLE = """ \n
Please convert an initial user question into a more appropriate search query for retrievel from a
document store. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate the query: """
MODIFIED_RAG_PROMPT = """You are an assistant for question-answering tasks. Use the context provided below
- and only this context - to answer the question. If you don't know the answer, just say "I don't know".
Use three sentences maximum and keep the answer concise.
Pay also particular attention to the sub-questions and their answers, at least it may enrich the answer.
Again, only use the provided context and do not use your internal knowledge! If you cannot answer the
question based on the context, say "I don't know". It is a matter of life and death that you do NOT
use your internal knowledge, just the provided information!
\nQuestion: {question}
\nContext: {combined_context} \n
Answer:"""
ORIG_DEEP_DECOMPOSE_PROMPT = """ \n
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
good enough. Also, some sub-questions had been answered and this information has been used to provide
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
you have an idea of how the avaiolable data looks like.
Your role is to generate 3-5 new sub-questions that would help to answer the initial question,
considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered
4) The sub-questions that were suggested but not answered
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system.
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question, but in a way that does
not duplicate questions that were already tried.
Additional Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
resolve ambiguities, or address shortcoming of the initial answer
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
generate a list of dictionaries with the following format:
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
sub-question using as a search phrase for the document store>}}, ...]
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the initial sub-optimal answer:
\n ------- \n
{base_answer}
\n ------- \n
Here are the sub-questions that were answered:
\n ------- \n
{answered_sub_questions}
\n ------- \n
Here are the sub-questions that were suggested but not answered:
\n ------- \n
{failed_sub_questions}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Again, please find questions that are NOT overlapping too much with the already answered
sub-questions or those that already were suggested and failed.
In other words - what can we try in addition to what has been tried so far?
Please think through it step by step and then generate the list of json dictionaries with the following
format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"explanation": <explanation>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
DEEP_DECOMPOSE_PROMPT = """ \n
An initial user question needs to be answered. An initial answer has been provided but it wasn't quite
good enough. Also, some sub-questions had been answered and this information has been used to provide
the initial answer. Some other subquestions may have been suggested based on little knowledge, but they
were not directly answerable. Also, some entities, relationships and terms are givenm to you so that
you have an idea of how the avaiolable data looks like.
Your role is to generate 4-6 new sub-questions that would help to answer the initial question,
considering:
1) The initial question
2) The initial answer that was found to be unsatisfactory
3) The sub-questions that were answered
4) The sub-questions that were suggested but not answered
5) The entities, relationships and terms that were extracted from the context
The individual questions should be answerable by a good RAG system.
So a good idea would be to use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question, but in a way that does
not duplicate questions that were already tried.
Additional Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
resolve ambiguities, or address shortcoming of the initial answer
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please also provide a search term that can be used to retrieve relevant
documents from a document store.
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Here is the initial sub-optimal answer:
\n ------- \n
{base_answer}
\n ------- \n
Here are the sub-questions that were answered:
\n ------- \n
{answered_sub_questions}
\n ------- \n
Here are the sub-questions that were suggested but not answered:
\n ------- \n
{failed_sub_questions}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Again, please find questions that are NOT overlapping too much with the already answered
sub-questions or those that already were suggested and failed.
In other words - what can we try in addition to what has been tried so far?
Generate the list of json dictionaries with the following format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
DECOMPOSE_PROMPT = """ \n
For an initial user question, please generate at 5-10 individual sub-questions whose answers would help
\n to answer the initial question. The individual questions should be answerable by a good RAG system.
So a good idea would be to \n use the sub-questions to resolve ambiguities and/or to separate the
question for different entities that may be involved in the original question.
In order to arrive at meaningful sub-questions, please also consider the context retrieved from the
document store, expressed as entities, relationships and terms. You can also think about the types
mentioned in brackets
Guidelines:
- The sub-questions should be specific to the question and provide richer context for the question,
and or resolve ambiguities
- Each sub-question - when answered - should be relevant for the answer to the original question
- The sub-questions should be free from comparisions, ambiguities,judgements, aggregations, or any
other complications that may require extra context.
- The sub-questions MUST have the full context of the original question so that it can be executed by
a RAG system independently without the original question available
(Example:
- initial question: "What is the capital of France?"
- bad sub-question: "What is the name of the river there?"
- good sub-question: "What is the name of the river that flows through Paris?"
- For each sub-question, please provide a short explanation for why it is a good sub-question. So
generate a list of dictionaries with the following format:
[{{"sub_question": <sub-question>, "explanation": <explanation>, "search_term": <rewrite the
sub-question using as a search phrase for the document store>}}, ...]
\n\n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
And here are the entities, relationships and terms extracted from the context:
\n ------- \n
{entity_term_extraction_str}
\n ------- \n
Please generate the list of good, fully contextualized sub-questions that would help to address the
main question. Don't be too specific unless the original question is specific.
Please think through it step by step and then generate the list of json dictionaries with the following
format:
{{"sub_questions": [{{"sub_question": <sub-question>,
"explanation": <explanation>,
"search_term": <rewrite the sub-question using as a search phrase for the document store>}},
...]}} """
#### Consolidations
COMBINED_CONTEXT = """-------
Below you will find useful information to answer the original question. First, you see a number of
sub-questions with their answers. This information should be considered to be more focussed and
somewhat more specific to the original question as it tries to contextualized facts.
After that will see the documents that were considered to be relevant to answer the original question.
Here are the sub-questions and their answers:
\n\n {deep_answer_context} \n\n
\n\n Here are the documents that were considered to be relevant to answer the original question:
\n\n {formated_docs} \n\n
----------------
"""
SUB_QUESTION_EXPLANATION_RANKER_PROMPT = """-------
Below you will find a question that we ultimately want to answer (the original question) and a list of
motivations in arbitrary order for generated sub-questions that are supposed to help us answering the
original question. The motivations are formatted as <motivation number>: <motivation explanation>.
(Again, the numbering is arbitrary and does not necessarily mean that 1 is the most relevant
motivation and 2 is less relevant.)
Please rank the motivations in order of relevance for answering the original question. Also, try to
ensure that the top questions do not duplicate too much, i.e. that they are not too similar.
Ultimately, create a list with the motivation numbers where the number of the most relevant
motivations comes first.
Here is the original question:
\n\n {original_question} \n\n
\n\n Here is the list of sub-question motivations:
\n\n {sub_question_explanations} \n\n
----------------
Please think step by step and then generate the ranked list of motivations.
Please format your answer as a json object in the following format:
{{"reasonning": <explain your reasoning for the ranking>,
"ranked_motivations": <ranked list of motivation numbers>}}
"""
INITIAL_DECOMPOSITION_PROMPT = """ \n
Please decompose an initial user question into 2 or 3 appropriate sub-questions that help to
answer the original question. The purpose for this decomposition is to isolate individulal entities
(i.e., 'compare sales of company A and company B' -> 'what are sales for company A' + 'what are sales
for company B'), split ambiguous terms (i.e., 'what is our success with company A' -> 'what are our
sales with company A' + 'what is our market share with company A' + 'is company A a reference customer
for us'), etc. Each sub-question should be realistically be answerable by a good RAG system. \n
For each sub-question, please also create one search term that can be used to retrieve relevant
documents from a document store.
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Please formulate your answer as a list of json objects with the following format:
[{{"sub_question": <sub-question>, "search_term": <search term>}}, ...]
Answer:
"""
INITIAL_RAG_PROMPT = """ \n
You are an assistant for question-answering tasks. Use the information provided below - and only the
provided information - to answer the provided question.
The information provided below consists of:
1) a number of answered sub-questions - these are very important(!) and definitely should be
considered to answer the question.
2) a number of documents that were also deemed relevant for the question.
If you don't know the answer or if the provided information is empty or insufficient, just say
"I don't know". Do not use your internal knowledge!
Again, only use the provided informationand do not use your internal knowledge! It is a matter of life
and death that you do NOT use your internal knowledge, just the provided information!
Try to keep your answer concise.
And here is the question and the provided information:
\n
\nQuestion:\n {question}
\nAnswered Sub-questions:\n {answered_sub_questions}
\nContext:\n {context} \n\n
\n\n
Answer:"""
ENTITY_TERM_PROMPT = """ \n
Based on the original question and the context retieved from a dataset, please generate a list of
entities (e.g. companies, organizations, industries, products, locations, etc.), terms and concepts
(e.g. sales, revenue, etc.) that are relevant for the question, plus their relations to each other.
\n\n
Here is the original question:
\n ------- \n
{question}
\n ------- \n
And here is the context retrieved:
\n ------- \n
{context}
\n ------- \n
Please format your answer as a json object in the following format:
{{"retrieved_entities_relationships": {{
"entities": [{{
"entity_name": <assign a name for the entity>,
"entity_type": <specify a short type name for the entity, such as 'company', 'location',...>
}}],
"relationships": [{{
"name": <assign a name for the relationship>,
"type": <specify a short type name for the relationship, such as 'sales_to', 'is_location_of',...>,
"entities": [<related entity name 1>, <related entity name 2>]
}}],
"terms": [{{
"term_name": <assign a name for the term>,
"term_type": <specify a short type name for the term, such as 'revenue', 'market_share',...>,
"similar_to": <list terms that are similar to this term>
}}]
}}
}}
"""

View File

@@ -1,101 +0,0 @@
import ast
import json
import re
from collections.abc import Sequence
from datetime import datetime
from datetime import timedelta
from typing import Any
from danswer.context.search.models import InferenceSection
def normalize_whitespace(text: str) -> str:
"""Normalize whitespace in text to single spaces and strip leading/trailing whitespace."""
import re
return re.sub(r"\s+", " ", text.strip())
# Post-processing
def format_docs(docs: Sequence[InferenceSection]) -> str:
return "\n\n".join(doc.combined_content for doc in docs)
def clean_and_parse_list_string(json_string: str) -> list[dict]:
# Remove any prefixes/labels before the actual JSON content
json_string = re.sub(r"^.*?(?=\[)", "", json_string, flags=re.DOTALL)
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Try parsing with json.loads first, fall back to ast.literal_eval
try:
return json.loads(cleaned_string)
except json.JSONDecodeError:
try:
return ast.literal_eval(cleaned_string)
except (ValueError, SyntaxError) as e:
raise ValueError(f"Failed to parse JSON string: {cleaned_string}") from e
def clean_and_parse_json_string(json_string: str) -> dict[str, Any]:
# Remove markdown code block markers and any newline prefixes
cleaned_string = re.sub(r"```json\n|\n```", "", json_string)
cleaned_string = cleaned_string.replace("\\n", " ").replace("\n", " ")
cleaned_string = " ".join(cleaned_string.split())
# Parse the cleaned string into a Python dictionary
return json.loads(cleaned_string)
def format_entity_term_extraction(entity_term_extraction_dict: dict[str, Any]) -> str:
entities = entity_term_extraction_dict["entities"]
terms = entity_term_extraction_dict["terms"]
relationships = entity_term_extraction_dict["relationships"]
entity_strs = ["\nEntities:\n"]
for entity in entities:
entity_str = f"{entity['entity_name']} ({entity['entity_type']})"
entity_strs.append(entity_str)
entity_str = "\n - ".join(entity_strs)
relationship_strs = ["\n\nRelationships:\n"]
for relationship in relationships:
relationship_str = f"{relationship['name']} ({relationship['type']}): {relationship['entities']}"
relationship_strs.append(relationship_str)
relationship_str = "\n - ".join(relationship_strs)
term_strs = ["\n\nTerms:\n"]
for term in terms:
term_str = f"{term['term_name']} ({term['term_type']}): similar to {term['similar_to']}"
term_strs.append(term_str)
term_str = "\n - ".join(term_strs)
return "\n".join(entity_strs + relationship_strs + term_strs)
def _format_time_delta(time: timedelta) -> str:
seconds_from_start = f"{((time).seconds):03d}"
microseconds_from_start = f"{((time).microseconds):06d}"
return f"{seconds_from_start}.{microseconds_from_start}"
def generate_log_message(
message: str,
node_start_time: datetime,
graph_start_time: datetime | None = None,
) -> str:
current_time = datetime.now()
if graph_start_time is not None:
graph_time_str = _format_time_delta(current_time - graph_start_time)
else:
graph_time_str = "N/A"
node_time_str = _format_time_delta(current_time - node_start_time)
return f"{graph_time_str} ({node_time_str} s): {message}"

View File

@@ -17,10 +17,12 @@ def set_no_auth_user_preferences(
def load_no_auth_user_preferences(store: KeyValueStore) -> UserPreferences:
print("LOADING NO AUTH USER PREFERENCES")
try:
preferences_data = cast(
Mapping[str, Any], store.load(KV_NO_AUTH_USER_PREFERENCES_KEY)
)
print("PREFERENCES DATA", preferences_data)
return UserPreferences(**preferences_data)
except KvKeyNotFoundError:
return UserPreferences(
@@ -29,6 +31,7 @@ def load_no_auth_user_preferences(store: KeyValueStore) -> UserPreferences:
def fetch_no_auth_user(store: KeyValueStore) -> UserInfo:
print("FETCHING NO AUTH USER")
return UserInfo(
id="__no_auth_user__",
email="anonymous@danswer.ai",

View File

@@ -49,7 +49,7 @@ from httpx_oauth.oauth2 import BaseOAuth2
from httpx_oauth.oauth2 import OAuth2Token
from pydantic import BaseModel
from sqlalchemy import text
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import Session
from danswer.auth.api_key import get_hashed_api_key_from_request
from danswer.auth.invited_users import get_invited_users
@@ -80,14 +80,13 @@ from danswer.db.auth import get_default_admin_user_emails
from danswer.db.auth import get_user_count
from danswer.db.auth import get_user_db
from danswer.db.auth import SQLAlchemyUserAdminDB
from danswer.db.engine import get_async_session
from danswer.db.engine import get_async_session_with_tenant
from danswer.db.engine import get_session
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import AccessToken
from danswer.db.models import OAuthAccount
from danswer.db.models import User
from danswer.db.users import get_user_by_email
from danswer.server.utils import BasicAuthenticationError
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
from danswer.utils.telemetry import RecordType
@@ -100,6 +99,11 @@ from shared_configs.contextvars import CURRENT_TENANT_ID_CONTEXTVAR
logger = setup_logger()
class BasicAuthenticationError(HTTPException):
def __init__(self, detail: str):
super().__init__(status_code=status.HTTP_403_FORBIDDEN, detail=detail)
def is_user_admin(user: User | None) -> bool:
if AUTH_TYPE == AuthType.DISABLED:
return True
@@ -605,7 +609,7 @@ optional_fastapi_current_user = fastapi_users.current_user(active=True, optional
async def optional_user_(
request: Request,
user: User | None,
async_db_session: AsyncSession,
db_session: Session,
) -> User | None:
"""NOTE: `request` and `db_session` are not used here, but are included
for the EE version of this function."""
@@ -614,21 +618,13 @@ async def optional_user_(
async def optional_user(
request: Request,
async_db_session: AsyncSession = Depends(get_async_session),
db_session: Session = Depends(get_session),
user: User | None = Depends(optional_fastapi_current_user),
) -> User | None:
versioned_fetch_user = fetch_versioned_implementation(
"danswer.auth.users", "optional_user_"
)
user = await versioned_fetch_user(request, user, async_db_session)
# check if an API key is present
if user is None:
hashed_api_key = get_hashed_api_key_from_request(request)
if hashed_api_key:
user = await fetch_user_for_api_key(hashed_api_key, async_db_session)
return user
return await versioned_fetch_user(request, user, db_session)
async def double_check_user(
@@ -914,8 +910,8 @@ def get_oauth_router(
return router
async def api_key_dep(
request: Request, async_db_session: AsyncSession = Depends(get_async_session)
def api_key_dep(
request: Request, db_session: Session = Depends(get_session)
) -> User | None:
if AUTH_TYPE == AuthType.DISABLED:
return None
@@ -925,7 +921,7 @@ async def api_key_dep(
raise HTTPException(status_code=401, detail="Missing API key")
if hashed_api_key:
user = await fetch_user_for_api_key(hashed_api_key, async_db_session)
user = fetch_user_for_api_key(hashed_api_key, db_session)
if user is None:
raise HTTPException(status_code=401, detail="Invalid API key")

View File

@@ -11,7 +11,6 @@ from celery.exceptions import WorkerShutdown
from celery.states import READY_STATES
from celery.utils.log import get_task_logger
from celery.worker import strategy # type: ignore
from redis.lock import Lock as RedisLock
from sentry_sdk.integrations.celery import CeleryIntegration
from sqlalchemy import text
from sqlalchemy.orm import Session
@@ -333,16 +332,16 @@ def on_worker_shutdown(sender: Any, **kwargs: Any) -> None:
return
logger.info("Releasing primary worker lock.")
lock: RedisLock = sender.primary_worker_lock
lock = sender.primary_worker_lock
try:
if lock.owned():
try:
lock.release()
sender.primary_worker_lock = None
except Exception:
logger.exception("Failed to release primary worker lock")
except Exception:
logger.exception("Failed to check if primary worker lock is owned")
except Exception as e:
logger.error(f"Failed to release primary worker lock: {e}")
except Exception as e:
logger.error(f"Failed to check if primary worker lock is owned: {e}")
def on_setup_logging(

View File

@@ -11,21 +11,18 @@ from celery.signals import celeryd_init
from celery.signals import worker_init
from celery.signals import worker_ready
from celery.signals import worker_shutdown
from redis.lock import Lock as RedisLock
import danswer.background.celery.apps.app_base as app_base
from danswer.background.celery.apps.app_base import task_logger
from danswer.background.celery.celery_utils import celery_is_worker_primary
from danswer.background.celery.tasks.indexing.tasks import (
get_unfenced_index_attempt_ids,
)
from danswer.background.celery.tasks.vespa.tasks import get_unfenced_index_attempt_ids
from danswer.configs.constants import CELERY_PRIMARY_WORKER_LOCK_TIMEOUT
from danswer.configs.constants import DanswerRedisLocks
from danswer.configs.constants import POSTGRES_CELERY_WORKER_PRIMARY_APP_NAME
from danswer.db.engine import get_session_with_default_tenant
from danswer.db.engine import SqlEngine
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import mark_attempt_canceled
from danswer.db.index_attempt import mark_attempt_failed
from danswer.redis.redis_connector_credential_pair import RedisConnectorCredentialPair
from danswer.redis.redis_connector_delete import RedisConnectorDelete
from danswer.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
@@ -39,6 +36,7 @@ from danswer.redis.redis_usergroup import RedisUserGroup
from danswer.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
logger = setup_logger()
celery_app = Celery(__name__)
@@ -116,13 +114,9 @@ def on_worker_init(sender: Any, **kwargs: Any) -> None:
# it is planned to use this lock to enforce singleton behavior on the primary
# worker, since the primary worker does redis cleanup on startup, but this isn't
# implemented yet.
# set thread_local=False since we don't control what thread the periodic task might
# reacquire the lock with
lock: RedisLock = r.lock(
lock = r.lock(
DanswerRedisLocks.PRIMARY_WORKER,
timeout=CELERY_PRIMARY_WORKER_LOCK_TIMEOUT,
thread_local=False,
)
logger.info("Primary worker lock: Acquire starting.")
@@ -169,13 +163,13 @@ def on_worker_init(sender: Any, **kwargs: Any) -> None:
continue
failure_reason = (
f"Canceling leftover index attempt found on startup: "
f"Orphaned index attempt found on startup: "
f"index_attempt={attempt.id} "
f"cc_pair={attempt.connector_credential_pair_id} "
f"search_settings={attempt.search_settings_id}"
)
logger.warning(failure_reason)
mark_attempt_canceled(attempt.id, db_session, failure_reason)
mark_attempt_failed(attempt.id, db_session, failure_reason)
@worker_ready.connect
@@ -231,7 +225,7 @@ class HubPeriodicTask(bootsteps.StartStopStep):
if not hasattr(worker, "primary_worker_lock"):
return
lock: RedisLock = worker.primary_worker_lock
lock = worker.primary_worker_lock
r = get_redis_client(tenant_id=None)

View File

@@ -2,55 +2,54 @@ from datetime import timedelta
from typing import Any
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryTask
tasks_to_schedule = [
{
"name": "check-for-vespa-sync",
"task": DanswerCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
"task": "check_for_vespa_sync_task",
"schedule": timedelta(seconds=20),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-connector-deletion",
"task": DanswerCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
"task": "check_for_connector_deletion_task",
"schedule": timedelta(seconds=20),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-indexing",
"task": DanswerCeleryTask.CHECK_FOR_INDEXING,
"task": "check_for_indexing",
"schedule": timedelta(seconds=15),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-prune",
"task": DanswerCeleryTask.CHECK_FOR_PRUNING,
"task": "check_for_pruning",
"schedule": timedelta(seconds=15),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "kombu-message-cleanup",
"task": DanswerCeleryTask.KOMBU_MESSAGE_CLEANUP_TASK,
"task": "kombu_message_cleanup_task",
"schedule": timedelta(seconds=3600),
"options": {"priority": DanswerCeleryPriority.LOWEST},
},
{
"name": "monitor-vespa-sync",
"task": DanswerCeleryTask.MONITOR_VESPA_SYNC,
"task": "monitor_vespa_sync",
"schedule": timedelta(seconds=5),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-doc-permissions-sync",
"task": DanswerCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
"task": "check_for_doc_permissions_sync",
"schedule": timedelta(seconds=30),
"options": {"priority": DanswerCeleryPriority.HIGH},
},
{
"name": "check-for-external-group-sync",
"task": DanswerCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
"task": "check_for_external_group_sync",
"schedule": timedelta(seconds=20),
"options": {"priority": DanswerCeleryPriority.HIGH},
},

View File

@@ -5,13 +5,13 @@ from celery import Celery
from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from danswer.background.celery.apps.app_base import task_logger
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.connector_credential_pair import get_connector_credential_pairs
@@ -29,7 +29,7 @@ class TaskDependencyError(RuntimeError):
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_CONNECTOR_DELETION,
name="check_for_connector_deletion_task",
soft_time_limit=JOB_TIMEOUT,
trail=False,
bind=True,
@@ -37,7 +37,7 @@ class TaskDependencyError(RuntimeError):
def check_for_connector_deletion_task(self: Task, *, tenant_id: str | None) -> None:
r = get_redis_client(tenant_id=tenant_id)
lock_beat: RedisLock = r.lock(
lock_beat = r.lock(
DanswerRedisLocks.CHECK_CONNECTOR_DELETION_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
@@ -60,7 +60,7 @@ def check_for_connector_deletion_task(self: Task, *, tenant_id: str | None) -> N
redis_connector = RedisConnector(tenant_id, cc_pair_id)
try:
try_generate_document_cc_pair_cleanup_tasks(
self.app, cc_pair_id, db_session, lock_beat, tenant_id
self.app, cc_pair_id, db_session, r, lock_beat, tenant_id
)
except TaskDependencyError as e:
# this means we wanted to start deleting but dependent tasks were running
@@ -86,6 +86,7 @@ def try_generate_document_cc_pair_cleanup_tasks(
app: Celery,
cc_pair_id: int,
db_session: Session,
r: Redis,
lock_beat: RedisLock,
tenant_id: str | None,
) -> int | None:

View File

@@ -8,7 +8,6 @@ from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from danswer.access.models import DocExternalAccess
from danswer.background.celery.apps.app_base import task_logger
@@ -18,11 +17,9 @@ from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.configs.constants import DocumentSource
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.document import upsert_document_by_connector_credential_pair
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import AccessType
from danswer.db.enums import ConnectorCredentialPairStatus
@@ -30,7 +27,7 @@ from danswer.db.models import ConnectorCredentialPair
from danswer.db.users import batch_add_ext_perm_user_if_not_exists
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_connector_doc_perm_sync import (
RedisConnectorPermissionSyncPayload,
RedisConnectorPermissionSyncData,
)
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import doc_permission_sync_ctx
@@ -84,7 +81,7 @@ def _is_external_doc_permissions_sync_due(cc_pair: ConnectorCredentialPair) -> b
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_DOC_PERMISSIONS_SYNC,
name="check_for_doc_permissions_sync",
soft_time_limit=JOB_TIMEOUT,
bind=True,
)
@@ -141,7 +138,7 @@ def try_creating_permissions_sync_task(
LOCK_TIMEOUT = 30
lock: RedisLock = r.lock(
lock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_generate_permissions_sync_tasks",
timeout=LOCK_TIMEOUT,
)
@@ -165,8 +162,8 @@ def try_creating_permissions_sync_task(
custom_task_id = f"{redis_connector.permissions.generator_task_key}_{uuid4()}"
result = app.send_task(
DanswerCeleryTask.CONNECTOR_PERMISSION_SYNC_GENERATOR_TASK,
app.send_task(
"connector_permission_sync_generator_task",
kwargs=dict(
cc_pair_id=cc_pair_id,
tenant_id=tenant_id,
@@ -177,8 +174,8 @@ def try_creating_permissions_sync_task(
)
# set a basic fence to start
payload = RedisConnectorPermissionSyncPayload(
started=None, celery_task_id=result.id
payload = RedisConnectorPermissionSyncData(
started=None,
)
redis_connector.permissions.set_fence(payload)
@@ -193,7 +190,7 @@ def try_creating_permissions_sync_task(
@shared_task(
name=DanswerCeleryTask.CONNECTOR_PERMISSION_SYNC_GENERATOR_TASK,
name="connector_permission_sync_generator_task",
acks_late=False,
soft_time_limit=JOB_TIMEOUT,
track_started=True,
@@ -244,17 +241,13 @@ def connector_permission_sync_generator_task(
doc_sync_func = DOC_PERMISSIONS_FUNC_MAP.get(source_type)
if doc_sync_func is None:
raise ValueError(
f"No doc sync func found for {source_type} with cc_pair={cc_pair_id}"
)
raise ValueError(f"No doc sync func found for {source_type}")
logger.info(f"Syncing docs for {source_type} with cc_pair={cc_pair_id}")
logger.info(f"Syncing docs for {source_type}")
payload = redis_connector.permissions.payload
if not payload:
raise ValueError(f"No fence payload found: cc_pair={cc_pair_id}")
payload.started = datetime.now(timezone.utc)
payload = RedisConnectorPermissionSyncData(
started=datetime.now(timezone.utc),
)
redis_connector.permissions.set_fence(payload)
document_external_accesses: list[DocExternalAccess] = doc_sync_func(cc_pair)
@@ -263,12 +256,7 @@ def connector_permission_sync_generator_task(
f"RedisConnector.permissions.generate_tasks starting. cc_pair={cc_pair_id}"
)
tasks_generated = redis_connector.permissions.generate_tasks(
celery_app=self.app,
lock=lock,
new_permissions=document_external_accesses,
source_string=source_type,
connector_id=cc_pair.connector.id,
credential_id=cc_pair.credential.id,
self.app, lock, document_external_accesses, source_type
)
if tasks_generated is None:
return None
@@ -293,7 +281,7 @@ def connector_permission_sync_generator_task(
@shared_task(
name=DanswerCeleryTask.UPDATE_EXTERNAL_DOCUMENT_PERMISSIONS_TASK,
name="update_external_document_permissions_task",
soft_time_limit=LIGHT_SOFT_TIME_LIMIT,
time_limit=LIGHT_TIME_LIMIT,
max_retries=DOCUMENT_PERMISSIONS_UPDATE_MAX_RETRIES,
@@ -304,8 +292,6 @@ def update_external_document_permissions_task(
tenant_id: str | None,
serialized_doc_external_access: dict,
source_string: str,
connector_id: int,
credential_id: int,
) -> bool:
document_external_access = DocExternalAccess.from_dict(
serialized_doc_external_access
@@ -314,28 +300,18 @@ def update_external_document_permissions_task(
external_access = document_external_access.external_access
try:
with get_session_with_tenant(tenant_id) as db_session:
# Add the users to the DB if they don't exist
# Then we build the update requests to update vespa
batch_add_ext_perm_user_if_not_exists(
db_session=db_session,
emails=list(external_access.external_user_emails),
)
# Then we upsert the document's external permissions in postgres
created_new_doc = upsert_document_external_perms(
upsert_document_external_perms(
db_session=db_session,
doc_id=doc_id,
external_access=external_access,
source_type=DocumentSource(source_string),
)
if created_new_doc:
# If a new document was created, we associate it with the cc_pair
upsert_document_by_connector_credential_pair(
db_session=db_session,
connector_id=connector_id,
credential_id=credential_id,
document_ids=[doc_id],
)
logger.debug(
f"Successfully synced postgres document permissions for {doc_id}"
)

View File

@@ -8,7 +8,6 @@ from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from danswer.background.celery.apps.app_base import task_logger
from danswer.configs.app_configs import JOB_TIMEOUT
@@ -17,7 +16,6 @@ from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.db.connector import mark_cc_pair_as_external_group_synced
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
@@ -26,20 +24,13 @@ from danswer.db.enums import AccessType
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.models import ConnectorCredentialPair
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_connector_ext_group_sync import (
RedisConnectorExternalGroupSyncPayload,
)
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
from ee.danswer.db.connector_credential_pair import get_all_auto_sync_cc_pairs
from ee.danswer.db.connector_credential_pair import get_cc_pairs_by_source
from ee.danswer.db.external_perm import ExternalUserGroup
from ee.danswer.db.external_perm import replace_user__ext_group_for_cc_pair
from ee.danswer.external_permissions.sync_params import EXTERNAL_GROUP_SYNC_PERIODS
from ee.danswer.external_permissions.sync_params import GROUP_PERMISSIONS_FUNC_MAP
from ee.danswer.external_permissions.sync_params import (
GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC,
)
logger = setup_logger()
@@ -58,7 +49,7 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
if cc_pair.access_type != AccessType.SYNC:
return False
# skip external group sync if not active
# skip pruning if not active
if cc_pair.status != ConnectorCredentialPairStatus.ACTIVE:
return False
@@ -90,7 +81,7 @@ def _is_external_group_sync_due(cc_pair: ConnectorCredentialPair) -> bool:
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_EXTERNAL_GROUP_SYNC,
name="check_for_external_group_sync",
soft_time_limit=JOB_TIMEOUT,
bind=True,
)
@@ -111,28 +102,12 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> None:
with get_session_with_tenant(tenant_id) as db_session:
cc_pairs = get_all_auto_sync_cc_pairs(db_session)
# We only want to sync one cc_pair per source type in
# GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC
for source in GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC:
# These are ordered by cc_pair id so the first one is the one we want
cc_pairs_to_dedupe = get_cc_pairs_by_source(
db_session, source, only_sync=True
)
# We only want to sync one cc_pair per source type
# in GROUP_PERMISSIONS_IS_CC_PAIR_AGNOSTIC so we dedupe here
for cc_pair_to_remove in cc_pairs_to_dedupe[1:]:
cc_pairs = [
cc_pair
for cc_pair in cc_pairs
if cc_pair.id != cc_pair_to_remove.id
]
for cc_pair in cc_pairs:
if _is_external_group_sync_due(cc_pair):
cc_pair_ids_to_sync.append(cc_pair.id)
for cc_pair_id in cc_pair_ids_to_sync:
tasks_created = try_creating_external_group_sync_task(
tasks_created = try_creating_permissions_sync_task(
self.app, cc_pair_id, r, tenant_id
)
if not tasks_created:
@@ -150,7 +125,7 @@ def check_for_external_group_sync(self: Task, *, tenant_id: str | None) -> None:
lock_beat.release()
def try_creating_external_group_sync_task(
def try_creating_permissions_sync_task(
app: Celery,
cc_pair_id: int,
r: Redis,
@@ -181,8 +156,8 @@ def try_creating_external_group_sync_task(
custom_task_id = f"{redis_connector.external_group_sync.taskset_key}_{uuid4()}"
result = app.send_task(
DanswerCeleryTask.CONNECTOR_EXTERNAL_GROUP_SYNC_GENERATOR_TASK,
_ = app.send_task(
"connector_external_group_sync_generator_task",
kwargs=dict(
cc_pair_id=cc_pair_id,
tenant_id=tenant_id,
@@ -191,13 +166,8 @@ def try_creating_external_group_sync_task(
task_id=custom_task_id,
priority=DanswerCeleryPriority.HIGH,
)
payload = RedisConnectorExternalGroupSyncPayload(
started=datetime.now(timezone.utc),
celery_task_id=result.id,
)
redis_connector.external_group_sync.set_fence(payload)
# set a basic fence to start
redis_connector.external_group_sync.set_fence(True)
except Exception:
task_logger.exception(
@@ -212,7 +182,7 @@ def try_creating_external_group_sync_task(
@shared_task(
name=DanswerCeleryTask.CONNECTOR_EXTERNAL_GROUP_SYNC_GENERATOR_TASK,
name="connector_external_group_sync_generator_task",
acks_late=False,
soft_time_limit=JOB_TIMEOUT,
track_started=True,
@@ -225,7 +195,7 @@ def connector_external_group_sync_generator_task(
tenant_id: str | None,
) -> None:
"""
Permission sync task that handles external group syncing for a given connector credential pair
Permission sync task that handles document permission syncing for a given connector credential pair
This task assumes that the task has already been properly fenced
"""
@@ -233,7 +203,7 @@ def connector_external_group_sync_generator_task(
r = get_redis_client(tenant_id=tenant_id)
lock: RedisLock = r.lock(
lock = r.lock(
DanswerRedisLocks.CONNECTOR_EXTERNAL_GROUP_SYNC_LOCK_PREFIX
+ f"_{redis_connector.id}",
timeout=CELERY_EXTERNAL_GROUP_SYNC_LOCK_TIMEOUT,
@@ -258,13 +228,9 @@ def connector_external_group_sync_generator_task(
ext_group_sync_func = GROUP_PERMISSIONS_FUNC_MAP.get(source_type)
if ext_group_sync_func is None:
raise ValueError(
f"No external group sync func found for {source_type} for cc_pair: {cc_pair_id}"
)
raise ValueError(f"No external group sync func found for {source_type}")
logger.info(
f"Syncing external groups for {source_type} for cc_pair: {cc_pair_id}"
)
logger.info(f"Syncing docs for {source_type}")
external_user_groups: list[ExternalUserGroup] = ext_group_sync_func(cc_pair)
@@ -283,6 +249,7 @@ def connector_external_group_sync_generator_task(
)
mark_cc_pair_as_external_group_synced(db_session, cc_pair.id)
except Exception as e:
task_logger.exception(
f"Failed to run external group sync: cc_pair={cc_pair_id}"
@@ -293,6 +260,6 @@ def connector_external_group_sync_generator_task(
raise e
finally:
# we always want to clear the fence after the task is done or failed so it doesn't get stuck
redis_connector.external_group_sync.set_fence(None)
redis_connector.external_group_sync.set_fence(False)
if lock.owned():
lock.release()

View File

@@ -3,7 +3,6 @@ from datetime import timezone
from http import HTTPStatus
from time import sleep
import redis
import sentry_sdk
from celery import Celery
from celery import shared_task
@@ -23,36 +22,29 @@ from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.configs.constants import DocumentSource
from danswer.db.connector import mark_ccpair_with_indexing_trigger
from danswer.db.connector_credential_pair import fetch_connector_credential_pairs
from danswer.db.connector_credential_pair import get_connector_credential_pair_from_id
from danswer.db.engine import get_db_current_time
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.enums import IndexingMode
from danswer.db.enums import IndexingStatus
from danswer.db.enums import IndexModelStatus
from danswer.db.index_attempt import create_index_attempt
from danswer.db.index_attempt import delete_index_attempt
from danswer.db.index_attempt import get_all_index_attempts_by_status
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import get_last_attempt_for_cc_pair
from danswer.db.index_attempt import mark_attempt_canceled
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import IndexAttempt
from danswer.db.models import SearchSettings
from danswer.db.search_settings import get_active_search_settings
from danswer.db.search_settings import get_current_search_settings
from danswer.db.search_settings import get_secondary_search_settings
from danswer.db.swap_index import check_index_swap
from danswer.indexing.indexing_heartbeat import IndexingHeartbeatInterface
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.redis.redis_connector import RedisConnector
from danswer.redis.redis_connector_index import RedisConnectorIndex
from danswer.redis.redis_connector_index import RedisConnectorIndexPayload
from danswer.redis.redis_pool import get_redis_client
from danswer.utils.logger import setup_logger
@@ -81,7 +73,7 @@ class IndexingCallback(IndexingHeartbeatInterface):
self.started: datetime = datetime.now(timezone.utc)
self.redis_lock.reacquire()
self.last_tag: str = "IndexingCallback.__init__"
self.last_tag: str = ""
self.last_lock_reacquire: datetime = datetime.now(timezone.utc)
def should_stop(self) -> bool:
@@ -108,65 +100,17 @@ class IndexingCallback(IndexingHeartbeatInterface):
self.redis_client.incrby(self.generator_progress_key, amount)
def get_unfenced_index_attempt_ids(db_session: Session, r: redis.Redis) -> list[int]:
"""Gets a list of unfenced index attempts. Should not be possible, so we'd typically
want to clean them up.
Unfenced = attempt not in terminal state and fence does not exist.
"""
unfenced_attempts: list[int] = []
# inner/outer/inner double check pattern to avoid race conditions when checking for
# bad state
# inner = index_attempt in non terminal state
# outer = r.fence_key down
# check the db for index attempts in a non terminal state
attempts: list[IndexAttempt] = []
attempts.extend(
get_all_index_attempts_by_status(IndexingStatus.NOT_STARTED, db_session)
)
attempts.extend(
get_all_index_attempts_by_status(IndexingStatus.IN_PROGRESS, db_session)
)
for attempt in attempts:
fence_key = RedisConnectorIndex.fence_key_with_ids(
attempt.connector_credential_pair_id, attempt.search_settings_id
)
# if the fence is down / doesn't exist, possible error but not confirmed
if r.exists(fence_key):
continue
# Between the time the attempts are first looked up and the time we see the fence down,
# the attempt may have completed and taken down the fence normally.
# We need to double check that the index attempt is still in a non terminal state
# and matches the original state, which confirms we are really in a bad state.
attempt_2 = get_index_attempt(db_session, attempt.id)
if not attempt_2:
continue
if attempt.status != attempt_2.status:
continue
unfenced_attempts.append(attempt.id)
return unfenced_attempts
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_INDEXING,
name="check_for_indexing",
soft_time_limit=300,
bind=True,
)
def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
tasks_created = 0
locked = False
r = get_redis_client(tenant_id=tenant_id)
lock_beat: RedisLock = r.lock(
lock_beat = r.lock(
DanswerRedisLocks.CHECK_INDEXING_BEAT_LOCK,
timeout=CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT,
)
@@ -176,9 +120,6 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
if not lock_beat.acquire(blocking=False):
return None
locked = True
# check for search settings swap
with get_session_with_tenant(tenant_id=tenant_id) as db_session:
old_search_settings = check_index_swap(db_session=db_session)
current_search_settings = get_current_search_settings(db_session)
@@ -197,24 +138,26 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
embedding_model=embedding_model,
)
# gather cc_pair_ids
cc_pair_ids: list[int] = []
with get_session_with_tenant(tenant_id) as db_session:
lock_beat.reacquire()
cc_pairs = fetch_connector_credential_pairs(db_session)
for cc_pair_entry in cc_pairs:
cc_pair_ids.append(cc_pair_entry.id)
# kick off index attempts
for cc_pair_id in cc_pair_ids:
lock_beat.reacquire()
redis_connector = RedisConnector(tenant_id, cc_pair_id)
with get_session_with_tenant(tenant_id) as db_session:
search_settings_list: list[SearchSettings] = get_active_search_settings(
db_session
)
for search_settings_instance in search_settings_list:
# Get the primary search settings
primary_search_settings = get_current_search_settings(db_session)
search_settings = [primary_search_settings]
# Check for secondary search settings
secondary_search_settings = get_secondary_search_settings(db_session)
if secondary_search_settings is not None:
# If secondary settings exist, add them to the list
search_settings.append(secondary_search_settings)
for search_settings_instance in search_settings:
redis_connector_index = redis_connector.new_index(
search_settings_instance.id
)
@@ -230,46 +173,22 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
last_attempt = get_last_attempt_for_cc_pair(
cc_pair.id, search_settings_instance.id, db_session
)
search_settings_primary = False
if search_settings_instance.id == search_settings_list[0].id:
search_settings_primary = True
if not _should_index(
cc_pair=cc_pair,
last_index=last_attempt,
search_settings_instance=search_settings_instance,
search_settings_primary=search_settings_primary,
secondary_index_building=len(search_settings_list) > 1,
secondary_index_building=len(search_settings) > 1,
db_session=db_session,
):
continue
reindex = False
if search_settings_instance.id == search_settings_list[0].id:
# the indexing trigger is only checked and cleared with the primary search settings
if cc_pair.indexing_trigger is not None:
if cc_pair.indexing_trigger == IndexingMode.REINDEX:
reindex = True
task_logger.info(
f"Connector indexing manual trigger detected: "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings_instance.id} "
f"indexing_mode={cc_pair.indexing_trigger}"
)
mark_ccpair_with_indexing_trigger(
cc_pair.id, None, db_session
)
# using a task queue and only allowing one task per cc_pair/search_setting
# prevents us from starving out certain attempts
attempt_id = try_creating_indexing_task(
self.app,
cc_pair,
search_settings_instance,
reindex,
False,
db_session,
r,
tenant_id,
@@ -279,31 +198,9 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
f"Connector indexing queued: "
f"index_attempt={attempt_id} "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings_instance.id}"
f"search_settings={search_settings_instance.id} "
)
tasks_created += 1
# Fail any index attempts in the DB that don't have fences
# This shouldn't ever happen!
with get_session_with_tenant(tenant_id) as db_session:
unfenced_attempt_ids = get_unfenced_index_attempt_ids(db_session, r)
for attempt_id in unfenced_attempt_ids:
lock_beat.reacquire()
attempt = get_index_attempt(db_session, attempt_id)
if not attempt:
continue
failure_reason = (
f"Unfenced index attempt found in DB: "
f"index_attempt={attempt.id} "
f"cc_pair={attempt.connector_credential_pair_id} "
f"search_settings={attempt.search_settings_id}"
)
task_logger.error(failure_reason)
mark_attempt_failed(
attempt.id, db_session, failure_reason=failure_reason
)
except SoftTimeLimitExceeded:
task_logger.info(
"Soft time limit exceeded, task is being terminated gracefully."
@@ -311,14 +208,8 @@ def check_for_indexing(self: Task, *, tenant_id: str | None) -> int | None:
except Exception:
task_logger.exception(f"Unexpected exception: tenant={tenant_id}")
finally:
if locked:
if lock_beat.owned():
lock_beat.release()
else:
task_logger.error(
"check_for_indexing - Lock not owned on completion: "
f"tenant={tenant_id}"
)
if lock_beat.owned():
lock_beat.release()
return tasks_created
@@ -327,7 +218,6 @@ def _should_index(
cc_pair: ConnectorCredentialPair,
last_index: IndexAttempt | None,
search_settings_instance: SearchSettings,
search_settings_primary: bool,
secondary_index_building: bool,
db_session: Session,
) -> bool:
@@ -392,11 +282,6 @@ def _should_index(
):
return False
if search_settings_primary:
if cc_pair.indexing_trigger is not None:
# if a manual indexing trigger is on the cc pair, honor it for primary search settings
return True
# if no attempt has ever occurred, we should index regardless of refresh_freq
if not last_index:
return True
@@ -429,11 +314,10 @@ def try_creating_indexing_task(
"""
LOCK_TIMEOUT = 30
index_attempt_id: int | None = None
# we need to serialize any attempt to trigger indexing since it can be triggered
# either via celery beat or manually (API call)
lock: RedisLock = r.lock(
lock = r.lock(
DANSWER_REDIS_FUNCTION_LOCK_PREFIX + "try_creating_indexing_task",
timeout=LOCK_TIMEOUT,
)
@@ -484,10 +368,8 @@ def try_creating_indexing_task(
custom_task_id = redis_connector_index.generate_generator_task_id()
# when the task is sent, we have yet to finish setting up the fence
# therefore, the task must contain code that blocks until the fence is ready
result = celery_app.send_task(
DanswerCeleryTask.CONNECTOR_INDEXING_PROXY_TASK,
"connector_indexing_proxy_task",
kwargs=dict(
index_attempt_id=index_attempt_id,
cc_pair_id=cc_pair.id,
@@ -506,16 +388,13 @@ def try_creating_indexing_task(
payload.celery_task_id = result.id
redis_connector_index.set_fence(payload)
except Exception:
redis_connector_index.set_fence(None)
task_logger.exception(
f"try_creating_indexing_task - Unexpected exception: "
f"Unexpected exception: "
f"tenant={tenant_id} "
f"cc_pair={cc_pair.id} "
f"search_settings={search_settings.id}"
)
if index_attempt_id is not None:
delete_index_attempt(db_session, index_attempt_id)
redis_connector_index.set_fence(None)
return None
finally:
if lock.owned():
@@ -524,14 +403,8 @@ def try_creating_indexing_task(
return index_attempt_id
@shared_task(
name=DanswerCeleryTask.CONNECTOR_INDEXING_PROXY_TASK,
bind=True,
acks_late=False,
track_started=True,
)
@shared_task(name="connector_indexing_proxy_task", acks_late=False, track_started=True)
def connector_indexing_proxy_task(
self: Task,
index_attempt_id: int,
cc_pair_id: int,
search_settings_id: int,
@@ -539,19 +412,15 @@ def connector_indexing_proxy_task(
) -> None:
"""celery tasks are forked, but forking is unstable. This proxies work to a spawned task."""
task_logger.info(
f"Indexing watchdog - starting: attempt={index_attempt_id} "
f"Indexing proxy - starting: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
if not self.request.id:
task_logger.error("self.request.id is None!")
client = SimpleJobClient()
job = client.submit(
connector_indexing_task_wrapper,
connector_indexing_task,
index_attempt_id,
cc_pair_id,
search_settings_id,
@@ -562,7 +431,7 @@ def connector_indexing_proxy_task(
if not job:
task_logger.info(
f"Indexing watchdog - spawn failed: attempt={index_attempt_id} "
f"Indexing proxy - spawn failed: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
@@ -570,78 +439,31 @@ def connector_indexing_proxy_task(
return
task_logger.info(
f"Indexing watchdog - spawn succeeded: attempt={index_attempt_id} "
f"Indexing proxy - spawn succeeded: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
redis_connector = RedisConnector(tenant_id, cc_pair_id)
redis_connector_index = redis_connector.new_index(search_settings_id)
while True:
sleep(5)
if self.request.id and redis_connector_index.terminating(self.request.id):
task_logger.warning(
"Indexing watchdog - termination signal detected: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
try:
with get_session_with_tenant(tenant_id) as db_session:
mark_attempt_canceled(
index_attempt_id,
db_session,
"Connector termination signal detected",
)
finally:
# if the DB exceptions, we'll just get an unfriendly failure message
# in the UI instead of the cancellation message
logger.exception(
"Indexing watchdog - transient exception marking index attempt as canceled: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
job.cancel()
break
sleep(10)
# do nothing for ongoing jobs that haven't been stopped
if not job.done():
# if the spawned task is still running, restart the check once again
# if the index attempt is not in a finished status
try:
with get_session_with_tenant(tenant_id) as db_session:
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
)
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
except Exception:
# if the DB exceptioned, just restart the check.
# polling the index attempt status doesn't need to be strongly consistent
logger.exception(
"Indexing watchdog - transient exception looking up index attempt: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
with get_session_with_tenant(tenant_id) as db_session:
index_attempt = get_index_attempt(
db_session=db_session, index_attempt_id=index_attempt_id
)
continue
if not index_attempt:
continue
if not index_attempt.is_finished():
continue
if job.status == "error":
task_logger.error(
"Indexing watchdog - spawned task exceptioned: "
f"Indexing proxy - spawned task exceptioned: "
f"attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
@@ -653,7 +475,7 @@ def connector_indexing_proxy_task(
break
task_logger.info(
f"Indexing watchdog - finished: attempt={index_attempt_id} "
f"Indexing proxy - finished: attempt={index_attempt_id} "
f"tenant={tenant_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
@@ -661,38 +483,6 @@ def connector_indexing_proxy_task(
return
def connector_indexing_task_wrapper(
index_attempt_id: int,
cc_pair_id: int,
search_settings_id: int,
tenant_id: str | None,
is_ee: bool,
) -> int | None:
"""Just wraps connector_indexing_task so we can log any exceptions before
re-raising it."""
result: int | None = None
try:
result = connector_indexing_task(
index_attempt_id,
cc_pair_id,
search_settings_id,
tenant_id,
is_ee,
)
except:
logger.exception(
f"connector_indexing_task exceptioned: "
f"tenant={tenant_id} "
f"index_attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id}"
)
raise
return result
def connector_indexing_task(
index_attempt_id: int,
cc_pair_id: int,
@@ -747,7 +537,6 @@ def connector_indexing_task(
if redis_connector.delete.fenced:
raise RuntimeError(
f"Indexing will not start because connector deletion is in progress: "
f"attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.delete.fence_key}"
)
@@ -755,18 +544,18 @@ def connector_indexing_task(
if redis_connector.stop.fenced:
raise RuntimeError(
f"Indexing will not start because a connector stop signal was detected: "
f"attempt={index_attempt_id} "
f"cc_pair={cc_pair_id} "
f"fence={redis_connector.stop.fence_key}"
)
while True:
if not redis_connector_index.fenced: # The fence must exist
# wait for the fence to come up
if not redis_connector_index.fenced:
raise ValueError(
f"connector_indexing_task - fence not found: fence={redis_connector_index.fence_key}"
)
payload = redis_connector_index.payload # The payload must exist
payload = redis_connector_index.payload
if not payload:
raise ValueError("connector_indexing_task: payload invalid or not found")
@@ -789,19 +578,16 @@ def connector_indexing_task(
)
break
# set thread_local=False since we don't control what thread the indexing/pruning
# might run our callback with
lock: RedisLock = r.lock(
lock = r.lock(
redis_connector_index.generator_lock_key,
timeout=CELERY_INDEXING_LOCK_TIMEOUT,
thread_local=False,
)
acquired = lock.acquire(blocking=False)
if not acquired:
logger.warning(
f"Indexing task already running, exiting...: "
f"index_attempt={index_attempt_id} cc_pair={cc_pair_id} search_settings={search_settings_id}"
f"cc_pair={cc_pair_id} search_settings={search_settings_id}"
)
return None

View File

@@ -13,13 +13,12 @@ from sqlalchemy.orm import Session
from danswer.background.celery.apps.app_base import task_logger
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import PostgresAdvisoryLocks
from danswer.db.engine import get_session_with_tenant
@shared_task(
name=DanswerCeleryTask.KOMBU_MESSAGE_CLEANUP_TASK,
name="kombu_message_cleanup_task",
soft_time_limit=JOB_TIMEOUT,
bind=True,
base=AbortableTask,

View File

@@ -8,7 +8,6 @@ from celery import shared_task
from celery import Task
from celery.exceptions import SoftTimeLimitExceeded
from redis import Redis
from redis.lock import Lock as RedisLock
from sqlalchemy.orm import Session
from danswer.background.celery.apps.app_base import task_logger
@@ -21,7 +20,6 @@ from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DANSWER_REDIS_FUNCTION_LOCK_PREFIX
from danswer.configs.constants import DanswerCeleryPriority
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.connectors.factory import instantiate_connector
from danswer.connectors.models import InputType
@@ -77,7 +75,7 @@ def _is_pruning_due(cc_pair: ConnectorCredentialPair) -> bool:
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_PRUNING,
name="check_for_pruning",
soft_time_limit=JOB_TIMEOUT,
bind=True,
)
@@ -186,7 +184,7 @@ def try_creating_prune_generator_task(
custom_task_id = f"{redis_connector.prune.generator_task_key}_{uuid4()}"
celery_app.send_task(
DanswerCeleryTask.CONNECTOR_PRUNING_GENERATOR_TASK,
"connector_pruning_generator_task",
kwargs=dict(
cc_pair_id=cc_pair.id,
connector_id=cc_pair.connector_id,
@@ -211,7 +209,7 @@ def try_creating_prune_generator_task(
@shared_task(
name=DanswerCeleryTask.CONNECTOR_PRUNING_GENERATOR_TASK,
name="connector_pruning_generator_task",
acks_late=False,
soft_time_limit=JOB_TIMEOUT,
track_started=True,
@@ -240,12 +238,9 @@ def connector_pruning_generator_task(
r = get_redis_client(tenant_id=tenant_id)
# set thread_local=False since we don't control what thread the indexing/pruning
# might run our callback with
lock: RedisLock = r.lock(
lock = r.lock(
DanswerRedisLocks.PRUNING_LOCK_PREFIX + f"_{redis_connector.id}",
timeout=CELERY_PRUNING_LOCK_TIMEOUT,
thread_local=False,
)
acquired = lock.acquire(blocking=False)

View File

@@ -9,7 +9,6 @@ from tenacity import RetryError
from danswer.access.access import get_access_for_document
from danswer.background.celery.apps.app_base import task_logger
from danswer.background.celery.tasks.shared.RetryDocumentIndex import RetryDocumentIndex
from danswer.configs.constants import DanswerCeleryTask
from danswer.db.document import delete_document_by_connector_credential_pair__no_commit
from danswer.db.document import delete_documents_complete__no_commit
from danswer.db.document import get_document
@@ -32,7 +31,7 @@ LIGHT_TIME_LIMIT = LIGHT_SOFT_TIME_LIMIT + 15
@shared_task(
name=DanswerCeleryTask.DOCUMENT_BY_CC_PAIR_CLEANUP_TASK,
name="document_by_cc_pair_cleanup_task",
soft_time_limit=LIGHT_SOFT_TIME_LIMIT,
time_limit=LIGHT_TIME_LIMIT,
max_retries=DOCUMENT_BY_CC_PAIR_CLEANUP_MAX_RETRIES,

View File

@@ -5,6 +5,7 @@ from http import HTTPStatus
from typing import cast
import httpx
import redis
from celery import Celery
from celery import shared_task
from celery import Task
@@ -25,7 +26,6 @@ from danswer.background.celery.tasks.shared.tasks import LIGHT_TIME_LIMIT
from danswer.configs.app_configs import JOB_TIMEOUT
from danswer.configs.constants import CELERY_VESPA_SYNC_BEAT_LOCK_TIMEOUT
from danswer.configs.constants import DanswerCeleryQueues
from danswer.configs.constants import DanswerCeleryTask
from danswer.configs.constants import DanswerRedisLocks
from danswer.db.connector import fetch_connector_by_id
from danswer.db.connector import mark_cc_pair_as_permissions_synced
@@ -49,9 +49,11 @@ from danswer.db.document_set import mark_document_set_as_synced
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import IndexingStatus
from danswer.db.index_attempt import delete_index_attempts
from danswer.db.index_attempt import get_all_index_attempts_by_status
from danswer.db.index_attempt import get_index_attempt
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.models import DocumentSet
from danswer.db.models import IndexAttempt
from danswer.document_index.document_index_utils import get_both_index_names
from danswer.document_index.factory import get_default_document_index
from danswer.document_index.interfaces import VespaDocumentFields
@@ -60,7 +62,7 @@ from danswer.redis.redis_connector_credential_pair import RedisConnectorCredenti
from danswer.redis.redis_connector_delete import RedisConnectorDelete
from danswer.redis.redis_connector_doc_perm_sync import RedisConnectorPermissionSync
from danswer.redis.redis_connector_doc_perm_sync import (
RedisConnectorPermissionSyncPayload,
RedisConnectorPermissionSyncData,
)
from danswer.redis.redis_connector_index import RedisConnectorIndex
from danswer.redis.redis_connector_prune import RedisConnectorPrune
@@ -81,7 +83,7 @@ logger = setup_logger()
# celery auto associates tasks created inside another task,
# which bloats the result metadata considerably. trail=False prevents this.
@shared_task(
name=DanswerCeleryTask.CHECK_FOR_VESPA_SYNC_TASK,
name="check_for_vespa_sync_task",
soft_time_limit=JOB_TIMEOUT,
trail=False,
bind=True,
@@ -590,7 +592,7 @@ def monitor_ccpair_permissions_taskset(
if remaining > 0:
return
payload: RedisConnectorPermissionSyncPayload | None = (
payload: RedisConnectorPermissionSyncData | None = (
redis_connector.permissions.payload
)
start_time: datetime | None = payload.started if payload else None
@@ -598,7 +600,9 @@ def monitor_ccpair_permissions_taskset(
mark_cc_pair_as_permissions_synced(db_session, int(cc_pair_id), start_time)
task_logger.info(f"Successfully synced permissions for cc_pair={cc_pair_id}")
redis_connector.permissions.reset()
redis_connector.permissions.taskset_clear()
redis_connector.permissions.generator_clear()
redis_connector.permissions.set_fence(None)
def monitor_ccpair_indexing_taskset(
@@ -645,52 +649,38 @@ def monitor_ccpair_indexing_taskset(
# the task is still setting up
return
# Read result state BEFORE generator_complete_key to avoid a race condition
# never use any blocking methods on the result from inside a task!
result: AsyncResult = AsyncResult(payload.celery_task_id)
result_state = result.state
# inner/outer/inner double check pattern to avoid race conditions when checking for
# bad state
# inner = get_completion / generator_complete not signaled
# outer = result.state in READY state
status_int = redis_connector_index.get_completion()
if status_int is None: # inner signal not set ... possible error
task_state = result.state
if (
task_state in READY_STATES
): # outer signal in terminal state ... possible error
# Now double check!
if status_int is None: # completion signal not set ... check for errors
# If we get here, and then the task both sets the completion signal and finishes,
# we will incorrectly abort the task. We must check result state, then check
# get_completion again to avoid the race condition.
if result_state in READY_STATES:
if redis_connector_index.get_completion() is None:
# inner signal still not set (and cannot change when outer result_state is READY)
# Task is finished but generator complete isn't set.
# We have a problem! Worker may have crashed.
task_result = str(result.result)
task_traceback = str(result.traceback)
# IF the task state is READY, THEN generator_complete should be set
# if it isn't, then the worker crashed
msg = (
f"Connector indexing aborted or exceptioned: "
f"attempt={payload.index_attempt_id} "
f"celery_task={payload.celery_task_id} "
f"result_state={result_state} "
f"cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f} "
f"result.state={task_state} "
f"result.result={task_result} "
f"result.traceback={task_traceback}"
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f}"
)
task_logger.warning(msg)
index_attempt = get_index_attempt(db_session, payload.index_attempt_id)
if index_attempt:
if (
index_attempt.status != IndexingStatus.CANCELED
and index_attempt.status != IndexingStatus.FAILED
):
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
mark_attempt_failed(
index_attempt_id=payload.index_attempt_id,
db_session=db_session,
failure_reason=msg,
)
redis_connector_index.reset()
return
@@ -700,7 +690,6 @@ def monitor_ccpair_indexing_taskset(
task_logger.info(
f"Connector indexing finished: cc_pair={cc_pair_id} "
f"search_settings={search_settings_id} "
f"progress={progress} "
f"status={status_enum.name} "
f"elapsed_submitted={elapsed_submitted.total_seconds():.2f}"
)
@@ -708,7 +697,38 @@ def monitor_ccpair_indexing_taskset(
redis_connector_index.reset()
@shared_task(name=DanswerCeleryTask.MONITOR_VESPA_SYNC, soft_time_limit=300, bind=True)
def get_unfenced_index_attempt_ids(db_session: Session, r: redis.Redis) -> list[int]:
"""Gets a list of unfenced index attempts. Should not be possible, so we'd typically
want to clean them up.
Unfenced = attempt not in terminal state and fence does not exist.
"""
unfenced_attempts: list[int] = []
# do some cleanup before clearing fences
# check the db for any outstanding index attempts
attempts: list[IndexAttempt] = []
attempts.extend(
get_all_index_attempts_by_status(IndexingStatus.NOT_STARTED, db_session)
)
attempts.extend(
get_all_index_attempts_by_status(IndexingStatus.IN_PROGRESS, db_session)
)
for attempt in attempts:
# if attempts exist in the db but we don't detect them in redis, mark them as failed
fence_key = RedisConnectorIndex.fence_key_with_ids(
attempt.connector_credential_pair_id, attempt.search_settings_id
)
if r.exists(fence_key):
continue
unfenced_attempts.append(attempt.id)
return unfenced_attempts
@shared_task(name="monitor_vespa_sync", soft_time_limit=300, bind=True)
def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
"""This is a celery beat task that monitors and finalizes metadata sync tasksets.
It scans for fence values and then gets the counts of any associated tasksets.
@@ -733,7 +753,7 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
# print current queue lengths
r_celery = self.app.broker_connection().channel().client # type: ignore
n_celery = celery_get_queue_length("celery", r_celery)
n_celery = celery_get_queue_length("celery", r)
n_indexing = celery_get_queue_length(
DanswerCeleryQueues.CONNECTOR_INDEXING, r_celery
)
@@ -759,6 +779,25 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
f"permissions_sync={n_permissions_sync} "
)
# Fail any index attempts in the DB that don't have fences
with get_session_with_tenant(tenant_id) as db_session:
unfenced_attempt_ids = get_unfenced_index_attempt_ids(db_session, r)
for attempt_id in unfenced_attempt_ids:
attempt = get_index_attempt(db_session, attempt_id)
if not attempt:
continue
failure_reason = (
f"Unfenced index attempt found in DB: "
f"index_attempt={attempt.id} "
f"cc_pair={attempt.connector_credential_pair_id} "
f"search_settings={attempt.search_settings_id}"
)
task_logger.warning(failure_reason)
mark_attempt_failed(
attempt.id, db_session, failure_reason=failure_reason
)
lock_beat.reacquire()
if r.exists(RedisConnectorCredentialPair.get_fence_key()):
monitor_connector_taskset(r)
@@ -819,7 +858,7 @@ def monitor_vespa_sync(self: Task, tenant_id: str | None) -> bool:
@shared_task(
name=DanswerCeleryTask.VESPA_METADATA_SYNC_TASK,
name="vespa_metadata_sync_task",
bind=True,
soft_time_limit=LIGHT_SOFT_TIME_LIMIT,
time_limit=LIGHT_TIME_LIMIT,

View File

@@ -1,8 +1,6 @@
"""Factory stub for running celery worker / celery beat."""
from celery import Celery
from danswer.background.celery.apps.beat import celery_app
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
set_is_ee_based_on_env_variable()
app: Celery = celery_app
app = celery_app

View File

@@ -1,10 +1,8 @@
"""Factory stub for running celery worker / celery beat."""
from celery import Celery
from danswer.utils.variable_functionality import fetch_versioned_implementation
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
set_is_ee_based_on_env_variable()
app: Celery = fetch_versioned_implementation(
app = fetch_versioned_implementation(
"danswer.background.celery.apps.primary", "celery_app"
)

View File

@@ -19,7 +19,6 @@ from danswer.db.connector_credential_pair import get_last_successful_attempt_tim
from danswer.db.connector_credential_pair import update_connector_credential_pair
from danswer.db.engine import get_session_with_tenant
from danswer.db.enums import ConnectorCredentialPairStatus
from danswer.db.index_attempt import mark_attempt_canceled
from danswer.db.index_attempt import mark_attempt_failed
from danswer.db.index_attempt import mark_attempt_partially_succeeded
from danswer.db.index_attempt import mark_attempt_succeeded
@@ -88,10 +87,6 @@ def _get_connector_runner(
)
class ConnectorStopSignal(Exception):
"""A custom exception used to signal a stop in processing."""
def _run_indexing(
db_session: Session,
index_attempt: IndexAttempt,
@@ -213,7 +208,9 @@ def _run_indexing(
# contents still need to be initially pulled.
if callback:
if callback.should_stop():
raise ConnectorStopSignal("Connector stop signal detected")
raise RuntimeError(
"_run_indexing: Connector stop signal detected"
)
# TODO: should we move this into the above callback instead?
db_session.refresh(db_cc_pair)
@@ -307,16 +304,26 @@ def _run_indexing(
)
except Exception as e:
logger.exception(
f"Connector run exceptioned after elapsed time: {time.time() - start_time} seconds"
f"Connector run ran into exception after elapsed time: {time.time() - start_time} seconds"
)
if isinstance(e, ConnectorStopSignal):
mark_attempt_canceled(
# Only mark the attempt as a complete failure if this is the first indexing window.
# Otherwise, some progress was made - the next run will not start from the beginning.
# In this case, it is not accurate to mark it as a failure. When the next run begins,
# if that fails immediately, it will be marked as a failure.
#
# NOTE: if the connector is manually disabled, we should mark it as a failure regardless
# to give better clarity in the UI, as the next run will never happen.
if (
ind == 0
or not db_cc_pair.status.is_active()
or index_attempt.status != IndexingStatus.IN_PROGRESS
):
mark_attempt_failed(
index_attempt.id,
db_session,
reason=str(e),
failure_reason=str(e),
full_exception_trace=traceback.format_exc(),
)
if is_primary:
update_connector_credential_pair(
db_session=db_session,
@@ -328,37 +335,6 @@ def _run_indexing(
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
else:
# Only mark the attempt as a complete failure if this is the first indexing window.
# Otherwise, some progress was made - the next run will not start from the beginning.
# In this case, it is not accurate to mark it as a failure. When the next run begins,
# if that fails immediately, it will be marked as a failure.
#
# NOTE: if the connector is manually disabled, we should mark it as a failure regardless
# to give better clarity in the UI, as the next run will never happen.
if (
ind == 0
or not db_cc_pair.status.is_active()
or index_attempt.status != IndexingStatus.IN_PROGRESS
):
mark_attempt_failed(
index_attempt.id,
db_session,
failure_reason=str(e),
full_exception_trace=traceback.format_exc(),
)
if is_primary:
update_connector_credential_pair(
db_session=db_session,
connector_id=db_connector.id,
credential_id=db_credential.id,
net_docs=net_doc_change,
)
if INDEXING_TRACER_INTERVAL > 0:
tracer.stop()
raise e
# break => similar to success case. As mentioned above, if the next run fails for the same
# reason it will then be marked as a failure

View File

@@ -2,79 +2,20 @@ import re
from typing import cast
from uuid import UUID
from fastapi import HTTPException
from fastapi.datastructures import Headers
from sqlalchemy.orm import Session
from danswer.auth.users import is_user_admin
from danswer.chat.models import CitationInfo
from danswer.chat.models import LlmDoc
from danswer.chat.models import PersonaOverrideConfig
from danswer.chat.models import ThreadMessage
from danswer.configs.constants import DEFAULT_PERSONA_ID
from danswer.configs.constants import MessageType
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import RerankingDetails
from danswer.context.search.models import RetrievalDetails
from danswer.db.chat import create_chat_session
from danswer.db.chat import get_chat_messages_by_session
from danswer.db.llm import fetch_existing_doc_sets
from danswer.db.llm import fetch_existing_tools
from danswer.db.models import ChatMessage
from danswer.db.models import Persona
from danswer.db.models import Prompt
from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.persona import get_prompts_by_ids
from danswer.llm.answering.models import PreviousMessage
from danswer.natural_language_processing.utils import BaseTokenizer
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.tools.tool_implementations.custom.custom_tool import (
build_custom_tools_from_openapi_schema_and_headers,
)
from danswer.search.models import InferenceSection
from danswer.utils.logger import setup_logger
logger = setup_logger()
def prepare_chat_message_request(
message_text: str,
user: User | None,
persona_id: int | None,
# Does the question need to have a persona override
persona_override_config: PersonaOverrideConfig | None,
prompt: Prompt | None,
message_ts_to_respond_to: str | None,
retrieval_details: RetrievalDetails | None,
rerank_settings: RerankingDetails | None,
db_session: Session,
) -> CreateChatMessageRequest:
# Typically used for one shot flows like SlackBot or non-chat API endpoint use cases
new_chat_session = create_chat_session(
db_session=db_session,
description=None,
user_id=user.id if user else None,
# If using an override, this id will be ignored later on
persona_id=persona_id or DEFAULT_PERSONA_ID,
danswerbot_flow=True,
slack_thread_id=message_ts_to_respond_to,
)
return CreateChatMessageRequest(
chat_session_id=new_chat_session.id,
parent_message_id=None, # It's a standalone chat session each time
message=message_text,
file_descriptors=[], # Currently SlackBot/answer api do not support files in the context
prompt_id=prompt.id if prompt else None,
# Can always override the persona for the single query, if it's a normal persona
# then it will be treated the same
persona_override_config=persona_override_config,
search_doc_ids=None,
retrieval_options=retrieval_details,
rerank_settings=rerank_settings,
)
def llm_doc_from_inference_section(inference_section: InferenceSection) -> LlmDoc:
return LlmDoc(
document_id=inference_section.center_chunk.document_id,
@@ -90,49 +31,9 @@ def llm_doc_from_inference_section(inference_section: InferenceSection) -> LlmDo
if inference_section.center_chunk.source_links
else None,
source_links=inference_section.center_chunk.source_links,
match_highlights=inference_section.center_chunk.match_highlights,
)
def combine_message_thread(
messages: list[ThreadMessage],
max_tokens: int | None,
llm_tokenizer: BaseTokenizer,
) -> str:
"""Used to create a single combined message context from threads"""
if not messages:
return ""
message_strs: list[str] = []
total_token_count = 0
for message in reversed(messages):
if message.role == MessageType.USER:
role_str = message.role.value.upper()
if message.sender:
role_str += " " + message.sender
else:
# Since other messages might have the user identifying information
# better to use Unknown for symmetry
role_str += " Unknown"
else:
role_str = message.role.value.upper()
msg_str = f"{role_str}:\n{message.message}"
message_token_count = len(llm_tokenizer.encode(msg_str))
if (
max_tokens is not None
and total_token_count + message_token_count > max_tokens
):
break
message_strs.insert(0, msg_str)
total_token_count += message_token_count
return "\n\n".join(message_strs)
def create_chat_chain(
chat_session_id: UUID,
db_session: Session,
@@ -295,71 +196,3 @@ def extract_headers(
if lowercase_key in headers:
extracted_headers[lowercase_key] = headers[lowercase_key]
return extracted_headers
def create_temporary_persona(
persona_config: PersonaOverrideConfig, db_session: Session, user: User | None = None
) -> Persona:
if not is_user_admin(user):
raise HTTPException(
status_code=403,
detail="User is not authorized to create a persona in one shot queries",
)
"""Create a temporary Persona object from the provided configuration."""
persona = Persona(
name=persona_config.name,
description=persona_config.description,
num_chunks=persona_config.num_chunks,
llm_relevance_filter=persona_config.llm_relevance_filter,
llm_filter_extraction=persona_config.llm_filter_extraction,
recency_bias=persona_config.recency_bias,
llm_model_provider_override=persona_config.llm_model_provider_override,
llm_model_version_override=persona_config.llm_model_version_override,
)
if persona_config.prompts:
persona.prompts = [
Prompt(
name=p.name,
description=p.description,
system_prompt=p.system_prompt,
task_prompt=p.task_prompt,
include_citations=p.include_citations,
datetime_aware=p.datetime_aware,
)
for p in persona_config.prompts
]
elif persona_config.prompt_ids:
persona.prompts = get_prompts_by_ids(
db_session=db_session, prompt_ids=persona_config.prompt_ids
)
persona.tools = []
if persona_config.custom_tools_openapi:
for schema in persona_config.custom_tools_openapi:
tools = cast(
list[Tool],
build_custom_tools_from_openapi_schema_and_headers(schema),
)
persona.tools.extend(tools)
if persona_config.tools:
tool_ids = [tool.id for tool in persona_config.tools]
persona.tools.extend(
fetch_existing_tools(db_session=db_session, tool_ids=tool_ids)
)
if persona_config.tool_ids:
persona.tools.extend(
fetch_existing_tools(
db_session=db_session, tool_ids=persona_config.tool_ids
)
)
fetched_docs = fetch_existing_doc_sets(
db_session=db_session, doc_ids=persona_config.document_set_ids
)
persona.document_sets = fetched_docs
return persona

View File

@@ -5,7 +5,6 @@ from danswer.configs.chat_configs import INPUT_PROMPT_YAML
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.chat_configs import PERSONAS_YAML
from danswer.configs.chat_configs import PROMPTS_YAML
from danswer.context.search.enums import RecencyBiasSetting
from danswer.db.document_set import get_or_create_document_set_by_name
from danswer.db.input_prompt import insert_input_prompt_if_not_exists
from danswer.db.models import DocumentSet as DocumentSetDBModel
@@ -15,6 +14,7 @@ from danswer.db.models import Tool as ToolDBModel
from danswer.db.persona import get_prompt_by_name
from danswer.db.persona import upsert_persona
from danswer.db.persona import upsert_prompt
from danswer.search.enums import RecencyBiasSetting
def load_prompts_from_yaml(
@@ -81,7 +81,6 @@ def load_personas_from_yaml(
p_id = persona.get("id")
tool_ids = []
if persona.get("image_generation"):
image_gen_tool = (
db_session.query(ToolDBModel)

View File

@@ -4,14 +4,12 @@ from enum import Enum
from typing import Any
from pydantic import BaseModel
from pydantic import Field
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import MessageType
from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import RecencyBiasSetting
from danswer.context.search.enums import SearchType
from danswer.context.search.models import RetrievalDocs
from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
from danswer.search.models import RetrievalDocs
from danswer.search.models import SearchResponse
from danswer.tools.tool_implementations.custom.base_tool_types import ToolResultType
@@ -27,7 +25,6 @@ class LlmDoc(BaseModel):
updated_at: datetime | None
link: str | None
source_links: dict[int, str] | None
match_highlights: list[str] | None
# First chunk of info for streaming QA
@@ -120,6 +117,20 @@ class StreamingError(BaseModel):
stack_trace: str | None = None
class DanswerQuote(BaseModel):
# This is during inference so everything is a string by this point
quote: str
document_id: str
link: str | None
source_type: str
semantic_identifier: str
blurb: str
class DanswerQuotes(BaseModel):
quotes: list[DanswerQuote]
class DanswerContext(BaseModel):
content: str
document_id: str
@@ -135,20 +146,14 @@ class DanswerAnswer(BaseModel):
answer: str | None
class ThreadMessage(BaseModel):
message: str
sender: str | None = None
role: MessageType = MessageType.USER
class ChatDanswerBotResponse(BaseModel):
answer: str | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
class QAResponse(SearchResponse, DanswerAnswer):
quotes: list[DanswerQuote] | None
contexts: list[DanswerContexts] | None
predicted_flow: QueryFlow
predicted_search: SearchType
eval_res_valid: bool | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
chat_message_id: int | None = None
answer_valid: bool = True # Reflexion result, default True if Reflexion not run
class FileChatDisplay(BaseModel):
@@ -160,41 +165,9 @@ class CustomToolResponse(BaseModel):
tool_name: str
class ToolConfig(BaseModel):
id: int
class PromptOverrideConfig(BaseModel):
name: str
description: str = ""
system_prompt: str
task_prompt: str = ""
include_citations: bool = True
datetime_aware: bool = True
class PersonaOverrideConfig(BaseModel):
name: str
description: str
search_type: SearchType = SearchType.SEMANTIC
num_chunks: float | None = None
llm_relevance_filter: bool = False
llm_filter_extraction: bool = False
recency_bias: RecencyBiasSetting = RecencyBiasSetting.AUTO
llm_model_provider_override: str | None = None
llm_model_version_override: str | None = None
prompts: list[PromptOverrideConfig] = Field(default_factory=list)
prompt_ids: list[int] = Field(default_factory=list)
document_set_ids: list[int] = Field(default_factory=list)
tools: list[ToolConfig] = Field(default_factory=list)
tool_ids: list[int] = Field(default_factory=list)
custom_tools_openapi: list[dict[str, Any]] = Field(default_factory=list)
AnswerQuestionPossibleReturn = (
DanswerAnswerPiece
| DanswerQuotes
| CitationInfo
| DanswerContexts
| FileChatDisplay

View File

@@ -7,13 +7,10 @@ from typing import cast
from sqlalchemy.orm import Session
from danswer.chat.chat_utils import create_chat_chain
from danswer.chat.chat_utils import create_temporary_persona
from danswer.chat.models import AllCitations
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.models import CitationInfo
from danswer.chat.models import CustomToolResponse
from danswer.chat.models import DanswerAnswerPiece
from danswer.chat.models import DanswerContexts
from danswer.chat.models import FileChatDisplay
from danswer.chat.models import FinalUsedContextDocsResponse
from danswer.chat.models import LLMRelevanceFilterResponse
@@ -26,16 +23,6 @@ from danswer.configs.chat_configs import CHAT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.chat_configs import DISABLE_LLM_CHOOSE_SEARCH
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.configs.constants import MessageType
from danswer.context.search.enums import OptionalSearchSetting
from danswer.context.search.enums import QueryFlow
from danswer.context.search.enums import SearchType
from danswer.context.search.models import InferenceSection
from danswer.context.search.models import RetrievalDetails
from danswer.context.search.retrieval.search_runner import inference_sections_from_ids
from danswer.context.search.utils import chunks_or_sections_to_search_docs
from danswer.context.search.utils import dedupe_documents
from danswer.context.search.utils import drop_llm_indices
from danswer.context.search.utils import relevant_sections_to_indices
from danswer.db.chat import attach_files_to_chat_message
from danswer.db.chat import create_db_search_doc
from danswer.db.chat import create_new_chat_message
@@ -69,6 +56,16 @@ from danswer.llm.factory import get_llms_for_persona
from danswer.llm.factory import get_main_llm_from_tuple
from danswer.llm.utils import litellm_exception_to_error_msg
from danswer.natural_language_processing.utils import get_tokenizer
from danswer.search.enums import OptionalSearchSetting
from danswer.search.enums import QueryFlow
from danswer.search.enums import SearchType
from danswer.search.models import InferenceSection
from danswer.search.models import RetrievalDetails
from danswer.search.retrieval.search_runner import inference_sections_from_ids
from danswer.search.utils import chunks_or_sections_to_search_docs
from danswer.search.utils import dedupe_documents
from danswer.search.utils import drop_llm_indices
from danswer.search.utils import relevant_sections_to_indices
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.server.utils import get_json_line
@@ -105,7 +102,6 @@ from danswer.tools.tool_implementations.internet_search.internet_search_tool imp
from danswer.tools.tool_implementations.search.search_tool import (
FINAL_CONTEXT_DOCUMENTS_ID,
)
from danswer.tools.tool_implementations.search.search_tool import SEARCH_DOC_CONTENT_ID
from danswer.tools.tool_implementations.search.search_tool import (
SEARCH_RESPONSE_SUMMARY_ID,
)
@@ -117,10 +113,8 @@ from danswer.tools.tool_implementations.search.search_tool import (
from danswer.tools.tool_runner import ToolCallFinalResult
from danswer.utils.logger import setup_logger
from danswer.utils.long_term_log import LongTermLogger
from danswer.utils.timing import log_function_time
from danswer.utils.timing import log_generator_function_time
logger = setup_logger()
@@ -262,7 +256,6 @@ def _get_force_search_settings(
ChatPacket = (
StreamingError
| QADocsResponse
| DanswerContexts
| LLMRelevanceFilterResponse
| FinalUsedContextDocsResponse
| ChatMessageDetail
@@ -293,8 +286,6 @@ def stream_chat_message_objects(
custom_tool_additional_headers: dict[str, str] | None = None,
is_connected: Callable[[], bool] | None = None,
enforce_chat_session_id_for_search_docs: bool = True,
bypass_acl: bool = False,
include_contexts: bool = False,
) -> ChatPacketStream:
"""Streams in order:
1. [conditional] Retrieved documents if a search needs to be run
@@ -331,31 +322,17 @@ def stream_chat_message_objects(
metadata={"user_id": str(user_id), "chat_session_id": str(chat_session_id)}
)
# use alternate persona if alternative assistant id is passed in
if alternate_assistant_id is not None:
# Allows users to specify a temporary persona (assistant) in the chat session
# this takes highest priority since it's user specified
persona = get_persona_by_id(
alternate_assistant_id,
user=user,
db_session=db_session,
is_for_edit=False,
)
elif new_msg_req.persona_override_config:
# Certain endpoints allow users to specify arbitrary persona settings
# this should never conflict with the alternate_assistant_id
persona = persona = create_temporary_persona(
db_session=db_session,
persona_config=new_msg_req.persona_override_config,
user=user,
)
else:
persona = chat_session.persona
if not persona:
raise RuntimeError("No persona specified or found for chat session")
# If a prompt override is specified via the API, use that with highest priority
# but for saving it, we are just mapping it to an existing prompt
prompt_id = new_msg_req.prompt_id
if prompt_id is None and persona.prompts:
prompt_id = sorted(persona.prompts, key=lambda x: x.id)[-1].id
@@ -578,34 +555,19 @@ def stream_chat_message_objects(
reserved_message_id=reserved_message_id,
)
prompt_override = new_msg_req.prompt_override or chat_session.prompt_override
if new_msg_req.persona_override_config:
prompt_config = PromptConfig(
system_prompt=new_msg_req.persona_override_config.prompts[
0
].system_prompt,
task_prompt=new_msg_req.persona_override_config.prompts[0].task_prompt,
datetime_aware=new_msg_req.persona_override_config.prompts[
0
].datetime_aware,
include_citations=new_msg_req.persona_override_config.prompts[
0
].include_citations,
)
elif prompt_override:
if not final_msg.prompt:
raise ValueError(
"Prompt override cannot be applied, no base prompt found."
)
prompt_config = PromptConfig.from_model(
final_msg.prompt,
prompt_override=prompt_override,
)
elif final_msg.prompt:
prompt_config = PromptConfig.from_model(final_msg.prompt)
else:
prompt_config = PromptConfig.from_model(persona.prompts[0])
if not final_msg.prompt:
raise RuntimeError("No Prompt found")
prompt_config = (
PromptConfig.from_model(
final_msg.prompt,
prompt_override=(
new_msg_req.prompt_override or chat_session.prompt_override
),
)
if not persona
else PromptConfig.from_model(persona.prompts[0])
)
answer_style_config = AnswerStyleConfig(
citation_config=CitationConfig(
all_docs_useful=selected_db_search_docs is not None
@@ -625,13 +587,11 @@ def stream_chat_message_objects(
answer_style_config=answer_style_config,
document_pruning_config=document_pruning_config,
retrieval_options=retrieval_options or RetrievalDetails(),
rerank_settings=new_msg_req.rerank_settings,
selected_sections=selected_sections,
chunks_above=new_msg_req.chunks_above,
chunks_below=new_msg_req.chunks_below,
full_doc=new_msg_req.full_doc,
latest_query_files=latest_query_files,
bypass_acl=bypass_acl,
),
internet_search_tool_config=InternetSearchToolConfig(
answer_style_config=answer_style_config,
@@ -777,8 +737,6 @@ def stream_chat_message_objects(
response=custom_tool_response.tool_result,
tool_name=custom_tool_response.tool_name,
)
elif packet.id == SEARCH_DOC_CONTENT_ID and include_contexts:
yield cast(DanswerContexts, packet.response)
elif isinstance(packet, StreamStopInfo):
pass
@@ -887,30 +845,3 @@ def stream_chat_message(
)
for obj in objects:
yield get_json_line(obj.model_dump())
@log_function_time()
def gather_stream_for_slack(
packets: ChatPacketStream,
) -> ChatDanswerBotResponse:
response = ChatDanswerBotResponse()
answer = ""
for packet in packets:
if isinstance(packet, DanswerAnswerPiece) and packet.answer_piece:
answer += packet.answer_piece
elif isinstance(packet, QADocsResponse):
response.docs = packet
elif isinstance(packet, StreamingError):
response.error_msg = packet.error
elif isinstance(packet, ChatMessageDetail):
response.chat_message_id = packet.message_id
elif isinstance(packet, LLMRelevanceFilterResponse):
response.llm_selected_doc_indices = packet.llm_selected_doc_indices
elif isinstance(packet, AllCitations):
response.citations = packet.citations
if answer:
response.answer = answer
return response

View File

@@ -0,0 +1,115 @@
from typing_extensions import TypedDict # noreorder
from pydantic import BaseModel
from danswer.prompts.chat_tools import DANSWER_TOOL_DESCRIPTION
from danswer.prompts.chat_tools import DANSWER_TOOL_NAME
from danswer.prompts.chat_tools import TOOL_FOLLOWUP
from danswer.prompts.chat_tools import TOOL_LESS_FOLLOWUP
from danswer.prompts.chat_tools import TOOL_LESS_PROMPT
from danswer.prompts.chat_tools import TOOL_TEMPLATE
from danswer.prompts.chat_tools import USER_INPUT
class ToolInfo(TypedDict):
name: str
description: str
class DanswerChatModelOut(BaseModel):
model_raw: str
action: str
action_input: str
def call_tool(
model_actions: DanswerChatModelOut,
) -> str:
raise NotImplementedError("There are no additional tool integrations right now")
def form_user_prompt_text(
query: str,
tool_text: str | None,
hint_text: str | None,
user_input_prompt: str = USER_INPUT,
tool_less_prompt: str = TOOL_LESS_PROMPT,
) -> str:
user_prompt = tool_text or tool_less_prompt
user_prompt += user_input_prompt.format(user_input=query)
if hint_text:
if user_prompt[-1] != "\n":
user_prompt += "\n"
user_prompt += "\nHint: " + hint_text
return user_prompt.strip()
def form_tool_section_text(
tools: list[ToolInfo] | None, retrieval_enabled: bool, template: str = TOOL_TEMPLATE
) -> str | None:
if not tools and not retrieval_enabled:
return None
if retrieval_enabled and tools:
tools.append(
{"name": DANSWER_TOOL_NAME, "description": DANSWER_TOOL_DESCRIPTION}
)
tools_intro = []
if tools:
num_tools = len(tools)
for tool in tools:
description_formatted = tool["description"].replace("\n", " ")
tools_intro.append(f"> {tool['name']}: {description_formatted}")
prefix = "Must be one of " if num_tools > 1 else "Must be "
tools_intro_text = "\n".join(tools_intro)
tool_names_text = prefix + ", ".join([tool["name"] for tool in tools])
else:
return None
return template.format(
tool_overviews=tools_intro_text, tool_names=tool_names_text
).strip()
def form_tool_followup_text(
tool_output: str,
query: str,
hint_text: str | None,
tool_followup_prompt: str = TOOL_FOLLOWUP,
ignore_hint: bool = False,
) -> str:
# If multi-line query, it likely confuses the model more than helps
if "\n" not in query:
optional_reminder = f"\nAs a reminder, my query was: {query}\n"
else:
optional_reminder = ""
if not ignore_hint and hint_text:
hint_text_spaced = f"\nHint: {hint_text}\n"
else:
hint_text_spaced = ""
return tool_followup_prompt.format(
tool_output=tool_output,
optional_reminder=optional_reminder,
hint=hint_text_spaced,
).strip()
def form_tool_less_followup_text(
tool_output: str,
query: str,
hint_text: str | None,
tool_followup_prompt: str = TOOL_LESS_FOLLOWUP,
) -> str:
hint = f"Hint: {hint_text}" if hint_text else ""
return tool_followup_prompt.format(
context_str=tool_output, user_query=query, hint_text=hint
).strip()

View File

@@ -234,7 +234,7 @@ except ValueError:
CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER_DEFAULT
)
CELERY_WORKER_INDEXING_CONCURRENCY_DEFAULT = 3
CELERY_WORKER_INDEXING_CONCURRENCY_DEFAULT = 1
try:
env_value = os.environ.get("CELERY_WORKER_INDEXING_CONCURRENCY")
if not env_value:
@@ -308,22 +308,6 @@ CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD = int(
os.environ.get("CONFLUENCE_CONNECTOR_ATTACHMENT_CHAR_COUNT_THRESHOLD", 200_000)
)
# Due to breakages in the confluence API, the timezone offset must be specified client side
# to match the user's specified timezone.
# The current state of affairs:
# CQL queries are parsed in the user's timezone and cannot be specified in UTC
# no API retrieves the user's timezone
# All data is returned in UTC, so we can't derive the user's timezone from that
# https://community.developer.atlassian.com/t/confluence-cloud-time-zone-get-via-rest-api/35954/16
# https://jira.atlassian.com/browse/CONFCLOUD-69670
# enter as a floating point offset from UTC in hours (-24 < val < 24)
# this will be applied globally, so it probably makes sense to transition this to per
# connector as some point.
CONFLUENCE_TIMEZONE_OFFSET = float(os.environ.get("CONFLUENCE_TIMEZONE_OFFSET", 0.0))
JIRA_CONNECTOR_LABELS_TO_SKIP = [
ignored_tag
for ignored_tag in os.environ.get("JIRA_CONNECTOR_LABELS_TO_SKIP", "").split(",")
@@ -438,9 +422,6 @@ LOG_ALL_MODEL_INTERACTIONS = (
LOG_DANSWER_MODEL_INTERACTIONS = (
os.environ.get("LOG_DANSWER_MODEL_INTERACTIONS", "").lower() == "true"
)
LOG_INDIVIDUAL_MODEL_TOKENS = (
os.environ.get("LOG_INDIVIDUAL_MODEL_TOKENS", "").lower() == "true"
)
# If set to `true` will enable additional logs about Vespa query performance
# (time spent on finding the right docs + time spent fetching summaries from disk)
LOG_VESPA_TIMING_INFORMATION = (
@@ -509,6 +490,10 @@ CONTROL_PLANE_API_BASE_URL = os.environ.get(
# JWT configuration
JWT_ALGORITHM = "HS256"
# Super Users
SUPER_USERS = json.loads(os.environ.get("SUPER_USERS", '["pablo@danswer.ai"]'))
SUPER_CLOUD_API_KEY = os.environ.get("SUPER_CLOUD_API_KEY", "api_key")
#####
# API Key Configs
@@ -522,6 +507,3 @@ API_KEY_HASH_ROUNDS = (
POD_NAME = os.environ.get("POD_NAME")
POD_NAMESPACE = os.environ.get("POD_NAMESPACE")
DEV_MODE = os.environ.get("DEV_MODE", "").lower() == "true"

View File

@@ -1,9 +1,9 @@
import os
PROMPTS_YAML = "./danswer/seeding/prompts.yaml"
PERSONAS_YAML = "./danswer/seeding/personas.yaml"
INPUT_PROMPT_YAML = "./danswer/seeding/input_prompts.yaml"
PROMPTS_YAML = "./danswer/chat/prompts.yaml"
PERSONAS_YAML = "./danswer/chat/personas.yaml"
INPUT_PROMPT_YAML = "./danswer/chat/input_prompts.yaml"
NUM_RETURNED_HITS = 50
# Used for LLM filtering and reranking
@@ -17,6 +17,9 @@ MAX_CHUNKS_FED_TO_CHAT = float(os.environ.get("MAX_CHUNKS_FED_TO_CHAT") or 10.0)
# ~3k input, half for docs, half for chat history + prompts
CHAT_TARGET_CHUNK_PERCENTAGE = 512 * 3 / 3072
# For selecting a different LLM question-answering prompt format
# Valid values: default, cot, weak
QA_PROMPT_OVERRIDE = os.environ.get("QA_PROMPT_OVERRIDE") or None
# 1 / (1 + DOC_TIME_DECAY * doc-age-in-years), set to 0 to have no decay
# Capped in Vespa at 0.5
DOC_TIME_DECAY = float(
@@ -24,6 +27,8 @@ DOC_TIME_DECAY = float(
)
BASE_RECENCY_DECAY = 0.5
FAVOR_RECENT_DECAY_MULTIPLIER = 2.0
# Currently this next one is not configurable via env
DISABLE_LLM_QUERY_ANSWERABILITY = QA_PROMPT_OVERRIDE == "weak"
# For the highest matching base size chunk, how many chunks above and below do we pull in by default
# Note this is not in any of the deployment configs yet
# Currently only applies to search flow not chat

View File

@@ -31,8 +31,6 @@ DISABLED_GEN_AI_MSG = (
"You can still use Danswer as a search engine."
)
DEFAULT_PERSONA_ID = 0
# Postgres connection constants for application_name
POSTGRES_WEB_APP_NAME = "web"
POSTGRES_INDEXER_APP_NAME = "indexer"
@@ -261,32 +259,6 @@ class DanswerCeleryPriority(int, Enum):
LOWEST = auto()
class DanswerCeleryTask:
CHECK_FOR_CONNECTOR_DELETION = "check_for_connector_deletion_task"
CHECK_FOR_VESPA_SYNC_TASK = "check_for_vespa_sync_task"
CHECK_FOR_INDEXING = "check_for_indexing"
CHECK_FOR_PRUNING = "check_for_pruning"
CHECK_FOR_DOC_PERMISSIONS_SYNC = "check_for_doc_permissions_sync"
CHECK_FOR_EXTERNAL_GROUP_SYNC = "check_for_external_group_sync"
MONITOR_VESPA_SYNC = "monitor_vespa_sync"
KOMBU_MESSAGE_CLEANUP_TASK = "kombu_message_cleanup_task"
CONNECTOR_PERMISSION_SYNC_GENERATOR_TASK = (
"connector_permission_sync_generator_task"
)
UPDATE_EXTERNAL_DOCUMENT_PERMISSIONS_TASK = (
"update_external_document_permissions_task"
)
CONNECTOR_EXTERNAL_GROUP_SYNC_GENERATOR_TASK = (
"connector_external_group_sync_generator_task"
)
CONNECTOR_INDEXING_PROXY_TASK = "connector_indexing_proxy_task"
CONNECTOR_PRUNING_GENERATOR_TASK = "connector_pruning_generator_task"
DOCUMENT_BY_CC_PAIR_CLEANUP_TASK = "document_by_cc_pair_cleanup_task"
VESPA_METADATA_SYNC_TASK = "vespa_metadata_sync_task"
CHECK_TTL_MANAGEMENT_TASK = "check_ttl_management_task"
AUTOGENERATE_USAGE_REPORT_TASK = "autogenerate_usage_report_task"
REDIS_SOCKET_KEEPALIVE_OPTIONS = {}
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPINTVL] = 15
REDIS_SOCKET_KEEPALIVE_OPTIONS[socket.TCP_KEEPCNT] = 3

View File

@@ -4,8 +4,11 @@ import os
# Danswer Slack Bot Configs
#####
DANSWER_BOT_NUM_RETRIES = int(os.environ.get("DANSWER_BOT_NUM_RETRIES", "5"))
DANSWER_BOT_ANSWER_GENERATION_TIMEOUT = int(
os.environ.get("DANSWER_BOT_ANSWER_GENERATION_TIMEOUT", "90")
)
# How much of the available input context can be used for thread context
MAX_THREAD_CONTEXT_PERCENTAGE = 512 * 2 / 3072
DANSWER_BOT_TARGET_CHUNK_PERCENTAGE = 512 * 2 / 3072
# Number of docs to display in "Reference Documents"
DANSWER_BOT_NUM_DOCS_TO_DISPLAY = int(
os.environ.get("DANSWER_BOT_NUM_DOCS_TO_DISPLAY", "5")
@@ -44,6 +47,17 @@ DANSWER_BOT_DISPLAY_ERROR_MSGS = os.environ.get(
DANSWER_BOT_RESPOND_EVERY_CHANNEL = (
os.environ.get("DANSWER_BOT_RESPOND_EVERY_CHANNEL", "").lower() == "true"
)
# Add a second LLM call post Answer to verify if the Answer is valid
# Throws out answers that don't directly or fully answer the user query
# This is the default for all DanswerBot channels unless the channel is configured individually
# Set/unset by "Hide Non Answers"
ENABLE_DANSWERBOT_REFLEXION = (
os.environ.get("ENABLE_DANSWERBOT_REFLEXION", "").lower() == "true"
)
# Currently not support chain of thought, probably will add back later
DANSWER_BOT_DISABLE_COT = True
# if set, will default DanswerBot to use quotes and reference documents
DANSWER_BOT_USE_QUOTES = os.environ.get("DANSWER_BOT_USE_QUOTES", "").lower() == "true"
# Maximum Questions Per Minute, Default Uncapped
DANSWER_BOT_MAX_QPM = int(os.environ.get("DANSWER_BOT_MAX_QPM") or 0) or None

View File

@@ -70,9 +70,7 @@ GEN_AI_NUM_RESERVED_OUTPUT_TOKENS = int(
)
# Typically, GenAI models nowadays are at least 4K tokens
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = int(
os.environ.get("GEN_AI_MODEL_FALLBACK_MAX_TOKENS") or 4096
)
GEN_AI_MODEL_FALLBACK_MAX_TOKENS = 4096
# Number of tokens from chat history to include at maximum
# 3000 should be enough context regardless of use, no need to include as much as possible

View File

@@ -11,16 +11,11 @@ Connectors come in 3 different flows:
- Load Connector:
- Bulk indexes documents to reflect a point in time. This type of connector generally works by either pulling all
documents via a connector's API or loads the documents from some sort of a dump file.
- Poll Connector:
- Poll connector:
- Incrementally updates documents based on a provided time range. It is used by the background job to pull the latest
changes and additions since the last round of polling. This connector helps keep the document index up to date
without needing to fetch/embed/index every document which would be too slow to do frequently on large sets of
documents.
- Slim Connector:
- This connector should be a lighter weight method of checking all documents in the source to see if they still exist.
- This connector should be identical to the Poll or Load Connector except that it only fetches the IDs of the documents, not the documents themselves.
- This is used by our pruning job which removes old documents from the index.
- The optional start and end datetimes can be ignored.
- Event Based connectors:
- Connectors that listen to events and update documents accordingly.
- Currently not used by the background job, this exists for future design purposes.
@@ -31,14 +26,8 @@ Refer to [interfaces.py](https://github.com/danswer-ai/danswer/blob/main/backend
and this first contributor created Pull Request for a new connector (Shoutout to Dan Brown):
[Reference Pull Request](https://github.com/danswer-ai/danswer/pull/139)
For implementing a Slim Connector, refer to the comments in this PR:
[Slim Connector PR](https://github.com/danswer-ai/danswer/pull/3303/files)
All new connectors should have tests added to the `backend/tests/daily/connectors` directory. Refer to the above PR for an example of adding tests for a new connector.
#### Implementing the new Connector
The connector must subclass one or more of LoadConnector, PollConnector, SlimConnector, or EventConnector.
The connector must subclass one or more of LoadConnector, PollConnector, or EventConnector.
The `__init__` should take arguments for configuring what documents the connector will and where it finds those
documents. For example, if you have a wiki site, it may include the configuration for the team, topic, folder, etc. of

View File

@@ -1,11 +1,9 @@
from datetime import datetime
from datetime import timedelta
from datetime import timezone
from typing import Any
from urllib.parse import quote
from danswer.configs.app_configs import CONFLUENCE_CONNECTOR_LABELS_TO_SKIP
from danswer.configs.app_configs import CONFLUENCE_TIMEZONE_OFFSET
from danswer.configs.app_configs import CONTINUE_ON_CONNECTOR_FAILURE
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
@@ -53,8 +51,6 @@ _RESTRICTIONS_EXPANSION_FIELDS = [
"restrictions.read.restrictions.group",
]
_SLIM_DOC_BATCH_SIZE = 5000
class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
def __init__(
@@ -71,7 +67,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
# skip it. This is generally used to avoid indexing extra sensitive
# pages.
labels_to_skip: list[str] = CONFLUENCE_CONNECTOR_LABELS_TO_SKIP,
timezone_offset: float = CONFLUENCE_TIMEZONE_OFFSET,
) -> None:
self.batch_size = batch_size
self.continue_on_failure = continue_on_failure
@@ -107,8 +102,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
)
self.cql_label_filter = f" and label not in ({comma_separated_labels})"
self.timezone: timezone = timezone(offset=timedelta(hours=timezone_offset))
@property
def confluence_client(self) -> OnyxConfluence:
if self._confluence_client is None:
@@ -209,14 +202,12 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
confluence_page_ids: list[str] = []
page_query = self.cql_page_query + self.cql_label_filter + self.cql_time_filter
logger.debug(f"page_query: {page_query}")
# Fetch pages as Documents
for page in self.confluence_client.paginated_cql_retrieval(
cql=page_query,
expand=",".join(_PAGE_EXPANSION_FIELDS),
limit=self.batch_size,
):
logger.debug(f"_fetch_document_batches: {page['id']}")
confluence_page_ids.append(page["id"])
doc = self._convert_object_to_document(page)
if doc is not None:
@@ -249,10 +240,10 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
def poll_source(self, start: float, end: float) -> GenerateDocumentsOutput:
# Add time filters
formatted_start_time = datetime.fromtimestamp(start, tz=self.timezone).strftime(
formatted_start_time = datetime.fromtimestamp(start, tz=timezone.utc).strftime(
"%Y-%m-%d %H:%M"
)
formatted_end_time = datetime.fromtimestamp(end, tz=self.timezone).strftime(
formatted_end_time = datetime.fromtimestamp(end, tz=timezone.utc).strftime(
"%Y-%m-%d %H:%M"
)
self.cql_time_filter = f" and lastmodified >= '{formatted_start_time}'"
@@ -272,7 +263,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
for page in self.confluence_client.cql_paginate_all_expansions(
cql=page_query,
expand=restrictions_expand,
limit=_SLIM_DOC_BATCH_SIZE,
):
# If the page has restrictions, add them to the perm_sync_data
# These will be used by doc_sync.py to sync permissions
@@ -296,7 +286,6 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
for attachment in self.confluence_client.cql_paginate_all_expansions(
cql=attachment_cql,
expand=restrictions_expand,
limit=_SLIM_DOC_BATCH_SIZE,
):
doc_metadata_list.append(
SlimDocument(
@@ -308,8 +297,5 @@ class ConfluenceConnector(LoadConnector, PollConnector, SlimConnector):
perm_sync_data=perm_sync_data,
)
)
if len(doc_metadata_list) > _SLIM_DOC_BATCH_SIZE:
yield doc_metadata_list[:_SLIM_DOC_BATCH_SIZE]
doc_metadata_list = doc_metadata_list[_SLIM_DOC_BATCH_SIZE:]
yield doc_metadata_list
yield doc_metadata_list
doc_metadata_list = []

View File

@@ -120,7 +120,7 @@ def handle_confluence_rate_limit(confluence_call: F) -> F:
return cast(F, wrapped_call)
_DEFAULT_PAGINATION_LIMIT = 1000
_DEFAULT_PAGINATION_LIMIT = 100
class OnyxConfluence(Confluence):
@@ -134,32 +134,6 @@ class OnyxConfluence(Confluence):
super(OnyxConfluence, self).__init__(url, *args, **kwargs)
self._wrap_methods()
def get_current_user(self, expand: str | None = None) -> Any:
"""
Implements a method that isn't in the third party client.
Get information about the current user
:param expand: OPTIONAL expand for get status of user.
Possible param is "status". Results are "Active, Deactivated"
:return: Returns the user details
"""
from atlassian.errors import ApiPermissionError # type:ignore
url = "rest/api/user/current"
params = {}
if expand:
params["expand"] = expand
try:
response = self.get(url, params=params)
except HTTPError as e:
if e.response.status_code == 403:
raise ApiPermissionError(
"The calling user does not have permission", reason=e
)
raise
return response
def _wrap_methods(self) -> None:
"""
For each attribute that is callable (i.e., a method) and doesn't start with an underscore,
@@ -320,24 +294,14 @@ def _validate_connector_configuration(
wiki_base: str,
) -> None:
# test connection with direct client, no retries
confluence_client_with_minimal_retries = Confluence(
confluence_client_without_retries = Confluence(
api_version="cloud" if is_cloud else "latest",
url=wiki_base.rstrip("/"),
username=credentials["confluence_username"] if is_cloud else None,
password=credentials["confluence_access_token"] if is_cloud else None,
token=credentials["confluence_access_token"] if not is_cloud else None,
backoff_and_retry=True,
max_backoff_retries=6,
max_backoff_seconds=10,
)
spaces = confluence_client_with_minimal_retries.get_all_spaces(limit=1)
# uncomment the following for testing
# the following is an attempt to retrieve the user's timezone
# Unfornately, all data is returned in UTC regardless of the user's time zone
# even tho CQL parses incoming times based on the user's time zone
# space_key = spaces["results"][0]["key"]
# space_details = confluence_client_with_minimal_retries.cql(f"space.key={space_key}+AND+type=space")
spaces = confluence_client_without_retries.get_all_spaces(limit=1)
if not spaces:
raise RuntimeError(

View File

@@ -32,11 +32,7 @@ def get_user_email_from_username__server(
response = confluence_client.get_mobile_parameters(user_name)
email = response.get("email")
except Exception:
# For now, we'll just return a string that indicates failure
# We may want to revert to returning None in the future
# email = None
email = f"FAILED TO GET CONFLUENCE EMAIL FOR {user_name}"
logger.warning(f"failed to get confluence email for {user_name}")
email = None
_USER_EMAIL_CACHE[user_name] = email
return _USER_EMAIL_CACHE[user_name]

View File

@@ -12,15 +12,12 @@ from dateutil import parser
from danswer.configs.app_configs import INDEX_BATCH_SIZE
from danswer.configs.constants import DocumentSource
from danswer.connectors.interfaces import GenerateDocumentsOutput
from danswer.connectors.interfaces import GenerateSlimDocumentOutput
from danswer.connectors.interfaces import LoadConnector
from danswer.connectors.interfaces import PollConnector
from danswer.connectors.interfaces import SecondsSinceUnixEpoch
from danswer.connectors.interfaces import SlimConnector
from danswer.connectors.models import ConnectorMissingCredentialError
from danswer.connectors.models import Document
from danswer.connectors.models import Section
from danswer.connectors.models import SlimDocument
from danswer.utils.logger import setup_logger
@@ -31,8 +28,6 @@ logger = setup_logger()
SLAB_GRAPHQL_MAX_TRIES = 10
SLAB_API_URL = "https://api.slab.com/v1/graphql"
_SLIM_BATCH_SIZE = 1000
def run_graphql_request(
graphql_query: dict, bot_token: str, max_tries: int = SLAB_GRAPHQL_MAX_TRIES
@@ -163,26 +158,21 @@ def get_slab_url_from_title_id(base_url: str, title: str, page_id: str) -> str:
return urljoin(urljoin(base_url, "posts/"), url_id)
class SlabConnector(LoadConnector, PollConnector, SlimConnector):
class SlabConnector(LoadConnector, PollConnector):
def __init__(
self,
base_url: str,
batch_size: int = INDEX_BATCH_SIZE,
slab_bot_token: str | None = None,
) -> None:
self.base_url = base_url
self.batch_size = batch_size
self._slab_bot_token: str | None = None
self.slab_bot_token = slab_bot_token
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self._slab_bot_token = credentials["slab_bot_token"]
self.slab_bot_token = credentials["slab_bot_token"]
return None
@property
def slab_bot_token(self) -> str:
if self._slab_bot_token is None:
raise ConnectorMissingCredentialError("Slab")
return self._slab_bot_token
def _iterate_posts(
self, time_filter: Callable[[datetime], bool] | None = None
) -> GenerateDocumentsOutput:
@@ -237,21 +227,3 @@ class SlabConnector(LoadConnector, PollConnector, SlimConnector):
yield from self._iterate_posts(
time_filter=lambda t: start_time <= t <= end_time
)
def retrieve_all_slim_documents(
self,
start: SecondsSinceUnixEpoch | None = None,
end: SecondsSinceUnixEpoch | None = None,
) -> GenerateSlimDocumentOutput:
slim_doc_batch: list[SlimDocument] = []
for post_id in get_all_post_ids(self.slab_bot_token):
slim_doc_batch.append(
SlimDocument(
id=post_id,
)
)
if len(slim_doc_batch) >= _SLIM_BATCH_SIZE:
yield slim_doc_batch
slim_doc_batch = []
if slim_doc_batch:
yield slim_doc_batch

View File

@@ -102,21 +102,13 @@ def _get_tickets(
def _fetch_author(client: ZendeskClient, author_id: str) -> BasicExpertInfo | None:
# Skip fetching if author_id is invalid
if not author_id or author_id == "-1":
return None
try:
author_data = client.make_request(f"users/{author_id}", {})
user = author_data.get("user")
return (
BasicExpertInfo(display_name=user.get("name"), email=user.get("email"))
if user and user.get("name") and user.get("email")
else None
)
except requests.exceptions.HTTPError:
# Handle any API errors gracefully
return None
author_data = client.make_request(f"users/{author_id}", {})
user = author_data.get("user")
return (
BasicExpertInfo(display_name=user.get("name"), email=user.get("email"))
if user and user.get("name") and user.get("email")
else None
)
def _article_to_document(

View File

@@ -16,31 +16,24 @@ from slack_sdk.models.blocks import SectionBlock
from slack_sdk.models.blocks.basic_components import MarkdownTextObject
from slack_sdk.models.blocks.block_elements import ImageElement
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.models import DanswerQuote
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.app_configs import WEB_DOMAIN
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import SearchFeedbackType
from danswer.configs.danswerbot_configs import DANSWER_BOT_NUM_DOCS_TO_DISPLAY
from danswer.context.search.models import SavedSearchDoc
from danswer.danswerbot.slack.constants import CONTINUE_IN_WEB_UI_ACTION_ID
from danswer.danswerbot.slack.constants import DISLIKE_BLOCK_ACTION_ID
from danswer.danswerbot.slack.constants import FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_ACTION_ID
from danswer.danswerbot.slack.constants import FOLLOWUP_BUTTON_RESOLVED_ACTION_ID
from danswer.danswerbot.slack.constants import IMMEDIATE_RESOLVED_BUTTON_ACTION_ID
from danswer.danswerbot.slack.constants import LIKE_BLOCK_ACTION_ID
from danswer.danswerbot.slack.formatting import format_slack_message
from danswer.danswerbot.slack.icons import source_to_github_img_link
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import build_continue_in_web_ui_id
from danswer.danswerbot.slack.utils import build_feedback_id
from danswer.danswerbot.slack.utils import remove_slack_text_interactions
from danswer.danswerbot.slack.utils import translate_vespa_highlight_to_slack
from danswer.db.chat import get_chat_session_by_message_id
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import ChannelConfig
from danswer.search.models import SavedSearchDoc
from danswer.utils.text_processing import decode_escapes
from danswer.utils.text_processing import replace_whitespaces_w_space
_MAX_BLURB_LEN = 45
@@ -108,12 +101,12 @@ def _split_text(text: str, limit: int = 3000) -> list[str]:
return chunks
def _clean_markdown_link_text(text: str) -> str:
def clean_markdown_link_text(text: str) -> str:
# Remove any newlines within the text
return text.replace("\n", " ").strip()
def _build_qa_feedback_block(
def build_qa_feedback_block(
message_id: int, feedback_reminder_id: str | None = None
) -> Block:
return ActionsBlock(
@@ -122,6 +115,7 @@ def _build_qa_feedback_block(
ButtonElement(
action_id=LIKE_BLOCK_ACTION_ID,
text="👍 Helpful",
style="primary",
value=feedback_reminder_id,
),
ButtonElement(
@@ -161,7 +155,7 @@ def get_document_feedback_blocks() -> Block:
)
def _build_doc_feedback_block(
def build_doc_feedback_block(
message_id: int,
document_id: str,
document_rank: int,
@@ -188,7 +182,7 @@ def get_restate_blocks(
]
def _build_documents_blocks(
def build_documents_blocks(
documents: list[SavedSearchDoc],
message_id: int | None,
num_docs_to_display: int = DANSWER_BOT_NUM_DOCS_TO_DISPLAY,
@@ -229,7 +223,7 @@ def _build_documents_blocks(
feedback: ButtonElement | dict = {}
if message_id is not None:
feedback = _build_doc_feedback_block(
feedback = build_doc_feedback_block(
message_id=message_id,
document_id=d.document_id,
document_rank=rank,
@@ -247,7 +241,7 @@ def _build_documents_blocks(
return section_blocks
def _build_sources_blocks(
def build_sources_blocks(
cited_documents: list[tuple[int, SavedSearchDoc]],
num_docs_to_display: int = DANSWER_BOT_NUM_DOCS_TO_DISPLAY,
) -> list[Block]:
@@ -292,7 +286,7 @@ def _build_sources_blocks(
+ ([days_ago_str] if days_ago_str else [])
)
document_title = _clean_markdown_link_text(doc_sem_id)
document_title = clean_markdown_link_text(doc_sem_id)
img_link = source_to_github_img_link(d.source_type)
section_blocks.append(
@@ -323,105 +317,106 @@ def _build_sources_blocks(
return section_blocks
def _priority_ordered_documents_blocks(
answer: ChatDanswerBotResponse,
def build_quotes_block(
quotes: list[DanswerQuote],
) -> list[Block]:
docs_response = answer.docs if answer.docs else None
top_docs = docs_response.top_documents if docs_response else []
llm_doc_inds = answer.llm_selected_doc_indices or []
llm_docs = [top_docs[i] for i in llm_doc_inds]
remaining_docs = [
doc for idx, doc in enumerate(top_docs) if idx not in llm_doc_inds
]
priority_ordered_docs = llm_docs + remaining_docs
if not priority_ordered_docs:
quote_lines: list[str] = []
doc_to_quotes: dict[str, list[str]] = {}
doc_to_link: dict[str, str] = {}
doc_to_sem_id: dict[str, str] = {}
for q in quotes:
quote = q.quote
doc_id = q.document_id
doc_link = q.link
doc_name = q.semantic_identifier
if doc_link and doc_name and doc_id and quote:
if doc_id not in doc_to_quotes:
doc_to_quotes[doc_id] = [quote]
doc_to_link[doc_id] = doc_link
doc_to_sem_id[doc_id] = (
doc_name
if q.source_type != DocumentSource.SLACK.value
else "#" + doc_name
)
else:
doc_to_quotes[doc_id].append(quote)
for doc_id, quote_strs in doc_to_quotes.items():
quotes_str_clean = [
replace_whitespaces_w_space(q_str).strip() for q_str in quote_strs
]
longest_quotes = sorted(quotes_str_clean, key=len, reverse=True)[:5]
single_quote_str = "\n".join([f"```{q_str}```" for q_str in longest_quotes])
link = doc_to_link[doc_id]
sem_id = doc_to_sem_id[doc_id]
quote_lines.append(
f"<{link}|{sem_id}>:\n{remove_slack_text_interactions(single_quote_str)}"
)
if not doc_to_quotes:
return []
document_blocks = _build_documents_blocks(
documents=priority_ordered_docs,
message_id=answer.chat_message_id,
)
if document_blocks:
document_blocks = [DividerBlock()] + document_blocks
return document_blocks
return [SectionBlock(text="*Relevant Snippets*\n" + "\n".join(quote_lines))]
def _build_citations_blocks(
answer: ChatDanswerBotResponse,
) -> list[Block]:
docs_response = answer.docs if answer.docs else None
top_docs = docs_response.top_documents if docs_response else []
citations = answer.citations or []
cited_docs = []
for citation in citations:
matching_doc = next(
(d for d in top_docs if d.document_id == citation.document_id),
None,
)
if matching_doc:
cited_docs.append((citation.citation_num, matching_doc))
cited_docs.sort()
citations_block = _build_sources_blocks(cited_documents=cited_docs)
return citations_block
def _build_qa_response_blocks(
answer: ChatDanswerBotResponse,
def build_qa_response_blocks(
message_id: int | None,
answer: str | None,
quotes: list[DanswerQuote] | None,
source_filters: list[DocumentSource] | None,
time_cutoff: datetime | None,
favor_recent: bool,
skip_quotes: bool = False,
process_message_for_citations: bool = False,
skip_ai_feedback: bool = False,
feedback_reminder_id: str | None = None,
) -> list[Block]:
retrieval_info = answer.docs
if not retrieval_info:
# This should not happen, even with no docs retrieved, there is still info returned
raise RuntimeError("Failed to retrieve docs, cannot answer question.")
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
if DISABLE_GENERATIVE_AI:
return []
quotes_blocks: list[Block] = []
filter_block: Block | None = None
if (
retrieval_info.applied_time_cutoff
or retrieval_info.recency_bias_multiplier > 1
or retrieval_info.applied_source_filters
):
if time_cutoff or favor_recent or source_filters:
filter_text = "Filters: "
if retrieval_info.applied_source_filters:
sources_str = ", ".join(
[s.value for s in retrieval_info.applied_source_filters]
)
if source_filters:
sources_str = ", ".join([s.value for s in source_filters])
filter_text += f"`Sources in [{sources_str}]`"
if (
retrieval_info.applied_time_cutoff
or retrieval_info.recency_bias_multiplier > 1
):
if time_cutoff or favor_recent:
filter_text += " and "
if retrieval_info.applied_time_cutoff is not None:
time_str = retrieval_info.applied_time_cutoff.strftime("%b %d, %Y")
if time_cutoff is not None:
time_str = time_cutoff.strftime("%b %d, %Y")
filter_text += f"`Docs Updated >= {time_str}` "
if retrieval_info.recency_bias_multiplier > 1:
if retrieval_info.applied_time_cutoff is not None:
if favor_recent:
if time_cutoff is not None:
filter_text += "+ "
filter_text += "`Prioritize Recently Updated Docs`"
filter_block = SectionBlock(text=f"_{filter_text}_")
if not formatted_answer:
if not answer:
answer_blocks = [
SectionBlock(
text="Sorry, I was unable to find an answer, but I did find some potentially relevant docs 🤓"
)
]
else:
answer_processed = decode_escapes(
remove_slack_text_interactions(formatted_answer)
)
answer_processed = decode_escapes(remove_slack_text_interactions(answer))
if process_message_for_citations:
answer_processed = _process_citations_for_slack(answer_processed)
answer_blocks = [
SectionBlock(text=text) for text in _split_text(answer_processed)
]
if quotes:
quotes_blocks = build_quotes_block(quotes)
# if no quotes OR `build_quotes_block()` did not give back any blocks
if not quotes_blocks:
quotes_blocks = [
SectionBlock(
text="*Warning*: no sources were quoted for this answer, so it may be unreliable 😔"
)
]
response_blocks: list[Block] = []
@@ -430,34 +425,20 @@ def _build_qa_response_blocks(
response_blocks.extend(answer_blocks)
if message_id is not None and not skip_ai_feedback:
response_blocks.append(
build_qa_feedback_block(
message_id=message_id, feedback_reminder_id=feedback_reminder_id
)
)
if not skip_quotes:
response_blocks.extend(quotes_blocks)
return response_blocks
def _build_continue_in_web_ui_block(
tenant_id: str | None,
message_id: int | None,
) -> Block:
if message_id is None:
raise ValueError("No message id provided to build continue in web ui block")
with get_session_with_tenant(tenant_id) as db_session:
chat_session = get_chat_session_by_message_id(
db_session=db_session,
message_id=message_id,
)
return ActionsBlock(
block_id=build_continue_in_web_ui_id(message_id),
elements=[
ButtonElement(
action_id=CONTINUE_IN_WEB_UI_ACTION_ID,
text="Continue Chat in Danswer!",
style="primary",
url=f"{WEB_DOMAIN}/chat?slackChatId={chat_session.id}",
),
],
)
def _build_follow_up_block(message_id: int | None) -> ActionsBlock:
def build_follow_up_block(message_id: int | None) -> ActionsBlock:
return ActionsBlock(
block_id=build_feedback_id(message_id) if message_id is not None else None,
elements=[
@@ -502,75 +483,3 @@ def build_follow_up_resolved_blocks(
]
)
return [text_block, button_block]
def build_slack_response_blocks(
answer: ChatDanswerBotResponse,
tenant_id: str | None,
message_info: SlackMessageInfo,
channel_conf: ChannelConfig | None,
use_citations: bool,
feedback_reminder_id: str | None,
skip_ai_feedback: bool = False,
) -> list[Block]:
"""
This function is a top level function that builds all the blocks for the Slack response.
It also handles combining all the blocks together.
"""
# If called with the DanswerBot slash command, the question is lost so we have to reshow it
restate_question_block = get_restate_blocks(
message_info.thread_messages[-1].message, message_info.is_bot_msg
)
answer_blocks = _build_qa_response_blocks(
answer=answer,
process_message_for_citations=use_citations,
)
web_follow_up_block = []
if channel_conf and channel_conf.get("show_continue_in_web_ui"):
web_follow_up_block.append(
_build_continue_in_web_ui_block(
tenant_id=tenant_id,
message_id=answer.chat_message_id,
)
)
follow_up_block = []
if channel_conf and channel_conf.get("follow_up_tags") is not None:
follow_up_block.append(
_build_follow_up_block(message_id=answer.chat_message_id)
)
ai_feedback_block = []
if answer.chat_message_id is not None and not skip_ai_feedback:
ai_feedback_block.append(
_build_qa_feedback_block(
message_id=answer.chat_message_id,
feedback_reminder_id=feedback_reminder_id,
)
)
citations_blocks = []
document_blocks = []
if use_citations and answer.citations:
citations_blocks = _build_citations_blocks(answer)
else:
document_blocks = _priority_ordered_documents_blocks(answer)
citations_divider = [DividerBlock()] if citations_blocks else []
buttons_divider = [DividerBlock()] if web_follow_up_block or follow_up_block else []
all_blocks = (
restate_question_block
+ answer_blocks
+ ai_feedback_block
+ citations_divider
+ citations_blocks
+ document_blocks
+ buttons_divider
+ web_follow_up_block
+ follow_up_block
)
return all_blocks

View File

@@ -2,7 +2,6 @@ from enum import Enum
LIKE_BLOCK_ACTION_ID = "feedback-like"
DISLIKE_BLOCK_ACTION_ID = "feedback-dislike"
CONTINUE_IN_WEB_UI_ACTION_ID = "continue-in-web-ui"
FEEDBACK_DOC_BUTTON_BLOCK_ACTION_ID = "feedback-doc-button"
IMMEDIATE_RESOLVED_BUTTON_ACTION_ID = "immediate-resolved-button"
FOLLOWUP_BUTTON_ACTION_ID = "followup-button"

View File

@@ -28,7 +28,7 @@ from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import build_feedback_id
from danswer.danswerbot.slack.utils import decompose_action_id
from danswer.danswerbot.slack.utils import fetch_group_ids_from_names
from danswer.danswerbot.slack.utils import fetch_slack_user_ids_from_emails
from danswer.danswerbot.slack.utils import fetch_user_ids_from_emails
from danswer.danswerbot.slack.utils import get_channel_name_from_id
from danswer.danswerbot.slack.utils import get_feedback_visibility
from danswer.danswerbot.slack.utils import read_slack_thread
@@ -267,7 +267,7 @@ def handle_followup_button(
tag_names = slack_channel_config.channel_config.get("follow_up_tags")
remaining = None
if tag_names:
tag_ids, remaining = fetch_slack_user_ids_from_emails(
tag_ids, remaining = fetch_user_ids_from_emails(
tag_names, client.web_client
)
if remaining:

View File

@@ -13,7 +13,7 @@ from danswer.danswerbot.slack.handlers.handle_standard_answers import (
handle_standard_answers,
)
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import fetch_slack_user_ids_from_emails
from danswer.danswerbot.slack.utils import fetch_user_ids_from_emails
from danswer.danswerbot.slack.utils import fetch_user_ids_from_groups
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.danswerbot.slack.utils import slack_usage_report
@@ -184,7 +184,7 @@ def handle_message(
send_to: list[str] | None = None
missing_users: list[str] | None = None
if respond_member_group_list:
send_to, missing_ids = fetch_slack_user_ids_from_emails(
send_to, missing_ids = fetch_user_ids_from_emails(
respond_member_group_list, client
)

View File

@@ -1,43 +1,60 @@
import functools
from collections.abc import Callable
from typing import Any
from typing import cast
from typing import Optional
from typing import TypeVar
from retry import retry
from slack_sdk import WebClient
from slack_sdk.models.blocks import DividerBlock
from slack_sdk.models.blocks import SectionBlock
from danswer.chat.chat_utils import prepare_chat_message_request
from danswer.chat.models import ChatDanswerBotResponse
from danswer.chat.process_message import gather_stream_for_slack
from danswer.chat.process_message import stream_chat_message_objects
from danswer.configs.app_configs import DISABLE_GENERATIVE_AI
from danswer.configs.constants import DEFAULT_PERSONA_ID
from danswer.configs.danswerbot_configs import DANSWER_BOT_ANSWER_GENERATION_TIMEOUT
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_COT
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER
from danswer.configs.danswerbot_configs import DANSWER_BOT_DISPLAY_ERROR_MSGS
from danswer.configs.danswerbot_configs import DANSWER_BOT_NUM_RETRIES
from danswer.configs.danswerbot_configs import DANSWER_BOT_TARGET_CHUNK_PERCENTAGE
from danswer.configs.danswerbot_configs import DANSWER_BOT_USE_QUOTES
from danswer.configs.danswerbot_configs import DANSWER_FOLLOWUP_EMOJI
from danswer.configs.danswerbot_configs import DANSWER_REACT_EMOJI
from danswer.configs.danswerbot_configs import MAX_THREAD_CONTEXT_PERCENTAGE
from danswer.context.search.enums import OptionalSearchSetting
from danswer.context.search.models import BaseFilters
from danswer.context.search.models import RetrievalDetails
from danswer.danswerbot.slack.blocks import build_slack_response_blocks
from danswer.configs.danswerbot_configs import ENABLE_DANSWERBOT_REFLEXION
from danswer.danswerbot.slack.blocks import build_documents_blocks
from danswer.danswerbot.slack.blocks import build_follow_up_block
from danswer.danswerbot.slack.blocks import build_qa_response_blocks
from danswer.danswerbot.slack.blocks import build_sources_blocks
from danswer.danswerbot.slack.blocks import get_restate_blocks
from danswer.danswerbot.slack.formatting import format_slack_message
from danswer.danswerbot.slack.handlers.utils import send_team_member_message
from danswer.danswerbot.slack.handlers.utils import slackify_message_thread
from danswer.danswerbot.slack.models import SlackMessageInfo
from danswer.danswerbot.slack.utils import respond_in_thread
from danswer.danswerbot.slack.utils import SlackRateLimiter
from danswer.danswerbot.slack.utils import update_emote_react
from danswer.db.engine import get_session_with_tenant
from danswer.db.models import Persona
from danswer.db.models import SlackBotResponseType
from danswer.db.models import SlackChannelConfig
from danswer.db.models import User
from danswer.db.persona import get_persona_by_id
from danswer.db.persona import fetch_persona_by_id
from danswer.db.search_settings import get_current_search_settings
from danswer.db.users import get_user_by_email
from danswer.server.query_and_chat.models import CreateChatMessageRequest
from danswer.llm.answering.prompts.citations_prompt import (
compute_max_document_tokens_for_persona,
)
from danswer.llm.factory import get_llms_for_persona
from danswer.llm.utils import check_number_of_tokens
from danswer.llm.utils import get_max_input_tokens
from danswer.one_shot_answer.answer_question import get_search_answer
from danswer.one_shot_answer.models import DirectQARequest
from danswer.one_shot_answer.models import OneShotQAResponse
from danswer.search.enums import OptionalSearchSetting
from danswer.search.models import BaseFilters
from danswer.search.models import RerankingDetails
from danswer.search.models import RetrievalDetails
from danswer.utils.logger import DanswerLoggingAdapter
srl = SlackRateLimiter()
RT = TypeVar("RT") # return type
@@ -72,14 +89,16 @@ def handle_regular_answer(
feedback_reminder_id: str | None,
tenant_id: str | None,
num_retries: int = DANSWER_BOT_NUM_RETRIES,
thread_context_percent: float = MAX_THREAD_CONTEXT_PERCENTAGE,
answer_generation_timeout: int = DANSWER_BOT_ANSWER_GENERATION_TIMEOUT,
thread_context_percent: float = DANSWER_BOT_TARGET_CHUNK_PERCENTAGE,
should_respond_with_error_msgs: bool = DANSWER_BOT_DISPLAY_ERROR_MSGS,
disable_docs_only_answer: bool = DANSWER_BOT_DISABLE_DOCS_ONLY_ANSWER,
disable_cot: bool = DANSWER_BOT_DISABLE_COT,
reflexion: bool = ENABLE_DANSWERBOT_REFLEXION,
) -> bool:
channel_conf = slack_channel_config.channel_config if slack_channel_config else None
messages = message_info.thread_messages
message_ts_to_respond_to = message_info.msg_to_respond
is_bot_msg = message_info.is_bot_msg
user = None
@@ -89,18 +108,9 @@ def handle_regular_answer(
user = get_user_by_email(message_info.email, db_session)
document_set_names: list[str] | None = None
prompt = None
# If no persona is specified, use the default search based persona
# This way slack flow always has a persona
persona = slack_channel_config.persona if slack_channel_config else None
if not persona:
with get_session_with_tenant(tenant_id) as db_session:
persona = get_persona_by_id(DEFAULT_PERSONA_ID, user, db_session)
document_set_names = [
document_set.name for document_set in persona.document_sets
]
prompt = persona.prompts[0] if persona.prompts else None
else:
prompt = None
if persona:
document_set_names = [
document_set.name for document_set in persona.document_sets
]
@@ -108,26 +118,6 @@ def handle_regular_answer(
should_respond_even_with_no_docs = persona.num_chunks == 0 if persona else False
# TODO: Add in support for Slack to truncate messages based on max LLM context
# llm, _ = get_llms_for_persona(persona)
# llm_tokenizer = get_tokenizer(
# model_name=llm.config.model_name,
# provider_type=llm.config.model_provider,
# )
# # In cases of threads, split the available tokens between docs and thread context
# input_tokens = get_max_input_tokens(
# model_name=llm.config.model_name,
# model_provider=llm.config.model_provider,
# )
# max_history_tokens = int(input_tokens * thread_context_percent)
# combined_message = combine_message_thread(
# messages, max_tokens=max_history_tokens, llm_tokenizer=llm_tokenizer
# )
combined_message = slackify_message_thread(messages)
bypass_acl = False
if (
slack_channel_config
@@ -138,6 +128,13 @@ def handle_regular_answer(
# with non-public document sets
bypass_acl = True
# figure out if we want to use citations or quotes
use_citations = (
not DANSWER_BOT_USE_QUOTES
if slack_channel_config is None
else slack_channel_config.response_type == SlackBotResponseType.CITATIONS
)
if not message_ts_to_respond_to and not is_bot_msg:
# if the message is not "/danswer" command, then it should have a message ts to respond to
raise RuntimeError(
@@ -150,23 +147,75 @@ def handle_regular_answer(
backoff=2,
)
@rate_limits(client=client, channel=channel, thread_ts=message_ts_to_respond_to)
def _get_slack_answer(
new_message_request: CreateChatMessageRequest, danswer_user: User | None
) -> ChatDanswerBotResponse:
def _get_answer(new_message_request: DirectQARequest) -> OneShotQAResponse | None:
max_document_tokens: int | None = None
max_history_tokens: int | None = None
with get_session_with_tenant(tenant_id) as db_session:
packets = stream_chat_message_objects(
new_msg_req=new_message_request,
user=danswer_user,
if len(new_message_request.messages) > 1:
if new_message_request.persona_config:
raise RuntimeError("Slack bot does not support persona config")
elif new_message_request.persona_id is not None:
persona = cast(
Persona,
fetch_persona_by_id(
db_session,
new_message_request.persona_id,
user=None,
get_editable=False,
),
)
else:
raise RuntimeError(
"No persona id provided, this should never happen."
)
llm, _ = get_llms_for_persona(persona)
# In cases of threads, split the available tokens between docs and thread context
input_tokens = get_max_input_tokens(
model_name=llm.config.model_name,
model_provider=llm.config.model_provider,
)
max_history_tokens = int(input_tokens * thread_context_percent)
remaining_tokens = input_tokens - max_history_tokens
query_text = new_message_request.messages[0].message
if persona:
max_document_tokens = compute_max_document_tokens_for_persona(
persona=persona,
actual_user_input=query_text,
max_llm_token_override=remaining_tokens,
)
else:
max_document_tokens = (
remaining_tokens
- 512 # Needs to be more than any of the QA prompts
- check_number_of_tokens(query_text)
)
if DISABLE_GENERATIVE_AI:
return None
# This also handles creating the query event in postgres
answer = get_search_answer(
query_req=new_message_request,
user=user,
max_document_tokens=max_document_tokens,
max_history_tokens=max_history_tokens,
db_session=db_session,
answer_generation_timeout=answer_generation_timeout,
enable_reflexion=reflexion,
bypass_acl=bypass_acl,
use_citations=use_citations,
danswerbot_flow=True,
)
answer = gather_stream_for_slack(packets)
if answer.error_msg:
raise RuntimeError(answer.error_msg)
return answer
if not answer.error_msg:
return answer
else:
raise RuntimeError(answer.error_msg)
try:
# By leaving time_cutoff and favor_recent as None, and setting enable_auto_detect_filters
@@ -196,24 +245,26 @@ def handle_regular_answer(
enable_auto_detect_filters=auto_detect_filters,
)
# Always apply reranking settings if it exists, this is the non-streaming flow
with get_session_with_tenant(tenant_id) as db_session:
answer_request = prepare_chat_message_request(
message_text=combined_message,
user=user,
persona_id=persona.id,
# This is not used in the Slack flow, only in the answer API
persona_override_config=None,
prompt=prompt,
message_ts_to_respond_to=message_ts_to_respond_to,
retrieval_details=retrieval_details,
rerank_settings=None, # Rerank customization supported in Slack flow
db_session=db_session,
saved_search_settings = get_current_search_settings(db_session)
# This includes throwing out answer via reflexion
answer = _get_answer(
DirectQARequest(
messages=messages,
multilingual_query_expansion=saved_search_settings.multilingual_expansion
if saved_search_settings
else None,
prompt_id=prompt.id if prompt else None,
persona_id=persona.id if persona is not None else 0,
retrieval_options=retrieval_details,
chain_of_thought=not disable_cot,
rerank_settings=RerankingDetails.from_db_model(saved_search_settings)
if saved_search_settings
else None,
)
answer = _get_slack_answer(
new_message_request=answer_request, danswer_user=user
)
except Exception as e:
logger.exception(
f"Unable to process message - did not successfully answer "
@@ -314,7 +365,7 @@ def handle_regular_answer(
top_docs = retrieval_info.top_documents
if not top_docs and not should_respond_even_with_no_docs:
logger.error(
f"Unable to answer question: '{combined_message}' - no documents found"
f"Unable to answer question: '{answer.rephrase}' - no documents found"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
@@ -335,18 +386,18 @@ def handle_regular_answer(
)
return True
only_respond_if_citations = (
only_respond_with_citations_or_quotes = (
channel_conf
and "well_answered_postfilter" in channel_conf.get("answer_filters", [])
)
has_citations_or_quotes = bool(answer.citations or answer.quotes)
if (
only_respond_if_citations
and not answer.citations
only_respond_with_citations_or_quotes
and not has_citations_or_quotes
and not message_info.bypass_filters
):
logger.error(
f"Unable to find citations to answer: '{answer.answer}' - not answering!"
f"Unable to find citations or quotes to answer: '{answer.rephrase}' - not answering!"
)
# Optionally, respond in thread with the error message
# Used primarily for debugging purposes
@@ -360,15 +411,62 @@ def handle_regular_answer(
)
return True
all_blocks = build_slack_response_blocks(
tenant_id=tenant_id,
message_info=message_info,
answer=answer,
channel_conf=channel_conf,
use_citations=True, # No longer supporting quotes
# If called with the DanswerBot slash command, the question is lost so we have to reshow it
restate_question_block = get_restate_blocks(messages[-1].message, is_bot_msg)
formatted_answer = format_slack_message(answer.answer) if answer.answer else None
answer_blocks = build_qa_response_blocks(
message_id=answer.chat_message_id,
answer=formatted_answer,
quotes=answer.quotes.quotes if answer.quotes else None,
source_filters=retrieval_info.applied_source_filters,
time_cutoff=retrieval_info.applied_time_cutoff,
favor_recent=retrieval_info.recency_bias_multiplier > 1,
# currently Personas don't support quotes
# if citations are enabled, also don't use quotes
skip_quotes=persona is not None or use_citations,
process_message_for_citations=use_citations,
feedback_reminder_id=feedback_reminder_id,
)
# Get the chunks fed to the LLM only, then fill with other docs
llm_doc_inds = answer.llm_selected_doc_indices or []
llm_docs = [top_docs[i] for i in llm_doc_inds]
remaining_docs = [
doc for idx, doc in enumerate(top_docs) if idx not in llm_doc_inds
]
priority_ordered_docs = llm_docs + remaining_docs
document_blocks = []
citations_block = []
# if citations are enabled, only show cited documents
if use_citations:
citations = answer.citations or []
cited_docs = []
for citation in citations:
matching_doc = next(
(d for d in top_docs if d.document_id == citation.document_id),
None,
)
if matching_doc:
cited_docs.append((citation.citation_num, matching_doc))
cited_docs.sort()
citations_block = build_sources_blocks(cited_documents=cited_docs)
elif priority_ordered_docs:
document_blocks = build_documents_blocks(
documents=priority_ordered_docs,
message_id=answer.chat_message_id,
)
document_blocks = [DividerBlock()] + document_blocks
all_blocks = (
restate_question_block + answer_blocks + citations_block + document_blocks
)
if channel_conf and channel_conf.get("follow_up_tags") is not None:
all_blocks.append(build_follow_up_block(message_id=answer.chat_message_id))
try:
respond_in_thread(
client=client,

View File

@@ -1,33 +1,8 @@
from slack_sdk import WebClient
from danswer.chat.models import ThreadMessage
from danswer.configs.constants import MessageType
from danswer.danswerbot.slack.utils import respond_in_thread
def slackify_message_thread(messages: list[ThreadMessage]) -> str:
# Note: this does not handle extremely long threads, every message will be included
# with weaker LLMs, this could cause issues with exceeeding the token limit
if not messages:
return ""
message_strs: list[str] = []
for message in messages:
if message.role == MessageType.USER:
message_text = (
f"{message.sender or 'Unknown User'} said in Slack:\n{message.message}"
)
elif message.role == MessageType.ASSISTANT:
message_text = f"AI said in Slack:\n{message.message}"
else:
message_text = (
f"{message.role.value.upper()} said in Slack:\n{message.message}"
)
message_strs.append(message_text)
return "\n\n".join(message_strs)
def send_team_member_message(
client: WebClient,
channel: str,

View File

@@ -19,8 +19,6 @@ from slack_sdk.socket_mode.request import SocketModeRequest
from slack_sdk.socket_mode.response import SocketModeResponse
from sqlalchemy.orm import Session
from danswer.chat.models import ThreadMessage
from danswer.configs.app_configs import DEV_MODE
from danswer.configs.app_configs import POD_NAME
from danswer.configs.app_configs import POD_NAMESPACE
from danswer.configs.constants import DanswerRedisLocks
@@ -29,7 +27,6 @@ from danswer.configs.danswerbot_configs import DANSWER_BOT_REPHRASE_MESSAGE
from danswer.configs.danswerbot_configs import DANSWER_BOT_RESPOND_EVERY_CHANNEL
from danswer.configs.danswerbot_configs import NOTIFY_SLACKBOT_NO_ANSWER
from danswer.connectors.slack.utils import expert_info_from_slack_id
from danswer.context.search.retrieval.search_runner import download_nltk_data
from danswer.danswerbot.slack.config import get_slack_channel_config_for_bot_and_channel
from danswer.danswerbot.slack.config import MAX_TENANTS_PER_POD
from danswer.danswerbot.slack.config import TENANT_ACQUISITION_INTERVAL
@@ -76,7 +73,9 @@ from danswer.db.slack_bot import fetch_slack_bots
from danswer.key_value_store.interface import KvKeyNotFoundError
from danswer.natural_language_processing.search_nlp_models import EmbeddingModel
from danswer.natural_language_processing.search_nlp_models import warm_up_bi_encoder
from danswer.one_shot_answer.models import ThreadMessage
from danswer.redis.redis_pool import get_redis_client
from danswer.search.retrieval.search_runner import download_nltk_data
from danswer.server.manage.models import SlackBotTokens
from danswer.utils.logger import setup_logger
from danswer.utils.variable_functionality import set_is_ee_based_on_env_variable
@@ -251,7 +250,7 @@ class SlackbotHandler:
nx=True,
ex=TENANT_LOCK_EXPIRATION,
)
if not acquired and not DEV_MODE:
if not acquired:
logger.debug(f"Another pod holds the lock for tenant {tenant_id}")
continue

View File

@@ -1,6 +1,6 @@
from pydantic import BaseModel
from danswer.chat.models import ThreadMessage
from danswer.one_shot_answer.models import ThreadMessage
class SlackMessageInfo(BaseModel):

View File

@@ -3,9 +3,9 @@ import random
import re
import string
import time
import uuid
from typing import Any
from typing import cast
from typing import Optional
from retry import retry
from slack_sdk import WebClient
@@ -30,13 +30,13 @@ from danswer.configs.danswerbot_configs import (
from danswer.connectors.slack.utils import make_slack_api_rate_limited
from danswer.connectors.slack.utils import SlackTextCleaner
from danswer.danswerbot.slack.constants import FeedbackVisibility
from danswer.danswerbot.slack.models import ThreadMessage
from danswer.db.engine import get_session_with_tenant
from danswer.db.users import get_user_by_email
from danswer.llm.exceptions import GenAIDisabledException
from danswer.llm.factory import get_default_llms
from danswer.llm.utils import dict_based_prompt_to_langchain_prompt
from danswer.llm.utils import message_to_string
from danswer.one_shot_answer.models import ThreadMessage
from danswer.prompts.miscellaneous_prompts import SLACK_LANGUAGE_REPHRASE_PROMPT
from danswer.utils.logger import setup_logger
from danswer.utils.telemetry import optional_telemetry
@@ -216,13 +216,6 @@ def build_feedback_id(
return unique_prefix + ID_SEPARATOR + feedback_id
def build_continue_in_web_ui_id(
message_id: int,
) -> str:
unique_prefix = str(uuid.uuid4())[:10]
return unique_prefix + ID_SEPARATOR + str(message_id)
def decompose_action_id(feedback_id: str) -> tuple[int, str | None, int | None]:
"""Decompose into query_id, document_id, document_rank, see above function"""
try:
@@ -320,7 +313,7 @@ def get_channel_name_from_id(
raise e
def fetch_slack_user_ids_from_emails(
def fetch_user_ids_from_emails(
user_emails: list[str], client: WebClient
) -> tuple[list[str], list[str]]:
user_ids: list[str] = []
@@ -529,7 +522,7 @@ class SlackRateLimiter:
self.last_reset_time = time.time()
def notify(
self, client: WebClient, channel: str, position: int, thread_ts: str | None
self, client: WebClient, channel: str, position: int, thread_ts: Optional[str]
) -> None:
respond_in_thread(
client=client,

View File

@@ -2,7 +2,6 @@ import uuid
from fastapi_users.password import PasswordHelper
from sqlalchemy import select
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.orm import joinedload
from sqlalchemy.orm import Session
@@ -46,16 +45,14 @@ def fetch_api_keys(db_session: Session) -> list[ApiKeyDescriptor]:
]
async def fetch_user_for_api_key(
hashed_api_key: str, async_db_session: AsyncSession
) -> User | None:
"""NOTE: this is async, since it's used during auth
(which is necessarily async due to FastAPI Users)"""
return await async_db_session.scalar(
select(User)
.join(ApiKey, ApiKey.user_id == User.id)
.where(ApiKey.hashed_api_key == hashed_api_key)
def fetch_user_for_api_key(hashed_api_key: str, db_session: Session) -> User | None:
api_key = db_session.scalar(
select(ApiKey).where(ApiKey.hashed_api_key == hashed_api_key)
)
if api_key is None:
return None
return db_session.scalar(select(User).where(User.id == api_key.user_id)) # type: ignore
def get_api_key_fake_email(

View File

@@ -3,7 +3,6 @@ from datetime import datetime
from datetime import timedelta
from uuid import UUID
from fastapi import HTTPException
from sqlalchemy import delete
from sqlalchemy import desc
from sqlalchemy import func
@@ -19,9 +18,6 @@ from danswer.auth.schemas import UserRole
from danswer.chat.models import DocumentRelevance
from danswer.configs.chat_configs import HARD_DELETE_CHATS
from danswer.configs.constants import MessageType
from danswer.context.search.models import RetrievalDocs
from danswer.context.search.models import SavedSearchDoc
from danswer.context.search.models import SearchDoc as ServerSearchDoc
from danswer.db.models import ChatMessage
from danswer.db.models import ChatMessage__SearchDoc
from danswer.db.models import ChatSession
@@ -31,11 +27,13 @@ from danswer.db.models import SearchDoc
from danswer.db.models import SearchDoc as DBSearchDoc
from danswer.db.models import ToolCall
from danswer.db.models import User
from danswer.db.persona import get_best_persona_id_for_user
from danswer.db.pg_file_store import delete_lobj_by_name
from danswer.file_store.models import FileDescriptor
from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
from danswer.search.models import RetrievalDocs
from danswer.search.models import SavedSearchDoc
from danswer.search.models import SearchDoc as ServerSearchDoc
from danswer.server.query_and_chat.models import ChatMessageDetail
from danswer.tools.tool_runner import ToolCallFinalResult
from danswer.utils.logger import setup_logger
@@ -145,10 +143,16 @@ def get_chat_sessions_by_user(
user_id: UUID | None,
deleted: bool | None,
db_session: Session,
only_one_shot: bool = False,
limit: int = 50,
) -> list[ChatSession]:
stmt = select(ChatSession).where(ChatSession.user_id == user_id)
if only_one_shot:
stmt = stmt.where(ChatSession.one_shot.is_(True))
else:
stmt = stmt.where(ChatSession.one_shot.is_(False))
stmt = stmt.order_by(desc(ChatSession.time_created))
if deleted is not None:
@@ -220,11 +224,12 @@ def delete_messages_and_files_from_chat_session(
def create_chat_session(
db_session: Session,
description: str | None,
description: str,
user_id: UUID | None,
persona_id: int | None, # Can be none if temporary persona is used
llm_override: LLMOverride | None = None,
prompt_override: PromptOverride | None = None,
one_shot: bool = False,
danswerbot_flow: bool = False,
slack_thread_id: str | None = None,
) -> ChatSession:
@@ -234,6 +239,7 @@ def create_chat_session(
description=description,
llm_override=llm_override,
prompt_override=prompt_override,
one_shot=one_shot,
danswerbot_flow=danswerbot_flow,
slack_thread_id=slack_thread_id,
)
@@ -244,48 +250,6 @@ def create_chat_session(
return chat_session
def duplicate_chat_session_for_user_from_slack(
db_session: Session,
user: User | None,
chat_session_id: UUID,
) -> ChatSession:
"""
This takes a chat session id for a session in Slack and:
- Creates a new chat session in the DB
- Tries to copy the persona from the original chat session
(if it is available to the user clicking the button)
- Sets the user to the given user (if provided)
"""
chat_session = get_chat_session_by_id(
chat_session_id=chat_session_id,
user_id=None, # Ignore user permissions for this
db_session=db_session,
)
if not chat_session:
raise HTTPException(status_code=400, detail="Invalid Chat Session ID provided")
# This enforces permissions and sets a default
new_persona_id = get_best_persona_id_for_user(
db_session=db_session,
user=user,
persona_id=chat_session.persona_id,
)
return create_chat_session(
db_session=db_session,
user_id=user.id if user else None,
persona_id=new_persona_id,
# Set this to empty string so the frontend will force a rename
description="",
llm_override=chat_session.llm_override,
prompt_override=chat_session.prompt_override,
# Chat is in UI now so this is false
danswerbot_flow=False,
# Maybe we want this in the future to track if it was created from Slack
slack_thread_id=None,
)
def update_chat_session(
db_session: Session,
user_id: UUID | None,
@@ -372,28 +336,6 @@ def get_chat_message(
return chat_message
def get_chat_session_by_message_id(
db_session: Session,
message_id: int,
) -> ChatSession:
"""
Should only be used for Slack
Get the chat session associated with a specific message ID
Note: this ignores permission checks.
"""
stmt = select(ChatMessage).where(ChatMessage.id == message_id)
result = db_session.execute(stmt)
chat_message = result.scalar_one_or_none()
if chat_message is None:
raise ValueError(
f"Unable to find chat session associated with message ID: {message_id}"
)
return chat_message.chat_session
def get_chat_messages_by_sessions(
chat_session_ids: list[UUID],
user_id: UUID | None,
@@ -413,44 +355,6 @@ def get_chat_messages_by_sessions(
return db_session.execute(stmt).scalars().all()
def add_chats_to_session_from_slack_thread(
db_session: Session,
slack_chat_session_id: UUID,
new_chat_session_id: UUID,
) -> None:
new_root_message = get_or_create_root_message(
chat_session_id=new_chat_session_id,
db_session=db_session,
)
for chat_message in get_chat_messages_by_sessions(
chat_session_ids=[slack_chat_session_id],
user_id=None, # Ignore user permissions for this
db_session=db_session,
skip_permission_check=True,
):
if chat_message.message_type == MessageType.SYSTEM:
continue
# Duplicate the message
new_root_message = create_new_chat_message(
db_session=db_session,
chat_session_id=new_chat_session_id,
parent_message=new_root_message,
message=chat_message.message,
files=chat_message.files,
rephrased_query=chat_message.rephrased_query,
error=chat_message.error,
citations=chat_message.citations,
reference_docs=chat_message.search_docs,
tool_call=chat_message.tool_call,
prompt_id=chat_message.prompt_id,
token_count=chat_message.token_count,
message_type=chat_message.message_type,
alternate_assistant_id=chat_message.alternate_assistant_id,
overridden_model=chat_message.overridden_model,
)
def get_search_docs_for_chat_message(
chat_message_id: int, db_session: Session
) -> list[SearchDoc]:

View File

@@ -12,7 +12,6 @@ from sqlalchemy.orm import Session
from danswer.configs.app_configs import DEFAULT_PRUNING_FREQ
from danswer.configs.constants import DocumentSource
from danswer.connectors.models import InputType
from danswer.db.enums import IndexingMode
from danswer.db.models import Connector
from danswer.db.models import ConnectorCredentialPair
from danswer.db.models import IndexAttempt
@@ -312,25 +311,3 @@ def mark_cc_pair_as_external_group_synced(db_session: Session, cc_pair_id: int)
# If this changes, we need to update this function.
cc_pair.last_time_external_group_sync = datetime.now(timezone.utc)
db_session.commit()
def mark_ccpair_with_indexing_trigger(
cc_pair_id: int, indexing_mode: IndexingMode | None, db_session: Session
) -> None:
"""indexing_mode sets a field which will be picked up by a background task
to trigger indexing. Set to None to disable the trigger."""
try:
cc_pair = db_session.execute(
select(ConnectorCredentialPair)
.where(ConnectorCredentialPair.id == cc_pair_id)
.with_for_update()
).scalar_one()
if cc_pair is None:
raise ValueError(f"No cc_pair with ID: {cc_pair_id}")
cc_pair.indexing_trigger = indexing_mode
db_session.commit()
except Exception:
db_session.rollback()
raise

View File

@@ -324,11 +324,8 @@ def associate_default_cc_pair(db_session: Session) -> None:
def _relate_groups_to_cc_pair__no_commit(
db_session: Session,
cc_pair_id: int,
user_group_ids: list[int] | None = None,
user_group_ids: list[int],
) -> None:
if not user_group_ids:
return
for group_id in user_group_ids:
db_session.add(
UserGroup__ConnectorCredentialPair(
@@ -405,11 +402,12 @@ def add_credential_to_connector(
db_session.flush() # make sure the association has an id
db_session.refresh(association)
_relate_groups_to_cc_pair__no_commit(
db_session=db_session,
cc_pair_id=association.id,
user_group_ids=groups,
)
if groups and access_type != AccessType.SYNC:
_relate_groups_to_cc_pair__no_commit(
db_session=db_session,
cc_pair_id=association.id,
user_group_ids=groups,
)
db_session.commit()

View File

@@ -37,7 +37,6 @@ from danswer.configs.app_configs import POSTGRES_PORT
from danswer.configs.app_configs import POSTGRES_USER
from danswer.configs.app_configs import USER_AUTH_SECRET
from danswer.configs.constants import POSTGRES_UNKNOWN_APP_NAME
from danswer.server.utils import BasicAuthenticationError
from danswer.utils.logger import setup_logger
from shared_configs.configs import MULTI_TENANT
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
@@ -427,9 +426,7 @@ def get_session() -> Generator[Session, None, None]:
"""Generate a database session with the appropriate tenant schema set."""
tenant_id = CURRENT_TENANT_ID_CONTEXTVAR.get()
if tenant_id == POSTGRES_DEFAULT_SCHEMA and MULTI_TENANT:
raise BasicAuthenticationError(
detail="User must authenticate",
)
raise HTTPException(status_code=401, detail="User must authenticate")
engine = get_sqlalchemy_engine()

View File

@@ -5,7 +5,6 @@ class IndexingStatus(str, PyEnum):
NOT_STARTED = "not_started"
IN_PROGRESS = "in_progress"
SUCCESS = "success"
CANCELED = "canceled"
FAILED = "failed"
COMPLETED_WITH_ERRORS = "completed_with_errors"
@@ -13,17 +12,11 @@ class IndexingStatus(str, PyEnum):
terminal_states = {
IndexingStatus.SUCCESS,
IndexingStatus.COMPLETED_WITH_ERRORS,
IndexingStatus.CANCELED,
IndexingStatus.FAILED,
}
return self in terminal_states
class IndexingMode(str, PyEnum):
UPDATE = "update"
REINDEX = "reindex"
# these may differ in the future, which is why we're okay with this duplication
class DeletionStatus(str, PyEnum):
NOT_STARTED = "not_started"

View File

@@ -67,13 +67,6 @@ def create_index_attempt(
return new_attempt.id
def delete_index_attempt(db_session: Session, index_attempt_id: int) -> None:
index_attempt = get_index_attempt(db_session, index_attempt_id)
if index_attempt:
db_session.delete(index_attempt)
db_session.commit()
def mock_successful_index_attempt(
connector_credential_pair_id: int,
search_settings_id: int,
@@ -225,28 +218,6 @@ def mark_attempt_partially_succeeded(
raise
def mark_attempt_canceled(
index_attempt_id: int,
db_session: Session,
reason: str = "Unknown",
) -> None:
try:
attempt = db_session.execute(
select(IndexAttempt)
.where(IndexAttempt.id == index_attempt_id)
.with_for_update()
).scalar_one()
if not attempt.time_started:
attempt.time_started = datetime.now(timezone.utc)
attempt.status = IndexingStatus.CANCELED
attempt.error_msg = reason
db_session.commit()
except Exception:
db_session.rollback()
raise
def mark_attempt_failed(
index_attempt_id: int,
db_session: Session,

View File

@@ -1,5 +1,6 @@
import datetime
import json
from enum import Enum as PyEnum
from typing import Any
from typing import Literal
from typing import NotRequired
@@ -41,7 +42,7 @@ from danswer.configs.constants import DEFAULT_BOOST
from danswer.configs.constants import DocumentSource
from danswer.configs.constants import FileOrigin
from danswer.configs.constants import MessageType
from danswer.db.enums import AccessType, IndexingMode
from danswer.db.enums import AccessType
from danswer.configs.constants import NotificationType
from danswer.configs.constants import SearchFeedbackType
from danswer.configs.constants import TokenRateLimitScope
@@ -56,7 +57,7 @@ from danswer.utils.special_types import JSON_ro
from danswer.file_store.models import FileDescriptor
from danswer.llm.override_models import LLMOverride
from danswer.llm.override_models import PromptOverride
from danswer.context.search.enums import RecencyBiasSetting
from danswer.search.enums import RecencyBiasSetting
from danswer.utils.encryption import decrypt_bytes_to_string
from danswer.utils.encryption import encrypt_string_to_bytes
from danswer.utils.headers import HeaderItemDict
@@ -438,10 +439,6 @@ class ConnectorCredentialPair(Base):
total_docs_indexed: Mapped[int] = mapped_column(Integer, default=0)
indexing_trigger: Mapped[IndexingMode | None] = mapped_column(
Enum(IndexingMode, native_enum=False), nullable=True
)
connector: Mapped["Connector"] = relationship(
"Connector", back_populates="credentials"
)
@@ -963,8 +960,9 @@ class ChatSession(Base):
persona_id: Mapped[int | None] = mapped_column(
ForeignKey("persona.id"), nullable=True
)
description: Mapped[str | None] = mapped_column(Text, nullable=True)
# This chat created by DanswerBot
description: Mapped[str] = mapped_column(Text)
# One-shot direct answering, currently the two types of chats are not mixed
one_shot: Mapped[bool] = mapped_column(Boolean, default=False)
danswerbot_flow: Mapped[bool] = mapped_column(Boolean, default=False)
# Only ever set to True if system is set to not hard-delete chats
deleted: Mapped[bool] = mapped_column(Boolean, default=False)
@@ -1483,7 +1481,11 @@ class ChannelConfig(TypedDict):
# If None then no follow up
# If empty list, follow up with no tags
follow_up_tags: NotRequired[list[str]]
show_continue_in_web_ui: NotRequired[bool] # defaults to False
class SlackBotResponseType(str, PyEnum):
QUOTES = "quotes"
CITATIONS = "citations"
class SlackChannelConfig(Base):
@@ -1498,6 +1500,9 @@ class SlackChannelConfig(Base):
channel_config: Mapped[ChannelConfig] = mapped_column(
postgresql.JSONB(), nullable=False
)
response_type: Mapped[SlackBotResponseType] = mapped_column(
Enum(SlackBotResponseType, native_enum=False), nullable=False
)
enable_auto_filters: Mapped[bool] = mapped_column(
Boolean, nullable=False, default=False

View File

@@ -20,7 +20,6 @@ from danswer.auth.schemas import UserRole
from danswer.configs.chat_configs import BING_API_KEY
from danswer.configs.chat_configs import CONTEXT_CHUNKS_ABOVE
from danswer.configs.chat_configs import CONTEXT_CHUNKS_BELOW
from danswer.context.search.enums import RecencyBiasSetting
from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
from danswer.db.engine import get_sqlalchemy_engine
from danswer.db.models import DocumentSet
@@ -34,6 +33,7 @@ from danswer.db.models import Tool
from danswer.db.models import User
from danswer.db.models import User__UserGroup
from danswer.db.models import UserGroup
from danswer.search.enums import RecencyBiasSetting
from danswer.server.features.persona.models import CreatePersonaRequest
from danswer.server.features.persona.models import PersonaSnapshot
from danswer.utils.logger import setup_logger
@@ -113,31 +113,6 @@ def fetch_persona_by_id(
return persona
def get_best_persona_id_for_user(
db_session: Session, user: User | None, persona_id: int | None = None
) -> int | None:
if persona_id is not None:
stmt = select(Persona).where(Persona.id == persona_id).distinct()
stmt = _add_user_filters(
stmt=stmt,
user=user,
# We don't want to filter by editable here, we just want to see if the
# persona is usable by the user
get_editable=False,
)
persona = db_session.scalars(stmt).one_or_none()
if persona:
return persona.id
# If the persona is not found, or the slack bot is using doc sets instead of personas,
# we need to find the best persona for the user
# This is the persona with the highest display priority that the user has access to
stmt = select(Persona).order_by(Persona.display_priority.desc()).distinct()
stmt = _add_user_filters(stmt=stmt, user=user, get_editable=True)
persona = db_session.scalars(stmt).one_or_none()
return persona.id if persona else None
def _get_persona_by_name(
persona_name: str, user: User | None, db_session: Session
) -> Persona | None:
@@ -185,7 +160,7 @@ def create_update_persona(
"persona_id": persona_id,
"user": user,
"db_session": db_session,
**create_persona_request.model_dump(exclude={"users", "groups"}),
**create_persona_request.dict(exclude={"users", "groups"}),
}
persona = upsert_persona(**persona_data)
@@ -284,6 +259,7 @@ def get_personas(
) -> Sequence[Persona]:
stmt = select(Persona).distinct()
stmt = _add_user_filters(stmt=stmt, user=user, get_editable=get_editable)
if not include_default:
stmt = stmt.where(Persona.builtin_persona.is_(False))
if not include_slack_bot_personas:
@@ -446,12 +422,6 @@ def upsert_persona(
chunks_above: int = CONTEXT_CHUNKS_ABOVE,
chunks_below: int = CONTEXT_CHUNKS_BELOW,
) -> Persona:
"""
NOTE: This operation cannot update persona configuration options that
are core to the persona, such as its display priority and
whether or not the assistant is a built-in / default assistant
"""
if persona_id is not None:
persona = db_session.query(Persona).filter_by(id=persona_id).first()
else:
@@ -489,9 +459,7 @@ def upsert_persona(
validate_persona_tools(tools)
if persona:
# Built-in personas can only be updated through YAML configuration.
# This ensures that core system personas are not modified unintentionally.
if persona.builtin_persona and not builtin_persona:
if not builtin_persona and persona.builtin_persona:
raise ValueError("Cannot update builtin persona with non-builtin.")
# this checks if the user has permission to edit the persona
@@ -499,9 +467,6 @@ def upsert_persona(
db_session=db_session, persona_id=persona.id, user=user, get_editable=True
)
# The following update excludes `default`, `built-in`, and display priority.
# Display priority is handled separately in the `display-priority` endpoint.
# `default` and `built-in` properties can only be set when creating a persona.
persona.name = name
persona.description = description
persona.num_chunks = num_chunks
@@ -510,6 +475,7 @@ def upsert_persona(
persona.llm_relevance_filter = llm_relevance_filter
persona.llm_filter_extraction = llm_filter_extraction
persona.recency_bias = recency_bias
persona.builtin_persona = builtin_persona
persona.llm_model_provider_override = llm_model_provider_override
persona.llm_model_version_override = llm_model_version_override
persona.starter_messages = starter_messages
@@ -519,8 +485,10 @@ def upsert_persona(
persona.icon_shape = icon_shape
if remove_image or uploaded_image_id:
persona.uploaded_image_id = uploaded_image_id
persona.display_priority = display_priority
persona.is_visible = is_visible
persona.search_start_date = search_start_date
persona.is_default_persona = is_default_persona
persona.category_id = category_id
# Do not delete any associations manually added unless
# a new updated list is provided
@@ -766,8 +734,6 @@ def get_prompt_by_name(
if user and user.role != UserRole.ADMIN:
stmt = stmt.where(Prompt.user_id == user.id)
# Order by ID to ensure consistent result when multiple prompts exist
stmt = stmt.order_by(Prompt.id).limit(1)
result = db_session.execute(stmt).scalar_one_or_none()
return result

View File

@@ -12,7 +12,6 @@ from danswer.configs.model_configs import NORMALIZE_EMBEDDINGS
from danswer.configs.model_configs import OLD_DEFAULT_DOCUMENT_ENCODER_MODEL
from danswer.configs.model_configs import OLD_DEFAULT_MODEL_DOC_EMBEDDING_DIM
from danswer.configs.model_configs import OLD_DEFAULT_MODEL_NORMALIZE_EMBEDDINGS
from danswer.context.search.models import SavedSearchSettings
from danswer.db.engine import get_session_with_default_tenant
from danswer.db.llm import fetch_embedding_provider
from danswer.db.models import CloudEmbeddingProvider
@@ -22,6 +21,7 @@ from danswer.db.models import SearchSettings
from danswer.indexing.models import IndexingSetting
from danswer.natural_language_processing.search_nlp_models import clean_model_name
from danswer.natural_language_processing.search_nlp_models import warm_up_cross_encoder
from danswer.search.models import SavedSearchSettings
from danswer.server.manage.embedding.models import (
CloudEmbeddingProvider as ServerCloudEmbeddingProvider,
)
@@ -143,25 +143,6 @@ def get_secondary_search_settings(db_session: Session) -> SearchSettings | None:
return latest_settings
def get_active_search_settings(db_session: Session) -> list[SearchSettings]:
"""Returns active search settings. The first entry will always be the current search
settings. If there are new search settings that are being migrated to, those will be
the second entry."""
search_settings_list: list[SearchSettings] = []
# Get the primary search settings
primary_search_settings = get_current_search_settings(db_session)
search_settings_list.append(primary_search_settings)
# Check for secondary search settings
secondary_search_settings = get_secondary_search_settings(db_session)
if secondary_search_settings is not None:
# If secondary settings exist, add them to the list
search_settings_list.append(secondary_search_settings)
return search_settings_list
def get_all_search_settings(db_session: Session) -> list[SearchSettings]:
query = select(SearchSettings).order_by(SearchSettings.id.desc())
result = db_session.execute(query)

View File

@@ -5,16 +5,17 @@ from sqlalchemy import select
from sqlalchemy.orm import Session
from danswer.configs.chat_configs import MAX_CHUNKS_FED_TO_CHAT
from danswer.context.search.enums import RecencyBiasSetting
from danswer.db.constants import SLACK_BOT_PERSONA_PREFIX
from danswer.db.models import ChannelConfig
from danswer.db.models import Persona
from danswer.db.models import Persona__DocumentSet
from danswer.db.models import SlackBotResponseType
from danswer.db.models import SlackChannelConfig
from danswer.db.models import User
from danswer.db.persona import get_default_prompt
from danswer.db.persona import mark_persona_as_deleted
from danswer.db.persona import upsert_persona
from danswer.search.enums import RecencyBiasSetting
from danswer.utils.errors import EERequiredError
from danswer.utils.variable_functionality import (
fetch_versioned_implementation_with_fallback,
@@ -82,6 +83,7 @@ def insert_slack_channel_config(
slack_bot_id: int,
persona_id: int | None,
channel_config: ChannelConfig,
response_type: SlackBotResponseType,
standard_answer_category_ids: list[int],
enable_auto_filters: bool,
) -> SlackChannelConfig:
@@ -113,6 +115,7 @@ def insert_slack_channel_config(
slack_bot_id=slack_bot_id,
persona_id=persona_id,
channel_config=channel_config,
response_type=response_type,
standard_answer_categories=existing_standard_answer_categories,
enable_auto_filters=enable_auto_filters,
)
@@ -127,6 +130,7 @@ def update_slack_channel_config(
slack_channel_config_id: int,
persona_id: int | None,
channel_config: ChannelConfig,
response_type: SlackBotResponseType,
standard_answer_category_ids: list[int],
enable_auto_filters: bool,
) -> SlackChannelConfig:
@@ -166,6 +170,7 @@ def update_slack_channel_config(
# will encounter `violates foreign key constraint` errors
slack_channel_config.persona_id = persona_id
slack_channel_config.channel_config = channel_config
slack_channel_config.response_type = response_type
slack_channel_config.standard_answer_categories = list(
existing_standard_answer_categories
)

Some files were not shown because too many files have changed in this diff Show More