mirror of
https://github.com/onyx-dot-app/onyx.git
synced 2026-02-17 15:55:45 +00:00
Compare commits
400 Commits
initial_im
...
dummer-pr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a5e980c201 | ||
|
|
1378364686 | ||
|
|
cc4953b560 | ||
|
|
fe3eae3680 | ||
|
|
2a7a22d953 | ||
|
|
f163b798ea | ||
|
|
d4563b8693 | ||
|
|
a54ed77140 | ||
|
|
f27979ef7f | ||
|
|
122a9af9b3 | ||
|
|
32a97e5479 | ||
|
|
bf30dab9c4 | ||
|
|
342bb9f685 | ||
|
|
b25668c83a | ||
|
|
a72bd31f5d | ||
|
|
896e716d02 | ||
|
|
eec3ce8162 | ||
|
|
2761a837c6 | ||
|
|
da43abe644 | ||
|
|
af953ff8a3 | ||
|
|
6fc52c81ab | ||
|
|
1ad2128b2a | ||
|
|
880c42ad41 | ||
|
|
c9e0d77c93 | ||
|
|
7a750dc2ca | ||
|
|
44b70a87df | ||
|
|
a05addec19 | ||
|
|
8a4d762798 | ||
|
|
c9a420ec49 | ||
|
|
beccca5fa2 | ||
|
|
66d8b8bb10 | ||
|
|
76ca650972 | ||
|
|
eb70699c0b | ||
|
|
b401f83eb6 | ||
|
|
993a1a6caf | ||
|
|
c3481c7356 | ||
|
|
3b7695539f | ||
|
|
b1957737f2 | ||
|
|
5f462056f6 | ||
|
|
0de4d61b6d | ||
|
|
7a28a5c216 | ||
|
|
d8aa21ca3a | ||
|
|
c4323573d2 | ||
|
|
46cfaa96b7 | ||
|
|
a610b6bd8d | ||
|
|
cb66aadd80 | ||
|
|
9ea2ae267e | ||
|
|
7d86b28335 | ||
|
|
4f8e48df7c | ||
|
|
d96d2fc6e9 | ||
|
|
b6dd999c1b | ||
|
|
9a09222b7d | ||
|
|
be3cfdd4a6 | ||
|
|
f5bdf9d2c9 | ||
|
|
6afd27f9c9 | ||
|
|
ccef350287 | ||
|
|
4400a945e3 | ||
|
|
384a38418b | ||
|
|
2163a138ed | ||
|
|
b6c2ecfecb | ||
|
|
ac182c74b3 | ||
|
|
cab7e60542 | ||
|
|
8e25c3c412 | ||
|
|
1470b7e038 | ||
|
|
bf78fb79f8 | ||
|
|
d972a78f45 | ||
|
|
962240031f | ||
|
|
50131ba22c | ||
|
|
439217317f | ||
|
|
c55de28423 | ||
|
|
91e32e801d | ||
|
|
2ae91f0f2b | ||
|
|
d40fd82803 | ||
|
|
97a963b4bf | ||
|
|
7f6ef1ff57 | ||
|
|
d98746b988 | ||
|
|
a76f1b4c1b | ||
|
|
4c4ff46fe3 | ||
|
|
0f9842064f | ||
|
|
d7bc32c0ec | ||
|
|
1f48de9731 | ||
|
|
a22d02ff70 | ||
|
|
dcfc621a66 | ||
|
|
eac73a1bf1 | ||
|
|
717560872f | ||
|
|
ce2572134c | ||
|
|
02f72a5c86 | ||
|
|
eb916df139 | ||
|
|
fafad5e119 | ||
|
|
a314a08309 | ||
|
|
4ce24d68f7 | ||
|
|
a95f4298ad | ||
|
|
7cd76ec404 | ||
|
|
5b5c1166ca | ||
|
|
d9e9c6973d | ||
|
|
91903141cd | ||
|
|
e329b63b89 | ||
|
|
71c2559ea9 | ||
|
|
ceb34a41d9 | ||
|
|
82eab9d704 | ||
|
|
2b8d3a6ef5 | ||
|
|
4fb129e77b | ||
|
|
f16ca1b735 | ||
|
|
e3b2c9d944 | ||
|
|
6c9c25642d | ||
|
|
2862d8bbd3 | ||
|
|
143be6a524 | ||
|
|
c2444a5cff | ||
|
|
7f8194798a | ||
|
|
e3947e4b64 | ||
|
|
98005510ad | ||
|
|
ca54bd0b21 | ||
|
|
d26f8ce852 | ||
|
|
c8090ab75b | ||
|
|
e100a5e965 | ||
|
|
ddec239fef | ||
|
|
e83542f572 | ||
|
|
8750f14647 | ||
|
|
27699c8216 | ||
|
|
6fcd712a00 | ||
|
|
b027a08698 | ||
|
|
1db778baa8 | ||
|
|
f895e5f7d0 | ||
|
|
2fc58252f4 | ||
|
|
371d1ccd8f | ||
|
|
7fb92d42a0 | ||
|
|
af2061c4db | ||
|
|
ffec19645b | ||
|
|
67d2c86250 | ||
|
|
6c018cb53f | ||
|
|
62302e3faf | ||
|
|
0460531c72 | ||
|
|
6af07a888b | ||
|
|
ea75f5cd5d | ||
|
|
b92c183022 | ||
|
|
c191e23256 | ||
|
|
66f9124135 | ||
|
|
8f0fb70bbf | ||
|
|
ef5e5c80bb | ||
|
|
03acb6587a | ||
|
|
d1ec72b5e5 | ||
|
|
3b214133a8 | ||
|
|
2232702e99 | ||
|
|
8108ff0a4b | ||
|
|
f64e78e986 | ||
|
|
08312a4394 | ||
|
|
92add655e0 | ||
|
|
d64464ca7c | ||
|
|
ccd3983802 | ||
|
|
240f3e4fff | ||
|
|
1291b3d930 | ||
|
|
d05f1997b5 | ||
|
|
aa2e2a62b9 | ||
|
|
174e5968f8 | ||
|
|
1f27606e17 | ||
|
|
60355b84c1 | ||
|
|
680ab9ea30 | ||
|
|
c2447dbb1c | ||
|
|
52bad522f8 | ||
|
|
63e5e58313 | ||
|
|
2643782e30 | ||
|
|
3eb72e5c1d | ||
|
|
9b65c23a7e | ||
|
|
b43a8e48c6 | ||
|
|
1955c1d67b | ||
|
|
3f92ed9d29 | ||
|
|
618369f4a1 | ||
|
|
2783216781 | ||
|
|
bec0f9fb23 | ||
|
|
97a03e7fc8 | ||
|
|
8d6e8269b7 | ||
|
|
9ce2c6c517 | ||
|
|
2ad8bdbc65 | ||
|
|
a83c9b40d5 | ||
|
|
340fab1375 | ||
|
|
3ec338307f | ||
|
|
27acd3387a | ||
|
|
d14ef431a7 | ||
|
|
9bffeb65af | ||
|
|
f4806da653 | ||
|
|
e2700b2bbd | ||
|
|
fc81a3fb12 | ||
|
|
2203cfabea | ||
|
|
f4050306d6 | ||
|
|
2d960a477f | ||
|
|
8837b8ea79 | ||
|
|
3dfb214f73 | ||
|
|
18d7262608 | ||
|
|
09b879ee73 | ||
|
|
aaa668c963 | ||
|
|
edb877f4bc | ||
|
|
eb369caefb | ||
|
|
b9567eabd7 | ||
|
|
13bbf67091 | ||
|
|
457a4c73f0 | ||
|
|
ce37688b5b | ||
|
|
4e2c90f4af | ||
|
|
513dd8a319 | ||
|
|
71c5043832 | ||
|
|
64b6f15e95 | ||
|
|
35022f5f09 | ||
|
|
0d44014c16 | ||
|
|
1b9e9f48fa | ||
|
|
05fb5aa27b | ||
|
|
3b645b72a3 | ||
|
|
fe770b5c3a | ||
|
|
1eaf885f50 | ||
|
|
a187aa508c | ||
|
|
aa4bfa2a78 | ||
|
|
9011b8a139 | ||
|
|
59c774353a | ||
|
|
b458d504af | ||
|
|
f83e7bfcd9 | ||
|
|
4d2e26ce4b | ||
|
|
817fdc1f36 | ||
|
|
e9b10e8b41 | ||
|
|
a0fa4adb60 | ||
|
|
ca9ba925bd | ||
|
|
833cc5c97c | ||
|
|
23ecf654ed | ||
|
|
ddc6a6d2b3 | ||
|
|
571c8ece32 | ||
|
|
884bdb4b01 | ||
|
|
b3ecf0d59f | ||
|
|
f56fda27c9 | ||
|
|
b1e4d4ea8d | ||
|
|
8db6d49fe5 | ||
|
|
28598694b1 | ||
|
|
b5d0df90b9 | ||
|
|
48be6338ec | ||
|
|
ed9014f03d | ||
|
|
2dd51230ed | ||
|
|
8b249cbe63 | ||
|
|
6b50f86cd2 | ||
|
|
bd2805b6df | ||
|
|
2847ab003e | ||
|
|
1df6a506ec | ||
|
|
f1541d1fbe | ||
|
|
dd0c4b64df | ||
|
|
788b3015bc | ||
|
|
cbbf10f450 | ||
|
|
d954914a0a | ||
|
|
bee74ac360 | ||
|
|
29ef64272a | ||
|
|
01bf6ee4b7 | ||
|
|
0502417cbe | ||
|
|
d0483dd269 | ||
|
|
eefa872d60 | ||
|
|
3f3d4da611 | ||
|
|
469068052e | ||
|
|
9032b05606 | ||
|
|
334bc6be8c | ||
|
|
814f97c2c7 | ||
|
|
4f5a2b47c4 | ||
|
|
f545508268 | ||
|
|
590986ec65 | ||
|
|
531bab5409 | ||
|
|
29c44007c4 | ||
|
|
d388643a04 | ||
|
|
8a422683e3 | ||
|
|
ddc0230d68 | ||
|
|
6711e91dbf | ||
|
|
cff2346db5 | ||
|
|
8d3fad1f12 | ||
|
|
0c3dab8e8d | ||
|
|
47735e2044 | ||
|
|
1eeab8c773 | ||
|
|
e9b41bddc9 | ||
|
|
73a86b9019 | ||
|
|
12c426c87b | ||
|
|
06aeab6d59 | ||
|
|
9b7e67004c | ||
|
|
626ce74aa3 | ||
|
|
cec63465eb | ||
|
|
5f4b31d322 | ||
|
|
ab5e515a5a | ||
|
|
699a02902a | ||
|
|
c85157f734 | ||
|
|
824844bf84 | ||
|
|
a6ab8a8da4 | ||
|
|
40719eb542 | ||
|
|
e8c72f9e82 | ||
|
|
0ba77963c4 | ||
|
|
86f2892349 | ||
|
|
64f0ad8b26 | ||
|
|
616e997dad | ||
|
|
614bd378bb | ||
|
|
7064c3d06f | ||
|
|
3bb9e4bff6 | ||
|
|
3fec7a6a30 | ||
|
|
a01a9b9a99 | ||
|
|
21ec5ed795 | ||
|
|
54dcbfa288 | ||
|
|
c69b7fc941 | ||
|
|
6722e88a7b | ||
|
|
5b5e1eb7c7 | ||
|
|
87d97d13d5 | ||
|
|
4ae3b48938 | ||
|
|
dee1a0ecd7 | ||
|
|
ca172f3306 | ||
|
|
e5d0587efa | ||
|
|
a9516202fe | ||
|
|
d23fca96c4 | ||
|
|
a45724c899 | ||
|
|
34e250407a | ||
|
|
046c0fbe3e | ||
|
|
76595facef | ||
|
|
af2d548766 | ||
|
|
7c29b1e028 | ||
|
|
a52c821e78 | ||
|
|
0770a587f1 | ||
|
|
748b79b0ef | ||
|
|
9cacb373ef | ||
|
|
21967d4b6f | ||
|
|
f5d638161b | ||
|
|
0b5013b47d | ||
|
|
1b846fbf06 | ||
|
|
cae8a131a2 | ||
|
|
72b4e8e9fe | ||
|
|
c04e2f14d9 | ||
|
|
b40a12d5d7 | ||
|
|
5e7d454ebe | ||
|
|
238509c536 | ||
|
|
d7f8cf8f18 | ||
|
|
5d810d373e | ||
|
|
9455576078 | ||
|
|
71421bb782 | ||
|
|
b88cb388b7 | ||
|
|
639986001f | ||
|
|
e7a7e78969 | ||
|
|
e255ff7d23 | ||
|
|
1be2502112 | ||
|
|
f2bedb8fdd | ||
|
|
637404f482 | ||
|
|
daae146920 | ||
|
|
d95959fb41 | ||
|
|
c667d28e7a | ||
|
|
9e0b482f47 | ||
|
|
fa84eb657f | ||
|
|
264df3441b | ||
|
|
b9bad8b7a0 | ||
|
|
600ebb6432 | ||
|
|
09fe8ea868 | ||
|
|
ad6be03b4d | ||
|
|
65d2511216 | ||
|
|
113bf19c65 | ||
|
|
6026536110 | ||
|
|
056b671cd4 | ||
|
|
8d83ae2ee8 | ||
|
|
ca988f5c5f | ||
|
|
4e4214b82c | ||
|
|
fe83f676df | ||
|
|
6d6e12119b | ||
|
|
1f2b7cb9c8 | ||
|
|
878a189011 | ||
|
|
48c10271c2 | ||
|
|
c6a79d847e | ||
|
|
1bc3f8b96f | ||
|
|
7f6a6944d6 | ||
|
|
06f4146597 | ||
|
|
7ea73d5a5a | ||
|
|
30dfe6dcb4 | ||
|
|
dc5d5dfe05 | ||
|
|
0746e0be5b | ||
|
|
970320bd49 | ||
|
|
4a7bd5578e | ||
|
|
874b098a4b | ||
|
|
ce18b63eea | ||
|
|
7a919c3589 | ||
|
|
631bac4432 | ||
|
|
53428f6e9c | ||
|
|
53b3dcbace | ||
|
|
7a3c06c2d2 | ||
|
|
7a0d823c89 | ||
|
|
db69e445d6 | ||
|
|
18e63889b7 | ||
|
|
738e60c8ed | ||
|
|
8aec873e66 | ||
|
|
7c57dde8ab | ||
|
|
f30adab853 | ||
|
|
601687a522 | ||
|
|
350cf407c9 | ||
|
|
32ec4efc7a | ||
|
|
7c6981e052 | ||
|
|
c50cd20156 | ||
|
|
14772dee71 | ||
|
|
c81e704c95 | ||
|
|
3266ef6321 | ||
|
|
c89b98b4f2 | ||
|
|
e70e0ab859 | ||
|
|
69b6e9321e | ||
|
|
7e53af18b6 | ||
|
|
b9eb1ca2ba | ||
|
|
91d44c83d2 | ||
|
|
4dbc6bb4d1 | ||
|
|
4b6a4c6bbf | ||
|
|
fd1999454a | ||
|
|
0a35422d1d | ||
|
|
69b99056b2 | ||
|
|
2a55696545 |
25
.github/pull_request_template.md
vendored
25
.github/pull_request_template.md
vendored
@@ -1,29 +1,14 @@
|
||||
## Description
|
||||
|
||||
[Provide a brief description of the changes in this PR]
|
||||
|
||||
|
||||
## How Has This Been Tested?
|
||||
|
||||
[Describe the tests you ran to verify your changes]
|
||||
|
||||
|
||||
## Accepted Risk (provide if relevant)
|
||||
N/A
|
||||
|
||||
|
||||
## Related Issue(s) (provide if relevant)
|
||||
N/A
|
||||
|
||||
|
||||
## Mental Checklist:
|
||||
- All of the automated tests pass
|
||||
- All PR comments are addressed and marked resolved
|
||||
- If there are migrations, they have been rebased to latest main
|
||||
- If there are new dependencies, they are added to the requirements
|
||||
- If there are new environment variables, they are added to all of the deployment methods
|
||||
- If there are new APIs that don't require auth, they are added to PUBLIC_ENDPOINT_SPECS
|
||||
- Docker images build and basic functionalities work
|
||||
- Author has done a final read through of the PR right before merge
|
||||
|
||||
## Backporting (check the box to trigger backport action)
|
||||
|
||||
Note: You have to check that the action passes, otherwise resolve the conflicts manually and tag the patches.
|
||||
|
||||
- [ ] This PR should be backported (make sure to check that the backport attempt succeeds)
|
||||
- [ ] [Optional] Override Linear Check
|
||||
|
||||
@@ -6,7 +6,7 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'danswer/danswer-backend-cloud' || 'danswer/danswer-backend' }}
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-backend-cloud' || 'onyxdotapp/onyx-backend' }}
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
jobs:
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
# To run locally: trivy image --severity HIGH,CRITICAL danswer/danswer-backend
|
||||
# To run locally: trivy image --severity HIGH,CRITICAL onyxdotapp/onyx-backend
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
severity: "CRITICAL,HIGH"
|
||||
trivyignores: ./backend/.trivyignore
|
||||
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: danswer/danswer-web-server-cloud
|
||||
REGISTRY_IMAGE: onyxdotapp/onyx-web-server-cloud
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
jobs:
|
||||
@@ -60,12 +60,13 @@ jobs:
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
NEXT_PUBLIC_CLOUD_ENABLED=true
|
||||
NEXT_PUBLIC_POSTHOG_KEY=${{ secrets.POSTHOG_KEY }}
|
||||
NEXT_PUBLIC_POSTHOG_HOST=${{ secrets.POSTHOG_HOST }}
|
||||
NEXT_PUBLIC_SENTRY_DSN=${{ secrets.SENTRY_DSN }}
|
||||
NEXT_PUBLIC_GTM_ENABLED=true
|
||||
NEXT_PUBLIC_FORGOT_PASSWORD_ENABLED=true
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
@@ -6,20 +6,31 @@ on:
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'danswer/danswer-model-server-cloud' || 'danswer/danswer-model-server' }}
|
||||
REGISTRY_IMAGE: ${{ contains(github.ref_name, 'cloud') && 'onyxdotapp/onyx-model-server-cloud' || 'onyxdotapp/onyx-model-server' }}
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
DOCKER_BUILDKIT: 1
|
||||
BUILDKIT_PROGRESS: plain
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
|
||||
build-amd64:
|
||||
runs-on:
|
||||
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-amd64"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: System Info
|
||||
run: |
|
||||
df -h
|
||||
free -h
|
||||
docker system prune -af --volumes
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
driver-opts: |
|
||||
image=moby/buildkit:latest
|
||||
network=host
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
@@ -27,29 +38,86 @@ jobs:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Model Server Image Docker Build and Push
|
||||
- name: Build and Push AMD64
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: linux/amd64
|
||||
push: true
|
||||
tags: |
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
outputs: type=registry
|
||||
provenance: false
|
||||
|
||||
build-arm64:
|
||||
runs-on:
|
||||
[runs-on, runner=8cpu-linux-x64, "run-id=${{ github.run_id }}-arm64"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: System Info
|
||||
run: |
|
||||
df -h
|
||||
free -h
|
||||
docker system prune -af --volumes
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
driver-opts: |
|
||||
image=moby/buildkit:latest
|
||||
network=host
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Build and Push ARM64
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/arm64
|
||||
push: true
|
||||
tags: ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
outputs: type=registry
|
||||
provenance: false
|
||||
|
||||
merge-and-scan:
|
||||
needs: [build-amd64, build-arm64]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Create and Push Multi-arch Manifest
|
||||
run: |
|
||||
docker buildx create --use
|
||||
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }} \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
if [[ "${{ env.LATEST_TAG }}" == "true" ]]; then
|
||||
docker buildx imagetools create -t ${{ env.REGISTRY_IMAGE }}:latest \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-amd64 \
|
||||
${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}-arm64
|
||||
fi
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
- name: Run Trivy vulnerability scanner
|
||||
uses: aquasecurity/trivy-action@master
|
||||
env:
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
image-ref: docker.io/danswer/danswer-model-server:${{ github.ref_name }}
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
severity: "CRITICAL,HIGH"
|
||||
timeout: "10m"
|
||||
|
||||
@@ -3,12 +3,12 @@ name: Build and Push Web Image on Tag
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
- "*"
|
||||
|
||||
env:
|
||||
REGISTRY_IMAGE: danswer/danswer-web-server
|
||||
REGISTRY_IMAGE: onyxdotapp/onyx-web-server
|
||||
LATEST_TAG: ${{ contains(github.ref_name, 'latest') }}
|
||||
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on:
|
||||
@@ -27,11 +27,11 @@ jobs:
|
||||
- name: Prepare
|
||||
run: |
|
||||
platform=${{ matrix.platform }}
|
||||
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
|
||||
|
||||
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
@@ -40,16 +40,16 @@ jobs:
|
||||
tags: |
|
||||
type=raw,value=${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
type=raw,value=${{ env.LATEST_TAG == 'true' && format('{0}:latest', env.REGISTRY_IMAGE) || '' }}
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
|
||||
- name: Build and push by digest
|
||||
id: build
|
||||
uses: docker/build-push-action@v5
|
||||
@@ -59,18 +59,18 @@ jobs:
|
||||
platforms: ${{ matrix.platform }}
|
||||
push: true
|
||||
build-args: |
|
||||
DANSWER_VERSION=${{ github.ref_name }}
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
ONYX_VERSION=${{ github.ref_name }}
|
||||
# needed due to weird interactions with the builds for different platforms
|
||||
no-cache: true
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
outputs: type=image,name=${{ env.REGISTRY_IMAGE }},push-by-digest=true,name-canonical=true,push=true
|
||||
|
||||
|
||||
- name: Export digest
|
||||
run: |
|
||||
mkdir -p /tmp/digests
|
||||
digest="${{ steps.build.outputs.digest }}"
|
||||
touch "/tmp/digests/${digest#sha256:}"
|
||||
|
||||
touch "/tmp/digests/${digest#sha256:}"
|
||||
|
||||
- name: Upload digest
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
@@ -90,42 +90,42 @@ jobs:
|
||||
path: /tmp/digests
|
||||
pattern: digests-*
|
||||
merge-multiple: true
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY_IMAGE }}
|
||||
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
|
||||
- name: Create manifest list and push
|
||||
working-directory: /tmp/digests
|
||||
run: |
|
||||
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
|
||||
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
|
||||
|
||||
$(printf '${{ env.REGISTRY_IMAGE }}@sha256:%s ' *)
|
||||
|
||||
- name: Inspect image
|
||||
run: |
|
||||
docker buildx imagetools inspect ${{ env.REGISTRY_IMAGE }}:${{ steps.meta.outputs.version }}
|
||||
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
# trivy has their own rate limiting issues causing this action to flake
|
||||
# we worked around it by hardcoding to different db repos in env
|
||||
# can re-enable when they figure it out
|
||||
# https://github.com/aquasecurity/trivy/discussions/7538
|
||||
# https://github.com/aquasecurity/trivy-action/issues/389
|
||||
- name: Run Trivy vulnerability scanner
|
||||
uses: aquasecurity/trivy-action@master
|
||||
env:
|
||||
TRIVY_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-db:2'
|
||||
TRIVY_JAVA_DB_REPOSITORY: 'public.ecr.aws/aquasecurity/trivy-java-db:1'
|
||||
TRIVY_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-db:2"
|
||||
TRIVY_JAVA_DB_REPOSITORY: "public.ecr.aws/aquasecurity/trivy-java-db:1"
|
||||
with:
|
||||
image-ref: docker.io/${{ env.REGISTRY_IMAGE }}:${{ github.ref_name }}
|
||||
severity: 'CRITICAL,HIGH'
|
||||
severity: "CRITICAL,HIGH"
|
||||
|
||||
34
.github/workflows/docker-tag-latest.yml
vendored
34
.github/workflows/docker-tag-latest.yml
vendored
@@ -7,31 +7,31 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
version:
|
||||
description: 'The version (ie v0.0.1) to tag as latest'
|
||||
description: "The version (ie v0.0.1) to tag as latest"
|
||||
required: true
|
||||
|
||||
jobs:
|
||||
tag:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
# use a lower powered instance since this just does i/o to docker hub
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_TOKEN }}
|
||||
|
||||
- name: Enable Docker CLI experimental features
|
||||
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
|
||||
- name: Enable Docker CLI experimental features
|
||||
run: echo "DOCKER_CLI_EXPERIMENTAL=enabled" >> $GITHUB_ENV
|
||||
|
||||
- name: Pull, Tag and Push Web Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t danswer/danswer-web-server:latest danswer/danswer-web-server:${{ github.event.inputs.version }}
|
||||
- name: Pull, Tag and Push Web Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:${{ github.event.inputs.version }}
|
||||
|
||||
- name: Pull, Tag and Push API Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t danswer/danswer-backend:latest danswer/danswer-backend:${{ github.event.inputs.version }}
|
||||
- name: Pull, Tag and Push API Server Image
|
||||
run: |
|
||||
docker buildx imagetools create -t onyxdotapp/onyx-backend:latest onyxdotapp/onyx-backend:${{ github.event.inputs.version }}
|
||||
|
||||
27
.github/workflows/hotfix-release-branches.yml
vendored
27
.github/workflows/hotfix-release-branches.yml
vendored
@@ -8,43 +8,42 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
hotfix_commit:
|
||||
description: 'Hotfix commit hash'
|
||||
description: "Hotfix commit hash"
|
||||
required: true
|
||||
hotfix_suffix:
|
||||
description: 'Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})'
|
||||
description: "Hotfix branch suffix (e.g. hotfix/v0.8-{suffix})"
|
||||
required: true
|
||||
release_branch_pattern:
|
||||
description: 'Release branch pattern (regex)'
|
||||
description: "Release branch pattern (regex)"
|
||||
required: true
|
||||
default: 'release/.*'
|
||||
default: "release/.*"
|
||||
auto_merge:
|
||||
description: 'Automatically merge the hotfix PRs'
|
||||
description: "Automatically merge the hotfix PRs"
|
||||
required: true
|
||||
type: choice
|
||||
default: 'true'
|
||||
default: "true"
|
||||
options:
|
||||
- true
|
||||
- false
|
||||
|
||||
|
||||
jobs:
|
||||
hotfix_release_branches:
|
||||
permissions: write-all
|
||||
# See https://runs-on.com/runners/linux/
|
||||
# use a lower powered instance since this just does i/o to docker hub
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
|
||||
# needs RKUO_DEPLOY_KEY for write access to merge PR's
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
|
||||
- name: Fetch All Branches
|
||||
run: |
|
||||
@@ -62,10 +61,10 @@ jobs:
|
||||
echo "No release branches found matching pattern '${{ github.event.inputs.release_branch_pattern }}'."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
echo "Found release branches:"
|
||||
echo "$BRANCHES"
|
||||
|
||||
|
||||
# Join the branches into a single line separated by commas
|
||||
BRANCHES_JOINED=$(echo "$BRANCHES" | tr '\n' ',' | sed 's/,$//')
|
||||
|
||||
@@ -169,4 +168,4 @@ jobs:
|
||||
echo "Failed to merge pull request #$PR_NUMBER."
|
||||
fi
|
||||
fi
|
||||
done
|
||||
done
|
||||
|
||||
20
.github/workflows/pr-backport-autotrigger.yml
vendored
20
.github/workflows/pr-backport-autotrigger.yml
vendored
@@ -4,7 +4,7 @@ name: Backport on Merge
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [closed] # Later we check for merge so only PRs that go in can get backported
|
||||
types: [closed] # Later we check for merge so only PRs that go in can get backported
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -26,9 +26,9 @@ jobs:
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
git fetch --prune
|
||||
|
||||
|
||||
- name: Check for Backport Checkbox
|
||||
id: checkbox-check
|
||||
run: |
|
||||
@@ -51,14 +51,14 @@ jobs:
|
||||
# Fetch latest tags for beta and stable
|
||||
LATEST_BETA_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*-beta.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+-beta\.[0-9]+$" | grep -v -- "-cloud" | sort -Vr | head -n 1)
|
||||
LATEST_STABLE_TAG=$(git tag -l "v[0-9]*.[0-9]*.[0-9]*" | grep -E "^v[0-9]+\.[0-9]+\.[0-9]+$" | sort -Vr | head -n 1)
|
||||
|
||||
|
||||
# Handle case where no beta tags exist
|
||||
if [[ -z "$LATEST_BETA_TAG" ]]; then
|
||||
NEW_BETA_TAG="v1.0.0-beta.1"
|
||||
else
|
||||
NEW_BETA_TAG=$(echo $LATEST_BETA_TAG | awk -F '[.-]' '{print $1 "." $2 "." $3 "-beta." ($NF+1)}')
|
||||
fi
|
||||
|
||||
|
||||
# Increment latest stable tag
|
||||
NEW_STABLE_TAG=$(echo $LATEST_STABLE_TAG | awk -F '.' '{print $1 "." $2 "." ($3+1)}')
|
||||
echo "latest_beta_tag=$LATEST_BETA_TAG" >> $GITHUB_OUTPUT
|
||||
@@ -80,10 +80,10 @@ jobs:
|
||||
run: |
|
||||
set -e
|
||||
echo "Backporting to beta ${{ steps.list-branches.outputs.beta }} and stable ${{ steps.list-branches.outputs.stable }}"
|
||||
|
||||
|
||||
# Echo the merge commit SHA
|
||||
echo "Merge commit SHA: ${{ github.event.pull_request.merge_commit_sha }}"
|
||||
|
||||
|
||||
# Fetch all history for all branches and tags
|
||||
git fetch --prune
|
||||
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
echo "Cherry-pick to beta failed due to conflicts."
|
||||
exit 1
|
||||
}
|
||||
|
||||
|
||||
# Create new beta branch/tag
|
||||
git tag ${{ steps.list-branches.outputs.new_beta_tag }}
|
||||
# Push the changes and tag to the beta branch using PAT
|
||||
@@ -110,13 +110,13 @@ jobs:
|
||||
echo "Last 5 commits on stable branch:"
|
||||
git log -n 5 --pretty=format:"%H"
|
||||
echo "" # Newline for formatting
|
||||
|
||||
|
||||
# Cherry-pick the merge commit from the merged PR
|
||||
git cherry-pick -m 1 ${{ github.event.pull_request.merge_commit_sha }} || {
|
||||
echo "Cherry-pick to stable failed due to conflicts."
|
||||
exit 1
|
||||
}
|
||||
|
||||
|
||||
# Create new stable branch/tag
|
||||
git tag ${{ steps.list-branches.outputs.new_stable_tag }}
|
||||
# Push the changes and tag to the stable branch using PAT
|
||||
|
||||
59
.github/workflows/pr-chromatic-tests.yml
vendored
59
.github/workflows/pr-chromatic-tests.yml
vendored
@@ -14,18 +14,24 @@ jobs:
|
||||
name: Playwright Tests
|
||||
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on:
|
||||
[
|
||||
runs-on,
|
||||
runner=32cpu-linux-x64,
|
||||
disk=large,
|
||||
"run-id=${{ github.run_id }}",
|
||||
]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
cache: 'pip'
|
||||
python-version: "3.11"
|
||||
cache: "pip"
|
||||
cache-dependency-path: |
|
||||
backend/requirements/default.txt
|
||||
backend/requirements/dev.txt
|
||||
@@ -35,7 +41,7 @@ jobs:
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/default.txt
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/dev.txt
|
||||
pip install --retries 5 --timeout 30 -r backend/requirements/model_server.txt
|
||||
|
||||
|
||||
- name: Setup node
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
@@ -48,7 +54,7 @@ jobs:
|
||||
- name: Install playwright browsers
|
||||
working-directory: ./web
|
||||
run: npx playwright install --with-deps
|
||||
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
@@ -60,13 +66,13 @@ jobs:
|
||||
|
||||
# tag every docker image with "test" so that we can spin up the correct set
|
||||
# of images during testing
|
||||
|
||||
|
||||
# we use the runs-on cache for docker builds
|
||||
# in conjunction with runs-on runners, it has better speed and unlimited caching
|
||||
# https://runs-on.com/caching/s3-cache-for-github-actions/
|
||||
# https://runs-on.com/caching/docker/
|
||||
# https://github.com/moby/buildkit#s3-cache-experimental
|
||||
|
||||
|
||||
# images are built and run locally for testing purposes. Not pushed.
|
||||
|
||||
- name: Build Web Docker image
|
||||
@@ -75,7 +81,7 @@ jobs:
|
||||
context: ./web
|
||||
file: ./web/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-web-server:test
|
||||
tags: onyxdotapp/onyx-web-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/web-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -87,7 +93,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-backend:test
|
||||
tags: onyxdotapp/onyx-backend:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -99,7 +105,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-model-server:test
|
||||
tags: onyxdotapp/onyx-model-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -110,6 +116,7 @@ jobs:
|
||||
cd deployment/docker_compose
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
|
||||
AUTH_TYPE=basic \
|
||||
GEN_AI_API_KEY=${{ secrets.OPENAI_API_KEY }} \
|
||||
REQUIRE_EMAIL_VERIFICATION=false \
|
||||
DISABLE_TELEMETRY=true \
|
||||
IMAGE_TAG=test \
|
||||
@@ -119,12 +126,12 @@ jobs:
|
||||
- name: Wait for service to be ready
|
||||
run: |
|
||||
echo "Starting wait-for-service script..."
|
||||
|
||||
|
||||
docker logs -f danswer-stack-api_server-1 &
|
||||
|
||||
start_time=$(date +%s)
|
||||
timeout=300 # 5 minutes in seconds
|
||||
|
||||
|
||||
while true; do
|
||||
current_time=$(date +%s)
|
||||
elapsed_time=$((current_time - start_time))
|
||||
@@ -152,7 +159,7 @@ jobs:
|
||||
|
||||
- name: Run pytest playwright test init
|
||||
working-directory: ./backend
|
||||
env:
|
||||
env:
|
||||
PYTEST_IGNORE_SKIP: true
|
||||
run: pytest -s tests/integration/tests/playwright/test_playwright.py
|
||||
|
||||
@@ -168,7 +175,7 @@ jobs:
|
||||
name: test-results
|
||||
path: ./web/test-results
|
||||
retention-days: 30
|
||||
|
||||
|
||||
# save before stopping the containers so the logs can be captured
|
||||
- name: Save Docker logs
|
||||
if: success() || failure()
|
||||
@@ -176,7 +183,7 @@ jobs:
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack logs > docker-compose.log
|
||||
mv docker-compose.log ${{ github.workspace }}/docker-compose.log
|
||||
|
||||
|
||||
- name: Upload logs
|
||||
if: success() || failure()
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -191,35 +198,41 @@ jobs:
|
||||
|
||||
chromatic-tests:
|
||||
name: Chromatic Tests
|
||||
|
||||
|
||||
needs: playwright-tests
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on:
|
||||
[
|
||||
runs-on,
|
||||
runner=32cpu-linux-x64,
|
||||
disk=large,
|
||||
"run-id=${{ github.run_id }}",
|
||||
]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Setup node
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 22
|
||||
|
||||
|
||||
- name: Install node dependencies
|
||||
working-directory: ./web
|
||||
run: npm ci
|
||||
|
||||
|
||||
- name: Download Playwright test results
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: test-results
|
||||
path: ./web/test-results
|
||||
|
||||
|
||||
- name: Run Chromatic
|
||||
uses: chromaui/action@latest
|
||||
with:
|
||||
playwright: true
|
||||
projectToken: ${{ secrets.CHROMATIC_PROJECT_TOKEN }}
|
||||
workingDir: ./web
|
||||
env:
|
||||
env:
|
||||
CHROMATIC_ARCHIVE_LOCATION: ./test-results
|
||||
|
||||
39
.github/workflows/pr-integration-tests.yml
vendored
39
.github/workflows/pr-integration-tests.yml
vendored
@@ -8,7 +8,7 @@ on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- 'release/**'
|
||||
- "release/**"
|
||||
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -16,11 +16,11 @@ env:
|
||||
CONFLUENCE_TEST_SPACE_URL: ${{ secrets.CONFLUENCE_TEST_SPACE_URL }}
|
||||
CONFLUENCE_USER_NAME: ${{ secrets.CONFLUENCE_USER_NAME }}
|
||||
CONFLUENCE_ACCESS_TOKEN: ${{ secrets.CONFLUENCE_ACCESS_TOKEN }}
|
||||
|
||||
|
||||
jobs:
|
||||
integration-tests:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
runs-on: [runs-on,runner=8cpu-linux-x64,ram=16,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=32cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
@@ -36,21 +36,21 @@ jobs:
|
||||
|
||||
# tag every docker image with "test" so that we can spin up the correct set
|
||||
# of images during testing
|
||||
|
||||
|
||||
# We don't need to build the Web Docker image since it's not yet used
|
||||
# in the integration tests. We have a separate action to verify that it builds
|
||||
# in the integration tests. We have a separate action to verify that it builds
|
||||
# successfully.
|
||||
- name: Pull Web Docker image
|
||||
run: |
|
||||
docker pull danswer/danswer-web-server:latest
|
||||
docker tag danswer/danswer-web-server:latest danswer/danswer-web-server:test
|
||||
docker pull onyxdotapp/onyx-web-server:latest
|
||||
docker tag onyxdotapp/onyx-web-server:latest onyxdotapp/onyx-web-server:test
|
||||
|
||||
# we use the runs-on cache for docker builds
|
||||
# in conjunction with runs-on runners, it has better speed and unlimited caching
|
||||
# https://runs-on.com/caching/s3-cache-for-github-actions/
|
||||
# https://runs-on.com/caching/docker/
|
||||
# https://github.com/moby/buildkit#s3-cache-experimental
|
||||
|
||||
|
||||
# images are built and run locally for testing purposes. Not pushed.
|
||||
- name: Build Backend Docker image
|
||||
uses: ./.github/actions/custom-build-and-push
|
||||
@@ -58,7 +58,7 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-backend:test
|
||||
tags: onyxdotapp/onyx-backend:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/backend/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -70,19 +70,19 @@ jobs:
|
||||
context: ./backend
|
||||
file: ./backend/Dockerfile.model_server
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-model-server:test
|
||||
tags: onyxdotapp/onyx-model-server:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
cache-to: type=s3,prefix=cache/${{ github.repository }}/integration-tests/model-server/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }},mode=max
|
||||
|
||||
|
||||
- name: Build integration test Docker image
|
||||
uses: ./.github/actions/custom-build-and-push
|
||||
with:
|
||||
context: ./backend
|
||||
file: ./backend/tests/integration/Dockerfile
|
||||
platforms: linux/amd64
|
||||
tags: danswer/danswer-integration:test
|
||||
tags: onyxdotapp/onyx-integration:test
|
||||
push: false
|
||||
load: true
|
||||
cache-from: type=s3,prefix=cache/${{ github.repository }}/integration-tests/integration/,region=${{ env.RUNS_ON_AWS_REGION }},bucket=${{ env.RUNS_ON_S3_BUCKET_CACHE }}
|
||||
@@ -119,7 +119,7 @@ jobs:
|
||||
-e TEST_WEB_HOSTNAME=test-runner \
|
||||
-e AUTH_TYPE=cloud \
|
||||
-e MULTI_TENANT=true \
|
||||
danswer/danswer-integration:test \
|
||||
onyxdotapp/onyx-integration:test \
|
||||
/app/tests/integration/multitenant_tests
|
||||
continue-on-error: true
|
||||
id: run_multitenant_tests
|
||||
@@ -131,15 +131,14 @@ jobs:
|
||||
exit 1
|
||||
else
|
||||
echo "All integration tests passed successfully."
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Stop multi-tenant Docker containers
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
|
||||
|
||||
|
||||
- name: Start Docker containers
|
||||
- name: Start Docker containers
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
ENABLE_PAID_ENTERPRISE_EDITION_FEATURES=true \
|
||||
@@ -153,12 +152,12 @@ jobs:
|
||||
- name: Wait for service to be ready
|
||||
run: |
|
||||
echo "Starting wait-for-service script..."
|
||||
|
||||
|
||||
docker logs -f danswer-stack-api_server-1 &
|
||||
|
||||
start_time=$(date +%s)
|
||||
timeout=300 # 5 minutes in seconds
|
||||
|
||||
|
||||
while true; do
|
||||
current_time=$(date +%s)
|
||||
elapsed_time=$((current_time - start_time))
|
||||
@@ -202,7 +201,7 @@ jobs:
|
||||
-e CONFLUENCE_USER_NAME=${CONFLUENCE_USER_NAME} \
|
||||
-e CONFLUENCE_ACCESS_TOKEN=${CONFLUENCE_ACCESS_TOKEN} \
|
||||
-e TEST_WEB_HOSTNAME=test-runner \
|
||||
danswer/danswer-integration:test \
|
||||
onyxdotapp/onyx-integration:test \
|
||||
/app/tests/integration/tests \
|
||||
/app/tests/integration/connector_job_tests
|
||||
continue-on-error: true
|
||||
@@ -229,7 +228,7 @@ jobs:
|
||||
run: |
|
||||
cd deployment/docker_compose
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack down -v
|
||||
|
||||
|
||||
- name: Upload logs
|
||||
if: success() || failure()
|
||||
uses: actions/upload-artifact@v4
|
||||
|
||||
29
.github/workflows/pr-linear-check.yml
vendored
Normal file
29
.github/workflows/pr-linear-check.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Ensure PR references Linear
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, edited, reopened, synchronize]
|
||||
|
||||
jobs:
|
||||
linear-check:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check PR body for Linear link or override
|
||||
run: |
|
||||
PR_BODY="${{ github.event.pull_request.body }}"
|
||||
|
||||
# Looking for "https://linear.app" in the body
|
||||
if echo "$PR_BODY" | grep -qE "https://linear\.app"; then
|
||||
echo "Found a Linear link. Check passed."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Looking for a checked override: "[x] Override Linear Check"
|
||||
if echo "$PR_BODY" | grep -q "\[x\].*Override Linear Check"; then
|
||||
echo "Override box is checked. Check passed."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Otherwise, fail the run
|
||||
echo "No Linear link or override found in the PR description."
|
||||
exit 1
|
||||
14
.github/workflows/pr-python-connector-tests.yml
vendored
14
.github/workflows/pr-python-connector-tests.yml
vendored
@@ -26,7 +26,19 @@ env:
|
||||
GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR: ${{ secrets.GOOGLE_GMAIL_OAUTH_CREDENTIALS_JSON_STR }}
|
||||
# Slab
|
||||
SLAB_BOT_TOKEN: ${{ secrets.SLAB_BOT_TOKEN }}
|
||||
|
||||
# Zendesk
|
||||
ZENDESK_SUBDOMAIN: ${{ secrets.ZENDESK_SUBDOMAIN }}
|
||||
ZENDESK_EMAIL: ${{ secrets.ZENDESK_EMAIL }}
|
||||
ZENDESK_TOKEN: ${{ secrets.ZENDESK_TOKEN }}
|
||||
# Salesforce
|
||||
SF_USERNAME: ${{ secrets.SF_USERNAME }}
|
||||
SF_PASSWORD: ${{ secrets.SF_PASSWORD }}
|
||||
SF_SECURITY_TOKEN: ${{ secrets.SF_SECURITY_TOKEN }}
|
||||
# Airtable
|
||||
AIRTABLE_TEST_BASE_ID: ${{ secrets.AIRTABLE_TEST_BASE_ID }}
|
||||
AIRTABLE_TEST_TABLE_ID: ${{ secrets.AIRTABLE_TEST_TABLE_ID }}
|
||||
AIRTABLE_TEST_TABLE_NAME: ${{ secrets.AIRTABLE_TEST_TABLE_NAME }}
|
||||
AIRTABLE_ACCESS_TOKEN: ${{ secrets.AIRTABLE_ACCESS_TOKEN }}
|
||||
jobs:
|
||||
connectors-check:
|
||||
# See https://runs-on.com/runners/linux/
|
||||
|
||||
79
.github/workflows/tag-nightly.yml
vendored
79
.github/workflows/tag-nightly.yml
vendored
@@ -2,53 +2,52 @@ name: Nightly Tag Push
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '0 10 * * *' # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
|
||||
- cron: "0 10 * * *" # Runs every day at 2 AM PST / 3 AM PDT / 10 AM UTC
|
||||
|
||||
permissions:
|
||||
contents: write # Allows pushing tags to the repository
|
||||
contents: write # Allows pushing tags to the repository
|
||||
|
||||
jobs:
|
||||
create-and-push-tag:
|
||||
runs-on: [runs-on,runner=2cpu-linux-x64,"run-id=${{ github.run_id }}"]
|
||||
runs-on: [runs-on, runner=2cpu-linux-x64, "run-id=${{ github.run_id }}"]
|
||||
|
||||
steps:
|
||||
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
|
||||
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
|
||||
# implement here which needs an actual user's deploy key
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
# actions using GITHUB_TOKEN cannot trigger another workflow, but we do want this to trigger docker pushes
|
||||
# see https://github.com/orgs/community/discussions/27028#discussioncomment-3254367 for the workaround we
|
||||
# implement here which needs an actual user's deploy key
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ssh-key: "${{ secrets.RKUO_DEPLOY_KEY }}"
|
||||
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@danswer.ai"
|
||||
- name: Set up Git user
|
||||
run: |
|
||||
git config user.name "Richard Kuo [bot]"
|
||||
git config user.email "rkuo[bot]@onyx.app"
|
||||
|
||||
- name: Check for existing nightly tag
|
||||
id: check_tag
|
||||
run: |
|
||||
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
|
||||
echo "A tag starting with 'nightly-latest' already exists on HEAD."
|
||||
echo "tag_exists=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "No tag starting with 'nightly-latest' exists on HEAD."
|
||||
echo "tag_exists=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
# don't tag again if HEAD already has a nightly-latest tag on it
|
||||
- name: Create Nightly Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
env:
|
||||
DATE: ${{ github.run_id }}
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
echo "Creating tag: $TAG_NAME"
|
||||
git tag $TAG_NAME
|
||||
- name: Check for existing nightly tag
|
||||
id: check_tag
|
||||
run: |
|
||||
if git tag --points-at HEAD --list "nightly-latest*" | grep -q .; then
|
||||
echo "A tag starting with 'nightly-latest' already exists on HEAD."
|
||||
echo "tag_exists=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "No tag starting with 'nightly-latest' exists on HEAD."
|
||||
echo "tag_exists=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Push Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
git push origin $TAG_NAME
|
||||
|
||||
# don't tag again if HEAD already has a nightly-latest tag on it
|
||||
- name: Create Nightly Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
env:
|
||||
DATE: ${{ github.run_id }}
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
echo "Creating tag: $TAG_NAME"
|
||||
git tag $TAG_NAME
|
||||
|
||||
- name: Push Tag
|
||||
if: steps.check_tag.outputs.tag_exists == 'false'
|
||||
run: |
|
||||
TAG_NAME="nightly-latest-$(date +'%Y%m%d')"
|
||||
git push origin $TAG_NAME
|
||||
|
||||
3
.vscode/env_template.txt
vendored
3
.vscode/env_template.txt
vendored
@@ -5,6 +5,8 @@
|
||||
# For local dev, often user Authentication is not needed
|
||||
AUTH_TYPE=disabled
|
||||
|
||||
# Skip warm up for dev
|
||||
SKIP_WARM_UP=True
|
||||
|
||||
# Always keep these on for Dev
|
||||
# Logs all model prompts to stdout
|
||||
@@ -27,6 +29,7 @@ REQUIRE_EMAIL_VERIFICATION=False
|
||||
|
||||
# Set these so if you wipe the DB, you don't end up having to go through the UI every time
|
||||
GEN_AI_API_KEY=<REPLACE THIS>
|
||||
OPENAI_API_KEY=<REPLACE THIS>
|
||||
# If answer quality isn't important for dev, use gpt-4o-mini since it's cheaper
|
||||
GEN_AI_MODEL_VERSION=gpt-4o
|
||||
FAST_GEN_AI_MODEL_VERSION=gpt-4o
|
||||
|
||||
62
.vscode/launch.template.jsonc
vendored
62
.vscode/launch.template.jsonc
vendored
@@ -17,7 +17,7 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Run All Danswer Services",
|
||||
"name": "Run All Onyx Services",
|
||||
"configurations": [
|
||||
"Web Server",
|
||||
"Model Server",
|
||||
@@ -28,6 +28,7 @@
|
||||
"Celery heavy",
|
||||
"Celery indexing",
|
||||
"Celery beat",
|
||||
"Celery monitoring",
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1",
|
||||
@@ -51,7 +52,8 @@
|
||||
"Celery light",
|
||||
"Celery heavy",
|
||||
"Celery indexing",
|
||||
"Celery beat"
|
||||
"Celery beat",
|
||||
"Celery monitoring",
|
||||
],
|
||||
"presentation": {
|
||||
"group": "1",
|
||||
@@ -122,7 +124,7 @@
|
||||
"PYTHONUNBUFFERED": "1"
|
||||
},
|
||||
"args": [
|
||||
"danswer.main:app",
|
||||
"onyx.main:app",
|
||||
"--reload",
|
||||
"--port",
|
||||
"8080"
|
||||
@@ -139,7 +141,7 @@
|
||||
"consoleName": "Slack Bot",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "danswer/danswerbot/slack/listener.py",
|
||||
"program": "onyx/onyxbot/slack/listener.py",
|
||||
"cwd": "${workspaceFolder}/backend",
|
||||
"envFile": "${workspaceFolder}/.vscode/.env",
|
||||
"env": {
|
||||
@@ -166,7 +168,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.primary",
|
||||
"onyx.background.celery.versioned_apps.primary",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=4",
|
||||
@@ -195,7 +197,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.light",
|
||||
"onyx.background.celery.versioned_apps.light",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=64",
|
||||
@@ -224,7 +226,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.heavy",
|
||||
"onyx.background.celery.versioned_apps.heavy",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=4",
|
||||
@@ -254,7 +256,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.indexing",
|
||||
"onyx.background.celery.versioned_apps.indexing",
|
||||
"worker",
|
||||
"--pool=threads",
|
||||
"--concurrency=1",
|
||||
@@ -269,6 +271,31 @@
|
||||
},
|
||||
"consoleTitle": "Celery indexing Console"
|
||||
},
|
||||
{
|
||||
"name": "Celery monitoring",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"module": "celery",
|
||||
"cwd": "${workspaceFolder}/backend",
|
||||
"envFile": "${workspaceFolder}/.vscode/.env",
|
||||
"env": {},
|
||||
"args": [
|
||||
"-A",
|
||||
"onyx.background.celery.versioned_apps.monitoring",
|
||||
"worker",
|
||||
"--pool=solo",
|
||||
"--concurrency=1",
|
||||
"--prefetch-multiplier=1",
|
||||
"--loglevel=INFO",
|
||||
"--hostname=monitoring@%n",
|
||||
"-Q",
|
||||
"monitoring",
|
||||
],
|
||||
"presentation": {
|
||||
"group": "2",
|
||||
},
|
||||
"consoleTitle": "Celery monitoring Console"
|
||||
},
|
||||
{
|
||||
"name": "Celery beat",
|
||||
"type": "debugpy",
|
||||
@@ -283,7 +310,7 @@
|
||||
},
|
||||
"args": [
|
||||
"-A",
|
||||
"danswer.background.celery.versioned_apps.beat",
|
||||
"onyx.background.celery.versioned_apps.beat",
|
||||
"beat",
|
||||
"--loglevel=INFO",
|
||||
],
|
||||
@@ -308,7 +335,7 @@
|
||||
"args": [
|
||||
"-v"
|
||||
// Specify a sepcific module/test to run or provide nothing to run all tests
|
||||
//"tests/unit/danswer/llm/answering/test_prune_and_merge.py"
|
||||
//"tests/unit/onyx/llm/answering/test_prune_and_merge.py"
|
||||
],
|
||||
"presentation": {
|
||||
"group": "2",
|
||||
@@ -355,5 +382,20 @@
|
||||
"PYTHONPATH": "."
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "Install Python Requirements",
|
||||
"type": "node",
|
||||
"request": "launch",
|
||||
"runtimeExecutable": "bash",
|
||||
"runtimeArgs": [
|
||||
"-c",
|
||||
"pip install -r backend/requirements/default.txt && pip install -r backend/requirements/dev.txt && pip install -r backend/requirements/ee.txt && pip install -r backend/requirements/model_server.txt"
|
||||
],
|
||||
"cwd": "${workspaceFolder}",
|
||||
"console": "integratedTerminal",
|
||||
"presentation": {
|
||||
"group": "3"
|
||||
}
|
||||
},
|
||||
]
|
||||
}
|
||||
|
||||
192
CONTRIBUTING.md
192
CONTRIBUTING.md
@@ -1,32 +1,38 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md"} -->
|
||||
|
||||
# Contributing to Danswer
|
||||
Hey there! We are so excited that you're interested in Danswer.
|
||||
# Contributing to Onyx
|
||||
|
||||
Hey there! We are so excited that you're interested in Onyx.
|
||||
|
||||
As an open source project in a rapidly changing space, we welcome all contributions.
|
||||
|
||||
|
||||
## 💃 Guidelines
|
||||
|
||||
### Contribution Opportunities
|
||||
The [GitHub Issues](https://github.com/danswer-ai/danswer/issues) page is a great place to start for contribution ideas.
|
||||
|
||||
The [GitHub Issues](https://github.com/onyx-dot-app/onyx/issues) page is a great place to start for contribution ideas.
|
||||
|
||||
To ensure that your contribution is aligned with the project's direction, please reach out to Hagen (or any other maintainer) on the Onyx team
|
||||
via [Slack](https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA) /
|
||||
[Discord](https://discord.gg/TDJ59cGV2X) or [email](mailto:founders@onyx.app).
|
||||
|
||||
Issues that have been explicitly approved by the maintainers (aligned with the direction of the project)
|
||||
will be marked with the `approved by maintainers` label.
|
||||
Issues marked `good first issue` are an especially great place to start.
|
||||
|
||||
**Connectors** to other tools are another great place to contribute. For details on how, refer to this
|
||||
[README.md](https://github.com/danswer-ai/danswer/blob/main/backend/danswer/connectors/README.md).
|
||||
[README.md](https://github.com/onyx-dot-app/onyx/blob/main/backend/onyx/connectors/README.md).
|
||||
|
||||
If you have a new/different contribution in mind, we'd love to hear about it!
|
||||
Your input is vital to making sure that Danswer moves in the right direction.
|
||||
Your input is vital to making sure that Onyx moves in the right direction.
|
||||
Before starting on implementation, please raise a GitHub issue.
|
||||
|
||||
And always feel free to message us (Chris Weaver / Yuhong Sun) on
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2lcmqw703-071hBuZBfNEOGUsLa5PXvQ) /
|
||||
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
|
||||
|
||||
Also, always feel free to message the founders (Chris Weaver / Yuhong Sun) on
|
||||
[Slack](https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA) /
|
||||
[Discord](https://discord.gg/TDJ59cGV2X) directly about anything at all.
|
||||
|
||||
### Contributing Code
|
||||
|
||||
To contribute to this project, please follow the
|
||||
["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
When opening a pull request, mention related issues and feel free to tag relevant maintainers.
|
||||
@@ -34,72 +40,78 @@ When opening a pull request, mention related issues and feel free to tag relevan
|
||||
Before creating a pull request please make sure that the new changes conform to the formatting and linting requirements.
|
||||
See the [Formatting and Linting](#formatting-and-linting) section for how to run these checks locally.
|
||||
|
||||
|
||||
### Getting Help 🙋
|
||||
|
||||
Our goal is to make contributing as easy as possible. If you run into any issues please don't hesitate to reach out.
|
||||
That way we can help future contributors and users can avoid the same issue.
|
||||
|
||||
We also have support channels and generally interesting discussions on our
|
||||
[Slack](https://join.slack.com/t/danswer/shared_invite/zt-2afut44lv-Rw3kSWu6_OmdAXRpCv80DQ)
|
||||
and
|
||||
[Slack](https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA)
|
||||
and
|
||||
[Discord](https://discord.gg/TDJ59cGV2X).
|
||||
|
||||
We would love to see you there!
|
||||
|
||||
|
||||
## Get Started 🚀
|
||||
Danswer being a fully functional app, relies on some external software, specifically:
|
||||
|
||||
Onyx being a fully functional app, relies on some external software, specifically:
|
||||
|
||||
- [Postgres](https://www.postgresql.org/) (Relational DB)
|
||||
- [Vespa](https://vespa.ai/) (Vector DB/Search Engine)
|
||||
- [Redis](https://redis.io/) (Cache)
|
||||
- [Nginx](https://nginx.org/) (Not needed for development flows generally)
|
||||
|
||||
|
||||
> **Note:**
|
||||
> This guide provides instructions to build and run Danswer locally from source with Docker containers providing the above external software. We believe this combination is easier for
|
||||
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Danswer stack within Docker below.
|
||||
|
||||
> This guide provides instructions to build and run Onyx locally from source with Docker containers providing the above external software. We believe this combination is easier for
|
||||
> development purposes. If you prefer to use pre-built container images, we provide instructions on running the full Onyx stack within Docker below.
|
||||
|
||||
### Local Set Up
|
||||
|
||||
Be sure to use Python version 3.11. For instructions on installing Python 3.11 on macOS, refer to the [CONTRIBUTING_MACOS.md](./CONTRIBUTING_MACOS.md) readme.
|
||||
|
||||
If using a lower version, modifications will have to be made to the code.
|
||||
If using a higher version, sometimes some libraries will not be available (i.e. we had problems with Tensorflow in the past with higher versions of python).
|
||||
|
||||
|
||||
#### Backend: Python requirements
|
||||
|
||||
Currently, we use pip and recommend creating a virtual environment.
|
||||
|
||||
For convenience here's a command for it:
|
||||
|
||||
```bash
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
> **Note:**
|
||||
> This virtual environment MUST NOT be set up WITHIN the danswer directory if you plan on using mypy within certain IDEs.
|
||||
> For simplicity, we recommend setting up the virtual environment outside of the danswer directory.
|
||||
> This virtual environment MUST NOT be set up WITHIN the onyx directory if you plan on using mypy within certain IDEs.
|
||||
> For simplicity, we recommend setting up the virtual environment outside of the onyx directory.
|
||||
|
||||
_For Windows, activate the virtual environment using Command Prompt:_
|
||||
|
||||
```bash
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
If using PowerShell, the command slightly differs:
|
||||
|
||||
```powershell
|
||||
.venv\Scripts\Activate.ps1
|
||||
```
|
||||
|
||||
Install the required python dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r danswer/backend/requirements/default.txt
|
||||
pip install -r danswer/backend/requirements/dev.txt
|
||||
pip install -r danswer/backend/requirements/ee.txt
|
||||
pip install -r danswer/backend/requirements/model_server.txt
|
||||
pip install -r onyx/backend/requirements/default.txt
|
||||
pip install -r onyx/backend/requirements/dev.txt
|
||||
pip install -r onyx/backend/requirements/ee.txt
|
||||
pip install -r onyx/backend/requirements/model_server.txt
|
||||
```
|
||||
|
||||
Install Playwright for Python (headless browser required by the Web Connector)
|
||||
|
||||
In the activated Python virtualenv, install Playwright for Python by running:
|
||||
|
||||
```bash
|
||||
playwright install
|
||||
```
|
||||
@@ -109,42 +121,90 @@ You may have to deactivate and reactivate your virtualenv for `playwright` to ap
|
||||
#### Frontend: Node dependencies
|
||||
|
||||
Install [Node.js and npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) for the frontend.
|
||||
Once the above is done, navigate to `danswer/web` run:
|
||||
Once the above is done, navigate to `onyx/web` run:
|
||||
|
||||
```bash
|
||||
npm i
|
||||
```
|
||||
|
||||
#### Docker containers for external software
|
||||
## Formatting and Linting
|
||||
|
||||
### Backend
|
||||
|
||||
For the backend, you'll need to setup pre-commit hooks (black / reorder-python-imports).
|
||||
First, install pre-commit (if you don't have it already) following the instructions
|
||||
[here](https://pre-commit.com/#installation).
|
||||
|
||||
With the virtual environment active, install the pre-commit library with:
|
||||
|
||||
```bash
|
||||
pip install pre-commit
|
||||
```
|
||||
|
||||
Then, from the `onyx/backend` directory, run:
|
||||
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
Additionally, we use `mypy` for static type checking.
|
||||
Onyx is fully type-annotated, and we want to keep it that way!
|
||||
To run the mypy checks manually, run `python -m mypy .` from the `onyx/backend` directory.
|
||||
|
||||
### Web
|
||||
|
||||
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `onyx/web` directory.
|
||||
To run the formatter, use `npx prettier --write .` from the `onyx/web` directory.
|
||||
Please double check that prettier passes before creating a pull request.
|
||||
|
||||
# Running the application for development
|
||||
|
||||
## Developing using VSCode Debugger (recommended)
|
||||
|
||||
We highly recommend using VSCode debugger for development.
|
||||
See [CONTRIBUTING_VSCODE.md](./CONTRIBUTING_VSCODE.md) for more details.
|
||||
|
||||
Otherwise, you can follow the instructions below to run the application for development.
|
||||
|
||||
## Manually running the application for development
|
||||
### Docker containers for external software
|
||||
|
||||
You will need Docker installed to run these containers.
|
||||
|
||||
First navigate to `danswer/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
|
||||
First navigate to `onyx/deployment/docker_compose`, then start up Postgres/Vespa/Redis with:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d index relational_db cache
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d index relational_db cache
|
||||
```
|
||||
|
||||
(index refers to Vespa, relational_db refers to Postgres, and cache refers to Redis)
|
||||
|
||||
### Running Onyx locally
|
||||
|
||||
To start the frontend, navigate to `onyx/web` and run:
|
||||
|
||||
#### Running Danswer locally
|
||||
To start the frontend, navigate to `danswer/web` and run:
|
||||
```bash
|
||||
npm run dev
|
||||
```
|
||||
|
||||
Next, start the model server which runs the local NLP models.
|
||||
Navigate to `danswer/backend` and run:
|
||||
Navigate to `onyx/backend` and run:
|
||||
|
||||
```bash
|
||||
uvicorn model_server.main:app --reload --port 9000
|
||||
```
|
||||
|
||||
_For Windows (for compatibility with both PowerShell and Command Prompt):_
|
||||
|
||||
```bash
|
||||
powershell -Command "uvicorn model_server.main:app --reload --port 9000"
|
||||
```
|
||||
|
||||
The first time running Danswer, you will need to run the DB migrations for Postgres.
|
||||
The first time running Onyx, you will need to run the DB migrations for Postgres.
|
||||
After the first time, this is no longer required unless the DB models change.
|
||||
|
||||
Navigate to `danswer/backend` and with the venv active, run:
|
||||
Navigate to `onyx/backend` and with the venv active, run:
|
||||
|
||||
```bash
|
||||
alembic upgrade head
|
||||
```
|
||||
@@ -152,21 +212,24 @@ alembic upgrade head
|
||||
Next, start the task queue which orchestrates the background jobs.
|
||||
Jobs that take more time are run async from the API server.
|
||||
|
||||
Still in `danswer/backend`, run:
|
||||
Still in `onyx/backend`, run:
|
||||
|
||||
```bash
|
||||
python ./scripts/dev_run_background_jobs.py
|
||||
```
|
||||
|
||||
To run the backend API server, navigate back to `danswer/backend` and run:
|
||||
To run the backend API server, navigate back to `onyx/backend` and run:
|
||||
|
||||
```bash
|
||||
AUTH_TYPE=disabled uvicorn danswer.main:app --reload --port 8080
|
||||
AUTH_TYPE=disabled uvicorn onyx.main:app --reload --port 8080
|
||||
```
|
||||
|
||||
_For Windows (for compatibility with both PowerShell and Command Prompt):_
|
||||
|
||||
```bash
|
||||
powershell -Command "
|
||||
$env:AUTH_TYPE='disabled'
|
||||
uvicorn danswer.main:app --reload --port 8080
|
||||
uvicorn onyx.main:app --reload --port 8080
|
||||
"
|
||||
```
|
||||
|
||||
@@ -182,57 +245,32 @@ You should now have 4 servers running:
|
||||
- Model server
|
||||
- Background jobs
|
||||
|
||||
Now, visit `http://localhost:3000` in your browser. You should see the Danswer onboarding wizard where you can connect your external LLM provider to Danswer.
|
||||
Now, visit `http://localhost:3000` in your browser. You should see the Onyx onboarding wizard where you can connect your external LLM provider to Onyx.
|
||||
|
||||
You've successfully set up a local Danswer instance! 🏁
|
||||
You've successfully set up a local Onyx instance! 🏁
|
||||
|
||||
#### Running the Danswer application in a container
|
||||
#### Running the Onyx application in a container
|
||||
|
||||
You can run the full Danswer application stack from pre-built images including all external software dependencies.
|
||||
You can run the full Onyx application stack from pre-built images including all external software dependencies.
|
||||
|
||||
Navigate to `danswer/deployment/docker_compose` and run:
|
||||
Navigate to `onyx/deployment/docker_compose` and run:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d
|
||||
```
|
||||
|
||||
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Danswer.
|
||||
After Docker pulls and starts these containers, navigate to `http://localhost:3000` to use Onyx.
|
||||
|
||||
If you want to make changes to Danswer and run those changes in Docker, you can also build a local version of the Danswer container images that incorporates your changes like so:
|
||||
If you want to make changes to Onyx and run those changes in Docker, you can also build a local version of the Onyx container images that incorporates your changes like so:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.dev.yml -p danswer-stack up -d --build
|
||||
docker compose -f docker-compose.dev.yml -p onyx-stack up -d --build
|
||||
```
|
||||
|
||||
### Formatting and Linting
|
||||
#### Backend
|
||||
For the backend, you'll need to setup pre-commit hooks (black / reorder-python-imports).
|
||||
First, install pre-commit (if you don't have it already) following the instructions
|
||||
[here](https://pre-commit.com/#installation).
|
||||
|
||||
With the virtual environment active, install the pre-commit library with:
|
||||
```bash
|
||||
pip install pre-commit
|
||||
```
|
||||
|
||||
Then, from the `danswer/backend` directory, run:
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
Additionally, we use `mypy` for static type checking.
|
||||
Danswer is fully type-annotated, and we want to keep it that way!
|
||||
To run the mypy checks manually, run `python -m mypy .` from the `danswer/backend` directory.
|
||||
|
||||
|
||||
#### Web
|
||||
We use `prettier` for formatting. The desired version (2.8.8) will be installed via a `npm i` from the `danswer/web` directory.
|
||||
To run the formatter, use `npx prettier --write .` from the `danswer/web` directory.
|
||||
Please double check that prettier passes before creating a pull request.
|
||||
|
||||
|
||||
### Release Process
|
||||
Danswer loosely follows the SemVer versioning standard.
|
||||
|
||||
Onyx loosely follows the SemVer versioning standard.
|
||||
Major changes are released with a "minor" version bump. Currently we use patch release versions to indicate small feature changes.
|
||||
A set of Docker containers will be pushed automatically to DockerHub with every tag.
|
||||
You can see the containers [here](https://hub.docker.com/search?q=danswer%2F).
|
||||
You can see the containers [here](https://hub.docker.com/search?q=onyx%2F).
|
||||
|
||||
@@ -1,15 +1,19 @@
|
||||
## Some additional notes for Mac Users
|
||||
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/danswer-ai/danswer/blob/main/CONTRIBUTING.md).
|
||||
|
||||
The base instructions to set up the development environment are located in [CONTRIBUTING.md](https://github.com/onyx-dot-app/onyx/blob/main/CONTRIBUTING.md).
|
||||
|
||||
### Setting up Python
|
||||
|
||||
Ensure [Homebrew](https://brew.sh/) is already set up.
|
||||
|
||||
Then install python 3.11.
|
||||
|
||||
```bash
|
||||
brew install python@3.11
|
||||
```
|
||||
|
||||
Add python 3.11 to your path: add the following line to ~/.zshrc
|
||||
|
||||
```
|
||||
export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
|
||||
```
|
||||
@@ -17,15 +21,16 @@ export PATH="$(brew --prefix)/opt/python@3.11/libexec/bin:$PATH"
|
||||
> **Note:**
|
||||
> You will need to open a new terminal for the path change above to take effect.
|
||||
|
||||
|
||||
### Setting up Docker
|
||||
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
|
||||
|
||||
On macOS, you will need to install [Docker Desktop](https://www.docker.com/products/docker-desktop/) and
|
||||
ensure it is running before continuing with the docker commands.
|
||||
|
||||
|
||||
### Formatting and Linting
|
||||
|
||||
MacOS will likely require you to remove some quarantine attributes on some of the hooks for them to execute properly.
|
||||
After installing pre-commit, run the following command:
|
||||
|
||||
```bash
|
||||
sudo xattr -r -d com.apple.quarantine ~/.cache/pre-commit
|
||||
```
|
||||
```
|
||||
|
||||
30
CONTRIBUTING_VSCODE.md
Normal file
30
CONTRIBUTING_VSCODE.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# VSCode Debugging Setup
|
||||
|
||||
This guide explains how to set up and use VSCode's debugging capabilities with this project.
|
||||
|
||||
## Initial Setup
|
||||
|
||||
1. **Environment Setup**:
|
||||
- Copy `.vscode/.env.template` to `.vscode/.env`
|
||||
- Fill in the necessary environment variables in `.vscode/.env`
|
||||
2. **launch.json**:
|
||||
- Copy `.vscode/launch.template.jsonc` to `.vscode/launch.json`
|
||||
|
||||
## Using the Debugger
|
||||
|
||||
Before starting, make sure the Docker Daemon is running.
|
||||
|
||||
1. Open the Debug view in VSCode (Cmd+Shift+D on macOS)
|
||||
2. From the dropdown at the top, select "Clear and Restart External Volumes and Containers" and press the green play button
|
||||
3. From the dropdown at the top, select "Run All Onyx Services" and press the green play button
|
||||
4. CD into web, run "npm i" followed by npm run dev.
|
||||
5. Now, you can navigate to onyx in your browser (default is http://localhost:3000) and start using the app
|
||||
6. You can set breakpoints by clicking to the left of line numbers to help debug while the app is running
|
||||
7. Use the debug toolbar to step through code, inspect variables, etc.
|
||||
|
||||
## Features
|
||||
|
||||
- Hot reload is enabled for the web server and API servers
|
||||
- Python debugging is configured with debugpy
|
||||
- Environment variables are loaded from `.vscode/.env`
|
||||
- Console output is organized in the integrated terminal with labeled tabs
|
||||
6
LICENSE
6
LICENSE
@@ -2,9 +2,9 @@ Copyright (c) 2023-present DanswerAI, Inc.
|
||||
|
||||
Portions of this software are licensed as follows:
|
||||
|
||||
* All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
|
||||
* All third party components incorporated into the Danswer Software are licensed under the original license provided by the owner of the applicable component.
|
||||
* Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
|
||||
- All content that resides under "ee" directories of this repository, if that directory exists, is licensed under the license defined in "backend/ee/LICENSE". Specifically all content under "backend/ee" and "web/src/app/ee" is licensed under the license defined in "backend/ee/LICENSE".
|
||||
- All third party components incorporated into the Onyx Software are licensed under the original license provided by the owner of the applicable component.
|
||||
- Content outside of the above mentioned directories or restrictions above is available under the "MIT Expat" license as defined below.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
169
README.md
169
README.md
@@ -1,146 +1,135 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/README.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/README.md"} -->
|
||||
|
||||
<a name="readme-top"></a>
|
||||
|
||||
<h2 align="center">
|
||||
<a href="https://www.danswer.ai/"> <img width="50%" src="https://github.com/danswer-owners/danswer/blob/1fabd9372d66cd54238847197c33f091a724803b/DanswerWithName.png?raw=true)" /></a>
|
||||
<a href="https://www.onyx.app/"> <img width="50%" src="https://github.com/onyx-dot-app/onyx/blob/logo/OnyxLogoCropped.jpg?raw=true)" /></a>
|
||||
</h2>
|
||||
|
||||
<p align="center">
|
||||
<p align="center">Open Source Gen-AI Chat + Unified Search.</p>
|
||||
<p align="center">Open Source Gen-AI + Enterprise Search.</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://docs.danswer.dev/" target="_blank">
|
||||
<a href="https://docs.onyx.app/" target="_blank">
|
||||
<img src="https://img.shields.io/badge/docs-view-blue" alt="Documentation">
|
||||
</a>
|
||||
<a href="https://join.slack.com/t/danswer/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA" target="_blank">
|
||||
<a href="https://join.slack.com/t/onyx-dot-app/shared_invite/zt-2twesxdr6-5iQitKZQpgq~hYIZ~dv3KA" target="_blank">
|
||||
<img src="https://img.shields.io/badge/slack-join-blue.svg?logo=slack" alt="Slack">
|
||||
</a>
|
||||
<a href="https://discord.gg/TDJ59cGV2X" target="_blank">
|
||||
<img src="https://img.shields.io/badge/discord-join-blue.svg?logo=discord&logoColor=white" alt="Discord">
|
||||
</a>
|
||||
<a href="https://github.com/danswer-ai/danswer/blob/main/README.md" target="_blank">
|
||||
<a href="https://github.com/onyx-dot-app/onyx/blob/main/README.md" target="_blank">
|
||||
<img src="https://img.shields.io/static/v1?label=license&message=MIT&color=blue" alt="License">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<strong>[Danswer](https://www.danswer.ai/)</strong> is the AI Assistant connected to your company's docs, apps, and people.
|
||||
Danswer provides a Chat interface and plugs into any LLM of your choice. Danswer can be deployed anywhere and for any
|
||||
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
|
||||
own control. Danswer is MIT licensed and designed to be modular and easily extensible. The system also comes fully ready
|
||||
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
|
||||
configuring Personas (AI Assistants) and their Prompts.
|
||||
<strong>[Onyx](https://www.onyx.app/)</strong> (formerly Danswer) is the AI Assistant connected to your company's docs, apps, and people.
|
||||
Onyx provides a Chat interface and plugs into any LLM of your choice. Onyx can be deployed anywhere and for any
|
||||
scale - on a laptop, on-premise, or to cloud. Since you own the deployment, your user data and chats are fully in your
|
||||
own control. Onyx is dual Licensed with most of it under MIT license and designed to be modular and easily extensible. The system also comes fully ready
|
||||
for production usage with user authentication, role management (admin/basic users), chat persistence, and a UI for
|
||||
configuring AI Assistants.
|
||||
|
||||
Danswer also serves as a Unified Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
|
||||
By combining LLMs and team specific knowledge, Danswer becomes a subject matter expert for the team. Imagine ChatGPT if
|
||||
Onyx also serves as a Enterprise Search across all common workplace tools such as Slack, Google Drive, Confluence, etc.
|
||||
By combining LLMs and team specific knowledge, Onyx becomes a subject matter expert for the team. Imagine ChatGPT if
|
||||
it had access to your team's unique knowledge! It enables questions such as "A customer wants feature X, is this already
|
||||
supported?" or "Where's the pull request for feature Y?"
|
||||
|
||||
<h3>Usage</h3>
|
||||
|
||||
Danswer Web App:
|
||||
Onyx Web App:
|
||||
|
||||
https://github.com/danswer-ai/danswer/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
|
||||
https://github.com/onyx-dot-app/onyx/assets/32520769/563be14c-9304-47b5-bf0a-9049c2b6f410
|
||||
|
||||
Or, plug Onyx into your existing Slack workflows (more integrations to come 😁):
|
||||
|
||||
Or, plug Danswer into your existing Slack workflows (more integrations to come 😁):
|
||||
https://github.com/onyx-dot-app/onyx/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
|
||||
|
||||
https://github.com/danswer-ai/danswer/assets/25087905/3e19739b-d178-4371-9a38-011430bdec1b
|
||||
|
||||
|
||||
For more details on the Admin UI to manage connectors and users, check out our
|
||||
For more details on the Admin UI to manage connectors and users, check out our
|
||||
<strong><a href="https://www.youtube.com/watch?v=geNzY1nbCnU">Full Video Demo</a></strong>!
|
||||
|
||||
## Deployment
|
||||
|
||||
Danswer can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
|
||||
`docker compose` command. Checkout our [docs](https://docs.danswer.dev/quickstart) to learn more.
|
||||
Onyx can easily be run locally (even on a laptop) or deployed on a virtual machine with a single
|
||||
`docker compose` command. Checkout our [docs](https://docs.onyx.app/quickstart) to learn more.
|
||||
|
||||
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/danswer-ai/danswer/tree/main/deployment/kubernetes).
|
||||
We also have built-in support for deployment on Kubernetes. Files for that can be found [here](https://github.com/onyx-dot-app/onyx/tree/main/deployment/kubernetes).
|
||||
|
||||
## 💃 Main Features
|
||||
|
||||
## 💃 Main Features
|
||||
* Chat UI with the ability to select documents to chat with.
|
||||
* Create custom AI Assistants with different prompts and backing knowledge sets.
|
||||
* Connect Danswer with LLM of your choice (self-host for a fully airgapped solution).
|
||||
* Document Search + AI Answers for natural language queries.
|
||||
* Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
|
||||
* Slack integration to get answers and search results directly in Slack.
|
||||
|
||||
- Chat UI with the ability to select documents to chat with.
|
||||
- Create custom AI Assistants with different prompts and backing knowledge sets.
|
||||
- Connect Onyx with LLM of your choice (self-host for a fully airgapped solution).
|
||||
- Document Search + AI Answers for natural language queries.
|
||||
- Connectors to all common workplace tools like Google Drive, Confluence, Slack, etc.
|
||||
- Slack integration to get answers and search results directly in Slack.
|
||||
|
||||
## 🚧 Roadmap
|
||||
* Chat/Prompt sharing with specific teammates and user groups.
|
||||
* Multimodal model support, chat with images, video etc.
|
||||
* Choosing between LLMs and parameters during chat session.
|
||||
* Tool calling and agent configurations options.
|
||||
* Organizational understanding and ability to locate and suggest experts from your team.
|
||||
|
||||
- Chat/Prompt sharing with specific teammates and user groups.
|
||||
- Multimodal model support, chat with images, video etc.
|
||||
- Choosing between LLMs and parameters during chat session.
|
||||
- Tool calling and agent configurations options.
|
||||
- Organizational understanding and ability to locate and suggest experts from your team.
|
||||
|
||||
## Other Notable Benefits of Danswer
|
||||
* User Authentication with document level access management.
|
||||
* Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
|
||||
* Admin Dashboard to configure connectors, document-sets, access, etc.
|
||||
* Custom deep learning models + learn from user feedback.
|
||||
* Easy deployment and ability to host Danswer anywhere of your choosing.
|
||||
## Other Notable Benefits of Onyx
|
||||
|
||||
- User Authentication with document level access management.
|
||||
- Best in class Hybrid Search across all sources (BM-25 + prefix aware embedding models).
|
||||
- Admin Dashboard to configure connectors, document-sets, access, etc.
|
||||
- Custom deep learning models + learn from user feedback.
|
||||
- Easy deployment and ability to host Onyx anywhere of your choosing.
|
||||
|
||||
## 🔌 Connectors
|
||||
|
||||
Efficiently pulls the latest changes from:
|
||||
* Slack
|
||||
* GitHub
|
||||
* Google Drive
|
||||
* Confluence
|
||||
* Jira
|
||||
* Zendesk
|
||||
* Gmail
|
||||
* Notion
|
||||
* Gong
|
||||
* Slab
|
||||
* Linear
|
||||
* Productboard
|
||||
* Guru
|
||||
* Bookstack
|
||||
* Document360
|
||||
* Sharepoint
|
||||
* Hubspot
|
||||
* Local Files
|
||||
* Websites
|
||||
* And more ...
|
||||
|
||||
- Slack
|
||||
- GitHub
|
||||
- Google Drive
|
||||
- Confluence
|
||||
- Jira
|
||||
- Zendesk
|
||||
- Gmail
|
||||
- Notion
|
||||
- Gong
|
||||
- Slab
|
||||
- Linear
|
||||
- Productboard
|
||||
- Guru
|
||||
- Bookstack
|
||||
- Document360
|
||||
- Sharepoint
|
||||
- Hubspot
|
||||
- Local Files
|
||||
- Websites
|
||||
- And more ...
|
||||
|
||||
## 📚 Editions
|
||||
|
||||
There are two editions of Danswer:
|
||||
There are two editions of Onyx:
|
||||
|
||||
* Danswer Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Danswer you will get if you follow the Deployment guide above.
|
||||
* Danswer Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
|
||||
* Single Sign-On (SSO), with support for both SAML and OIDC
|
||||
* Role-based access control
|
||||
* Document permission inheritance from connected sources
|
||||
* Usage analytics and query history accessible to admins
|
||||
* Whitelabeling
|
||||
* API key authentication
|
||||
* Encryption of secrets
|
||||
* Any many more! Checkout [our website](https://www.danswer.ai/) for the latest.
|
||||
- Onyx Community Edition (CE) is available freely under the MIT Expat license. This version has ALL the core features discussed above. This is the version of Onyx you will get if you follow the Deployment guide above.
|
||||
- Onyx Enterprise Edition (EE) includes extra features that are primarily useful for larger organizations. Specifically, this includes:
|
||||
- Single Sign-On (SSO), with support for both SAML and OIDC
|
||||
- Role-based access control
|
||||
- Document permission inheritance from connected sources
|
||||
- Usage analytics and query history accessible to admins
|
||||
- Whitelabeling
|
||||
- API key authentication
|
||||
- Encryption of secrets
|
||||
- And many more! Checkout [our website](https://www.onyx.app/) for the latest.
|
||||
|
||||
To try the Danswer Enterprise Edition:
|
||||
To try the Onyx Enterprise Edition:
|
||||
|
||||
1. Checkout our [Cloud product](https://app.danswer.ai/signup).
|
||||
2. For self-hosting, contact us at [founders@danswer.ai](mailto:founders@danswer.ai) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
|
||||
1. Checkout our [Cloud product](https://cloud.onyx.app/signup).
|
||||
2. For self-hosting, contact us at [founders@onyx.app](mailto:founders@onyx.app) or book a call with us on our [Cal](https://cal.com/team/danswer/founders).
|
||||
|
||||
## 💡 Contributing
|
||||
|
||||
Looking to contribute? Please check out the [Contribution Guide](CONTRIBUTING.md) for more details.
|
||||
|
||||
## ⭐Star History
|
||||
|
||||
[](https://star-history.com/#danswer-ai/danswer&Date)
|
||||
|
||||
## ✨Contributors
|
||||
|
||||
<a href="https://github.com/danswer-ai/danswer/graphs/contributors">
|
||||
<img alt="contributors" src="https://contrib.rocks/image?repo=danswer-ai/danswer"/>
|
||||
</a>
|
||||
|
||||
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
||||
<a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
|
||||
↑ Back to Top ↑
|
||||
</a>
|
||||
</p>
|
||||
[](https://star-history.com/#onyx-dot-app/onyx&Date)
|
||||
|
||||
1
backend/.gitignore
vendored
1
backend/.gitignore
vendored
@@ -9,3 +9,4 @@ api_keys.py
|
||||
vespa-app.zip
|
||||
dynamic_config_storage/
|
||||
celerybeat-schedule*
|
||||
onyx/connectors/salesforce/data/
|
||||
@@ -1,19 +1,19 @@
|
||||
FROM python:3.11.7-slim-bookworm
|
||||
|
||||
LABEL com.danswer.maintainer="founders@danswer.ai"
|
||||
LABEL com.danswer.description="This image is the web/frontend container of Danswer which \
|
||||
contains code for both the Community and Enterprise editions of Danswer. If you do not \
|
||||
LABEL com.danswer.maintainer="founders@onyx.app"
|
||||
LABEL com.danswer.description="This image is the web/frontend container of Onyx which \
|
||||
contains code for both the Community and Enterprise editions of Onyx. If you do not \
|
||||
have a contract or agreement with DanswerAI, you are not permitted to use the Enterprise \
|
||||
Edition features outside of personal development or testing purposes. Please reach out to \
|
||||
founders@danswer.ai for more information. Please visit https://github.com/danswer-ai/danswer"
|
||||
founders@onyx.app for more information. Please visit https://github.com/onyx-dot-app/onyx"
|
||||
|
||||
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG DANSWER_VERSION=0.8-dev
|
||||
ENV DANSWER_VERSION=${DANSWER_VERSION} \
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.8-dev
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
|
||||
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
# Install system dependencies
|
||||
# cmake needed for psycopg (postgres)
|
||||
# libpq-dev needed for psycopg (postgres)
|
||||
@@ -56,7 +56,7 @@ RUN pip install --no-cache-dir --upgrade \
|
||||
# Cleanup for CVEs and size reduction
|
||||
# https://github.com/tornadoweb/tornado/issues/3107
|
||||
# xserver-common and xvfb included by playwright installation but not needed after
|
||||
# perl-base is part of the base Python Debian image but not needed for Danswer functionality
|
||||
# perl-base is part of the base Python Debian image but not needed for Onyx functionality
|
||||
# perl-base could only be removed with --allow-remove-essential
|
||||
RUN apt-get update && \
|
||||
apt-get remove -y --allow-remove-essential \
|
||||
@@ -92,7 +92,7 @@ COPY ./ee /app/ee
|
||||
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
|
||||
|
||||
# Set up application files
|
||||
COPY ./danswer /app/danswer
|
||||
COPY ./onyx /app/onyx
|
||||
COPY ./shared_configs /app/shared_configs
|
||||
COPY ./alembic /app/alembic
|
||||
COPY ./alembic_tenants /app/alembic_tenants
|
||||
|
||||
@@ -1,18 +1,18 @@
|
||||
FROM python:3.11.7-slim-bookworm
|
||||
|
||||
LABEL com.danswer.maintainer="founders@danswer.ai"
|
||||
LABEL com.danswer.description="This image is for the Danswer model server which runs all of the \
|
||||
AI models for Danswer. This container and all the code is MIT Licensed and free for all to use. \
|
||||
You can find it at https://hub.docker.com/r/danswer/danswer-model-server. For more details, \
|
||||
visit https://github.com/danswer-ai/danswer."
|
||||
LABEL com.danswer.maintainer="founders@onyx.app"
|
||||
LABEL com.danswer.description="This image is for the Onyx model server which runs all of the \
|
||||
AI models for Onyx. This container and all the code is MIT Licensed and free for all to use. \
|
||||
You can find it at https://hub.docker.com/r/onyx/onyx-model-server. For more details, \
|
||||
visit https://github.com/onyx-dot-app/onyx."
|
||||
|
||||
# Default DANSWER_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG DANSWER_VERSION=0.8-dev
|
||||
ENV DANSWER_VERSION=${DANSWER_VERSION} \
|
||||
# Default ONYX_VERSION, typically overriden during builds by GitHub Actions.
|
||||
ARG ONYX_VERSION=0.8-dev
|
||||
ENV ONYX_VERSION=${ONYX_VERSION} \
|
||||
DANSWER_RUNNING_IN_DOCKER="true"
|
||||
|
||||
|
||||
RUN echo "DANSWER_VERSION: ${DANSWER_VERSION}"
|
||||
RUN echo "ONYX_VERSION: ${ONYX_VERSION}"
|
||||
|
||||
COPY ./requirements/model_server.txt /tmp/requirements.txt
|
||||
RUN pip install --no-cache-dir --upgrade \
|
||||
@@ -20,11 +20,11 @@ RUN pip install --no-cache-dir --upgrade \
|
||||
--timeout 30 \
|
||||
-r /tmp/requirements.txt
|
||||
|
||||
RUN apt-get remove -y --allow-remove-essential perl-base && \
|
||||
RUN apt-get remove -y --allow-remove-essential perl-base && \
|
||||
apt-get autoremove -y
|
||||
|
||||
# Pre-downloading models for setups with limited egress
|
||||
# Download tokenizers, distilbert for the Danswer model
|
||||
# Download tokenizers, distilbert for the Onyx model
|
||||
# Download model weights
|
||||
# Run Nomic to pull in the custom architecture and have it cached locally
|
||||
RUN python -c "from transformers import AutoTokenizer; \
|
||||
@@ -38,18 +38,18 @@ from sentence_transformers import SentenceTransformer; \
|
||||
SentenceTransformer(model_name_or_path='nomic-ai/nomic-embed-text-v1', trust_remote_code=True);"
|
||||
|
||||
# In case the user has volumes mounted to /root/.cache/huggingface that they've downloaded while
|
||||
# running Danswer, don't overwrite it with the built in cache folder
|
||||
# running Onyx, don't overwrite it with the built in cache folder
|
||||
RUN mv /root/.cache/huggingface /root/.cache/temp_huggingface
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Utils used by model server
|
||||
COPY ./danswer/utils/logger.py /app/danswer/utils/logger.py
|
||||
COPY ./onyx/utils/logger.py /app/onyx/utils/logger.py
|
||||
|
||||
# Place to fetch version information
|
||||
COPY ./danswer/__init__.py /app/danswer/__init__.py
|
||||
COPY ./onyx/__init__.py /app/onyx/__init__.py
|
||||
|
||||
# Shared between Danswer Backend and Model Server
|
||||
# Shared between Onyx Backend and Model Server
|
||||
COPY ./shared_configs /app/shared_configs
|
||||
|
||||
# Model Server main code
|
||||
|
||||
@@ -1,19 +1,22 @@
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/danswer-ai/danswer/blob/main/backend/alembic/README.md"} -->
|
||||
<!-- DANSWER_METADATA={"link": "https://github.com/onyx-dot-app/onyx/blob/main/backend/alembic/README.md"} -->
|
||||
|
||||
# Alembic DB Migrations
|
||||
These files are for creating/updating the tables in the Relational DB (Postgres).
|
||||
Danswer migrations use a generic single-database configuration with an async dbapi.
|
||||
|
||||
## To generate new migrations:
|
||||
run from danswer/backend:
|
||||
These files are for creating/updating the tables in the Relational DB (Postgres).
|
||||
Onyx migrations use a generic single-database configuration with an async dbapi.
|
||||
|
||||
## To generate new migrations:
|
||||
|
||||
run from onyx/backend:
|
||||
`alembic revision --autogenerate -m <DESCRIPTION_OF_MIGRATION>`
|
||||
|
||||
More info can be found here: https://alembic.sqlalchemy.org/en/latest/autogenerate.html
|
||||
|
||||
## Running migrations
|
||||
|
||||
To run all un-applied migrations:
|
||||
`alembic upgrade head`
|
||||
|
||||
To undo migrations:
|
||||
`alembic downgrade -X`
|
||||
`alembic downgrade -X`
|
||||
where X is the number of migrations you want to undo from the current state
|
||||
|
||||
@@ -1,39 +1,49 @@
|
||||
from typing import Any, Literal
|
||||
from onyx.db.engine import get_iam_auth_token
|
||||
from onyx.configs.app_configs import USE_IAM_AUTH
|
||||
from onyx.configs.app_configs import POSTGRES_HOST
|
||||
from onyx.configs.app_configs import POSTGRES_PORT
|
||||
from onyx.configs.app_configs import POSTGRES_USER
|
||||
from onyx.configs.app_configs import AWS_REGION_NAME
|
||||
from onyx.db.engine import build_connection_string
|
||||
from onyx.db.engine import get_all_tenant_ids
|
||||
from sqlalchemy import event
|
||||
from sqlalchemy import pool
|
||||
from sqlalchemy import text
|
||||
from sqlalchemy.engine.base import Connection
|
||||
from typing import Literal
|
||||
import os
|
||||
import ssl
|
||||
import asyncio
|
||||
from logging.config import fileConfig
|
||||
import logging
|
||||
from logging.config import fileConfig
|
||||
|
||||
from alembic import context
|
||||
from sqlalchemy import pool
|
||||
from sqlalchemy.ext.asyncio import create_async_engine
|
||||
from sqlalchemy.sql import text
|
||||
from sqlalchemy.sql.schema import SchemaItem
|
||||
|
||||
from shared_configs.configs import MULTI_TENANT
|
||||
from danswer.db.engine import build_connection_string
|
||||
from danswer.db.models import Base
|
||||
from onyx.configs.constants import SSL_CERT_FILE
|
||||
from shared_configs.configs import MULTI_TENANT, POSTGRES_DEFAULT_SCHEMA
|
||||
from onyx.db.models import Base
|
||||
from celery.backends.database.session import ResultModelBase # type: ignore
|
||||
from danswer.db.engine import get_all_tenant_ids
|
||||
from shared_configs.configs import POSTGRES_DEFAULT_SCHEMA
|
||||
|
||||
# Alembic Config object
|
||||
config = context.config
|
||||
|
||||
# Interpret the config file for Python logging.
|
||||
if config.config_file_name is not None and config.attributes.get(
|
||||
"configure_logger", True
|
||||
):
|
||||
fileConfig(config.config_file_name)
|
||||
|
||||
# Add your model's MetaData object here for 'autogenerate' support
|
||||
target_metadata = [Base.metadata, ResultModelBase.metadata]
|
||||
|
||||
EXCLUDE_TABLES = {"kombu_queue", "kombu_message"}
|
||||
|
||||
# Set up logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ssl_context: ssl.SSLContext | None = None
|
||||
if USE_IAM_AUTH:
|
||||
if not os.path.exists(SSL_CERT_FILE):
|
||||
raise FileNotFoundError(f"Expected {SSL_CERT_FILE} when USE_IAM_AUTH is true.")
|
||||
ssl_context = ssl.create_default_context(cafile=SSL_CERT_FILE)
|
||||
|
||||
|
||||
def include_object(
|
||||
object: SchemaItem,
|
||||
@@ -49,20 +59,12 @@ def include_object(
|
||||
reflected: bool,
|
||||
compare_to: SchemaItem | None,
|
||||
) -> bool:
|
||||
"""
|
||||
Determines whether a database object should be included in migrations.
|
||||
Excludes specified tables from migrations.
|
||||
"""
|
||||
if type_ == "table" and name in EXCLUDE_TABLES:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_schema_options() -> tuple[str, bool, bool]:
|
||||
"""
|
||||
Parses command-line options passed via '-x' in Alembic commands.
|
||||
Recognizes 'schema', 'create_schema', and 'upgrade_all_tenants' options.
|
||||
"""
|
||||
x_args_raw = context.get_x_argument()
|
||||
x_args = {}
|
||||
for arg in x_args_raw:
|
||||
@@ -90,16 +92,12 @@ def get_schema_options() -> tuple[str, bool, bool]:
|
||||
def do_run_migrations(
|
||||
connection: Connection, schema_name: str, create_schema: bool
|
||||
) -> None:
|
||||
"""
|
||||
Executes migrations in the specified schema.
|
||||
"""
|
||||
logger.info(f"About to migrate schema: {schema_name}")
|
||||
|
||||
if create_schema:
|
||||
connection.execute(text(f'CREATE SCHEMA IF NOT EXISTS "{schema_name}"'))
|
||||
connection.execute(text("COMMIT"))
|
||||
|
||||
# Set search_path to the target schema
|
||||
connection.execute(text(f'SET search_path TO "{schema_name}"'))
|
||||
|
||||
context.configure(
|
||||
@@ -117,11 +115,25 @@ def do_run_migrations(
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
def provide_iam_token_for_alembic(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
if USE_IAM_AUTH:
|
||||
# Database connection settings
|
||||
region = AWS_REGION_NAME
|
||||
host = POSTGRES_HOST
|
||||
port = POSTGRES_PORT
|
||||
user = POSTGRES_USER
|
||||
|
||||
# Get IAM authentication token
|
||||
token = get_iam_auth_token(host, port, user, region)
|
||||
|
||||
# For Alembic / SQLAlchemy in this context, set SSL and password
|
||||
cparams["password"] = token
|
||||
cparams["ssl"] = ssl_context
|
||||
|
||||
|
||||
async def run_async_migrations() -> None:
|
||||
"""
|
||||
Determines whether to run migrations for a single schema or all schemas,
|
||||
and executes migrations accordingly.
|
||||
"""
|
||||
schema_name, create_schema, upgrade_all_tenants = get_schema_options()
|
||||
|
||||
engine = create_async_engine(
|
||||
@@ -129,10 +141,16 @@ async def run_async_migrations() -> None:
|
||||
poolclass=pool.NullPool,
|
||||
)
|
||||
|
||||
if upgrade_all_tenants:
|
||||
# Run migrations for all tenant schemas sequentially
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
if USE_IAM_AUTH:
|
||||
|
||||
@event.listens_for(engine.sync_engine, "do_connect")
|
||||
def event_provide_iam_token_for_alembic(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
|
||||
|
||||
if upgrade_all_tenants:
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
for schema in tenant_schemas:
|
||||
try:
|
||||
logger.info(f"Migrating schema: {schema}")
|
||||
@@ -162,15 +180,20 @@ async def run_async_migrations() -> None:
|
||||
|
||||
|
||||
def run_migrations_offline() -> None:
|
||||
"""
|
||||
Run migrations in 'offline' mode.
|
||||
"""
|
||||
schema_name, _, upgrade_all_tenants = get_schema_options()
|
||||
url = build_connection_string()
|
||||
|
||||
if upgrade_all_tenants:
|
||||
# Run offline migrations for all tenant schemas
|
||||
engine = create_async_engine(url)
|
||||
|
||||
if USE_IAM_AUTH:
|
||||
|
||||
@event.listens_for(engine.sync_engine, "do_connect")
|
||||
def event_provide_iam_token_for_alembic_offline(
|
||||
dialect: Any, conn_rec: Any, cargs: Any, cparams: Any
|
||||
) -> None:
|
||||
provide_iam_token_for_alembic(dialect, conn_rec, cargs, cparams)
|
||||
|
||||
tenant_schemas = get_all_tenant_ids()
|
||||
engine.sync_engine.dispose()
|
||||
|
||||
@@ -207,9 +230,6 @@ def run_migrations_offline() -> None:
|
||||
|
||||
|
||||
def run_migrations_online() -> None:
|
||||
"""
|
||||
Runs migrations in 'online' mode using an asynchronous engine.
|
||||
"""
|
||||
asyncio.run(run_async_migrations())
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,29 @@
|
||||
"""add shortcut option for users
|
||||
|
||||
Revision ID: 027381bce97c
|
||||
Revises: 6fc7886d665d
|
||||
Create Date: 2025-01-14 12:14:00.814390
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "027381bce97c"
|
||||
down_revision = "6fc7886d665d"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"user",
|
||||
sa.Column(
|
||||
"shortcut_enabled", sa.Boolean(), nullable=False, server_default="false"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user", "shortcut_enabled")
|
||||
@@ -11,7 +11,7 @@ from sqlalchemy.sql import table
|
||||
from sqlalchemy.dialects import postgresql
|
||||
import json
|
||||
|
||||
from danswer.utils.encryption import encrypt_string_to_bytes
|
||||
from onyx.utils.encryption import encrypt_string_to_bytes
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "0a98909f2757"
|
||||
|
||||
@@ -0,0 +1,36 @@
|
||||
"""add index to index_attempt.time_created
|
||||
|
||||
Revision ID: 0f7ff6d75b57
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-10 14:01:14.067144
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "0f7ff6d75b57"
|
||||
down_revision = "fec3db967bf7"
|
||||
branch_labels: None = None
|
||||
depends_on: None = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_index(
|
||||
op.f("ix_index_attempt_status"),
|
||||
"index_attempt",
|
||||
["status"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
op.create_index(
|
||||
op.f("ix_index_attempt_time_created"),
|
||||
"index_attempt",
|
||||
["time_created"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(op.f("ix_index_attempt_time_created"), table_name="index_attempt")
|
||||
|
||||
op.drop_index(op.f("ix_index_attempt_status"), table_name="index_attempt")
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Introduce Danswer APIs
|
||||
"""Introduce Onyx APIs
|
||||
|
||||
Revision ID: 15326fcec57e
|
||||
Revises: 77d07dffae64
|
||||
@@ -8,7 +8,7 @@ Create Date: 2023-11-11 20:51:24.228999
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "15326fcec57e"
|
||||
@@ -10,7 +10,7 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from danswer.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
|
||||
from onyx.configs.chat_configs import NUM_POSTPROCESSED_RESULTS
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "1f60f60c3401"
|
||||
|
||||
@@ -0,0 +1,24 @@
|
||||
"""add chunk count to document
|
||||
|
||||
Revision ID: 2955778aa44c
|
||||
Revises: c0aab6edb6dd
|
||||
Create Date: 2025-01-04 11:39:43.268612
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "2955778aa44c"
|
||||
down_revision = "c0aab6edb6dd"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column("document", sa.Column("chunk_count", sa.Integer(), nullable=True))
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("document", "chunk_count")
|
||||
121
backend/alembic/versions/35e518e0ddf4_properly_cascade.py
Normal file
121
backend/alembic/versions/35e518e0ddf4_properly_cascade.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""properly_cascade
|
||||
|
||||
Revision ID: 35e518e0ddf4
|
||||
Revises: 91a0a4d62b14
|
||||
Create Date: 2024-09-20 21:24:04.891018
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "35e518e0ddf4"
|
||||
down_revision = "91a0a4d62b14"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Update chat_message foreign key constraint
|
||||
op.drop_constraint(
|
||||
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message_chat_session_id_fkey",
|
||||
"chat_message",
|
||||
"chat_session",
|
||||
["chat_session_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# Update chat_message__search_doc foreign key constraints
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"chat_message",
|
||||
["chat_message_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"search_doc",
|
||||
["search_doc_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
# Add CASCADE delete for tool_call foreign key
|
||||
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
|
||||
op.create_foreign_key(
|
||||
"tool_call_message_id_fkey",
|
||||
"tool_call",
|
||||
"chat_message",
|
||||
["message_id"],
|
||||
["id"],
|
||||
ondelete="CASCADE",
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Revert chat_message foreign key constraint
|
||||
op.drop_constraint(
|
||||
"chat_message_chat_session_id_fkey", "chat_message", type_="foreignkey"
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message_chat_session_id_fkey",
|
||||
"chat_message",
|
||||
"chat_session",
|
||||
["chat_session_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Revert chat_message__search_doc foreign key constraints
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
op.drop_constraint(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
type_="foreignkey",
|
||||
)
|
||||
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_chat_message_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"chat_message",
|
||||
["chat_message_id"],
|
||||
["id"],
|
||||
)
|
||||
op.create_foreign_key(
|
||||
"chat_message__search_doc_search_doc_id_fkey",
|
||||
"chat_message__search_doc",
|
||||
"search_doc",
|
||||
["search_doc_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Revert tool_call foreign key constraint
|
||||
op.drop_constraint("tool_call_message_id_fkey", "tool_call", type_="foreignkey")
|
||||
op.create_foreign_key(
|
||||
"tool_call_message_id_fkey",
|
||||
"tool_call",
|
||||
"chat_message",
|
||||
["message_id"],
|
||||
["id"],
|
||||
)
|
||||
@@ -0,0 +1,35 @@
|
||||
"""add composite index for index attempt time updated
|
||||
|
||||
Revision ID: 369644546676
|
||||
Revises: 2955778aa44c
|
||||
Create Date: 2025-01-08 15:38:17.224380
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
from sqlalchemy import text
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "369644546676"
|
||||
down_revision = "2955778aa44c"
|
||||
branch_labels: None = None
|
||||
depends_on: None = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_index(
|
||||
"ix_index_attempt_ccpair_search_settings_time_updated",
|
||||
"index_attempt",
|
||||
[
|
||||
"connector_credential_pair_id",
|
||||
"search_settings_id",
|
||||
text("time_updated DESC"),
|
||||
],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(
|
||||
"ix_index_attempt_ccpair_search_settings_time_updated",
|
||||
table_name="index_attempt",
|
||||
)
|
||||
@@ -0,0 +1,59 @@
|
||||
"""add back input prompts
|
||||
|
||||
Revision ID: 3c6531f32351
|
||||
Revises: aeda5f2df4f6
|
||||
Create Date: 2025-01-13 12:49:51.705235
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "3c6531f32351"
|
||||
down_revision = "aeda5f2df4f6"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"inputprompt",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column("prompt", sa.String(), nullable=False),
|
||||
sa.Column("content", sa.String(), nullable=False),
|
||||
sa.Column("active", sa.Boolean(), nullable=False),
|
||||
sa.Column("is_public", sa.Boolean(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
op.create_table(
|
||||
"inputprompt__user",
|
||||
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id", fastapi_users_db_sqlalchemy.generics.GUID(), nullable=False
|
||||
),
|
||||
sa.Column("disabled", sa.Boolean(), nullable=False, default=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["input_prompt_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("inputprompt__user")
|
||||
op.drop_table("inputprompt")
|
||||
@@ -17,7 +17,7 @@ depends_on: None = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# At this point, we directly changed some previous migrations,
|
||||
# https://github.com/danswer-ai/danswer/pull/637
|
||||
# https://github.com/onyx-dot-app/onyx/pull/637
|
||||
# Due to using Postgres native Enums, it caused some complications for first time users.
|
||||
# To remove those complications, all Enums are only handled application side moving forward.
|
||||
# This migration exists to ensure that existing users don't run into upgrade issues.
|
||||
|
||||
@@ -40,6 +40,6 @@ def upgrade() -> None:
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_constraint("fk_persona_category", "persona", type_="foreignkey")
|
||||
op.drop_constraint("persona_category_id_fkey", "persona", type_="foreignkey")
|
||||
op.drop_column("persona", "category_id")
|
||||
op.drop_table("persona_category")
|
||||
|
||||
@@ -10,8 +10,8 @@ from typing import cast
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.orm import Session
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from danswer.db.models import SlackBot
|
||||
from onyx.key_value_store.factory import get_kv_store
|
||||
from onyx.db.models import SlackBot
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
|
||||
23
backend/alembic/versions/54a74a0417fc_danswerbot_onyxbot.py
Normal file
23
backend/alembic/versions/54a74a0417fc_danswerbot_onyxbot.py
Normal file
@@ -0,0 +1,23 @@
|
||||
"""danswerbot -> onyxbot
|
||||
|
||||
Revision ID: 54a74a0417fc
|
||||
Revises: 94dc3d0236f8
|
||||
Create Date: 2024-12-11 18:05:05.490737
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "54a74a0417fc"
|
||||
down_revision = "94dc3d0236f8"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.alter_column("chat_session", "danswerbot_flow", new_column_name="onyxbot_flow")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.alter_column("chat_session", "onyxbot_flow", new_column_name="danswerbot_flow")
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Track Danswerbot Explicitly
|
||||
"""Track Onyxbot Explicitly
|
||||
|
||||
Revision ID: 570282d33c49
|
||||
Revises: 7547d982db8f
|
||||
@@ -0,0 +1,80 @@
|
||||
"""make categories labels and many to many
|
||||
|
||||
Revision ID: 6fc7886d665d
|
||||
Revises: 3c6531f32351
|
||||
Create Date: 2025-01-13 18:12:18.029112
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "6fc7886d665d"
|
||||
down_revision = "3c6531f32351"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Rename persona_category table to persona_label
|
||||
op.rename_table("persona_category", "persona_label")
|
||||
|
||||
# Create the new association table
|
||||
op.create_table(
|
||||
"persona__persona_label",
|
||||
sa.Column("persona_id", sa.Integer(), nullable=False),
|
||||
sa.Column("persona_label_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["persona_id"],
|
||||
["persona.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["persona_label_id"],
|
||||
["persona_label.id"],
|
||||
ondelete="CASCADE",
|
||||
),
|
||||
sa.PrimaryKeyConstraint("persona_id", "persona_label_id"),
|
||||
)
|
||||
|
||||
# Copy existing relationships to the new table
|
||||
op.execute(
|
||||
"""
|
||||
INSERT INTO persona__persona_label (persona_id, persona_label_id)
|
||||
SELECT id, category_id FROM persona WHERE category_id IS NOT NULL
|
||||
"""
|
||||
)
|
||||
|
||||
# Remove the old category_id column from persona table
|
||||
op.drop_column("persona", "category_id")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Rename persona_label table back to persona_category
|
||||
op.rename_table("persona_label", "persona_category")
|
||||
|
||||
# Add back the category_id column to persona table
|
||||
op.add_column("persona", sa.Column("category_id", sa.Integer(), nullable=True))
|
||||
op.create_foreign_key(
|
||||
"persona_category_id_fkey",
|
||||
"persona",
|
||||
"persona_category",
|
||||
["category_id"],
|
||||
["id"],
|
||||
)
|
||||
|
||||
# Copy the first label relationship back to the persona table
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE persona
|
||||
SET category_id = (
|
||||
SELECT persona_label_id
|
||||
FROM persona__persona_label
|
||||
WHERE persona__persona_label.persona_id = persona.id
|
||||
LIMIT 1
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
# Drop the association table
|
||||
op.drop_table("persona__persona_label")
|
||||
@@ -9,7 +9,7 @@ import json
|
||||
from typing import cast
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from danswer.key_value_store.factory import get_kv_store
|
||||
from onyx.key_value_store.factory import get_kv_store
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "703313b75876"
|
||||
|
||||
@@ -8,9 +8,9 @@ Create Date: 2024-03-22 21:34:27.629444
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from danswer.context.search.enums import RecencyBiasSetting
|
||||
from danswer.context.search.enums import SearchType
|
||||
from onyx.db.models import IndexModelStatus
|
||||
from onyx.context.search.enums import RecencyBiasSetting
|
||||
from onyx.context.search.enums import SearchType
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "776b3bbe9092"
|
||||
|
||||
@@ -18,7 +18,7 @@ depends_on: None = None
|
||||
|
||||
def upgrade() -> None:
|
||||
# In a PR:
|
||||
# https://github.com/danswer-ai/danswer/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
|
||||
# https://github.com/onyx-dot-app/onyx/pull/397/files#diff-f05fb341f6373790b91852579631b64ca7645797a190837156a282b67e5b19c2
|
||||
# we directly changed some previous migrations. This caused some users to have native enums
|
||||
# while others wouldn't. This has caused some issues when adding new fields to these enums.
|
||||
# This migration manually changes the enum types to ensure that nobody uses native enums.
|
||||
|
||||
45
backend/alembic/versions/91a0a4d62b14_milestone.py
Normal file
45
backend/alembic/versions/91a0a4d62b14_milestone.py
Normal file
@@ -0,0 +1,45 @@
|
||||
"""Milestone
|
||||
|
||||
Revision ID: 91a0a4d62b14
|
||||
Revises: dab04867cd88
|
||||
Create Date: 2024-12-13 19:03:30.947551
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "91a0a4d62b14"
|
||||
down_revision = "dab04867cd88"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"milestone",
|
||||
sa.Column("id", sa.UUID(), nullable=False),
|
||||
sa.Column("tenant_id", sa.String(), nullable=True),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.Column("event_type", sa.String(), nullable=False),
|
||||
sa.Column(
|
||||
"time_created",
|
||||
sa.DateTime(timezone=True),
|
||||
server_default=sa.text("now()"),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("event_tracker", postgresql.JSONB(), nullable=True),
|
||||
sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
sa.UniqueConstraint("event_type", name="uq_milestone_event_type"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("milestone")
|
||||
@@ -7,7 +7,7 @@ Create Date: 2024-03-21 12:05:23.956734
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "91fd3b470d1a"
|
||||
|
||||
@@ -10,7 +10,7 @@ from sqlalchemy.orm import Session
|
||||
from sqlalchemy import text
|
||||
|
||||
# Import your models and constants
|
||||
from danswer.db.models import (
|
||||
from onyx.db.models import (
|
||||
Connector,
|
||||
ConnectorCredentialPair,
|
||||
Credential,
|
||||
|
||||
@@ -0,0 +1,30 @@
|
||||
"""make document set description optional
|
||||
|
||||
Revision ID: 94dc3d0236f8
|
||||
Revises: bf7a81109301
|
||||
Create Date: 2024-12-11 11:26:10.616722
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "94dc3d0236f8"
|
||||
down_revision = "bf7a81109301"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Make document_set.description column nullable
|
||||
op.alter_column(
|
||||
"document_set", "description", existing_type=sa.String(), nullable=True
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Revert document_set.description column to non-nullable
|
||||
op.alter_column(
|
||||
"document_set", "description", existing_type=sa.String(), nullable=False
|
||||
)
|
||||
72
backend/alembic/versions/97dbb53fa8c8_add_syncrecord.py
Normal file
72
backend/alembic/versions/97dbb53fa8c8_add_syncrecord.py
Normal file
@@ -0,0 +1,72 @@
|
||||
"""Add SyncRecord
|
||||
|
||||
Revision ID: 97dbb53fa8c8
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-11 19:39:50.426302
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "97dbb53fa8c8"
|
||||
down_revision = "be2ab2aa50ee"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"sync_record",
|
||||
sa.Column("id", sa.Integer(), nullable=False),
|
||||
sa.Column("entity_id", sa.Integer(), nullable=False),
|
||||
sa.Column(
|
||||
"sync_type",
|
||||
sa.Enum(
|
||||
"DOCUMENT_SET",
|
||||
"USER_GROUP",
|
||||
"CONNECTOR_DELETION",
|
||||
name="synctype",
|
||||
native_enum=False,
|
||||
length=40,
|
||||
),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column(
|
||||
"sync_status",
|
||||
sa.Enum(
|
||||
"IN_PROGRESS",
|
||||
"SUCCESS",
|
||||
"FAILED",
|
||||
"CANCELED",
|
||||
name="syncstatus",
|
||||
native_enum=False,
|
||||
length=40,
|
||||
),
|
||||
nullable=False,
|
||||
),
|
||||
sa.Column("num_docs_synced", sa.Integer(), nullable=False),
|
||||
sa.Column("sync_start_time", sa.DateTime(timezone=True), nullable=False),
|
||||
sa.Column("sync_end_time", sa.DateTime(timezone=True), nullable=True),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
|
||||
# Add index for fetch_latest_sync_record query
|
||||
op.create_index(
|
||||
"ix_sync_record_entity_id_sync_type_sync_start_time",
|
||||
"sync_record",
|
||||
["entity_id", "sync_type", "sync_start_time"],
|
||||
)
|
||||
|
||||
# Add index for cleanup_sync_records query
|
||||
op.create_index(
|
||||
"ix_sync_record_entity_id_sync_type_sync_status",
|
||||
"sync_record",
|
||||
["entity_id", "sync_type", "sync_status"],
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index("ix_sync_record_entity_id_sync_type_sync_status")
|
||||
op.drop_index("ix_sync_record_entity_id_sync_type_sync_start_time")
|
||||
op.drop_table("sync_record")
|
||||
@@ -0,0 +1,27 @@
|
||||
"""add pinned assistants
|
||||
|
||||
Revision ID: aeda5f2df4f6
|
||||
Revises: c5eae4a75a1b
|
||||
Create Date: 2025-01-09 16:04:10.770636
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "aeda5f2df4f6"
|
||||
down_revision = "c5eae4a75a1b"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"user", sa.Column("pinned_assistants", postgresql.JSONB(), nullable=True)
|
||||
)
|
||||
op.execute('UPDATE "user" SET pinned_assistants = chosen_assistants')
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user", "pinned_assistants")
|
||||
@@ -10,7 +10,7 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.dialects.postgresql import ENUM
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "b156fa702355"
|
||||
|
||||
38
backend/alembic/versions/be2ab2aa50ee_fix_capitalization.py
Normal file
38
backend/alembic/versions/be2ab2aa50ee_fix_capitalization.py
Normal file
@@ -0,0 +1,38 @@
|
||||
"""fix_capitalization
|
||||
|
||||
Revision ID: be2ab2aa50ee
|
||||
Revises: 369644546676
|
||||
Create Date: 2025-01-10 13:13:26.228960
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "be2ab2aa50ee"
|
||||
down_revision = "369644546676"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE document
|
||||
SET
|
||||
external_user_group_ids = ARRAY(
|
||||
SELECT LOWER(unnest(external_user_group_ids))
|
||||
),
|
||||
last_modified = NOW()
|
||||
WHERE
|
||||
external_user_group_ids IS NOT NULL
|
||||
AND external_user_group_ids::text[] <> ARRAY(
|
||||
SELECT LOWER(unnest(external_user_group_ids))
|
||||
)::text[]
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# No way to cleanly persist the bad state through an upgrade/downgrade
|
||||
# cycle, so we just pass
|
||||
pass
|
||||
@@ -0,0 +1,57 @@
|
||||
"""delete_input_prompts
|
||||
|
||||
Revision ID: bf7a81109301
|
||||
Revises: f7a894b06d02
|
||||
Create Date: 2024-12-09 12:00:49.884228
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
import fastapi_users_db_sqlalchemy
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "bf7a81109301"
|
||||
down_revision = "f7a894b06d02"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.drop_table("inputprompt__user")
|
||||
op.drop_table("inputprompt")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.create_table(
|
||||
"inputprompt",
|
||||
sa.Column("id", sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column("prompt", sa.String(), nullable=False),
|
||||
sa.Column("content", sa.String(), nullable=False),
|
||||
sa.Column("active", sa.Boolean(), nullable=False),
|
||||
sa.Column("is_public", sa.Boolean(), nullable=False),
|
||||
sa.Column(
|
||||
"user_id",
|
||||
fastapi_users_db_sqlalchemy.generics.GUID(),
|
||||
nullable=True,
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["user.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("id"),
|
||||
)
|
||||
op.create_table(
|
||||
"inputprompt__user",
|
||||
sa.Column("input_prompt_id", sa.Integer(), nullable=False),
|
||||
sa.Column("user_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["input_prompt_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["user_id"],
|
||||
["inputprompt.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("input_prompt_id", "user_id"),
|
||||
)
|
||||
87
backend/alembic/versions/c0aab6edb6dd_delete_workspace.py
Normal file
87
backend/alembic/versions/c0aab6edb6dd_delete_workspace.py
Normal file
@@ -0,0 +1,87 @@
|
||||
"""delete workspace
|
||||
|
||||
Revision ID: c0aab6edb6dd
|
||||
Revises: 35e518e0ddf4
|
||||
Create Date: 2024-12-17 14:37:07.660631
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c0aab6edb6dd"
|
||||
down_revision = "35e518e0ddf4"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.execute(
|
||||
"""
|
||||
UPDATE connector
|
||||
SET connector_specific_config = connector_specific_config - 'workspace'
|
||||
WHERE source = 'SLACK'
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
import json
|
||||
from sqlalchemy import text
|
||||
from slack_sdk import WebClient
|
||||
|
||||
conn = op.get_bind()
|
||||
|
||||
# Fetch all Slack credentials
|
||||
creds_result = conn.execute(
|
||||
text("SELECT id, credential_json FROM credential WHERE source = 'SLACK'")
|
||||
)
|
||||
all_slack_creds = creds_result.fetchall()
|
||||
if not all_slack_creds:
|
||||
return
|
||||
|
||||
for cred_row in all_slack_creds:
|
||||
credential_id, credential_json = cred_row
|
||||
|
||||
credential_json = (
|
||||
credential_json.tobytes().decode("utf-8")
|
||||
if isinstance(credential_json, memoryview)
|
||||
else credential_json.decode("utf-8")
|
||||
)
|
||||
credential_data = json.loads(credential_json)
|
||||
slack_bot_token = credential_data.get("slack_bot_token")
|
||||
if not slack_bot_token:
|
||||
print(
|
||||
f"No slack_bot_token found for credential {credential_id}. "
|
||||
"Your Slack connector will not function until you upgrade and provide a valid token."
|
||||
)
|
||||
continue
|
||||
|
||||
client = WebClient(token=slack_bot_token)
|
||||
try:
|
||||
auth_response = client.auth_test()
|
||||
workspace = auth_response["url"].split("//")[1].split(".")[0]
|
||||
|
||||
# Update only the connectors linked to this credential
|
||||
# (and which are Slack connectors).
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE connector AS c
|
||||
SET connector_specific_config = jsonb_set(
|
||||
connector_specific_config,
|
||||
'{{workspace}}',
|
||||
to_jsonb('{workspace}'::text)
|
||||
)
|
||||
FROM connector_credential_pair AS ccp
|
||||
WHERE ccp.connector_id = c.id
|
||||
AND c.source = 'SLACK'
|
||||
AND ccp.credential_id = {credential_id}
|
||||
"""
|
||||
)
|
||||
except Exception:
|
||||
print(
|
||||
f"We were unable to get the workspace url for your Slack Connector with id {credential_id}."
|
||||
)
|
||||
print("This connector will no longer work until you upgrade.")
|
||||
continue
|
||||
@@ -0,0 +1,36 @@
|
||||
"""Add chat_message__standard_answer table
|
||||
|
||||
Revision ID: c5eae4a75a1b
|
||||
Revises: 0f7ff6d75b57
|
||||
Create Date: 2025-01-15 14:08:49.688998
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c5eae4a75a1b"
|
||||
down_revision = "0f7ff6d75b57"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"chat_message__standard_answer",
|
||||
sa.Column("chat_message_id", sa.Integer(), nullable=False),
|
||||
sa.Column("standard_answer_id", sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
["chat_message_id"],
|
||||
["chat_message.id"],
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
["standard_answer_id"],
|
||||
["standard_answer.id"],
|
||||
),
|
||||
sa.PrimaryKeyConstraint("chat_message_id", "standard_answer_id"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("chat_message__standard_answer")
|
||||
@@ -0,0 +1,48 @@
|
||||
"""Add has_been_indexed to DocumentByConnectorCredentialPair
|
||||
|
||||
Revision ID: c7bf5721733e
|
||||
Revises: fec3db967bf7
|
||||
Create Date: 2025-01-13 12:39:05.831693
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "c7bf5721733e"
|
||||
down_revision = "027381bce97c"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# assume all existing rows have been indexed, no better approach
|
||||
op.add_column(
|
||||
"document_by_connector_credential_pair",
|
||||
sa.Column("has_been_indexed", sa.Boolean(), nullable=True),
|
||||
)
|
||||
op.execute(
|
||||
"UPDATE document_by_connector_credential_pair SET has_been_indexed = TRUE"
|
||||
)
|
||||
op.alter_column(
|
||||
"document_by_connector_credential_pair",
|
||||
"has_been_indexed",
|
||||
nullable=False,
|
||||
)
|
||||
|
||||
# Add index to optimize get_document_counts_for_cc_pairs query pattern
|
||||
op.create_index(
|
||||
"idx_document_cc_pair_counts",
|
||||
"document_by_connector_credential_pair",
|
||||
["connector_id", "credential_id", "has_been_indexed"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Remove the index first before removing the column
|
||||
op.drop_index(
|
||||
"idx_document_cc_pair_counts",
|
||||
table_name="document_by_connector_credential_pair",
|
||||
)
|
||||
op.drop_column("document_by_connector_credential_pair", "has_been_indexed")
|
||||
@@ -0,0 +1,32 @@
|
||||
"""Add composite index to document_by_connector_credential_pair
|
||||
|
||||
Revision ID: dab04867cd88
|
||||
Revises: 54a74a0417fc
|
||||
Create Date: 2024-12-13 22:43:20.119990
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "dab04867cd88"
|
||||
down_revision = "54a74a0417fc"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Composite index on (connector_id, credential_id)
|
||||
op.create_index(
|
||||
"idx_document_cc_pair_connector_credential",
|
||||
"document_by_connector_credential_pair",
|
||||
["connector_id", "credential_id"],
|
||||
unique=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_index(
|
||||
"idx_document_cc_pair_connector_credential",
|
||||
table_name="document_by_connector_credential_pair",
|
||||
)
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Danswer Custom Tool Flow
|
||||
"""Onyx Custom Tool Flow
|
||||
|
||||
Revision ID: dba7f71618f5
|
||||
Revises: d5645c915d0e
|
||||
@@ -9,12 +9,12 @@ from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import table, column, String, Integer, Boolean
|
||||
|
||||
from danswer.db.search_settings import (
|
||||
from onyx.db.search_settings import (
|
||||
get_new_default_embedding_model,
|
||||
get_old_default_embedding_model,
|
||||
user_has_overridden_embedding_model,
|
||||
)
|
||||
from danswer.db.models import IndexModelStatus
|
||||
from onyx.db.models import IndexModelStatus
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "dbaa756c2ccf"
|
||||
|
||||
@@ -8,7 +8,7 @@ Create Date: 2024-03-14 18:06:08.523106
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
from danswer.configs.constants import DocumentSource
|
||||
from onyx.configs.constants import DocumentSource
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "e50154680a5c"
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
"""non-nullbale slack bot id in channel config
|
||||
|
||||
Revision ID: f7a894b06d02
|
||||
Revises: 9f696734098f
|
||||
Create Date: 2024-12-06 12:55:42.845723
|
||||
|
||||
"""
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "f7a894b06d02"
|
||||
down_revision = "9f696734098f"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
# Delete all rows with null slack_bot_id
|
||||
op.execute("DELETE FROM slack_channel_config WHERE slack_bot_id IS NULL")
|
||||
|
||||
# Make slack_bot_id non-nullable
|
||||
op.alter_column(
|
||||
"slack_channel_config",
|
||||
"slack_bot_id",
|
||||
existing_type=sa.Integer(),
|
||||
nullable=False,
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
# Make slack_bot_id nullable again
|
||||
op.alter_column(
|
||||
"slack_channel_config",
|
||||
"slack_bot_id",
|
||||
existing_type=sa.Integer(),
|
||||
nullable=True,
|
||||
)
|
||||
@@ -0,0 +1,41 @@
|
||||
"""Add time_updated to UserGroup and DocumentSet
|
||||
|
||||
Revision ID: fec3db967bf7
|
||||
Revises: 97dbb53fa8c8
|
||||
Create Date: 2025-01-12 15:49:02.289100
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "fec3db967bf7"
|
||||
down_revision = "97dbb53fa8c8"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.add_column(
|
||||
"document_set",
|
||||
sa.Column(
|
||||
"time_last_modified_by_user",
|
||||
sa.DateTime(timezone=True),
|
||||
nullable=False,
|
||||
server_default=sa.func.now(),
|
||||
),
|
||||
)
|
||||
op.add_column(
|
||||
"user_group",
|
||||
sa.Column(
|
||||
"time_last_modified_by_user",
|
||||
sa.DateTime(timezone=True),
|
||||
nullable=False,
|
||||
server_default=sa.func.now(),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_column("user_group", "time_last_modified_by_user")
|
||||
op.drop_column("document_set", "time_last_modified_by_user")
|
||||
@@ -1,3 +1,3 @@
|
||||
These files are for public table migrations when operating with multi tenancy.
|
||||
|
||||
If you are not a Danswer developer, you can ignore this directory entirely.
|
||||
If you are not a Onyx developer, you can ignore this directory entirely.
|
||||
|
||||
@@ -8,8 +8,8 @@ from sqlalchemy.ext.asyncio import create_async_engine
|
||||
from sqlalchemy.schema import SchemaItem
|
||||
|
||||
from alembic import context
|
||||
from danswer.db.engine import build_connection_string
|
||||
from danswer.db.models import PublicBase
|
||||
from onyx.db.engine import build_connection_string
|
||||
from onyx.db.models import PublicBase
|
||||
|
||||
# this is the Alembic Config object, which provides
|
||||
# access to the values within the .ini file in use.
|
||||
|
||||
@@ -0,0 +1,31 @@
|
||||
"""mapping for anonymous user path
|
||||
|
||||
Revision ID: a4f6ee863c47
|
||||
Revises: 14a83a331951
|
||||
Create Date: 2025-01-04 14:16:58.697451
|
||||
|
||||
"""
|
||||
import sqlalchemy as sa
|
||||
|
||||
from alembic import op
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = "a4f6ee863c47"
|
||||
down_revision = "14a83a331951"
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
op.create_table(
|
||||
"tenant_anonymous_user_path",
|
||||
sa.Column("tenant_id", sa.String(), primary_key=True, nullable=False),
|
||||
sa.Column("anonymous_user_path", sa.String(), nullable=False),
|
||||
sa.PrimaryKeyConstraint("tenant_id"),
|
||||
sa.UniqueConstraint("anonymous_user_path"),
|
||||
)
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
op.drop_table("tenant_anonymous_user_path")
|
||||
@@ -1,3 +0,0 @@
|
||||
import os
|
||||
|
||||
__version__ = os.environ.get("DANSWER_VERSION", "") or "Development"
|
||||
@@ -1,42 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from typing import Union
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.primary_graph.states import RetrieverState
|
||||
from danswer.agent_search.primary_graph.states import VerifierState
|
||||
|
||||
|
||||
def sub_continue_to_verifier(state: BaseQAState) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes each de-douped retrieved doc to the verifier step - in parallel
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
|
||||
return [
|
||||
Send(
|
||||
"sub_verifier",
|
||||
VerifierState(
|
||||
document=doc,
|
||||
#question=state["original_question"],
|
||||
question=state["sub_question_str"],
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
)
|
||||
for doc in state["sub_question_deduped_retrieval_docs"]
|
||||
]
|
||||
|
||||
|
||||
def sub_continue_to_retrieval(state: BaseQAState) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes re-written queries to the (parallel) retrieval steps
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
rewritten_queries = state["sub_question_search_queries"].rewritten_queries + [state["sub_question_str"]]
|
||||
return [
|
||||
Send(
|
||||
"sub_custom_retrieve",
|
||||
RetrieverState(
|
||||
rewritten_query=query,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
)
|
||||
for query in rewritten_queries
|
||||
]
|
||||
@@ -1,132 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.core_qa_graph.edges import sub_continue_to_retrieval
|
||||
from danswer.agent_search.core_qa_graph.edges import sub_continue_to_verifier
|
||||
from danswer.agent_search.core_qa_graph.nodes.combine_retrieved_docs import (
|
||||
sub_combine_retrieved_docs,
|
||||
)
|
||||
from danswer.agent_search.core_qa_graph.nodes.custom_retrieve import (
|
||||
sub_custom_retrieve,
|
||||
)
|
||||
from danswer.agent_search.core_qa_graph.nodes.dummy import sub_dummy
|
||||
from danswer.agent_search.core_qa_graph.nodes.final_format import (
|
||||
sub_final_format,
|
||||
)
|
||||
from danswer.agent_search.core_qa_graph.nodes.generate import sub_generate
|
||||
from danswer.agent_search.core_qa_graph.nodes.qa_check import sub_qa_check
|
||||
from danswer.agent_search.core_qa_graph.nodes.rewrite import sub_rewrite
|
||||
from danswer.agent_search.core_qa_graph.nodes.verifier import sub_verifier
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAOutputState
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.core_qa_graph.states import CoreQAInputState
|
||||
|
||||
|
||||
def build_core_qa_graph() -> StateGraph:
|
||||
sub_answers_initial = StateGraph(
|
||||
state_schema=BaseQAState,
|
||||
output=BaseQAOutputState,
|
||||
)
|
||||
|
||||
### Add nodes ###
|
||||
sub_answers_initial.add_node(node="sub_dummy", action=sub_dummy)
|
||||
sub_answers_initial.add_node(node="sub_rewrite", action=sub_rewrite)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_custom_retrieve",
|
||||
action=sub_custom_retrieve,
|
||||
)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_combine_retrieved_docs",
|
||||
action=sub_combine_retrieved_docs,
|
||||
)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_verifier",
|
||||
action=sub_verifier,
|
||||
)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_generate",
|
||||
action=sub_generate,
|
||||
)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_qa_check",
|
||||
action=sub_qa_check,
|
||||
)
|
||||
sub_answers_initial.add_node(
|
||||
node="sub_final_format",
|
||||
action=sub_final_format,
|
||||
)
|
||||
|
||||
### Add edges ###
|
||||
sub_answers_initial.add_edge(START, "sub_dummy")
|
||||
sub_answers_initial.add_edge("sub_dummy", "sub_rewrite")
|
||||
|
||||
sub_answers_initial.add_conditional_edges(
|
||||
source="sub_rewrite",
|
||||
path=sub_continue_to_retrieval,
|
||||
)
|
||||
|
||||
sub_answers_initial.add_edge(
|
||||
start_key="sub_custom_retrieve",
|
||||
end_key="sub_combine_retrieved_docs",
|
||||
)
|
||||
|
||||
sub_answers_initial.add_conditional_edges(
|
||||
source="sub_combine_retrieved_docs",
|
||||
path=sub_continue_to_verifier,
|
||||
path_map=["sub_verifier"],
|
||||
)
|
||||
|
||||
sub_answers_initial.add_edge(
|
||||
start_key="sub_verifier",
|
||||
end_key="sub_generate",
|
||||
)
|
||||
|
||||
sub_answers_initial.add_edge(
|
||||
start_key="sub_generate",
|
||||
end_key="sub_qa_check",
|
||||
)
|
||||
|
||||
sub_answers_initial.add_edge(
|
||||
start_key="sub_qa_check",
|
||||
end_key="sub_final_format",
|
||||
)
|
||||
|
||||
sub_answers_initial.add_edge(
|
||||
start_key="sub_final_format",
|
||||
end_key=END,
|
||||
)
|
||||
# sub_answers_graph = sub_answers_initial.compile()
|
||||
return sub_answers_initial
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# q = "Whose music is kind of hard to easily enjoy?"
|
||||
# q = "What is voice leading?"
|
||||
# q = "What are the types of motions in music?"
|
||||
# q = "What are key elements of music theory?"
|
||||
# q = "How can I best understand music theory using voice leading?"
|
||||
q = "What makes good music?"
|
||||
# q = "types of motions in music"
|
||||
# q = "What is the relationship between music and physics?"
|
||||
# q = "Can you compare various grunge styles?"
|
||||
# q = "Why is quantum gravity so hard?"
|
||||
|
||||
inputs = CoreQAInputState(
|
||||
original_question=q,
|
||||
sub_question_str=q,
|
||||
)
|
||||
sub_answers_graph = build_core_qa_graph()
|
||||
compiled_sub_answers = sub_answers_graph.compile()
|
||||
output = compiled_sub_answers.invoke(inputs)
|
||||
print("\nOUTPUT:")
|
||||
print(output.keys())
|
||||
for key, value in output.items():
|
||||
if key in [
|
||||
"sub_question_answer",
|
||||
"sub_question_str",
|
||||
"sub_qas",
|
||||
"initial_sub_qas",
|
||||
"sub_question_answer",
|
||||
]:
|
||||
print(f"{key}: {value}")
|
||||
@@ -1,36 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def sub_combine_retrieved_docs(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dedupe the retrieved docs.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
sub_question_base_retrieval_docs = state["sub_question_base_retrieval_docs"]
|
||||
|
||||
print(f"Number of docs from steps: {len(sub_question_base_retrieval_docs)}")
|
||||
dedupe_docs: list[InferenceSection] = []
|
||||
for base_retrieval_doc in sub_question_base_retrieval_docs:
|
||||
if not any(
|
||||
base_retrieval_doc.center_chunk.chunk_id == doc.center_chunk.chunk_id
|
||||
for doc in dedupe_docs
|
||||
):
|
||||
dedupe_docs.append(base_retrieval_doc)
|
||||
|
||||
print(f"Number of deduped docs: {len(dedupe_docs)}")
|
||||
|
||||
|
||||
return {
|
||||
"sub_question_deduped_retrieval_docs": dedupe_docs,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - combine_retrieved_docs (dedupe)",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,66 +0,0 @@
|
||||
import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import RetrieverState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.pipeline import SearchPipeline
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def sub_custom_retrieve(state: RetrieverState) -> dict[str, Any]:
|
||||
"""
|
||||
Retrieve documents
|
||||
|
||||
Args:
|
||||
state (dict): The current graph state
|
||||
|
||||
Returns:
|
||||
state (dict): New key added to state, documents, that contains retrieved documents
|
||||
"""
|
||||
print("---RETRIEVE SUB---")
|
||||
|
||||
node_start_time = datetime.datetime.now()
|
||||
|
||||
rewritten_query = state["rewritten_query"]
|
||||
|
||||
# Retrieval
|
||||
# TODO: add the actual retrieval, probably from search_tool.run()
|
||||
documents: list[InferenceSection] = []
|
||||
llm, fast_llm = get_default_llms()
|
||||
with get_session_context_manager() as db_session:
|
||||
documents = SearchPipeline(
|
||||
search_request=SearchRequest(
|
||||
query=rewritten_query,
|
||||
),
|
||||
user=None,
|
||||
llm=llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
)
|
||||
|
||||
reranked_docs = documents.reranked_sections
|
||||
|
||||
# initial metric to measure fit TODO: implement metric properly
|
||||
|
||||
top_1_score = reranked_docs[0].center_chunk.score
|
||||
top_5_score = sum([doc.center_chunk.score for doc in reranked_docs[:5]]) / 5
|
||||
top_10_score = sum([doc.center_chunk.score for doc in reranked_docs[:10]]) / 10
|
||||
|
||||
fit_score = 1/3 * (top_1_score + top_5_score + top_10_score)
|
||||
|
||||
chunk_ids = {'query': rewritten_query,
|
||||
'chunk_ids': [doc.center_chunk.chunk_id for doc in reranked_docs]}
|
||||
|
||||
|
||||
return {
|
||||
"sub_question_base_retrieval_docs": reranked_docs,
|
||||
"sub_chunk_ids": [chunk_ids],
|
||||
"log_messages": generate_log_message(
|
||||
message=f"sub - custom_retrieve, fit_score: {fit_score}",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_dummy(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dummy step
|
||||
"""
|
||||
|
||||
print("---Sub Dummy---")
|
||||
|
||||
node_start_time = datetime.datetime.now()
|
||||
|
||||
return {
|
||||
"graph_start_time": node_start_time,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - dummy",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=node_start_time,
|
||||
),
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
|
||||
|
||||
def sub_final_format(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Create the final output for the QA subgraph
|
||||
"""
|
||||
|
||||
print("---BASE FINAL FORMAT---")
|
||||
|
||||
return {
|
||||
"sub_qas": [
|
||||
{
|
||||
"sub_question": state["sub_question_str"],
|
||||
"sub_answer": state["sub_question_answer"],
|
||||
"sub_answer_check": state["sub_question_answer_check"],
|
||||
}
|
||||
],
|
||||
"log_messages": state["log_messages"],
|
||||
}
|
||||
@@ -1,91 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def sub_generate(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---GENERATE---")
|
||||
|
||||
# Create sub-query results
|
||||
|
||||
verified_chunks = [chunk.center_chunk.chunk_id for chunk in state["sub_question_verified_retrieval_docs"]]
|
||||
result_dict = {}
|
||||
|
||||
chunk_id_dicts = state["sub_chunk_ids"]
|
||||
expanded_chunks = []
|
||||
original_chunks = []
|
||||
|
||||
for chunk_id_dict in chunk_id_dicts:
|
||||
sub_question = chunk_id_dict['query']
|
||||
verified_sq_chunks = [chunk_id for chunk_id in chunk_id_dict['chunk_ids'] if chunk_id in verified_chunks]
|
||||
|
||||
if sub_question != state["original_question"]:
|
||||
expanded_chunks += verified_sq_chunks
|
||||
else:
|
||||
result_dict['ORIGINAL'] = len(verified_sq_chunks)
|
||||
original_chunks += verified_sq_chunks
|
||||
result_dict[sub_question[:30]] = len(verified_sq_chunks)
|
||||
|
||||
expansion_chunks = set(expanded_chunks)
|
||||
num_expansion_chunks = sum([1 for chunk_id in expansion_chunks if chunk_id in verified_chunks])
|
||||
num_original_relevant_chunks = len(original_chunks)
|
||||
num_missed_relevant_chunks = sum([1 for chunk_id in original_chunks if chunk_id not in expansion_chunks])
|
||||
num_gained_relevant_chunks = sum([1 for chunk_id in expansion_chunks if chunk_id not in original_chunks])
|
||||
result_dict['expansion_chunks'] = num_expansion_chunks
|
||||
|
||||
|
||||
|
||||
print(result_dict)
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["sub_question_str"]
|
||||
docs = state["sub_question_verified_retrieval_docs"]
|
||||
|
||||
print(f"Number of verified retrieval docs: {len(docs)}")
|
||||
|
||||
# Only take the top 10 docs.
|
||||
# TODO: Make this dynamic or use config param?
|
||||
top_10_docs = docs[-10:]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_RAG_PROMPT.format(question=question, context=format_docs(top_10_docs))
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
_, fast_llm = get_default_llms()
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
# structured_response_format=None,
|
||||
)
|
||||
)
|
||||
|
||||
answer_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
return {
|
||||
"sub_question_answer": answer_str,
|
||||
"log_messages": generate_log_message(
|
||||
message="base - generate",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,51 +0,0 @@
|
||||
import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def sub_qa_check(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Check if the sub-question answer is satisfactory.
|
||||
|
||||
Args:
|
||||
state: The current SubQAState containing the sub-question and its answer
|
||||
|
||||
Returns:
|
||||
dict containing the check result and log message
|
||||
"""
|
||||
node_start_time = datetime.datetime.now()
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_CHECK_PROMPT.format(
|
||||
question=state["sub_question_str"],
|
||||
base_answer=state["sub_question_answer"],
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
_, fast_llm = get_default_llms()
|
||||
response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
# structured_response_format=None,
|
||||
)
|
||||
)
|
||||
|
||||
response_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
|
||||
return {
|
||||
"sub_question_answer_check": response_str,
|
||||
"base_answer_messages": generate_log_message(
|
||||
message="sub - qa_check",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,74 +0,0 @@
|
||||
import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.models import RewrittenQueries
|
||||
from danswer.agent_search.shared_graph_utils.prompts import (
|
||||
REWRITE_PROMPT_MULTI_ORIGINAL,
|
||||
)
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def sub_rewrite(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Transform the initial question into more suitable search queries.
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
|
||||
print("---SUB TRANSFORM QUERY---")
|
||||
|
||||
node_start_time = datetime.datetime.now()
|
||||
|
||||
# messages = state["base_answer_messages"]
|
||||
question = state["sub_question_str"]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REWRITE_PROMPT_MULTI_ORIGINAL.format(question=question),
|
||||
)
|
||||
]
|
||||
|
||||
"""
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REWRITE_PROMPT_MULTI.format(question=question),
|
||||
)
|
||||
]
|
||||
"""
|
||||
|
||||
_, fast_llm = get_default_llms()
|
||||
llm_response_list = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
# structured_response_format={"type": "json_object", "schema": RewrittenQueries.model_json_schema()},
|
||||
# structured_response_format=RewrittenQueries.model_json_schema(),
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
print(f"llm_response: {llm_response}")
|
||||
|
||||
rewritten_queries = llm_response.split("--")
|
||||
# rewritten_queries = [llm_response.split("\n")[0]]
|
||||
|
||||
print(f"rewritten_queries: {rewritten_queries}")
|
||||
|
||||
rewritten_queries = RewrittenQueries(rewritten_queries=rewritten_queries)
|
||||
|
||||
return {
|
||||
"sub_question_search_queries": rewritten_queries,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - rewrite",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,64 +0,0 @@
|
||||
import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.primary_graph.states import VerifierState
|
||||
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
|
||||
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def sub_verifier(state: VerifierState) -> dict[str, Any]:
|
||||
"""
|
||||
Check whether the document is relevant for the original user question
|
||||
|
||||
Args:
|
||||
state (VerifierState): The current state
|
||||
|
||||
Returns:
|
||||
dict: ict: The updated state with the final decision
|
||||
"""
|
||||
|
||||
# print("---VERIFY QUTPUT---")
|
||||
node_start_time = datetime.datetime.now()
|
||||
|
||||
question = state["question"]
|
||||
document_content = state["document"].combined_content
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=VERIFIER_PROMPT.format(
|
||||
question=question, document_content=document_content
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
llm, fast_llm = get_default_llms()
|
||||
response = list(
|
||||
llm.stream(
|
||||
prompt=msg,
|
||||
# structured_response_format=BinaryDecision.model_json_schema(),
|
||||
)
|
||||
)
|
||||
|
||||
response_string = merge_message_runs(response, chunk_separator="")[0].content
|
||||
# Convert string response to proper dictionary format
|
||||
decision_dict = {"decision": response_string.lower()}
|
||||
formatted_response = BinaryDecision.model_validate(decision_dict)
|
||||
|
||||
print(f"Verification end time: {datetime.datetime.now()}")
|
||||
|
||||
return {
|
||||
"sub_question_verified_retrieval_docs": [state["document"]]
|
||||
if formatted_response.decision == "yes"
|
||||
else [],
|
||||
"log_messages": generate_log_message(
|
||||
message=f"sub - verifier: {formatted_response.decision}",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,90 +0,0 @@
|
||||
import operator
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langgraph.graph.message import add_messages
|
||||
|
||||
from danswer.agent_search.shared_graph_utils.models import RewrittenQueries
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
class SubQuestionRetrieverState(TypedDict):
|
||||
# The state for the parallel Retrievers. They each need to see only one query
|
||||
sub_question_rewritten_query: str
|
||||
|
||||
|
||||
class SubQuestionVerifierState(TypedDict):
|
||||
# The state for the parallel verification step. Each node execution need to see only one question/doc pair
|
||||
sub_question_document: InferenceSection
|
||||
sub_question: str
|
||||
|
||||
|
||||
class CoreQAInputState(TypedDict):
|
||||
sub_question_str: str
|
||||
original_question: str
|
||||
|
||||
|
||||
class BaseQAState(TypedDict):
|
||||
# The 'core SubQuestion' state.
|
||||
original_question: str
|
||||
graph_start_time: datetime
|
||||
# start time for parallel initial sub-questionn thread
|
||||
sub_query_start_time: datetime
|
||||
sub_question_rewritten_queries: list[str]
|
||||
sub_question_str: str
|
||||
sub_question_search_queries: RewrittenQueries
|
||||
sub_question_nr: int
|
||||
sub_chunk_ids: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_base_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_deduped_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_verified_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_reranked_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_top_chunks: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_answer: str
|
||||
sub_question_answer_check: str
|
||||
log_messages: Annotated[Sequence[BaseMessage], add_messages]
|
||||
sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
# Answers sent back to core
|
||||
initial_sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
primary_llm: LLM
|
||||
fast_llm: LLM
|
||||
|
||||
|
||||
class BaseQAOutputState(TypedDict):
|
||||
# The 'SubQuestion' output state. Removes all the intermediate states
|
||||
sub_question_rewritten_queries: list[str]
|
||||
sub_question_str: str
|
||||
sub_question_search_queries: list[str]
|
||||
sub_question_nr: int
|
||||
# Answers sent back to core
|
||||
sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
# Answers sent back to core
|
||||
initial_sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_base_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_deduped_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_verified_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_reranked_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_top_chunks: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_answer: str
|
||||
sub_question_answer_check: str
|
||||
log_messages: Annotated[Sequence[BaseMessage], add_messages]
|
||||
@@ -1,46 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from typing import Union
|
||||
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.primary_graph.states import RetrieverState
|
||||
from danswer.agent_search.primary_graph.states import VerifierState
|
||||
|
||||
|
||||
def sub_continue_to_verifier(state: ResearchQAState) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes each de-douped retrieved doc to the verifier step - in parallel
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
|
||||
return [
|
||||
Send(
|
||||
"sub_verifier",
|
||||
VerifierState(
|
||||
document=doc,
|
||||
question=state["sub_question"],
|
||||
primary_llm=state["primary_llm"],
|
||||
fast_llm=state["fast_llm"],
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
)
|
||||
for doc in state["sub_question_base_retrieval_docs"]
|
||||
]
|
||||
|
||||
|
||||
def sub_continue_to_retrieval(
|
||||
state: ResearchQAState,
|
||||
) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes re-written queries to the (parallel) retrieval steps
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
return [
|
||||
Send(
|
||||
"sub_custom_retrieve",
|
||||
RetrieverState(
|
||||
rewritten_query=query,
|
||||
primary_llm=state["primary_llm"],
|
||||
fast_llm=state["fast_llm"],
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
)
|
||||
for query in state["sub_question_rewritten_queries"]
|
||||
]
|
||||
@@ -1,93 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.edges import sub_continue_to_retrieval
|
||||
from danswer.agent_search.deep_qa_graph.edges import sub_continue_to_verifier
|
||||
from danswer.agent_search.deep_qa_graph.nodes.combine_retrieved_docs import (
|
||||
sub_combine_retrieved_docs,
|
||||
)
|
||||
from danswer.agent_search.deep_qa_graph.nodes.custom_retrieve import sub_custom_retrieve
|
||||
from danswer.agent_search.deep_qa_graph.nodes.dummy import sub_dummy
|
||||
from danswer.agent_search.deep_qa_graph.nodes.final_format import sub_final_format
|
||||
from danswer.agent_search.deep_qa_graph.nodes.generate import sub_generate
|
||||
from danswer.agent_search.deep_qa_graph.nodes.qa_check import sub_qa_check
|
||||
from danswer.agent_search.deep_qa_graph.nodes.verifier import sub_verifier
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAOutputState
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
|
||||
|
||||
def build_deep_qa_graph() -> StateGraph:
|
||||
# Define the nodes we will cycle between
|
||||
sub_answers = StateGraph(state_schema=ResearchQAState, output=ResearchQAOutputState)
|
||||
|
||||
### Add Nodes ###
|
||||
|
||||
# Dummy node for initial processing
|
||||
sub_answers.add_node(node="sub_dummy", action=sub_dummy)
|
||||
|
||||
# The retrieval step
|
||||
sub_answers.add_node(node="sub_custom_retrieve", action=sub_custom_retrieve)
|
||||
|
||||
# The dedupe step
|
||||
sub_answers.add_node(
|
||||
node="sub_combine_retrieved_docs", action=sub_combine_retrieved_docs
|
||||
)
|
||||
|
||||
# Verifying retrieved information
|
||||
sub_answers.add_node(node="sub_verifier", action=sub_verifier)
|
||||
|
||||
# Generating the response
|
||||
sub_answers.add_node(node="sub_generate", action=sub_generate)
|
||||
|
||||
# Checking the quality of the answer
|
||||
sub_answers.add_node(node="sub_qa_check", action=sub_qa_check)
|
||||
|
||||
# Final formatting of the response
|
||||
sub_answers.add_node(node="sub_final_format", action=sub_final_format)
|
||||
|
||||
### Add Edges ###
|
||||
|
||||
# Generate multiple sub-questions
|
||||
sub_answers.add_edge(start_key=START, end_key="sub_rewrite")
|
||||
|
||||
# For each sub-question, perform a retrieval in parallel
|
||||
sub_answers.add_conditional_edges(
|
||||
source="sub_rewrite",
|
||||
path=sub_continue_to_retrieval,
|
||||
path_map=["sub_custom_retrieve"],
|
||||
)
|
||||
|
||||
# Combine the retrieved docs for each sub-question from the parallel retrievals
|
||||
sub_answers.add_edge(
|
||||
start_key="sub_custom_retrieve", end_key="sub_combine_retrieved_docs"
|
||||
)
|
||||
|
||||
# Go over all of the combined retrieved docs and verify them against the original question
|
||||
sub_answers.add_conditional_edges(
|
||||
source="sub_combine_retrieved_docs",
|
||||
path=sub_continue_to_verifier,
|
||||
path_map=["sub_verifier"],
|
||||
)
|
||||
|
||||
# Generate an answer for each verified retrieved doc
|
||||
sub_answers.add_edge(start_key="sub_verifier", end_key="sub_generate")
|
||||
|
||||
# Check the quality of the answer
|
||||
sub_answers.add_edge(start_key="sub_generate", end_key="sub_qa_check")
|
||||
|
||||
sub_answers.add_edge(start_key="sub_qa_check", end_key="sub_final_format")
|
||||
|
||||
sub_answers.add_edge(start_key="sub_final_format", end_key=END)
|
||||
|
||||
return sub_answers
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# TODO: add the actual question
|
||||
inputs = {"sub_question": "Whose music is kind of hard to easily enjoy?"}
|
||||
sub_answers_graph = build_deep_qa_graph()
|
||||
compiled_sub_answers = sub_answers_graph.compile()
|
||||
output = compiled_sub_answers.invoke(inputs)
|
||||
print("\nOUTPUT:")
|
||||
print(output)
|
||||
@@ -1,31 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_combine_retrieved_docs(state: ResearchQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dedupe the retrieved docs.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
sub_question_base_retrieval_docs = state["sub_question_base_retrieval_docs"]
|
||||
|
||||
print(f"Number of docs from steps: {len(sub_question_base_retrieval_docs)}")
|
||||
dedupe_docs = []
|
||||
for base_retrieval_doc in sub_question_base_retrieval_docs:
|
||||
if base_retrieval_doc not in dedupe_docs:
|
||||
dedupe_docs.append(base_retrieval_doc)
|
||||
|
||||
print(f"Number of deduped docs: {len(dedupe_docs)}")
|
||||
|
||||
return {
|
||||
"sub_question_deduped_retrieval_docs": dedupe_docs,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - combine_retrieved_docs (dedupe)",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import RetrieverState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def sub_custom_retrieve(state: RetrieverState) -> dict[str, Any]:
|
||||
"""
|
||||
Retrieve documents
|
||||
|
||||
Args:
|
||||
state (dict): The current graph state
|
||||
|
||||
Returns:
|
||||
state (dict): New key added to state, documents, that contains retrieved documents
|
||||
"""
|
||||
print("---RETRIEVE SUB---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
# Retrieval
|
||||
# TODO: add the actual retrieval, probably from search_tool.run()
|
||||
documents: list[InferenceSection] = []
|
||||
|
||||
return {
|
||||
"sub_question_base_retrieval_docs": documents,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - custom_retrieve",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_dummy(state: BaseQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dummy step
|
||||
"""
|
||||
|
||||
print("---Sub Dummy---")
|
||||
|
||||
return {
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - dummy",
|
||||
node_start_time=datetime.now(),
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_final_format(state: ResearchQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Create the final output for the QA subgraph
|
||||
"""
|
||||
|
||||
print("---SUB FINAL FORMAT---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
return {
|
||||
# TODO: Type this
|
||||
"sub_qas": [
|
||||
{
|
||||
"sub_question": state["sub_question"],
|
||||
"sub_answer": state["sub_question_answer"],
|
||||
"sub_question_nr": state["sub_question_nr"],
|
||||
"sub_answer_check": state["sub_question_answer_check"],
|
||||
}
|
||||
],
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - final format",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,56 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_generate(state: ResearchQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---SUB GENERATE---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["sub_question"]
|
||||
docs = state["sub_question_verified_retrieval_docs"]
|
||||
|
||||
print(f"Number of verified retrieval docs for sub-question: {len(docs)}")
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_RAG_PROMPT.format(question=question, context=format_docs(docs))
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
if len(docs) > 0:
|
||||
model = state["fast_llm"]
|
||||
response = list(
|
||||
model.stream(
|
||||
prompt=msg,
|
||||
)
|
||||
)
|
||||
response_str = merge_message_runs(response, chunk_separator="")[0].content
|
||||
else:
|
||||
response_str = ""
|
||||
|
||||
return {
|
||||
"sub_question_answer": response_str,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - generate",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,57 +0,0 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.prompts import SUB_CHECK_PROMPT
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_qa_check(state: ResearchQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Check whether the final output satisfies the original user question
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with the final decision
|
||||
"""
|
||||
|
||||
print("---CHECK SUB QUTPUT---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
sub_answer = state["sub_question_answer"]
|
||||
sub_question = state["sub_question"]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=SUB_CHECK_PROMPT.format(
|
||||
sub_question=sub_question, sub_answer=sub_answer
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = list(
|
||||
model.stream(
|
||||
prompt=msg,
|
||||
structured_response_format=BinaryDecision.model_json_schema(),
|
||||
)
|
||||
)
|
||||
|
||||
raw_response = json.loads(response[0].pretty_repr())
|
||||
formatted_response = BinaryDecision.model_validate(raw_response)
|
||||
|
||||
return {
|
||||
"sub_question_answer_check": formatted_response.decision,
|
||||
"log_messages": generate_log_message(
|
||||
message=f"sub - qa check: {formatted_response.decision}",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,64 +0,0 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.shared_graph_utils.models import RewrittenQueries
|
||||
from danswer.agent_search.shared_graph_utils.prompts import REWRITE_PROMPT_MULTI
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
def sub_rewrite(state: ResearchQAState) -> dict[str, Any]:
|
||||
"""
|
||||
Transform the initial question into more suitable search queries.
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
|
||||
print("---SUB TRANSFORM QUERY---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["sub_question"]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=REWRITE_PROMPT_MULTI.format(question=question),
|
||||
)
|
||||
]
|
||||
fast_llm: LLM = state["fast_llm"]
|
||||
llm_response = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
structured_response_format=RewrittenQueries.model_json_schema(),
|
||||
)
|
||||
)
|
||||
|
||||
# Get the rewritten queries in a defined format
|
||||
rewritten_queries: RewrittenQueries = json.loads(llm_response[0].pretty_repr())
|
||||
|
||||
print(f"rewritten_queries: {rewritten_queries}")
|
||||
|
||||
rewritten_queries = RewrittenQueries(
|
||||
rewritten_queries=[
|
||||
"music hard to listen to",
|
||||
"Music that is not fun or pleasant",
|
||||
]
|
||||
)
|
||||
|
||||
print(f"hardcoded rewritten_queries: {rewritten_queries}")
|
||||
|
||||
return {
|
||||
"sub_question_rewritten_queries": rewritten_queries,
|
||||
"log_messages": generate_log_message(
|
||||
message="sub - rewrite",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,59 +0,0 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.primary_graph.states import VerifierState
|
||||
from danswer.agent_search.shared_graph_utils.models import BinaryDecision
|
||||
from danswer.agent_search.shared_graph_utils.prompts import VERIFIER_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def sub_verifier(state: VerifierState) -> dict[str, Any]:
|
||||
"""
|
||||
Check whether the document is relevant for the original user question
|
||||
|
||||
Args:
|
||||
state (VerifierState): The current state
|
||||
|
||||
Returns:
|
||||
dict: ict: The updated state with the final decision
|
||||
"""
|
||||
|
||||
print("---SUB VERIFY QUTPUT---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["question"]
|
||||
document_content = state["document"].combined_content
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=VERIFIER_PROMPT.format(
|
||||
question=question, document_content=document_content
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = list(
|
||||
model.stream(
|
||||
prompt=msg,
|
||||
structured_response_format=BinaryDecision.model_json_schema(),
|
||||
)
|
||||
)
|
||||
|
||||
raw_response = json.loads(response[0].pretty_repr())
|
||||
formatted_response = BinaryDecision.model_validate(raw_response)
|
||||
|
||||
return {
|
||||
"deduped_retrieval_docs": [state["document"]]
|
||||
if formatted_response.decision == "yes"
|
||||
else [],
|
||||
"log_messages": generate_log_message(
|
||||
message=f"core - verifier: {formatted_response.decision}",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,13 +0,0 @@
|
||||
SUB_CHECK_PROMPT = """ \n
|
||||
Please check whether the suggested answer seems to address the original question.
|
||||
|
||||
Please only answer with 'yes' or 'no' \n
|
||||
Here is the initial question:
|
||||
\n ------- \n
|
||||
{question}
|
||||
\n ------- \n
|
||||
Here is the proposed answer:
|
||||
\n ------- \n
|
||||
{base_answer}
|
||||
\n ------- \n
|
||||
Please answer with yes or no:"""
|
||||
@@ -1,64 +0,0 @@
|
||||
import operator
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from typing import Annotated
|
||||
from typing import TypedDict
|
||||
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langgraph.graph.message import add_messages
|
||||
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.llm.interfaces import LLM
|
||||
|
||||
|
||||
class ResearchQAState(TypedDict):
|
||||
# The 'core SubQuestion' state.
|
||||
original_question: str
|
||||
graph_start_time: datetime
|
||||
sub_question_rewritten_queries: list[str]
|
||||
sub_question: str
|
||||
sub_question_nr: int
|
||||
sub_question_base_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_deduped_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_verified_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_reranked_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_top_chunks: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_answer: str
|
||||
sub_question_answer_check: str
|
||||
log_messages: Annotated[Sequence[BaseMessage], add_messages]
|
||||
sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
primary_llm: LLM
|
||||
fast_llm: LLM
|
||||
|
||||
|
||||
class ResearchQAOutputState(TypedDict):
|
||||
# The 'SubQuestion' output state. Removes all the intermediate states
|
||||
sub_question_rewritten_queries: list[str]
|
||||
sub_question: str
|
||||
sub_question_nr: int
|
||||
# Answers sent back to core
|
||||
sub_qas: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_base_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_deduped_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_verified_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_reranked_retrieval_docs: Annotated[
|
||||
Sequence[InferenceSection], operator.add
|
||||
]
|
||||
sub_question_top_chunks: Annotated[Sequence[dict], operator.add]
|
||||
sub_question_answer: str
|
||||
sub_question_answer_check: str
|
||||
log_messages: Annotated[Sequence[BaseMessage], add_messages]
|
||||
@@ -1,75 +0,0 @@
|
||||
from collections.abc import Hashable
|
||||
from typing import Union
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langgraph.types import Send
|
||||
|
||||
from danswer.agent_search.core_qa_graph.states import BaseQAState
|
||||
from danswer.agent_search.deep_qa_graph.states import ResearchQAState
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_CHECK_PROMPT
|
||||
|
||||
|
||||
def continue_to_initial_sub_questions(
|
||||
state: QAState,
|
||||
) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes re-written queries to the (parallel) retrieval steps
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
return [
|
||||
Send(
|
||||
"sub_answers_graph_initial",
|
||||
BaseQAState(
|
||||
sub_question_str=initial_sub_question["sub_question_str"],
|
||||
sub_question_search_queries=initial_sub_question[
|
||||
"sub_question_search_queries"
|
||||
],
|
||||
sub_question_nr=initial_sub_question["sub_question_nr"],
|
||||
primary_llm=state["primary_llm"],
|
||||
fast_llm=state["fast_llm"],
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
)
|
||||
for initial_sub_question in state["initial_sub_questions"]
|
||||
]
|
||||
|
||||
|
||||
def continue_to_answer_sub_questions(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
# Routes re-written queries to the (parallel) retrieval steps
|
||||
# Notice the 'Send()' API that takes care of the parallelization
|
||||
return [
|
||||
Send(
|
||||
"sub_answers_graph",
|
||||
ResearchQAState(
|
||||
sub_question=sub_question["sub_question_str"],
|
||||
sub_question_nr=sub_question["sub_question_nr"],
|
||||
graph_start_time=state["graph_start_time"],
|
||||
primary_llm=state["primary_llm"],
|
||||
fast_llm=state["fast_llm"],
|
||||
),
|
||||
)
|
||||
for sub_question in state["sub_questions"]
|
||||
]
|
||||
|
||||
|
||||
def continue_to_deep_answer(state: QAState) -> Union[Hashable, list[Hashable]]:
|
||||
print("---GO TO DEEP ANSWER OR END---")
|
||||
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
question = state["original_question"]
|
||||
|
||||
BASE_CHECK_MESSAGE = [
|
||||
HumanMessage(
|
||||
content=BASE_CHECK_PROMPT.format(question=question, base_answer=base_answer)
|
||||
)
|
||||
]
|
||||
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(BASE_CHECK_MESSAGE)
|
||||
|
||||
print(f"CAN WE CONTINUE W/O GENERATING A DEEP ANSWER? - {response.pretty_repr()}")
|
||||
|
||||
if response.pretty_repr() == "no":
|
||||
return "decompose"
|
||||
else:
|
||||
return "end"
|
||||
@@ -1,171 +0,0 @@
|
||||
from langgraph.graph import END
|
||||
from langgraph.graph import START
|
||||
from langgraph.graph import StateGraph
|
||||
|
||||
from danswer.agent_search.core_qa_graph.graph_builder import build_core_qa_graph
|
||||
from danswer.agent_search.deep_qa_graph.graph_builder import build_deep_qa_graph
|
||||
from danswer.agent_search.primary_graph.edges import continue_to_answer_sub_questions
|
||||
from danswer.agent_search.primary_graph.edges import continue_to_deep_answer
|
||||
from danswer.agent_search.primary_graph.edges import continue_to_initial_sub_questions
|
||||
from danswer.agent_search.primary_graph.nodes.base_wait import base_wait
|
||||
from danswer.agent_search.primary_graph.nodes.combine_retrieved_docs import (
|
||||
combine_retrieved_docs,
|
||||
)
|
||||
from danswer.agent_search.primary_graph.nodes.custom_retrieve import custom_retrieve
|
||||
from danswer.agent_search.primary_graph.nodes.decompose import decompose
|
||||
from danswer.agent_search.primary_graph.nodes.deep_answer_generation import (
|
||||
deep_answer_generation,
|
||||
)
|
||||
from danswer.agent_search.primary_graph.nodes.dummy_start import dummy_start
|
||||
from danswer.agent_search.primary_graph.nodes.entity_term_extraction import (
|
||||
entity_term_extraction,
|
||||
)
|
||||
from danswer.agent_search.primary_graph.nodes.final_stuff import final_stuff
|
||||
from danswer.agent_search.primary_graph.nodes.generate_initial import generate_initial
|
||||
from danswer.agent_search.primary_graph.nodes.main_decomp_base import main_decomp_base
|
||||
from danswer.agent_search.primary_graph.nodes.rewrite import rewrite
|
||||
from danswer.agent_search.primary_graph.nodes.sub_qa_level_aggregator import (
|
||||
sub_qa_level_aggregator,
|
||||
)
|
||||
from danswer.agent_search.primary_graph.nodes.sub_qa_manager import sub_qa_manager
|
||||
from danswer.agent_search.primary_graph.nodes.verifier import verifier
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
|
||||
|
||||
def build_core_graph() -> StateGraph:
|
||||
# Define the nodes we will cycle between
|
||||
core_answer_graph = StateGraph(state_schema=QAState)
|
||||
|
||||
### Add Nodes ###
|
||||
core_answer_graph.add_node(node="dummy_start",
|
||||
action=dummy_start)
|
||||
|
||||
# Re-writing the question
|
||||
core_answer_graph.add_node(node="rewrite",
|
||||
action=rewrite)
|
||||
|
||||
# The retrieval step
|
||||
core_answer_graph.add_node(node="custom_retrieve",
|
||||
action=custom_retrieve)
|
||||
|
||||
# Combine and dedupe retrieved docs.
|
||||
core_answer_graph.add_node(
|
||||
node="combine_retrieved_docs",
|
||||
action=combine_retrieved_docs
|
||||
)
|
||||
|
||||
# Extract entities, terms and relationships
|
||||
core_answer_graph.add_node(
|
||||
node="entity_term_extraction",
|
||||
action=entity_term_extraction
|
||||
)
|
||||
|
||||
# Verifying that a retrieved doc is relevant
|
||||
core_answer_graph.add_node(node="verifier",
|
||||
action=verifier)
|
||||
|
||||
# Initial question decomposition
|
||||
core_answer_graph.add_node(node="main_decomp_base",
|
||||
action=main_decomp_base)
|
||||
|
||||
# Build the base QA sub-graph and compile it
|
||||
compiled_core_qa_graph = build_core_qa_graph().compile()
|
||||
# Add the compiled base QA sub-graph as a node to the core graph
|
||||
core_answer_graph.add_node(
|
||||
node="sub_answers_graph_initial",
|
||||
action=compiled_core_qa_graph
|
||||
)
|
||||
|
||||
# Checking whether the initial answer is in the ballpark
|
||||
core_answer_graph.add_node(node="base_wait",
|
||||
action=base_wait)
|
||||
|
||||
# Decompose the question into sub-questions
|
||||
core_answer_graph.add_node(node="decompose",
|
||||
action=decompose)
|
||||
|
||||
# Manage the sub-questions
|
||||
core_answer_graph.add_node(node="sub_qa_manager",
|
||||
action=sub_qa_manager)
|
||||
|
||||
# Build the research QA sub-graph and compile it
|
||||
compiled_deep_qa_graph = build_deep_qa_graph().compile()
|
||||
# Add the compiled research QA sub-graph as a node to the core graph
|
||||
core_answer_graph.add_node(node="sub_answers_graph",
|
||||
action=compiled_deep_qa_graph)
|
||||
|
||||
# Aggregate the sub-questions
|
||||
core_answer_graph.add_node(
|
||||
node="sub_qa_level_aggregator",
|
||||
action=sub_qa_level_aggregator
|
||||
)
|
||||
|
||||
# aggregate sub questions and answers
|
||||
core_answer_graph.add_node(
|
||||
node="deep_answer_generation",
|
||||
action=deep_answer_generation
|
||||
)
|
||||
|
||||
# A final clean-up step
|
||||
core_answer_graph.add_node(node="final_stuff",
|
||||
action=final_stuff)
|
||||
|
||||
# Generating a response after we know the documents are relevant
|
||||
core_answer_graph.add_node(node="generate_initial",
|
||||
action=generate_initial)
|
||||
|
||||
### Add Edges ###
|
||||
|
||||
# start the initial sub-question decomposition
|
||||
core_answer_graph.add_edge(start_key=START,
|
||||
end_key="main_decomp_base")
|
||||
|
||||
core_answer_graph.add_conditional_edges(
|
||||
source="main_decomp_base",
|
||||
path=continue_to_initial_sub_questions,
|
||||
)
|
||||
|
||||
# use the retrieved information to generate the answer
|
||||
core_answer_graph.add_edge(
|
||||
start_key=["verifier", "sub_answers_graph_initial"],
|
||||
end_key="generate_initial"
|
||||
)
|
||||
core_answer_graph.add_edge(start_key="generate_initial",
|
||||
end_key="base_wait")
|
||||
|
||||
core_answer_graph.add_conditional_edges(
|
||||
source="base_wait",
|
||||
path=continue_to_deep_answer,
|
||||
path_map={"decompose": "entity_term_extraction", "end": "final_stuff"},
|
||||
)
|
||||
|
||||
core_answer_graph.add_edge(start_key="entity_term_extraction", end_key="decompose")
|
||||
|
||||
core_answer_graph.add_edge(start_key="decompose",
|
||||
end_key="sub_qa_manager")
|
||||
core_answer_graph.add_conditional_edges(
|
||||
source="sub_qa_manager",
|
||||
path=continue_to_answer_sub_questions,
|
||||
)
|
||||
|
||||
core_answer_graph.add_edge(
|
||||
start_key="sub_answers_graph",
|
||||
end_key="sub_qa_level_aggregator"
|
||||
)
|
||||
|
||||
core_answer_graph.add_edge(
|
||||
start_key="sub_qa_level_aggregator",
|
||||
end_key="deep_answer_generation"
|
||||
)
|
||||
|
||||
core_answer_graph.add_edge(
|
||||
start_key="deep_answer_generation",
|
||||
end_key="final_stuff"
|
||||
)
|
||||
|
||||
core_answer_graph.add_edge(start_key="final_stuff",
|
||||
end_key=END)
|
||||
|
||||
core_answer_graph.compile()
|
||||
|
||||
return core_answer_graph
|
||||
@@ -1,27 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def base_wait(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Ensures that all required steps are completed before proceeding to the next step
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: {} (no operation, just logging)
|
||||
"""
|
||||
|
||||
print("---Base Wait ---")
|
||||
node_start_time = datetime.now()
|
||||
return {
|
||||
"log_messages": generate_log_message(
|
||||
message="core - base_wait",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,36 +0,0 @@
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.context.search.models import InferenceSection
|
||||
|
||||
|
||||
def combine_retrieved_docs(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dedupe the retrieved docs.
|
||||
"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
base_retrieval_docs: Sequence[InferenceSection] = state["base_retrieval_docs"]
|
||||
|
||||
print(f"Number of docs from steps: {len(base_retrieval_docs)}")
|
||||
dedupe_docs: list[InferenceSection] = []
|
||||
for base_retrieval_doc in base_retrieval_docs:
|
||||
if not any(
|
||||
base_retrieval_doc.center_chunk.document_id == doc.center_chunk.document_id
|
||||
for doc in dedupe_docs
|
||||
):
|
||||
dedupe_docs.append(base_retrieval_doc)
|
||||
|
||||
print(f"Number of deduped docs: {len(dedupe_docs)}")
|
||||
|
||||
return {
|
||||
"deduped_retrieval_docs": dedupe_docs,
|
||||
"log_messages": generate_log_message(
|
||||
message="core - combine_retrieved_docs (dedupe)",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,52 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import RetrieverState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.context.search.models import InferenceSection
|
||||
from danswer.context.search.models import SearchRequest
|
||||
from danswer.context.search.pipeline import SearchPipeline
|
||||
from danswer.db.engine import get_session_context_manager
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def custom_retrieve(state: RetrieverState) -> dict[str, Any]:
|
||||
"""
|
||||
Retrieve documents
|
||||
|
||||
Args:
|
||||
retriever_state (dict): The current graph state
|
||||
|
||||
Returns:
|
||||
state (dict): New key added to state, documents, that contains retrieved documents
|
||||
"""
|
||||
print("---RETRIEVE---")
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
query = state["rewritten_query"]
|
||||
|
||||
# Retrieval
|
||||
# TODO: add the actual retrieval, probably from search_tool.run()
|
||||
llm, fast_llm = get_default_llms()
|
||||
with get_session_context_manager() as db_session:
|
||||
top_sections = SearchPipeline(
|
||||
search_request=SearchRequest(
|
||||
query=query,
|
||||
),
|
||||
user=None,
|
||||
llm=llm,
|
||||
fast_llm=fast_llm,
|
||||
db_session=db_session,
|
||||
).reranked_sections
|
||||
print(len(top_sections))
|
||||
documents: list[InferenceSection] = []
|
||||
|
||||
return {
|
||||
"base_retrieval_docs": documents,
|
||||
"log_messages": generate_log_message(
|
||||
message="core - custom_retrieve",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,78 +0,0 @@
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import DEEP_DECOMPOSE_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_entity_term_extraction
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def decompose(state: QAState) -> dict[str, Any]:
|
||||
""" """
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
# get the entity term extraction dict and properly format it
|
||||
entity_term_extraction_dict = state["retrieved_entities_relationships"][
|
||||
"retrieved_entities_relationships"
|
||||
]
|
||||
|
||||
entity_term_extraction_str = format_entity_term_extraction(
|
||||
entity_term_extraction_dict
|
||||
)
|
||||
|
||||
initial_question_answers = state["initial_sub_qas"]
|
||||
|
||||
addressed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "yes"
|
||||
]
|
||||
failed_question_list = [
|
||||
x["sub_question"]
|
||||
for x in initial_question_answers
|
||||
if x["sub_answer_check"] == "no"
|
||||
]
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=DEEP_DECOMPOSE_PROMPT.format(
|
||||
question=question,
|
||||
entity_term_extraction_str=entity_term_extraction_str,
|
||||
base_answer=base_answer,
|
||||
answered_sub_questions="\n - ".join(addressed_question_list),
|
||||
failed_sub_questions="\n - ".join(failed_question_list),
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", response.pretty_repr())
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
sub_questions_dict = {}
|
||||
for sub_question_nr, sub_question_dict in enumerate(
|
||||
parsed_response["sub_questions"]
|
||||
):
|
||||
sub_question_dict["answered"] = False
|
||||
sub_question_dict["verified"] = False
|
||||
sub_questions_dict[sub_question_nr] = sub_question_dict
|
||||
|
||||
return {
|
||||
"decomposed_sub_questions_dict": sub_questions_dict,
|
||||
"log_messages": generate_log_message(
|
||||
message="deep - decompose",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,61 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import COMBINED_CONTEXT
|
||||
from danswer.agent_search.shared_graph_utils.prompts import MODIFIED_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.agent_search.shared_graph_utils.utils import normalize_whitespace
|
||||
|
||||
|
||||
# aggregate sub questions and answers
|
||||
def deep_answer_generation(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---DEEP GENERATE---")
|
||||
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
deep_answer_context = state["core_answer_dynamic_context"]
|
||||
|
||||
print(f"Number of verified retrieval docs - deep: {len(docs)}")
|
||||
|
||||
combined_context = normalize_whitespace(
|
||||
COMBINED_CONTEXT.format(
|
||||
deep_answer_context=deep_answer_context, formated_docs=format_docs(docs)
|
||||
)
|
||||
)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=MODIFIED_RAG_PROMPT.format(
|
||||
question=question, combined_context=combined_context
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
return {
|
||||
"deep_answer": response.content,
|
||||
"log_messages": generate_log_message(
|
||||
message="deep - deep answer generation",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,11 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
|
||||
|
||||
def dummy_start(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Dummy node to set the start time
|
||||
"""
|
||||
return {"start_time": datetime.now()}
|
||||
@@ -1,51 +0,0 @@
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.messages import merge_message_runs
|
||||
|
||||
from danswer.agent_search.primary_graph.prompts import ENTITY_TERM_PROMPT
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
from danswer.llm.factory import get_default_llms
|
||||
|
||||
|
||||
def entity_term_extraction(state: QAState) -> dict[str, Any]:
|
||||
"""Extract entities and terms from the question and context"""
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
doc_context = format_docs(docs)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=ENTITY_TERM_PROMPT.format(question=question, context=doc_context),
|
||||
)
|
||||
]
|
||||
_, fast_llm = get_default_llms()
|
||||
# Grader
|
||||
llm_response_list = list(
|
||||
fast_llm.stream(
|
||||
prompt=msg,
|
||||
# structured_response_format={"type": "json_object", "schema": RewrittenQueries.model_json_schema()},
|
||||
# structured_response_format=RewrittenQueries.model_json_schema(),
|
||||
)
|
||||
)
|
||||
llm_response = merge_message_runs(llm_response_list, chunk_separator="")[0].content
|
||||
|
||||
cleaned_response = re.sub(r"```json\n|\n```", "", llm_response)
|
||||
parsed_response = json.loads(cleaned_response)
|
||||
|
||||
return {
|
||||
"retrieved_entities_relationships": parsed_response,
|
||||
"log_messages": generate_log_message(
|
||||
message="deep - entity term extraction",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,85 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def final_stuff(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Invokes the agent model to generate a response based on the current state. Given
|
||||
the question, it will decide to retrieve using the retriever tool, or simply end.
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with the agent response appended to messages
|
||||
"""
|
||||
print("---FINAL---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
messages = state["log_messages"]
|
||||
time_ordered_messages = [x.pretty_repr() for x in messages]
|
||||
time_ordered_messages.sort()
|
||||
|
||||
print("Message Log:")
|
||||
print("\n".join(time_ordered_messages))
|
||||
|
||||
initial_sub_qas = state["initial_sub_qas"]
|
||||
initial_sub_qa_list = []
|
||||
for initial_sub_qa in initial_sub_qas:
|
||||
if initial_sub_qa["sub_answer_check"] == "yes":
|
||||
initial_sub_qa_list.append(
|
||||
f' Question:\n {initial_sub_qa["sub_question"]}\n --\n Answer:\n {initial_sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
initial_sub_qa_context = "\n".join(initial_sub_qa_list)
|
||||
|
||||
log_message = generate_log_message(
|
||||
message="all - final_stuff",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
)
|
||||
|
||||
print(log_message)
|
||||
print("--------------------------------")
|
||||
|
||||
base_answer = state["base_answer"]
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Initial Answered Sub Questions:\n{initial_sub_qa_context}")
|
||||
print("--------------------------------")
|
||||
|
||||
if not state.get("deep_answer"):
|
||||
print("No Deep Answer was required")
|
||||
return {
|
||||
"log_messages": log_message,
|
||||
}
|
||||
|
||||
deep_answer = state["deep_answer"]
|
||||
sub_qas = state["sub_qas"]
|
||||
sub_qa_list = []
|
||||
for sub_qa in sub_qas:
|
||||
if sub_qa["sub_answer_check"] == "yes":
|
||||
sub_qa_list.append(
|
||||
f' Question:\n {sub_qa["sub_question"]}\n --\n Answer:\n {sub_qa["sub_answer"]}\n -----'
|
||||
)
|
||||
|
||||
sub_qa_context = "\n".join(sub_qa_list)
|
||||
|
||||
print(f"Final Base Answer:\n{base_answer}")
|
||||
print("--------------------------------")
|
||||
print(f"Final Deep Answer:\n{deep_answer}")
|
||||
print("--------------------------------")
|
||||
print("Sub Questions and Answers:")
|
||||
print(sub_qa_context)
|
||||
|
||||
return {
|
||||
"log_messages": generate_log_message(
|
||||
message="all - final_stuff",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,52 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.prompts import BASE_RAG_PROMPT
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def generate(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---GENERATE---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
|
||||
print(f"Number of verified retrieval docs: {len(docs)}")
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=BASE_RAG_PROMPT.format(question=question, context=format_docs(docs))
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
llm = state["fast_llm"]
|
||||
response = list(
|
||||
llm.stream(
|
||||
prompt=msg,
|
||||
structured_response_format=None,
|
||||
)
|
||||
)
|
||||
|
||||
return {
|
||||
"base_answer": response[0].pretty_repr(),
|
||||
"log_messages": generate_log_message(
|
||||
message="core - generate",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
@@ -1,72 +0,0 @@
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
from danswer.agent_search.primary_graph.prompts import INITIAL_RAG_PROMPT
|
||||
from danswer.agent_search.primary_graph.states import QAState
|
||||
from danswer.agent_search.shared_graph_utils.utils import format_docs
|
||||
from danswer.agent_search.shared_graph_utils.utils import generate_log_message
|
||||
|
||||
|
||||
def generate_initial(state: QAState) -> dict[str, Any]:
|
||||
"""
|
||||
Generate answer
|
||||
|
||||
Args:
|
||||
state (messages): The current state
|
||||
|
||||
Returns:
|
||||
dict: The updated state with re-phrased question
|
||||
"""
|
||||
print("---GENERATE INITIAL---")
|
||||
node_start_time = datetime.now()
|
||||
|
||||
question = state["original_question"]
|
||||
docs = state["deduped_retrieval_docs"]
|
||||
print(f"Number of verified retrieval docs - base: {len(docs)}")
|
||||
|
||||
sub_question_answers = state["initial_sub_qas"]
|
||||
|
||||
sub_question_answers_list = []
|
||||
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE = """
|
||||
Sub-Question:\n - {sub_question}\n --\nAnswer:\n - {sub_answer}\n\n
|
||||
"""
|
||||
for sub_question_answer_dict in sub_question_answers:
|
||||
if (
|
||||
sub_question_answer_dict["sub_answer_check"] == "yes"
|
||||
and len(sub_question_answer_dict["sub_answer"]) > 0
|
||||
and sub_question_answer_dict["sub_answer"] != "I don't know"
|
||||
):
|
||||
sub_question_answers_list.append(
|
||||
_SUB_QUESTION_ANSWER_TEMPLATE.format(
|
||||
sub_question=sub_question_answer_dict["sub_question"],
|
||||
sub_answer=sub_question_answer_dict["sub_answer"],
|
||||
)
|
||||
)
|
||||
|
||||
sub_question_answer_str = "\n\n------\n\n".join(sub_question_answers_list)
|
||||
|
||||
msg = [
|
||||
HumanMessage(
|
||||
content=INITIAL_RAG_PROMPT.format(
|
||||
question=question,
|
||||
context=format_docs(docs),
|
||||
answered_sub_questions=sub_question_answer_str,
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
# Grader
|
||||
model = state["fast_llm"]
|
||||
response = model.invoke(msg)
|
||||
|
||||
return {
|
||||
"base_answer": response.pretty_repr(),
|
||||
"log_messages": generate_log_message(
|
||||
message="core - generate initial",
|
||||
node_start_time=node_start_time,
|
||||
graph_start_time=state["graph_start_time"],
|
||||
),
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user